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Abstract

Updating beliefs in changing environments can be achieved either by gradually adapting
expectations or by identifying a hidden structure composed of separate states, and inferring which
state fits one’s observations best. Previous studies have found that a state inference mechanism
might be associated with relapse phenomena, such as return of fear, that commonly represent a
major obstacle in clinical treatment of anxiety disorders. Here, we tested whether variability in trait
anxiety among healthy individuals is associated with a tendency towards inferring a hidden
structure of an aversive environment, as opposed to learning gradually from observations. In a
Pavlovian probabilistic aversive learning paradigm, participants had to follow changes in cue-
associated shock contingencies by providing probability ratings on each trial. In three sessions,
the contingencies switched between high and a low levels of shock probability (60/40%, 75/25%
or 90/10%). High trait anxiety was associated with steeper behavioral switches after contingency
reversals, and more accurate probability ratings overall. To elucidate the computational
mechanisms behind these behavioral patterns, we compared a “1-state” model, which reflects
gradual updating, with a novel state-inference model (“n-state”). High trait anxiety was associated
with improved fit of the state inference model (n-state) compared to the gradual model (1-state)
in the session characterized by the largest shock contingency changes (90/10). This finding
provides evidence that trait anxiety variations among health adults are associated with tendency
to infer hidden causes that generate the observed aversive outcomes. This was particularly
evident in environments with larger contingency changes and less outcome uncertainty. This
association may contribute to relapse phenomena observed among high trait anxious individuals.

Introduction

Aversive memories are notoriously difficult to forget, and often resist attempts to ‘overwrite’ them
with new experiences. In exposure therapy, for instance, the feared situation or object is
presented in the absence of an aversive outcome to achieve extinction of the fear response. While
this procedure can lead to a decrease in fear responding, this reduction sometimes remains
specific to the therapeutic context, and fails to generalize to the outside world (Craske et al., 2014;
Vervliet et al., 2013). Such deficits in updating of aversive beliefs have been linked to anxiety
disorders. Clinical anxiety has been associated with lowered discrimination between conditioned
and unconditioned stimuli (Dibbets et al., 2015; Duits et al., 2015), decreased inhibition of
responses to conditioned stimuli (Davis et al., 2000; Haaker et al., 2015) and heightened fear
generalization (Dunsmoor & Paz, 2015). Some research has suggested that, even in healthy
adults, heightened trait anxiety can lead to overly context specific unlearning, as indicated by
lower success of cognitive behavioral therapy in high trait anxious individuals (Muris et al., 1998),
suboptimal uncertainty adjustment of learning in volatile environments (Browning et al., 2015;
Piray & Daw, 2021) and higher rates of fear relapse following treatment (Rodriguez et al., 1999;
Staples-Bradley et al., 2018).

Here, we investigated the context-specificity of learning in aversive environments and its
modulation by trait anxiety. Our main hypothesis was that trait anxiety is associated with a higher
propensity to associate periods of relative safety and harm with distinct contexts, and we argue
that this process might explain persistence and recurrence of unwanted experiences, akin to
relapse phenomena observed in clinical populations.
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We employed a probabilistic aversive learning paradigm where shock contingencies changed in
semi-regular intervals. In such an environment, participants could either update their beliefs from
trial-to-trial or they could infer that there were in fact two ‘contexts’ that corresponded to relative
safety and threat. We reasoned that participants who are more prone to infer two distinct contexts
switch beliefs about shock probabilities more abruptly when the actual shock rates change, and
that they are less sensitive to oddball events. We tested our hypothesis by comparing the
performance of two computational models that precisely captured the differences between
gradual learning and context-dependent learning, and yielded detailed predictions about trial-to-
trial changes in behavior. In addition to an effect of anxiety, we expected that decreased
uncertainty in the learning environment will lead to more context-dependent learning. We
therefore compared learning in three probabilistic environments which varied in the amount of
outcome uncertainty.

One important aspect of our study was a focus on the process in which participants infer an
unobservable (i.e., ‘hidden’) context, similar to the ‘acquisition’ and ‘extinction’ contexts described
by Bouton, (2004). This differed from how the term ‘context’ is used to describe explicitly cued
aspects of an experiment, such as different virtual rooms (e.g., Indovina et al., 2011). Our idea of
a context relates to partially observable ‘states’ (also known as ‘hidden states’), as commonly
discussed in the reinforcement learning (RL) literature (Sutton & Barto, 2018). Previous theoretical
(Wilson et al., 2014) and experimental (Bartolo & Averbeck, 2020; Schuck et al., 2016; Vaidya et
al.,, 2021) work suggested that the brain uses such states to represent information and drive
decisions (see Schuck et al., 2018, for a review). In the present paper, we used the term ‘state’
to refer to periods of high or low threat and distinguish between objective states, which refer to
the objective high/low periods of threat, and subjective states, which are states inferred by the
participant (e.g., participant may only notice that the probability of shock has dropped after several
trials and so they will remain in a subjective high-threat state).

Learning in a state-dependent manner (Bouton, 2002; Gershman & Niv, 2012) stands in contrast
to gradual learning as proposed by classical associative learning theories (e.g., Rescorla &
Wagner, 1972). The key distinction between the two ways of learning is that, under gradual
learning, the individual updates their expectation on a trial-by-trial basis, effectively overwriting
their previous estimate with each update. On the other hand, an agent learning in a state-
dependent manner creates classes of similar experiences (i.e., “states”) and when predicting an
outcome tries to infer which state they are currently in. Consequently, state-dependent learning
often leads to abrupt jumps in an agent’s predictions, called state switches, which reflect when a
state change was detected. In addition, such a learning mechanism can also explain a persistence
of previous experiences despite new learning, similar to relapse phenomena observed in clinical
practice during which clinically extinguished fear fails to generalize to everyday life (Craske et al.,
2014).

Experiments that aim to arbitrate between these perspectives typically use extinction learning
designs, in which a neutral stimulus is first paired with an aversive unconditioned stimulus (US,
typically a painful shock) during an acquisition phase, but is no longer followed by shocks during
an extinction phase. The gradual learning perspective assumes that shock contingencies during
the acquisition phase lead to gradual strengthening of a cue-outcome association, which is then
gradually weakened, and hence forgotten, during the extinction phase (Pavlov, 1927; Rescorla &
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Wagner, 1972). However, several experiments (Bouton & Bolles, 1979) and clinical observations
(Craske et al., 2014) have challenged this view. Most importantly, seemingly extinguished
memories can return unexpectedly, either after a sufficient period of time has elapsed
(spontaneous recovery, Brooks & Bouton, 1993), an explicit change of context (renewal, Bouton
& Bolles, 1979) or a presentation of the US on its own (reinstatement, Rescorla & Heth, 1975). In
line with state-dependent accounts, these observations suggest that rather than forgetting or
overwriting aversive associations, extinction involves the creation of a new memory together with
the inhibition of the previous association (Bouton, 2002). One intriguing possibility which follows
from this idea is that the individual may have learned that there are now two states that occur
repeatedly (‘acquisition’/’high-threat state’ and ‘extinction’/low-threat state’ in the example). The
same stimulus can therefore have different associations with outcomes depending on the state,
explaining why animals and humans can suddenly behave differently in response to the same
observation in the case of spontaneous recovery, reinstatement or renewal (Dunsmoor et al.,
2015). The notion of state-dependent learning is also in line with data showing that gradual, rather
than abrupt, contingency changes lead to a decrease in the rates of spontaneous recovery,
reinstatement and fear re-acquisition on a subsequent session (Gershman et al., 2013; Moris et
al., 2017; Woods & Bouton, 2007), a phenomenon known as ‘gradual extinction’ or ‘occasional
reinforced extinction’. Using a model of state learning, Gershman & Hartley (2015) found that
individuals who tend to represent the environment as multiple states have significantly higher
rates of spontaneous recovery, as indexed by skin-conductance. This suggests a relationship
between state inference and spontaneous recovery of aversive associations.

While much research supports the general existence of a state inference mechanism, the
question of which factors influence the creation of internal states, and how trait anxiety might
relate to it, has remained less clear. First, the role of trait anxiety (TA) in state inference has not
been explicitly tested, although some studies suggest such a link (Gershman & Hartley, 2015;
see also Norbury et al., 2021 for the same proposition in PTSD). High TA has been associated
with an increased return of fear following phobia treatment (Rodriguez et al., 1999) and in renewal
experiments (Staples-Bradley et al., 2018) as well as with heightened neural and physiological
differentiation between cues associated with a shock (CS+) vs no shock (CS-) (Indovina et al.,
2011; Sehlmeyer et al., 2011; Sjouwerman et al., 2020). Linking these findings to the theoretical
work on state inference, it is conceivable that high TA individuals tend to learn in a more context-
specific manner. If this context-specific learning is associated with a propensity to reactivate a
previously experienced high-threat state, this could lead to repeated relapses as observed in
patients. Here, we used computational models that take into account each individual’s precise
learning history to explore the relationship between ftrait anxiety and state inference. More
specifically, we investigated whether state switching models provide a better account of learning
from aversive outcomes, as a function of trait anxiety. Second, identifying the two states may
depend on the amount of outcome uncertainty. Specifically, inferring two separate states may be
easier when the objective “high” and “low” states are associated with 90% and 10% probability of
shock versus when those contingencies are considerably lower (e.g., 60% and 40%). For this
reason, relying on a gradual learning mechanism may be more suitable in some environments
while relying on state inference may lead to more accurate predictions in others.
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In this study, we investigated whether the level of outcome uncertainty (60/40%; 75/25% and
90/10%) impacts state inferences, and whether trait anxiety is associated with increased
tendency towards inferring states.

Results

Our main objective was to study how learning about changing aversive outcome associations is
affected by variations in trait anxiety among healthy participants. Eighty-nine participants (44
female, mean age: 25.5 years) performed a probabilistic aversive reversal learning task during
which they saw one of three possible cues and were then asked to rate the probability of receiving
a shock (Fig 1a). The data set consisted of three experiments (N=30, N=22, N=37). Experiments
| and Il only involved one session (75/25, see below), Experiment Il consisted of three sessions,
with each session differing in outcome uncertainty (see below). In all three datasets, three
different visual cues were each associated with a probability of receiving an electric shock. Two
cues were consistently associated with either a high or a low shock probability throughout the
session. We refer to these as stable-high and stable-low cues. The third cue started with a shock
probability corresponding to either the stable-high or stable-low cue but reversed its probability a
total of 6-10 times during each session (henceforth: reversal cue; reversals occurred randomly
every on average 15.4 trials, see Fig 1b, as well as Materials and Methods for details).

The three sessions varied in the amount of outcome uncertainty. In the 90/10 session, the stable-
high probability cue was followed by a shock on 90% of trials, while the shock appeared on only
10% of trials after the stable-low probability cue. In these sessions, the reversal cue switched
between 90% and 10% objective states. The 75/25 and 60/40 sessions followed the same logic.
The reversal cue probabilities switched between 75% and 25% and between 60% and 40%,
respectively. Participants in Experiment 3 completed all three sessions, while participants in
Experiments 1 and 2 only completed a 75/25 session. The session order in Exp. 3 was
counterbalanced across participants (Fig 1c). Due to different conditions and session numbers in
the three studies, the final number of participants for each condition differed when considering
the full sample (Neoso = 36; N7s25 = 88; Noo/1o = 37; see Methods and Supplementary Materials for
a detailed breakdown).
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Figure 1. (a) Trial structure. Each trial started with a fixation cross (inter-trial interval; ITl) followed by one of the three
cues (abstract fractals). Participants were asked to indicate the expected probability of receiving a shock on this trial
by moving the red slider between 0% and 100% in increments of 1%. The final answer was submitted by pressing the
downward arrow, after which the slider turned green to confirm the submission. After an inter-stimulus interval (ISI), a
painful electrical stimulus (intensity: 8/10) was either delivered or omitted and the slider changed color to blue to indicate
that the outcome had occurred. (b) Experimental design. The task was a continuous stream of trials. On each trial, one
of the three cues was presented. While the shock contingency of the stable cues remained unchanged throughout the
task (pink and light blue), the reversal cue changed every on average 15.4 trials between a low (dark blue) and a high
(red) shock probability (i.e., ‘state’). (¢) In Experiment Il participants completed the three sessions in a randomized
order, in Studies | and Il, only the 75/25 session was completed..

The shock intensity was individually calibrated at the beginning of each session to induce
moderately high pain (rating of 8 on a numeric rating scale scale from 1 - 10, defined as ‘painful
but bearable considering the number of trials’). The calibrated stimulus intensity did not differ
between studies. There was no significant relationship between shock intensity and probability
ratings, or between pain intensity and trait anxiety (p > .05, see Methods). Session order and
initial shock probability of the reversal cue (high or low) were also found to have no significant
effect (see Methods). Experiments did not differ with respect to mean stimulus intensity applied
or participants’ trait anxiety level. However, because several details of the experimental protocol
differed between experiment, we decided to include Experiment as a factor (i.e., random effect)
in all analyses. All participants completed the STAI-TRAIT questionnaire (Spielberger, 2012),
which was used to assess the individual trait anxiety (TA) scores (median score: 39; range 20-
71). While TA was included as a continuous parametric variable in all relevant analyses, we report
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and visualize mean ratings per anxiety ‘group’ (median split into high vs low trait anxious) in plots
for illustration purposes.

Differences in learning associated with trait anxiety
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Figure 2. Mean probability ratings for the two stable cues across all sessions. Probability ratings were higher for the
high-prob cue (pink) than the low-prob cue (light blue) across sessions (a) and (b) in each of the three sessions. (c)
High trait anxiety was associated with lower shock expectation in the low-prob cue. (d). The divergence of ratings from
the true reinforcement schedules (calculated as a cumulative mean) split by median TA, cue, and session. A positive
error indicates an overestimation of shock probability, a negative error shows an underestimation. Asterisks indicate a
significant difference from the true reinforcement level at p<.05 one-way t-test, p-value FDR-corrected. Dashed lines
on all panels represent the true shock probability levels.

First analysis focused on participants’ ability to track shock contingencies associated with the
stable cues. A linear mixed effects model (LMM) with probability ratings as a dependent measure
revealed a main effect of cue type (stable-high vs stable-low cue), F(1,308)=435.8, p<.001, with
higher probability ratings for stable-high than stable-low cues (Fig. 2a). Although participants’
ratings were relatively close to the true contingency levels, we found that participants slightly
overestimated the shock probability for the stable-low cue (25% true vs. 30% estimated) and
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slightly underestimated the probability for the stable-high cue (75% true versus 71.8% estimated
probability). Participants’ probability ratings also reflected the contingency differences between
sessions, as shown by the significant interaction between cue type and session type (90/10, 75/25
and 60/40), F(1,308)=33.83, p<.001, see Fig 2b (also Supp. Mat. section results for details).
Next, we asked whether participants’ shock probability ratings for the two stable cues differed
depending on trait anxiety. We averaged shock probability ratings per cue and participant, and
ran a LMM with trait anxiety and session as fixed effects. This analysis revealed that the difference
in ratings between high- and low-prob cues increased as a function of trait anxiety, as indicated
by an interaction of TA and cue type, F(1,308)=6.91, p=.009, see Fig 2c. There was a positive
association with TA in stable-high cue, $=.0024, and a negative relationship in the stable-low cue,
B=-.0024: high TA participants reported higher ratings in stable-high and lower ratings in stable-
low cue. Direct contrast of the associations of TA and rating between high and low-prob cues
showed significant difference, 1(242)=2.63, p=.009. We also tested whether ratings differed
significantly from the true contingency level using one-way t-tests, see Fig 2d. When judging the
stable-high cue, less anxious participants significantly underpredicted the true reinforcement level
in the 75/25, 1(47)=-2.62, p=.047, and 90/10, t(18)=-3.51, p =.015, conditions. When judging the
stable-low cue, less anxious participants overpredicted the probability in the 75/25 condition,
t(47)=3.58 p=.010. More anxious participants, in contrast, did not show over- or underpredictions,
all ps > .05.
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Figure 3. (a) Mean shock probability ratings locked to the reversal point for high-to-low (blue) and low-to-high (red)
switches across the entire sample and (b) separately for high and low trait anxious participants. Note that negative trial
numbers indicate trials prior to a reversal. (¢). Mean shock probability ratings for trials 10 after current reversal until
next reversal shown separately for each session, state, and median-split trait anxiety. This window was selected as the
point from which shock ratings stabilized after the reversal. Asterisks indicate a significant deviation from the true
reinforcement level at p<.05 one-sample t-test, p-value FDR-corrected. Dashed lines on all panels represent the true
shock probabilities.

Next, we analyzed shock probability ratings for the reversal cue. This cue switched between
states of high and low-probability of shock (“high-prob state” and “low-prob state”). After each
reversal, ratings tended to change rapidly, settling within about 10 trials at a stable level thereafter
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(see Fig 3a). We first focused on participants' probability estimates during the stable periods on
trials 10 until the next reversal (orange box in Fig 3a), that is, after the initial learning period.
Ratings provided during the high-prob state were higher than during the low-prob state across all
three sessions (main effect of state: F(1,207)=151.62, p<.001; 63.5% vs 48.5% in 60/40, 70.6%
vs 46.5% in 75/25 and 76.9% vs 38.3% in 90/10, high- vs low-prob states respectively, Fig 3a).
Moreover, the model revealed an interaction between state and session, F(2,207)=9.16, p<.001.
Post hoc tests found that this was driven by increased ratings of the high-prob state in the 90/10
relative to the 60/40 session, 1(205)=-3.40, p=.011. No difference was found between sessions in
the low state (See Results in Supp. Mat.).

This analysis also revealed a significant interaction between state and TA, F(1,207)=15.33,
p<.001 (Fig 3b). Post-hoc tests found that this was driven by a significant negative relationship
between TA and ratings in the low-prob state, F(119)=10.82, p=.001. More specifically, low trait
anxious participants overestimated the shock probability in the low probability state by 25.3%,
compared to 13.5% in high TA. No difference was found for ratings in the high-prob state, where
low TA participants underpredicted the shock probability by 4.5% and high TA participants by
4.9%. This pattern was similar in all three sessions, although the association with TA was
numerically most pronounced in the 90/10 condition (interaction with session: p > .05; Fig 3c,
Supp. Table. 3).

We next focused on the learning immediately after a reversal, i.e., trials 1 to 10 (‘reversal period’).
We characterized the speed of learning following a reversal by fitting a line to ratings on trials 1
to 10. This was done using a LMM with slope for each participant and state. As expected, slopes
differed depending on the direction of the switch, i.e., low-to-high switches were positive (2.44%;
read as ‘the shock probability rating increased by 2.44% per trial’) while slopes in high-to-low
switches were negative (-2.41%, main effect of state, F(1,621)=429.26, p<.001, see Fig 4a). In
both states, learning was steeper in the 90/10 condition compared to both 60/40 and 75/25 (low-
to-high switch: t60-90(559)=-6.37, p<.001, t75.90(619)=-4.979, p<.001; low-to-high switch:
t60-90(559)=4.97, p<.001, t75.90(618)=3.74, p=.003). Furthermore, there was a significant two-way
interaction between anxiety and state, F(1,621)=21.38, p<.001, and three-way interaction
between anxiety, state and session, F(2,621)=8.56, p<.001. Post-hoc tests revealed that faster
learning was associated with higher TA in the 90/10 session both in low-to-high switches,
F(1,551)=12.52, p<.001 (low-TA: 2.96% vs high-TA: 5.00%), and high-to-low switches,
F(1,551)=16.38, p<.001 (low-TA: -2.39% vs. high-TA: -4.78%). Direct contrast of the TA*slope
trends between high-to-low and low-to-high switches revealed that the three-way interaction was
driven by a significantly stronger relationship in the high-to-low state, 1(204)=3.07, p=.029, see
Fig 4a.

Because averaging over variable time courses can lead to incorrect conclusions (e.g. Haider &
Frensch, 2002), we estimated the steepness and ‘switch point’ of each individual reversal directly
from the data, providing a measure that is more sensitive to individual time courses. The estimated
steepness was closely linked to the slope measure reported in the previous paragraph,
r(88)=.775, p<.001. It increased across sessions (-2.30, -2.10 and -1.4 on log scale), as reflected
in a main effect of session, F(2, 205)=20.80, p<.001. This was driven by significantly higher
steepness in the 90/10 condition compared to 60/40, 1(226)=-6.14, p<.001, and to 75/25, t(181)=-
4.61, p<.001. The steepness was also positively associated with trait anxiety TA, F(1,94)=7.39,
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p=.008, indicating that more anxious participants adjusted their shock probability ratings faster
than less anxious participants. Turning to analysis of the estimated switch point. The average
switch occurred 2.91, 2.90 and 3.28 trials after the true reversal (60/40, 75/25, 90/10 respectively).
There was no relationship between the estimated switch point, session and TA. This indicates
that while high trait anxious participants performed more abrupt switches, these did not occur
earlier or later compared to individuals lower in trait anxiety, and this was true for all sessions.
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Fig 4 (a) Slope of change of reported ratings on trials 1-10 following contingency reversal separately for each session
and anxiety level. Positive values indicate an increase in shock probability ratings and negative values indicate a
decrease. L-H denotes a switch from a low to high shock probability, H-L denotes a switch from high to low shock
probability. (b) The distribution of switch-point and (c) steepness estimates separately for each session. (d) Both the
slope on trials 1-10 (upper panel) and estimated switch steepness (lower panel) showed a positive relationship with TA
across all sessions and switch directions.

Modeling state switching and gradual learning

The results above suggested that trait anxiety is linked to faster updating of expectations when
contingencies change. Such behavior could either be based on faster gradual learning or reflect
state switching. To distinguish between these two ideas more formally, we fitted models to
participants’ probability ratings in of the reversal cue that assumed either gradual updating of a
single state (‘1-state’ model) or updating of, and switching between, multiple states (‘n-state’
model). In both models, a state was characterized by a beta distribution that reflected the learner’s
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current belief about shock probability. The 1-state model formalized gradual updating of a single
beta distribution (see de Boer et al., 2017; Lamba et al., 2020; Wise & Dolan, 2020). The shape
of the distribution was controlled by parameters a and 3, which were adjusted following each
outcome. Specifically, following a shock a was updated using a step size parameter t*, whereas
B was increased by 7= when no-shock was received. To model forgetting, in all trials both
parameters also decayed by a free parameter A, so that ;41 = AB; and a;,; = Aa,. In essence,
the model captured gradual learning in a manner resembling the Rescorla-Wagner model,
although it should be noted that the beta updating rule also incorporated accelerated learning
rates following reversals, akin to Pearce Hall model (see Methods and Sl, for explicit comparison
between 1-state learner and RW and PH). The n-state model started each session with a single
beta distribution that was updated over time in a manner identically to the 1-state model. Crucially,
however, the model kept track of how surprising recent observations were, given the current state.
If the surprise exceeded a threshold (controlled by a free parameter n), the model created a new
state that minimized the current surprise. If more than one state already existed, the model first
polled for existing states, and switched to them if a suitable candidate was found, before creating
a new state. Every time time a new state was created the threshold for creating a new state
increased. This allowed the model to generate a meaningful number of states and effectively
switch between them. Both models are described in detail in Materials and Methods, and
parameter estimates are summarized in Tables 1a and 1b.

To assess which participants tended to learn gradually versus infer states, we calculated BIC
scores for both models and subtracted them. Note that although the n-state model has one
additional parameter (the threshold), it can behave almost identical to the 1-state model when the
threshold is so large that the model never creates more than one state. Lower BIC scores can
therefore be attributed to the necessity of inferring and switching states, i.e., that participants with
improved model fit for the n-state over 1-state model are likely to rely on a state inference
mechanism. Testing the model across all sessions, the n-state model fitted the data better (1-
state BIC: -118; n-state BIC: -123). This was also true when comparing model fit for all three
sessions individually, 60/40 (-84 vs -91), 75/25 (-133 vs -143) and 90/10 (-116 vs -132). However,
the most pronounced difference was found in the 90/10 condition where the n-state model
improved fit substantially (see Fig 5b). This suggests increased reliance on state inference in
environments with larger switches in probabilities.

Improved model fit should also be reflected in behavioral signatures of state switching. In line with
this assumption, data of participants better fit by the 1-state than the n-state model exhibited more
gradual learning, while steeper post-reversal learning was found in participants with better relative
fits of the n-state model (Fig 5a, see also Supp. Fig. 1). To quantify this impression, we assessed
the relationship between behavioral signatures of state switching and the improvement in model
fit. First, we correlated the differences in model fit against the fitted slopes from participants’ shock
ratings (Fig. 4). This revealed a significant positive association across all three sessions,
r(88)=.31, p<.001, indicating that improved fit of the n-state model related to the steepness of
estimated switches. Second, we reasoned that those participants employing a state inference
strategy should be better at dissociating when to learn from outcomes, i.e., they should show less
learning from oddball events compared to learning from trials just after reversal. To test this, we
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calculated model-free learning rates separately for 5 trials immediately after reversal (i.e.
“meaningful learning”) and trials during the relatively stable periods between trial 5 and the next
reversal (“oddball trials”, see Methods). Participants who were fitted better by the n-state learned
more from outcomes occurring after reversal compared to oddballs (@meaningfui-odadapan = 0-059)
while participants fitted better by the 1-state model had a smaller difference in learning rates
(ameaningful—oddball = 0.021), 1(69)=-2.20, p=.030.

We next examined the relationship between trait anxiety (TA) and state inference by constructing
a LMM with model fit difference as the dependent variable and TA and session as fixed effects.
This model identified a significant interaction between TA and session, F(2,105)=5.20, p=.007.
Post-hoc analyses revealed that this was driven by a positive association between TA and fit
improvement in the 90/10 condition, F(1, 153)=9.61, p=.002 (see Fig. 5c). The association was
significantly stronger in the 90/10 condition compared to both 60/40, 1(78)=-2.64, p=.027 and
75/25, 1(111)=-2.96, p=.011. This result was confirmed by a permutation-tested correlation
between TA and model fit improvement which was significant in the 90/10 condition, r(36)=.39,
p<.05 (alpha = 0.05, two-tailed, corrected for multiple comparisons). These results suggest that
individuals high in trait anxiety tend to rely more on state inference.
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Fig 5. (a) Mean shock probability ratings separately for participants better fit by 1-state (purple) and n-state (green)
models. (b) Mean BIC scores for the two models. BIC scores were demeaned to make sessions visually comparable.
(¢) Increased reliance on state inference with increasing anxiety in the 90/10 condition.

To better understand the fitted n-state model, we explored it's behavior and fitted parameters in
more detail. First, we analyzed whether the number of states the fitted model created was related
to TA, but this was not the case (mean number of states high TA: 1.82 vs. 1.81 in low TA). Second,
we investigated the timepoint when the model tended to switch states. A corresponding LMM
found no effect of session or anxiety, consistent with our behavioral results reported above (see
“estimated switch point”, see Fig 4b; model inferred switch points were 2.93, 3.20 and 3.19 trials
after the true reversal, for the three sessions). Next, we analyzed the fitted step sizes for the
positive and negative outcomes t*and t~. A LMM with parameter type (t*/ t7), TA and session
as fixed effects found a significant main effect of parameter type, F(1,228)=37.03, p<.001, which
reflected that shocks elicited larger updates than no-shocks t*=1.13 vs. 1°=0.73). There was no
main effect of TA, F(1,83)=.21, p>.05, or interaction of outcome type and trait anxiety, F(1,
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228)=.16, p>.05. Note that the same two parameters of the 1-state model, had a similar difference
t+=1.17 vs.17=0.86), suggesting that differential learning from shock and no-shock events alone
was unable to explain our behavioral effects of TA. Lastly, no effects of session, TA or interaction

where found when analyzing n which controls the switch threshold n (see Table 1b).

Table 1a: Estimated parameters for 1-state model

60/40 75/25 90/10
[Stable-high  Stable-low  Reversal [Stable-high  Stable-low Reversal [Stable-high  Stable-low Reversal
(N =36) (N =36) (N =36) (N=288) (N =88) (N =88) (N=237) (N=37) (N=37)
Tau shock 1.05+0.72 0.89+0.73 0.94+0.72 |1.17+0.75 086+068 1.15+0.70 |1.43+0.71 0.68+0.65 1.19+0.74
Tau noshock | 0.86+0.72 099+0.67 0.77+0.58 |0.70+0.62 1.15+0.75 0.74+0.57 |0.71+0.81 1.49+0.73 0.85+0.69
Alpha0 506+3.29 4.18+3.22 5.07+352 |495+337 439+339 533+324 |469+363 3.08+251 555+3.31
Betal 503+3.38 454+323 451+327 |449+310 514+333 4.90+330 |337+3.04 429+298 3.83+3.01
Lambda 0.88+0.16 0.93+0.09 0.87+0.16 [0.88+0.17 0.89+0.13 0.87+0.11 |0.89+0.22 0.94+0.07 0.85+0.13
Table 1b: Estimated parameters for n-state model
60/40 75/25 90/10
[Stable-high  Stable-low  Reversal [Stable-high  Stable-low Reversal [Stable-high  Stable-low Reversal
(N = 36) (N =36) (N = 36) (N = 88) (N =88) (N = 88) (N=37) (N=37) (N=37)
Tau shock 1.26+0.75 0.99+0.67 098+0.64 |1.18+0.70 085+0.67 1.11+0.70 |1.42+0.74 0.61+0.73 1.16+0.74
Tau noshock | 0.88+0.73 1.13+0.65 0.77+0.57 |0.66+0.67 1.16+068 063+054 (065+0.76 1.40+0.72 0.66+0.51
Alpha0 590+3.20 521+326 573+3.33 |513+3.056 535+337 486+330 [591+3.12 478+3.31 490+3.26
Betal 594+297 558+321 507+328 |540+3.05 536+3.08 444+290 [567+338 501+3.12 4.42+3.43
Lambda 0.85+0.25 0.94+0.07 0.89+0.17 [0.91+£0.18 0.91+0.15 0.90+0.10 |[0.90+0.25 0.97+0.04 0.90+0.10
Eta 4.92+3.13 480+3.09 467+264 [(434+296 412+282 538+2.73 |3.76+x3.20 4.65+341 445+254

Finally, we checked whether the link between TA and model fit improvement would also be
expressed in more differential learning between meaningful outcomes in the ftrials following a
reversal and oddball outcomes. We also included outcome type (shock versus no-shock) here to
check whether learning from rare outcomes differs between the two outcome types. Learning was
significantly higher on meaningful trials (a=0.265) than on oddball (a=0.225) trials, F(1,
534)=12.85, p<.001. This further interacted with TA, F(1,535)=4.56, p=.033: TA was associated
positively with learning on meaningful trials, 8 = .0015, CI95 = [ —.0006.0037] and negatively,
B = —.001, CI95 = [ —.003.002] with learning on oddball trials, statistical contrast of the two trends
found a significant effect, 1(528)=2.136, p=.033 (see Fig 6). The model also found significant effect
of outcome and interaction of outcome and session, however, since this did not interact with
meaningful/oddball learning we present these results in Supp. Materials.
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Figure 6. Learning split by ‘meaningful learning’ (blue) and ‘oddball’ (yellow) trials. Learning during meaningful periods
(immediately after reversal) is generally higher than learning from oddball events. High TA participants learn faster from
meaningful and slower from oddball events.

Discussion

We investigated how outcome uncertainty and trait anxiety influence the computational
mechanisms of learning and reversal in a probabilistic aversive setting. We modelled participants’
ratings of shock probabilities in a reversal learning task using two approaches: a gradual learning
rule that updates a single cue-shock association (1-state model), or a model that could learn an
appropriate number of states characterized by different cue-shock associations and switch
between these states (n-state model). The two models captured the difference between gradual
learning and context-dependent state inference, switching, and updating.

Our results showed that trait anxiety was associated with behavioral markers of state inference
and switching, and improved fits of the n-state model. In particular, participants high in TA showed
faster changes in probability ratings after a reversal, steeper switches, and better learning of the
true outcome contingencies overall. These results suggest that high trait anxious individuals tend
to represent the environment as consisting of distinct hidden states, which manifested as faster
learning after a reversal. Hence, we provide direct evidence for a link between high trait anxiety
and the tendency to infer hidden states, and to switch between them. Both TA and state inference
have been independently linked to the return of fear. Trait anxiety is known to be associated with
higher rates of fear relapse (Rodriguez et al., 1999; Staples-Bradley et al., 2018). Representing
environments as multiple states (i.e. memories) leads to higher rates of spontaneous recovery
(Hartley and Gershman, 2015). Our findings suggest that trait anxiety, as a time-invariant
disposition (Usala & Hertzog, 1991), facilitates the parcellation of observations into different states
that are characterized by different cue-outcome contingencies. In the clinical literature, the
assumption of several independent states has been discussed in relation to prevention of
updating of existing cue-outcome associations (i.e., overwriting previous memories) and thereby
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to hinderance of effective fear extinction (Craske et al., 2014). Instead of revising the current
situation, the individual assumes an additional new state that reflects the altered contingencies.

We note that the two learning mechanisms (state inference versus gradual learning) are not
mutually exclusive, but might rather reflect different degrees of state-dependent learning (as in
Hartley and Gershman, 2015). Our results indicate that the propensity for state-dependent
learning might depend on the amount of outcome uncertainty in the environment, since better fits
of the n-state model were observed in sessions with more distinct high- and low-probability states
(90% and 10%), as compared to sessions with less distinct states.

The results corroborate previous theoretical predictions. In particular, parcellation into separate
states (or “contexts”) was proposed to be associated with anxiety disorders and account for
relapse phenomena (Bouton, 2002; Gershman & Hartley, 2015, see also Norbury et al., 2021).
Here, it is assumed that ‘extinction’ involves learning that is separate and more complex from
‘acquisition’. Therefore, the memory for acquisition needs to be inhibited during extinction while a
new association needs to be learned (see Bouton, 2002). In our behavioural results, the effects
of anxiety were driven by more accurate probability estimates in the stable-low cue and the low-
state of the reversal cue, which both correspond to conditions of relative safety. This aligns with
some previous reports. For example, in a gamified aversive learning paradigm Wise and Dolan
(2020) reported a positive association between safety learning and state anxiety. Similarly, Raes
et al., (2009) found that under a condition of higher cognitive load fear extinction (indexed by
SCRs) was more successful in the high TA group. Interestingly, high anxiety (i.e., factor loading
high on trait anxiety) was associated with increased engagement of cognitive control in a go/no-
go paradigm (Scholz et al., unpublished), suggesting that non-clinical TA might be associated
with better use of cognitive resources. The broader literature on the relationship between trait
anxiety and fear yields mixed results. While some studies report increased discrimination of CS+
and CS- (Sjouwerman et al., 2020) and comparable fear inhibition during extinction in high vs.
low TA individuals (Kindt & Soeter, 2014; Torrents-Rodas et al., 2013), others report deficits in
inhibitory processing (Ansari & Derakshan, 2011; Haaker et al., 2015; Myers & Davis, 2007) and
safety learning (Gazendam et al., 2013; Indovina et al., 2011). This diversity of findings has not
been reconciled, however, a possible explanation in terms of methodological differences (e.g.,
modality, aversiveness, outcome uncertainty) has been suggested (Torrents-Rodas et al., 2013).

How and whether states are inferred depends on uncertainty. In our data, state inference was
most favored in environments where objective changes in shock contingencies were largest
(90%/10%), i.e., when outcome uncertainty was low. However, in changing environments,
inferring whether the objective state has changed also depends on higher order uncertainty such
as volatility (Behrens et al., 2007). When receiving a surprising outcome, one must consider both
outcome uncertainty and volatility to determine whether it reflects change in state or an oddball
event (Piray & Daw, 2021; Yu et al., 2021). Interestingly, high TA has previously been associated
with the inability to adjust learning to environmental volatility, as reflected in a high learning rate
despite stable contingencies (Browning et al., 2015). Piray and Daw (2021) demonstrated how
mis-estimation of outcome uncertainty (stochasticity) rather than volatility can drive learning and
cause fast, jump-like learning from rare events due to misestimation of stochasticity. To test
whether such mis-estimation could explain our findings (as opposed to state inference), we
compared learning rates during the period just after a reversal (‘meaningful learning’) with learning
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rates in relatively stable periods, where unexpected outcome did not signal a reversal but rather
an exception that was to be ignored (‘oddball learning’), see Fig 6. We argue that bigger difference
in learning rates for meaningful and oddball events reflects state awareness. While we indeed
found higher learning rates in the period just after the switch, this was not modulated by trait
anxiety. Importantly, high TA individuals did also not learn relatively more from oddball events. As
mentioned above, our results diverge from previous findings that reported lack of fear inhibition
during extinction (e.g., Kindt & Soeter, 2014) and deficits in safety learning (Gazendam et al.
2013) in high trait anxiety. A number of methodological differences between our study could
account for these differences. Our study aimed to investigate a temporally extended learning
process, which contrasts with the fear extinction paradigm used in the above-named studies. In
particular, we used a task in which both ‘acquisition’ (high state) and ‘extinction’ (low state) are
probabilistic. Notably, in the low probability, i.e. extinction, state, probabilities ranged between
10% and 40% whereas in other studies, this range was used during acquisition (e.g., 33% in
Phelps et al., 2004 or Schiller et al., 2008). Our choice was in part motivated by the importance
of keeping the degree of outcome uncertainty identical in both states within each session. As
Ojala & Bach, (2020) pointed out, uncertainty is a confound in studies where acquisition is
probabilistic (e.g., 50% shock) but extinction is deterministic (0%) (see also Discussion in
Torrents-Rodas et al. 2013). Another important factor is that in our design, states of high and low
shock probability occur repeatedly as each participant experienced at least six contingency
switches. This decision was again motivated by real-world conditions where aversive stimuli often
reoccur (e.g., periods of back pain, exam stress). Our focus was to understand how individuals
with varying degrees of trait anxiety intrinsically learn and represent the structure of an aversive
environment which sets the study apart from classical studies on acquisition and extinction.
However, future research should systematically investigate the role of trait anxiety under different
relative conditions of threat, including the difference in probabilistic versus deterministic
environments.

A noteworthy aspect of our work is the novel model that captures state inference and updating. It
combines single-state updating models under a beta distribution (de Boer et al., 2017; Lamba et
al., 2020; Wise & Dolan, 2020) with state inference models proposed previously (Costa et al.,
2015; Gershman & Niv, 2012; Redish et al., 2007). The key feature of the model is that it can
translate binary outcomes into probabilistic states, quantifying the current expectation and its
uncertainty in the process (see Materials and Methods). We showed that the n-state model was
able to estimate the appropriate number of states and that model-estimated switches occurred in
the same period as in the behavioral data (see Methods and Supp. Materials). Most importantly,
there was a clear behavioral distinction between participants better fitted by the 1- versus n-state
models (see Fig. 5a and Supp. Fig. 2).

Despite the model performing well for our purpose, it might require adjustments in other
paradigms depending on the task and data. For example, in our version the mechanisms by which
the model switches between states as opposed to creating new states are codependent and only
differ in the difficulty parameter (i.e., more surprise is needed to create a new state with increasing
number of states). Future implementations of this model could include entirely separate
thresholds for state switching versus state inference, for example, to study whether some groups
tend to create too many states but never switch to a pre-existing state.
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Conclusion

Taken together, our results suggest that more trait anxious individuals have a tendency to
represent aversive environments involving high and low threat contexts as distinct states and to
switch between them. We suggest that this parcellation of the environment into states may explain
previously observed fear relapse phenomena associated with trait anxiety.

Materials and Methods

We presented a pooled analysis of three studies that used a probabilistic aversive learning task
(see Task). Experiment | is an fMRI experiment consisting of a short screening session and a
main session 1 — 3 days later. Only data from the main session were included in this analysis.
Experiment Il is a three-visits (visit 1: baseline, visit 2: drug administration; visit 3: follow-up) drug
study investigating the role of the angiotensin-Il inhibitor drug losartan in aversive learning. Only
the placebo group from the second visit was included in this analysis as the task on visits 1 and
3 was shorter. This ensures that participants in all three studies had the most similar experience.
For a detailed overview of the three studies see Supplementary Table |.

Data were collected in the 3 Tesla MRI scanner of the Wellcome Center for Integrative
Neuroimaging (Experiment |), in behavioral testing laboratories of the Nuffield Department of
Clinical Neurosciences (Experiment Ill) (John Radcliffe Hospital, Oxford) and the Department of
Psychiatry, Warneford Hospital (Experiment Il), Oxford. The factor ‘experiment’ was included as
a random effect in all main analyses. All three studies were approved by the Central University
Research Ethics Committee (CUREC) of Oxford University (R44738/RE001, R29583/RE004,
R52892/RE001).

Participants

Participants for all three studies were recruited using local advertisement and the SONA
recruitment system managed by the Department of Experimental Psychology, University of
Oxford. Inclusion criteria varied slightly between studies (due to MRI data collection in Experiment
| and drug administration in Experiment IlI). A comprehensive list of criteria can be found in the
Supplementary Materials (section ‘Inclusion and exclusion criteria’). All studies included right-
handed healthy adults aged between 18 and 40 years without a history of psychiatric illness and
not taking any psychoactive medication (including recreational drugs) at least 3 months prior to
the experimental session. In line with recent recommendations for exclusion criteria in aversive
learning studies (Lonsdorf et al., 2019), data of all participants, including non-learners, were
included in the analyses.
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In total, 116 participants took part in the three studies. Four participants were excluded due to
missing behavioral data (presentation computer or shock administration stopped working
properly), two because of missing anxiety scores (both participants had to leave the lab before
completing the questionnaire) and one for misunderstanding the task. Twenty-two participants
who received the drug in Experiment Il were not included because questionnaire and
physiological measures necessary to control for the effect of the drug were not available in the
other two studies. In two participants, data of one of three sessions was missing due to script or
stimulation failure. In this case, we included data of the remaining sessions in the analyses. Note,
however, that therefore the degrees of freedom vary between sessions. The final number of
participants included in the analyses was 89 (87 without any missing sessions).

Aversive stimuli

Electrical stimuli were applied using a commercial electric stimulation device (Constant Current
Stimulator, model DS7A; Digitimer, Hertfordshire, UK), delivering a 2 ms monopolar square
waveform pulse via a concentric silver chloride electrode attached to the back of the left hand.

The stimuli were calibrated individually at the beginning of the task and during any pauses
(Experiment | — every 13 to 18 min; Experiment || — every 12 to 15 min; Experiment Il — just once
at the beginning of each session — every 20 to 25 min). The target intensity was 8 on a scale
ranging from 0 (= ‘not painful’) to 10 (= ‘too painful to take part’) scale. The 8/10 pain level was
defined as a sensation that is painful but tolerable for a given number of trials (study-specific
number corresponding to 50% of trials). Three qualitative anchor points were defined to help
standardize the calibration across participants and studies: 1/10 which was defined as the
intensity at which the sensation starts to be moderately painful (pain threshold); 8/10 is a
sensation that is clearly painful but tolerable; and 10/10 which would be the level of pain which is
too strong to be tolerated. The calibration followed the Method of Limits (see e.g., Ploner et al.,
2010). The stimulus intensity started at the pre-calibrated 1/10 level and changed after each rating
in an increasing trend (individual stimuli could however get stronger or weaker). Upon each
stimulus delivery, participants were asked to report how painful the sensation was on a rating
scale ranging from 1 to 10. When a rating was higher than 8, the next stimulus was always lower.
The calibration terminated once three out of the last five stimuli were rated as exactly 8. To ensure
that the intensity remains at a subjective 8/10 level, regular re-calibrations took place.

Task

The goal of the study was to investigate how participants learn to predict the probability of an
aversive event and how they update their expectations on a trial-to-trial basis. To this end, we
used a Pavlovian probabilistic learning task in which participants learned to associate three visual
cues (abstract fractals, selected randomly for each participant from a pool of 20 possible fractals)
with the delivery or omission of a painful electrical stimulus (shock). On each trial, participants
were presented with one of the cues which could be followed by the electrical stimulation and
asked to submit an expectancy rating. Throughout the experiment, one of the cues was followed
by a shock on a high proportion of trials (60% to 90%) while no stimulus was applied in the
remaining trials (‘stable high-prob cue’). For the second cue, contingencies were reversed, i.e.,
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the electrical stimulus was applied in a low proportion (10% to 40%) of trials (‘stable low-prob
cue’). For the third cue, shock contingency switched between the low and high probability in semi-
regular intervals, mean 15.3 trials. Since our primary analysis goal was to study how people learn
about changes in contingencies, we designed the task in a way that the reversal cue appeared
more often than the stable cues in all three studies (see Supp. Table I).

Standard Trial Structure

Each trial started with the presentation of a fixation cross (inter-trial-interval, ITI; Experiment I: 3
— 5 s; Experiment II: 2 s; Experiment Ill: 1 — 2 s). Next, the cue for this trial was presented and
the participant had 4 s to submit a response. The fractal was shown in the middle of the screen
while the slider used to provide the rating was positioned below. Using the left and right arrow
keys (MRI button box in Experiment 1), participants could move the slider on a scale from 0% to
100% (in increments of 1%). Once the desired position was reached, they could confirm and
submit their rating by pressing the down arrow key (middle button on the MRI button box).
Participants had up to 4 s to submit the rating. If rating was not submitted on time a warning
message appeared and the trial was restarted. Once the rating had been submitted, the slider
changed color to green. After an inter-stimulus interval (1SI; Experiment |: 2 — 4 s; Experiment Il
1 s; Experiment Ill: 1 — 2 s) the outcome was delivered (i.e., shock delivery or omission). The
outcome was accompanied by a change in the color of the slider to blue (to make timing of
outcome equally clear to participants for both shock and no-shock trials) in Experiment Ill (in
Experiments | and Il the slider did not change color). The cue remained on the screen for
additional 2 s (Experiment Ill: 1.5 s) and disappeared with the onset of the next ITI. See Fig 2.
Three fractals out of a pool of twenty were assigned randomly to the three cue conditions (stable-
low, stable-high, reversal). The background color was gray (rgb=[0.71, 071, 0.71]) and this
stimulus occupied 9 degrees of visual angle. The rating scale was shown just below the fractal.
Only the two ends of the 0% to 100% expectancy rating scale were labeled by ticks. The slider
was initiated at a random position on each trial.

Bonus trials

In Experiments | and Il, participants were occasionally presented with two of the cues and asked
to select the one with either lower or higher probability of shock. Unbeknown to the participants,
there was always one cue with currently low (i.e., stable-low or reversal in low-prob state) and
one with high (i.e., stable-high or reversal in high-prob state) probability. In Experiment Ill, on a
similarly small proportion of trials, participants could wager an amount between £0 and £5 to avoid
a single shock on the next trial. Both tasks were introduced to keep participants engaged and to
obtain an additional measure of value. Due to the different nature of the ratings, analysis of this
data was not included in the present work.

Task structure

The task was characterized by changes in the contingency of the reversal cue (‘switches’) which
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occurred in irregular intervals (see Supp. Table I). We use the term ‘state’ to refer to a section of
the task during which the shock probability of the reversal cue was constant. Each participant
experienced between 5 to 9 switches which results in 6 to 10 states per participant. States where
the probability of the reversal cue was low are referred to as ‘low-prob state’ while states with high
probability are called ‘high-prob state’. The number of trials and the dispersion of the switch point
was slightly different in the three studies: Experiment | (M=30, +/- 2 trials), Experiment Il (M=30,
+/- 5 trials), Experiment Il (M=35, +/- 10 trials). The mean refers to the total number of trials
across all three cues. The proportion of stable-low, stable-high and reversal trials was as follows:
Experiment I: 30%-30%-40%; Experiment Il: 25%-25%-50%; Experiment lll: 20%-20%-60%. This
means that for example in Experiment Ill it was on average 0.6 * 35 = 21 reversal trials / state,
although with higher variability (minimum 15 trials). Individual trials were presented in
pseudorandomized orders. The schedules were generated as follows. First, the number of trials
for a given state was determined (by ‘state’ we mean the period during which the reversal cue did
not switch). Next, it was ensured that the contingency of each of the cues was within +/- 5% of
the target. This means that if there were for example 40 trials in total, out of which 10 were stable-
low, 10 were stable-high and 20 were the reversal cue, the target ‘objective’ probabilities were
25%, 75% and 75% (assuming the 75/25 condition and the reversal cue being in the high-state)
it was ensured that the objective shock rates delivered for each cue were within +/- 5% of these
contingencies, e.g., for the reversal cue there were between 14 (70%) and 16 (80%) shock trials
within this ‘mini block’. Additionally, it was ensured that within each state a given cue was not
presented on more than three subsequent trials. For the reversal cue, on the first five trials after
reversal, at least three outcomes were in the new direction (if switch from high-to-low state just
happened, at least three out of the first five trials ended with no-shock). Furthermore, once each
mini-block passed the above criteria, the mini-blocks were assembled into a schedule. There was
a slight difference between studies. While in studies | and Il a change in state occurred with 75%
probability (i.e. sometimes it didn’t happen), in Experiment Ill switch always happened. Lastly, a
second +/- 5% contingency check was performed, this time across the entire trial schedule
separately for each cue.

Instructions

To minimize any influence of the experimenter, the information about the task was presented in
writing. Only if the participant required further explanation, instructions were clarified verbally
according to protocolled answers. Participants were presented with minimal information regarding
the number of cues, task duration, cue frequency and switches. They were told that ‘each cue is
associated with a certain probability of receiving a painful stimulus’ and to ‘pay attention to all
three cues as any of them may or may not change their probability signaling the painful stimulation
at any point’. For details on the instructions see Supplementary Materials (Instructions section).

Questionnaires

Trait anxiety was assessed using the STAI-TRAIT (Spielberger, 2012). Additional study-specific
personality measures were collected (e.g., pain-related fears and attitudes in Experiment I). For
the complete list of questionnaires see Supplementary Materials, section ‘Questionnaires’. In
Experiments | and lll, questionnaires were completed using a computerized interface based on
the LimeSurvey software. In Experiment Il, pen & paper versions of the questionnaires were used.
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Data analyses

Data were analyzed using custom MATLAB (MATLAB 2019a, The MathWorks, Natick, 2019) and
R 3.6.0. scripts (for a complete list of packages and versions see associated repository). All
analysis scripts, data and reproducibility instructions are stored and documented in the associated
github and GIN repositories.

Statistical and visualization approach

Statistical analyses were performed using Linear Mixed Models (LMMs, as implemented in Imer
1.1-25 R package Bates et al., 2015) with study and participant included as an effect with a
random intercept. For each analysis we included fixed effect of interest also as a random slope,
and we performed a model comparison between the two version. Adding random slope didn’t
result in improved model fit in any of the analyses, so we didn’t include them. Following ANOVA
analysis of LMM results, post-hoc tests are reported using corrected p-value (Holm). Where
variables were continuous (e.g., trait anxiety) they were included as such in the statistical models.
To visualize data, we include raw data, summary statistics (mean or median), information about
variance (standard error or interquartile range) and density (raincloud plots; Allen et al., 2019). In
time-series plots (e.qg., Fig 3a) we plot mean per condition and SEM (standard error of the mean).

Computational modeling

All models were fitted to the trial-by-trial shock expectancy data using Bayesian Adaptive Direct
Search (BADS; Acerbi & Ma, 2017) by minimizing the negative log likelihood of the data given a
model. Our 1- and n-state models naturally use beta likelihood. To assess model fit across all
trials, BIC (Schwarz, 1978) scores were calculated. To prevent convergence to local extremes,
fitting was performed 45 times for each participant and cue, ensuring that computational
resources were identical across all models.

Measures
Behavioral measures

All main analyses including model fitting are based on shock probability ratings (0% to 100%)
provided by the participant on each trial. Additionally, each study contained either cue preference
ratings or a shock wagering task to provide additional measure of shock expectancy. However,
because the measures varied across studies, they are not included. Lastly, at the end of the task
we collected visual and general liking ratings for each of the images used in the task. Participants
were presented with the three fractals and asked to rate their ‘visual appeal’ and ‘general liking’
on a scale from 1 to 10.

Slope after reversal

To calculate the average speed of updating after reversal, we fitted the shock probability ratings
data on trials 1 to 10 (period of change) using a linear mixed effect model with estimated slope
for each participant, session, half (early/late) and switch type (high-to-low, low-to-high). Due to
convergence issues, such model was fitted separately for each session, half and switch type. The
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estimates slopes for each participant/condition were then extracted from the models and analyzed
separately using another LMM.

Switch point and steepness

To isolate subject-specific learning metrics, we used the trial-by-trial expectancy ratings to
estimate switch point and switch steepness for each individual change in probability. Only trials
from the reversal cue were included in this analysis. For each switch, we extracted 5 trials prior
and 10 trials post reversal and demeaned the time-series. Using this ‘chunk’, we determined the
point of steepest change (‘switch point’) by calculating the cumulative sum and identifying the
point of highest (high-to-low switch) or lowest (low-to-high switch) value in the series.” Next, a
smaller chunk of 10 trials (5 preceding and 5 following) around the identified switch point was
extracted. A sigmoidal curve (Eq. 1) with a free parameter for steepness was fitted to this smaller
chunk. x corresponds to the time series of 10 trials, b is the inflection point which was fixed to
b=5.5 (midpoint) and a represents the steepness.

1
1+ e~a(x-b)

Eq. 1f(x,a,¢c) =

The fitted value for a was recorded and log transformed before being used as an estimate for
switch steepness in the main analysis.

Error from true reinforcement

To evaluate how much the individual learning time courses deviated from the delivered rates of
shock, we calculated the running mean reinforcement rate (mean over shocks=1 and noshock=0
outcomes) for each state condition separately. This measure serves as an estimate of the true
shock probability under the assumption that the agent knows which state they are in. To obtain a
directional measure of error, the true reinforcement rate was subtracted from the expectancy
ratings.

Model-free learning rates in “meaningful” and “oddball” trials

To obtain trial-wise learning rates, we rearranged the Rescorla-Wagner (Eq. 3) learning rule and
calculated the trial-specific learning rate a (Eq. 4).

Eq 3 Pt+1 =Pt +at(0i't_Pt)

Pry1—P¢
O¢—P¢

where 0 <o, <1

Eq. 4 a; =

In some cases, such calculated learning rates became negative, for example, when the participant
received a shock, but they lowered their expectation. In this instance, ratings were excluded from
the analysis (assigned NaN values).

To distinguish between learning immediately after reversal, when learning rates should be

relatively higher (“meaningful” learning), and later in stable periods of each state, when learning
from surprising events should be relatively slower (“oddball” learning), we split model free learning
rates at fifth trial after reversal. For example, if shock occurred in the first five trials after low-to-
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high switch then it was considered “meaningful” to learn from, while if it occurred after fifth trial of
high-to-low switch it was considered an “oddball”.

Computational models

Our primary goal was to provide a set of two models which used the same updating mechanisms
and distributional assumptions (beta distribution), and that differed only in the ability to infer states.
To model gradual learning and switching, we used a framework based on the beta distribution,
similarly to de Boer et al., (2017) and Wise & Dolan, (2020). Our goal was to model the current
shock probability estimate (ranging between 0 and 1) based on the received binary outcomes
using the beta distribution. This approach is well-suited to model probabilities because beta
distribution is bounded by 0 and 1. Additionally, it implicitly quantifies the amount of uncertainty
about the current state. Lastly, this probability distribution naturally arises from binary outcomes.
This provides a logical link between the outcomes delivered in the task (shock/no-shock) and the
data reported by participants (probability estimates) but stands in contrast to more commonly
used Normal distribution, which offers no straightforward mapping between binary outcomes and
probability density.

1-state model
Each state was characterized by a beta distribution with parameters and a and B (Eqgn. 5).

xa—l(l_x)ﬁ—l
Eq 5 BetapDF(a, B) = T Tr®
I'(a+pB)

Given this distribution, we assumed that the reported subjective probability of a shock reflected
the mode (Eq. 6a) of the probability density function provided above, while state uncertainty was
defined as standard deviation of the same distribution (Eq. 6b).

a—-1
oa+f3-2

_ op
Eq.6bo = \/(a+6)2(a+6+1)

Parameters a and 3 can be thought of as proportional to the number of shocks and no-shocks
received up until this point. As the sum of a and B increases, the variance (and therefore state
uncertainty) of the distribution decreases. In other words, the more evidence is available to the
model, the more certain it is about its probability estimate. The starting values of a and (3 are
estimated as free parameters (a,, By, both € [1,10], values smaller than 1 were not included
because in this case the distributions become bimodal, and Eqn. 6b). On each trial, the two
parameters are updated by the amount equal to shock and no-shock attention weights t* or
T~ (both € [0,2]) depending on whether the shock was received (+) or omitted (-). Specifically, if

Eq.6a P =

24


https://www.zotero.org/google-docs/?PQ9BII
https://doi.org/10.1101/2022.04.01.483303
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.04.01.483303; this version posted April 28, 2022. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Zika et al. Trait Anxiety and State Inference

the cue was followed by a shock, then a is updated by the amount of t* and if no-shock occurred
then B is updated by t~. Additionally, on each trial both o and § are subject to decay A € (0,1)
(estimated in log space) which results in an increase in state uncertainty. This is the conceptual
equivalent to forgetting. Lastly, the uncertainty of a given state is kept within realistic boundaries
so that the sum of a and B does not exceed 30. This is done to ensure numerical stability. See
Egs. 7 - 11.

If outcome is shock (0, = 1):
Eq 7 A(t+1,5) = A(a(t_s) + T+)

Eq. 8 Bt+1,s) = MBes)

If outcome is not a shock (0, = 0)
EQ. 9 B(esrs) = M(Bees) +17)
EQ. 10 o(rr1,) = Aages)
Both parameters of all non-active states decay
BQ. 11 a(ry,5) = A1y
Ble+rs) = AB(esh)

The 1-state model can behave very similarly to the more commonly used associative learning
models such as the Pearce-Hall model (Li et al., 2011; Roesch et al., 2012), see Supp. Mat. For
a comparison.

Beta state inference model (‘n-state’)

The 1-state model described above assumes a single state. However, alternatively we can let the
model infer states from the data and allow for the possibility of switching between them.
Specifically, our goal was for such “switching” model (a) to infer state switches from binary
outcomes without any context cues, (b) to infer a state switch at a rate similar to humans, ideally
in less than 10 trials and (c) to have a tendency to only create a handful of states to allow for
meaningful generalization. The last aspect reflects the fact that every additional state (e.g., fear
memory) must be maintained in parallel, but it also needs to be distinct from the already existing
states. We note that a number of state switching models have been proposed previously (Blanco
& Moris, 2018; Costa et al., 2015; Gershman et al., 2010; Redish et al., 2007), but none of these
meets the goals set above.

As in the 1-state model, each state is characterized by a beta distribution that is updated as
described above. In addition to updating each state, the model keeps track of the running
average of surprise, S (see Eq. 12).

Eq 12 S(t,S) = (1 - T[)S(t—l,S) + T[|Ot - 15t,\S|
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In order to distinguish between inferring new states and state switching (it might be optimal to
infer just two states but to switch between them multiple times, i.e., every time the contingencies
change) the model uses two decision thresholds to guide behavior. The ‘basic threshold’ is
defined by the uncertainty of the current state ¢ times the threshold parameter n. Exceeding this
threshold triggers a polling mechanism during which all existing states are compared against an
expected value which is simply the mode P of the current state +/- the current running surprise S.
Following this procedure, the most likely next state is switched to, or the current state is kept
active. If the surprise S exceeds the compound threshold (Eqg. 14), the model first checks for any
existing states in the range around the expected value (+ o). If multiple suitable states exist
it chooses the most likely one and if none exist it creates a new state. The compound threshold
is additionally controlled by the parameter g which represents the difficulty of creating a new state.
In order to allow new states to be created but to prevent the model from creating too many states,
q follows a Chinese Restaurant Process distribution with parameters 6 = 0.25 and o = 1 under
which the creation of each next state becomes progressively more difficult.

Eq. 13 (‘basic threshold’) S ) > 0. 9N
Eq. 14 (‘compound threshold’) S(; s) > 0¢:.5Nq

When a new state is being created it is initialized with mean at the current expected value (P )
S(ts)) and standard deviation calculated using Eq. 6b from the estimated parameters o, and 3,
(i.e., all states will have the same starting uncertainty).

Both models were found to recover well (see the ‘Model recovery’ section below for full
description), providing support for a unique identifiability of the state switching strategy.

Models were also fitted to artificial data containing either one or two reinforcement levels,
mimicking the stable and reversal cues from the actual task and the three contingency levels
(Supp. Fig. 6). In stable environments (columns 1 and 3) the models were able to fit the data
almost exactly. In environments with two reinforcement levels the 1-state model updated
appropriately following contingency changes. The n-state model on the other hand was able to
approximate high and low state and effectively switch between them

Model recovery

The 1-state and n-state models were included in a model recovery procedure. First, we fitted all
models to the data of the participants. Second, we used the mean and standard deviation of the
fitted parameter values to generate synthetic data. Third, the data generated using each model
were fitted by each of the candidate models. The fitting procedure was identical to the one used
to fit real participant data (45 runs, separate fit for each cue). Last, model comparison was
performed for each artificial data set using the mean BIC as the quantitative criterion. A model
was considered to recover well if the winning model matched the model used to generate the
data. All investigated models recovered uniquely (see Supp. Fig. 7).

Data quality and checks
Shock intensity and perception

26


https://doi.org/10.1101/2022.04.01.483303
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.04.01.483303; this version posted April 28, 2022. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Zika et al. Trait Anxiety and State Inference

A linear mixed effects model (LMM) was estimated to check for the differences in shock intensity
between studies and its relationship with trait anxiety. The mean shock intensity did not differ
between studies, F(2,79)=2.92, n.s. nor was there a statistically significant interaction with trait
anxiety F(2,80.8)=0.02, n.s. Kolmogorov-Smirnov tests found no difference in shock intensity
values between full dataset and dataset after exclusions. Lastly, there was no association
between shock intensity and reported probabilities in either low or high state indicating that
probability ratings did not differ due to the participants’ general sensitivity to electrical stimuli. We
also tested whether the perceived shock unpleasantness and pain intensity correlated with true
shock intensity or trait anxiety. If the calibration procedure had been successful, the objective
shock intensity should not relate to the subjective ratings. Employing a LMM, we found no
evidence for an association between the subjective painfulness/unpleasantness and the objective
current or trait anxiety.

Trait anxiety

We tested whether anxiety scores differed between the three studies. While there was no
statistically significant difference, F(2,157)=1.35, n.s., the median TA in Experiment Il was 35
compared to 42 in 1 and 41 in Experiment Ill. We therefore decided to include ‘experiment’ as a
random effect in all linear mixed effect models. On occasions, anxiety results are shown as
median split for convenience. Where possible, such plots are accompanied by parametric
visualization. All statistics are performed using a full range of trait anxiety scores. Kolmogorov-
Smirnov tests found no difference in anxiety scores between the full data set and the data set
after exclusions.

Cue appeal

Although fractals were randomly allocated to the different conditions across patrticipants, there
was a possibility that participants would rate a specific fractal more favorably due to its visual
appeal. To check whether this was the case, the visual appeal ratings collected at the end of the
task were included as dependent variables in a LMM with cue and contingency condition as fixed
effects. LMM found no significant effect of cue or contingency on visual appeal of the presented
cues.

Initial bias

To test whether the first rating differed from the unbiased estimate of 0.5 indicating a pre-existing
bias in shock expectancy, each participant’s first rating of the first session was entered into a one-
way t-tests (separately for each experiment). These analyses did not reveal any significant effect.
Since there was a degree of variability around the mean we next tested for an association between
trait anxiety and the first rating, but no relationship between the variables was found.

Session order

In Experiment Ill, the three contingency conditions were presented in a random order. To verify
that our findings are not a result of an order effect, we used a LMM to test whether the session
order had an influence on mean ratings separately for the high and low state of the reversal cue.
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The model found no significant effect of the order in which the sessions were delivered on the
probability ratings.

Starting contingency of the reversal cue

Next, we assessed whether ratings later in the task were influenced by the starting contingency
(high vs low) of the reversal cue. To perform this analysis, we removed the first half of each time
course (there would of course be an effect in the early ratings, here we are checking for any
lasting anchoring bias) and fitted a LMM with state, contingency, experiment and starting
contingency as fixed effects. There was no significant main effect or interaction of starting
contingency. By adding trait anxiety to the model, we further checked whether there was any
interaction with TA but found no effect of starting contingency on trait anxiety.

Data and code
Data and code are published in the associated Github and GIN repositories.
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