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Abstract 9 

Knowledge of recombination rate variation along the genome provides important 10 

insights into genome and phenotypic evolution. Population genomic approaches offer an 11 

attractive way to infer the population-scaled recombination rate ⍴=4Ner using the linkage 12 

disequilibrium information contained in DNA sequence polymorphism data. Such methods 13 

have been used on a broad range of plant and animal species to build genome-wide 14 

recombination maps. However, the reliability of these inferences has only been assessed 15 

under a restrictive set of conditions. Here, we evaluated the ability of one of the most widely 16 

used coalescent-based approaches, LDhelmet, to infer a biologically-realistic genomic 17 

landscape of recombination. Using simulations, we specifically assessed the impact of 18 

empirical (sample size, block penalty) and evolutionary parameters (effective population size 19 

(Ne),  mutation and recombination rates) on inferred map quality. We report reasonably good 20 

correlations between simulated and inferred landscapes, but point to limitations when it comes 21 

to detecting recombination hotspots. False positives and false negatives considerably 22 

confound fine-scale patterns of inferred recombination under a wide array of conditions, 23 

particularly when Ne is small and the mutation/recombination rate ratio is low, to the extent 24 

that maps inferred from populations sharing the same recombination landscape appear 25 

uncorrelated. We thus address a message of caution to users of such approaches, while also 26 

recognizing their importance and potential, particularly in species with less complex 27 

landscapes for which LD-based approaches should provide high quality recombination maps. 28 
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Introduction  34 

Recombination is highly conserved among sexually reproducing species of 35 

eukaryotes. This fundamental mechanism of meiosis is essential for the proper segregation of 36 

homologous chromosomes during the reductional division. Recombination involves crossing 37 

over events (CO) that play a crucial evolutionary role by allowing genetic mixing and 38 

generating new combinations of alleles (Baudat and de Massy 2007; Cromie et al. 2001; 39 

Capilla et al. 2016). Measuring the rate at which recombination occurs and the magnitude of 40 

its variation along the genome has important implications for fundamental research in 41 

molecular biology and evolution, but also for applied genomics such as genome-wide 42 

association studies (GWAS) (Morris et al. 2013; Hunter et al. 2016). Several approaches have 43 

been developed to reconstruct genome-wide recombination maps (reviewed in Peñalba and 44 

Wolf 2020). Cytological methods, like ChIP-seq, target protein-DNA complexes directly 45 

involved in the formation of double-strand breaks (DSB) and CO during meiosis (Pratto et al. 46 

2014). Gamete typing methods analyse the meiotic products of a diploid individual (reviewed 47 

in Carrington and Cullen 2004; Dréau et al. 2019; Sun et al. 2019). Methods based on pedigree 48 

analysis reconstruct the gametic phase from patterns of allele inheritance in bi-parental 49 

crosses (Lander and Green 1987; Kong et al. 2002; Kodama et al. 2014; Rastas 2017). All 50 

these approaches have the advantage of providing direct estimates of the recombination rate. 51 

However, by focusing on CO that occurred in a few individuals or families across one or a 52 

couple of generations, they remain intrinsically limited in resolution due to the small number 53 

of recombination events that occur per chromosome per generation (Clark et al. 2010; Peñalba 54 

and Wolf, 2020). 55 

Another type of approach uses genome sequence data from natural samples to take 56 

advantage of the large number of recombination events that have occurred during the history 57 

of the considered species/population. Instead of directly observing crossover products, these 58 

methods detect the footprints left by historical recombination events on patterns of haplotype 59 

segregation and linkage disequilibrium (LD) (reviewed in Stumpf and McVean 2003). The 60 

recombination rate and its variation across the genome are inferred via coalescent-based 61 

analysis of DNA sequence polymorphism data (Chan et al. 2012; Kamm et al. 2016; Li and 62 

Stephens 2003; McVean et al. 2004; Spence and Song 2019). The resulting LD maps have 63 

been widely used to evaluate the genomic impact of natural selection and admixture, and to 64 

perform genome-wide association studies (GWAS) (e.g. Chan et al. 2012; The International 65 

HapMap Consortium 2007). These approaches provide an accessible and attractive way of 66 

describing recombination landscapes - i.e. the variation of recombination rates along the 67 

genome - particularly in non-model taxa where direct methods are often difficult to implement 68 
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(Auton et al. 2012, 2013; Melamed-Bessudo et al. 2016; Shanfelter et al. 2019; Singhal et al. 69 

2015; Shield et al. 2020).  70 

Direct and indirect methods have revealed considerable variation in recombination rate 71 

at different scales along the genome, particularly in vertebrates. At a large scale (of the 72 

megabase order), recombination tends to be concentrated in subtelomeric regions compared 73 

to centromeric and centro-chromosomal regions, a pattern shared among many species of 74 

plants and animals (Auton et al. 2012; Capilla et al. 2016; Danguy des Déserts et al. 2021; 75 

Haenel et al. 2018; Melamed-Bessudo et al. 2016). At a finer scale (of the kilobase order), 76 

recombination events often cluster in small regions of about 2 kb, called recombination 77 

hotspots (Choi and Henderson, 2015; Kim et al. 2007; Mancera et al. 2008; Myers et al. 2005; 78 

Shanfelter et al. 2019; Singhal et al. 2015; Schield et al. 2020). Two distinct regulatory systems 79 

of recombination hotspot location have been described to date, with major implications on the 80 

evolutionary dynamics of recombination landscapes. In passerine birds (Singhal et al. 2015), 81 

dogs (Auton et al. 2013; Axelsson et al. 2012) and some teleost fishes (Shanfelter et al. 2019; 82 

Baker et al. 2017), recombination hotspots tend to be found in CpG-islands / promoter-like 83 

regions, and are highly conserved between closely-related species (Singhal et al. 2015). In 84 

contrast, in humans (Myers et al. 2005, 2010), apes (Auton et al. 2012 ; Great Ape Genome 85 

Project 2016) and mice (Booker et al. 2017), hotspot location is directed by the PRDM9 86 

protein, which binds specific DNA motifs and triggers the formation of DSBs (Baudat et al. 87 

2010; Grey et al. 2018; Simon Myers et al. 2010; Oliver et al. 2009; Parvanov et al. 2010). In 88 

these taxa, hotspots are mostly located away from genes (Auton et al. 2012; Baker et al. 89 

2017), and show little or no conservation between closely related species (Myers et al. 2005, 90 

2010; Auton et al. 2012; Booker et al. 2017) due to self-destruction by gene conversion and 91 

rapid turnover of PRDM9 alleles (Coop and Myers 2007; Latrille et al. 2017; Lesecque et al. 92 

2014).  93 

Population-based inference methods aim to infer the population recombination rate ρ 94 

= 4Ner, r being the per meiosis, per bp recombination rate and Ne the effective population size 95 

(Stumpf and McVean, 2003). The ρ parameter reflects the density of population recombination 96 

events that segregate in polymorphism data, integrated across time and lineages. Several 97 

programs have been developed for reconstructing LD-maps (reviewed in Peñalba and Wolf, 98 

2020); PHASE: Li and Stephens, 2003; LDhat: McVean et al. 2004; LDhelmet: Chan et al. 99 

2012, LDpop: Kamm et al. 2016; pyrho: Spence and Song, 2019), which use coalescent theory 100 

based on the ancestral recombination graph (Griffiths et al. 1997; Arenas, 2013) to model and 101 

explore the genealogies of the distinct genomic segments. The most popular family of LD-102 

based methods like LDhat (McVean et al. 2004) and its improved version LDhelmet (Chan et 103 

al. 2012), implement a pairwise composite likelihood method under a Bayesian framework 104 
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using a reversible jump Markov Chain Monte Carlo (rjMCMC) algorithm. They have been used 105 

for building fine scale LD-based maps in a broad range of animal taxa including humans 106 

(McVean et al. 2004), dogs (Axselsson et al. 2012 ; Auton et al. 2013), fruitfly (Chan et al. 107 

2012), finches (Singhal et al. 2015), bee (Wallberg et al. 2015), stickleback (Shanfelter et al. 108 

2019), rattlesnakes (Schield et al. 2020). In some species, inferred LD-based maps have been 109 

validated by assessing their correlation with recombination maps obtained using conventional 110 

approaches, confirming their quality (Chan et al. 2012; McVean et al. 2004; Booker et al. 2017; 111 

Shanfelter et al. 2019; Singhal et al. 2015). However, as genetic and LD-based maps greatly 112 

differ in resolution (pedigree-based inference provide resolution of about 1 cM, while 113 

population-based methods can infer recombination events at the kilobase scale, (Peñalba and 114 

Wolf, 2020)), such comparisons do not provide qualitative information on the reliability of the 115 

detected hotspots. Moreover, the heterogeneity of the data analysed in these papers (in terms 116 

of taxonomy, genetic diversity, demography, sample size, and software parameters, among 117 

other things) makes it difficult to appreciate the performance and the possible  weaknesses of 118 

LD-based methods. In fact, the reliability and conditions of application of LD-based methods 119 

are still poorly understood and need to be deeply characterised, considering the growing 120 

importance of these tools.  121 

The power and sensitivity of LDhat and LDhelmet have been tested by simulations 122 

aiming to evaluate the influence of switch error in haplotype phasing (Booker et al. 2017; 123 

Singhal et al. 2015), the amount of polymorphism, and the intensity of recombination hotspots 124 

(Singhal et al. 2015). These studies simulated simple recombination landscapes assuming 125 

either homogeneous recombination rates or a few, well-defined hotspots contrasting with a 126 

low-recombination background (Auton & McVean, 2007; Booker et al. 2017; Chan et al. 2012; 127 

McVean et al. 2004; Shanfelter et al. 2019; Singhal et al. 2015; Schield et al. 2020). Real 128 

recombination landscapes, however, are usually more complex and involve a continuous 129 

distribution of recombination hotspot density and intensity across genomic regions. This 130 

complexity has not been taken into account so far in studies assessing the performance of 131 

LD-map reconstruction methods. We thus lack a comprehensive picture of the ability of these 132 

methods to properly recover the biological characteristics of real recombination landscapes. 133 

In particular, the proportion of the inferred recombination hotspots that are correct, and the 134 

proportion of true hotpots that are missed, have not yet been quantified under a biologically 135 

realistic scenario. These are crucial quantities to properly interpret and use reconstructed LD-136 

maps in genomic research. 137 

In this paper, we specifically assessed the performance of the LDhelmet program to 138 

detect hotspots while assuming a biologically realistic recombination landscape. We evaluated 139 

the influence of methodological parameters including sample size and block penalty, and 140 
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species-specific parameters such as the effective population size, mutation rate, and 141 

recombination rate. We also considered different definitions of a recombination hotspot 142 

relative to its background recombination rate, with the aim of improving the sensitivity of the 143 

analysis. We identified the conditions in which LD-based inferences can provide an accurate 144 

mapping of hotspots, and the parameters that negatively affect the sensitivity and specificity 145 

of their detection within biologically realistic recombination landscapes.  146 

 147 

 148 

Results  149 

 150 

Recombination landscape modelling 151 

 Five realistic, heterogeneous recombination landscapes (referred to as <underlying 152 

landscapes= in this paper) of 1Mb length were built using the human genome high resolution 153 

map of meiotic DSB from Pratto et al. (2014). In order to mimic both broad and fine scale 154 

variation in the recombination rate parameter r, (Supplementary Figure S1) the first and 155 

second half of each landscape were drawn from a gamma distribution of mean 1 cM/Mb and 156 

3 cM/Mb, respectively, with parameters fitted from Pratto et al. (2014) (1-500,000bp: 157 

shape=rate=0.1328; 500,001pb-1Mb: shape=0.1598, rate=0.0532). Accordingly, the 5 158 

recombination landscapes generated (Figure 1A, Supplementary Figure S1) showed broad 159 

scale differences in recombination peak intensity, with less elevated recombination peaks in 160 

the first half compared with the second half of each chromosome. At a fine scale, 161 

recombination was concentrated in numerous peaks resembling human recombination 162 

hotspots, with about 85% of the recombination concentrated in 15% of the genome. The map 163 

lengths in recombination units were about 0.02 Morgan (Supplementary Figure S2). 164 

 165 
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 166 

Figure 1. Simulation and inference protocols. A) In the first simulation framework, 5 different 167 
underlying recombination landscapes were generated based on human empirical data. These 168 
5 landscapes can either be considered as parts of different chromosomes from the same 169 
species, or as orthologous parts of chromosomes from different species. For each of the 5 170 
underlying landscapes, 10 recombination landscapes were simulated with MSPRIME for 4 171 
combinations of effective population size (Ne) and sample size (SS) parameters, generating 172 
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a VCF file for each simulated population. The VCF files were then used to infer the local 173 
population recombination rates using LDhelmet with 3 alternative block penalty values (BP, a 174 
key parameter to LDhelmet), representing a total of 12 tested conditions. B) In the second 175 
simulation framework, only one of the 5 underlying landscapes was used to generate 2 176 
simulated populations for each of the 4 combinations of simulation parameters, before running 177 
LDhelmet 10 times in replicate for 3 different values of block penalty, representing a total of 178 
12 tested conditions. 179 

 180 

Recombination landscapes of simulated populations (hereafter called <simulated 181 

landscapes=) were generated in 10 replicates for each underlying landscape, using coalescent 182 

simulations with a mutation rate μ=10-8 and 4 combinations of sample sizes (SS=10 or 20) 183 

and effective population sizes (Ne=25,000 or 250,000) (Figure 1A). The simulated landscapes 184 

were a little shorter than the underlying landscapes (about 0.015-0.018 Morgan), reflecting the 185 

occasional occurrence of more than one recombination event between two adjacent SNPs 186 

during the simulated coalescent histories (Supplementary Figure S2). They were also highly 187 

correlated with the underlying landscapes for each combination of parameters (Spearman’s 188 

rank correlation > 0.8 at 500bp resolution), showing that the stochasticity of the coalescent 189 

process has not resulted in a substantial loss of information about the underlying landscape. 190 

As expected from the θ=4Neμ values used in our simulations (θ = 0.001 and 0.01 for Ne = 191 

25,000 and 250,000, respectively), the SNPs density of the large Ne populations was about 192 

one order of magnitude higher than for smaller Ne populations (Supplementary Figure S3).  193 

 194 

Demographic, species-specific and methodological parameters affect 195 

LDhelmet performance 196 

 Population-scaled recombination rates (⍴) were inferred from the simulated 197 

polymorphism datasets using the program LDhelmet (Chan et al. 2012) (referred to as 198 

<inferred landscapes=). Three block penalty (BP) values (i.e. the degree of landscape 199 

resolution), which determine the number of allowed changes in ⍴ value within windows of 50 200 

consecutive SNPs were tested (BP=5, 10, or 50) for each of the 4 SS-Ne combinations, 201 

resulting in 12 tested conditions (Figure 1A). Underlying and simulated landscapes were 202 

converted into population-scale recombination rates (⍴=4Ner), and each underlying, simulated 203 

and inferred maps were smoothed in 500bp (i.e. underlying landscape resolution) and 2,500bp 204 

windows (i.e. a resolution-level better suited to the SNP density in our low-Ne simulations). 205 

The 10 simulated and inferred replicates of each condition were averaged to perform 206 

comparisons between mean landscapes. Overall, local recombination rates tended to be 207 

overestimated by LDhelmet. but this was especially observed when the local ρ was either very 208 
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low (ρ < 10-4) or very high (ρ > 10-2) (Figure 2, Supplementary Figure S4). The mean inferred 209 

map lengths calculated across replicates varied substantially among tested conditions (0.017-210 

0.125 M), reaching up to 6 times the length of simulated maps when Ne, SS and BP were low 211 

(i.e. Ne = 25,000, SS = 10, BP = 5, 10). In contrast, when Ne, SS and BP were high (Ne = 212 

250,000, SS = 20, BP = 50) the inferred map lengths were closer to the expected value of 213 

0.02 M (Supplementary Figure S2). A BP value of 50 produced very smooth recombination 214 

maps when Ne was low, which did not capture local-scale variation in recombination rate. By 215 

contrast, maps inferred with BP=5 or BP=10 were visually similar and better reflected the local-216 

scale variation of the underlying landscapes (Supplementary Figure S5). Spearman 217 

correlation coefficient between the mean simulated and inferred landscapes was lower when 218 

Ne and SS were small, with a conspicuous effect of Ne on this measure (Figure 3A). Replicate 219 

runs of LDhelmet showed a strong consistency, as revealed by elevated correlations among 220 

the 10 replicate landscapes inferred from the same simulated landscape, whatever the 221 

condition being tested  (Spearman’s rho > 0.89, Figure 3B).  222 

Recombination hotspots of the underlying, simulated and inferred landscapes were 223 

called using three different threshold values commonly used in the literature (i.e. local 224 

recombination rate at least 2.5, 5 or 10 times higher than the background rate). True/False 225 

positives/negatives rates and discovery rates (TPR, FPR, TDR, FDR, TNR, FNR) were 226 

computed under each tested condition. The hotspot detection threshold ratio of 10 between 227 

the focal and flanking recombination rates appeared too stringent and yielded a very small 228 

number of called hotpots (Supplementary Figure S6). Using a less conservative threshold ratio 229 

of 5, we detected 4 to 8 hotspots per Mb in the simulated landscapes, and 5 to 20 per Mb in 230 

the inferred landscapes. These numbers reached 40-50 and 20-50 per Mb, respectively, when 231 

a threshold of 2.5 was used. Irrespective of the chosen threshold, the number of inferred 232 

hotspots tended to be overestimated, especially when Ne was small, and to a lesser extent 233 

when SS was small (Supplementary Figure S6). The sensitivity (or TPR) of LDHelmet was 234 

medium to high, since depending on conditions, between 50% and 100% of the simulated 235 

hotpots were inferred as such. TPR was significantly higher for large Ne and SS, with a more 236 

pronounced effect when the detection threshold was set to 2.5 (Figure 4A, Supplementary 237 

Figure S7A). The specificity was reasonably high under the best conditions/settings, but 238 

dropped dramatically when Ne and/or SS were low, especially for a threshold ratio of 5. In the 239 

worst cases, 80% of the inferred hotspots corresponded to non-hotspot windows in the 240 

simulated maps (FDR, FPR, Figure 4B, Supplementary Figure S7B and C).  241 

 242 
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 243 
Figure 2. Quality assessment of local recombination rates estimated by LDhelmet, averaged 244 
within 2.5kb windows across 10 replicates. The x axis shows the recombination rates of the 245 
mean simulated landscapes and the y axis the recombination rates of the mean inferred 246 
landscapes, both on a logarithmic scale. Each blue point corresponds to a local 2.5kb-window 247 
average calculated across 10 replicate populations obtained under identical simulation 248 
parameters. A) Ne = 25,000, SS = 10, BP = 5. B) Ne = 25,000, SS = 20, BP = 5. C) Ne = 249 
250,000, SS = 10, BP = 5. D) Ne = 250,000, SS = 20, BP = 5. 250 
 251 

 252 
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 253 
Figure 3. Correlations between simulated and inferred landscapes (A), and between 254 
replicates of inferred landscapes (B), for each of the 12 tested conditions. The sample size is 255 
shown on the x axis (i.e. SS=10 or 20), the Ne parameter is indicated by colour (i.e. 25,000 or 256 
250,000) and the LDHelmet BP values  correspond to the different panels (i.e. BP=5, 10 or 257 
50). A) Spearman correlation coefficients between the mean simulated and the mean inferred 258 
landscape calculated across the 10 replicate populations originating from each of the five 259 
different underlying landscapes (i.e. using simulation framework of Figure 1A). B) Mean 260 
Spearman correlation coefficients calculated between pairwise comparisons among the ten 261 
replicates of inferred landscapes, from simulated populations sharing the same underlying 262 
landscape (i.e. using simulation framework of Figure 1B). 263 
 264 

Control analysis 265 

 No significant difference in the correlation between simulated and inferred landscapes 266 

was found between the first half of the chromosome with a mean r of 1 cM/Mb (referred to as 267 

the <cold= region) and the last half with a mean r of 3 cM/Mb (the <hot= region). This was also 268 

true for the TPR and the FDR, whatever the hotspot detection threshold used (i.e. 2.5 or 5) 269 

(Student test, p > 0.05).  270 

 To account for the tendency of LDhelmet to overestimate large recombination rates, 271 
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we compared various hotspot detection thresholds applied to the inferred landscapes, for a 272 

given definition of what a true hotspot is in the simulated landscape. We aimed to evaluate 273 

how these relative definitions can improve the sensitivity (FPR) of hotspot detection while 274 

minimising the proportion of type I errors among called hotspots (FDR). When assuming that 275 

real hotspots had a 2.5 increased recombination rate compared to their flanking regions in the 276 

simulated landscape, the TPR was generally higher if a threshold of 5 was used for the inferred 277 

landscape instead of a threshold of 10 (Supplementary Figure S8A), but lower than when 278 

using the same threshold of 2.5. The FDR was in turn reduced when using thresholds of 5 and 279 

10 as compared to 2.5 (Supplementary Figure S8B). We note, however, that the low FDR 280 

obtained for the 2.5/10 combination was due to a very low number of inferred hotspots when 281 

using a very conservative detection threshold. When the real hotspot threshold was assumed 282 

to be 5 in the simulated landscape, using a detection threshold of 10 did not improve the TPR 283 

and FDR (Student test, p < 0.05). Overall, these results suggest that, regardless of the actual 284 

relative recombination rate of real hotspots compared to their background (e.g., 2.5- or 5-fold 285 

higher), the detection threshold of 5 that is often used in the literature offers a good 286 

compromise between sensitivity and FDR. 287 

 288 

Differences between populations with different versus identical 289 

underlying recombination landscapes 290 

 As expected for a comparison between two populations with different underlying 291 

recombination landscapes, the mean linear correlation (R² coefficient) between inferred 292 

landscapes originating from different underlying landscapes was low, between 0.012 and 293 

0.084, and similar to the R² between simulated landscapes (0.012-0.017) (Table 1, 294 

Supplementary Table S2). A low percentage of 1 to 10% of real hotspots were shared by 295 

chance between distinct underlying landscapes, depending on the hotspot definition ratio. 296 

Roughly similar proportions of shared hotspots were found between inferred landscapes 297 

originating from different underlying landscapes, although these proportions were slightly 298 

overestimated for low Ne, SS and BP (Table 1, Supplementary Table S2). A minority of the 299 

shared inferred hotspots were TP when Ne = 25,000 (10-40%). This proportion increased when 300 

Ne was large, while not always reaching very high values, depending on conditions (25-100%). 301 

Therefore, a non-zero fraction of truly shared hotspots is expected to be found between 302 

species with different biological recombination landscapes.   303 
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 304 

Figure 4. Hotspot detection from inferred landscapes for the four combinations of simulation 305 
parameters, and two hotspots detection thresholds as shown by colours (i.e. 2.5 and 5). The 306 
sample size parameter is shown on the x axis (i.e. 10 or 20), the left panel corresponds to 307 
conditions where Ne = 25,000, and the right  panel to conditions where Ne = 250,000. Only 308 
conditions where BP = 5 are shown. A) True positive rate (sensitivity). B) False discovery rate. 309 
 310 

Then we compared simulated populations originating from an identical underlying 311 

landscape to check the ability of LDhelmet to recover similar recombination rates between 312 

populations with independent coalescent histories. The correlations between simulated 313 

landscapes were generally high for both low (R²>0.7) and large Ne (R²>0.9) conditions, but the 314 

correlations between inferred landscapes were much lower, with R² < 0.3 and <0.75 for Ne = 315 

25,000 and 250,000, respectively (Table 1). The proportion of shared hotspots followed the 316 

same trend: it was high between simulated landscapes (70 - 90%) and much lower between 317 

inferred landscapes - below 30% in the worst cases (Table 1). Thus, one can expect LDhelmet 318 

to detect a moderate to low fraction of shared hotpots even between species truly sharing a 319 

common recombination landscape, depending on population size, sample size and hotpot 320 

definition.  321 
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 322 

Table 1. Percentages of shared hotspots from simulated and inferred landscapes between 323 
populations with either different or identical underlying recombination landscapes. R² and 324 
mean proportion of shared hotspots are indicated for each type of comparison, including 325 
pairwise comparisons among simulated (left) or inferred (right) landscapes originating from 326 
either different underlying landscapes (top, following simulation framework from Figure 1A), 327 
or from the same underlying landscape (down, following simulation framework from Figure 328 
1B). Only conditions where BP = 5 are shown. 329 
 330 

 331 
 332 
 333 

Influence of the μ/r ratio on hotspot detection 334 

 The influence of the mutation and recombination rates on the inference of 335 

recombination landscapes was assessed by generating two additional underlying landscapes 336 

but with a ten times higher (i.e. 20 cM/Mb) and lower (i.e. 0.2 cM/Mb) average recombination 337 

rate, and by producing coalescent simulations under varying mutation rates (i.e. 10-9, 10-8 338 

and 10-7). The μ/r ratio of these 6 new conditions thus equalled 0.1, 1 or 10. For all conditions, 339 

Spearman’s rank correlation between the mean simulated and the mean inferred landscapes 340 

was greater than 0.9, except when μ equalled 10-9 (Spearman’s ρ ≃0.7, Table 2). The mean 341 

pairwise Spearman’s correlation obtained among the 10 inferred replicates was ≃0.8, except 342 

when μ or r equalled 10-9 (≃0.5-0.6, Table 2). An increased μ/r ratio improved the detection 343 

of hotspots when r was fixed to 10-8, with a higher TPR (up to >80%) and a lower FDR (<5%) 344 

when μ increased (prop.test, p-value < 0.05 when the threshold is 2.5, Figure 5). The μ/r ratio 345 

did not affect the performances the same way when μ was fixed to 10-8: a μ/r ratio of 10 (r = 346 

10-9) yielded lower TPR (< 60%) and higher FDR (> 25%) than a ratio of 1 or 0.1, although 347 

these trends were not significant (prop.test, p-value > 0.05, Figure 5).   348 

 349 
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 350 
Figure 5. Influence of the μ/r ratio on hotspot detection. Colours correspond to different μ/r 351 
ratios, the left panels show conditions where r was fixed to 10-8, and right panels conditions 352 
where μ was fixed to 10-8. The horizontal panels correspond to the threshold used to detect 353 
hotspots. The x axis indicates the different μ or r values used in the simulations, and the y axis 354 
shows the true positive (A) and false discovery (B) rates. The asterisks show the significance 355 
level of the prop.test, with * indicating p-value<0.05, ** <0.01 and *** <0.001.  356 
 357 

 358 
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Table 2. Influence of the μ/r ratio on Spearman's correlation between mean simulated and 359 
mean inferred landscapes, as well as on mean pairwise Spearman's correlation between the 360 
10 inferred replicates, and on hotspot detection metrics. The true positive (sensitivity) and 361 
false discovery rates are indicated for the three hotspot detection thresholds tested (i.e. 2.5, 5 362 
and 10). 363 
 364 

 365 
 366 
 367 

Discussion  368 

 369 

Inferred LD-maps should be interpreted with caution 370 

 Inference methods based on linkage disequilibrium provide an attractive way to 371 

characterise genomic recombination landscapes from sequence data. As such, they promise 372 

to become increasingly popular in empirical studies of eukaryotes. However, their ability to 373 

accurately reproduce real recombination landscapes has not been specifically evaluated. It 374 

should be recalled, however, that LD-based recombination maps are inferences, not 375 

observations; biases and uncertainty must be quantified and taken into account when it comes 376 

to interpreting the results. Here, we modelled the biological characteristics of a particularly 377 

well-documented recombination landscape, that of humans, as a basis for assessing the 378 

impact of methodological and species-specific evolutionary parameters on the performance of 379 

the LDhelmet method. Our results send a message of caution regarding the reliability of 380 

reconstructed recombination maps and hotspot location.  381 

 Indeed we show that the recombination landscapes inferred with LDhelmet differ from 382 

real landscapes, sometimes substantially, with Spearman’s rank correlation between real and 383 

inferred 2.5 kb windows sometimes as low as ~ 0.7 (Figure 3A). Hotspot detection is a 384 

particularly tricky and error-prone task: while up to 85% of true hotspots can be detected in 385 

the most favourable situations, the FDR ranged from 19% to 82% (Figure 4) according to the 386 

type of data and parameters used, meaning that in many cases a majority of the detected 387 

hotspots are incorrect calls. These discrepancies lead to a reduction in the apparent overlap 388 

in hotspot location between species/populations with identical recombination landscapes, 389 

while in turn inflating apparent hotspot sharing in populations with divergent landscapes (Table 390 
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1, Table S2). If neglected, these effects might mislead biological interpretations regarding the 391 

evolutionary conservation of recombination maps. 392 

In a study of the short time-scale dynamics of recombination landscapes based on 393 

LDhelmet, Shanfelter et al. (2019) found only 15% of shared hotspots between two recently-394 

diverged populations of threespine stickleback. A greater overlap in hotspot location was a 395 

priori expected given that this species lacks a functional PRDM9 protein, which is responsible 396 

for the rapid turnover of recombination landscapes in mammals (Axelsson et al. 2012; Paigen 397 

and Petkov, 2018). The authors suggested that a new mechanism of recombination hotspot 398 

regulation, different from the two already described in the literature, might be at work in this 399 

teleost species. In the light of our results, however, one cannot exclude that the strong 400 

divergence between the two reconstructed landscapes is due to a lack of power of the method 401 

in the first place. While the sample size of both fish populations was at least 20 individuals, θ 402 

was about 0.002, similar to our simulated conditions with a low Ne. Under these conditions, a 403 

high FDR and a low proportion of shared hotspots can be expected even if the true underlying 404 

maps are identical (Figure 4, Table 1).  405 

 It should be recalled that real data sets typically carry less signal and more noise than 406 

simulated data sets, meaning that our assessment of the reliability of LDhelmet might be an 407 

overoptimistic one. In particular, our data sets are immune from sequencing errors, mapping 408 

errors, and, crucially, phasing errors, all of which presumably make the problem of 409 

recombination map inference an even harder one. 410 

 411 

Guidelines for population-based inference of recombination maps 412 

Our study revealed that whatever the parameters used, the inference of recombination 413 

rates by LDhelmet is more reliable for species with large as compared to small effective 414 

population size (Figure 2, 3, 4). This might be expected since long-term Ne determines the 415 

amount of nucleotide diversity (θ=4Neμ, Watterson, 1975), so that a higher Ne results in a 416 

higher SNPs density and a finer scale characterization of the recombination rate variation 417 

along the genome. Moreover, a higher effective size greatly corrects the general tendency of 418 

LDhelmet to overestimate the ⍴ value, especially for low and high recombination rates (Figure 419 

2, Supplementary Figure S5 ; Booker et al. 2017; Singhal et al. 2015). Thus, when studying 420 

species with varying effective population sizes, it is recommended to select populations with 421 

the largest Ne, for which genetic diversity is greater. The question is then: how to obtain a 422 

good-quality recombination map when dealing with low Ne species? The sampling effort also 423 

determines, to a lesser extent, the polymorphism level of the dataset (Supplementary Figure 424 

S3), improving the accuracy of the inference (Figure 3, 4). A sample size of 20 is 425 
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recommended based on our simulations. Moreover, as previously mentioned  (Chan et al. 426 

2012; Singhal et al. 2015), the block penalty parameter of LDhelmet, which determines the 427 

resolution level of the inferred landscape, also influences the length of the inferred map (i.e. a 428 

higher BP tends to mitigate the tendency of LDhelmet to overestimate the map length) and 429 

the number of detected hotspots (Supplementary Figure S2, S6). Therefore, a small BP, that 430 

allows more fine-scale changes in the inferred ⍴ value, should be used to detect recombination 431 

hotspots. The ability of LDhelmet to faithfully reflect the real recombination landscapes is of 432 

great importance when it comes to detecting recombination hotspots. To this purpose, the 433 

threshold used to decide which region is defined as a <hotspot= is a key parameter that 434 

determines the level of detection stringency. If the chosen value is not appropriate, LDhelmet 435 

will detect false positives while also missing true hotspots (Figure 4, Supplementary Figure 436 

S7). This threshold should thus be adapted to the species studied, using a less stringent 437 

threshold in species with lower genome-wide average recombination rate.  438 

    Other intrinsic biological variables influence the ability to produce a faithful recombination 439 

map, such as the μ/r ratio, which in part determines the power to measure rho at a fine-scale. 440 

The among-species variations in genome-average recombination rate r is well documented, 441 

ranging from 0.01 to  100 cM/Mb in animals and plants, with vertebrate taxa displaying an 442 

average r around 1 cM/Mb (Stapley et al. 2017). As previously mentioned, high and low 443 

recombination rates tend to be overestimated by LDhelmet, thus the average r of the studied 444 

species is obviously a key parameter to account for. The mutation rate μ also has a key impact 445 

on the performance of LDhelmet, since ancestral recombination events can only be detected 446 

if properly tagged by flanking mutations. The variation in μ across taxa, and consequently the 447 

ratio of μ/r, are much less well known than the variation in r. This ratio, which does not depend 448 

on the effective size of the population, is about 1 in humans, which means that two 449 

recombination events are separated by one mutation on average. A ratio in favour of mutations 450 

(μ/r > 1) will improve the signal, increasing the TP rate and reducing the FD rate (Figure 5, 451 

Table 2). But ultimately the performance of LDhelmet is conditioned by r, as low r values 452 

provide less power to detect the recombination events, even with μ/r = 10. Thus, the ratio of 453 

the mutation and the recombination rate is crucial to build a non-biased recombination map. 454 

Therefore, when studying a species for which it appears that this ratio is not favourable, a high 455 

rate of false positive hotspots is expected in the inferred population recombination landscape 456 

(Figure 5, Table 2), making it difficult to compare maps between closely related species in a 457 

meaningful way.  458 

 459 
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Limitations  460 

The aim of our study was to determine the limits of LD-based methods in inferring 461 

biologically realistic recombination landscapes. For this purpose, we used the Pratto et al. 462 

(2014) ChIP-seq DMC1 data set to build human-like recombination landscapes including both 463 

broad and fine scale variation, reflected by the presence of numerous recombination hotspots 464 

of different intensities (Supplementary Figure S1; Myers et al. 2005, 2006; Pratto et al. 2014). 465 

However, the distribution of DSB might be more complex and variable than the true distribution 466 

of crossing overs. Thus, we may have generated landscapes too heterogeneous to be properly 467 

inferred by LDhelmet, reaching the limit of the method. Moreover, hotspots were placed 468 

randomly without taking into account the architecture of recombination hotspots along the 469 

genome: the proximity of genes and promoter-like regions, GC-rich regions, CpG islands, 470 

polymorphic regions, which can explain why a very intense and narrow hotspot is never found 471 

within a region of near zero recombination. Besides, we assume a  homogeneous 472 

polymorphism along the chromosomal segments, which is not true in animal genomes 473 

(Ellegren and Galtier, 2016). Consequently, the sensibility of LD-based methods with respect 474 

to this architecture was not tested. Moreover, our simulated data were perfectly phased and 475 

polarised, which can’t be the case when dealing with empirical data, and we didn’t simulate 476 

various demographic histories that can also bias LD-based methods (Dapper and Payseur, 477 

2018). Finally, we don’t know if these simulated landscapes are representative of the diversity 478 

of recombination landscapes that exist in the living world. 479 

Indeed, it is likely that the high complexity of the human recombination landscape is not 480 

a universal feature in the animal kingdom. Singhal et al. (2015) used LDhelmet for building the 481 

recombination map in two species of birds, the zebra finch and the long-tailed finch, that lack 482 

a full-length PRDM9 gene copy and diverged about 2.9 Myr. The sample size for both 483 

populations was about 20 individuals, and θ (~ 0.01) was about ten times higher than in apes 484 

or the threespine stickleback (Shanfelter et al. 2019), thus corresponding to our high Ne 485 

simulated conditions. Singhal et al. (2015) found 73% of shared hotspots between the two 486 

finch species, which is a higher rate of hotspot sharing than in any of the conditions we 487 

simulated. The median estimated recombination rate was of 0.14 cM/Mb in both species of 488 

finch, which is seven times lower than the average genomic recombination rate in humans 489 

(about 1 cM/Mb, Jensen-Seaman et al. 2004). Combined with the strong polymorphism in 490 

those species, we may suppose that birds possess less complex recombination landscapes 491 

than humans or compared to what we simulated, which might explain why LDhelmet recovered 492 

such a high percentage of shared hotspots in this study.   493 

 494 
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Conclusion 495 

In the past few years, we have seen a growing interest in recombination rate estimation 496 

in functional and evolutionary genomics. Indirect, LD-based approaches raise methodological 497 

challenges that are addressed by sophisticated methods such as LDhat or LDhelmet, the 498 

reliability of which is still poorly characterised. Our study allows us to guide the users of such 499 

methods depending on the characteristics of their species,  and calls for caution when it comes 500 

to interpreting fine scale differences in recombination rates between species. Extending this 501 

approach to a more diverse set of underlying recombination landscapes would help 502 

characterise further the reliability of these methods and their range of applicability across data 503 

sets and taxa.  504 

 505 

 506 

Materials and Methods 507 

Our approach separately considers three different layers of information that are 508 

involved in the study of recombination landscapes (Figure 1). The first layer that we call the 509 

<underlying= recombination landscape corresponds to the true biological distribution of 510 

recombination rate (r) across the considered genome. We here used experimental 511 

measurements from human studies to model and generate the <underlying= landscapes. The 512 

second layer, the population recombination landscape, describes the genomic location of 513 

recombination events that occurred during the history of the sample. We used coalescent 514 

simulations to produce these population recombination landscapes, thereafter called 515 

<simulated= landscapes. Simulated landscapes differ from the underlying landscape due to the 516 

stochasticity of the coalescent process, which is inversely proportional to Ne. The third layer, 517 

called the <inferred= landscape, corresponds to the output of LDhelmet, i.e. an estimate of the 518 

population recombination rate between adjacent SNPs. In total we generated five independent 519 

replicates of underlying landscapes, and for each of them 10 simulated and 10 inferred 520 

landscapes (Figure 1A).  521 

 522 

Underlying landscapes 523 

Underlying recombination landscapes were first generated to reproduce the features 524 

of the human recombination landscape. These include large-scale variation in the mean 525 

background recombination rate and fine-scale variation reflecting the presence of hotspots 526 

with varied intensities. Meiotic DSB are the major determinant of crossing over (CO) location 527 

along the genome (Li et al. 2019; Pratto et al. 2014). We used the high-resolution map of 528 

meiotic DSB obtained using ChIP-seq DMC1 in 5 non-related human genomes (Pratto et al. 529 
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2014) to define the genome-wide distribution of recombination rates in our simulations. The 530 

five individuals analysed in Pratto et al. (2014) carried different PRDM9 genotypes totalizing 531 

about 40,000 hotspots per individual, with distinct genotypes having different sets of DSB 532 

hotspots. For each individual, a gamma distribution was fitted to the empirical distribution of 533 

hotspot intensity measured by ChIP-seq DMC1 with the R package figdistribplus (Delignette-534 

Muller and Dutang, 2015). Extreme ChIP-Seq intensity values (>500) lying above the 97.5th 535 

quantile and likely representing technical artefacts were removed. Remaining values were 536 

rescaled to 0-100, so as to transform ChIP-Seq intensity values into quantities reflecting the 537 

range of recombination rates reported in cM/Mb across the human genome (McVean et al. 538 

2004; Myers et al. 2005). This conversion assumed a linear relation between DMC1 activity 539 

and CO frequency (Pratto et al. 2014). We then removed null values and replaced them with 540 

small but non-null values (0.001), so that the genome-wide mean recombination rate equaled 541 

a target average (e.g. 1 cM/Mb). A Gamma distribution was fitted to these transformed 542 

empirical values separately for each of the 5 individuals, before averaging shape and scale 543 

parameters across individuals. Targeted genome-wide average value was set to either 1 544 

cM/Mb or 3 cM/Mb, respectively reflecting the average centro-chromosomal and subtelomeric 545 

rates in humans. Underlying landscapes of 1 Mb length were built by randomly drawing 546 

independent recombination rate values from the fitted distribution and assigning these to non-547 

overlapping windows of 500pb. Values in the first 500kb were drawn from a distribution of 548 

mean 1 cM/Mb, while values in the last 500kb were drawn from a distribution of mean 3 cM/Mb. 549 

Our approach thus mimics both the large scale variation in recombination rate existing in 550 

humans (Buard and de Massy, 2007; Myers et al. 2005; Nachman, 2002; Pratto et al. 2014) 551 

and the nearly absence of recombination events outside hotspots (96% of CO occur in 552 

hotspots in mice, (Li et al. 2019; Pratto et al. 2014). In total, 5 underlying landscapes were 553 

generated (mean r = 2 cM/Mb), which can be considered as independent replicates driven 554 

from the same distribution (i.e. parts of different chromosomes of the same species, or 555 

orthologous chromosome part from closely related species).  556 

 557 

Simulated landscapes 558 

For each of the 5 underlying landscapes, 10 simulated landscapes were generated via 559 

coalescent simulations using the program MSPRIME (Kelleher and Lohse, 2020), varying the 560 

effective population size (Ne= 25,000 or 250,000) and the sample size (SS=10 or 20) and 561 

setting the mutation rate to μ = 10-8. These four combinations of simulation parameters were 562 

combined with three values of the Block Penalty (BP) parameter of the LDhelmet program 563 

(see below), resulting in twelve conditions tested (Supplementary Table S1). For each 564 

condition, ten population samples were simulated, to generate independent replicates of the 565 
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coalescent history. A VCF file was generated with MSPRIME for each simulated population 566 

(Figure 1), which contains the genotypes of variants that segregate in the population sample 567 

consisting of 2n sequences (with n being the number of samples) following the given 568 

underlying recombination landscape. 569 

 570 

Inferred landscapes 571 

Recombination rates were estimated for each of the simulated samples with LDhelmet 572 

(v1.10, (Chan et al. 2012), Figure 1). Briefly, LDhemet uses phased sequence data to infer 573 

the rho parameter locally, using likelihood computation betweens pairs of SNPs and then 574 

averaging over 50 consecutive variants to obtain a composite likelihood. The ⍴ parameter is 575 

inferred with a reversible-jump Markov Chain Monte Carlo algorithm using a step function 576 

applied to every window of 50 consecutive SNPs and determined by three parameters: the 577 

number of change-points, the locations of changes, and the recombination rate value of each 578 

constant fragment between two changes. We used VCFtools 0.1.17 (Danecek et al. 2011) and 579 

the vcf2fasta function of vcflib (https://github.com/vcflib/vcflib) to convert the SNP data 580 

obtained from MSPRIME simulations into the input format to LDhelmet, consisting of FASTA 581 

sequences of each individual haplotype. Ancestral states defined as the reference allele of 582 

each variant were also used as inputs. Each simulated replicate was analysed with LDhelmet 583 

using the following parameters. The haplotype configuration files were created with the 584 

find_conf function using the recommended window size of 50 SNPs. The likelihood look-up 585 

tables were created with the table_gen function using the recommended grid for the population 586 

recombination rate (ρ/pb) (i.e. ρ from 0 to 10 by increments of 0.1, then from 10 to 100 by 587 

increments of 1), and with the Watterson' θ = 4Neμ parameter corresponding to the condition 588 

analysed. The Padé files were created using 11 Padé coefficients as recommended. The 589 

Monte Carlo Markov chain was run for 1 million iterations with a burn-in period of 100,000 and 590 

a window size of 50 SNPs. An important parameter to LDhelmet is the block penalty (BP), 591 

which determines the number of change-points, and thus the variance of the inferred 592 

recombination rates at a fine scale (i.e. smaller block penalty generates more heterogeneous 593 

recombination landscapes). For each of the 4 combinations of Ne and SS simulated, the block 594 

penalty was set to either 5, 10 or 50, resulting in 12 combinations tested (Supplementary Table 595 

S1). Finally, the population recombination rates between each SNP pair were extracted with 596 

the post_to_text function, and were reported in ⍴=4Ner per pb unit.  597 

The reliability of the inferences was evaluated in various ways. For each of the 12 598 

conditions, the inferred, simulated and underlying landscapes were compared, in order to 599 

assess the ability of LDhelmet to reliably infer the true biological landscape (Figure 1A and 600 
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see below Hotspot detection and Statistical Analysis). In a second simulation framework aimed 601 

at evaluating the convergence of LDhelmet inferences across replicate runs, LDhelmet was 602 

run 10 times using the same parameters on each of two independently simulated VCF files 603 

from populations sharing the same underlying landscape (Figure 1B). Finally, for each of the 604 

twelve tested conditions, the inferred recombination landscapes of these two populations were 605 

compared in order to assess the reproducibility of the LDhelmet inference, i.e., the expected 606 

variance between inferred maps in the absence of underlying biological variation (Figure 1B). 607 

 608 

Variation in the μ/r ratio  609 

 To explore the influence of variation in mutation and recombination rates on the 610 

inference of recombination maps, two additional underlying landscapes were generated using 611 

the same procedure, this time targeting a ten times higher (i.e. 20 cM/Mb) or ten times lower 612 

(0.2 cM/Mb) mean recombination rate. Then, using one of the 5 underlying landscapes (r ∼ 613 

10-8 M/pb) and the 2 newly generated landscapes with mean r = 10-7 and 10-9 M/pb, 614 

respectively, sets of simulations were run with a μ/r ratio of 0.1, 1 and 10. This was achieved 615 

by fixing μ to either 10-9, 10-8 or 10-7, while keeping a fixed Ne = 100,000 and SS = 20 (Table 616 

2). For each of the 6 tested combinations of μ and r, 10 populations were simulated. These 617 

simulated landscapes were inferred with LDhelmet, using a block penalty of 5.  618 

 619 

Hotspot detection 620 

Underlying and simulated landscapes were first converted into population 621 

recombination rate landscapes by scaling them by 4Ne. Underlying, simulated and inferred 622 

landscapes were then smoothed at a 500 bp and 2,500 bp resolution using the Python 623 

package scipy.stats. The former corresponds to the underlying landscape resolution, and the 624 

latter to a trade off between the density of segregating sites and the resolution often used in 625 

the litterature. For each underlying landscape and each of the 12 tested conditions, a mean 626 

simulated landscape and a mean inferred landscape were generated by averaging 627 

recombination rates across replicates.  628 

Recombination hotspots of the underlying, simulated and inferred landscapes were 629 

called by comparing local vs surrounding recombination rates at each genomic window. A 630 

hotspot was defined as a window of 2.5 kb with an average recombination rate either 2.5, 5 or 631 

10 times higher than the 50kb flanking regions (excluding the focal window). Hotspot locations 632 

were compared among landscapes using the same threshold values (i.e. 2.5/2.5, 5/5, or 633 

10/10), except for three combinations in which lower thresholds were used for simulated 634 

compared to inferred landscapes (i.e. conditions 2.5/5, 2.5/10 and 5/10).   635 

 636 
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Statistical analyses 637 

Statistical analyses were run with R 4.0.3. The length of underlying, simulated and 638 

inferred maps (L) was calculated at the 2.5 kb resolution using the formula:  639 � = ∑(� × ���)/4��, 640 

with ρ the population-scaled recombination rate, win the window size resolution used to 641 

smooth the maps in bp, and Ne the effective size of the simulated population. Several indices 642 

of the sensitivity, specificity, reliability, and repeatability of LDhelmet were computed, using 643 

the mean simulated and inferred landscapes from each of the 12 tested conditions. For each 644 

condition, Spearman’s rank correlation coefficient was calculated between the underlying and 645 

the corresponding simulated landscapes, between the simulated and inferred landscapes, and 646 

pairwise Spearman’s coefficients among the 10 replicates inferred from the two simulated 647 

populations sharing the same underlying landscape. True/false positive rates (TPR = 648 

TP/(TP+FN) ; FPR = FP/(FP+TN)), true/false negative rates (TNR = TN/(TN+FP) ; FNR = 649 

FN/(FN/(TP+FN)), and true/false discovery rates (TDR = TP/(TP+FP) ; FDR = FP/(TP+FP)) 650 

were calculated by comparing the simulated and inferred landscapes. The mean pairwise 651 

linear correlation (R²) and the proportion of shared hotspots was calculated between the 5 652 

underlying landscapes, and for each condition and for the three threshold values tested (i.e. 653 

2.5, 5 and 10) between the simulated and inferred landscapes from the 5 different underlying 654 

landscapes, as well as between the two populations from the same underlying landscape.  655 

The statistical analyses were performed using home-made R scripts available upon 656 

request.  657 

 658 
 659 

Data availability 660 
 The Singularity container recipe built to run the simulations is available at: 661 

https://github.com/PA-GAGNAIRE/Singularity-Recipes/tree/master/HotRec-Recipes. This 662 

recipe contains the installation command lines of the required programs, the scripts used for 663 

the simulations, and the five underlying landscapes used in our study.  664 
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Supplementary Figures 928 

 929 
Supplementary Table S1. The 4 combinations of coalescent simulation parameters (Ne and 930 
SS) in combination with three values of the block penalty parameter to LDhelmet (BP), 931 
resulting in a total of 12 tested conditions in our analysis. 932 
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 936 
Supplementary Figure S1. The 5 underlying recombination landscapes (represented in units 937 
of cM/Mb (y-axis) along a chromosomal region of 1Mb (x axis)) generated using human ChIP-938 
seq data from Pratto et al. (2014). 939 
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 942 
Supplementary Figure S2. Underlying, simulated and inferred map length, analysed at a 2.5 943 
kb resolution. 944 
 945 
 946 

 947 
Supplementary Figure S3. SNP density according to coalescent simulation parameters (Ne 948 
and SS). The sample size (SS) parameter is shown with different colours (i.e. 10, blue or 20, 949 
red), and the effective population size (Ne) is shown on the x axis. The mutation parameter 950 
was μ = 10-8. 951 
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 952 
Supplementary Figure S4. Quality assessment of local recombination rates estimated by 953 
LDhelmet and averaged within 2.5kb windows across 10 replicates, for the 12 conditions 954 
tested in our analysis. The x axis shows the recombination rates of the mean simulated 955 
landscapes and the y axis the recombination rates of the mean inferred landscapes, both on 956 
a logarithmic scale. Each blue point corresponds to a local 2.5kb-window average calculated 957 
across 10 replicate populations obtained under identical simulation parameters. A) Ne = 958 
25,000, SS = 10, BP = 5. B) Ne = 25,000, SS = 10, BP = 10. C) Ne = 25,000, SS = 10, BP = 959 
50. D) Ne = 25,000, SS = 20, BP = 5. E) Ne = 25,000, SS = 20, BP = 10. F) Ne = 25,000, SS = 960 
20, BP = 50.G) Ne = 250,000, SS = 10, BP = 5. H) Ne = 250,000, SS = 10, BP = 10. I) Ne = 961 
250,000, SS = 10, BP = 50. J) Ne = 250,000, SS = 20, BP = 5. K) Ne = 250,000, SS = 20, BP 962 
= 10. L) Ne = 250,000, SS = 20, BP = 50. 963 
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 964 

 965 
 966 
Supplementary Figure S5. Influence of the block penalty value on the recombination 967 
landscapes inferred by LDhelmet. The map recombination rate variation (represented in units 968 
of⍴/bp) is shown in blue for one of the five underlying landscapes. The corresponding 969 
recombination landscape inferred with a BP = 5, 10 and 50 are shown in yellow, orange and 970 
red respectively, for SS = 20 and Ne = 25,000 (A) and Ne = 250,000 (B). 971 
 972 
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 973 
Supplementary Figure S6. Mean number of hotspots detected from the simulated (A) and 974 
inferred (B) landscapes originating from the 5 different underlying landscapes. Results are 975 
represented for each of the 12 conditions tested, and for three hotspots detection threshold 976 
as shown by colours (i.e. 2.5, 5 and 10). The sample size parameter is shown on the x axis 977 
(i.e. 10 or 20), the upper panels correspond to conditions where Ne = 25,000, the lower  panels 978 
correspond to conditions where Ne = 250,000, and the BP parameter values correspond to the 979 
vertical panels (i.e. from left to right : 5, 10 and 50). A) Mean number of simulated hotspots. 980 
B) Mean number of inferred hotspots. 981 
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 982 
Supplementary Figure S7. Hotspot detection from the 5 mean inferred landscapes 983 
originating from the 5 different underlying landscapes. Results are represented for each of the 984 
12 conditions tested, and for three hotspot detection thresholds as shown by colours (i.e. 2.5, 985 
5 and 10). The sample size parameter is shown on the x axis (i.e. 10 or 20), the upper panels 986 
correspond to conditions where Ne = 25,000, the lower  panels correspond to conditions where 987 
Ne = 250,000, and the BP parameter values correspond to the vertical panels (i.e. from left to 988 
right : 5, 10 and 50). A) True positive rate (sensitivity). B) False positive rate. C) False 989 
discovery rate. 990 
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 991 

 992 
Supplementary Figure S8. Hotspot detection from the 5 mean inferred landscapes 993 
originating from 5 different underlying landscapes, for each of the 12 conditions tested (on the 994 
y axis), and for three combinations of <real hotspots definition / inferred hotspot detection 995 
threshold= applied to the mean simulated and the mean inferred landscape, respectively ( i.e. 996 
2.5/5, 5/10, 2.5/10, as shown by colours). A) True positive rate (sensitivity). B) False discovery 997 
rate. 998 
 999 
 1000 
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Supplementary Table S2. Percentages of shared hotspots from simulated and inferred 1001 
landscapes between populations with either different or identical underlying recombination 1002 
landscapes. R² and mean proportion of shared hotspots are indicated for each type of 1003 
comparison, including pairwise comparisons among simulated (left) or inferred (right) 1004 
landscapes originating from either different underlying landscapes (top, following simulation 1005 
framework from Figure 1A), or from the same underlying landscape (down, following 1006 
simulation framework from Figure 1B).  1007 

 1008 
 1009 

 1010 
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