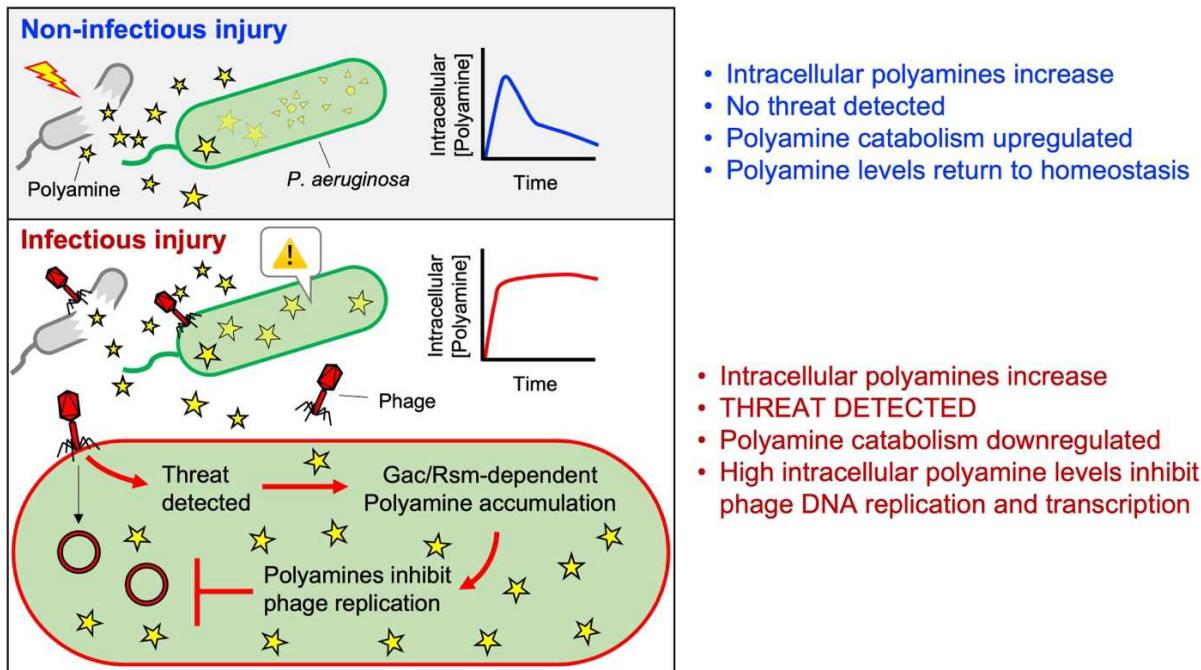


1 **Bacterial threat assessment of bacteriophage infection is mediated by intracellular**
2 **polyamine accumulation and Gac/Rsm signaling**

3
4 Camilla D. de Mattos¹, Artem A. Nemudryi², Dominick Faith¹, DeAnna C. Bublitz¹, Lauren
5 Hammond³, Margie A. Kinnersley¹, Caleb M. Schwartzkopf¹, Autumn J. Robinson¹, Alex
6 Joyce¹, Lia A. Michaels¹, Robert S. Brzozowski¹, Alison Coluccio¹, Denghui David Xing¹,
7 Jumpei Uchiyama⁴, Laura K. Jennings¹, Prahathees Eswara³, Blake Wiedenheft², and Patrick R.
8 Secor^{1*}

9
10 ¹Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA

11 ²Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT 59717, USA


12 ³Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa,
13 FL 33620, USA

14 ⁴Department of Bacteriology, Graduate School of Medicine Dentistry and Pharmaceutical Sciences,
15 Okayama University, Okayama 700-8558, Japan

16 *Correspondence: Patrick.secor@mso.umt.edu

17
18 **Abstract**

19 When eukaryotic cells are killed by pathogenic microorganisms, damage-associated and
20 pathogen-associated signals are generated that alert other cells of nearby danger. Bacteria can
21 detect the death of their kin; however, how bacteria make threat assessments of cellular injury is
22 largely unexplored. Here we show that polyamines released by lysed bacteria serve as damage-
23 associated molecules in *Pseudomonas aeruginosa*. In response to exogenous polyamines,
24 Gac/Rsm and cyclic-di-GMP signaling is activated and intracellular polyamine levels increase.
25 In the absence of a threat, polyamines are catabolized, and intracellular polyamines return to
26 basal levels, but cells infected by bacteriophage increase and maintain intracellular polyamine
27 levels, which inhibits phage replication. Phage species not inhibited by polyamines did not
28 trigger polyamine accumulation by *P. aeruginosa*, suggesting polyamine accumulation and
29 metabolism are targets in the phage-host arms-race. Our results suggest that like eukaryotic cells,
30 bacteria can differentiate damage-associated and pathogen-associated signals to make threat
31 assessments of cellular injury.

32

33

34 **Introduction**

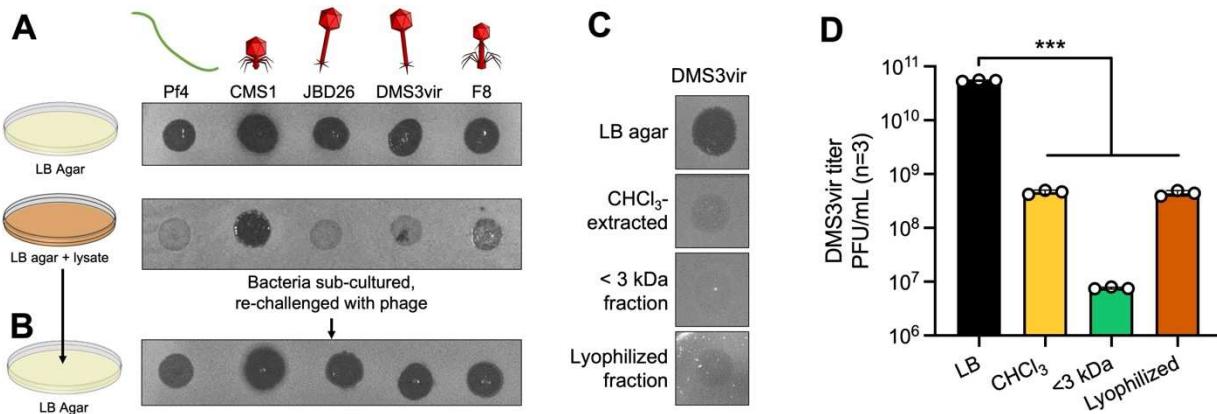
35 Bacteria have evolved innate and adaptive defense systems that protect them from viruses
36 called bacteriophages (phages). Examples of phage defense systems include restriction
37 modification (Kruger and Bickle, 1983), CRISPR-Cas systems (Wiedenheft et al., 2012), and
38 abortive infection systems that kill or inhibit the bacterial host before the phage can complete its
39 lifecycle (Bernheim and Sorek, 2019; Cohen et al., 2019; Doron et al., 2018). Recent
40 comparative immunological studies reveal some bacterial abortive infection systems share
41 evolutionary roots with eukaryotic antiviral immune pathways (Cohen et al., 2019; Ofir et al.,
42 2021). Bacterial and eukaryotic immune systems share other conceptually analogous
43 characteristics, such as the ability to detect molecules that are indicative of cellular damage.

44 When eukaryotic cells lyse, molecules such as ATP, intracellular proteins, oxidized
45 lipids, and others, are released and sensed by conserved pattern recognition receptors (PRRs) on
46 neighboring cells (Matzinger, 2002; Zhivaki and Kagan, 2021). PRRs also detect microbial-
47 derived molecules and stimulate antimicrobial immune responses (Janeway, 1989). Eukaryotic
48 cells take cues from both damage- and microbial-derived molecules to make threat assessments
49 of cellular injury (Zhivaki and Kagan, 2021). Bacteria also sense and respond to molecules
50 released by lysed bacteria (Bhattacharyya et al., 2020; LeRoux et al., 2015a; LeRoux et al.,

51 2015b; Tzipilevich et al., 2021). However, the molecules that serve as damage signals in bacteria
52 are poorly characterized and how they influence phage defense remains largely unexplored.

53 Here, using the human pathogen *Pseudomonas aeruginosa* as a model system, we
54 identify a new phage defense system in which polyamines released by lysed bacteria function as
55 a danger signal preventing phage-mediated cell death in neighboring bacteria. Polyamines are
56 internalized by surviving cells, causing intracellular polyamine levels to increase, a process that
57 is dependent on Gac/Rsm and cyclic-di-GMP signaling. In the absence of a threat of phage
58 infection, intracellular polyamines are catabolized and return to basal levels. However, when
59 bacteria are infected with phage, intracellular polyamine levels remain elevated, which inhibits
60 phage genome replication and transcription. Collectively, our study supports a model where
61 bacteria exploit polyamines to sense cell damage and inhibit phage replication.

62


63 **Results**

64 A small water-soluble molecule released by lysed bacteria suppresses phage replication.

65 Phage infections can result in mass bacterial cell lysis. We hypothesized that lysed
66 bacteria would release a soluble signal that would induce phage defense mechanisms in
67 neighboring cells. To test this hypothesis, we pelleted and washed *P. aeruginosa* cells,
68 resuspended them in fresh LB broth, and lysed them by sonication. After removing cell debris by
69 centrifugation, the crude soluble lysate was used to make LB agar plates. Lawns of *P.*
70 *aeruginosa* PAO1 grown on LB agar or LB-lysate agar were then challenged with phage species
71 representing families Siphoviridae (JBD26, DMS3vir), Podoviridae (CMS1), Myoviridae (F8),
72 and Inoviridae (Pf4). Phage titers were measured by quantifying plaque forming units (PFUs) on
73 lawns of bacteria. Replication of all phages except CMS1 were inhibited on LB-lysate agar (**Fig**
74 **1A**). When *P. aeruginosa* collected from LB-lysate agar plates were re-plated onto LB agar,
75 sensitivity to phage infection was restored (**Fig 1B**), indicating that cell lysates induce a transient
76 phage tolerance phenotype in *P. aeruginosa* rather than heritable mutations that confer phage
77 resistance.

78 To determine if the molecule(s) responsible for inducing phage tolerance are hydrophobic
79 or water-soluble, we extracted LB lysate with chloroform (CHCl₃) and used the aqueous phase to
80 make agar plates. We repeated the plaque assays using DMS3vir, a lytic mutant of the *Mu*-like
81 temperate *Pseudomonas* phage DMS3 (Cady et al., 2012). The active molecule(s) were retained

82 in the aqueous phase, were able to pass through a 3 kDa molecular weight cutoff membrane, and
83 retained activity after lyophilization and rehydration (**Fig 1C and D**). Together, these results
84 indicate that small water-soluble molecule(s) are inducing a phage tolerance phenotype in *P.*
85 *aeruginosa*.

86
87 **Figure 1. Small soluble molecules released by lysed *P. aeruginosa* cells induce transient tolerance to**
88 **phage infection. (A)** The indicated phage species were spotted at 10⁶ PFUs in 3 µl onto lawns of *P.*
89 *aeruginosa* PAO1 grown on LB agar or LB agar supplemented with filtered PAO1 cell lysate. Plaques were
90 imaged after overnight (18 h) growth at 37°C. Representative images are shown. **(B)** *P. aeruginosa* growing
91 on lysate plates were then sub-cultured onto LB agar plates and re-challenged with the indicated phages.
92 Representative images are shown. **(C)** Phage DMS3vir was spotted at 10⁶ PFU in 3 µl onto lawns of *P.*
93 *aeruginosa* growing on LB agar or LB agar supplemented with the aqueous phase of CHCl₃-extracted cell
94 lysate, the aqueous phase passed through a 3 kDa membrane, or lyophilized aqueous phase extract.
95 Representative plaque images are shown. **(D)** DMS3vir titers were enumerated by plaque assay. Results are
96 mean ± SD of three experiments, ***P<0.001.

97 98 The Gac/Rsm pathway is required for lysate-induced phage tolerance in *P. aeruginosa*.


99 Prior work demonstrates that a soluble signal released by lysed *P. aeruginosa* is sensed
100 by the Gac/Rsm pathway in kin cells (LeRoux *et al.*, 2015a). In *P. aeruginosa*, Gac/Rsm
101 regulates many bacterial behaviors related to biofilm formation and virulence at the
102 transcriptional level (Ventre *et al.*, 2006) (**Fig 2A**). Gac/Rsm signaling is initiated by the
103 activation of the sensor histidine kinase GacS by unknown ligands (Latour, 2020). GacS
104 phosphorylates the response regulator GacA, which induces the transcription of the small RNAs
105 *rsmY* and *rsmZ* (Bencic *et al.*, 2009). These sRNAs bind and sequester the mRNA-binding
106 proteins RsmA or RsmN away from their target mRNAs, allowing the translation of hundreds of
107 different mRNAs (Lapouge *et al.*, 2008; Romero *et al.*, 2018). The sensor kinase RetS

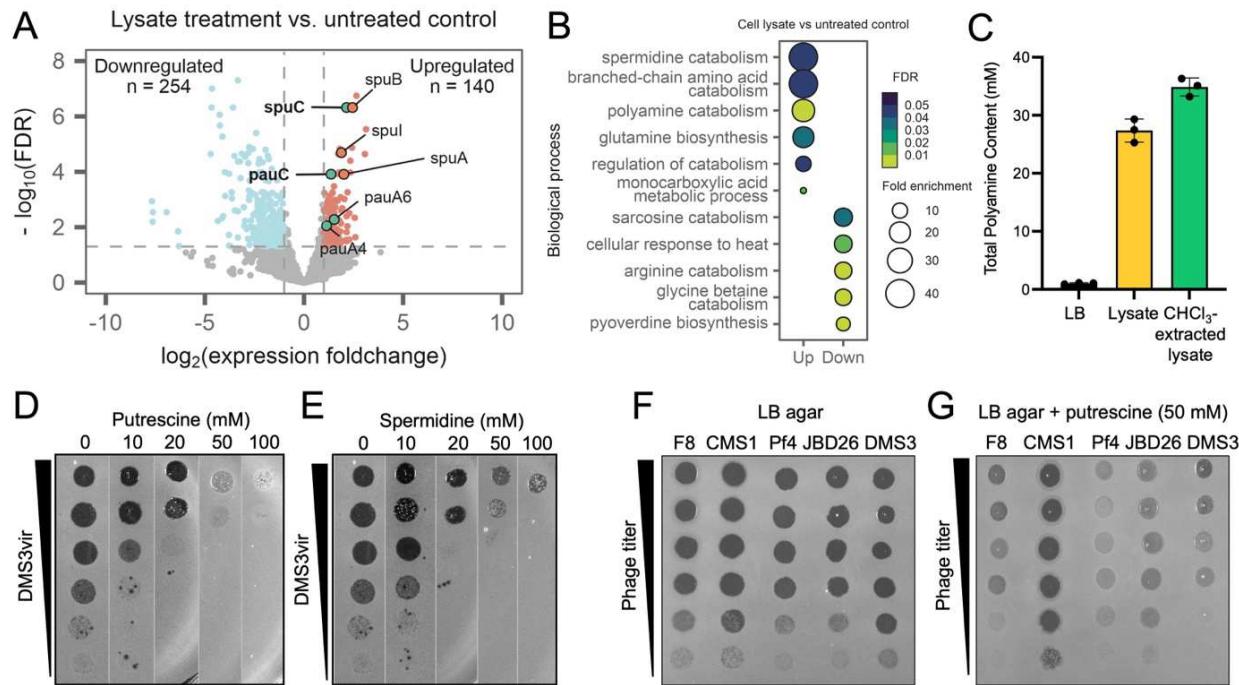
108 counteracts GacS activity and deletion of the *retS* gene constitutively activates Gac/Rsm
109 signaling (Francis et al., 2018; Goodman et al., 2009; Mougous et al., 2006).

110 We hypothesized that the Gac/Rsm pathway would be essential for cell lysate to induce
111 phage tolerance in *P. aeruginosa*. To test this hypothesis, we used strains of *P. aeruginosa* where
112 the Gac/Rsm pathway was either disabled ($\Delta gacS$, $\Delta rsmY/Z$) or constitutively activated ($\Delta retS$).
113 On LB agar, phage DMS3vir formed clear plaques on wild type, $\Delta gacS$, and $\Delta rsmY/Z$ lawns, but
114 formed turbid plaques on $\Delta retS$ lawns (**Fig 2B**, left column), suggesting that active Gac/Rsm
115 signaling in the $\Delta retS$ strain is sufficient to impede DMS3vir replication. On LB-lysate agar,
116 DMS3vir infection was suppressed on wild-type lawns and completely inhibited on $\Delta retS$ lawns
117 (**Fig 2B and C**); however, sensitivity to DMS3vir infection was restored in strains where
118 Gac/Rsm signaling was disabled ($\Delta gacS$, $\Delta rsmY/Z$) (**Fig 2B and C**). Furthermore, deleting *rsmY*
119 and *rsmZ* from the phage-tolerant $\Delta retS$ background ($\Delta retS/rsmY/Z$) restored susceptibility to
120 phage infection on LB-lysate agar (**Fig 2B and C**). These results indicate that the Gac/Rsm
121 pathway is essential for lysate-induced phage tolerance.

122 In *P. aeruginosa*, activation of Gac/Rsm signaling increases intracellular levels of the
123 second messenger cyclic-di-GMP (Moscoso et al., 2011). In *P. aeruginosa*, cyclic-di-GMP
124 regulates processes involved in the transition between motile (low cyclic-di-GMP) and sessile
125 (high cyclic-di-GMP) lifestyles (Valentini and Filloux, 2016). To test the hypothesis that cyclic-
126 di-GMP signaling is required for lysate-induced phage tolerance, we expressed the
127 phosphodiesterase PA2133, which rapidly degrades cyclic-di-GMP in *P. aeruginosa* (Hickman
128 et al., 2005). Expressing PA2133 in wild-type *P. aeruginosa* on lysate agar plates restored
129 sensitivity to DMS3vir (**Fig 2D**). These results provide a link between cyclic-di-GMP signaling
130 and phage defense in *P. aeruginosa*.

131

132


133 **Figure 2. Phage tolerance is dependent upon Gac/Rsm and cyclic-di-GMP signaling.** (A) Schematic of
134 the Gac/Rsm pathway in *P. aeruginosa*. (B and C) Phage DMS3vir was spotted at 10^6 PFU in 3 μ l onto
135 lawns of the indicated strains grown on LB agar or LB lysate agar. Representative plaque images are shown
136 in (B) and PFU measurements are shown in (C). Results are mean \pm SD of three experiments,
137 ****P<0.0001. (D) Serial dilution plaque assays comparing the plating efficiency of phage DMS3vir on *P.*
138 *aeruginosa* carrying an inducible c-di-GMP-degrading phosphodiesterase ($p_{BAD}::PA2133$) or a control
139 strain carrying an empty vector. Bacterial lawns were grown on LB agar supplemented with CHCl₃-
140 extracted lysate and 0.1% arabinose for 18 h.

141

142 Polyamines induce Gac/Rsm-dependent phage tolerance

143 We used RNA-seq to determine how CHCl₃-extracted lysate affected the transcriptional
144 profile of *P. aeruginosa* (**Supplemental Table S1**). Compared to cells growing on LB agar, 394
145 genes were differentially regulated in *P. aeruginosa* growing on LB-lysate agar (**Fig 3A**). Cell
146 lysate also upregulated the small RNAs *rsmY* and *rsmZ* (**Fig S1**), indicating that cell lysate
147 activates Gac/Rsm signaling. Gene enrichment analysis revealed upregulated genes associated
148 with spermidine/polyamine catabolism (breakdown) are over-represented in this dataset (**Fig**
149 **3B**), several of which are highlighted in the volcano plot shown in Figure 3A.

150

151
152
153 **Figure 3. The polyamines putrescine and spermidine induce phage tolerance in *P. aeruginosa*.** (A)

154 Volcano plot showing differentially expressed genes in cells treated with lysate compared to untreated

155 controls. Red indicates upregulated genes ($\log_2[\text{foldchange}] > 1$ and $\text{FDR} < 0.05$) and blue indicates

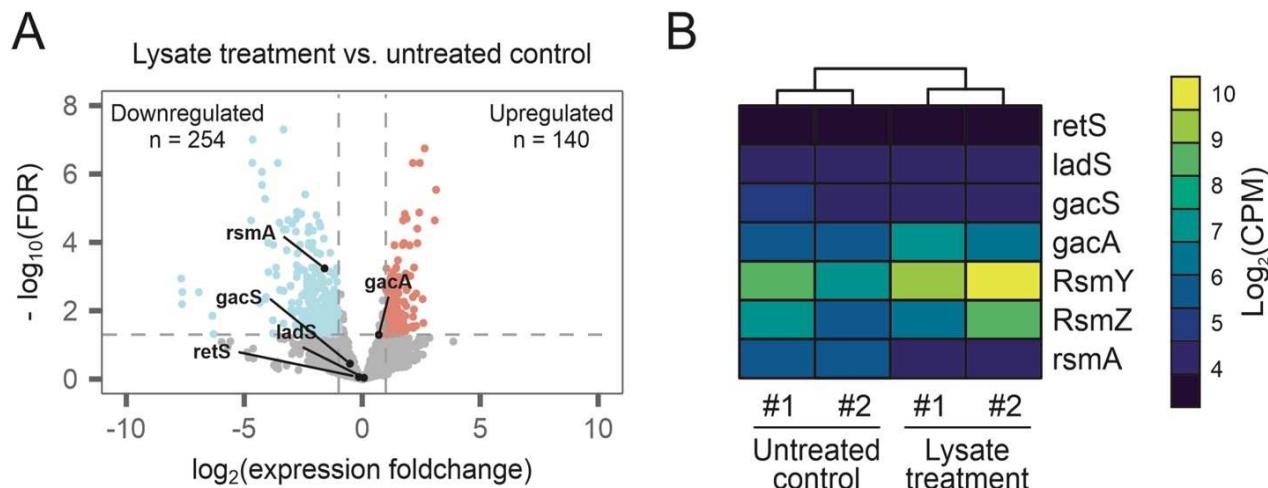
156 downregulated genes ($\log_2[\text{foldchange}] > 1$ and $\text{FDR} < 0.05$). Non-significant genes are shown in gray. (B)

157 Gene enrichment analysis of significant differentially expressed genes shown in (A). Dot sizes indicate fold

158 enrichment of observed genes associated with specific Gene Ontology (GO) terms versus what is expected

159 by random chance. (C) Total polyamine content in LB broth, cell lysate, and CHCl_3 -extracted cell lysate

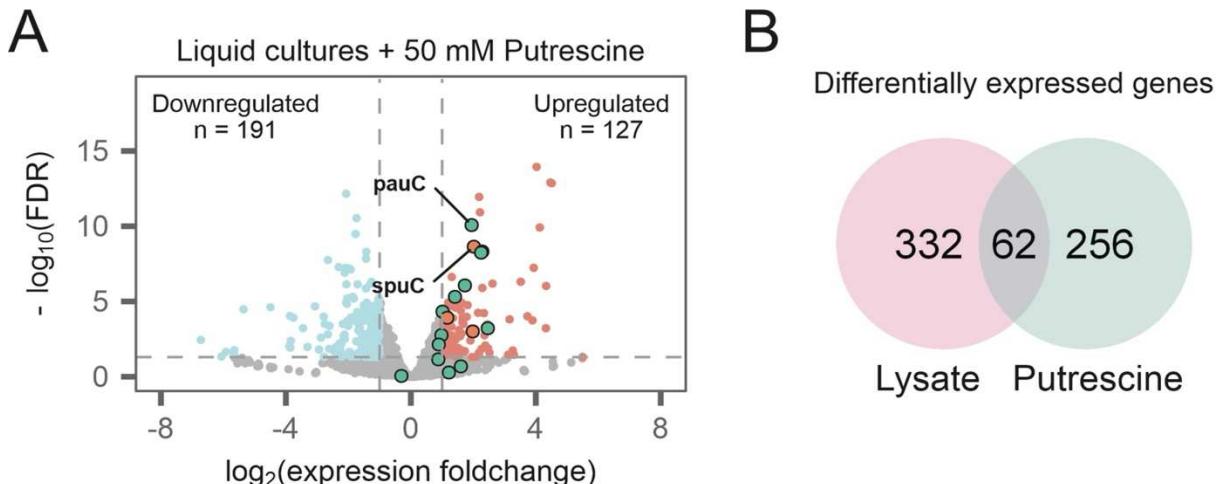
160 were measured using a fluorometric assay. Results are mean \pm SD of three experiments, ** $P < 0.01$. (D and


161 E) The polyamines putrescine (D) or spermidine (E) were added to LB agar at the indicated concentrations.

162 DMS3vir was spotted onto lawns of *P. aeruginosa*, and plaques were imaged after 18 h of growth at 37°C.

163 (F and G) The indicated species of phage were spotted onto lawns of *P. aeruginosa* growing on LB agar

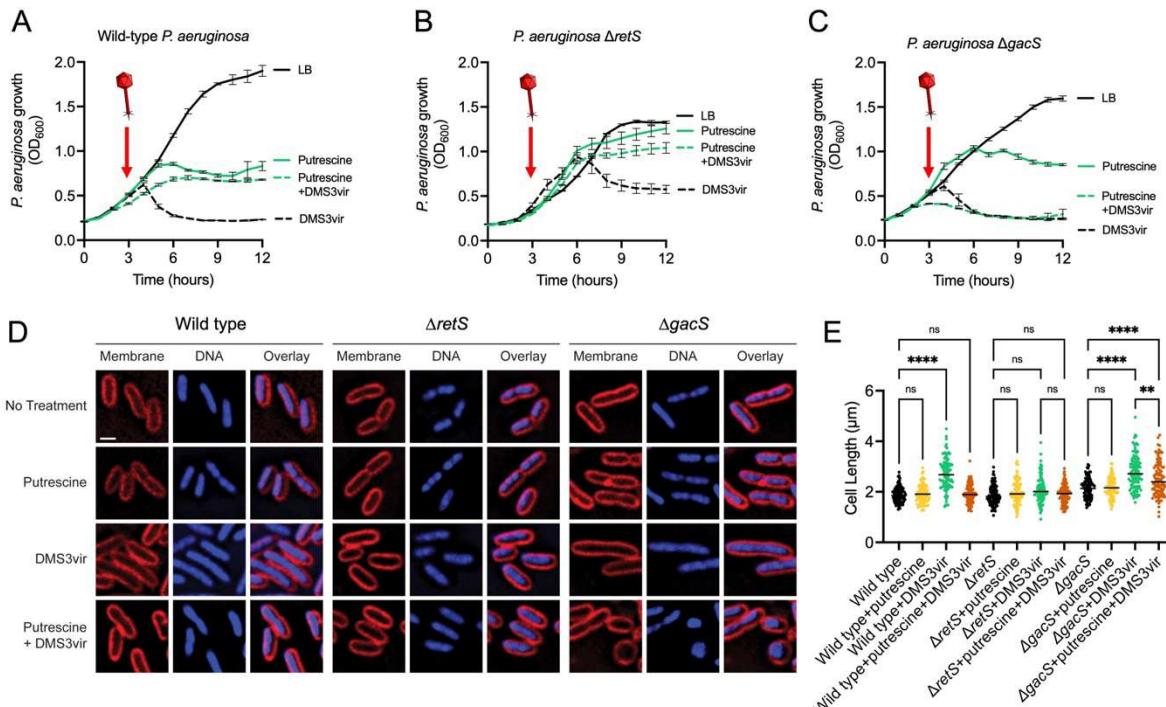
164 or LB agar supplemented with 50 mM putrescine.


165

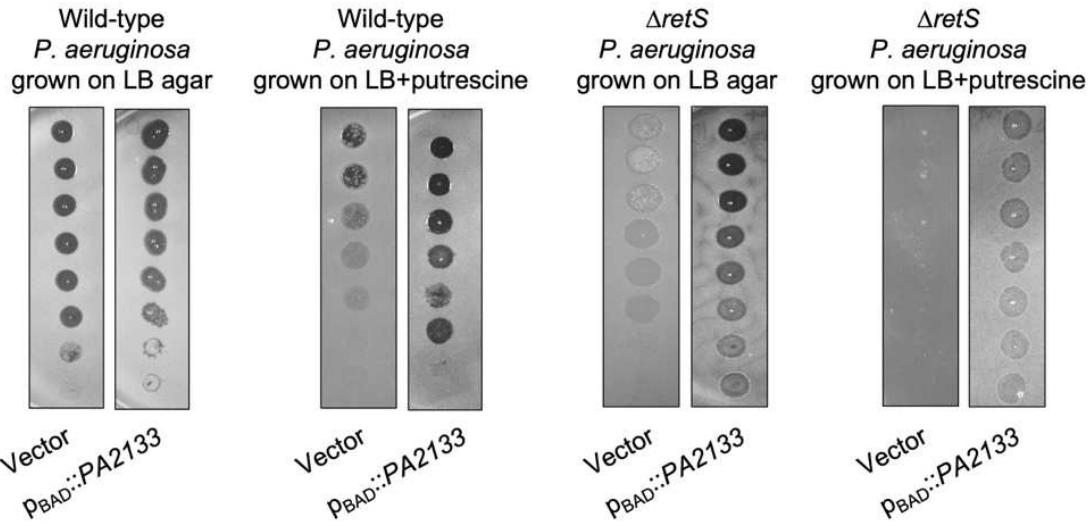
166
167 **Figure S1. Cell lysate exposure upregulates *rsmY* and *rsmZ* regulatory RNAs. (A)** Volcano plot
168 showing DEGs in cells treated with lysate. Gac/Rsm pathway protein coding genes are indicated. **(B)**
169 Heatmap showing expression of Gac/Rsm pathway members. Coloring indicates \log_2 of counts per million
170 (CPM) reads. Two biological replicates for each treatment are shown.
171

172 Polyamines are small polycationic compounds that are involved in a variety of cellular
173 processes in eukaryotes and prokaryotes through interactions with negatively charged molecules
174 such as DNA, RNA, and proteins (Childs et al., 2003; Sarkar et al., 1995). In bacteria, putrescine
175 and spermidine are the most common polyamines (Banerji et al., 2021) and are typically present
176 at high concentrations (0.1–30 millimolar) inside bacterial cells (Duprey and Groisman, 2020;
177 Shah and Swiatlo, 2008). In response to phage infection or other mass-lysis events, millimolar
178 concentrations of polyamine could be released into the immediate environment. Indeed, in the
179 cell lysates we used to make LB-lysate agar plates, total polyamine concentrations were
180 approximately 30 mM (Fig 3C).

181 To test the hypothesis that polyamines would inhibit phage replication, we grew *P.*
182 *aeruginosa* lawns on LB agar (MOPS buffered at pH 7.2) supplemented with 0, 10-, 20-, 50-, or
183 100-mM putrescine or spermidine. Both polyamines suppressed DMS3vir replication in a dose-
184 dependent manner (Fig 3D and E). Putrescine also inhibited replication of phages Pf4, JBD26,
185 and F8, but not CMS1 (Fig 3F and G), consistent with our observations using crude bacterial
186 lysates (Fig 1A). Exposure of *P. aeruginosa* to 50 mM putrescine upregulated polyamine
187 catabolism genes (Fig S2), also consistent with experiments performed using cell lysate.



188
189 **Figure S2. Putrescine activates polyamine catabolic pathways.** (A) Volcano plot of RNA-seq data
190 showing differentially expressed genes in wild-type *P. aeruginosa* cultured in liquid LB cultures with
191 addition of 50 mM putrescine. Red dots indicate upregulated genes ($\log_2(\text{fold change}) > 1$ and $\text{FDR} < 0.05$),
192 and blue indicates downregulated genes ($\log_2(\text{fold change}) < -1$ and $\text{FDR} < 0.05$). Non-significant genes are
193 shown in gray. Genes involved in polyamine and putrescine catabolism are highlighted. (B) Venn diagram
194 showing differentially expressed genes overlapping between putrescine and cell lysate treatments.
195


196 When grown in LB broth supplemented with 50 mM putrescine, wild-type and $\Delta retS$ *P.*
197 *aeruginosa* were less susceptible to DMS3vir infection (**Fig 4A and B**, dashed lines) while
198 disabling Gac/Rsm signaling ($\Delta gacS$) restored sensitivity to DMS3vir infection (**Fig 4C**, dashed
199 line). Upon visualization of cells, we noted that wild-type and $\Delta gacS$ cells infected by DMS3vir
200 were on average significantly longer (2.6 μm) than uninfected cells (1.9 μm) (**Fig 4D and E**).
201 Supplementing exogenous putrescine prevented DMS3vir infection-induced cell elongation. In
202 the $\Delta retS$ strain, which is inherently tolerant to phage infection, cell length did not significantly
203 change under any condition tested (**Fig 3D and E**). These results suggest that successful
204 infection by DMS3vir inhibits *P. aeruginosa* cell division, but not growth, resulting in cell
205 elongation. These results also suggest that putrescine disrupts DMS3vir replication before the
206 phage can suppress *P. aeruginosa* cell division—so long as Gac/Rsm signaling is intact.

207 Putrescine suppressed the growth of wild-type *P. aeruginosa* compared to bacteria
208 growing in LB (**Fig 4A**, solid lines). It is possible that suppressed bacterial growth by
209 polyamines explains phage tolerance. However, $\Delta gacS$ also displayed polyamine-induced growth
210 suppression but remained sensitive to phage infection (**Fig 4C**, solid lines), indicating that
211 growth inhibition by putrescine alone does not promote tolerance to DMS3vir infection.
212 Furthermore, expression of the phosphodiesterase PA2133 to degrade intracellular cyclic-di-

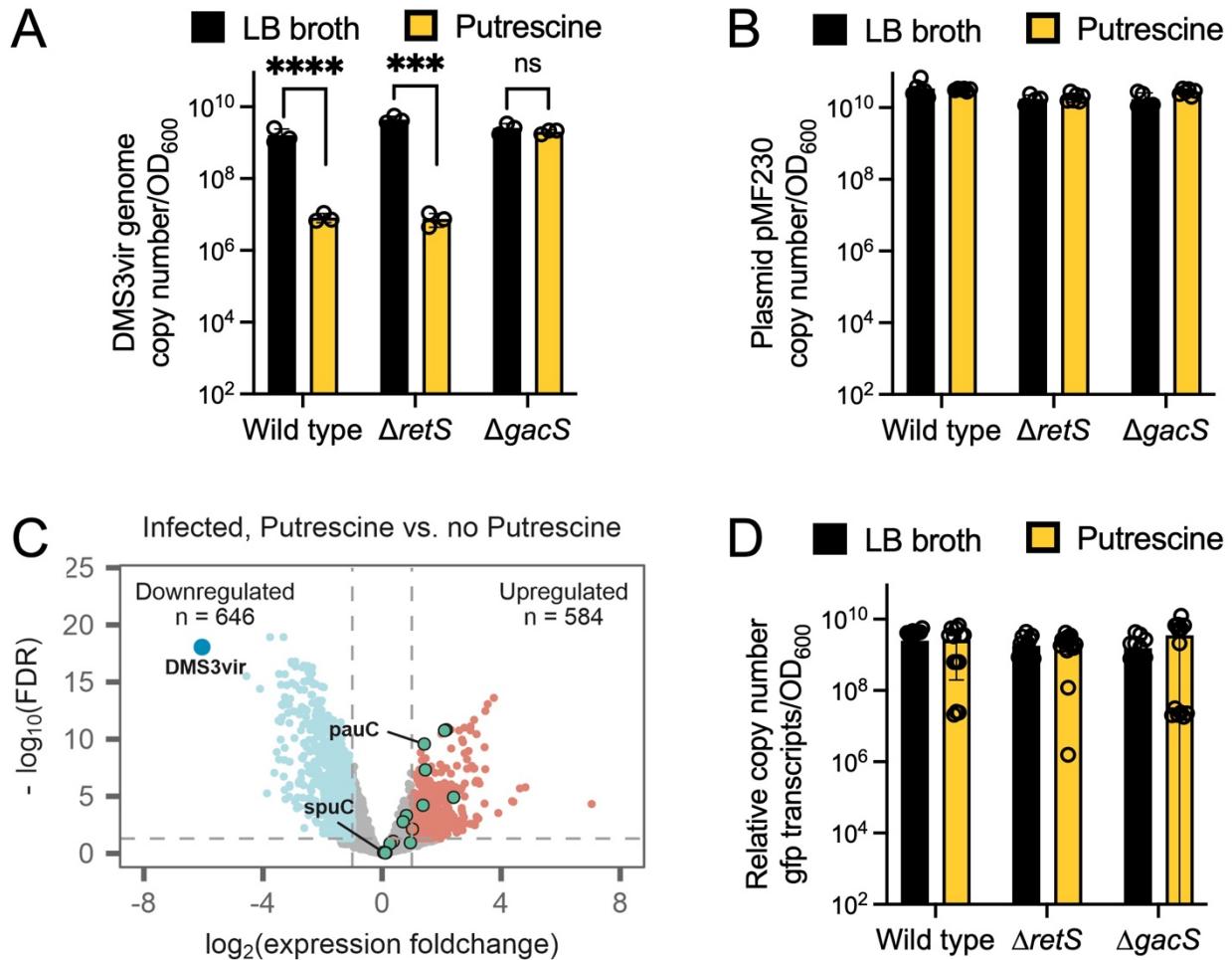
213 GMP levels re-sensitized wild-type and $\Delta retS$ *P. aeruginosa* to DMS3vir infection in the
214 presence of 50 mM putrescine (Fig S3). Collectively, these results indicate that Gac/Rsm and
215 cyclic-di-GMP signaling are required for polyamine-induced phage tolerance in *P. aeruginosa*.
216

217
218 **Figure 4. Putrescine induces Gac/Rsm-dependent tolerance to DMS3vir infection.** (A-C) Growth
219 curves of the indicated *P. aeruginosa* strain in LB broth or LB supplemented with 50 mM putrescine with
220 and without infection by phage DMS3vir (arrow) at a multiplicity of infection (MOI) of 1. For each
221 experiment, two biological replicates are presented as individual curves, each a mean of two technical
222 replicates. (D) Fluorescence micrographs of wild-type, $\Delta retS$, or $\Delta gacS$ *P. aeruginosa* strains stained with
223 SynaptoRed (membrane; red) and DAPI (DNA; blue) 2 h post-treatment with putrescine, phage DMS3vir,
224 both, or neither. Scale bar is 1 μm . (E) Quantification of cell length of cells in each treatment condition
225 shown in panel D. n = 100 cells; ***P < 0.0001, **P = 0.0053, and ns = not statistically significant.

226
227 **Figure S3. Expression of the cyclic-di-GMP degrading phosphodiesterase PA2133 restores sensitivity**
228 **of *P. aeruginosa* to phage DMS3vir infection in the presence of putrescine.** Serial dilution plaque assays
229 comparing the plating efficiency of phage DMS3vir on the indicated *P. aeruginosa* strains carrying an
230 inducible c-di-GMP-degrading phosphodiesterase (pBAD::PA2133) or a control strain containing an empty
231 vector. Bacterial lawns were grown on LB agar supplemented with CHCl₃-extracted lysate supplemented
232 with 0.1% arabinose for 18 h.

233

234 Putrescine suppresses DMS3vir genome replication and transcription

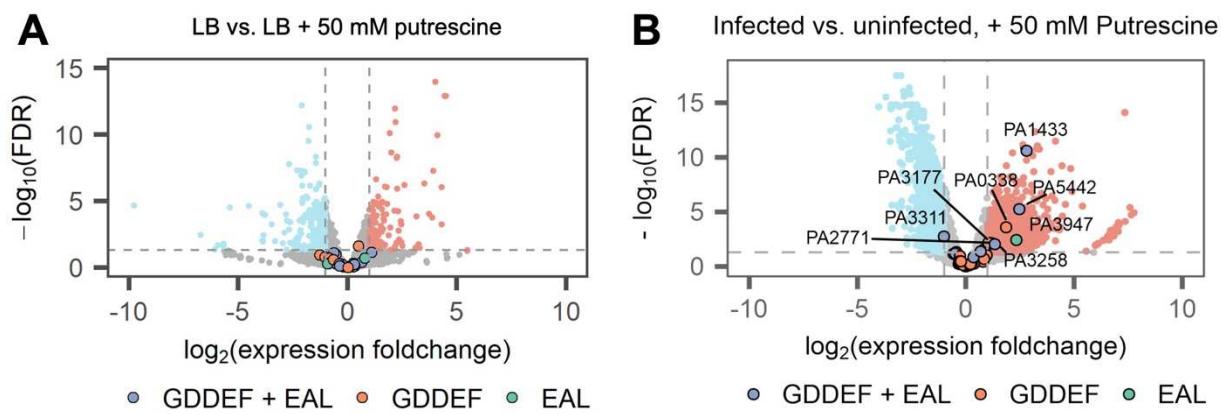

235 Intracellular polyamines are predominantly complexed with nucleic acids which affects
236 many aspects of DNA replication and transcriptional regulation (Childs *et al.*, 2003; Sarkar *et al.*,
237 1995). We hypothesized that polyamines would interfere with phage DNA replication and/or
238 transcription. To determine if polyamines affected phage DNA replication, we isolated DMS3vir
239 DNA from infected cells with and without 50 mM putrescine after two hours and measured
240 DMS3vir genome copy number by qPCR. In wild-type and $\Delta retS$ *P. aeruginosa*, putrescine
241 inhibited DMS3vir genome replication by approximately 100-fold (Fig 5A). The effect was
242 dependent on Gac/Rsm as DMS3vir genome replication was not affected in $\Delta gacS$ bacteria
243 grown with putrescine compared to cultures grown without putrescine.

244 Because the DMS3vir genome replicates as a circular episome, we hypothesized that
245 polyamines would inhibit other episomally replicating DNA species such as plasmids. To test
246 this, we measured the copy number of pMF230, a high copy number plasmid constitutively
247 expressing GFP (Nivens *et al.*, 2001). Putrescine did not affect plasmid copy number in wild-
248 type, $\Delta retS$, or $\Delta gacS$ *P. aeruginosa* (Fig 5B), disproving our hypothesis and suggesting that
249 polyamines specifically inhibit phage but not plasmid DNA replication.

250 To test if polyamines affected phage transcription, we again used RNA-seq to measure
251 the transcriptional response of *P. aeruginosa* infected by DMS3vir to exogenous putrescine. In
252 DMS3vir-infected cells exposed to putrescine, several polyamine catabolism genes were
253 upregulated and DMS3vir transcription was strongly downregulated compared to DMS3vir-
254 infected cells not exposed to putrescine (**Fig 5C, Supplemental Table S1**). Conversely,
255 transcription of *gfp* from pMF230 (as measured by RT-qPCR) was not significantly affected by
256 putrescine in any strain or condition tested (**Fig 5D**), indicating that polyamines target phage
257 transcription.

258 Collectively, these results indicate that in the presence of putrescine, DMS3vir
259 successfully infects *P. aeruginosa*, initiates genome replication, but the DMS3vir lifecycle is
260 disrupted at the level of DNA replication and transcription.

261
262
263



264
265 **Figure 5. Putrescine inhibits DMS3vir genome replication and transcription but does not affect**
266 **plasmid replication or transcription. (A)** DMS3vir genome copy number was measured by qPCR in the
267 indicated strains with or without 50 mM putrescine. Absolute copy number was determined using a standard
268 curve generated with a cloned copy of the target sequence. DMS3vir copy number was then normalized to
269 bacterial density (OD₆₀₀). Results are mean \pm SD of three experiments: ***P<0.001, ****P<0.0001, ns (not
270 significant). **(B)** Plasmid pMF230 was purified from the indicated strains and copy number measured by
271 qPCR (normalized to bacterial density OD₆₀₀). Absolute copy number was determined using a standard
272 curve generated with a cloned copy of the target sequence. Results are mean \pm SD of six experiments:
273 ***P<0.001. **(C)** Volcano plot showing differentially expressed genes in DMS3vir-infected *P. aeruginosa*
274 treated with 50 mM putrescine vs non-treated infected cells. Red dots indicate upregulated genes
275 (log₂[foldchange] > 1 and FDR<0.05), and blue indicates downregulated genes (log₂[fold change] < -1 and
276 FDR<0.05). Non-significant genes are shown in gray. Genes involved in polyamine catabolism are
277 highlighted. The large blue dot indicates reads that mapped to the DMS3vir genome. Data are representative
278 of four experiments. **(D)** RT-qPCR was used to measure *gfp* expression in the indicated conditions and
279 strains. Results are mean \pm SD of at least 12 experiments. See also **Figure S4**.

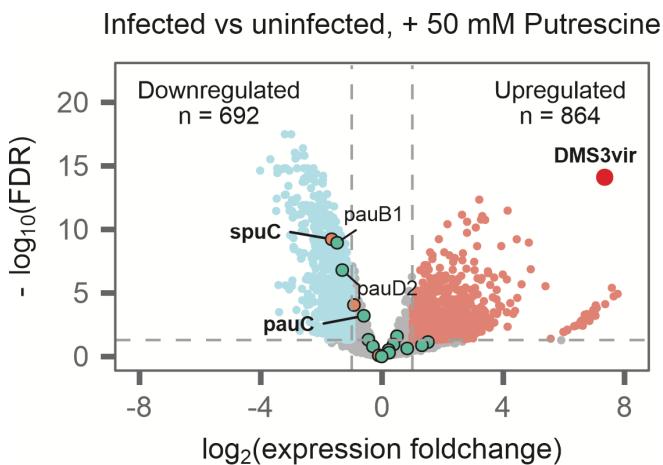
280
281
282

283 Cyclic di-GMP genes are upregulated in DMS3vir-infected *P. aeruginosa* exposed to putrescine

284 Our data indicate that cyclic di-GMP signaling is required for polyamine-induced phage
285 defense (**Fig 2D, Fig S3**). In *P. aeruginosa*, proteins that synthesize cyclic di-GMP contain a
286 GGDEF domain whereas proteins with EAL domains are involved in cyclic di-GMP hydrolysis
287 (Simm et al., 2004). We noted that eight genes encoding proteins with GGDEF and/or EAL
288 domains were differentially regulated (seven upregulated and one downregulated) in phage-
289 infected *P. aeruginosa* exposed to putrescine; phage infection by itself nor putrescine alone did
290 not significantly affect the expression of genes encoding GGDEF and/or EAL domains (**Fig S4**).
291 These results further implicate cyclic di-GMP signaling in mediating key biological processes
292 related to polyamine-induced phage tolerance.

293

294 **Figure S4. Phage infection in the presence of polyamines upregulates cyclic di-GMP regulation genes.**
295 Volcano plots showing differentially expressed genes in (A) *P. aeruginosa* cells grown in LB or LB
296 supplemented with 50 mM putrescine or (B) DMS3vir-infected *P. aeruginosa* vs non-infected cells, both
297 treated with 50 mM putrescine. Red dots indicate upregulated genes ($\log_2[\text{fold change}] > 1$ and $\text{FDR} < 0.05$),
298 and blue indicates downregulated genes ($\log_2[\text{fold change}] < -1$ and $\text{FDR} < 0.05$). Non-significant genes are
299 shown in gray. Genes involved in cyclic di-GMP metabolism are highlighted. Data are representative of
300 four experiments.


301

302 Phage infection induces Gac/Rsm-dependent intracellular polyamine accumulation

303 When transcriptional profiles from DMS3vir-infected and uninfected cells grown in the
304 presence of putrescine were compared, we noted that polyamine catabolism genes were
305 downregulated in infected cells, even though high levels of exogenous putrescine were present
306 (**Fig S5**). We hypothesized that down regulation of polyamine catabolism genes in phage-
307 infected cells would cause intracellular polyamine levels to increase. To test this, we measured
308 total intracellular polyamine levels in pelleted and washed cells using a fluorometric assay. In

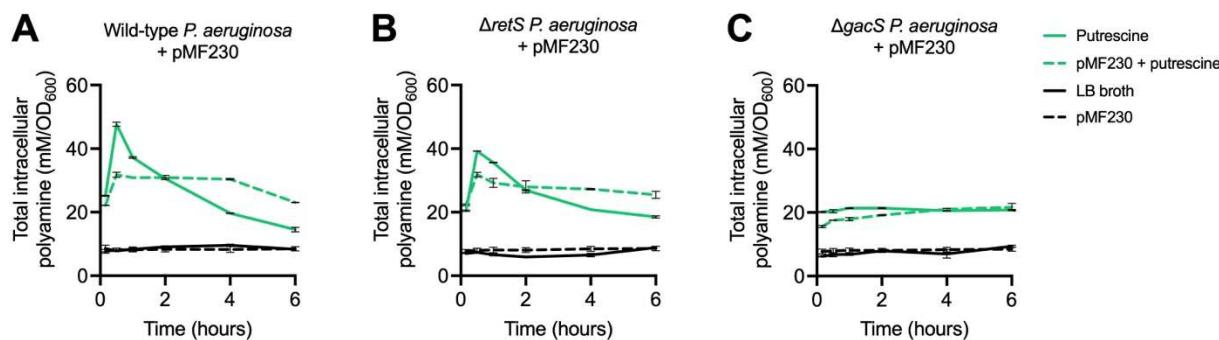
309 uninfected wild-type, $\Delta retS$, and $\Delta gacS$ *P. aeruginosa* growing in LB broth, basal intracellular
310 polyamine levels were all approximately 8 mM after normalizing to bacterial density (OD₆₀₀)
311 (**Fig 6A–C**, black lines). In bacteria grown with 50 mM exogenous putrescine, intracellular
312 polyamine levels spiked to over 40 mM/OD₆₀₀ in wild-type and $\Delta retS$ *P. aeruginosa* during the
313 first 30 minutes and returned to near basal levels over the course of 6 h (**Fig 6A and B**, green
314 lines). Intracellular polyamine concentrations in the $\Delta gacS$ mutant did not increase in the first 30
315 minutes and remained at an elevated, albeit lower concentration (20 mM/OD₆₀₀) over the course
316 of the experiment (**Fig 6C**, green line).

317

318

319 **Figure S5.** Volcano plot showing differentially expressed genes in DMS3vir-infected versus uninfected
320 cells cultured with 50 mM putrescine. Red dots indicate upregulated genes ($\log_2[\text{foldchange}] > 1$ and
321 FDR < 0.05), and blue indicates downregulated genes ($\log_2[\text{fold change}] < -1$ and FDR < 0.05). Non-
322 significant genes are shown in gray. Genes involved in polyamine and putrescine catabolism are
323 highlighted. The large red dot indicates reads that mapped to the DMS3vir genome. Four biological
324 replicates for each condition are shown.

325


326 In response to infection by phage DMS3vir, intracellular polyamine levels remained at
327 basal levels in wild-type, $\Delta retS$, and $\Delta gacS$ *P. aeruginosa* growing in LB broth (**Fig 6D–F**, black
328 lines). In the presence of exogenous putrescine, however, DMS3vir infection caused intracellular
329 polyamine levels to increase to and remain at ~50 mM/OD₆₀₀ over the course of 6 h in both wild-
330 type and $\Delta retS$ *P. aeruginosa* (**Fig 6D and E**, green lines). When $\Delta gacS$ was infected by
331 DMS3vir in the presence of exogenous putrescine, intracellular polyamine levels remained
332 constant at ~20 mM/OD₆₀₀ (**Fig 6F**, green line), comparable to uninfected $\Delta gacS$ cells shown in
333 **Fig 6C**. This observation may explain why the $\Delta gacS$ strain has a polyamine-induced growth

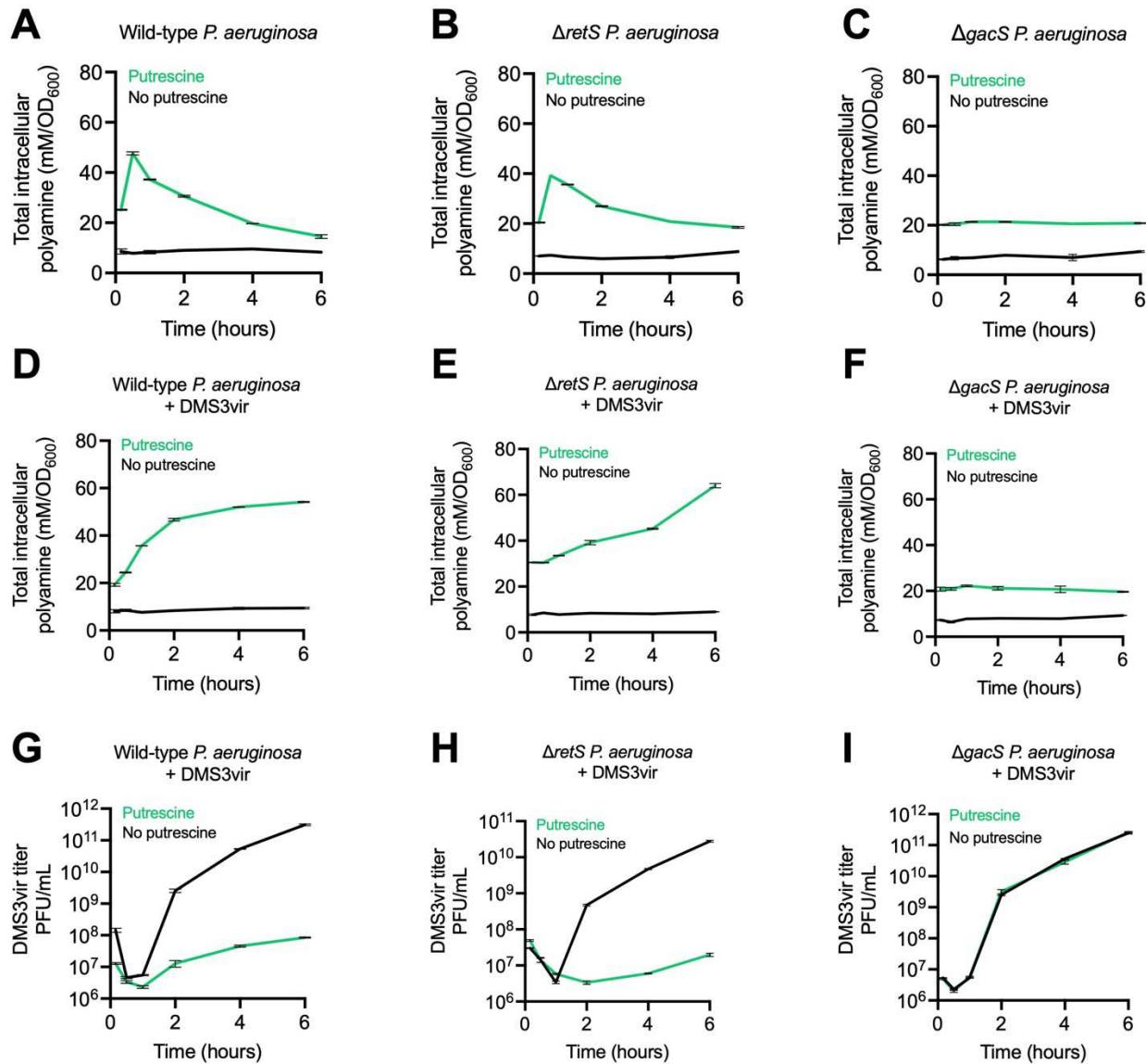
334 defect but is still sensitive to phage infection (see **Fig 4C**); intracellular polyamine levels may be
335 sufficiently high to slow growth, but not high enough to inhibit phage replication.

336 We also measured intracellular polyamine levels in *P. aeruginosa* carrying plasmid
337 pMF230. Because polyamines did not affect plasmid pMF230 replication or transcription (see
338 **Fig 5B and D**), we predicted that this plasmid would not induce intracellular polyamine
339 accumulation in *P. aeruginosa*. Indeed, in wild-type, $\Delta retS$, and $\Delta gacS$ *P. aeruginosa*, pMF230
340 had no impact on intracellular polyamine accumulation (**Fig S6**).

341 Collectively, these results suggest that *P. aeruginosa* responds to the threat of phage
342 infection by inducing Gac/Rsm-dependent intracellular polyamine accumulation.

343

344

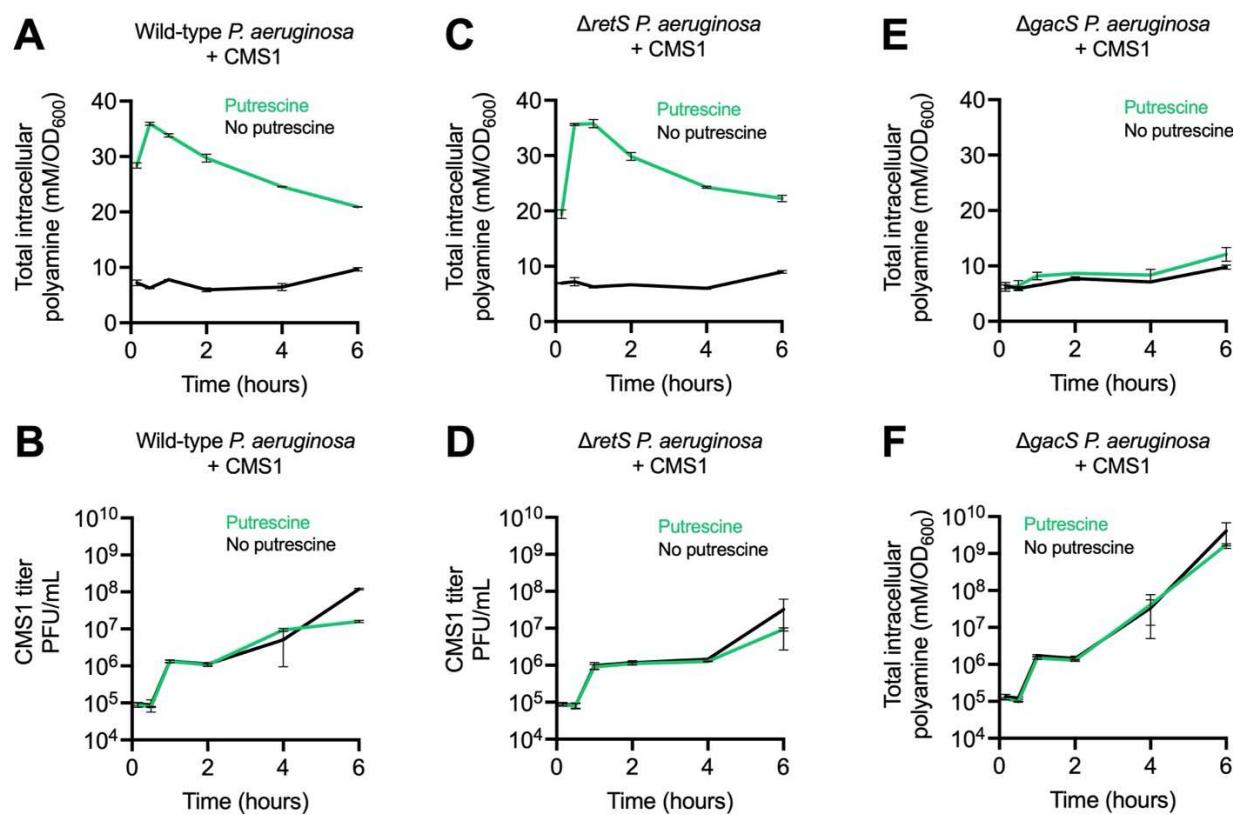

345 **Figure S6. Putrescine does not inhibit plasmid pMF230 replication and pMF230 does not induce**
346 **intracellular polyamine accumulation.** (A-C) Intracellular polyamines were measured by fluorometric
347 assay in the indicated strains grown in the presence or absence of 50 mM putrescine with or without the
348 plasmid pMF230. Results are mean \pm SD of duplicate experiments. Black lines represent cultures grown
349 without putrescine; green lines represent culture supplemented with 50 mM exogenous putrescine. Solid
350 lines represent uninfected cultures; dashed lines represent DMS3vir-infected cultures.

351

352 Intracellular polyamine accumulation suppresses DMS3vir replication

353 In addition to intracellular polyamines, we also measured DMS3vir titers in bacterial
354 supernatants collected from the cultures described above by plaque assay. In wild-type *P.*
355 *aeruginosa* exposed to putrescine, DMS3vir titers were reduced by \sim 3,500-fold compared to
356 wild-type cells grown in LB broth after six hours (**Fig 6G**). Similar observations were made in
357 $\Delta retS$ *P. aeruginosa*; in the presence of putrescine, DMS3vir replication in $\Delta retS$ was reduced
358 \sim 1,300 fold compared to $\Delta retS$ cultures without putrescine after six hours (**Fig 6H**). When
359 Gac/Rsm signaling was disabled ($\Delta gacS$), DMS3vir replication was not affected by putrescine
360 and was comparable to DMS3vir replication in wild-type *P. aeruginosa* growing in LB broth

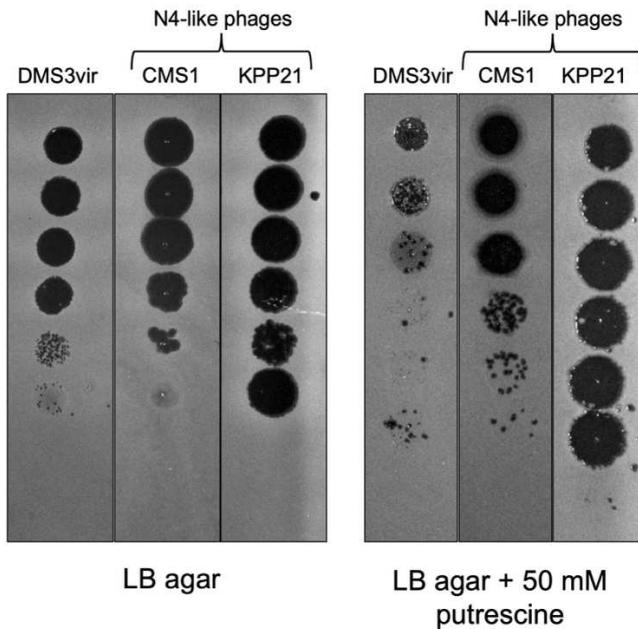
361 (Fig 6I). These results indicate that Gac/Rsm-dependent intracellular polyamine accumulation
362 suppresses DMS3vir replication.
363



364
365 **Figure 6. Gac/Rsm-dependent intracellular polyamine accumulation suppresses phage DMS3vir**
366 **replication.** Intracellular polyamines were measured in (A-C) uninfected cultures and (D-F) DMS3vir-
367 infected cultures in the indicated strains at the indicated times. Polyamine levels were normalized to
368 bacterial density (OD₆₀₀). Phage titers were also measured by plaque assay (G-I). Results are mean \pm SD
369 of duplicate experiments.

370
371 The N4-like phage CMS1 does not induce intracellular polyamine accumulation
372 Cell lysate and putrescine inhibited phages F8, DMS3vir, JBD26, and Pf4, but not phage
373 CMS1 (Fig 1A, Fig 3F and G). CMS1 is a lytic N4-like phage in the family Podoviridae genus

374 Litunavirus (Menon *et al.*, 2021; Shi *et al.*, 2020; Wagemans *et al.*, 2014). Because CMS1 was
375 able to replicate in a *P. aeruginosa* host in the presence of 50 mM putrescine, we reasoned that
376 infection by CMS1 would not stimulate intracellular polyamine accumulation. Indeed, in contrast
377 to DMS3vir, intracellular polyamine levels in CMS1-infected wild-type, $\Delta retS$, or $\Delta gacS$ *P.*
378 *aeruginosa* were comparable to uninfected cultures (Fig 7A–C; compare to Fig 6A–C). CMS1
379 produced a biphasic replication curve, similar to other N4-like phage species (Shi *et al.*, 2020),
380 and the presence of 50 mM exogenous putrescine had no significant impact on CMS1 titers
381 compared to control cultures (Fig 7D–F). In addition to CMS1, the N4-like phage KPP21
382 (Shigehisa *et al.*, 2016) was also not affected by exogenous putrescine (Fig S7). These results
383 suggest that N4-like phages have evolved mechanisms to subvert intracellular polyamine
384 accumulation phage defense.


385

386
387
388
389
390
391

Figure 7. CMS1 infection suppresses Gac/Rsm-dependent intracellular polyamine accumulation. The indicated strains were grown to an OD_{600} of 0.3 in the presence or absence of 50 mM putrescine followed by infection with the N4-like phage CMS1 at a MOI of 1 where indicated. Intracellular polyamines and phage titers were then measured at the indicated times in (A,B) wild-type, (C,D) $\Delta retS$, or (E,F) $\Delta gacS$ *P.*

392 *aeruginosa*. Polyamine levels were normalized to bacterial density (OD₆₀₀). Results are mean \pm SD of
393 duplicate experiments.

394
395 **Figure S7. N4-like phages escape inhibition by exogenous putrescine.** Serial dilution plaque assays
396 comparing the plating efficiency of phage DMS3vir and the N4-like phages CMS1 and KPP21 on lawns of
397 *P. aeruginosa* PAO1. Bacterial lawns were grown on LB agar or LB agar supplemented with 50 mM
398 putrescine for 18 h.

399

400 Discussion

401 In this study, we discovered a new phage defense system in which polyamines released
402 by lysed bacteria serve as a damage signal that alerts *P. aeruginosa* of a nearby threat and
403 prevents subsequent phage-mediated cell death. High exogenous polyamine levels result in
404 bacterial intracellular polyamine accumulation. In the absence of a phage infection, intracellular
405 polyamines are catabolized and return to basal levels. If *P. aeruginosa* is infected by a phage
406 (i.e., a pathogen-associated signal is detected), polyamine catabolism genes are downregulated,
407 intracellular polyamine levels remain elevated, and phage DNA replication and transcription are
408 inhibited. Our data supports a model in which polyamines act as both a damage signal alerting
409 nearby bacteria to cellular damage and as an inhibitor of phage replication.

410 Our results indicate a role for Gac/Rsm signaling in mediating phage defense in *P.*
411 *aeruginosa*. The Gac/Rsm pathway in *P. aeruginosa* contains two major RNA binding proteins:
412 RsmA and RsmN (Brencic and Lory, 2009; Romero *et al.*, 2018). Prior work identified
413 polyamine transport and metabolism genes in the RsmA regulon (the periplasmic polyamine-

414 binding proteins PA2711 and PA0295 and the acetylpolyamine aminohydrolase PA1409)
415 (Bencic and Lory, 2009). Polyamine catabolism genes are also in the RsmN regulon; the 5'-
416 CANGGAYG motif recognized by RsmN is present in the polyamine metabolism genes *spuA*,
417 *speC*, *pauB3*, *pauA5*, and *pauC* (Romero *et al.*, 2018). Our results point to an unappreciated role
418 for Gac/Rsm signaling in mediating intracellular polyamine homeostasis in *P. aeruginosa*.

419 Polyamines are ubiquitous throughout all domains of life and Gac/Rsm (Csra)
420 homologues are prevalent amongst γ -proteobacteria (Lapouge *et al.*, 2008). Different organisms
421 synthesize distinct types of polyamines and different polyamine species may induce different
422 cellular responses in bacteria, which could provide context to bacterial threat assessments of
423 cellular injury. Our work demonstrates that putrescine and spermidine (which are common in
424 bacteria) induce cellular responses geared towards phage defense. In *Vibrio cholerae*, the
425 periplasmic polyamine sensor MbA can differentiate the relative abundance of the polyamines
426 norspermidine and spermidine in the environment (Bridges and Bassler, 2021). Spermidine (but
427 not norspermidine) activates MbA signaling, which drives biofilm dispersal phenotypes. It is
428 worth noting that *V. cholerae* MbA periplasmic polyamine sensor contains both cyclic-di-GMP
429 synthetase and phosphodiesterase domains that are essential for propagating the signal induced
430 by endogenous spermidine (Cockerell *et al.*, 2014). Because *V. cholerae* produces norspermidine
431 but not spermidine, it is thought that norspermidine is perceived as a measure of “self” cell
432 density while spermidine is perceived as a measure of how many “non-self” cells are present in
433 the local environment (Sobe *et al.*, 2017). The wide distribution of polyamines implicated in
434 threat assessment suggests that these abundant intracellular metabolites may form the basis of a
435 widely distributed threat assessment mechanism in bacteria.

436 Polyamines also influence bacterial responses related to virulence or immune evasion
437 (Banerji *et al.*, 2021). One example involves Gac/Rsm signaling and type III secretion gene
438 regulation in *P. aeruginosa* (Mulcahy *et al.*, 2006). The type III secretion apparatus delivers
439 bacterial effectors to animal immune cells, allowing *P. aeruginosa* to escape phagocytic uptake
440 (Yahr and Wolfgang, 2006). Exogenous polyamines such as spermidine and spermine (but not
441 putrescine) induce type III secretion gene expression in *P. aeruginosa* (Williams McMackin *et*
442 *al.*, 2019; Zhou *et al.*, 2007). Thus, different types of polyamines may guide bacterial responses
443 to cellular injury caused by phagocytes or other components of the immune system.

444 Polyamines may serve as a damage signal in Gram-positive species as well. Recent work
445 in *Bacillus subtilis* demonstrates that an uncharacterized soluble molecule released by lysed
446 bacteria activates the stress-response sigma factor SigX, inducing the expression of enzymes that
447 modify cell wall teichoic acids, conferring resistance to phage infection (Tzipilevich *et al.*,
448 2021). It is possible that the low molecular weight soluble molecule that activates SigX in *B.*
449 *subtilis* is a polyamine released by lysed kin cells.

450 Intracellular polyamine accumulation inhibited the replication of most but not all phages
451 tested. The N4-like phages we tested were able to evade inhibition by polyamines by preventing
452 intracellular polyamine accumulation. All known N4-like phages encode a cluster of small genes
453 with mostly unknown function (Menon *et al.*, 2021; Shigehisa *et al.*, 2016). One of these genes
454 in the N4-like phage LUZ7 genome encodes a protein called gp30 (Menon *et al.*, 2021;
455 Shigehisa *et al.*, 2016). In a bacterial two-hybrid assay, gp30 directly interacted with the *P.*
456 *aeruginosa* protein PA4114 (Wagemans *et al.*, 2014), a spermidine acetyltransferase involved in
457 polyamine catabolism. We speculate that modulating polyamine metabolism may be a common
458 strategy used by N4-like phages to take over host cells.

459 How *P. aeruginosa* senses the threat of phage infection remains to be determined, but
460 may involve the hostile takeover of essential bacterial complexes like RecBCD (Millman *et al.*,
461 2020), alterations in bacterial respiration in response to phage infection (Carey *et al.*, 2019),
462 phage-induced membrane stress (Joly *et al.*, 2010), or the detection of foreign nucleic acids
463 (Datsenko *et al.*, 2012). While foreign plasmid DNA does not induce intracellular polyamine
464 accumulation (**Fig S4**), it is possible that the linear dsDNA phage genome is detected as a threat
465 as it is injected into a new host.

466 The ability to assess non-infectious and infectious threats is a fundamental feature of
467 eukaryotic immune systems. In this study, we describe a new and more generalized way for *P.*
468 *aeruginosa* to respond to infectious threats. Our study provides an additional example of how
469 bacterial and eukaryotic immune systems are conceptually analogous in that they both sense and
470 respond to damage- and pathogen-derived signals. Future studies to determine the precise
471 mechanisms by which Gac/Rsm and cyclic-di-GMP signaling regulates intracellular polyamine
472 accumulation and how bacterial cells sense phage infection will provide valuable new insights
473 into phage-bacteria interactions that are relevant to many aspects of human health and disease.

474 **Methods**

475 Bacterial strains, plasmids, and growth conditions

476 Bacterial strains, plasmids, and their sources are listed in **Table 1**. Deletion mutants were
477 constructed using allelic exchange and Gateway technology, as described previously (Fazli et al.,
478 2015). Primer sequences are listed in **Table 2**. Unless indicated otherwise, bacteria were grown
479 in lysogeny broth (LB) at 37°C with shaking and supplemented with antibiotics (Sigma) or 0.1%
480 arabinose when appropriate. Unless otherwise noted, antibiotics were used at the following
481 concentrations: gentamicin (10 or 30 µg ml⁻¹), ampicillin (100 µg ml⁻¹), and carbenicillin (50 µg
482 ml⁻¹).

483

484 **Table 1. Bacterial strains, phage, and plasmids used in this study.**

Strain	Description	Source
<i>Escherichia coli</i>		
DH5α	Plasmid maintenance/propagation	New England Biolabs
S17	λpir-positive strain used for conjugation	New England Biolabs
<i>Pseudomonas aeruginosa</i>		
PAO1	Wild type	(Schmidt et al., 2022)
PAO1 Δ retS	Clean deletion of <i>retS</i> from PAO1	(Mougous et al., 2006)
PAO1 Δ gacS	Clean deletion of <i>gacS</i> from PAO1	(Davies et al., 2007)
PAO1 Δ rsmY/Z	Clean deletion of <i>rsmY</i> and <i>rsmZ</i> from PAO1	This study
PAO1 Δ retS/rsmY/Z	Clean deletion of <i>rsmY</i> and <i>rsmZ</i> from PAO1 Δ retS	This study
Bacteriophage		
Pf4	Inoviridae	(Secor et al., 2015)
JBD26	Siphoviridae	(Bondy-Denomy et al., 2016)
CMS1	Podoviridae	(Schmidt et al., 2022)
DMS3vir	Siphoviridae	(Cady et al., 2012)
F8	Myoviridae	(Mendoza et al., 2020)
KPP21	Podoviridae	(Shigehisa et al., 2016)
Plasmids		
pJN105	Empty expression vector with araC-PBAD promoter	(Hickman et al., 2005)
pJN105::PA2133	PA2133 expression vector	(Hickman et al., 2005)
pMF230	Constitutive expression of eGFP	(Nivens et al., 2001)
pEX18Gm	Allelic exchange suicide vector	(Hmelo et al., 2015)

485

486 **Table 2. Primers used in this study.**

Oligo #	Name	Direction	5' to 3' Sequence
248	Δ rsmY-out F	F	CGGCGAGCGGAACATTACAA
249	Δ rsmY-out R	R	AGGCAGGAACCTGAACCACATG
252	Δ rsmZ-out F	F	CCAGGCGATTCTCCGAAGA
253	Δ rsmZ-out R	R	GCCAAAAACGCTCGGTGAAT
1068	DMS3 qPCR-F	F	TCGACTCGGAACACAGCAGAAC
1069	DMS3 qPCR-R	R	TAGAACATCCACTGCGCCAG
1520	pMF230 qPCR-F	F	ATGGGCACAAATTTCTGTC
1521	pMF230 qPCR-R	R	GGAACAGGTAGTTCCAGT

487

488 Cell lysate and polyamine agar plate preparation. *P. aeruginosa* PAO1 cells were pelleted,
489 washed in PBS, and resuspended in fresh lysogeny broth (LB). Bacteria were then lysed by
490 sonication and cell debris removed by centrifugation and filter sterilization. Agar plates were

491 prepared by adding agar (1.5%) to the bacterial lysate. Polyamines (Putrescine dihydrochloride
492 [MP Biomedicals] and Spermidine trihydrochloride [Sigma]) were added to sterile molten LB
493 agar (1.5%) at the indicated final concentrations. Molten agar was mixed until polyamine powder
494 was fully dissolved and then poured to make polyamine-supplemented agar plates.
495

496 Plaque assays. Plaque assays were performed using lawns of the indicated strains grown on LB,
497 cell lysate-supplemented, or polyamine-supplemented plates. Phages in filtered supernatants
498 were serially diluted 10 \times in PBS and spotted onto lawns of the indicated strain. Plaques were
499 imaged after 18 h of growth at 37°C.
500

501 Growth curves. Overnight cultures were diluted to an OD₆₀₀ of 0.05 in 96-well plates containing
502 LB and, if necessary, the appropriate antibiotics, cell lysate, or polyamines. After 3 h of growth,
503 strains were infected with indicated phage and growth measurements resumed. OD₆₀₀ was
504 measured using a CLARIOstar (BMG Labtech) plate reader at 37°C with shaking prior to each
505 measurement.
506

507 Polyamine measurements. Polyamines were measured using the Total Polyamine Assay Kit
508 (MAK349, Sigma). A 100 μ L aliquot of the indicated bacterial cultures was collected,
509 centrifuged, washed with 1x PBS, and resuspended in PBS. Bacteria were lysed with 1:10
510 vol/vol chloroform, vortexed, and incubated at room temperature for 2 h. The solution was
511 centrifuged, and the top aqueous layer was collected. 1.0 μ L of the collected sample was mixed
512 with the Total Polyamine Assay Kit reagents following the manufacturer's instructions,
513 incubated at 37°C for 30 minutes, and read using a CLARIOStar plate reader using end point
514 fluorescence ($\lambda_{\text{ex}} = 535 \text{ nm}/\lambda_{\text{em}} = 587 \text{ nm}$). Polyamine concentrations were determined by
515 comparing values to a standard curve constructed from known concentrations of putrescine.
516 Values were then normalized to OD₆₀₀ measurements taken from the original bacterial cultures.
517

518 RNA purification and RNA-seq. Total RNA was extracted from the indicated strains and
519 conditions using TRIzol. The integrity of the total cellular RNA was evaluated using RNA tape
520 of Agilent TapeStation 2200 before library preparation. All RNA samples were of high integrity
521 with a RIN score of 7.0 or more. rRNA was first depleted for each sample using
522 MICROBExpress Kit (AM1905, Fisher) following the manufacturer's instruction. The rRNA-
523 depleted total RNA was subjected to library preparation using NEBNext® Ultra™ II RNA
524 Library Prep Kit (E7700, NEB) and barcoded with NEBNext Multiplex Oligos for Illumina
525 (E7730, NEB) following the manufacturer's instructions. The libraries were pooled with equal
526 amount of moles, further sequenced using MiSeq Reagent V3 (MS-102-3003, Illumina) for pair-
527 ended, 600bp reads, and de-multiplexed using the build-in bcl2fastq code in Illumina sequence
528 analysis pipeline. Raw sequencing reads have been deposited as part of BioProject
529 PRJNA806967 in the NCBI SRA database.
530

531 **RNA-seq data analysis.** RNA-seq reads were aligned to the reference *P. aeruginosa* PAO1
532 genome (GenBank: GCA_000006765.1), mapped to genomic features, and counted using
533 Rsubread package v1.28.1 (Liao et al., 2019). In viral challenge assays, the DMS3 phage genome
534 (GenBank: DQ631426.1) was concatenated with PAO1 genome and treated as a single genomic
535 feature. Count tables produced with Rsubread were normalized and tested for differential
536 expression using edgeR v3.34.1 (Robinson et al., 2010) (**Supplemental Table S1**). Genes with
537 ≥ 2 -fold expression change and a false discovery rate (FDR) below 0.05 were considered
538 significantly differential. Functional classification and Gene Ontology (GO) enrichment analysis
539 were performed using PANTHER classification system (<http://www.pantherdb.org/>) (Mi et al.,
540 2019). RNA-seq analysis results were plotted with ggplot2 and pheatmap packages in R.
541

542 **Fluorescence microscopy.** *P. aeruginosa* strains of wild-type, $\Delta gacS$, and $\Delta retS$ were back-
543 diluted from overnight cultures and grown until $OD_{600} = 0.2-0.3$. Cells were then treated with
544 putrescine to a final concentration of 50mM, DMS3vir, both, or neither. In the cultures that were
545 treated with both, cells were pre-treated for 10 min with putrescine prior to the addition of phage.
546 Cultures were then allowed to grow for an additional 2 h. Fluorescence microscopy was then
547 performed as previously described (Brzozowski et al., 2019). Briefly, cells from culture aliquots
548 of each strain in different treatment condition were stained with 1 μ g/ml SynaptoRed (FM4-64)
549 and 1 μ g/ml DAPI to visualize the membrane and DNA respectively. Aliquots (5 μ l) of the
550 stained samples were then spotted onto glass bottom dishes (Mattek) and covered with a 1%
551 agarose pad. Samples were imaged on a DeltaVision Elite microscope (Applied Precision/GE
552 Healthcare/Leica Microsystems) equipped with a Photometrics CoolSnap HQ2 camera.
553 Seventeen planes were acquired every 200 nm. The images were subsequently deconvolved
554 using the manufacturer-supplied software, SoftWorx. Cell length was measured using ImageJ
555 and analyzed in GraphPad Prism 9.
556

557 **Statistical analyses.** Unless specified otherwise, differences between data sets were evaluated by
558 Student's *t* test, using GraphPad Prism version 5.0 (GraphPad Software, San Diego, CA). *P*
559 values of < 0.05 were considered statistically significant.
560

561 **Acknowledgments:**

562 PRS was supported by NIH grants R01AI138981 and P20GM103546. PE was supported by NIH
563 grant R35GM133617. BW was supported by NIH grant R35GM134867.
564 We declare no conflicts of interest.

565 **References**

566 Banerji, R., Kanjiya, P., Patil, A., and Saroj, S.D. (2021). Polyamines in the virulence of
567 bacterial pathogens of respiratory tract. *Mol Oral Microbiol* 36, 1-11. 10.1111/omi.12315.

568 Bernheim, A., and Sorek, R. (2019). The pan-immune system of bacteria: antiviral defence as a
569 community resource. *Nat Rev Microbiol*. 10.1038/s41579-019-0278-2.

570 Bhattacharyya, S., Walker, D.M., and Harshey, R.M. (2020). Dead cells release a 'necrosignal'
571 that activates antibiotic survival pathways in bacterial swarms. *Nat Commun* 11, 4157.
572 10.1038/s41467-020-17709-0.

573 Bondy-Denomy, J., Qian, J., Westra, E.R., Buckling, A., Guttman, D.S., Davidson, A.R., and
574 Maxwell, K.L. (2016). Prophages mediate defense against phage infection through diverse
575 mechanisms. *Isme J* 10, 2854-2866. 10.1038/ismej.2016.79.

576 Brencic, A., and Lory, S. (2009). Determination of the regulon and identification of novel
577 mRNA targets of *Pseudomonas aeruginosa* RsmA. *Mol Microbiol* 72, 612-632. 10.1111/j.1365-
578 2958.2009.06670.x.

579 Brencic, A., McFarland, K.A., McManus, H.R., Castang, S., Mogno, I., Dove, S.L., and Lory, S.
580 (2009). The GacS/GacA signal transduction system of *Pseudomonas aeruginosa* acts exclusively
581 through its control over the transcription of the RsmY and RsmZ regulatory small RNAs. *Mol
582 Microbiol* 73, 434-445. 10.1111/j.1365-2958.2009.06782.x.

583 Bridges, A.A., and Bassler, B.L. (2021). Inverse regulation of *Vibrio cholerae* biofilm dispersal
584 by polyamine signals. *Elife* 10. 10.7554/eLife.65487.

585 Brzozowski, R.S., White, M.L., and Eswara, P.J. (2019). Live-Cell Fluorescence Microscopy to
586 Investigate Subcellular Protein Localization and Cell Morphology Changes in Bacteria. *J Vis
587 Exp*. 10.3791/59905.

588 Cady, K.C., Bondy-Denomy, J., Heussler, G.E., Davidson, A.R., and O'Toole, G.A. (2012). The
589 CRISPR/Cas adaptive immune system of *Pseudomonas aeruginosa* mediates resistance to
590 naturally occurring and engineered phages. *J Bacteriol* 194, 5728-5738. 10.1128/JB.01184-12.

591 Carey, J.N., Mettert, E.L., Fishman-Engel, D.R., Roggiani, M., Kiley, P.J., and Goulian, M.
592 (2019). Phage integration alters the respiratory strategy of its host. *Elife* 8. 10.7554/eLife.49081.

593 Childs, A.C., Mehta, D.J., and Gerner, E.W. (2003). Polyamine-dependent gene expression. *Cell
594 Mol Life Sci* 60, 1394-1406. 10.1007/s00018-003-2332-4.

595 Cockerell, S.R., Rutkovsky, A.C., Zayner, J.P., Cooper, R.E., Porter, L.R., Pendergraft, S.S.,
596 Parker, Z.M., McGinnis, M.W., and Karatan, E. (2014). *Vibrio cholerae* NspS, a homologue of
597 ABC-type periplasmic solute binding proteins, facilitates transduction of polyamine signals
598 independent of their transport. *Microbiology (Reading)* 160, 832-843. 10.1099/mic.0.075903-0.

599 Cohen, D., Melamed, S., Millman, A., Shulman, G., Oppenheimer-Shaanan, Y., Kacen, A.,
600 Doron, S., Amitai, G., and Sorek, R. (2019). Cyclic GMP-AMP signalling protects bacteria
601 against viral infection. *Nature* 574, 691-695. 10.1038/s41586-019-1605-5.

602 Datsenko, K.A., Pougach, K., Tikhonov, A., Wanner, B.L., Severinov, K., and Semenova, E.
603 (2012). Molecular memory of prior infections activates the CRISPR/Cas adaptive bacterial
604 immunity system. *Nat Commun* 3, 945. 10.1038/ncomms1937.

605 Davies, J.A., Harrison, J.J., Marques, L.L., Foglia, G.R., Stremick, C.A., Storey, D.G., Turner,
606 R.J., Olson, M.E., and Cieri, H. (2007). The GacS sensor kinase controls phenotypic reversion of
607 small colony variants isolated from biofilms of *Pseudomonas aeruginosa* PA14. *FEMS Microbiol
608 Ecol* 59, 32-46. 10.1111/j.1574-6941.2006.00196.x.

609 Doron, S., Melamed, S., Ofir, G., Leavitt, A., Lopatina, A., Keren, M., Amitai, G., and Sorek, R.
610 (2018). Systematic discovery of antiphage defense systems in the microbial pangenome. *Science*
611 359. 10.1126/science.aar4120.

612 Duprey, A., and Groisman, E.A. (2020). DNA supercoiling differences in bacteria result from
613 disparate DNA gyrase activation by polyamines. *PLoS Genet* 16, e1009085.
614 10.1371/journal.pgen.1009085.

615 Fazli, M., Harrison, J.J., Gambino, M., Givskov, M., and Tolker-Nielsen, T. (2015). In-Frame
616 and Unmarked Gene Deletions in Burkholderia cenocepacia via an Allelic Exchange System
617 Compatible with Gateway Technology. *Appl Environ Microbiol* 81, 3623-3630.
618 10.1128/AEM.03909-14.

619 Francis, V.I., Waters, E.M., Finton-James, S.E., Gori, A., Kadioglu, A., Brown, A.R., and Porter,
620 S.L. (2018). Multiple communication mechanisms between sensor kinases are crucial for
621 virulence in *Pseudomonas aeruginosa*. *Nat Commun* 9, 2219. 10.1038/s41467-018-04640-8.

622 Goodman, A.L., Merighi, M., Hyodo, M., Ventre, I., Filloux, A., and Lory, S. (2009). Direct
623 interaction between sensor kinase proteins mediates acute and chronic disease phenotypes in a
624 bacterial pathogen. *Genes Dev* 23, 249-259. 10.1101/gad.1739009.

625 Hickman, J.W., Tifrea, D.F., and Harwood, C.S. (2005). A chemosensory system that regulates
626 biofilm formation through modulation of cyclic diguanylate levels. *P Natl Acad Sci USA* 102,
627 14422-14427. 10.1073/pnas.0507170102.

628 Hmelo, L.R., Borlee, B.R., Almblad, H., Love, M.E., Randall, T.E., Tseng, B.S., Lin, C., Irie, Y.,
629 Storek, K.M., Yang, J.J., et al. (2015). Precision-engineering the *Pseudomonas aeruginosa*
630 genome with two-step allelic exchange. *Nat Protoc* 10, 1820-1841. 10.1038/nprot.2015.115.

631 Janeway, C.A., Jr. (1989). Approaching the asymptote? Evolution and revolution in
632 immunology. *Cold Spring Harb Symp Quant Biol* 54 Pt 1, 1-13. 10.1101/sqb.1989.054.01.003.

633 Joly, N., Engl, C., Jovanovic, G., Huvet, M., Toni, T., Sheng, X., Stumpf, M.P., and Buck, M.
634 (2010). Managing membrane stress: the phage shock protein (Psp) response, from molecular
635 mechanisms to physiology. *FEMS Microbiol Rev* 34, 797-827. 10.1111/j.1574-
636 6976.2010.00240.x.

637 Kruger, D.H., and Bickle, T.A. (1983). Bacteriophage survival: multiple mechanisms for
638 avoiding the deoxyribonucleic acid restriction systems of their hosts. *Microbiol Rev* 47, 345-360.
639 10.1128/mr.47.3.345-360.1983.

640 Lapouge, K., Schubert, M., Allain, F.H., and Haas, D. (2008). Gac/Rsm signal transduction
641 pathway of gamma-proteobacteria: from RNA recognition to regulation of social behaviour. *Mol*
642 *Microbiol* 67, 241-253. 10.1111/j.1365-2958.2007.06042.x.

643 Latour, X. (2020). The Evanescent GacS Signal. *Microorganisms* 8.
644 10.3390/microorganisms8111746.

645 LeRoux, M., Kirkpatrick, R.L., Montauti, E.I., Tran, B.Q., Peterson, S.B., Harding, B.N.,
646 Whitney, J.C., Russell, A.B., Traxler, B., Goo, Y.A., et al. (2015a). Kin cell lysis is a danger
647 signal that activates antibacterial pathways of *Pseudomonas aeruginosa*. *Elife* 4.
648 10.7554/eLife.05701.

649 LeRoux, M., Peterson, S.B., and Mougous, J.D. (2015b). Bacterial danger sensing. *J Mol Biol*
650 427, 3744-3753. 10.1016/j.jmb.2015.09.018.

651 Liao, Y., Smyth, G.K., and Shi, W. (2019). The R package Rsubread is easier, faster, cheaper
652 and better for alignment and quantification of RNA sequencing reads. *Nucleic Acids Res* 47,
653 e47. 10.1093/nar/gkz114.

654 Matzinger, P. (2002). The danger model: a renewed sense of self. *Science* *296*, 301-305.
655 10.1126/science.1071059.

656 Mendoza, S.D., Nieweglowska, E.S., Govindarajan, S., Leon, L.M., Berry, J.D., Tiwari, A.,
657 Chaikeeratisak, V., Pogliano, J., Agard, D.A., and Bondy-Denomy, J. (2020). A bacteriophage
658 nucleus-like compartment shields DNA from CRISPR nucleases. *Nature* *577*, 244-248.
659 10.1038/s41586-019-1786-y.

660 Menon, N.D., Kumar, M.S., Satheesh Babu, T.G., Bose, S., Vijayakumar, G., Baswe, M.,
661 Chatterjee, M., D'Silva, J.R., Shetty, K., Haripriyan, J., et al. (2021). A Novel N4-Like
662 Bacteriophage Isolated from a Wastewater Source in South India with Activity against Several
663 Multidrug-Resistant Clinical *Pseudomonas aeruginosa* Isolates. *mSphere* *6*.
664 10.1128/mSphere.01215-20.

665 Mi, H., Muruganujan, A., Huang, X., Ebert, D., Mills, C., Guo, X., and Thomas, P.D. (2019).
666 Protocol Update for large-scale genome and gene function analysis with the PANTHER
667 classification system (v.14.0). *Nat Protoc* *14*, 703-721. 10.1038/s41596-019-0128-8.

668 Millman, A., Bernheim, A., Stokar-Avihail, A., Fedorenko, T., Voichek, M., Leavitt, A.,
669 Oppenheimer-Shaanan, Y., and Sorek, R. (2020). Bacterial Retrons Function In Anti-Phage
670 Defense. *Cell* *183*, 1551-1561 e1512. 10.1016/j.cell.2020.09.065.

671 Moscoso, J.A., Mikkelsen, H., Heeb, S., Williams, P., and Filloux, A. (2011). The *Pseudomonas*
672 *aeruginosa* sensor RetS switches type III and type VI secretion via c-di-GMP signalling. *Environ*
673 *Microbiol* *13*, 3128-3138. 10.1111/j.1462-2920.2011.02595.x.

674 Mougous, J.D., Cuff, M.E., Raunser, S., Shen, A., Zhou, M., Gifford, C.A., Goodman, A.L.,
675 Joachimiak, G., Ordonez, C.L., Lory, S., et al. (2006). A virulence locus of *Pseudomonas*
676 *aeruginosa* encodes a protein secretion apparatus. *Science* *312*, 1526-1530.
677 10.1126/science.1128393.

678 Mulcahy, H., O'Callaghan, J., O'Grady, E.P., Adams, C., and O'Gara, F. (2006). The
679 posttranscriptional regulator RsmA plays a role in the interaction between *Pseudomonas*
680 *aeruginosa* and human airway epithelial cells by positively regulating the type III secretion
681 system. *Infect Immun* *74*, 3012-3015. 10.1128/IAI.74.5.3012-3015.2006.

682 Nivens, D.E., Ohman, D.E., Williams, J., and Franklin, M.J. (2001). Role of alginate and its O
683 acetylation in formation of *Pseudomonas aeruginosa* microcolonies and biofilms. *J Bacteriol*
684 *183*, 1047-1057. 10.1128/JB.183.3.1047-1057.2001.

685 Ofir, G., Herbst, E., Baroz, M., Cohen, D., Millman, A., Doron, S., Tal, N., Malheiro, D.B.A.,
686 Malitsky, S., Amitai, G., and Sorek, R. (2021). Antiviral activity of bacterial TIR domains via
687 immune signalling molecules. *Nature* *600*, 116-120. 10.1038/s41586-021-04098-7.

688 Robinson, M.D., McCarthy, D.J., and Smyth, G.K. (2010). edgeR: a Bioconductor package for
689 differential expression analysis of digital gene expression data. *Bioinformatics* *26*, 139-140.
690 10.1093/bioinformatics/btp616.

691 Romero, M., Silstre, H., Lovelock, L., Wright, V.J., Chan, K.G., Hong, K.W., Williams, P.,
692 Camara, M., and Heeb, S. (2018). Genome-wide mapping of the RNA targets of the
693 *Pseudomonas aeruginosa* riboregulatory protein RsmN. *Nucleic Acids Res* *46*, 6823-6840.
694 10.1093/nar/gky324.

695 Sarkar, N.K., Shankar, S., and Tyagi, A.K. (1995). Polyamines exert regulatory control on
696 mycobacterial transcription: a study using RNA polymerase from *Mycobacterium phlei*.
697 *Biochem Mol Biol Int* *35*, 1189-1198.

698 Schmidt, A.K., Fitzpatrick, A.D., Schwartzkopf, C.M., Faith, D.R., Jennings, L.K., Coluccio, A.,
699 Hunt, D.J., Michaels, L.A., Hargil, A., Chen, Q., et al. (2022). A Filamentous Bacteriophage

700 Protein Inhibits Type IV Pili To Prevent Superinfection of *Pseudomonas aeruginosa*. *MBio*,
701 e0244121. 10.1128/mbio.02441-21.

702 Secor, P.R., Sweere, J.M., Michaels, L.A., Malkovskiy, A.V., Lazzareschi, D., Katznelson, E.,
703 Rajadas, J., Birnbaum, M.E., Arrigoni, A., Braun, K.R., et al. (2015). Filamentous Bacteriophage
704 Promote Biofilm Assembly and Function. *Cell Host Microbe* 18, 549-559.
705 10.1016/j.chom.2015.10.013.

706 Shah, P., and Swiatlo, E. (2008). A multifaceted role for polyamines in bacterial pathogens. *Mol*
707 *Microbiol* 68, 4-16. 10.1111/j.1365-2958.2008.06126.x.

708 Shi, X., Zhao, F., Sun, H., Yu, X., Zhang, C., Liu, W., Pan, Q., and Ren, H. (2020).
709 Characterization and Complete Genome Analysis of *Pseudomonas aeruginosa* Bacteriophage
710 vB_PaeP_LP14 Belonging to Genus Litunavirus. *Curr Microbiol* 77, 2465-2474.
711 10.1007/s00284-020-02011-5.

712 Shigehisa, R., Uchiyama, J., Kato, S., Takemura-Uchiyama, I., Yamaguchi, K., Miyata, R.,
713 Ujihara, T., Sakaguchi, Y., Okamoto, N., Shimakura, H., et al. (2016). Characterization of
714 *Pseudomonas aeruginosa* phage KPP21 belonging to family Podoviridae genus N4-like viruses
715 isolated in Japan. *Microbiol Immunol* 60, 64-67. 10.1111/1348-0421.12347.

716 Simm, R., Morr, M., Kader, A., Nimtz, M., and Romling, U. (2004). GGDEF and EAL domains
717 inversely regulate cyclic di-GMP levels and transition from sessility to motility. *Mol Microbiol*
718 53, 1123-1134. 10.1111/j.1365-2958.2004.04206.x.

719 Sobe, R.C., Bond, W.G., Wotanis, C.K., Zayner, J.P., Burriss, M.A., Fernandez, N., Bruger,
720 E.L., Waters, C.M., Neufeld, H.S., and Karatan, E. (2017). Spermine inhibits *Vibrio cholerae*
721 biofilm formation through the NspS-MbaA polyamine signaling system. *J Biol Chem* 292,
722 17025-17036. 10.1074/jbc.M117.801068.

723 Tzipilevich, E., Pollak-Fiyaksel, O., Shraiteh, B., and Ben-Yehuda, S. (2021). Bacteria elicit a
724 phage tolerance response subsequent to infection of their neighbors. *Embo J*, e109247.
725 10.15252/embj.2021109247.

726 Valentini, M., and Filloux, A. (2016). Biofilms and Cyclic di-GMP (c-di-GMP) Signaling:
727 Lessons from *Pseudomonas aeruginosa* and Other Bacteria. *J Biol Chem* 291, 12547-12555.
728 10.1074/jbc.R115.711507.

729 Ventre, I., Goodman, A.L., Vallet-Gely, I., Vasseur, P., Soscia, C., Molin, S., Bleves, S.,
730 Lazdunski, A., Lory, S., and Filloux, A. (2006). Multiple sensors control reciprocal expression of
731 *Pseudomonas aeruginosa* regulatory RNA and virulence genes. *Proc Natl Acad Sci U S A* 103,
732 171-176. 10.1073/pnas.0507407103.

733 Wagemans, J., Blasdel, B.G., Van den Bossche, A., Uytterhoeven, B., De Smet, J., Paeshuyse, J.,
734 Cenens, W., Aertsen, A., Uetz, P., Delattre, A.S., et al. (2014). Functional elucidation of
735 antibacterial phage ORFans targeting *Pseudomonas aeruginosa*. *Cell Microbiol* 16, 1822-1835.
736 10.1111/cmi.12330.

737 Wiedenheft, B., Sternberg, S.H., and Doudna, J.A. (2012). RNA-guided genetic silencing
738 systems in bacteria and archaea. *Nature* 482, 331-338. 10.1038/nature10886.

739 Williams McMackin, E.A., Djapgne, L., Corley, J.M., and Yahr, T.L. (2019). Fitting Pieces into
740 the Puzzle of *Pseudomonas aeruginosa* Type III Secretion System Gene Expression. *J Bacteriol*
741 201. 10.1128/JB.00209-19.

742 Yahr, T.L., and Wolfgang, M.C. (2006). Transcriptional regulation of the *Pseudomonas*
743 *aeruginosa* type III secretion system. *Mol Microbiol* 62, 631-640. 10.1111/j.1365-
744 2958.2006.05412.x.

745 Zhivaki, D., and Kagan, J.C. (2021). Innate immune detection of lipid oxidation as a threat
746 assessment strategy. *Nat Rev Immunol.* 10.1038/s41577-021-00618-8.

747 Zhou, L., Wang, J., and Zhang, L.H. (2007). Modulation of bacterial Type III secretion system
748 by a spermidine transporter dependent signaling pathway. *PLoS One* 2, e1291.
749 10.1371/journal.pone.0001291.

750