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Summary 

The human kidney is composed of over 26 cell types that actively coordinate with each other to form 

higher-order structures, such as the nephron. It is not yet understood how these structures vary 

throughout a single organ or amongst the same organs within the human population. We have developed 

an extensive lipid and cellular atlas of the human kidney consisting of over 3 million cells comprising 

75,000 functional tissue units (i.e., glomeruli, proximal tubules, distal tubules, and collecting ducts) from 

13 human subjects. This atlas was developed using spatially registered and integrated technologies 

consisting of imaging mass spectrometry, multiplexed immunofluorescence, stained microscopy, and 

autofluorescence microscopy, to comprehensively probe large (i.e., centimeter-sized) areas of tissue. The 

cellular organization and lipid profiles of glomeruli, proximal tubules, distal tubules, and collecting ducts 

were discovered through these multimodal imaging data as well as their intra- and inter-subject variance. 

Relating the lipid profiles obtained from imaging mass spectrometry to distinct cell types obtained from 

immunofluorescence allowed us to hypothesize the functional role of specific phospholipids that have not 

previously been described. These hypotheses include subject characteristics, such as BMI and sex. The 

integrated data from the aforementioned datasets provide a valuable reference for kidney researchers, 

are publicly available through the NIH Human Biomolecular Atlas Program 

(https://portal.hubmapconsortium.org/), and discussed below.  

Introduction  

While the roles of specific cell types and multicellular functional tissue units (FTUs) are generally well 

known, the molecular and numerical heterogeneity throughout a single organ or between organs within 

the human population has yet to be determined, particularly as a function of demographics (e.g. sex, race, 

age, etc.) and anthropometric indicators (e.g. heigh, weight, body mass index (BMI), etc.). Exploring the 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 15, 2022. ; https://doi.org/10.1101/2022.04.07.487155doi: bioRxiv preprint 

https://doi.org/10.1101/2022.04.07.487155
http://creativecommons.org/licenses/by-nc-nd/4.0/


underlying similarities and differences between these patient factors is key for extrapolating the drivers 

of functional efficiency, transition to disease, and disease severity1-3. Comprehensive atlases provide a 

means to generate new hypotheses and the foundation for biomedical researchers to answer these types 

of questions. Recently, the National Institutes of Health and private organizations have funded atlas 

efforts, such as the Allen Brain Atlas4, Human Cell Atlas (HCA)5,6 Human Biomolecular Atlas Program 

(HuBMAP)7, BRAIN Initiative8, Kidney Precision Medicine Project9, and Human Tumor Atlas Network10, 

targeting an array of healthy and/or diseased organs. Collectively, these initiatives constitute hundreds of 

scientists from across the world. Here, as part of HuBMAP, we analyze the human kidney to investigate 

how it varies on both the lipidomic and cellular level within and among different tissue subjects, 

particularly as it relates to obesity and sex. 

The kidney is responsible for waste management, electrolyte balance, blood pressure control, and red 

blood cell production among other functions11-13. To execute these functions, this complex organ consists 

of at least 26 distinct cell types and an average of over one million nephrons per kidney in humans14,15. A 

nephron is involved in kidney function and consists of a glomerulus that is linked to distal and proximal 

tubular segments, afferent and efferent arterioles, and peritubular capillaries. Nephrons are distributed 

at different depths within the renal cortex, with deep nephrons subserving different functions than more 

superficial nephrons in the kidney. In addition, peritubular interstitial spaces are drained by lymphatics, 

and contain a diverse, and spatially distinct populations of renal interstitial cells, mononuclear phagocytes, 

and other immune cells16. This dynamic network of cell types and multicellular functional tissue units not 

only varies throughout the kidney itself, but also from one human to another17. For instance, the 

physiological differences in kidney function and disease development have been well studied between 

men and women, including blood pressure regulation18, diabetes19, chronic kidney disease20, and proximal 

tubule composition21. While many studies attribute these differences to sex hormones or size 

differences22, prior publications have not profiled the spatial or molecular landscape of the kidney with 

the level of coverage provided in this work. The integration of data that span spatial scales and molecular 

profiles across the tissue allows for the creation of a molecular and cellular atlas, which can be explored 

and leveraged to study how differences between groups manifest physiologically23,24.  

The atlas presented here consists of expansive, integrated, and spatially resolved lipid and cellular 

information for 13 human subjects at unprecedented specificity and scale; we visualize single cells and 

functional tissue units (i.e. glomeruli, proximal tubules, distal tubules, and collecting ducts) across large 

tissue regions. This atlas incorporates spatially resolved data from mass spectrometry, highly multiplexed 

immunofluorescence, histological stains, and autofluorescence (AF) microscopy. Each component of the 

atlas is publicly available (https://portal.hubmapconsortium.org/). Our atlas spans multiple scales of 

spatial granularity, from large tissue areas to single cells and from averaged populations to individual 

subjects, serving as a resource for exploring the biomolecular landscape that informs health and disease. 

Results and Discussion 

Overview of atlas data and methods  

Constructing molecular and cellular atlases require data collection over long periods of time (months to 

years) requiring special considerations for minimizing variability associated with tissue collection or 

experimental factors, enabling robust and reproducible sampling, and ensuring resulting data can be 

integrated (Figures 1A and S1)25. To begin, remnant tissue with warm and cold ischemia times shorter 

than 5 min and 30 min, respectively, is collected from unilateral nephrectomies performed for medical 
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indications (Figures 1B and S1A-C). Approximately half of the tissue is formalin-fixed and paraffin-

embedded (FFPE) for histological (Figure S1D) and pathological assessment (Table S1-3) and the other half 

is fresh frozen (Figure S1E) and subsequently processed for imaging mass spectrometry, AF microscopy, 

and multiplexed immunofluorescence (Figures 1C and S1G-J), allowing both cellular and lipid profiling of 

major kidney FTUs. Using this workflow, we have acquired 13 multimodal datasets from subjects with 

ages ranging from 20 to 77 years old, body mass indexes (BMI) between 22 and 45.5, and both sexes 

(Table S2). It is estimated that 40% of biomarker-related studies in the nephrology field are misleading 

because of the exclusion of women26. To combat this, we have selected tissues from subjects that cover 

a wider range of patient demographics and clinical factors. This enables us to explore the lipid and cellular 

heterogeneity of the kidney as it relates to BMI and sex. In brief, datasets consist of AF microscopy (Figures 

S2-3), matrix-assisted laser desorption/ionization imaging mass spectrometry (MALDI IMS) in both 

positive (Figures S4-S31) and negative ion modes (Figure S32-S59), co-detection by indexing (CODEX) 

multiplexed immunofluorescence (Figures S60-S66, Table S4), and periodic acid Schiff (PAS) stained 

microscopy (Figure S67). Each modality provides a different, complementary view of the tissue 

architecture. For instance, MALDI IMS provides untargeted, spatial information for hundreds of lipids 

nearing cellular resolution27. AF microscopy is a label-free microscopy method, which is used as the basis 

for computational segmentation of the tissue into FTUs28. The lipid markers obtained using MALDI IMS 

corresponding to specific FTUs, such as glomeruli and proximal tubules, can subsequently be extracted 

from the IMS-generated mass spectra and AF-supplied FTU masks generated using a machine learning 

workflow (Figure 1D.1). We then classify IMS pixels into FTUs based on their mass spectra using a decision-

tree-based gradient boosting model and quantitatively estimating the importance of each molecular 

species for recognizing a given functional tissue unit using Shapley additive explanations (SHAP)29,30. By 

bridging the observations from the different imaging modalities and mining their cross-modal 

relationships in an automated way, it becomes possible to estimate FTU-specific lipid markers and 

empirically determine molecular profiles for each segmented structure. To ground these broad, label-free 

molecular observations to established protein-based studies, we also employ more targeted modalities 

such as CODEX multiplexed immunofluorescence to spatially label and report specific cell types at sub-

cellular resolution. The spatial resolution of these multiplexed immunofluorescence approaches is 250 nm 

(diffraction-limited) for >20 protein targets. The high spatial resolution and number of protein targets 

enable cellular neighborhoods to be calculated (Figure 1D.2)31-33. Furthermore, AF microscopy is not only 

used to automatically obtain FTU masks, but also to establish a common spatial coordinate framework 

across all modalities and tissue sections. For this reason, AF microscopy is collected on all tissue sections 

and enables registration and integration of MALDI IMS, multiplexed immunofluorescence, and histological 

stains34,35. Further details are found in the supplemental methods and published elsewhere as a protocol36 

and in the references cited above.  

Overview of atlas composition from single cells to functional tissue units 

Our atlas provides intra- and inter-patient spatially resolved lipid and cellular profiles from 13 subjects 

(Figure 2). Overall, we detected an average of 222±19 lipids (Figure 2A, Table S5-6) and 3255±754 

cells/mm2 (Table S7) within these samples with extremes of 192-258 lipid features and 2100-4336 

cells/mm2, respectively. Lipids vary in their relative abundance within individual patients, although the 

molecular markers associated with different FTUs are largely conserved (Figure 2A). For instance, 

PC(16:0_18:1) has higher discriminative importance, as measured by its SHAP score, for collecting ducts 

and its relative signal intensity is generally conserved from subject-to-subject, while lipids such as PA(36:2) 

have a high intensity within FTU for VAN0029 (62-year-old, white male, BMI 34.9) compared to the 
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composite. Additionally, the relative composition of cell types is different from subject-to-subject, 

especially for cells expressing nestin and ß-catenin (Figure 2B, Table S8-9). Beyond individual cells, we 

segmented each tissue into discrete functional tissue units (Table S10), with a total of 863 glomeruli, 8008 

collecting ducts, 10662 distal tubules, and 55569 proximal tubules segmented within all images (Figure 

2C, Figure S68).  

To explore how the cellular architecture (i.e., neighborhoods) varies from subject-to-subject (Figure 2D-

E), we calculated the cellular neighborhood composition within a 25 µm radius surrounding each cell for 

all subjects (Figure 2D, Table S11) and individual subjects (Figure 2E, Table S12-S19). In brief, these 

analyses provide a semi-quantitative form of spatial phenotyping with a panel consisting of both classic 

and less commonly used protein markers37. Using these neighborhood analyses, we determined overall 

trends with cell types that were correlated (e.g. PARP1 and CD31 expressing cells), uncorrelated (e.g. 

nestin and ß-catenin expressing cells), and anticorrelated (e.g. renin and KDR expressing cells), although 

the exact Spearman correlation coefficients varied from subject-to-subject. Spearman correlation values 

above 0.7 (highly correlated) are particularly interesting since these suggest conservation of the cellular 

architecture across the millions of cellular neighborhoods calculated within this dataset. Several expected 

correlations are noted that have well established biological context, such as those between CD31 and 

renin or nestin and laminin, which stain adjacent cell types. Because cells have unique, but interdependent 

functions, cells that are often in neighborhoods with one another may interact more regularly. While some 

of these trends are known, this atlas provides a broad overview of cellular neighborhoods across large 

tissue areas from all subjects. Subject-to-subject differences in correlation coefficients likely have 

functional relevance and may serve as a heuristic for neighborhood reorganization as a function of organ 

region, age, or pathological state.  

Spatially delineating masks for each FTU type, in combination with the interpretable machine learning 

based detection of FTU-specific markers, enables us to determine lipid profiles for glomeruli (Figures S69-

S73 and Table S20), distal tubules (Figures S74-S78 and Table S21), proximal tubules (Figure S79-S83 and 

Table S22), and collecting ducts (Figures S84-S88 and Table S23). This exploration comprises most 

segments within the nephron. Moreover, the calculated SHAP score of each lipid provides us with 

quantitative measures of molecular features that characterize each functional tissue unit (Figures S89-

S90)29. Many lipids appear to have approximately long normal distributions, such as phosphatidic acid 

(PA)(O-38:1) within glomeruli (Figure S73) and sphingomyelin (SM)(d16:1_20:0) within proximal tubules 

(Figure S83). The unimodal distributions potentially indicate a single population distribution exists in the 

kidney. Conversely, several features, such as phosphatidylcholine (PC)(16:0_16:0) (Figure S73&S78) and 

phosphatidylethanolamine (PE)(O-38:5) (Figure S78), appear to be bimodal and PE-Ceramide(Cer)(40:1) is 

more complex (Figure S78). This perhaps indicates different physiological states of the FTUs and lends to 

the diversity and dynamic nature of phospholipids. For instance, cellular membranes with a higher 

accumulation or proportion of PC(16:0_16:0) may be in a more stable, less physiologically active state.38 

 
Spatial differences related to obesity and sex 

While we are developing an atlas of normal human tissue, variability related to patient demographics and 

other individual characteristics should not be ignored. Thus, we can more granularly analyze this atlas to 

determine lipid features related to features such as BMI (Figure 3A, Figure S91, and Table S24) and sex 

(Figure 3B, Figure S92, and Table S25) using the computational approaches described above. Stark 

differences can be observed when subdividing the subjects with BMIs above or below 30 as a heuristic for 

obese and non-obese, respectively. For example, we have determined that PAz-PC (i.e., 1-palmitoyl-2-
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azelaoyl PC), phosphatidylserine (PS)(26:0), and PE(O-38:5) are some of the top markers for differentiating 

samples from obese vs non-obese subjects (Figure 3A.1). Furthermore, cellular neighborhoods involving 

calbindin or aquaporin 2 (among others) are potentially disrupted between obese and non-obese 

individuals (Figure 3A.2). Akin to the cellular neighborhood analysis, we calculated Spearman correlation 

coefficients for lipids within a one-pixel radius (10 µm) of one another.  We found substantial differences 

in the molecular neighborhood correlations between obese and non-obese subjects (Figure 3A.3). To put 

these observations into context, we examined the putative role of the lipids that are most drastically 

altered. For instance, PAz-PC is an oxidized lipid more abundant within the organs of obese subjects and 

was computationally determined to be the largest discriminator between obese and non-obese subjects 

(Figure 3A.1, Figure S91).  Prior research shows that this lipid has a higher abundance in kidney failure39. 

While it is not understood if the oxidized phosphatidylcholines are produced as a result of or to combat a 

disease state, their higher abundance in obese patients indicates poorer kidney health. Other lipids, such 

as PE(O-38:5), show large disparities between obese and non-obese subjects based on the violin plots, 

providing targets for future, targeted experimentation. For instance, PE(O-38:5) may promote the 

reabsorption of metabolites and proteins from urine based on the finding that high abundance of this lipid 

induces negative membrane curvatures that promote endocytosis40. Kidneys in obese patients  often have 

hyperfiltration, which may contribute to obesity-related glomerulopathy and other kidney disease41. This 

may explain the higher abundance of PE(O-38:5) in kidneys from obese patients. The functions of most 

discrete lipids are elusive as of now, and the findings in this atlas serve as preliminary evidence for further 

investigation of the essential roles that lipids play in health and disease.  

The lipid information can be further supplemented by cellular neighborhood analysis with CODEX 

glomerular (Figure S93) and tubular (Figure S94) markers. Most notably, correlation coefficients decrease 

for calbindin-expressing cells and MARCKS expressing cells within obese subjects compared to their non-

obese counterparts. Differences within calbindin expression may indicate reduced absorption of 

calcium42, which may be dysregulated in obesity43. Differential MARCKS expression may indicate 

dysregulated sodium reabsorption44 which is also affected by obesity45. Changes within these correlation 

values perhaps indicate that there is a change in the relative neighborhood that may contribute to 

hyperfiltration among other responses. These changes indicate potential restructuring of cellular 

neighborhoods between obese and non-obese individuals. Additional comorbidities or patient 

information were explored for their effect on cellular neighborhoods (Table S26-S44).  While additional 

patients are required to fully characterize how cellular neighborhoods change as a function of 

demographic characteristics or disease, these initial results support further investigation of cellular 

neighborhoods within these different tissue parameters, particularly with additional molecular context. 

This may help provide context to disease progression and the inclusion of additional comorbidities may 

better stratify this disordered state.  

Beyond BMI, we explored the molecular differences between male and female subjects (Figure S92, and 

Table S25). Overall, PE(O-38:5) and PS(26:0) accounted for the largest difference between the sexes based 

on the SHAP analysis. Further inspection of the violin distribution plots shows that both lipids displayed 

bimodal-like distributions in male subjects (Figure 3B.1). Other lipids that differ in male and female 

subjects have complex distributions and demonstrate the diversity and complexity of phospholipids. 

Additionally, cellular neighborhoods for seven of the 23 marker panel are strongly correlated in men, but 

only weakly correlated in women (Figure 3B.2). Additionally, we determined that there are stronger 

molecular neighborhood correlation coefficients calculated for men than for women (Figure 3B.3). 

Through these analyses, we can parse lipids that are highly correlated within a 10 µm neighborhood, such 
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as PE(18:2_20:0) and PE(18:1_18:1), which may indicate that they share either functionally relevant roles 

in membrane fluidity46,47, enabling metabolite transport48-50, or other cellular functions51,52 as they are 

known to induce a negative membrane curvature53. However, additional validation studies are required 

for understanding the exact function (Figure 3B.3). The Spearman correlation coefficients of molecules 

detected within male and female subjects are generally similar, indicating that many phospholipids are 

likely conserved between the sexes, at least within the context of 10 µm spatial neighborhoods. There are 

some exceptions to this trend, such as PS(26:0), which has a mostly uncorrelated relationship to other 

lipids within kidneys from female subjects but a higher correlation coefficient with other lipids in kidneys 

from male subjects (Figure 3B.3). This trend may result in phenotypic or disease severity differences 

between men and women and would be a key candidate for additional research. Additional lipids that 

show this distribution include Ceramide 1-phosphate (CerP)(36:2;2O). 

Nephron component profiles based on obesity and sex 

While lipid profiles for the entire tissue provide broad trends, each tissue can be functionally reduced into 

different segments within a nephron (i.e., FTUs). Lipid differences as a function of obesity or sex may differ 

when examining different functional regions within the kidney and are difficult to examine with bulk 

approaches. Thus, we extended these analyses to determine lipid differences related to obesity (Figure 4) 

or sex (Figure 5) within the FTUs of the nephron, such as glomeruli (Figure S95-96 and Table S45-46), 

proximal tubules (Figure S97-98 and Table S47-48), distal tubules (Figure S99-100 and Table S49-50; and 

collecting ducts (Figure S101-102 and Table S51-52) as opposed to the whole sampled region. The 

differences between FTUs of obese and non-obese patients are starker than those for sex. For instance, 

the lipids that differentiate obese and non-obese patients are conserved among many of the nephron 

segments: PAz-PC, PC(26:0), PE(O-38:5), and PC(16:1_16:0) (Figure 4.2). As such, these lipids may be a 

renal response to an obese phenotype and serve as putative therapeutic or diagnostic markers. As an 

example, obesity represents a chronically inflamed state and under these conditions, coagulation factors 

are aberrantly expressed or regulated, promoting increased prothrombotic risk54,55.  The oxidized 

phospholipid, PAz-PC, could be an important molecule in the feedback loop that exists between obesity 

and risk factors for cardiovascular disease as PAz-PC inhibits the tissue factor pathway inhibitor (TFPI)56,57. 

TFPI inhibits the tissue factor dependent, or extrinsic coagulation, pathway by directly and indirectly 

perturbing the activation of the serine protease Factor Xa that interacts with fibrin, a marker of obesity58  

and linked to cardiovascular disease59. Further, PE(O-38:5) may enable hyperfiltration across the entire 

nephron, as discussed above. While putative, this is the type of insight that can be gleaned from the atlas 

information, enabling future functional studies aimed at understanding the dynamic role of lipids in 

physiological function. The molecular neighborhoods are also different between obese and non-obese 

subjects indicating that the lipidome is broadly affected. Moreover, the cellular neighborhoods of obese 

patients have lower Spearman correlation coefficients compared to their non-obese counterparts, 

indicating differential neighborhoods between the two states. This is exemplified by cells expressing 

calbindin (Figure 4D.1 and E.1; other proteins show this trend as well), which are moderately correlated 

in non-obese subjects and weakly negatively correlated in obese subjects.   

Further, lipid differences between male and female patients may be related to hormones, which have a 

known effect on kidney function19,60-66. However, different lipid distributions exist for each functional 

tissue unit perhaps indicating a differential response to these hormones67-69, although the relationship is 

certainly complicated70 (Figure 5B-E.2). Largely, each FTU has a different set of top markers. Despite these 

differences, molecular neighborhoods in men and women are largely similar (Figure 5.3), indicating that 
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a level of global conservation and high correlations (e.g. PA(36:1) and PS(18:1_18:0), Figure 4B.3 or 

PE(16:0_18:2) and PE(18:2_18:2), Figure 5C.3) between two lipids may indicate a functional 

codependence. Moreover, lipids that do not differ significantly between male and female FTUs may serve 

a conserved, housekeeping role. When considering the cellular neighborhoods of markers known to 

colocalize within a functional tissue unit (Figure 5.1), neighborhoods including cytokeratin 7 within both 

distal tubules (Figure 5D.1) and collecting ducts (Figure 5E.1) show the largest difference between the 

sexes. Cytokeratin 7 is a structural polypeptide that is involved in epithelial differentiation and repair 

within the kidney71, perhaps lending to a hypothesis for differential response to disease severity.  

Conclusion 

Here we have constructed a multimodal, high-dimensional atlas of the human kidney including lipid, 

cellular, and histological imaging data, as well as pathophysiological information for each subject. As part 

of the NIH HuBMAP consortium, the data is freely accessible to the greater community 

(https://portal.hubmapconsortium.org/). As an initial demonstration, we show data comparing the lipid 

and cellular neighborhood differences between subjects with BMIs below or above 30 as a heuristic for 

obesity, and differences between men and women. Additional insight into the cellular and lipid variance 

associated with demographics may help explain the functional ramifications resulting in differential 

severity in diseases such as chronic kidney disease, cancer, and diabetes72-78. Lipids, particularly in the 

context of functional tissue units and cellular neighborhoods, are chronically understudied compared to 

their transcript and protein counterparts, despite their clear involvement in health and disease. Many 

large studies assume that genetic expression is sufficient for understanding disease states. While likely 

true in many cases, there is a known discordance in gene expression and metabolomic profiles, indicating 

that further research in this area is required for understanding complex physiology. Understanding 

molecular and cellular profiles has direct ties to personalized medicine and improved therapeutics. As a 

step towards reducing this discrepancy, our atlas serves to catalog the cellular and lipids differences on a 

multiscale level. Ultimately, multidimensional and multiscale atlas efforts, such as the one discussed here, 

provide several key findings for a defined, targeted validation, and serve as a resource for others to use 

to generate new hypotheses and corroborate orthogonal studies.   
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Figure 2. Overview of data represented within the kidney atlas. A) Intensity and SHAP scores for a subset 

of 64 lipids as a composite of all patients and then two extracted patients for glomeruli (G), proximal 

tubules (PT), distal tubules (DT), and collecting ducts (CD). B) Radar plots showing the relative number of 

cells expressing each protein antigen averaged (solid red line) and on an individual patient level (dashed 

line), ordered by relative cell number. C) Relative composition of different functional tissue units within 

the cortex from each patient holistically (left) and normalized by area (right). D) Protein neighborhoods 

derived for all patients and E) a subset of subjects that demonstrates how the cellular architecture varies 

between each subject.  
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Figure 3: Lipid and cellular profiles of the subjects subdivided by A) BMI and B) sex. A.1) Violin plots for 

nine lipids with the highest SHAP scores that differentiate tissue originating from male (blue) and female 

(pink) subjects. A.2) Cellular neighborhoods for ten markers that vary between men and women, where 

red is highly correlated and blue is highly anticorrelated based on Spearman correlation values and a 

neighborhood size of 25 µm from the cell center. A.3) Molecular neighborhoods for ten lipids detected in 

negative ion mode where circle radius is proportional to the Spearman correlation coefficient. Pixel 

neighborhoods were 1 pixel (10 µm) from the pixel of interest. B.1) Violin plots for nine lipids with the 

highest SHAP scores that differentiate tissue originating from patients with BMIs above 30 (purple) and 

below 30 (green). B.2) Cellular neighborhoods for ten markers that vary between obese and non-obese, 

where red is highly correlated and blue is highly anticorrelated based on Spearman correlation values and 

a neighborhood size of 25 µm from the cell center. B.3) Molecular neighborhoods for ten lipids detected 

in negative ion mode where circle radius is proportional to the Spearman correlation coefficient. Pixel 

neighborhoods were 1 pixel (10 µm) from the pixel of interest.   
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Figure 4: Summary of lipid and cellular differences between FTUs from patients with BMIs above 30 

(obese) and below 30 (non-obese). A) Color-coded legend for interpretation of the remaining figures 

associated with B) glomeruli, C) proximal tubules, D) distal tubules, and E) collecting ducts. Differences 

between obese and non-obese subjects can be seen in the extrapolated 1) cellular neighborhoods, 2) lipid 

species, and lipid neighborhoods associated with different segments of the nephron.   
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Figure 5: Summary of lipid and cellular differences between FTUs from male and female subjects. A) Color-

coded legend for interpretation of the remaining figures associated with B) glomeruli, C) proximal tubules, 

D) distal tubules, and E) collecting ducts. Differences between the sexes can be seen in the extrapolated 

1) cellular neighborhoods, 2) lipid species, and 3) lipid neighborhoods associated with different segments 

of the nephron.   
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