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Summary

The human kidney is composed of over 26 cell types that actively coordinate with each other to form
higher-order structures, such as the nephron. It is not yet understood how these structures vary
throughout a single organ or amongst the same organs within the human population. We have developed
an extensive lipid and cellular atlas of the human kidney consisting of over 3 million cells comprising
75,000 functional tissue units (i.e., glomeruli, proximal tubules, distal tubules, and collecting ducts) from
13 human subjects. This atlas was developed using spatially registered and integrated technologies
consisting of imaging mass spectrometry, multiplexed immunofluorescence, stained microscopy, and
autofluorescence microscopy, to comprehensively probe large (i.e., centimeter-sized) areas of tissue. The
cellular organization and lipid profiles of glomeruli, proximal tubules, distal tubules, and collecting ducts
were discovered through these multimodal imaging data as well as their intra- and inter-subject variance.
Relating the lipid profiles obtained from imaging mass spectrometry to distinct cell types obtained from
immunofluorescence allowed us to hypothesize the functional role of specific phospholipids that have not
previously been described. These hypotheses include subject characteristics, such as BMI and sex. The
integrated data from the aforementioned datasets provide a valuable reference for kidney researchers,
are publicly  available  through the NIH Human Biomolecular  Atlas Program
(https://portal.hubmapconsortium.org/), and discussed below.

Introduction

While the roles of specific cell types and multicellular functional tissue units (FTUs) are generally well
known, the molecular and numerical heterogeneity throughout a single organ or between organs within
the human population has yet to be determined, particularly as a function of demographics (e.g. sex, race,
age, etc.) and anthropometric indicators (e.g. heigh, weight, body mass index (BMl), etc.). Exploring the
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underlying similarities and differences between these patient factors is key for extrapolating the drivers
of functional efficiency, transition to disease, and disease severity’3. Comprehensive atlases provide a
means to generate new hypotheses and the foundation for biomedical researchers to answer these types
of questions. Recently, the National Institutes of Health and private organizations have funded atlas
efforts, such as the Allen Brain Atlas?, Human Cell Atlas (HCA)>*® Human Biomolecular Atlas Program
(HUBMAP)?, BRAIN Initiative®, Kidney Precision Medicine Project’, and Human Tumor Atlas Network?®,
targeting an array of healthy and/or diseased organs. Collectively, these initiatives constitute hundreds of
scientists from across the world. Here, as part of HUBMAP, we analyze the human kidney to investigate
how it varies on both the lipidomic and cellular level within and among different tissue subjects,
particularly as it relates to obesity and sex.

The kidney is responsible for waste management, electrolyte balance, blood pressure control, and red
blood cell production among other functions*3. To execute these functions, this complex organ consists
of at least 26 distinct cell types and an average of over one million nephrons per kidney in humans**>. A
nephron is involved in kidney function and consists of a glomerulus that is linked to distal and proximal
tubular segments, afferent and efferent arterioles, and peritubular capillaries. Nephrons are distributed
at different depths within the renal cortex, with deep nephrons subserving different functions than more
superficial nephrons in the kidney. In addition, peritubular interstitial spaces are drained by lymphatics,
and contain a diverse, and spatially distinct populations of renal interstitial cells, mononuclear phagocytes,
and other immune cells®®. This dynamic network of cell types and multicellular functional tissue units not
only varies throughout the kidney itself, but also from one human to another®. For instance, the
physiological differences in kidney function and disease development have been well studied between
men and women, including blood pressure regulation?®, diabetes??, chronic kidney disease?’, and proximal
tubule composition?!. While many studies attribute these differences to sex hormones or size
differences??, prior publications have not profiled the spatial or molecular landscape of the kidney with
the level of coverage provided in this work. The integration of data that span spatial scales and molecular
profiles across the tissue allows for the creation of a molecular and cellular atlas, which can be explored
and leveraged to study how differences between groups manifest physiologically??*.

The atlas presented here consists of expansive, integrated, and spatially resolved lipid and cellular
information for 13 human subjects at unprecedented specificity and scale; we visualize single cells and
functional tissue units (i.e. glomeruli, proximal tubules, distal tubules, and collecting ducts) across large
tissue regions. This atlas incorporates spatially resolved data from mass spectrometry, highly multiplexed
immunofluorescence, histological stains, and autofluorescence (AF) microscopy. Each component of the
atlas is publicly available (https://portal.hubmapconsortium.org/). Our atlas spans multiple scales of
spatial granularity, from large tissue areas to single cells and from averaged populations to individual
subjects, serving as a resource for exploring the biomolecular landscape that informs health and disease.

Results and Discussion
Overview of atlas data and methods

Constructing molecular and cellular atlases require data collection over long periods of time (months to
years) requiring special considerations for minimizing variability associated with tissue collection or
experimental factors, enabling robust and reproducible sampling, and ensuring resulting data can be
integrated (Figures 1A and S1)%. To begin, remnant tissue with warm and cold ischemia times shorter
than 5 min and 30 min, respectively, is collected from unilateral nephrectomies performed for medical
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indications (Figures 1B and S1A-C). Approximately half of the tissue is formalin-fixed and paraffin-
embedded (FFPE) for histological (Figure S1D) and pathological assessment (Table S1-3) and the other half
is fresh frozen (Figure S1E) and subsequently processed for imaging mass spectrometry, AF microscopy,
and multiplexed immunofluorescence (Figures 1C and S1G-J), allowing both cellular and lipid profiling of
major kidney FTUs. Using this workflow, we have acquired 13 multimodal datasets from subjects with
ages ranging from 20 to 77 years old, body mass indexes (BMI) between 22 and 45.5, and both sexes
(Table S2). It is estimated that 40% of biomarker-related studies in the nephrology field are misleading
because of the exclusion of women?®. To combat this, we have selected tissues from subjects that cover
a wider range of patient demographics and clinical factors. This enables us to explore the lipid and cellular
heterogeneity of the kidney as it relates to BMI and sex. In brief, datasets consist of AF microscopy (Figures
S2-3), matrix-assisted laser desorption/ionization imaging mass spectrometry (MALDI IMS) in both
positive (Figures S4-S31) and negative ion modes (Figure S32-S59), co-detection by indexing (CODEX)
multiplexed immunofluorescence (Figures S60-S66, Table S4), and periodic acid Schiff (PAS) stained
microscopy (Figure S67). Each modality provides a different, complementary view of the tissue
architecture. For instance, MALDI IMS provides untargeted, spatial information for hundreds of lipids
nearing cellular resolution?’. AF microscopy is a label-free microscopy method, which is used as the basis
for computational segmentation of the tissue into FTUs?. The lipid markers obtained using MALDI IMS
corresponding to specific FTUs, such as glomeruli and proximal tubules, can subsequently be extracted
from the IMS-generated mass spectra and AF-supplied FTU masks generated using a machine learning
workflow (Figure 1D.1). We then classify IMS pixels into FTUs based on their mass spectra using a decision-
tree-based gradient boosting model and quantitatively estimating the importance of each molecular
species for recognizing a given functional tissue unit using Shapley additive explanations (SHAP)*3°, By
bridging the observations from the different imaging modalities and mining their cross-modal
relationships in an automated way, it becomes possible to estimate FTU-specific lipid markers and
empirically determine molecular profiles for each segmented structure. To ground these broad, label-free
molecular observations to established protein-based studies, we also employ more targeted modalities
such as CODEX multiplexed immunofluorescence to spatially label and report specific cell types at sub-
cellular resolution. The spatial resolution of these multiplexed immunofluorescence approaches is 250 nm
(diffraction-limited) for >20 protein targets. The high spatial resolution and number of protein targets
enable cellular neighborhoods to be calculated (Figure 1D.2)3!33, Furthermore, AF microscopy is not only
used to automatically obtain FTU masks, but also to establish a common spatial coordinate framework
across all modalities and tissue sections. For this reason, AF microscopy is collected on all tissue sections
and enables registration and integration of MALDI IMS, multiplexed immunofluorescence, and histological
stains**%. Further details are found in the supplemental methods and published elsewhere as a protocol®*®
and in the references cited above.

Overview of atlas composition from single cells to functional tissue units

Our atlas provides intra- and inter-patient spatially resolved lipid and cellular profiles from 13 subjects
(Figure 2). Overall, we detected an average of 222+19 lipids (Figure 2A, Table S5-6) and 32554754
cells/mm? (Table S7) within these samples with extremes of 192-258 lipid features and 2100-4336
cells/mm?, respectively. Lipids vary in their relative abundance within individual patients, although the
molecular markers associated with different FTUs are largely conserved (Figure 2A). For instance,
PC(16:0_18:1) has higher discriminative importance, as measured by its SHAP score, for collecting ducts
and its relative signal intensity is generally conserved from subject-to-subject, while lipids such as PA(36:2)
have a high intensity within FTU for VAN0029 (62-year-old, white male, BMI 34.9) compared to the
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composite. Additionally, the relative composition of cell types is different from subject-to-subject,
especially for cells expressing nestin and R-catenin (Figure 2B, Table S8-9). Beyond individual cells, we
segmented each tissue into discrete functional tissue units (Table S10), with a total of 863 glomeruli, 8008
collecting ducts, 10662 distal tubules, and 55569 proximal tubules segmented within all images (Figure
2C, Figure S68).

To explore how the cellular architecture (i.e., neighborhoods) varies from subject-to-subject (Figure 2D-
E), we calculated the cellular neighborhood composition within a 25 um radius surrounding each cell for
all subjects (Figure 2D, Table S11) and individual subjects (Figure 2E, Table S12-S19). In brief, these
analyses provide a semi-quantitative form of spatial phenotyping with a panel consisting of both classic
and less commonly used protein markers®’. Using these neighborhood analyses, we determined overall
trends with cell types that were correlated (e.g. PARP1 and CD31 expressing cells), uncorrelated (e.g.
nestin and R-catenin expressing cells), and anticorrelated (e.g. renin and KDR expressing cells), although
the exact Spearman correlation coefficients varied from subject-to-subject. Spearman correlation values
above 0.7 (highly correlated) are particularly interesting since these suggest conservation of the cellular
architecture across the millions of cellular neighborhoods calculated within this dataset. Several expected
correlations are noted that have well established biological context, such as those between CD31 and
renin or nestin and laminin, which stain adjacent cell types. Because cells have unique, but interdependent
functions, cells that are often in neighborhoods with one another may interact more regularly. While some
of these trends are known, this atlas provides a broad overview of cellular neighborhoods across large
tissue areas from all subjects. Subject-to-subject differences in correlation coefficients likely have
functional relevance and may serve as a heuristic for neighborhood reorganization as a function of organ
region, age, or pathological state.

Spatially delineating masks for each FTU type, in combination with the interpretable machine learning
based detection of FTU-specific markers, enables us to determine lipid profiles for glomeruli (Figures S69-
S73 and Table S20), distal tubules (Figures $74-578 and Table S21), proximal tubules (Figure S79-S83 and
Table S22), and collecting ducts (Figures S84-S88 and Table S23). This exploration comprises most
segments within the nephron. Moreover, the calculated SHAP score of each lipid provides us with
guantitative measures of molecular features that characterize each functional tissue unit (Figures S89-
$90)%°. Many lipids appear to have approximately long normal distributions, such as phosphatidic acid
(PA)(0-38:1) within glomeruli (Figure S73) and sphingomyelin (SM)(d16:1_20:0) within proximal tubules
(Figure S83). The unimodal distributions potentially indicate a single population distribution exists in the
kidney. Conversely, several features, such as phosphatidylcholine (PC)(16:0_16:0) (Figure S73&S78) and
phosphatidylethanolamine (PE)(O-38:5) (Figure S78), appear to be bimodal and PE-Ceramide(Cer)(40:1) is
more complex (Figure S78). This perhaps indicates different physiological states of the FTUs and lends to
the diversity and dynamic nature of phospholipids. For instance, cellular membranes with a higher
accumulation or proportion of PC(16:0_16:0) may be in a more stable, less physiologically active state.3®

Spatial differences related to obesity and sex

While we are developing an atlas of normal human tissue, variability related to patient demographics and
other individual characteristics should not be ignored. Thus, we can more granularly analyze this atlas to
determine lipid features related to features such as BMI (Figure 3A, Figure S91, and Table S24) and sex
(Figure 3B, Figure S92, and Table S25) using the computational approaches described above. Stark
differences can be observed when subdividing the subjects with BMIs above or below 30 as a heuristic for
obese and non-obese, respectively. For example, we have determined that PAz-PC (i.e., 1-palmitoyl-2-
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azelaoyl PC), phosphatidylserine (PS)(26:0), and PE(O-38:5) are some of the top markers for differentiating
samples from obese vs non-obese subjects (Figure 3A.1). Furthermore, cellular neighborhoods involving
calbindin or aquaporin 2 (among others) are potentially disrupted between obese and non-obese
individuals (Figure 3A.2). Akin to the cellular neighborhood analysis, we calculated Spearman correlation
coefficients for lipids within a one-pixel radius (10 um) of one another. We found substantial differences
in the molecular neighborhood correlations between obese and non-obese subjects (Figure 3A.3). To put
these observations into context, we examined the putative role of the lipids that are most drastically
altered. For instance, PAz-PC is an oxidized lipid more abundant within the organs of obese subjects and
was computationally determined to be the largest discriminator between obese and non-obese subjects
(Figure 3A.1, Figure S91). Prior research shows that this lipid has a higher abundance in kidney failure®.
While it is not understood if the oxidized phosphatidylcholines are produced as a result of or to combat a
disease state, their higher abundance in obese patients indicates poorer kidney health. Other lipids, such
as PE(0-38:5), show large disparities between obese and non-obese subjects based on the violin plots,
providing targets for future, targeted experimentation. For instance, PE(O-38:5) may promote the
reabsorption of metabolites and proteins from urine based on the finding that high abundance of this lipid
induces negative membrane curvatures that promote endocytosis*®. Kidneys in obese patients often have
hyperfiltration, which may contribute to obesity-related glomerulopathy and other kidney disease®'. This
may explain the higher abundance of PE(O-38:5) in kidneys from obese patients. The functions of most
discrete lipids are elusive as of now, and the findings in this atlas serve as preliminary evidence for further
investigation of the essential roles that lipids play in health and disease.

The lipid information can be further supplemented by cellular neighborhood analysis with CODEX
glomerular (Figure S93) and tubular (Figure S94) markers. Most notably, correlation coefficients decrease
for calbindin-expressing cells and MARCKS expressing cells within obese subjects compared to their non-
obese counterparts. Differences within calbindin expression may indicate reduced absorption of
calcium®, which may be dysregulated in obesity®>. Differential MARCKS expression may indicate
dysregulated sodium reabsorption** which is also affected by obesity**. Changes within these correlation
values perhaps indicate that there is a change in the relative neighborhood that may contribute to
hyperfiltration among other responses. These changes indicate potential restructuring of cellular
neighborhoods between obese and non-obese individuals. Additional comorbidities or patient
information were explored for their effect on cellular neighborhoods (Table $S26-544). While additional
patients are required to fully characterize how cellular neighborhoods change as a function of
demographic characteristics or disease, these initial results support further investigation of cellular
neighborhoods within these different tissue parameters, particularly with additional molecular context.
This may help provide context to disease progression and the inclusion of additional comorbidities may
better stratify this disordered state.

Beyond BMI, we explored the molecular differences between male and female subjects (Figure S92, and
Table S25). Overall, PE(0-38:5) and PS(26:0) accounted for the largest difference between the sexes based
on the SHAP analysis. Further inspection of the violin distribution plots shows that both lipids displayed
bimodal-like distributions in male subjects (Figure 3B.1). Other lipids that differ in male and female
subjects have complex distributions and demonstrate the diversity and complexity of phospholipids.
Additionally, cellular neighborhoods for seven of the 23 marker panel are strongly correlated in men, but
only weakly correlated in women (Figure 3B.2). Additionally, we determined that there are stronger
molecular neighborhood correlation coefficients calculated for men than for women (Figure 3B.3).
Through these analyses, we can parse lipids that are highly correlated within a 10 um neighborhood, such
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as PE(18:2_20:0) and PE(18:1_18:1), which may indicate that they share either functionally relevant roles
in membrane fluidity*®*’, enabling metabolite transport*®°°, or other cellular functions®**? as they are
known to induce a negative membrane curvature®®. However, additional validation studies are required
for understanding the exact function (Figure 3B.3). The Spearman correlation coefficients of molecules
detected within male and female subjects are generally similar, indicating that many phospholipids are
likely conserved between the sexes, at least within the context of 10 um spatial neighborhoods. There are
some exceptions to this trend, such as PS(26:0), which has a mostly uncorrelated relationship to other
lipids within kidneys from female subjects but a higher correlation coefficient with other lipids in kidneys
from male subjects (Figure 3B.3). This trend may result in phenotypic or disease severity differences
between men and women and would be a key candidate for additional research. Additional lipids that
show this distribution include Ceramide 1-phosphate (CerP)(36:2;20).

Nephron component profiles based on obesity and sex

While lipid profiles for the entire tissue provide broad trends, each tissue can be functionally reduced into
different segments within a nephron (i.e., FTUs). Lipid differences as a function of obesity or sex may differ
when examining different functional regions within the kidney and are difficult to examine with bulk
approaches. Thus, we extended these analyses to determine lipid differences related to obesity (Figure 4)
or sex (Figure 5) within the FTUs of the nephron, such as glomeruli (Figure S95-96 and Table S45-46),
proximal tubules (Figure S97-98 and Table S47-48), distal tubules (Figure S99-100 and Table S49-50; and
collecting ducts (Figure S101-102 and Table S51-52) as opposed to the whole sampled region. The
differences between FTUs of obese and non-obese patients are starker than those for sex. For instance,
the lipids that differentiate obese and non-obese patients are conserved among many of the nephron
segments: PAz-PC, PC(26:0), PE(0-38:5), and PC(16:1_16:0) (Figure 4.2). As such, these lipids may be a
renal response to an obese phenotype and serve as putative therapeutic or diagnostic markers. As an
example, obesity represents a chronically inflamed state and under these conditions, coagulation factors
are aberrantly expressed or regulated, promoting increased prothrombotic risk>®**>. The oxidized
phospholipid, PAz-PC, could be an important molecule in the feedback loop that exists between obesity
and risk factors for cardiovascular disease as PAz-PC inhibits the tissue factor pathway inhibitor (TFP1)*%°7.
TFPI inhibits the tissue factor dependent, or extrinsic coagulation, pathway by directly and indirectly
perturbing the activation of the serine protease Factor Xa that interacts with fibrin, a marker of obesity>®
and linked to cardiovascular disease®. Further, PE(0-38:5) may enable hyperfiltration across the entire
nephron, as discussed above. While putative, this is the type of insight that can be gleaned from the atlas
information, enabling future functional studies aimed at understanding the dynamic role of lipids in
physiological function. The molecular neighborhoods are also different between obese and non-obese
subjects indicating that the lipidome is broadly affected. Moreover, the cellular neighborhoods of obese
patients have lower Spearman correlation coefficients compared to their non-obese counterparts,
indicating differential neighborhoods between the two states. This is exemplified by cells expressing
calbindin (Figure 4D.1 and E.1; other proteins show this trend as well), which are moderately correlated
in non-obese subjects and weakly negatively correlated in obese subjects.

Further, lipid differences between male and female patients may be related to hormones, which have a
known effect on kidney function'®®%%, However, different lipid distributions exist for each functional
tissue unit perhaps indicating a differential response to these hormones®”®°, although the relationship is
certainly complicated’® (Figure 5B-E.2). Largely, each FTU has a different set of top markers. Despite these
differences, molecular neighborhoods in men and women are largely similar (Figure 5.3), indicating that
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a level of global conservation and high correlations (e.g. PA(36:1) and PS(18:1_18:0), Figure 4B.3 or
PE(16:0_18:2) and PE(18:2_18:2), Figure 5C.3) between two lipids may indicate a functional
codependence. Moreover, lipids that do not differ significantly between male and female FTUs may serve
a conserved, housekeeping role. When considering the cellular neighborhoods of markers known to
colocalize within a functional tissue unit (Figure 5.1), neighborhoods including cytokeratin 7 within both
distal tubules (Figure 5D.1) and collecting ducts (Figure 5E.1) show the largest difference between the
sexes. Cytokeratin 7 is a structural polypeptide that is involved in epithelial differentiation and repair
within the kidney’?, perhaps lending to a hypothesis for differential response to disease severity.

Conclusion

Here we have constructed a multimodal, high-dimensional atlas of the human kidney including lipid,
cellular, and histological imaging data, as well as pathophysiological information for each subject. As part
of the NIH HuBMAP consortium, the data is freely accessible to the greater community
(https://portal.hubmapconsortium.org/). As an initial demonstration, we show data comparing the lipid
and cellular neighborhood differences between subjects with BMls below or above 30 as a heuristic for
obesity, and differences between men and women. Additional insight into the cellular and lipid variance
associated with demographics may help explain the functional ramifications resulting in differential
severity in diseases such as chronic kidney disease, cancer, and diabetes’>”®, Lipids, particularly in the
context of functional tissue units and cellular neighborhoods, are chronically understudied compared to
their transcript and protein counterparts, despite their clear involvement in health and disease. Many
large studies assume that genetic expression is sufficient for understanding disease states. While likely
true in many cases, there is a known discordance in gene expression and metabolomic profiles, indicating
that further research in this area is required for understanding complex physiology. Understanding
molecular and cellular profiles has direct ties to personalized medicine and improved therapeutics. As a
step towards reducing this discrepancy, our atlas serves to catalog the cellular and lipids differences on a
multiscale level. Ultimately, multidimensional and multiscale atlas efforts, such as the one discussed here,
provide several key findings for a defined, targeted validation, and serve as a resource for others to use
to generate new hypotheses and corroborate orthogonal studies.
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Figure 2. Overview of data represented within the kidney atlas. A) Intensity and SHAP scores for a subset
of 64 lipids as a composite of all patients and then two extracted patients for glomeruli (G), proximal
tubules (PT), distal tubules (DT), and collecting ducts (CD). B) Radar plots showing the relative number of
cells expressing each protein antigen averaged (solid red line) and on an individual patient level (dashed
line), ordered by relative cell number. C) Relative composition of different functional tissue units within
the cortex from each patient holistically (left) and normalized by area (right). D) Protein neighborhoods
derived for all patients and E) a subset of subjects that demonstrates how the cellular architecture varies
between each subject.
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Figure 3: Lipid and cellular profiles of the subjects subdivided by A) BMI and B) sex. A.1) Violin plots for
nine lipids with the highest SHAP scores that differentiate tissue originating from male (blue) and female
(pink) subjects. A.2) Cellular neighborhoods for ten markers that vary between men and women, where
red is highly correlated and blue is highly anticorrelated based on Spearman correlation values and a
neighborhood size of 25 um from the cell center. A.3) Molecular neighborhoods for ten lipids detected in
negative ion mode where circle radius is proportional to the Spearman correlation coefficient. Pixel
neighborhoods were 1 pixel (10 um) from the pixel of interest. B.1) Violin plots for nine lipids with the
highest SHAP scores that differentiate tissue originating from patients with BMIs above 30 (purple) and
below 30 (green). B.2) Cellular neighborhoods for ten markers that vary between obese and non-obese,
where red is highly correlated and blue is highly anticorrelated based on Spearman correlation values and
a neighborhood size of 25 pm from the cell center. B.3) Molecular neighborhoods for ten lipids detected
in negative ion mode where circle radius is proportional to the Spearman correlation coefficient. Pixel
neighborhoods were 1 pixel (10 um) from the pixel of interest.
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Figure 4: Summary of lipid and cellular differences between FTUs from patients with BMIs above 30
(obese) and below 30 (non-obese). A) Color-coded legend for interpretation of the remaining figures
associated with B) glomeruli, C) proximal tubules, D) distal tubules, and E) collecting ducts. Differences
between obese and non-obese subjects can be seen in the extrapolated 1) cellular neighborhoods, 2) lipid
species, and lipid neighborhoods associated with different segments of the nephron.
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Figure 5: Summary of lipid and cellular differences between FTUs from male and female subjects. A) Color-
coded legend for interpretation of the remaining figures associated with B) glomeruli, C) proximal tubules,
D) distal tubules, and E) collecting ducts. Differences between the sexes can be seen in the extrapolated
1) cellular neighborhoods, 2) lipid species, and 3) lipid neighborhoods associated with different segments
of the nephron.
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