

1 **Performance and limitations of linkage-disequilibrium-based 2 methods for inferring the genomic landscape of recombination and 3 detecting hotspots: a simulation study**

4

5 Marie Raynaud^{1,*}, Pierre-Alexandre Gagnaire¹, Nicolas Galtier¹

6 ¹ISEM, Univ Montpellier, CNRS, EPHE, IRD, Montpellier, France

7 *To whom correspondence should be addressed: marie.raynaud@umontpellier.fr

8

9 **Abstract**

10 Knowledge of recombination rate variation along the genome provides important
11 insights into genome and phenotypic evolution. Population genomic approaches offer an
12 attractive way to infer the population-scaled recombination rate $\rho=4N_e r$ using the linkage
13 disequilibrium information contained in DNA sequence polymorphism data. Such methods
14 have been used on a broad range of plant and animal species to build genome-wide
15 recombination maps. However, the reliability of these inferences has only been assessed
16 under a restrictive set of conditions. Here, we evaluated the ability of one of the most widely
17 used coalescent-based approaches, *LDhelmet*, to infer a biologically-realistic genomic
18 landscape of recombination. Using simulations, we specifically assessed the impact of
19 empirical (sample size, block penalty) and evolutionary parameters (effective population size
20 (N_e), mutation and recombination rates) on inferred map quality. We report reasonably good
21 correlations between simulated and inferred landscapes, but point to limitations when it comes
22 to detecting recombination hotspots. False positives and false negatives considerably
23 confound fine-scale patterns of inferred recombination under a wide array of conditions,
24 particularly when N_e is small and the mutation/recombination rate ratio is low, to the extent
25 that maps inferred from populations sharing the same recombination landscape appear
26 uncorrelated. We thus address a message of caution to users of such approaches, while also
27 recognizing their importance and potential, particularly in species with less complex
28 landscapes for which LD-based approaches should provide high quality recombination maps.

29

30 **Key words**

31 Population-scaled recombination rate, *LDhelmet*, simulations, linkage disequilibrium,
32 recombination landscapes, recombination hotspots

33

34 Introduction

35 Recombination is highly conserved among sexually reproducing species of
36 eukaryotes. This fundamental mechanism of meiosis is essential for the proper segregation of
37 homologous chromosomes during the reductional division. Recombination involves crossing
38 over events (CO) that play a crucial evolutionary role by allowing genetic mixing and
39 generating new combinations of alleles (Baudat and de Massy 2007; Cromie et al. 2001;
40 Capilla et al. 2016). Measuring the rate at which recombination occurs and the magnitude of
41 its variation along the genome has important implications for fundamental research in
42 molecular biology and evolution, but also for applied genomics such as genome-wide
43 association studies (GWAS) (Morris et al. 2013; Hunter et al. 2016). Several approaches have
44 been developed to reconstruct genome-wide recombination maps (reviewed in Peñalba and
45 Wolf 2020). Cytological methods, like ChIP-seq, target protein-DNA complexes directly
46 involved in the formation of double-strand breaks (DSB) and CO during meiosis (Pratto et al.
47 2014). Gamete typing methods analyse the meiotic products of a diploid individual (reviewed
48 in Carrington and Cullen 2004; Dréau et al. 2019; Sun et al. 2019). Methods based on pedigree
49 analysis reconstruct the gametic phase from patterns of allele inheritance in bi-parental
50 crosses (Lander and Green 1987; Kong et al. 2002; Kodama et al. 2014; Rastas 2017). All
51 these approaches have the advantage of providing direct estimates of the recombination rate.
52 However, by focusing on CO that occurred in a few individuals or families across one or a
53 couple of generations, they remain intrinsically limited in resolution due to the small number
54 of recombination events that occur per chromosome per generation (Clark et al. 2010; Peñalba
55 and Wolf, 2020).

56 Another type of approach uses genome sequence data from natural samples to take
57 advantage of the large number of recombination events that have occurred during the history
58 of the considered species/population. Instead of directly observing crossover products, these
59 methods detect the footprints left by historical recombination events on patterns of haplotype
60 segregation and linkage disequilibrium (LD) (reviewed in Stumpf and McVean 2003). The
61 recombination rate and its variation across the genome are inferred via coalescent-based
62 analysis of DNA sequence polymorphism data (Chan et al. 2012; Kamm et al. 2016; Li and
63 Stephens 2003; McVean et al. 2004; Spence and Song 2019). The resulting LD maps have
64 been widely used to evaluate the genomic impact of natural selection and admixture, and to
65 perform genome-wide association studies (GWAS) (e.g. Chan et al. 2012; The International
66 HapMap Consortium 2007). These approaches provide an accessible and attractive way of
67 describing recombination landscapes - *i.e.* the variation of recombination rates along the
68 genome - particularly in non-model taxa where direct methods are often difficult to implement

69 (Auton et al. 2012, 2013; Melamed-Bessudo et al. 2016; Shanfelter et al. 2019; Singhal et al.
70 2015; Shield et al. 2020).

71 Direct and indirect methods have revealed considerable variation in recombination rate
72 at different scales along the genome, particularly in vertebrates. At a large scale (of the
73 megabase order), recombination tends to be concentrated in subtelomeric regions compared
74 to centromeric and centro-chromosomal regions, a pattern shared among many species of
75 plants and animals (Auton et al. 2012; Capilla et al. 2016; Danguy des Déserts et al. 2021;
76 Haenel et al. 2018; Melamed-Bessudo et al. 2016). At a finer scale (of the kilobase order),
77 recombination events often cluster in small regions of about 2 kb, called recombination
78 hotspots (Choi and Henderson, 2015; Kim et al. 2007; Mancera et al. 2008; Myers et al. 2005;
79 Shanfelter et al. 2019; Singhal et al. 2015; Schield et al. 2020). Two distinct regulatory systems
80 of recombination hotspot location have been described to date, with major implications on the
81 evolutionary dynamics of recombination landscapes. In passerine birds (Singhal et al. 2015),
82 dogs (Auton et al. 2013; Axelsson et al. 2012) and some teleost fishes (Shanfelter et al. 2019;
83 Baker et al. 2017), recombination hotspots tend to be found in CpG-islands / promoter-like
84 regions, and are highly conserved between closely-related species (Singhal et al. 2015). In
85 contrast, in humans (Myers et al. 2005, 2010), apes (Auton et al. 2012 ; Great Ape Genome
86 Project 2016) and mice (Booker et al. 2017), hotspot location is directed by the PRDM9
87 protein, which binds specific DNA motifs and triggers the formation of DSBs (Baudat et al.
88 2010; Grey et al. 2018; Simon Myers et al. 2010; Oliver et al. 2009; Parvanov et al. 2010). In
89 these taxa, hotspots are mostly located away from genes (Auton et al. 2012; Baker et al.
90 2017), and show little or no conservation between closely related species (Myers et al. 2005,
91 2010; Auton et al. 2012; Booker et al. 2017) due to self-destruction by gene conversion and
92 rapid turnover of PRDM9 alleles (Coop and Myers 2007; Latrille et al. 2017; Lesecque et al.
93 2014).

94 Population-based inference methods aim to infer the population recombination rate ρ
95 $= 4N_e r$, r being the per meiosis, per bp recombination rate and N_e the effective population size
96 (Stumpf and McVean, 2003). The ρ parameter reflects the density of population recombination
97 events that segregate in polymorphism data, integrated across time and lineages. Several
98 programs have been developed for reconstructing LD-maps (reviewed in Peñalba and Wolf,
99 2020); PHASE: Li and Stephens, 2003; LDhat: McVean et al. 2004; LDhelmet: Chan et al.
100 2012, LDpop: Kamm et al. 2016; pyrho: Spence and Song, 2019), which use coalescent theory
101 based on the ancestral recombination graph (Griffiths et al. 1997; Arenas, 2013) to model and
102 explore the genealogies of the distinct genomic segments. The most popular family of LD-
103 based methods like LDhat (McVean et al. 2004) and its improved version LDhelmet (Chan et
104 al. 2012), implement a pairwise composite likelihood method under a Bayesian framework

105 using a reversible jump Markov Chain Monte Carlo (rjMCMC) algorithm. They have been used
106 for building fine scale LD-based maps in a broad range of animal taxa including humans
107 (McVean et al. 2004), dogs (Axelsson et al. 2012 ; Auton et al. 2013), fruitfly (Chan et al.
108 2012), finches (Singhal et al. 2015), bee (Wallberg et al. 2015), stickleback (Shanfelter et al.
109 2019), rattlesnakes (Schield et al. 2020). In some species, inferred LD-based maps have been
110 validated by assessing their correlation with recombination maps obtained using conventional
111 approaches, confirming their quality (Chan et al. 2012; McVean et al. 2004; Booker et al. 2017;
112 Shanfelter et al. 2019; Singhal et al. 2015). However, as genetic and LD-based maps greatly
113 differ in resolution (pedigree-based inference provide resolution of about 1 cM, while
114 population-based methods can infer recombination events at the kilobase scale, (Peñalba and
115 Wolf, 2020)), such comparisons do not provide qualitative information on the reliability of the
116 detected hotspots. Moreover, the heterogeneity of the data analysed in these papers (in terms
117 of taxonomy, genetic diversity, demography, sample size, and software parameters, among
118 other things) makes it difficult to appreciate the performance and the possible weaknesses of
119 LD-based methods. In fact, the reliability and conditions of application of LD-based methods
120 are still poorly understood and need to be deeply characterised, considering the growing
121 importance of these tools.

122 The power and sensitivity of LDhat and LDhelmet have been tested by simulations
123 aiming to evaluate the influence of switch error in haplotype phasing (Booker et al. 2017;
124 Singhal et al. 2015), the amount of polymorphism, and the intensity of recombination hotspots
125 (Singhal et al. 2015). These studies simulated simple recombination landscapes assuming
126 either homogeneous recombination rates or a few, well-defined hotspots contrasting with a
127 low-recombination background (Auton & McVean, 2007; Booker et al. 2017; Chan et al. 2012;
128 McVean et al. 2004; Shanfelter et al. 2019; Singhal et al. 2015; Schield et al. 2020). Real
129 recombination landscapes, however, are usually more complex and involve a continuous
130 distribution of recombination hotspot density and intensity across genomic regions. This
131 complexity has not been taken into account so far in studies assessing the performance of
132 LD-map reconstruction methods. We thus lack a comprehensive picture of the ability of these
133 methods to properly recover the biological characteristics of real recombination landscapes.
134 In particular, the proportion of the inferred recombination hotspots that are correct, and the
135 proportion of true hotspots that are missed, have not yet been quantified under a biologically
136 realistic scenario. These are crucial quantities to properly interpret and use reconstructed LD-
137 maps in genomic research.

138 In this paper, we specifically assessed the performance of the LDhelmet program to
139 detect hotspots while assuming a biologically realistic recombination landscape. We evaluated
140 the influence of methodological parameters including sample size and block penalty, and

141 species-specific parameters such as the effective population size, mutation rate, and
142 recombination rate. We also considered different definitions of a recombination hotspot
143 relative to its background recombination rate, with the aim of improving the sensitivity of the
144 analysis. We identified the conditions in which LD-based inferences can provide an accurate
145 mapping of hotspots, and the parameters that negatively affect the sensitivity and specificity
146 of their detection within biologically realistic recombination landscapes.

147

148

149 **Results**

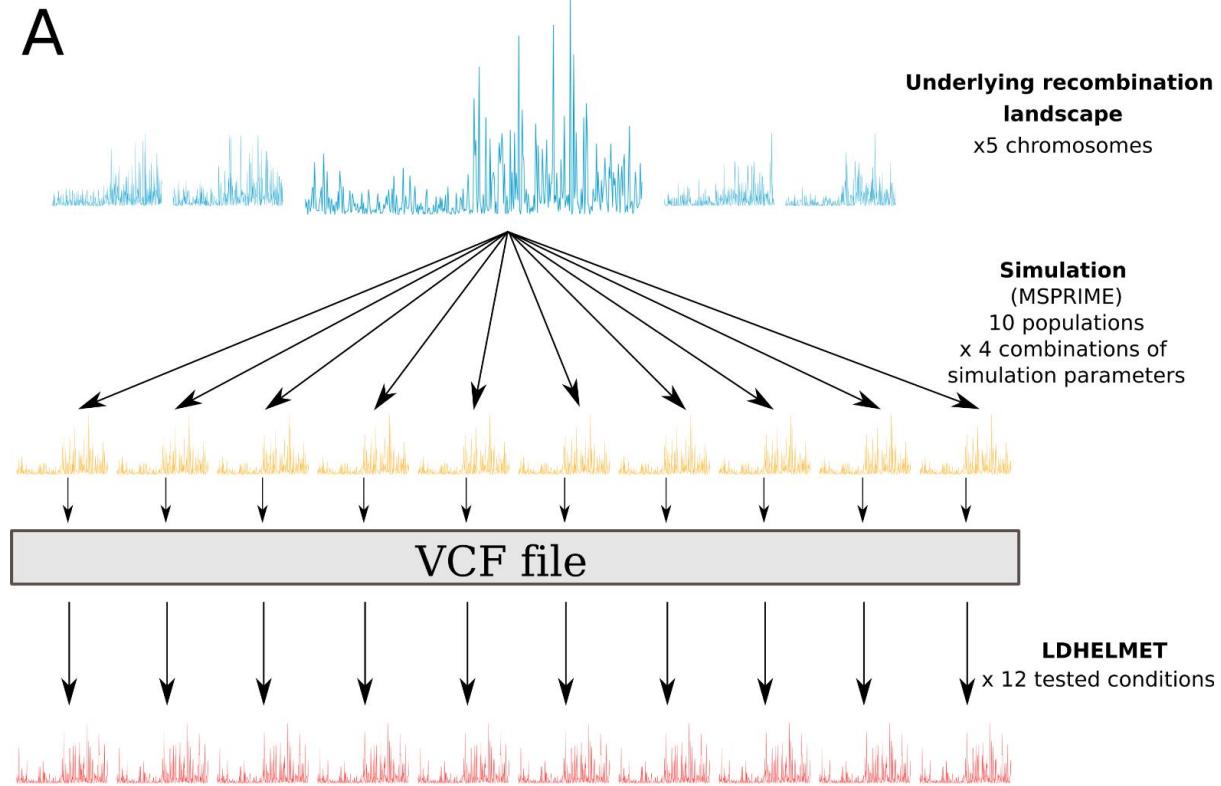
150

151 ***Recombination landscape modelling***

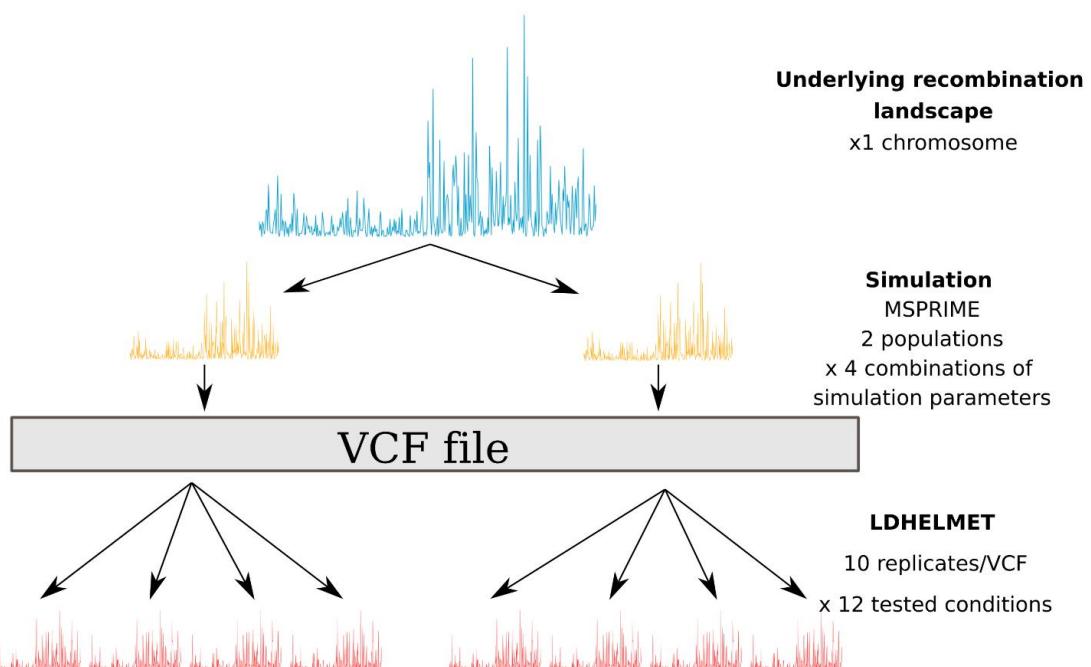
152 Five realistic, heterogeneous recombination landscapes (referred to as “underlying
153 landscapes” in this paper) of 1Mb length were built using the human genome high resolution
154 map of meiotic DSB from Pratto et al. (2014). In order to mimic both broad and fine scale
155 variation in the recombination rate parameter r , (Supplementary Figure S1) the first and
156 second half of each landscape were drawn from a gamma distribution of mean 1 cM/Mb and
157 3 cM/Mb, respectively, with parameters fitted from Pratto et al. (2014) (1-500,000bp:
158 shape=rate=0.1328; 500,001pb-1Mb: shape=0.1598, rate=0.0532). Accordingly, the 5
159 recombination landscapes generated (Figure 1A, Supplementary Figure S1) showed broad
160 scale differences in recombination peak intensity, with less elevated recombination peaks in
161 the first half compared with the second half of each chromosome. At a fine scale,
162 recombination was concentrated in numerous peaks resembling human recombination
163 hotspots, with about 85% of the recombination concentrated in 15% of the genome. The map
164 lengths in recombination units were about 0.02 Morgan (Supplementary Figure S2).

165

A



B



166

167 **Figure 1.** Simulation and inference protocols. **A)** In the first simulation framework, 5 different
168 recombination landscapes were generated based on human empirical data. These
169 5 landscapes can either be considered as parts of different chromosomes from the same
170 species, or as orthologous parts of chromosomes from different species. For each of the 5
171 underlying landscapes, 10 recombination landscapes were simulated with MSPrIME for 4
172 combinations of effective population size (Ne) and sample size (SS) parameters, generating

173 a VCF file for each simulated population. The VCF files were then used to infer the local
174 population recombination rates using LDhelmet with 3 alternative block penalty values (BP, a
175 key parameter to LDhelmet), representing a total of 12 tested conditions. **B)** In the second
176 simulation framework, only one of the 5 underlying landscapes was used to generate 2
177 simulated populations for each of the 4 combinations of simulation parameters, before running
178 LDhelmet 10 times in replicate for 3 different values of block penalty, representing a total of
179 12 tested conditions.

180

181 Recombination landscapes of simulated populations (hereafter called “simulated
182 landscapes”) were generated in 10 replicates for each underlying landscape, using coalescent
183 simulations with a mutation rate $\mu=10^{-8}$ and 4 combinations of sample sizes (SS=10 or 20)
184 and effective population sizes ($N_e=25,000$ or $250,000$) (Figure 1A). The simulated landscapes
185 were a little shorter than the underlying landscapes (about 0.015-0.018 Morgan), reflecting the
186 occasional occurrence of more than one recombination event between two adjacent SNPs
187 during the simulated coalescent histories (Supplementary Figure S2). They were also highly
188 correlated with the underlying landscapes for each combination of parameters (Spearman’s
189 rank correlation > 0.8 at 500bp resolution), showing that the stochasticity of the coalescent
190 process has not resulted in a substantial loss of information about the underlying landscape.
191 As expected from the $\theta=4N_e\mu$ values used in our simulations ($\theta = 0.001$ and 0.01 for $N_e =$
192 $25,000$ and $250,000$, respectively), the SNPs density of the large N_e populations was about
193 one order of magnitude higher than for smaller N_e populations (Supplementary Figure S3).

194

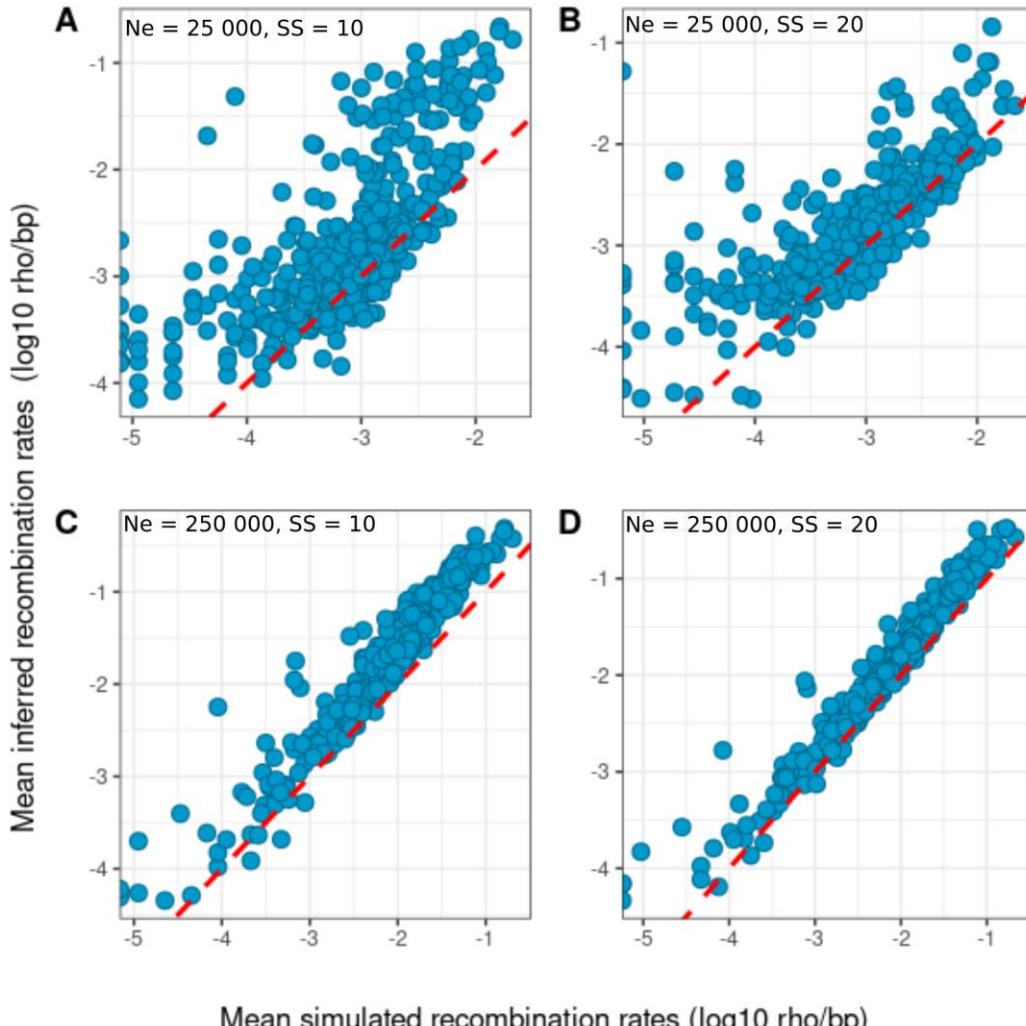
195 ***Demographic, species-specific and methodological parameters affect***
196 ***LDhelmet performance***

197 Population-scaled recombination rates (ρ) were inferred from the simulated
198 polymorphism datasets using the program LDhelmet (Chan et al. 2012) (referred to as
199 “inferred landscapes”). Three block penalty (BP) values (*i.e.* the degree of landscape
200 resolution), which determine the number of allowed changes in ρ value within windows of 50
201 consecutive SNPs were tested (BP=5, 10, or 50) for each of the 4 SS- N_e combinations,
202 resulting in 12 tested conditions (Figure 1A). Underlying and simulated landscapes were
203 converted into population-scale recombination rates ($\rho=4N_e\tau$), and each underlying, simulated
204 and inferred maps were smoothed in 500bp (*i.e.* underlying landscape resolution) and 2,500bp
205 windows (*i.e.* a resolution-level better suited to the SNP density in our low- N_e simulations).
206 The 10 simulated and inferred replicates of each condition were averaged to perform
207 comparisons between mean landscapes. Overall, local recombination rates tended to be
208 overestimated by LDhelmet. but this was especially observed when the local ρ was either very

209 low ($\rho < 10^{-4}$) or very high ($\rho > 10^{-2}$) (Figure 2, Supplementary Figure S4). The mean inferred
210 map lengths calculated across replicates varied substantially among tested conditions (0.017-
211 0.125 M), reaching up to 6 times the length of simulated maps when N_e , SS and BP were low
212 (i.e. $N_e = 25,000$, SS = 10, BP = 5, 10). In contrast, when N_e , SS and BP were high ($N_e =$
213 250,000, SS = 20, BP = 50) the inferred map lengths were closer to the expected value of
214 0.02 M (Supplementary Figure S2). A BP value of 50 produced very smooth recombination
215 maps when N_e was low, which did not capture local-scale variation in recombination rate. By
216 contrast, maps inferred with BP=5 or BP=10 were visually similar and better reflected the local-
217 scale variation of the underlying landscapes (Supplementary Figure S5). Spearman
218 correlation coefficient between the mean simulated and inferred landscapes was lower when
219 N_e and SS were small, with a conspicuous effect of N_e on this measure (Figure 3A). Replicate
220 runs of LDhelmet showed a strong consistency, as revealed by elevated correlations among
221 the 10 replicate landscapes inferred from the same simulated landscape, whatever the
222 condition being tested (Spearman's rho > 0.89, Figure 3B).

223 Recombination hotspots of the underlying, simulated and inferred landscapes were
224 called using three different threshold values commonly used in the literature (i.e. local
225 recombination rate at least 2.5, 5 or 10 times higher than the background rate). True/False
226 positives/negatives rates and discovery rates (TPR, FPR, TDR, FDR, TNR, FNR) were
227 computed under each tested condition. The hotspot detection threshold ratio of 10 between
228 the focal and flanking recombination rates appeared too stringent and yielded a very small
229 number of called hotspots (Supplementary Figure S6). Using a less conservative threshold ratio
230 of 5, we detected 4 to 8 hotspots per Mb in the simulated landscapes, and 5 to 20 per Mb in
231 the inferred landscapes. These numbers reached 40-50 and 20-50 per Mb, respectively, when
232 a threshold of 2.5 was used. Irrespective of the chosen threshold, the number of inferred
233 hotspots tended to be overestimated, especially when N_e was small, and to a lesser extent
234 when SS was small (Supplementary Figure S6). The sensitivity (or TPR) of LDhelmet was
235 medium to high, since depending on conditions, between 50% and 100% of the simulated
236 hotspots were inferred as such. TPR was significantly higher for large N_e and SS, with a more
237 pronounced effect when the detection threshold was set to 2.5 (Figure 4A, Supplementary
238 Figure S7A). The specificity was reasonably high under the best conditions/settings, but
239 dropped dramatically when N_e and/or SS were low, especially for a threshold ratio of 5. In the
240 worst cases, 80% of the inferred hotspots corresponded to non-hotspot windows in the
241 simulated maps (FDR, FPR, Figure 4B, Supplementary Figure S7B and C).

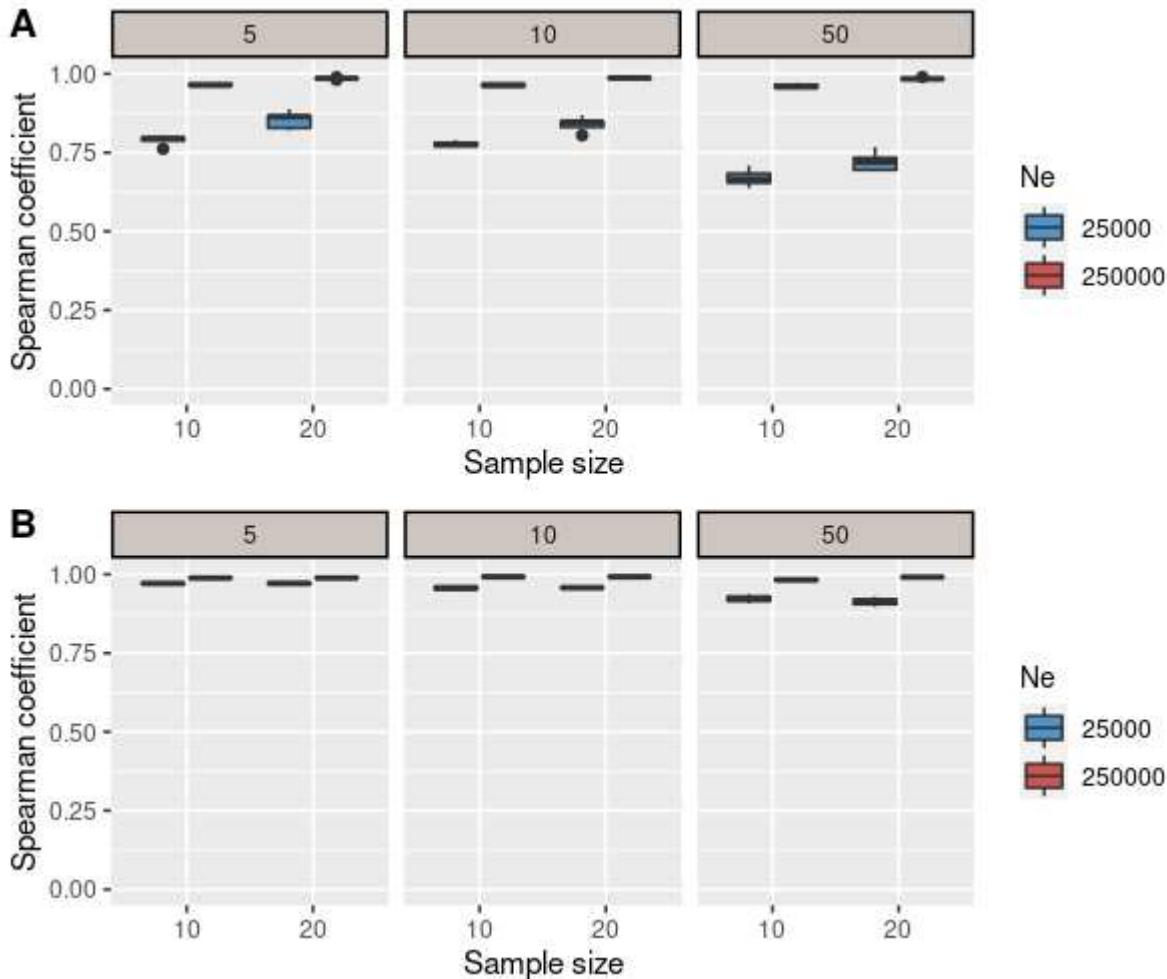
242



243
244
245
246
247
248
249
250
251
252

Mean simulated recombination rates (log10 rho/bp)

Figure 2. Quality assessment of local recombination rates estimated by LDhelmet, averaged within 2.5kb windows across 10 replicates. The x axis shows the recombination rates of the mean simulated landscapes and the y axis the recombination rates of the mean inferred landscapes, both on a logarithmic scale. Each blue point corresponds to a local 2.5kb-window average calculated across 10 replicate populations obtained under identical simulation parameters. **A)** $N_e = 25,000$, $SS = 10$, $BP = 5$. **B)** $N_e = 25,000$, $SS = 20$, $BP = 5$. **C)** $N_e = 250,000$, $SS = 10$, $BP = 5$. **D)** $N_e = 250,000$, $SS = 20$, $BP = 5$.



253

254 **Figure 3.** Correlations between simulated and inferred landscapes (A), and between
255 replicates of inferred landscapes (B), for each of the 12 tested conditions. The sample size is
256 shown on the x axis (i.e. SS=10 or 20), the N_e parameter is indicated by colour (i.e. 25,000 or
257 250,000) and the LDHelmet BP values correspond to the different panels (i.e. BP=5, 10 or
258 50). **A**) Spearman correlation coefficients between the mean simulated and the mean inferred
259 landscape calculated across the 10 replicate populations originating from each of the five
260 different underlying landscapes (i.e. using simulation framework of Figure 1A). **B**) Mean
261 Spearman correlation coefficients calculated between pairwise comparisons among the ten
262 replicates of inferred landscapes, from simulated populations sharing the same underlying
263 landscape (i.e. using simulation framework of Figure 1B).

264

265 **Control analysis**

266 No significant difference in the correlation between simulated and inferred landscapes
267 was found between the first half of the chromosome with a mean r of 1 cM/Mb (referred to as
268 the “cold” region) and the last half with a mean r of 3 cM/Mb (the “hot” region). This was also
269 true for the TPR and the FDR, whatever the hotspot detection threshold used (i.e. 2.5 or 5)
270 (Student test, $p > 0.05$).

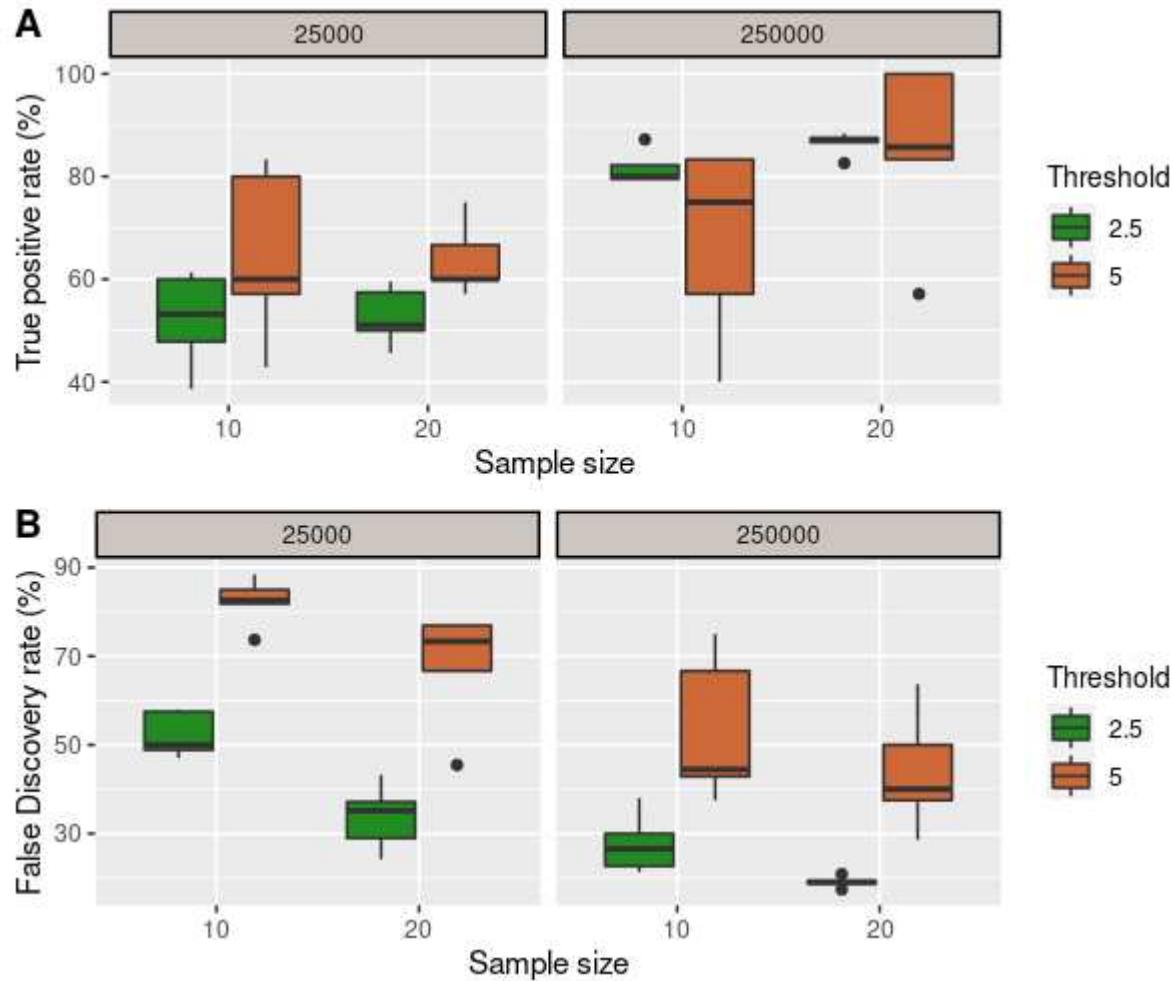
271 To account for the tendency of LDhelmet to overestimate large recombination rates,

272 we compared various hotspot detection thresholds applied to the inferred landscapes, for a
273 given definition of what a true hotspot is in the simulated landscape. We aimed to evaluate
274 how these relative definitions can improve the sensitivity (FPR) of hotspot detection while
275 minimising the proportion of type I errors among called hotspots (FDR). When assuming that
276 real hotspots had a 2.5 increased recombination rate compared to their flanking regions in the
277 simulated landscape, the TPR was generally higher if a threshold of 5 was used for the inferred
278 landscape instead of a threshold of 10 (Supplementary Figure S8A), but lower than when
279 using the same threshold of 2.5. The FDR was in turn reduced when using thresholds of 5 and
280 10 as compared to 2.5 (Supplementary Figure S8B). We note, however, that the low FDR
281 obtained for the 2.5/10 combination was due to a very low number of inferred hotspots when
282 using a very conservative detection threshold. When the real hotspot threshold was assumed
283 to be 5 in the simulated landscape, using a detection threshold of 10 did not improve the TPR
284 and FDR (Student test, $p < 0.05$). Overall, these results suggest that, regardless of the actual
285 relative recombination rate of real hotspots compared to their background (e.g., 2.5- or 5-fold
286 higher), the detection threshold of 5 that is often used in the literature offers a good
287 compromise between sensitivity and FDR.

288

289 ***Differences between populations with different versus identical 290 underlying recombination landscapes***

291 As expected for a comparison between two populations with different underlying
292 recombination landscapes, the mean linear correlation (R^2 coefficient) between inferred
293 landscapes originating from different underlying landscapes was low, between 0.012 and
294 0.084, and similar to the R^2 between simulated landscapes (0.012-0.017) (Table 1,
295 Supplementary Table S2). A low percentage of 1 to 10% of real hotspots were shared by
296 chance between distinct underlying landscapes, depending on the hotspot definition ratio.
297 Roughly similar proportions of shared hotspots were found between inferred landscapes
298 originating from different underlying landscapes, although these proportions were slightly
299 overestimated for low N_e , SS and BP (Table 1, Supplementary Table S2). A minority of the
300 shared inferred hotspots were TP when $N_e = 25,000$ (10-40%). This proportion increased when
301 N_e was large, while not always reaching very high values, depending on conditions (25-100%).
302 Therefore, a non-zero fraction of truly shared hotspots is expected to be found between
303 species with different biological recombination landscapes.



304

305 **Figure 4.** Hotspot detection from inferred landscapes for the four combinations of simulation
306 parameters, and two hotspots detection thresholds as shown by colours (i.e. 2.5 and 5). The
307 sample size parameter is shown on the x axis (i.e. 10 or 20), the left panel corresponds to
308 conditions where $N_e = 25,000$, and the right panel to conditions where $N_e = 250,000$. Only
309 conditions where $BP = 5$ are shown. **A)** True positive rate (sensitivity). **B)** False discovery rate.
310

311 Then we compared simulated populations originating from an identical underlying
312 landscape to check the ability of LDhelmet to recover similar recombination rates between
313 populations with independent coalescent histories. The correlations between simulated
314 landscapes were generally high for both low ($R^2 > 0.7$) and large N_e ($R^2 > 0.9$) conditions, but the
315 correlations between inferred landscapes were much lower, with $R^2 < 0.3$ and < 0.75 for $N_e =$
316 25,000 and 250,000, respectively (Table 1). The proportion of shared hotspots followed the
317 same trend: it was high between simulated landscapes (70 - 90%) and much lower between
318 inferred landscapes - below 30% in the worst cases (Table 1). Thus, one can expect LDhelmet
319 to detect a moderate to low fraction of shared hotspots even between species truly sharing a
320 common recombination landscape, depending on population size, sample size and hotspot
321 definition.

322

323 **Table 1.** Percentages of shared hotspots from simulated and inferred landscapes between
324 populations with either different or identical underlying recombination landscapes. R^2 and
325 mean proportion of shared hotspots are indicated for each type of comparison, including
326 pairwise comparisons among simulated (left) or inferred (right) landscapes originating from
327 either different underlying landscapes (top, following simulation framework from Figure 1A),
328 or from the same underlying landscape (down, following simulation framework from Figure
329 1B). Only conditions where $BP = 5$ are shown.
330

	$R^2 \log(\text{simuli}-\text{simulj})$	Mean proportion of shared simulated hotspots		Mean proportion of shared inferred hotspots	
		Threshold = 5	Threshold = 2.5	$R^2 \log(\text{inferi}-\text{inferj})$	Threshold = 5
Different underlying landscapes					
Ne = 25000 SS = 10 BP = 5	0.012	1.715	8.065	0.033	5.385
Ne = 25000 SS = 20 BP = 5	0.014	2.00	9.045	0.032	3.95
Ne = 250000 SS = 10 BP = 5	0.017	2.085	8.42	0.013	0.00
Ne = 250000 SS = 20 BP = 5	0.017	1.715	7.675	0.014	1.17
Same underlying landscape					
Ne = 25000 SS = 10 BP = 5	0.7463	85.71	79.62	0.2139	30.65
Ne = 25000 SS = 20 BP = 5	0.7497	80.36	78.99	0.311	14.85
Ne = 250000 SS = 10 BP = 5	0.9466	80.36	90.42	0.6301	15.3
Ne = 250000 SS = 20 BP = 5	0.9554	80.36	93.79	0.7514	32.55
					49.15

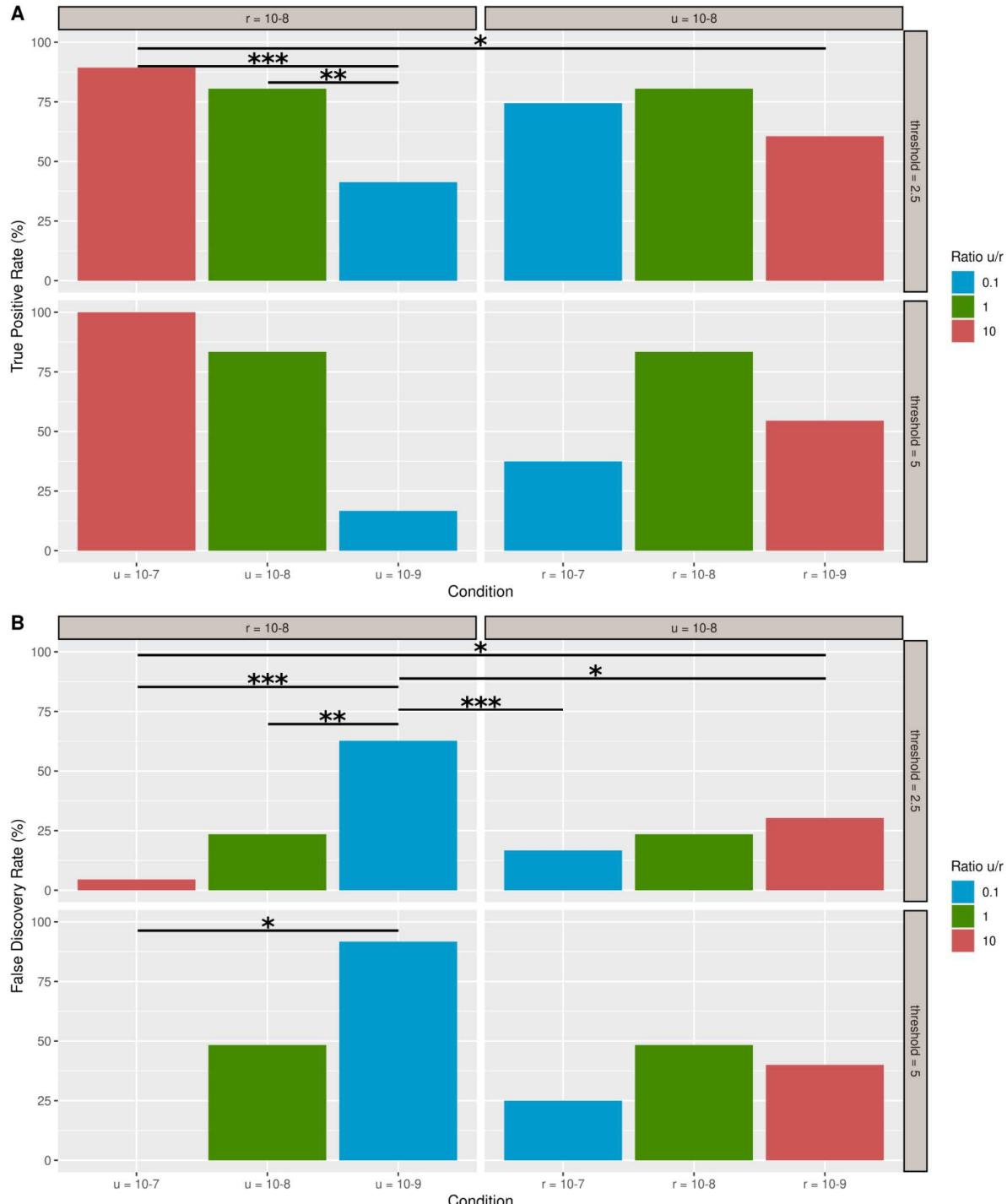
331

332

333

334 **Influence of the μ/r ratio on hotspot detection**

335 The influence of the mutation and recombination rates on the inference of
336 recombination landscapes was assessed by generating two additional underlying landscapes
337 but with a ten times higher (*i.e.* 20 cM/Mb) and lower (*i.e.* 0.2 cM/Mb) average recombination
338 rate, and by producing coalescent simulations under varying mutation rates (*i.e.* 10-9, 10-8
339 and 10-7). The μ/r ratio of these 6 new conditions thus equalled 0.1, 1 or 10. For all conditions,
340 Spearman's rank correlation between the mean simulated and the mean inferred landscapes
341 was greater than 0.9, except when μ equalled 10-9 (Spearman's $\rho \simeq 0.7$, Table 2). The mean
342 pairwise Spearman's correlation obtained among the 10 inferred replicates was $\simeq 0.8$, except
343 when μ or r equalled 10-9 ($\simeq 0.5$ -0.6, Table 2). An increased μ/r ratio improved the detection
344 of hotspots when r was fixed to 10-8, with a higher TPR (up to $> 80\%$) and a lower FDR ($< 5\%$)
345 when μ increased (prop.test, p-value < 0.05 when the threshold is 2.5, Figure 5). The μ/r ratio
346 did not affect the performances the same way when μ was fixed to 10-8: a μ/r ratio of 10 ($r =$
347 10-9) yielded lower TPR ($< 60\%$) and higher FDR ($> 25\%$) than a ratio of 1 or 0.1, although
348 these trends were not significant (prop.test, p-value > 0.05 , Figure 5).
349



350
351 **Figure 5.** Influence of the μ/r ratio on hotspot detection. Colours correspond to different μ/r
352 ratios, the left panels show conditions where r was fixed to 10-8, and right panels conditions
353 where μ was fixed to 10-8. The horizontal panels correspond to the threshold used to detect
354 hotspots. The x axis indicates the different μ or r values used in the simulations, and the y axis
355 shows the true positive (A) and false discovery (B) rates. The asterisks show the significance
356 level of the prop.test, with * indicating p -value < 0.05 , ** < 0.01 and *** < 0.001 .
357
358

359 **Table 2.** Influence of the μ/r ratio on Spearman's correlation between mean simulated and
360 mean inferred landscapes, as well as on mean pairwise Spearman's correlation between the
361 10 inferred replicates, and on hotspot detection metrics. The true positive (sensitivity) and
362 false discovery rates are indicated for the three hotspot detection thresholds tested (*i.e.* 2.5, 5
363 and 10).

364

Ratio	r	u	Correlation simulated-inferred	Mean pairwise correlation	Threshold = 2.5		Threshold = 5		Threshold = 10	
					TPR	FDR	TPR	FDR	TPR	FDR
10	10-8	10-7	0.989	0.882	89.36	4.55	100.00	0.00	0	0
1	10-8	10-8	0.951	0.788	82.22	19.57	66.67	42.86	0	100
0.1	10-8	10-9	0.697	0.511	41.30	62.75	16.67	91.67	0	100
0.1	10-7	10-8	0.966	0.771	74.47	16.67	37.50	25.00	0	0
1	10-8	10-8	0.958	0.792	78.72	27.45	100.00	53.85	0	100
10	10-9	10-8	0.932	0.596	60.63	30.30	54.55	40.00	0	100

365
366
367

368 Discussion

369
370

Inferred LD-maps should be interpreted with caution

371 Inference methods based on linkage disequilibrium provide an attractive way to
372 characterise genomic recombination landscapes from sequence data. As such, they promise
373 to become increasingly popular in empirical studies of eukaryotes. However, their ability to
374 accurately reproduce real recombination landscapes has not been specifically evaluated. It
375 should be recalled, however, that LD-based recombination maps are inferences, not
376 observations; biases and uncertainty must be quantified and taken into account when it comes
377 to interpreting the results. Here, we modelled the biological characteristics of a particularly
378 well-documented recombination landscape, that of humans, as a basis for assessing the
379 impact of methodological and species-specific evolutionary parameters on the performance of
380 the LDhelmet method. Our results send a message of caution regarding the reliability of
381 reconstructed recombination maps and hotspot location.

382 Indeed we show that the recombination landscapes inferred with LDhelmet differ from
383 real landscapes, sometimes substantially, with Spearman's rank correlation between real and
384 inferred 2.5 kb windows sometimes as low as ~ 0.7 (Figure 3A). Hotspot detection is a
385 particularly tricky and error-prone task: while up to 85% of true hotspots can be detected in
386 the most favourable situations, the FDR ranged from 19% to 82% (Figure 4) according to the
387 type of data and parameters used, meaning that in many cases a majority of the detected
388 hotspots are incorrect calls. These discrepancies lead to a reduction in the apparent overlap
389 in hotspot location between species/populations with identical recombination landscapes,
390 while in turn inflating apparent hotspot sharing in populations with divergent landscapes (Table

391 1, Table S2). If neglected, these effects might mislead biological interpretations regarding the
392 evolutionary conservation of recombination maps.

393 In a study of the short time-scale dynamics of recombination landscapes based on
394 LDhelmet, Shanfelter et al. (2019) found only 15% of shared hotspots between two recently-
395 diverged populations of threespine stickleback. A greater overlap in hotspot location was a
396 priori expected given that this species lacks a functional PRDM9 protein, which is responsible
397 for the rapid turnover of recombination landscapes in mammals (Axelsson et al. 2012; Paigen
398 and Petkov, 2018). The authors suggested that a new mechanism of recombination hotspot
399 regulation, different from the two already described in the literature, might be at work in this
400 teleost species. In the light of our results, however, one cannot exclude that the strong
401 divergence between the two reconstructed landscapes is due to a lack of power of the method
402 in the first place. While the sample size of both fish populations was at least 20 individuals, θ
403 was about 0.002, similar to our simulated conditions with a low N_e . Under these conditions, a
404 high FDR and a low proportion of shared hotspots can be expected even if the true underlying
405 maps are identical (Figure 4, Table 1).

406 It should be recalled that real data sets typically carry less signal and more noise than
407 simulated data sets, meaning that our assessment of the reliability of LDhelmet might be an
408 overoptimistic one. In particular, our data sets are immune from sequencing errors, mapping
409 errors, and, crucially, phasing errors, all of which presumably make the problem of
410 recombination map inference an even harder one.

411

412 ***Guidelines for population-based inference of recombination maps***

413 Our study revealed that whatever the parameters used, the inference of recombination
414 rates by LDhelmet is more reliable for species with large as compared to small effective
415 population size (Figure 2, 3, 4). This might be expected since long-term N_e determines the
416 amount of nucleotide diversity ($\theta=4N_e\mu$, Watterson, 1975), so that a higher N_e results in a
417 higher SNPs density and a finer scale characterization of the recombination rate variation
418 along the genome. Moreover, a higher effective size greatly corrects the general tendency of
419 LDhelmet to overestimate the ρ value, especially for low and high recombination rates (Figure
420 2, Supplementary Figure S5 ; Booker et al. 2017; Singhal et al. 2015). Thus, when studying
421 species with varying effective population sizes, it is recommended to select populations with
422 the largest N_e , for which genetic diversity is greater. The question is then: how to obtain a
423 good-quality recombination map when dealing with low N_e species? The sampling effort also
424 determines, to a lesser extent, the polymorphism level of the dataset (Supplementary Figure
425 S3), improving the accuracy of the inference (Figure 3, 4). A sample size of 20 is

426 recommended based on our simulations. Moreover, as previously mentioned (Chan et al.
427 2012; Singhal et al. 2015), the block penalty parameter of LDhelmet, which determines the
428 resolution level of the inferred landscape, also influences the length of the inferred map (*i.e.* a
429 higher BP tends to mitigate the tendency of LDhelmet to overestimate the map length) and
430 the number of detected hotspots (Supplementary Figure S2, S6). Therefore, a small BP, that
431 allows more fine-scale changes in the inferred ρ value, should be used to detect recombination
432 hotspots. The ability of LDhelmet to faithfully reflect the real recombination landscapes is of
433 great importance when it comes to detecting recombination hotspots. To this purpose, the
434 threshold used to decide which region is defined as a “hotspot” is a key parameter that
435 determines the level of detection stringency. If the chosen value is not appropriate, LDhelmet
436 will detect false positives while also missing true hotspots (Figure 4, Supplementary Figure
437 S7). This threshold should thus be adapted to the species studied, using a less stringent
438 threshold in species with lower genome-wide average recombination rate.

439 Other intrinsic biological variables influence the ability to produce a faithful recombination
440 map, such as the μ/r ratio, which in part determines the power to measure rho at a fine-scale.
441 The among-species variations in genome-average recombination rate r is well documented,
442 ranging from 0.01 to 100 cM/Mb in animals and plants, with vertebrate taxa displaying an
443 average r around 1 cM/Mb (Stapley et al. 2017). As previously mentioned, high and low
444 recombination rates tend to be overestimated by LDhelmet, thus the average r of the studied
445 species is obviously a key parameter to account for. The mutation rate μ also has a key impact
446 on the performance of LDhelmet, since ancestral recombination events can only be detected
447 if properly tagged by flanking mutations. The variation in μ across taxa, and consequently the
448 ratio of μ/r , are much less well known than the variation in r . This ratio, which does not depend
449 on the effective size of the population, is about 1 in humans, which means that two
450 recombination events are separated by one mutation on average. A ratio in favour of mutations
451 ($\mu/r > 1$) will improve the signal, increasing the TP rate and reducing the FD rate (Figure 5,
452 Table 2). But ultimately the performance of LDhelmet is conditioned by r , as low r values
453 provide less power to detect the recombination events, even with $\mu/r = 10$. Thus, the ratio of
454 the mutation and the recombination rate is crucial to build a non-biased recombination map.
455 Therefore, when studying a species for which it appears that this ratio is not favourable, a high
456 rate of false positive hotspots is expected in the inferred population recombination landscape
457 (Figure 5, Table 2), making it difficult to compare maps between closely related species in a
458 meaningful way.

459

460 ***Limitations***

461 The aim of our study was to determine the limits of LD-based methods in inferring
462 biologically realistic recombination landscapes. For this purpose, we used the Pratto et al.
463 (2014) ChIP-seq DMC1 data set to build human-like recombination landscapes including both
464 broad and fine scale variation, reflected by the presence of numerous recombination hotspots
465 of different intensities (Supplementary Figure S1; Myers et al. 2005, 2006; Pratto et al. 2014).
466 However, the distribution of DSB might be more complex and variable than the true distribution
467 of crossing overs. Thus, we may have generated landscapes too heterogeneous to be properly
468 inferred by LDhelmet, reaching the limit of the method. Moreover, hotspots were placed
469 randomly without taking into account the architecture of recombination hotspots along the
470 genome: the proximity of genes and promoter-like regions, GC-rich regions, CpG islands,
471 polymorphic regions, which can explain why a very intense and narrow hotspot is never found
472 within a region of near zero recombination. Besides, we assume a homogeneous
473 polymorphism along the chromosomal segments, which is not true in animal genomes
474 (Ellegren and Galtier, 2016). Consequently, the sensibility of LD-based methods with respect
475 to this architecture was not tested. Moreover, our simulated data were perfectly phased and
476 polarised, which can't be the case when dealing with empirical data, and we didn't simulate
477 various demographic histories that can also bias LD-based methods (Dapper and Payseur,
478 2018). Finally, we don't know if these simulated landscapes are representative of the diversity
479 of recombination landscapes that exist in the living world.

480 Indeed, it is likely that the high complexity of the human recombination landscape is not
481 a universal feature in the animal kingdom. Singhal et al. (2015) used LDhelmet for building the
482 recombination map in two species of birds, the zebra finch and the long-tailed finch, that lack
483 a full-length PRDM9 gene copy and diverged about 2.9 Myr. The sample size for both
484 populations was about 20 individuals, and θ (~ 0.01) was about ten times higher than in apes
485 or the threespine stickleback (Shanfelter et al. 2019), thus corresponding to our high N_e
486 simulated conditions. Singhal et al. (2015) found 73% of shared hotspots between the two
487 finch species, which is a higher rate of hotspot sharing than in any of the conditions we
488 simulated. The median estimated recombination rate was of 0.14 cM/Mb in both species of
489 finch, which is seven times lower than the average genomic recombination rate in humans
490 (about 1 cM/Mb, Jensen-Seaman et al. 2004). Combined with the strong polymorphism in
491 those species, we may suppose that birds possess less complex recombination landscapes
492 than humans or compared to what we simulated, which might explain why LDhelmet recovered
493 such a high percentage of shared hotspots in this study.

494

495 Conclusion

496 In the past few years, we have seen a growing interest in recombination rate estimation
497 in functional and evolutionary genomics. Indirect, LD-based approaches raise methodological
498 challenges that are addressed by sophisticated methods such as LDhat or LDhelmet, the
499 reliability of which is still poorly characterised. Our study allows us to guide the users of such
500 methods depending on the characteristics of their species, and calls for caution when it comes
501 to interpreting fine scale differences in recombination rates between species. Extending this
502 approach to a more diverse set of underlying recombination landscapes would help
503 characterise further the reliability of these methods and their range of applicability across data
504 sets and taxa.

505

506

507 Materials and Methods

508 Our approach separately considers three different layers of information that are
509 involved in the study of recombination landscapes (Figure 1). The first layer that we call the
510 “underlying” recombination landscape corresponds to the true biological distribution of
511 recombination rate (r) across the considered genome. We here used experimental
512 measurements from human studies to model and generate the “underlying” landscapes. The
513 second layer, the population recombination landscape, describes the genomic location of
514 recombination events that occurred during the history of the sample. We used coalescent
515 simulations to produce these population recombination landscapes, thereafter called
516 “simulated” landscapes. Simulated landscapes differ from the underlying landscape due to the
517 stochasticity of the coalescent process, which is inversely proportional to N_e . The third layer,
518 called the “inferred” landscape, corresponds to the output of LDhelmet, *i.e.* an estimate of the
519 population recombination rate between adjacent SNPs. In total we generated five independent
520 replicates of underlying landscapes, and for each of them 10 simulated and 10 inferred
521 landscapes (Figure 1A).

522

523 ***Underlying landscapes***

524 Underlying recombination landscapes were first generated to reproduce the features
525 of the human recombination landscape. These include large-scale variation in the mean
526 background recombination rate and fine-scale variation reflecting the presence of hotspots
527 with varied intensities. Meiotic DSB are the major determinant of crossing over (CO) location
528 along the genome (Li et al. 2019; Pratto et al. 2014). We used the high-resolution map of
529 meiotic DSB obtained using ChIP-seq DMC1 in 5 non-related human genomes (Pratto et al.

530 2014) to define the genome-wide distribution of recombination rates in our simulations. The
531 five individuals analysed in Pratto et al. (2014) carried different PRDM9 genotypes totalizing
532 about 40,000 hotspots per individual, with distinct genotypes having different sets of DSB
533 hotspots. For each individual, a gamma distribution was fitted to the empirical distribution of
534 hotspot intensity measured by ChIP-seq DMC1 with the R package *figdistribplus* (Delignette-
535 Muller and Dutang, 2015). Extreme ChIP-Seq intensity values (>500) lying above the 97.5th
536 quantile and likely representing technical artefacts were removed. Remaining values were
537 rescaled to 0-100, so as to transform ChIP-Seq intensity values into quantities reflecting the
538 range of recombination rates reported in cM/Mb across the human genome (McVean et al.
539 2004; Myers et al. 2005). This conversion assumed a linear relation between DMC1 activity
540 and CO frequency (Pratto et al. 2014). We then removed null values and replaced them with
541 small but non-null values (0.001), so that the genome-wide mean recombination rate equaled
542 a target average (e.g. 1 cM/Mb). A Gamma distribution was fitted to these transformed
543 empirical values separately for each of the 5 individuals, before averaging shape and scale
544 parameters across individuals. Targeted genome-wide average value was set to either 1
545 cM/Mb or 3 cM/Mb, respectively reflecting the average centro-chromosomal and subtelomeric
546 rates in humans. Underlying landscapes of 1 Mb length were built by randomly drawing
547 independent recombination rate values from the fitted distribution and assigning these to non-
548 overlapping windows of 500pb. Values in the first 500kb were drawn from a distribution of
549 mean 1 cM/Mb, while values in the last 500kb were drawn from a distribution of mean 3 cM/Mb.
550 Our approach thus mimics both the large scale variation in recombination rate existing in
551 humans (Buard and de Massy, 2007; Myers et al. 2005; Nachman, 2002; Pratto et al. 2014)
552 and the nearly absence of recombination events outside hotspots (96% of CO occur in
553 hotspots in mice, (Li et al. 2019; Pratto et al. 2014). In total, 5 underlying landscapes were
554 generated (mean $r = 2$ cM/Mb), which can be considered as independent replicates driven
555 from the same distribution (*i.e.* parts of different chromosomes of the same species, or
556 orthologous chromosome part from closely related species).

557

558 ***Simulated landscapes***

559 For each of the 5 underlying landscapes, 10 simulated landscapes were generated via
560 coalescent simulations using the program MSPRIME (Kelleher and Lohse, 2020), varying the
561 effective population size ($N_e = 25,000$ or $250,000$) and the sample size (SS=10 or 20) and
562 setting the mutation rate to $\mu = 10^{-8}$. These four combinations of simulation parameters were
563 combined with three values of the Block Penalty (BP) parameter of the LDhelmet program
564 (see below), resulting in twelve conditions tested (Supplementary Table S1). For each
565 condition, ten population samples were simulated, to generate independent replicates of the

566 coalescent history. A VCF file was generated with MSPrime for each simulated population
567 (Figure 1), which contains the genotypes of variants that segregate in the population sample
568 consisting of $2n$ sequences (with n being the number of samples) following the given
569 underlying recombination landscape.

570

571 ***Inferred landscapes***

572 Recombination rates were estimated for each of the simulated samples with LDhelmet
573 (v1.10, (Chan et al. 2012), Figure 1). Briefly, LDhelmet uses phased sequence data to infer
574 the rho parameter locally, using likelihood computation between pairs of SNPs and then
575 averaging over 50 consecutive variants to obtain a composite likelihood. The ρ parameter is
576 inferred with a reversible-jump Markov Chain Monte Carlo algorithm using a step function
577 applied to every window of 50 consecutive SNPs and determined by three parameters: the
578 number of change-points, the locations of changes, and the recombination rate value of each
579 constant fragment between two changes. We used VCFtools 0.1.17 (Danecek et al. 2011) and
580 the vcf2fasta function of vcflib (<https://github.com/vcflib/vcflib>) to convert the SNP data
581 obtained from MSPrime simulations into the input format to LDhelmet, consisting of FASTA
582 sequences of each individual haplotype. Ancestral states defined as the reference allele of
583 each variant were also used as inputs. Each simulated replicate was analysed with LDhelmet
584 using the following parameters. The haplotype configuration files were created with the
585 find_conf function using the recommended window size of 50 SNPs. The likelihood look-up
586 tables were created with the table_gen function using the recommended grid for the population
587 recombination rate (ρ/pb) (*i.e.* ρ from 0 to 10 by increments of 0.1, then from 10 to 100 by
588 increments of 1), and with the Watterson' $\theta = 4N_e\mu$ parameter corresponding to the condition
589 analysed. The Padé files were created using 11 Padé coefficients as recommended. The
590 Monte Carlo Markov chain was run for 1 million iterations with a burn-in period of 100,000 and
591 a window size of 50 SNPs. An important parameter to LDhelmet is the block penalty (BP),
592 which determines the number of change-points, and thus the variance of the inferred
593 recombination rates at a fine scale (*i.e.* smaller block penalty generates more heterogeneous
594 recombination landscapes). For each of the 4 combinations of N_e and θ simulated, the block
595 penalty was set to either 5, 10 or 50, resulting in 12 combinations tested (Supplementary Table
596 S1). Finally, the population recombination rates between each SNP pair were extracted with
597 the post_to_text function, and were reported in $\rho=4N_e r$ per pb unit.

598 The reliability of the inferences was evaluated in various ways. For each of the 12
599 conditions, the inferred, simulated and underlying landscapes were compared, in order to
600 assess the ability of LDhelmet to reliably infer the true biological landscape (Figure 1A and

601 see below Hotspot detection and Statistical Analysis). In a second simulation framework aimed
602 at evaluating the convergence of LDhelmet inferences across replicate runs, LDhelmet was
603 run 10 times using the same parameters on each of two independently simulated VCF files
604 from populations sharing the same underlying landscape (Figure 1B). Finally, for each of the
605 twelve tested conditions, the inferred recombination landscapes of these two populations were
606 compared in order to assess the reproducibility of the LDhelmet inference, *i.e.*, the expected
607 variance between inferred maps in the absence of underlying biological variation (Figure 1B).
608

609 ***Variation in the μ/r ratio***

610 To explore the influence of variation in mutation and recombination rates on the
611 inference of recombination maps, two additional underlying landscapes were generated using
612 the same procedure, this time targeting a ten times higher (*i.e.* 20 cM/Mb) or ten times lower
613 (0.2 cM/Mb) mean recombination rate. Then, using one of the 5 underlying landscapes ($r \sim$
614 10-8 M/pb) and the 2 newly generated landscapes with mean $r = 10\text{-}7$ and 10-9 M/pb,
615 respectively, sets of simulations were run with a μ/r ratio of 0.1, 1 and 10. This was achieved
616 by fixing μ to either 10-9, 10-8 or 10-7, while keeping a fixed $N_e = 100,000$ and $SS = 20$ (Table
617 2). For each of the 6 tested combinations of μ and r , 10 populations were simulated. These
618 simulated landscapes were inferred with LDhelmet, using a block penalty of 5.
619

620 ***Hotspot detection***

621 Underlying and simulated landscapes were first converted into population
622 recombination rate landscapes by scaling them by $4N_e$. Underlying, simulated and inferred
623 landscapes were then smoothed at a 500 bp and 2,500 bp resolution using the Python
624 package *scipy.stats*. The former corresponds to the underlying landscape resolution, and the
625 latter to a trade off between the density of segregating sites and the resolution often used in
626 the litterature. For each underlying landscape and each of the 12 tested conditions, a mean
627 simulated landscape and a mean inferred landscape were generated by averaging
628 recombination rates across replicates.

629 Recombination hotspots of the underlying, simulated and inferred landscapes were
630 called by comparing local vs surrounding recombination rates at each genomic window. A
631 hotspot was defined as a window of 2.5 kb with an average recombination rate either 2.5, 5 or
632 10 times higher than the 50kb flanking regions (excluding the focal window). Hotspot locations
633 were compared among landscapes using the same threshold values (*i.e.* 2.5/2.5, 5/5, or
634 10/10), except for three combinations in which lower thresholds were used for simulated
635 compared to inferred landscapes (*i.e.* conditions 2.5/5, 2.5/10 and 5/10).
636

637 **Statistical analyses**

638 Statistical analyses were run with R 4.0.3. The length of underlying, simulated and
639 inferred maps (L) was calculated at the 2.5 kb resolution using the formula:

$$640 L = \sum(\rho \times win)/4Ne,$$

641 with ρ the population-scaled recombination rate, win the window size resolution used to
642 smooth the maps in bp, and N_e the effective size of the simulated population. Several indices
643 of the sensitivity, specificity, reliability, and repeatability of LDhelmet were computed, using
644 the mean simulated and inferred landscapes from each of the 12 tested conditions. For each
645 condition, Spearman's rank correlation coefficient was calculated between the underlying and
646 the corresponding simulated landscapes, between the simulated and inferred landscapes, and
647 pairwise Spearman's coefficients among the 10 replicates inferred from the two simulated
648 populations sharing the same underlying landscape. True/false positive rates (TPR =
649 $TP/(TP+FN)$; FPR = $FP/(FP+TN)$), true/false negative rates (TNR = $TN/(TN+FP)$; FNR =
650 $FN/(FN/(TP+FN))$), and true/false discovery rates (TDR = $TP/(TP+FP)$; FDR = $FP/(TP+FP)$)
651 were calculated by comparing the simulated and inferred landscapes. The mean pairwise
652 linear correlation (R^2) and the proportion of shared hotspots was calculated between the 5
653 underlying landscapes, and for each condition and for the three threshold values tested (*i.e.*
654 2.5, 5 and 10) between the simulated and inferred landscapes from the 5 different underlying
655 landscapes, as well as between the two populations from the same underlying landscape.

656 The statistical analyses were performed using home-made R scripts available upon
657 request.

658
659

660 **Data availability**

661 The Singularity container recipe built to run the simulations is available at:
662 <https://github.com/PA-GAGNAIRE/Singularity-Recipes/tree/master/HotRec-Recipes>. This
663 recipe contains the installation command lines of the required programs, the scripts used for
664 the simulations, and the five underlying landscapes used in our study.

665
666

667 **Acknowledgments**

668 We are grateful to Julien Joseph, Nicolas Lartillot, Frédéric Baudat, Bernard de Massy
669 and Laurent Duret for the discussions and feedback. We also thank Khalid Belkhir, Jimmy
670 Lopez and Mathieu Massaviol for their support to build the Singularity container used to run
671 our simulations. This project was funded by the ANR HotRec ANR-19-CE12-0019.

672

673 **Competing Interests Statement**

674 The authors declare no conflict of interest.

675

676 References

677 Arenas, M. (2013). The importance and application of the ancestral recombination graph.
678 Frontiers in Genetics, 4. <https://doi.org/10.3389/fgene.2013.00206>

679

680 Auton, A., Fledel-Alon, A., Pfeifer, S., Venn, O., Ségurel, L., Street, T., Leffler, E. M., Bowden,
681 R., Aneas, I., Broxholme, J., Humburg, P., Iqbal, Z., Lunter, G., Maller, J., Hernandez, R. D.,
682 Melton, C., Venkat, A., Nobrega, M. A., Bontrop, R., ... McVean, G. (2012). A Fine-Scale
683 Chimpanzee Genetic Map from Population Sequencing. *Science*, 336(6078), 193- 198.
684 <https://doi.org/10.1126/science.1216872>

685

686 Auton, A., & McVean, G. (2007). Recombination rate estimation in the presence of hotspots.
687 *Genome Research*, 17(8), 1219- 1227. <https://doi.org/10.1101/gr.6386707>

688

689 Auton, A., Rui Li, Y., Kidd, J., Oliveira, K., Nadel, J., Holloway, J. K., Hayward, J. J., Cohen,
690 P. E., Greally, J. M., Wang, J., Bustamante, C. D., & Boyko, A. R. (2013). Genetic
691 Recombination Is Targeted towards Gene Promoter Regions in Dogs. *PLoS Genetics*, 9(12),
692 e1003984. <https://doi.org/10.1371/journal.pgen.1003984>

693

694 Axelsson, E., Webster, M. T., Ratnakumar, A., The LUPA Consortium, Ponting, C. P., &
695 Lindblad-Toh, K. (2012). Death of PRDM9 coincides with stabilization of the recombination
696 landscape in the dog genome. *Genome Research*, 22(1), 51- 63.
697 <https://doi.org/10.1101/gr.124123.111>

698

699 Baker, Z., Schumer, M., Haba, Y., Bashkirova, L., Holland, C., Rosenthal, G. G., & Przeworski,
700 M. (2017). Repeated losses of PRDM9-directed recombination despite the conservation of
701 PRDM9 across vertebrates. *eLife*, 6, e24133. <https://doi.org/10.7554/eLife.24133>

702

703 Baudat, F., Buard, J., Grey, C., Fledel-Alon, A., Ober, C., Przeworski, M., Coop, G., & de
704 Massy, B. (2010). PRDM9 Is a Major Determinant of Meiotic Recombination Hotspots in
705 Humans and Mice. *Science*, 327(5967), 836- 840. <https://doi.org/10.1126/science.1183439>

706

707 Baudat, F., & de Massy, B. (2007). Regulating double-stranded DNA break repair towards
708 crossover or non-crossover during mammalian meiosis. *Chromosome Research*, 15(5),
709 565- 577. <https://doi.org/10.1007/s10577-007-1140-3>

710

711 Booker, T. R., Ness, R. W., & Keightley, P. D. (2017). The Recombination Landscape in Wild
712 House Mice Inferred Using Population Genomic Data. *Genetics*, 207(1), 297- 309.
713 <https://doi.org/10.1534/genetics.117.300063>

714

715 Buard, J., & de Massy, B. (2007). Playing hide and seek with mammalian meiotic crossover
716 hotspots. *Trends in Genetics*, 23(6), 301- 309. <https://doi.org/10.1016/j.tig.2007.03.014>

717

718 Capilla, L., Garcia Caldés, M., & Ruiz-Herrera, A. (2016). Mammalian Meiotic Recombination :
719 A Toolbox for Genome Evolution. *Cytogenetic and Genome Research*, 150(1), 1- 16.
720 <https://doi.org/10.1159/000452822>

721

722 Carrington, M., & Cullen, M. (2004). Justified chauvinism: Advances in defining meiotic
723 recombination through sperm typing. *Trends in Genetics*, 20(4), 196- 205.
724 <https://doi.org/10.1016/j.tig.2004.02.006>

725

726 Chan, A. H., Jenkins, P. A., & Song, Y. S. (2012). Genome-Wide Fine-Scale Recombination
727 Rate Variation in *Drosophila melanogaster*. *PLoS Genetics*, 8(12), e1003090.
728 <https://doi.org/10.1371/journal.pgen.1003090>

729

730 Choi, K., & Henderson, I. R. (2015). Meiotic recombination hotspots—A comparative view.
731 *The Plant Journal*, 83(1), 52- 61. <https://doi.org/10.1111/tpj.12870>

732

733 Clark, A. G., Wang, X., & Matise, T. (2010). Contrasting Methods of Quantifying Fine Structure
734 of Human Recombination. *Annual Review of Genomics and Human Genetics*, 11(1), 45- 64.
735 <https://doi.org/10.1146/annurev-genom-082908-150031>

736

737 Cromie, G. A., Connelly, J. C., & Leach, D. R. F. (2001). Recombination at Double-Strand
738 Breaks and DNA Ends. *Molecular Cell*, 8(6), 1163- 1174. [https://doi.org/10.1016/S1097-2765\(01\)00419-1](https://doi.org/10.1016/S1097-2765(01)00419-1)

740

741 Danecek, P., Auton, A., Abecasis, G., Albers, C. A., Banks, E., DePristo, M. A., Handsaker, R. E., Lunter, G., Marth, G. T., Sherry, S. T., McVean, G., Durbin, R., & 1000 Genomes Project Analysis Group. (2011). The variant call format and VCFtools. *Bioinformatics*, 27(15), 2156- 2158. <https://doi.org/10.1093/bioinformatics/btr330>

745

746 Danguy des Déserts, A., Bouchet, S., Sourdille, P., & Servin, B. (2021). Evolution of
747 recombination landscapes in diverging populations of bread wheat. *Genome Biology and
748 Evolution*, evab152. <https://doi.org/10.1093/gbe/evab152>

749

750 Dapper, A. L., & Payseur, B. A. (2018). Effects of Demographic History on the Detection of
751 Recombination Hotspots from Linkage Disequilibrium. *Molecular Biology and Evolution*,
752 35(2), 335- 353. <https://doi.org/10.1093/molbev/msx272>

753

754 Delignette-Muller, M. L., & Dutang, C. (2015). fitdistrplus: An R Package for Fitting
755 Distributions. *Journal of Statistical Software*, 64(4). <https://doi.org/10.18637/jss.v064.i04>

756

757 Dréau, A., Venu, V., Avdievich, E., Gaspar, L., & Jones, F. C. (2019). Genome-wide
758 recombination map construction from single individuals using linked-read sequencing.
759 *Nature Communications*, 10(1), 4309. <https://doi.org/10.1038/s41467-019-12210-9>

760

761 Ellegren, H., & Galtier, N. (2016). Determinants of genetic diversity. *Nature Reviews Genetics*,
762 17(7), 422- 433. <https://doi.org/10.1038/nrg.2016.58>

763

764 Grey, C., Baudat, F., & de Massy, B. (2018). PRDM9, a driver of the genetic map. *PLOS
765 Genetics*, 14(8), e1007479. <https://doi.org/10.1371/journal.pgen.1007479>

766

767 Haenel, Q., Laurentino, T. G., Roesti, M., & Berner, D. (2018). Meta-analysis of chromosome-
768 scale crossover rate variation in eukaryotes and its significance to evolutionary genomics.

769 Molecular Ecology, 27(11), 2477- 2497. <https://doi.org/10.1111/mec.14699>

770

771 Hunter, C. M., Huang, W., Mackay, T. F. C., & Singh, N. D. (2016). The Genetic Architecture
772 of Natural Variation in Recombination Rate in *Drosophila melanogaster*. PLOS Genetics,
773 12(4), e1005951. <https://doi.org/10.1371/journal.pgen.1005951>

774

775 Jensen-Seaman, M. I., Furey, T. S., Payseur, B. A., Lu, Y., Roskin, K. M., Chen, C.-F.,
776 Thomas, M. A., Haussler, D., & Jacob, H. J. (2004). Comparative Recombination Rates in
777 the Rat, Mouse, and Human Genomes. Genome Research, 14(4), 528- 538.
778 <https://doi.org/10.1101/gr.1970304>

779

780 Kamm, J. A., Spence, J. P., Chan, J., & Song, Y. S. (2016). Two-Locus Likelihoods Under
781 Variable Population Size and Fine-Scale Recombination Rate Estimation. Genetics, 203(3),
782 1381- 1399. <https://doi.org/10.1534/genetics.115.184820>

783

784 Kelleher, J., & Lohse, K. (2020). Coalescent Simulation with msprime. In J. Y. Dutheil (Éd.),
785 Statistical Population Genomics (Vol. 2090, p. 191- 230). Springer US.
786 https://doi.org/10.1007/978-1-0716-0199-0_9

787

788 Kim, S., Plagnol, V., Hu, T. T., Toomajian, C., Clark, R. M., Ossowski, S., Ecker, J. R., Weigel,
789 D., & Nordborg, M. (2007). Recombination and linkage disequilibrium in *Arabidopsis thaliana*.
790 Nature Genetics, 39(9), 1151- 1155. <https://doi.org/10.1038/ng2115>

791

792 Kodama, M., Brieuc, M. S. O., Devlin, R. H., Hard, J. J., & Naish, K. A. (2014). Comparative
793 Mapping Between Coho Salmon (*Oncorhynchus kisutch*) and Three Other Salmonids
794 Suggests a Role for Chromosomal Rearrangements in the Retention of Duplicated Regions
795 Following a Whole Genome Duplication Event. G3 Genes|Genomes|Genetics, 4(9),
796 1717- 1730. <https://doi.org/10.1534/g3.114.012294>

797

798 Kong, A., Gudbjartsson, D. F., Sainz, J., Jonsdottir, G. M., Gudjonsson, S. A., Richardsson,
799 B., Sigurdardottir, S., Barnard, J., Hallbeck, B., Masson, G., Shlien, A., Palsson, S. T., Frigge,
800 M. L., Thorgeirsson, T. E., Gulcher, J. R., & Stefansson, K. (2002). A high-resolution
801 recombination map of the human genome. Nature Genetics, 31(3), 241- 247.
802 <https://doi.org/10.1038/ng917>

803

804 Lander, E. S., & Green, P. (1987). Construction of multilocus genetic linkage maps in humans.
805 Proceedings of the National Academy of Sciences, 84(8), 2363- 2367.
806 <https://doi.org/10.1073/pnas.84.8.2363>

807

808 Latrille, T., Duret, L., & Lartillot, N. (2017). The Red Queen model of recombination hot-spot
809 evolution : A theoretical investigation. Philosophical Transactions of the Royal Society B:
810 Biological Sciences, 372(1736), 20160463. <https://doi.org/10.1098/rstb.2016.0463>

811

812 Lesecque, Y., Glémén, S., Lartillot, N., Mouchiroud, D., & Duret, L. (2014). The Red Queen
813 Model of Recombination Hotspots Evolution in the Light of Archaic and Modern Human
814 Genomes. PLoS Genetics, 10(11), e1004790. <https://doi.org/10.1371/journal.pgen.1004790>

815

816 Li, N., & Stephens, M. (2003). Modeling Linkage Disequilibrium and Identifying Recombination
817 Hotspots Using Single-Nucleotide Polymorphism Data. *Genetics*, 165(4), 2213- 2233.
818 <https://doi.org/10.1093/genetics/165.4.2213>

819

820 Li, R., Bitoun, E., Altemose, N., Davies, R. W., Davies, B., & Myers, S. R. (2019). A high-
821 resolution map of non-crossover events reveals impacts of genetic diversity on mammalian
822 meiotic recombination. *Nature Communications*, 10(1), 3900.
823 <https://doi.org/10.1038/s41467-019-11675-y>

824

825 Mancera, E., Bourgon, R., Brozzi, A., Huber, W., & Steinmetz, L. M. (2008). High-resolution
826 mapping of meiotic crossovers and non-crossovers in yeast. *Nature*, 454(7203), 479- 485.
827 <https://doi.org/10.1038/nature07135>

828

829 McVean, G. A. T., Myers, S. R., Hunt, S., Deloukas, P., Bentley, D. R., & Donnelly, P. (2004).
830 The Fine-Scale Structure of Recombination Rate Variation in the Human Genome. *Science*,
831 304(5670), 581- 584. <https://doi.org/10.1126/science.1092500>

832

833 Melamed-Bessudo, C., Shilo, S., & Levy, A. A. (2016). Meiotic recombination and genome
834 evolution in plants. *Current Opinion in Plant Biology*, 30, 82- 87.
835 <https://doi.org/10.1016/j.pbi.2016.02.003>

836

837 Morris, G. P., Ramu, P., Deshpande, S. P., Hash, C. T., Shah, T., Upadhyaya, H. D., Riera-
838 Lizarazu, O., Brown, P. J., Acharya, C. B., Mitchell, S. E., Harriman, J., Glaubitz, J. C.,
839 Buckler, E. S., & Kresovich, S. (2013). Population genomic and genome-wide association
840 studies of agroclimatic traits in sorghum. *Proceedings of the National Academy of Sciences*,
841 110(2), 453- 458. <https://doi.org/10.1073/pnas.1215985110>

842

843 Myers, S., Bottolo, L., Freeman, C., McVean, G., & Donnelly, P. (2005). A Fine-Scale Map of
844 Recombination Rates and Hotspots Across the Human Genome. *Science*, 310(5746),
845 321- 324. <https://doi.org/10.1126/science.1117196>

846

847 Myers, S., Bowden, R., Tumian, A., Bontrop, R. E., Freeman, C., MacFie, T. S., McVean, G.,
848 & Donnelly, P. (2010). Drive Against Hotspot Motifs in Primates Implicates the PRDM9 Gene
849 in Meiotic Recombination. *Science*, 327(5967), 876- 879.
850 <https://doi.org/10.1126/science.1182363>

851

852 Myers, S., Spencer, C. C. A., Auton, A., Bottolo, L., Freeman, C., Donnelly, P., & McVean, G.
853 (2006). The distribution and causes of meiotic recombination in the human genome.
854 *Biochemical Society Transactions*, 34, 5.

855

856 Nachman, M. (2002). Variation in recombination rate across the genome : Evidence and
857 implications. *Current Opinion in Genetics & Development*, 12(6), 657- 663.
858 [https://doi.org/10.1016/S0959-437X\(02\)00358-1](https://doi.org/10.1016/S0959-437X(02)00358-1)

859

860 Oliver, P. L., Goodstadt, L., Bayes, J. J., Birtle, Z., Roach, K. C., Phadnis, N., Beatson, S. A.,
861 Lunter, G., Malik, H. S., & Ponting, C. P. (2009). Accelerated Evolution of the Prdm9
862 Speciation Gene across Diverse Metazoan Taxa. *PLoS Genetics*, 5(12), e1000753.

863 <https://doi.org/10.1371/journal.pgen.1000753>

864

865 Paigen, K., & Petkov, P. M. (2018). PRDM9 and Its Role in Genetic Recombination. *Trends in*
866 *Genetics*, 34(4), 291- 300. <https://doi.org/10.1016/j.tig.2017.12.017>

867

868 Parvanov, E. D., Petkov, P. M., & Paigen, K. (2010). Prdm9 Controls Activation of Mammalian
869 Recombination Hotspots. *Science*, 327(5967), 835- 835.
870 <https://doi.org/10.1126/science.1181495>

871

872 Peñalba, J. V., & Wolf, J. B. W. (2020). From molecules to populations : Appreciating and
873 estimating recombination rate variation. *Nature Reviews Genetics*, 21(8), 476- 492.
874 <https://doi.org/10.1038/s41576-020-0240-1>

875

876 Pratto, F., Brick, K., Khil, P., Smagulova, F., Petukhova, G. V., & Camerini-Otero, R. D. (2014).
877 Recombination initiation maps of individual human genomes. *Science*, 346(6211), 1256442.
878 <https://doi.org/10.1126/science.1256442>

879

880 Rastas, P. (2017). Lep-MAP3 : Robust linkage mapping even for low-coverage whole genome
881 sequencing data. *Bioinformatics*, 33(23), 3726- 3732.
882 <https://doi.org/10.1093/bioinformatics/btx494>

883

884 Schield, D. R., Pasquesi, G. I. M., Perry, B. W., Adams, R. H., Nikolakis, Z. L., Westfall, A. K.,
885 Orton, R. W., Meik, J. M., Mackessy, S. P., & Castoe, T. A. (2020). Snake Recombination
886 Landscapes Are Concentrated in Functional Regions despite PRDM9. *Molecular Biology
887 and Evolution*, 37(5), 1272- 1294. <https://doi.org/10.1093/molbev/msaa003>

888

889 Shanfelter, A. F., Archambeault, S. L., & White, M. A. (2019). Divergent Fine-Scale
890 Recombination Landscapes between a Freshwater and Marine Population of Threespine
891 Stickleback Fish. *Genome Biology and Evolution*, 11(6), 1552- 1572.
892 <https://doi.org/10.1093/gbe/evz090>

893

894 Singhal, S., Leffler, E. M., Sannareddy, K., Turner, I., Venn, O., Hooper, D. M., Strand, A. I.,
895 Li, Q., Raney, B., Balakrishnan, C. N., Griffith, S. C., McVean, G., & Przeworski, M. (2015).
896 Stable recombination hotspots in birds. *Science*, 350(6263), 928- 932.
897 <https://doi.org/10.1126/science.aad0843>

898

899 Spence, J. P., & Song, Y. S. (2019). Inference and analysis of population-specific fine-scale
900 recombination maps across 26 diverse human populations. *SCIENCE ADVANCES*, 15.
901

902 Stapley, J., Feulner, P. G. D., Johnston, S. E., Santure, A. W., & Smadja, C. M. (2017).
903 Variation in recombination frequency and distribution across eukaryotes : Patterns and
904 processes. *Philosophical Transactions of the Royal Society B: Biological Sciences*,
905 372(1736), 20160455. <https://doi.org/10.1098/rstb.2016.0455>

906

907 Stumpf, M. P. H., & McVean, G. A. T. (2003). Estimating recombination rates from population-
908 genetic data. *Nature Reviews Genetics*, 4(12), 959- 968. <https://doi.org/10.1038/nrg1227>

909

910 Sun, H., Rowan, B. A., Flood, P. J., Brandt, R., Fuss, J., Hancock, A. M., Michelmore, R. W.,
911 Huettel, B., & Schneeberger, K. (2019). Linked-read sequencing of gametes allows efficient
912 genome-wide analysis of meiotic recombination. *Nature Communications*, 10(1), 4310.
913 <https://doi.org/10.1038/s41467-019-12209-2>
914

915 The International HapMap Consortium. (2007). A second generation human haplotype map of
916 over 3.1 million SNPs. *Nature*, 449(7164), 851- 861. <https://doi.org/10.1038/nature06258>
917

918 Wallberg, A., Glémin, S., & Webster, M. T. (2015). Extreme Recombination Frequencies
919 Shape Genome Variation and Evolution in the Honeybee, *Apis mellifera*. *PLOS Genetics*,
920 11(4), e1005189. <https://doi.org/10.1371/journal.pgen.1005189>
921

922 Watterson, G. A. (1975). On the number of segregating sites in genetical models without
923 recombination. *Theoretical Population Biology*, 7(2), 256- 276. [https://doi.org/10.1016/0040-5809\(75\)90020-9](https://doi.org/10.1016/0040-5809(75)90020-9)
924

925

926

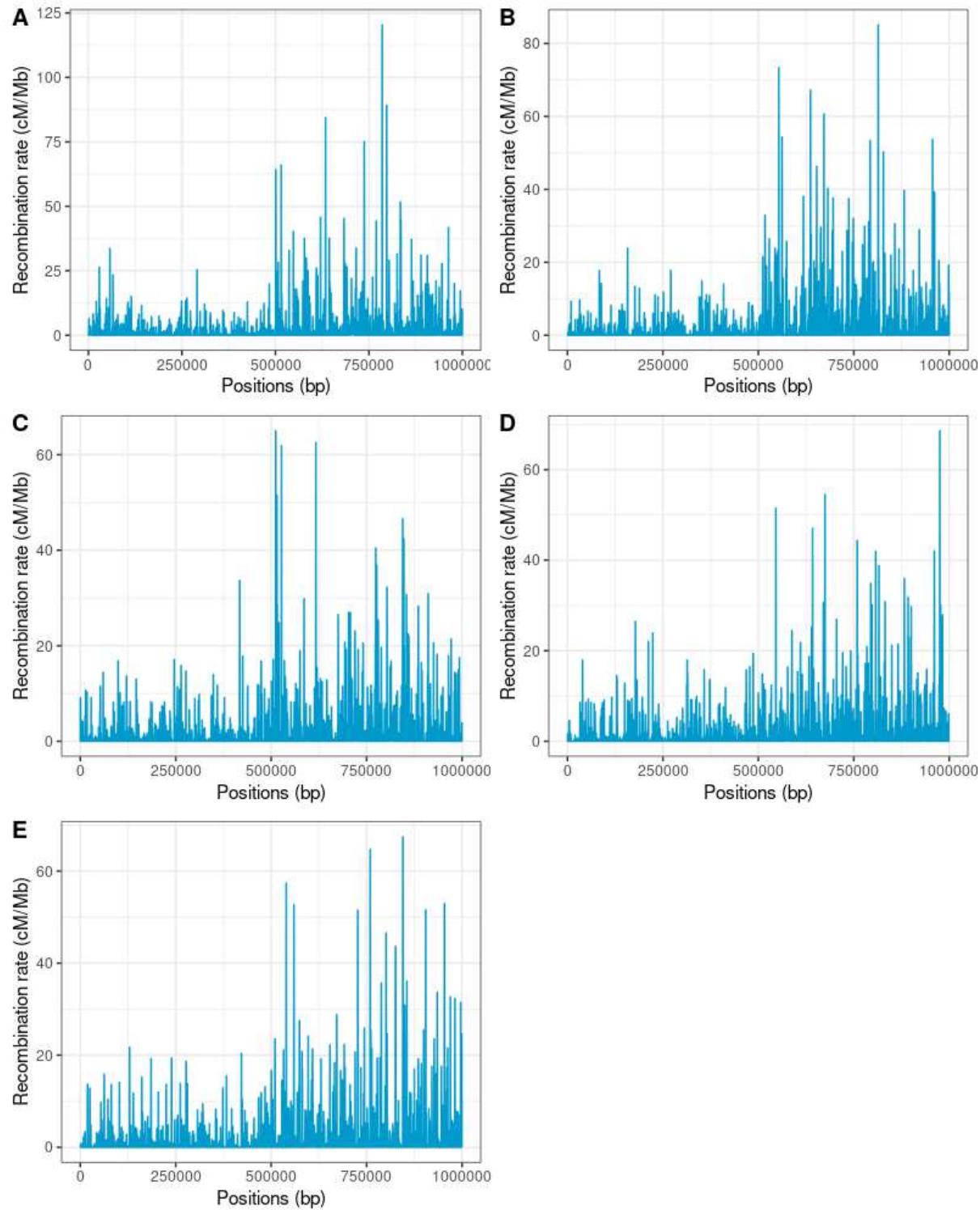
927

928 **Supplementary Figures**

929
930 **Supplementary Table S1.** The 4 combinations of coalescent simulation parameters (N_e and
931 SS) in combination with three values of the block penalty parameter to LDhelmet (BP),
932 resulting in a total of 12 tested conditions in our analysis.

Ne	SS	BP
25000	10	5
		10
		50
	20	5
		10
		50
	10	5
		10
		50
	20	5
		10
		50

933
934
935

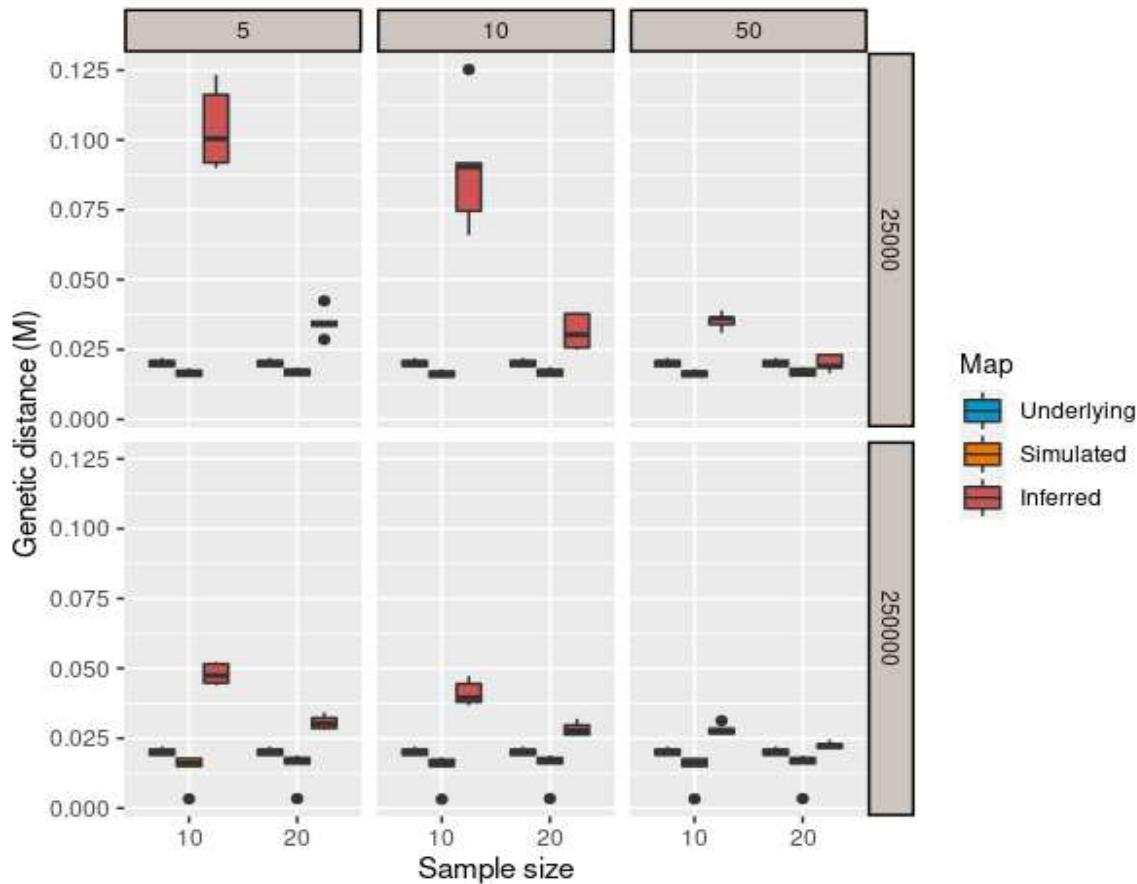


936

937 **Supplementary Figure S1.** The 5 underlying recombination landscapes (represented in units
938 of cM/Mb (y-axis) along a chromosomal region of 1Mb (x axis)) generated using human ChIP-
939 seq data from Pratto et al. (2014).

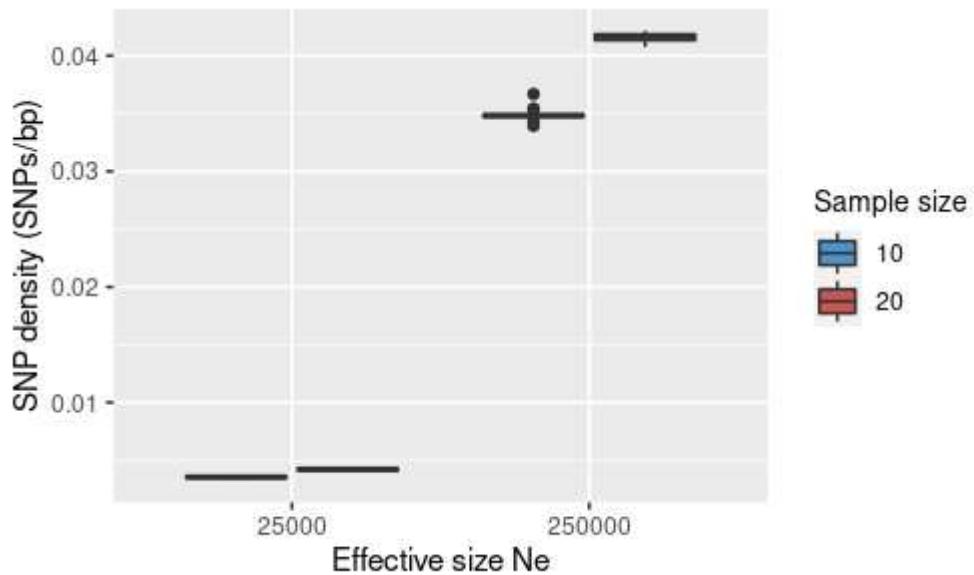
940

941



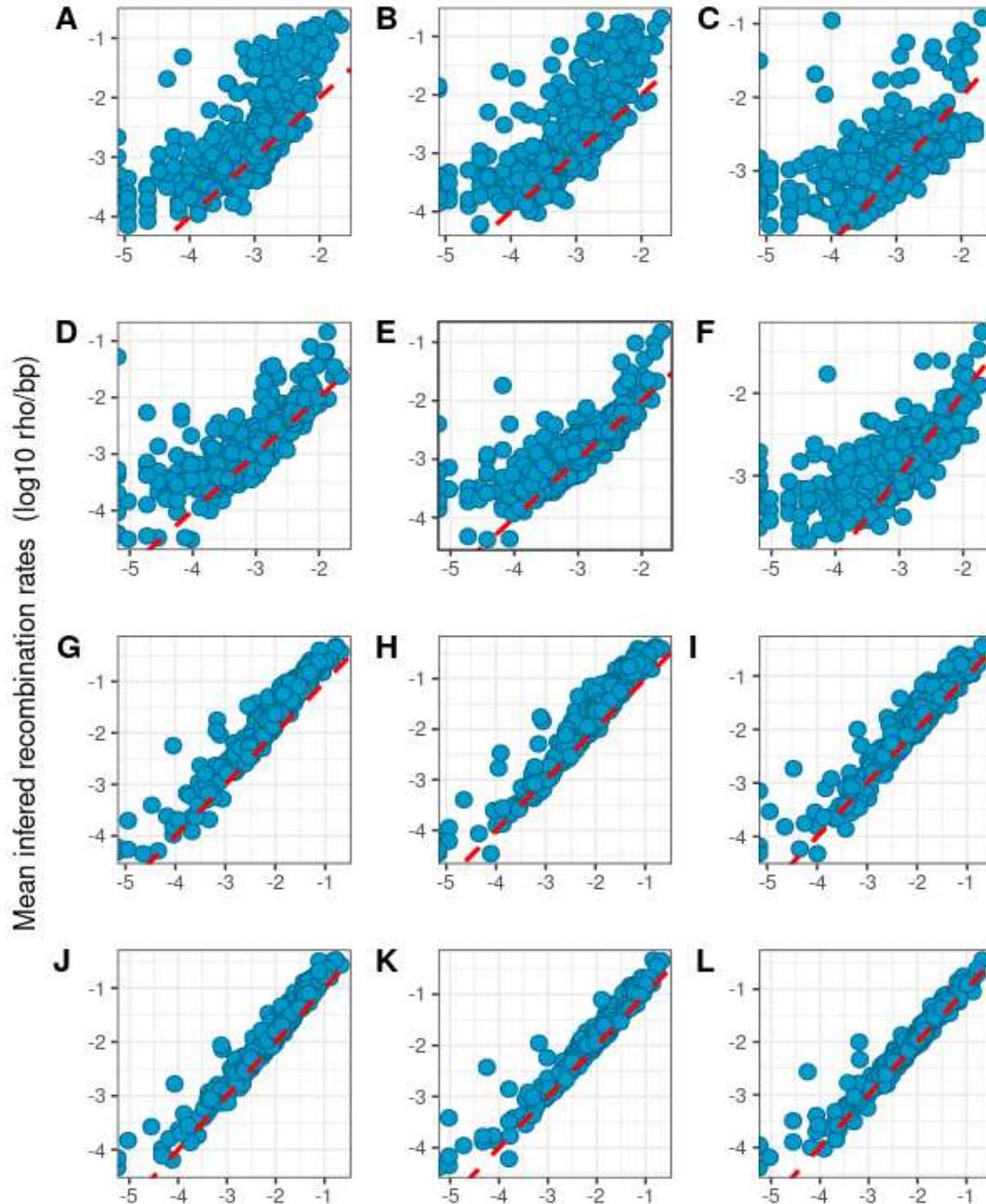
942
943
944
945
946

Supplementary Figure S2. Underlying, simulated and inferred map length, analysed at a 2.5 kb resolution.



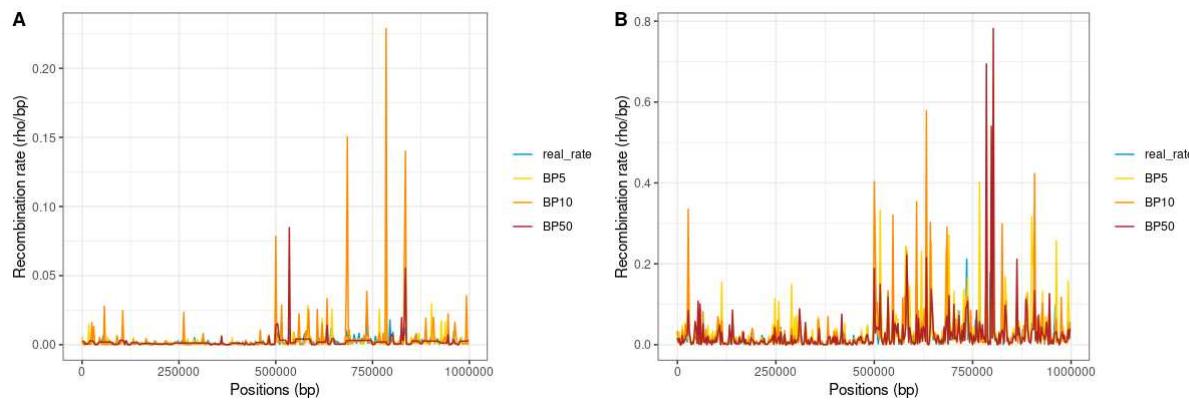
947
948
949
950
951

Supplementary Figure S3. SNP density according to coalescent simulation parameters (N_e and SS). The sample size (SS) parameter is shown with different colours (i.e. 10, blue or 20, red), and the effective population size (N_e) is shown on the x axis. The mutation parameter was $\mu = 10^{-8}$.



952
953 **Supplementary Figure S4.** Quality assessment of local recombination rates estimated by
954 LDhelmet and averaged within 2.5kb windows across 10 replicates, for the 12 conditions
955 tested in our analysis. The x axis shows the recombination rates of the mean simulated
956 landscapes and the y axis the recombination rates of the mean inferred landscapes, both on
957 a logarithmic scale. Each blue point corresponds to a local 2.5kb-window average calculated
958 across 10 replicate populations obtained under identical simulation parameters. **A)** $N_e =$
959 25,000, SS = 10, BP = 5. **B)** $N_e = 25,000$, SS = 10, BP = 10. **C)** $N_e = 25,000$, SS = 10, BP =
960 50. **D)** $N_e = 25,000$, SS = 20, BP = 5. **E)** $N_e = 25,000$, SS = 20, BP = 10. **F)** $N_e = 25,000$, SS =
961 20, BP = 50. **G)** $N_e = 250,000$, SS = 10, BP = 5. **H)** $N_e = 250,000$, SS = 10, BP = 10. **I)** $N_e =$
962 250,000, SS = 10, BP = 50. **J)** $N_e = 250,000$, SS = 20, BP = 5. **K)** $N_e = 250,000$, SS = 20, BP
963 = 10. **L)** $N_e = 250,000$, SS = 20, BP = 50.

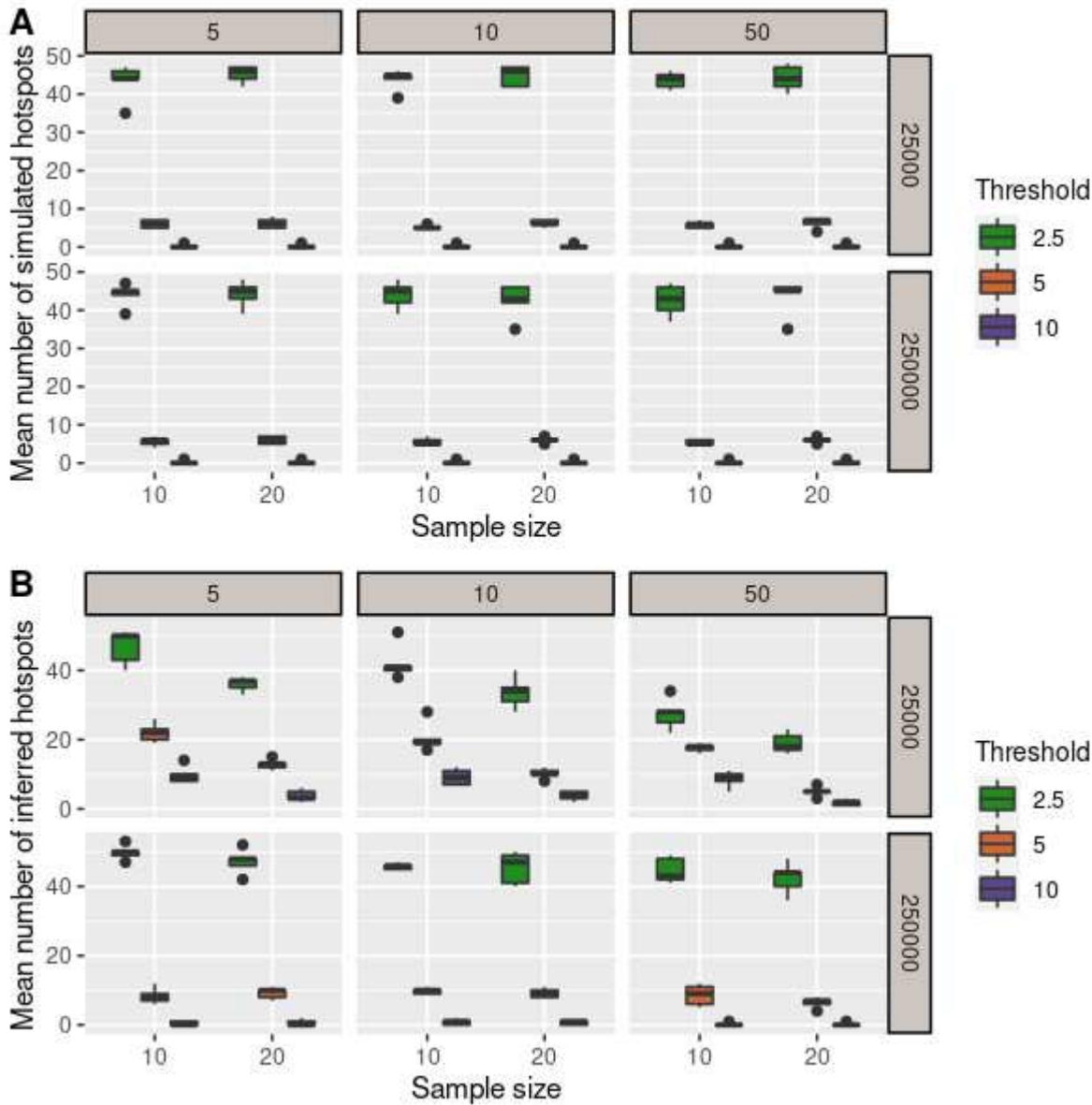
964



965

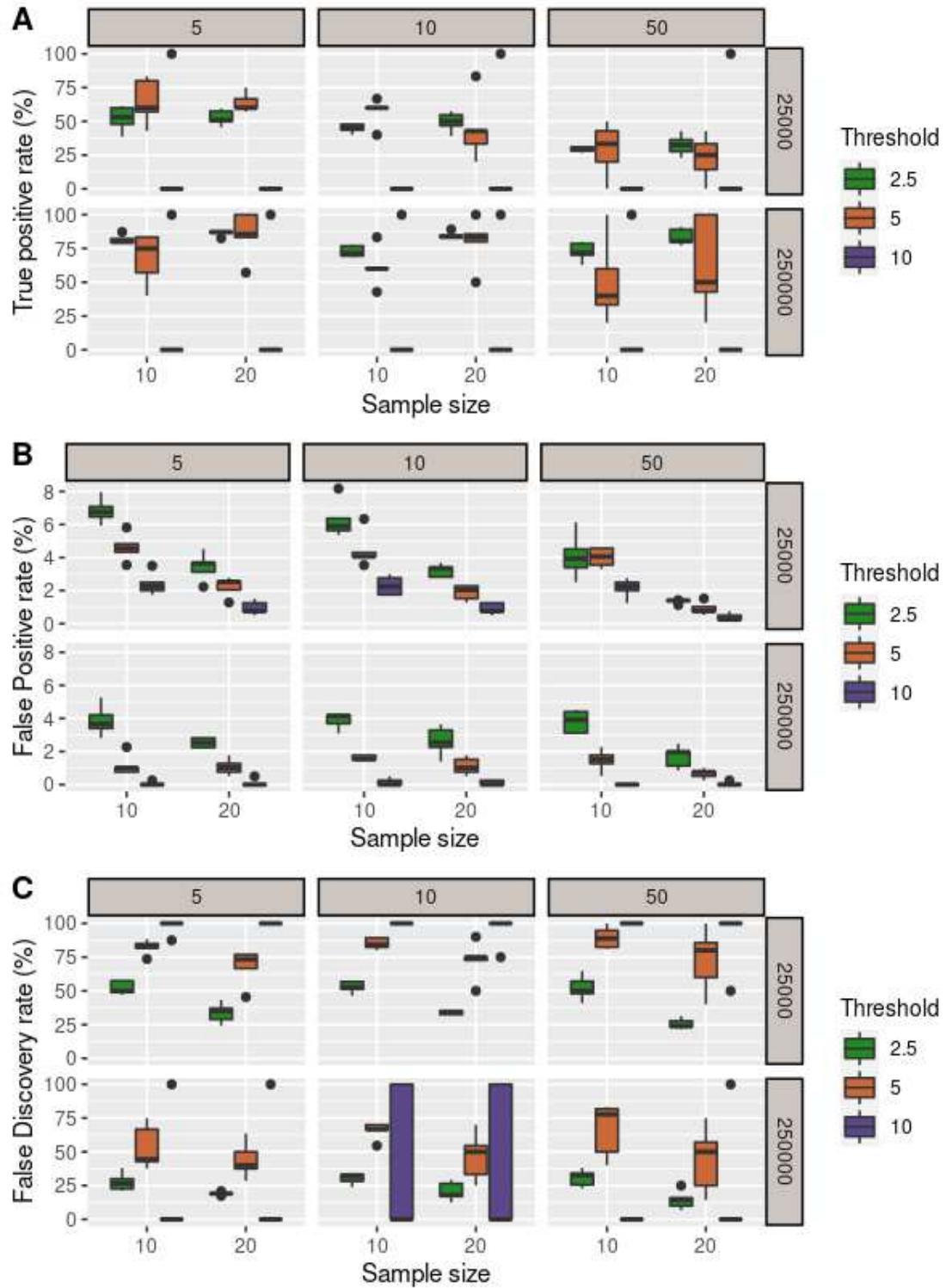
966

967 **Supplementary Figure S5.** Influence of the block penalty value on the recombination
968 landscapes inferred by LDhelmet. The map recombination rate variation (represented in units
969 of ρ /bp) is shown in blue for one of the five underlying landscapes. The corresponding
970 recombination landscape inferred with a $BP = 5, 10$ and 50 are shown in yellow, orange and
971 red respectively, for $SS = 20$ and $N_e = 25,000$ (**A**) and $N_e = 250,000$ (**B**).
972



973
974
975
976
977
978
979
980
981

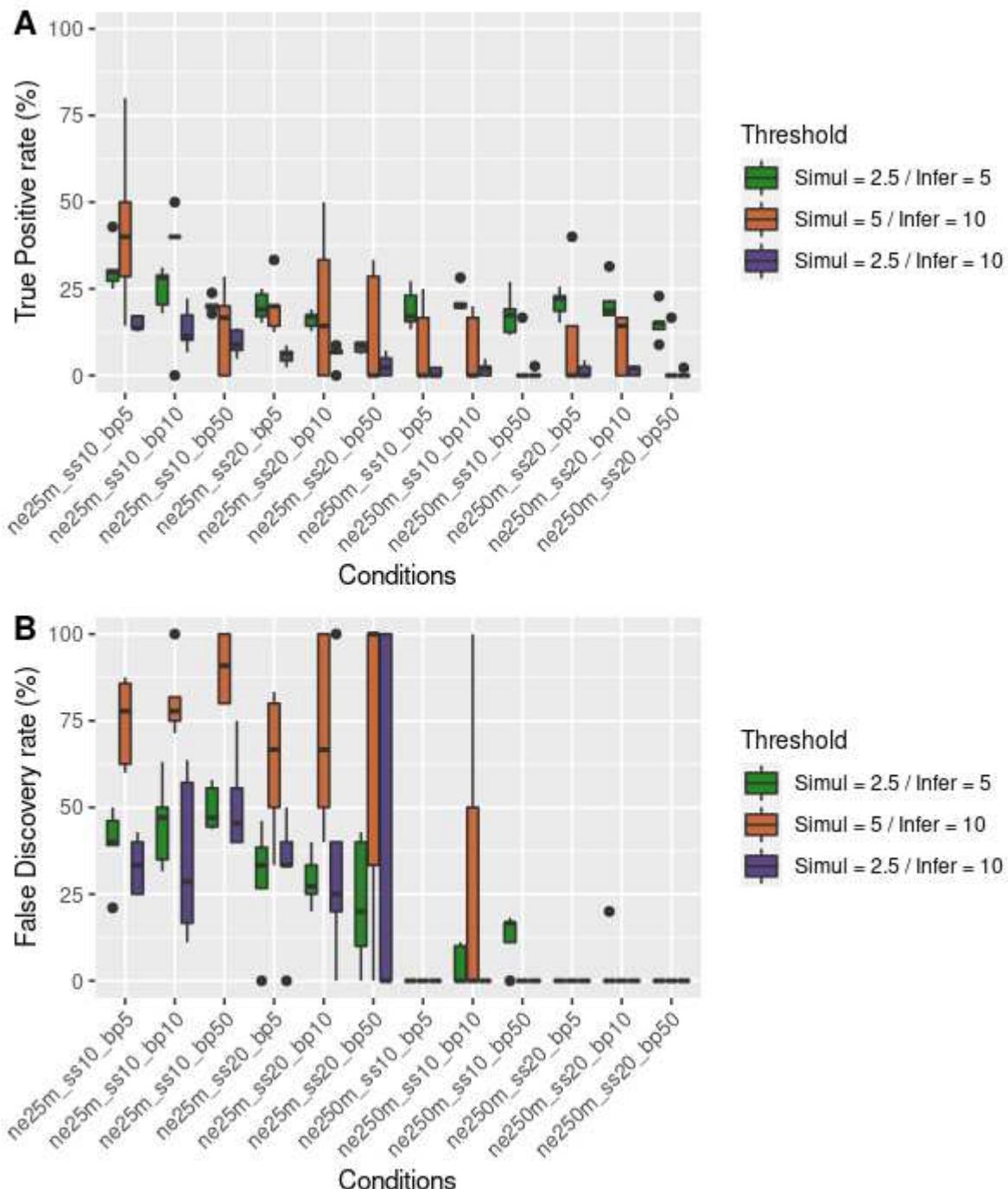
Supplementary Figure S6. Mean number of hotspots detected from the simulated (A) and inferred (B) landscapes originating from the 5 different underlying landscapes. Results are represented for each of the 12 conditions tested, and for three hotspots detection threshold as shown by colours (i.e. 2.5, 5 and 10). The sample size parameter is shown on the x axis (i.e. 10 or 20), the upper panels correspond to conditions where $N_e = 25,000$, the lower panels correspond to conditions where $N_e = 250,000$, and the BP parameter values correspond to the vertical panels (i.e. from left to right : 5, 10 and 50). **A)** Mean number of simulated hotspots. **B)** Mean number of inferred hotspots.



982

983 **Supplementary Figure S7.** Hotspot detection from the 5 mean inferred landscapes
 984 originating from the 5 different underlying landscapes. Results are represented for each of the
 985 12 conditions tested, and for three hotspot detection thresholds as shown by colours (*i.e.* 2.5,
 986 5 and 10). The sample size parameter is shown on the x axis (*i.e.* 10 or 20), the upper panels
 987 correspond to conditions where $N_e = 25,000$, the lower panels correspond to conditions where
 988 $N_e = 250,000$, and the BP parameter values correspond to the vertical panels (*i.e.* from left to
 989 right : 5, 10 and 50). **A**) True positive rate (sensitivity). **B**) False positive rate. **C**) False
 990 discovery rate.

991



992

993

994

995

996

997

998

999

1000

Supplementary Figure S8. Hotspot detection from the 5 mean inferred landscapes originating from 5 different underlying landscapes, for each of the 12 conditions tested (on the y axis), and for three combinations of “real hotspots definition / inferred hotspot detection threshold” applied to the mean simulated and the mean inferred landscape, respectively (*i.e.* 2.5/5, 5/10, 2.5/10, as shown by colours). **A)** True positive rate (sensitivity). **B)** False discovery rate.

1001 **Supplementary Table S2.** Percentages of shared hotspots from simulated and inferred
 1002 landscapes between populations with either different or identical underlying recombination
 1003 landscapes. R^2 and mean proportion of shared hotspots are indicated for each type of
 1004 comparison, including pairwise comparisons among simulated (left) or inferred (right)
 1005 landscapes originating from either different underlying landscapes (top, following simulation
 1006 framework from Figure 1A), or from the same underlying landscape (down, following
 1007 simulation framework from Figure 1B).

$R^2 \log(\text{simuli} \sim \text{simulj})$	Mean proportion of shared simulated hotspots			$R^2 \log(\text{inferi} \sim \text{inferj})$	Mean proportion of shared inferred hotspots		
	Threshold = 5	Threshold = 2.5	Threshold = 10		Threshold = 5	Threshold = 2.5	Threshold = 10
Different underlying landscapes							
Ne = 25000 SS = 10 BP = 5	0.012	1.715	8.065	0.00	0.033	5.385	13.99
Ne = 25000 SS = 10 BP = 10	0.015	1.835	7.275	0.00	0.043	4.945	11.28
Ne = 25000 SS = 10 BP = 50	0.014	1.55	7.595	0.00	0.039	5.075	5.895
Ne = 25000 SS = 20 BP = 5	0.014	2.00	9.045	0.00	0.032	3.95	9.735
Ne = 25000 SS = 20 BP = 10	0.013	1.55	8.505	0.00	0.042	1.125	7.46
Ne = 250000 SS = 20 BP = 50	0.015	1.43	8.55	0.00	0.084	0.00	4.28
Ne = 250000 SS = 10 BP = 5	0.017	2.085	8.42	0.00	0.013	0.00	11.245
Ne = 250000 SS = 10 BP = 10	0.016	2.00	8.18	0.00	0.013	3.055	11.125
Ne = 250000 SS = 10 BP = 50	0.015	2.00	7.11	0.00	0.012	0.97	9.86
Ne = 250000 SS = 20 BP = 5	0.017	1.715	7.675	0.00	0.014	1.17	9.55
Ne = 250000 SS = 20 BP = 10	0.013	1.55	7.12	0.00	0.014	1.18	8.695
Ne = 250000 SS = 20 BP = 50	0.016	1.67	8.075	0.00	0.015	1.34	7.32
Same underlying landscape							
Ne = 25000 SS = 10 BP = 5	0.7463	85.71	79.62	0	0.2139	30.65	28.55
Ne = 25000 SS = 10 BP = 10	0.7386	72.92	77.50	0	0.1429	10.9	12.9
Ne = 25000 SS = 10 BP = 50	0.7101	77.78	71.15	0	0.1173	10.7	21.7
Ne = 25000 SS = 20 BP = 5	0.7497	80.36	78.99	0	0.311	14.85	26.9
Ne = 25000 SS = 20 BP = 10	0.7908	78.75	72.61	0	0.3035	27.7	23.55
Ne = 25000 SS = 20 BP = 50	0.7622	65.00	76.09	0	0.2206	0	21.15
Ne = 250000 SS = 10 BP = 5	0.9466	80.36	90.42	0	0.6301	15.3	35.65
Ne = 250000 SS = 10 BP = 10	0.9346	85.71	85.81	0	0.6671	31.75	38.95
Ne = 250000 SS = 10 BP = 50	0.9391	81.25	90.33	0	0.6019	6.3	36
Ne = 250000 SS = 20 BP = 5	0.9554	80.36	93.79	0	0.7514	32.55	49.15
Ne = 250000 SS = 20 BP = 10	0.9562	92.86	92.57	0	0.7157	26.7	55.55
Ne = 250000 SS = 20 BP = 50	0.9488	87.50	82.38	0	0.7421	56.9	54.25

1008
 1009

1010