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Abstract

Knowledge of recombination rate variation along the genome provides important
insights into genome and phenotypic evolution. Population genomic approaches offer an

attractive way to infer the population-scaled recombination rate p=4N.r using the linkage

disequilibrium information contained in DNA sequence polymorphism data. Such methods
have been used on a broad range of plant and animal species to build genome-wide
recombination maps. However, the reliability of these inferences has only been assessed
under a restrictive set of conditions. Here, we evaluated the ability of one of the most widely
used coalescent-based approaches, LDhelmet, to infer a biologically-realistic genomic
landscape of recombination. Using simulations, we specifically assessed the impact of
empirical (sample size, block penalty) and evolutionary parameters (effective population size
(Ne), mutation and recombination rates) on inferred map quality. We report reasonably good
correlations between simulated and inferred landscapes, but point to limitations when it comes
to detecting recombination hotspots. False positives and false negatives considerably
confound fine-scale patterns of inferred recombination under a wide array of conditions,
particularly when Ne is small and the mutation/recombination rate ratio is low, to the extent
that maps inferred from populations sharing the same recombination landscape appear
uncorrelated. We thus address a message of caution to users of such approaches, while also
recognizing their importance and potential, particularly in species with less complex
landscapes for which LD-based approaches should provide high quality recombination maps.
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Introduction

Recombination is highly conserved among sexually reproducing species of
eukaryotes. This fundamental mechanism of meiosis is essential for the proper segregation of
homologous chromosomes during the reductional division. Recombination involves crossing
over events (CO) that play a crucial evolutionary role by allowing genetic mixing and
generating new combinations of alleles (Baudat and de Massy 2007; Cromie et al. 2001;
Capilla et al. 2016). Measuring the rate at which recombination occurs and the magnitude of
its variation along the genome has important implications for fundamental research in
molecular biology and evolution, but also for applied genomics such as genome-wide
association studies (GWAS) (Morris et al. 2013; Hunter et al. 2016). Several approaches have
been developed to reconstruct genome-wide recombination maps (reviewed in Penalba and
Wolf 2020). Cytological methods, like ChlP-seq, target protein-DNA complexes directly
involved in the formation of double-strand breaks (DSB) and CO during meiosis (Pratto et al.
2014). Gamete typing methods analyse the meiotic products of a diploid individual (reviewed
in Carrington and Cullen 2004; Dréau et al. 2019; Sun et al. 2019). Methods based on pedigree
analysis reconstruct the gametic phase from patterns of allele inheritance in bi-parental
crosses (Lander and Green 1987; Kong et al. 2002; Kodama et al. 2014; Rastas 2017). All
these approaches have the advantage of providing direct estimates of the recombination rate.
However, by focusing on CO that occurred in a few individuals or families across one or a
couple of generations, they remain intrinsically limited in resolution due to the small number
of recombination events that occur per chromosome per generation (Clark et al. 2010; Pefalba
and Wolf, 2020).

Another type of approach uses genome sequence data from natural samples to take
advantage of the large number of recombination events that have occurred during the history
of the considered species/population. Instead of directly observing crossover products, these
methods detect the footprints left by historical recombination events on patterns of haplotype
segregation and linkage disequilibrium (LD) (reviewed in Stumpf and McVean 2003). The
recombination rate and its variation across the genome are inferred via coalescent-based
analysis of DNA sequence polymorphism data (Chan et al. 2012; Kamm et al. 2016; Li and
Stephens 2003; McVean et al. 2004; Spence and Song 2019). The resulting LD maps have
been widely used to evaluate the genomic impact of natural selection and admixture, and to
perform genome-wide association studies (GWAS) (e.g. Chan et al. 2012; The International
HapMap Consortium 2007). These approaches provide an accessible and attractive way of
describing recombination landscapes - i.e. the variation of recombination rates along the

genome - particularly in non-model taxa where direct methods are often difficult to implement
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69  (Auton et al. 2012, 2013; Melamed-Bessudo et al. 2016; Shanfelter et al. 2019; Singhal et al.
70  2015; Shield et al. 2020).

71 Direct and indirect methods have revealed considerable variation in recombination rate
72  at different scales along the genome, particularly in vertebrates. At a large scale (of the
73  megabase order), recombination tends to be concentrated in subtelomeric regions compared
74  to centromeric and centro-chromosomal regions, a pattern shared among many species of
75 plants and animals (Auton et al. 2012; Capilla et al. 2016; Danguy des Déserts et al. 2021;
76  Haenel et al. 2018; Melamed-Bessudo et al. 2016). At a finer scale (of the kilobase order),
77  recombination events often cluster in small regions of about 2 kb, called recombination
78  hotspots (Choi and Henderson, 2015; Kim et al. 2007; Mancera et al. 2008; Myers et al. 2005;
79  Shanfelter et al. 2019; Singhal et al. 2015; Schield et al. 2020). Two distinct regulatory systems
80  of recombination hotspot location have been described to date, with major implications on the
81  evolutionary dynamics of recombination landscapes. In passerine birds (Singhal et al. 2015),
82  dogs (Auton et al. 2013; Axelsson et al. 2012) and some teleost fishes (Shanfelter et al. 2019;
83  Baker et al. 2017), recombination hotspots tend to be found in CpG-islands / promoter-like
84  regions, and are highly conserved between closely-related species (Singhal et al. 2015). In
85  contrast, in humans (Myers et al. 2005, 2010), apes (Auton et al. 2012 ; Great Ape Genome
86  Project 2016) and mice (Booker et al. 2017), hotspot location is directed by the PRDM9
87  protein, which binds specific DNA motifs and triggers the formation of DSBs (Baudat et al.
88  2010; Grey et al. 2018; Simon Myers et al. 2010; Oliver et al. 2009; Parvanov et al. 2010). In
89 these taxa, hotspots are mostly located away from genes (Auton et al. 2012; Baker et al.
90 2017), and show little or no conservation between closely related species (Myers et al. 2005,
91  2010; Auton et al. 2012; Booker et al. 2017) due to self-destruction by gene conversion and
92 rapid turnover of PRDM9 alleles (Coop and Myers 2007; Latrille et al. 2017; Lesecque et al.

93 2014).
94 Population-based inference methods aim to infer the population recombination rate p
95  =4N.r, rbeing the per meiosis, per bp recombination rate and N. the effective population size

96 (Stumpfand McVean, 2003). The p parameter reflects the density of population recombination
97  events that segregate in polymorphism data, integrated across time and lineages. Several
98 programs have been developed for reconstructing LD-maps (reviewed in Pefalba and Wolf,
99 2020); PHASE: Li and Stephens, 2003; LDhat: McVean et al. 2004; LDhelmet: Chan et al.
100 2012, LDpop: Kamm et al. 2016; pyrho: Spence and Song, 2019), which use coalescent theory
101  based on the ancestral recombination graph (Griffiths et al. 1997; Arenas, 2013) to model and
102  explore the genealogies of the distinct genomic segments. The most popular family of LD-
103  based methods like LDhat (McVean et al. 2004) and its improved version LDhelmet (Chan et
104 al. 2012), implement a pairwise composite likelihood method under a Bayesian framework
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105  using a reversible jump Markov Chain Monte Carlo (jfMCMC) algorithm. They have been used
106  for building fine scale LD-based maps in a broad range of animal taxa including humans
107  (McVean et al. 2004), dogs (Axselsson et al. 2012 ; Auton et al. 2013), fruitfly (Chan et al.
108 2012), finches (Singhal et al. 2015), bee (Wallberg et al. 2015), stickleback (Shanfelter et al.
109 2019), rattlesnakes (Schield et al. 2020). In some species, inferred LD-based maps have been
110  validated by assessing their correlation with recombination maps obtained using conventional
111 approaches, confirming their quality (Chan et al. 2012; McVean et al. 2004; Booker et al. 2017;
112  Shanfelter et al. 2019; Singhal et al. 2015). However, as genetic and LD-based maps greatly
113  differ in resolution (pedigree-based inference provide resolution of about 1 cM, while
114  population-based methods can infer recombination events at the kilobase scale, (Penalba and
115  Wolf, 2020)), such comparisons do not provide qualitative information on the reliability of the
116  detected hotspots. Moreover, the heterogeneity of the data analysed in these papers (in terms
117  of taxonomy, genetic diversity, demography, sample size, and software parameters, among
118  other things) makes it difficult to appreciate the performance and the possible weaknesses of
119  LD-based methods. In fact, the reliability and conditions of application of LD-based methods
120  are still poorly understood and need to be deeply characterised, considering the growing
121 importance of these tools.

122 The power and sensitivity of LDhat and LDhelmet have been tested by simulations
123  aiming to evaluate the influence of switch error in haplotype phasing (Booker et al. 2017;
124  Singhal et al. 2015), the amount of polymorphism, and the intensity of recombination hotspots
125 (Singhal et al. 2015). These studies simulated simple recombination landscapes assuming
126  either homogeneous recombination rates or a few, well-defined hotspots contrasting with a
127  low-recombination background (Auton & McVean, 2007; Booker et al. 2017; Chan et al. 2012;
128 McVean et al. 2004; Shanfelter et al. 2019; Singhal et al. 2015; Schield et al. 2020). Real
129  recombination landscapes, however, are usually more complex and involve a continuous
130 distribution of recombination hotspot density and intensity across genomic regions. This
131  complexity has not been taken into account so far in studies assessing the performance of
132  LD-map reconstruction methods. We thus lack a comprehensive picture of the ability of these
133  methods to properly recover the biological characteristics of real recombination landscapes.
134 In particular, the proportion of the inferred recombination hotspots that are correct, and the
135  proportion of true hotpots that are missed, have not yet been quantified under a biologically
136  realistic scenario. These are crucial quantities to properly interpret and use reconstructed LD-
137  maps in genomic research.

138 In this paper, we specifically assessed the performance of the LDhelmet program to
139  detect hotspots while assuming a biologically realistic recombination landscape. We evaluated
140 the influence of methodological parameters including sample size and block penalty, and
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141  species-specific parameters such as the effective population size, mutation rate, and
142  recombination rate. We also considered different definitions of a recombination hotspot
143  relative to its background recombination rate, with the aim of improving the sensitivity of the
144  analysis. We identified the conditions in which LD-based inferences can provide an accurate
145  mapping of hotspots, and the parameters that negatively affect the sensitivity and specificity
146  of their detection within biologically realistic recombination landscapes.

147

148

149 Results

150
151 Recombination landscape modelling

152 Five realistic, heterogeneous recombination landscapes (referred to as “underlying
153 landscapes” in this paper) of 1Mb length were built using the human genome high resolution
154  map of meiotic DSB from Pratto et al. (2014). In order to mimic both broad and fine scale
155  variation in the recombination rate parameter r, (Supplementary Figure S1) the first and
156  second half of each landscape were drawn from a gamma distribution of mean 1 cM/Mb and
157 3 cM/Mb, respectively, with parameters fitted from Pratto et al. (2014) (1-500,000bp:
158  shape=rate=0.1328; 500,001pb-1Mb: shape=0.1598, rate=0.0532). Accordingly, the 5
159  recombination landscapes generated (Figure 1A, Supplementary Figure S1) showed broad
160  scale differences in recombination peak intensity, with less elevated recombination peaks in
161  the first half compared with the second half of each chromosome. At a fine scale,
162  recombination was concentrated in numerous peaks resembling human recombination
163  hotspots, with about 85% of the recombination concentrated in 15% of the genome. The map
164  lengths in recombination units were about 0.02 Morgan (Supplementary Figure S2).

165
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167  Figure 1. Simulation and inference protocols. A) In the first simulation framework, 5 different
168  underlying recombination landscapes were generated based on human empirical data. These
169 5 landscapes can either be considered as parts of different chromosomes from the same
170  species, or as orthologous parts of chromosomes from different species. For each of the 5
171 underlying landscapes, 10 recombination landscapes were simulated with MSPRIME for 4
172  combinations of effective population size (Ne) and sample size (SS) parameters, generating
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173  a VCF file for each simulated population. The VCF files were then used to infer the local
174  population recombination rates using LDhelmet with 3 alternative block penalty values (BP, a
175  key parameter to LDhelmet), representing a total of 12 tested conditions. B) In the second
176  simulation framework, only one of the 5 underlying landscapes was used to generate 2
177  simulated populations for each of the 4 combinations of simulation parameters, before running
178 LDhelmet 10 times in replicate for 3 different values of block penalty, representing a total of
179 12 tested conditions.

180

181 Recombination landscapes of simulated populations (hereafter called “simulated
182 landscapes”) were generated in 10 replicates for each underlying landscape, using coalescent
183  simulations with a mutation rate y=10-8 and 4 combinations of sample sizes (SS=10 or 20)
184  and effective population sizes (Ne=25,000 or 250,000) (Figure 1A). The simulated landscapes
185  were a little shorter than the underlying landscapes (about 0.015-0.018 Morgan), reflecting the
186  occasional occurrence of more than one recombination event between two adjacent SNPs
187  during the simulated coalescent histories (Supplementary Figure S2). They were also highly
188  correlated with the underlying landscapes for each combination of parameters (Spearman’s
189 rank correlation > 0.8 at 500bp resolution), showing that the stochasticity of the coalescent
190  process has not resulted in a substantial loss of information about the underlying landscape.
191  As expected from the 6=4Ngu values used in our simulations (6 = 0.001 and 0.01 for Ne =
192 25,000 and 250,000, respectively), the SNPs density of the large N. populations was about
193  one order of magnitude higher than for smaller N, populations (Supplementary Figure S3).
194

195 Demographic, species-specific and methodological parameters affect
196  LDhelmet performance

197 Population-scaled recombination rates (p) were inferred from the simulated

198  polymorphism datasets using the program LDhelmet (Chan et al. 2012) (referred to as

199  “inferred landscapes”). Three block penalty (BP) values (ie. the degree of landscape

200 resolution), which determine the number of allowed changes in p value within windows of 50

201 consecutive SNPs were tested (BP=5, 10, or 50) for each of the 4 SS-N, combinations,
202  resulting in 12 tested conditions (Figure 1A). Underlying and simulated landscapes were

203  converted into population-scale recombination rates (p=4Ner), and each underlying, simulated

204  andinferred maps were smoothed in 500bp (i.e. underlying landscape resolution) and 2,500bp
205 windows (i.e. a resolution-level better suited to the SNP density in our low-N, simulations).
206 The 10 simulated and inferred replicates of each condition were averaged to perform
207  comparisons between mean landscapes. Overall, local recombination rates tended to be
208 overestimated by LDhelmet. but this was especially observed when the local p was either very
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209 low (p < 10-4) or very high (o > 10-2) (Figure 2, Supplementary Figure S4). The mean inferred
210  map lengths calculated across replicates varied substantially among tested conditions (0.017-
211 0.125 M), reaching up to 6 times the length of simulated maps when Ne, SS and BP were low
212 (i.e. Ne = 25,000, SS = 10, BP = 5, 10). In contrast, when N, SS and BP were high (N, =
213 250,000, SS = 20, BP = 50) the inferred map lengths were closer to the expected value of
214 0.02 M (Supplementary Figure S2). A BP value of 50 produced very smooth recombination
215  maps when N, was low, which did not capture local-scale variation in recombination rate. By
216  contrast, maps inferred with BP=5 or BP=10 were visually similar and better reflected the local-
217  scale variation of the underlying landscapes (Supplementary Figure S5). Spearman
218  correlation coefficient between the mean simulated and inferred landscapes was lower when
219  N. and SS were small, with a conspicuous effect of N, on this measure (Figure 3A). Replicate
220 runs of LDhelmet showed a strong consistency, as revealed by elevated correlations among
221  the 10 replicate landscapes inferred from the same simulated landscape, whatever the
222  condition being tested (Spearman’s rho > 0.89, Figure 3B).

223 Recombination hotspots of the underlying, simulated and inferred landscapes were
224  called using three different threshold values commonly used in the literature (ie. local
225 recombination rate at least 2.5, 5 or 10 times higher than the background rate). True/False
226  positives/negatives rates and discovery rates (TPR, FPR, TDR, FDR, TNR, FNR) were
227  computed under each tested condition. The hotspot detection threshold ratio of 10 between
228 the focal and flanking recombination rates appeared too stringent and yielded a very small
229  number of called hotpots (Supplementary Figure S6). Using a less conservative threshold ratio
230 of 5, we detected 4 to 8 hotspots per Mb in the simulated landscapes, and 5 to 20 per Mb in
231  theinferred landscapes. These numbers reached 40-50 and 20-50 per Mb, respectively, when
232  a threshold of 2.5 was used. Irrespective of the chosen threshold, the number of inferred
233  hotspots tended to be overestimated, especially when N, was small, and to a lesser extent
234  when SS was small (Supplementary Figure S6). The sensitivity (or TPR) of LDHelmet was
235 medium to high, since depending on conditions, between 50% and 100% of the simulated
236  hotpots were inferred as such. TPR was significantly higher for large Ne and SS, with a more
237  pronounced effect when the detection threshold was set to 2.5 (Figure 4A, Supplementary
238  Figure S7A). The specificity was reasonably high under the best conditions/settings, but
239  dropped dramatically when N. and/or SS were low, especially for a threshold ratio of 5. In the
240 worst cases, 80% of the inferred hotspots corresponded to non-hotspot windows in the
241 simulated maps (FDR, FPR, Figure 4B, Supplementary Figure S7B and C).

242
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Figure 2. Quality assessment of local recombination rates estimated by LDhelmet, averaged
within 2.5kb windows across 10 replicates. The x axis shows the recombination rates of the
mean simulated landscapes and the y axis the recombination rates of the mean inferred
landscapes, both on a logarithmic scale. Each blue point corresponds to a local 2.5kb-window
average calculated across 10 replicate populations obtained under identical simulation
parameters. A) N. = 25,000, SS = 10, BP = 5. B) Ne = 25,000, SS = 20, BP = 5. C) Ne =
250,000, SS = 10, BP = 5. D) N. = 250,000, SS = 20, BP = 5.
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253
254  Figure 3. Correlations between simulated and inferred landscapes (A), and between

255  replicates of inferred landscapes (B), for each of the 12 tested conditions. The sample size is
256  shown on the x axis (i.e. SS=10 or 20), the N. parameter is indicated by colour (i.e. 25,000 or
257  250,000) and the LDHelmet BP values correspond to the different panels (i.e. BP=5, 10 or
258  50). A) Spearman correlation coefficients between the mean simulated and the mean inferred
259 landscape calculated across the 10 replicate populations originating from each of the five
260 different underlying landscapes (i.e. using simulation framework of Figure 1A). B) Mean
261 Spearman correlation coefficients calculated between pairwise comparisons among the ten
262  replicates of inferred landscapes, from simulated populations sharing the same underlying
263 landscape (i.e. using simulation framework of Figure 1B).

264

265  Control analysis

266 No significant difference in the correlation between simulated and inferred landscapes
267  was found between the first half of the chromosome with a mean r of 1 cM/Mb (referred to as
268 the “cold” region) and the last half with a mean r of 3 cM/Mb (the “hot” region). This was also
269 true for the TPR and the FDR, whatever the hotspot detection threshold used (i.e. 2.5 or 5)
270  (Student test, p > 0.05).

271 To account for the tendency of LDhelmet to overestimate large recombination rates,

10
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272  we compared various hotspot detection thresholds applied to the inferred landscapes, for a
273  given definition of what a true hotspot is in the simulated landscape. We aimed to evaluate
274  how these relative definitions can improve the sensitivity (FPR) of hotspot detection while
275  minimising the proportion of type | errors among called hotspots (FDR). When assuming that
276  real hotspots had a 2.5 increased recombination rate compared to their flanking regions in the
277  simulated landscape, the TPR was generally higher if a threshold of 5 was used for the inferred
278 landscape instead of a threshold of 10 (Supplementary Figure S8A), but lower than when
279  using the same threshold of 2.5. The FDR was in turn reduced when using thresholds of 5 and
280 10 as compared to 2.5 (Supplementary Figure S8B). We note, however, that the low FDR
281  obtained for the 2.5/10 combination was due to a very low number of inferred hotspots when
282  using a very conservative detection threshold. When the real hotspot threshold was assumed
283  to be 5 in the simulated landscape, using a detection threshold of 10 did not improve the TPR
284  and FDR (Student test, p < 0.05). Overall, these results suggest that, regardless of the actual
285 relative recombination rate of real hotspots compared to their background (e.g., 2.5- or 5-fold
286  higher), the detection threshold of 5 that is often used in the literature offers a good
287  compromise between sensitivity and FDR.

288

289 Differences between populations with different versus identical

290 underlying recombination landscapes

291 As expected for a comparison between two populations with different underlying
292 recombination landscapes, the mean linear correlation (R2? coefficient) between inferred
293 landscapes originating from different underlying landscapes was low, between 0.012 and
294 0.084, and similar to the R2 between simulated landscapes (0.012-0.017) (Table 1,
295  Supplementary Table S2). A low percentage of 1 to 10% of real hotspots were shared by
296 chance between distinct underlying landscapes, depending on the hotspot definition ratio.
297  Roughly similar proportions of shared hotspots were found between inferred landscapes
298  originating from different underlying landscapes, although these proportions were slightly
299  overestimated for low Ne, SS and BP (Table 1, Supplementary Table S2). A minority of the
300 sharedinferred hotspots were TP when N. = 25,000 (10-40%). This proportion increased when
301 N: was large, while not always reaching very high values, depending on conditions (25-100%).
302 Therefore, a non-zero fraction of truly shared hotspots is expected to be found between

303  species with different biological recombination landscapes.
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305 Figure 4. Hotspot detection from inferred landscapes for the four combinations of simulation
306 parameters, and two hotspots detection thresholds as shown by colours (i.e. 2.5 and 5). The
307 sample size parameter is shown on the x axis (i.e. 10 or 20), the left panel corresponds to
308 conditions where N, = 25,000, and the right panel to conditions where N. = 250,000. Only
309 conditions where BP =5 are shown. A) True positive rate (sensitivity). B) False discovery rate.
310

311 Then we compared simulated populations originating from an identical underlying
312  landscape to check the ability of LDhelmet to recover similar recombination rates between
313  populations with independent coalescent histories. The correlations between simulated
314  landscapes were generally high for both low (R?>0.7) and large N. (R?>0.9) conditions, but the
315  correlations between inferred landscapes were much lower, with R? < 0.3 and <0.75 for N; =
316 25,000 and 250,000, respectively (Table 1). The proportion of shared hotspots followed the
317  same trend: it was high between simulated landscapes (70 - 90%) and much lower between
318 inferred landscapes - below 30% in the worst cases (Table 1). Thus, one can expect LDhelmet
319 to detect a moderate to low fraction of shared hotpots even between species truly sharing a
320 common recombination landscape, depending on population size, sample size and hotpot
321  definition.
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322

323 Table 1. Percentages of shared hotspots from simulated and inferred landscapes between
324  populations with either different or identical underlying recombination landscapes. R? and
325 mean proportion of shared hotspots are indicated for each type of comparison, including
326  pairwise comparisons among simulated (left) or inferred (right) landscapes originating from
327  either different underlying landscapes (top, following simulation framework from Figure 1A),
328 or from the same underlying landscape (down, following simulation framework from Figure
329  1B). Only conditions where BP =5 are shown.

Mean proportion of shared simulated hotspots Mean proportion of shared inferred hotspots
R* log(simuli~simulj}  Threshold = 5 Threshold = 2.5 R? loglinferi~infer]) Threshold = 5 Threshold = 2.5
Different underlying landscapes
Ne = 25000 85 = 10 BP = 5 0.012 1.715 8.065 0.033 5.385 13.00
Ne 5000 55 = 20 BP =5 0014 2,00 9.045 0.032 3.95 9.735
Ne 50000 SS = 10BP =5 0.017 2.085 8.42 0.013 0.00 11.245
Ne = 250000 85 = 20 BP =5 0.017 1.715 T.675 0.014 1.17 09.55
Same underlying landscape
Ne = 25000 35 = 10 BP =5 0.7463 85.71 79.62 0.2139 30.65 28.55
0.7497 B0.36 7809 0.311 14.85 26.0
Ne = 250000 55 = 10 BF = 5 0.9466 B0.36 90,42 0.6301 15.4 35,60
331 Ne = 250000 85 = 20BP =5 0.9554 80.36 93.79 0.7514 32.55 19.15

334 Influence of the u/r ratio on hotspot detection

335 The influence of the mutation and recombination rates on the inference of
336 recombination landscapes was assessed by generating two additional underlying landscapes
337  but with a ten times higher (i.e. 20 cM/Mb) and lower (i.e. 0.2 cM/Mb) average recombination
338 rate, and by producing coalescent simulations under varying mutation rates (i.e. 10-9, 10-8
339 and 10-7). The p/rratio of these 6 new conditions thus equalled 0.1, 1 or 10. For all conditions,
340 Spearman’s rank correlation between the mean simulated and the mean inferred landscapes
341  was greater than 0.9, except when p equalled 10-9 (Spearman’s p ~0.7, Table 2). The mean
342  pairwise Spearman’s correlation obtained among the 10 inferred replicates was =0.8, except
343  when p or requalled 10-9 (=0.5-0.6, Table 2). An increased p/r ratio improved the detection
344  of hotspots when rwas fixed to 10-8, with a higher TPR (up to >80%) and a lower FDR (<5%)
345 when pincreased (prop.test, p-value < 0.05 when the threshold is 2.5, Figure 5). The p/rratio
346  did not affect the performances the same way when u was fixed to 10-8: a u/rratio of 10 (r =
347  10-9) yielded lower TPR (< 60%) and higher FDR (> 25%) than a ratio of 1 or 0.1, although
348 these trends were not significant (prop.test, p-value > 0.05, Figure 5).

349
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351  Figure 5. Influence of the u/r ratio on hotspot detection. Colours correspond to different u/r
352 ratios, the left panels show conditions where r was fixed to 10-8, and right panels conditions
353 where p was fixed to 10-8. The horizontal panels correspond to the threshold used to detect
354  hotspots. The x axis indicates the different u or rvalues used in the simulations, and the y axis
355  shows the true positive (A) and false discovery (B) rates. The asterisks show the significance

356 level of the prop.test, with * indicating p-value<0.05, ** <0.01 and *** <0.001.
357

358
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359 Table 2. Influence of the p/r ratio on Spearman's correlation between mean simulated and
360 mean inferred landscapes, as well as on mean pairwise Spearman's correlation between the
361 10 inferred replicates, and on hotspot detection metrics. The true positive (sensitivity) and
362 false discovery rates are indicated for the three hotspot detection thresholds tested (i.e. 2.5, 5

363 and 10).
364
Threshold = 2.5 Threshold = 5 Threshold = 10
Ratio r u Correlation simulated-inferred  Mean pairwise correlation  TPR FDR TPR  FDR TPR FDR
10 10-8 10-7 0.989 0.882 89.36 4.55 100.00 0,00 0 0
1 10-8  10-8 0.951 0.788 82.22 19.57 66.67 4286 0 100
0.1 10-8  10-9 0.697 0.511 41.30 62.75 16.67 91.67 0 100
0.1 10-7  10-8 (.966 0,771 T4.4T7 16.67 37.50 25.00 0 0
1 10-8  10-8 0.958 0.792 78.72 27.45 100.00  53.85 0 100
10 10-9  10-8 0.932 0.596 60.63 30.30 54.55 40,00 1] 100
365
366
367
368 Discussion
369

370 Inferred LD-maps should be interpreted with caution

371 Inference methods based on linkage disequilibrium provide an attractive way to
372  characterise genomic recombination landscapes from sequence data. As such, they promise
373 to become increasingly popular in empirical studies of eukaryotes. However, their ability to
374  accurately reproduce real recombination landscapes has not been specifically evaluated. It
375 should be recalled, however, that LD-based recombination maps are inferences, not
376  observations; biases and uncertainty must be quantified and taken into account when it comes
377  to interpreting the results. Here, we modelled the biological characteristics of a particularly
378  well-documented recombination landscape, that of humans, as a basis for assessing the
379 impact of methodological and species-specific evolutionary parameters on the performance of
380 the LDhelmet method. Our results send a message of caution regarding the reliability of
381 reconstructed recombination maps and hotspot location.

382 Indeed we show that the recombination landscapes inferred with LDhelmet differ from
383 real landscapes, sometimes substantially, with Spearman’s rank correlation between real and
384 inferred 2.5 kb windows sometimes as low as ~ 0.7 (Figure 3A). Hotspot detection is a
385  particularly tricky and error-prone task: while up to 85% of true hotspots can be detected in
386 the most favourable situations, the FDR ranged from 19% to 82% (Figure 4) according to the
387 type of data and parameters used, meaning that in many cases a majority of the detected
388  hotspots are incorrect calls. These discrepancies lead to a reduction in the apparent overlap
389 in hotspot location between species/populations with identical recombination landscapes,
390 while inturn inflating apparent hotspot sharing in populations with divergent landscapes (Table
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391 1, Table S2). If neglected, these effects might mislead biological interpretations regarding the
392  evolutionary conservation of recombination maps.

393 In a study of the short time-scale dynamics of recombination landscapes based on
394  LDhelmet, Shanfelter et al. (2019) found only 15% of shared hotspots between two recently-
395 diverged populations of threespine stickleback. A greater overlap in hotspot location was a
396  priori expected given that this species lacks a functional PRDM9 protein, which is responsible
397  for the rapid turnover of recombination landscapes in mammals (Axelsson et al. 2012; Paigen
398 and Petkov, 2018). The authors suggested that a new mechanism of recombination hotspot
399 regulation, different from the two already described in the literature, might be at work in this
400 teleost species. In the light of our results, however, one cannot exclude that the strong
401  divergence between the two reconstructed landscapes is due to a lack of power of the method
402 in the first place. While the sample size of both fish populations was at least 20 individuals, 6
403  was about 0.002, similar to our simulated conditions with a low Ne. Under these conditions, a
404  high FDR and a low proportion of shared hotspots can be expected even if the true underlying
405 maps are identical (Figure 4, Table 1).

406 It should be recalled that real data sets typically carry less signal and more noise than
407  simulated data sets, meaning that our assessment of the reliability of LDhelmet might be an
408 overoptimistic one. In particular, our data sets are immune from sequencing errors, mapping
409 errors, and, crucially, phasing errors, all of which presumably make the problem of

410 recombination map inference an even harder one.

411

412  Guidelines for population-based inference of recombination maps

413 Our study revealed that whatever the parameters used, the inference of recombination
414  rates by LDhelmet is more reliable for species with large as compared to small effective
415  population size (Figure 2, 3, 4). This might be expected since long-term N. determines the
416  amount of nucleotide diversity (6=4Ngu, Watterson, 1975), so that a higher N, results in a
417  higher SNPs density and a finer scale characterization of the recombination rate variation
418  along the genome. Moreover, a higher effective size greatly corrects the general tendency of

419  LDhelmet to overestimate the p value, especially for low and high recombination rates (Figure

420 2, Supplementary Figure S5 ; Booker et al. 2017; Singhal et al. 2015). Thus, when studying
421 species with varying effective population sizes, it is recommended to select populations with
422  the largest N, for which genetic diversity is greater. The question is then: how to obtain a
423  good-quality recombination map when dealing with low N species? The sampling effort also
424  determines, to a lesser extent, the polymorphism level of the dataset (Supplementary Figure
425  S3), improving the accuracy of the inference (Figure 3, 4). A sample size of 20 is
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426  recommended based on our simulations. Moreover, as previously mentioned (Chan et al.
427  2012; Singhal et al. 2015), the block penalty parameter of LDhelmet, which determines the
428  resolution level of the inferred landscape, also influences the length of the inferred map (i.e. a
429  higher BP tends to mitigate the tendency of LDhelmet to overestimate the map length) and
430 the number of detected hotspots (Supplementary Figure S2, S6). Therefore, a small BP, that

431  allows more fine-scale changes in the inferred p value, should be used to detect recombination

432  hotspots. The ability of LDhelmet to faithfully reflect the real recombination landscapes is of
433 great importance when it comes to detecting recombination hotspots. To this purpose, the
434  threshold used to decide which region is defined as a “hotspot” is a key parameter that
435 determines the level of detection stringency. If the chosen value is not appropriate, LDhelmet
436  will detect false positives while also missing true hotspots (Figure 4, Supplementary Figure
437  S7). This threshold should thus be adapted to the species studied, using a less stringent
438 threshold in species with lower genome-wide average recombination rate.

439 Other intrinsic biological variables influence the ability to produce a faithful recombination
440 map, such as the p/rratio, which in part determines the power to measure rho at a fine-scale.
441  The among-species variations in genome-average recombination rate ris well documented,
442  ranging from 0.01 to 100 cM/Mb in animals and plants, with vertebrate taxa displaying an
443 average r around 1 cM/Mb (Stapley et al. 2017). As previously mentioned, high and low
444  recombination rates tend to be overestimated by LDhelmet, thus the average r of the studied
445  species is obviously a key parameter to account for. The mutation rate y also has a key impact
446  on the performance of LDhelmet, since ancestral recombination events can only be detected
447  if properly tagged by flanking mutations. The variation in py across taxa, and consequently the
448  ratio of p/r, are much less well known than the variation in r. This ratio, which does not depend
449 on the effective size of the population, is about 1 in humans, which means that two
450 recombination events are separated by one mutation on average. A ratio in favour of mutations
451 (u/r> 1) will improve the signal, increasing the TP rate and reducing the FD rate (Figure 5,
452  Table 2). But ultimately the performance of LDhelmet is conditioned by r, as low r values
453  provide less power to detect the recombination events, even with u/r = 10. Thus, the ratio of
454  the mutation and the recombination rate is crucial to build a non-biased recombination map.
455  Therefore, when studying a species for which it appears that this ratio is not favourable, a high
456 rate of false positive hotspots is expected in the inferred population recombination landscape
457  (Figure 5, Table 2), making it difficult to compare maps between closely related species in a
458  meaningful way.

459

17


https://doi.org/10.1101/2022.03.30.486352
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.03.30.486352; this version posted March 31, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

460 Limitations

461 The aim of our study was to determine the limits of LD-based methods in inferring
462  Dbiologically realistic recombination landscapes. For this purpose, we used the Pratto et al.
463  (2014) ChIP-seq DMC1 data set to build human-like recombination landscapes including both
464  broad and fine scale variation, reflected by the presence of numerous recombination hotspots
465  of different intensities (Supplementary Figure S1; Myers et al. 2005, 2006; Pratto et al. 2014).
466  However, the distribution of DSB might be more complex and variable than the true distribution
467  of crossing overs. Thus, we may have generated landscapes too heterogeneous to be properly
468 inferred by LDhelmet, reaching the limit of the method. Moreover, hotspots were placed
469 randomly without taking into account the architecture of recombination hotspots along the
470 genome: the proximity of genes and promoter-like regions, GC-rich regions, CpG islands,
471  polymorphic regions, which can explain why a very intense and narrow hotspot is never found
472  within a region of near zero recombination. Besides, we assume a homogeneous
473  polymorphism along the chromosomal segments, which is not true in animal genomes
474  (Ellegren and Galtier, 2016). Consequently, the sensibility of LD-based methods with respect
475  to this architecture was not tested. Moreover, our simulated data were perfectly phased and
476  polarised, which can’t be the case when dealing with empirical data, and we didn’t simulate
477  various demographic histories that can also bias LD-based methods (Dapper and Payseur,
478  2018). Finally, we don’t know if these simulated landscapes are representative of the diversity
479  of recombination landscapes that exist in the living world.

480 Indeed, it is likely that the high complexity of the human recombination landscape is not
481 a universal feature in the animal kingdom. Singhal et al. (2015) used LDhelmet for building the
482  recombination map in two species of birds, the zebra finch and the long-tailed finch, that lack
483 a full-length PRDM9 gene copy and diverged about 2.9 Myr. The sample size for both
484  populations was about 20 individuals, and 6 (~ 0.01) was about ten times higher than in apes
485 or the threespine stickleback (Shanfelter et al. 2019), thus corresponding to our high Ne
486  simulated conditions. Singhal et al. (2015) found 73% of shared hotspots between the two
487  finch species, which is a higher rate of hotspot sharing than in any of the conditions we
488  simulated. The median estimated recombination rate was of 0.14 cM/Mb in both species of
489 finch, which is seven times lower than the average genomic recombination rate in humans
490 (about 1 cM/Mb, Jensen-Seaman et al. 2004). Combined with the strong polymorphism in
491  those species, we may suppose that birds possess less complex recombination landscapes
492  than humans or compared to what we simulated, which might explain why LDhelmet recovered
493  such a high percentage of shared hotspots in this study.

494
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495 Conclusion

496 In the past few years, we have seen a growing interest in recombination rate estimation
497  in functional and evolutionary genomics. Indirect, LD-based approaches raise methodological
498 challenges that are addressed by sophisticated methods such as LDhat or LDhelmet, the
499 reliability of which is still poorly characterised. Our study allows us to guide the users of such
500 methods depending on the characteristics of their species, and calls for caution when it comes
501 to interpreting fine scale differences in recombination rates between species. Extending this
502 approach to a more diverse set of underlying recombination landscapes would help
503 characterise further the reliability of these methods and their range of applicability across data
504  sets and taxa.

505

506

507 Materials and Methods

508 Our approach separately considers three different layers of information that are
509 involved in the study of recombination landscapes (Figure 1). The first layer that we call the
510  “underlying” recombination landscape corresponds to the true biological distribution of
511  recombination rate (r) across the considered genome. We here used experimental
512  measurements from human studies to model and generate the “underlying” landscapes. The
513 second layer, the population recombination landscape, describes the genomic location of
514  recombination events that occurred during the history of the sample. We used coalescent
515 simulations to produce these population recombination landscapes, thereafter called
516  “simulated” landscapes. Simulated landscapes differ from the underlying landscape due to the
517  stochasticity of the coalescent process, which is inversely proportional to Ne. The third layer,
518 called the “inferred” landscape, corresponds to the output of LDhelmet, j.e. an estimate of the
519  population recombination rate between adjacent SNPs. In total we generated five independent
520 replicates of underlying landscapes, and for each of them 10 simulated and 10 inferred
521  landscapes (Figure 1A).

522

523  Underlying landscapes

524 Underlying recombination landscapes were first generated to reproduce the features
525 of the human recombination landscape. These include large-scale variation in the mean
526  background recombination rate and fine-scale variation reflecting the presence of hotspots
527  with varied intensities. Meiotic DSB are the major determinant of crossing over (CO) location
528 along the genome (Li et al. 2019; Pratto et al. 2014). We used the high-resolution map of
529 meiotic DSB obtained using ChIP-seq DMC1 in 5 non-related human genomes (Pratto et al.
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530 2014) to define the genome-wide distribution of recombination rates in our simulations. The
531 five individuals analysed in Pratto et al. (2014) carried different PRDM9 genotypes totalizing
532  about 40,000 hotspots per individual, with distinct genotypes having different sets of DSB
533  hotspots. For each individual, a gamma distribution was fitted to the empirical distribution of
534  hotspot intensity measured by ChlP-seq DMC1 with the R package figdistribplus (Delignette-
535  Muller and Dutang, 2015). Extreme ChIP-Seq intensity values (>500) lying above the 97.5th
536 quantile and likely representing technical artefacts were removed. Remaining values were
537  rescaled to 0-100, so as to transform ChlP-Seq intensity values into quantities reflecting the
538 range of recombination rates reported in cM/Mb across the human genome (McVean et al.
539 2004; Myers et al. 2005). This conversion assumed a linear relation between DMC1 activity
540 and CO frequency (Pratto et al. 2014). We then removed null values and replaced them with
541 small but non-null values (0.001), so that the genome-wide mean recombination rate equaled
542  a target average (e.g. 1 cM/Mb). A Gamma distribution was fitted to these transformed
543  empirical values separately for each of the 5 individuals, before averaging shape and scale
544  parameters across individuals. Targeted genome-wide average value was set to either 1
545 cM/Mb or 3 cM/Mb, respectively reflecting the average centro-chromosomal and subtelomeric
546 rates in humans. Underlying landscapes of 1 Mb length were built by randomly drawing
547  independent recombination rate values from the fitted distribution and assigning these to non-
548  overlapping windows of 500pb. Values in the first 500kb were drawn from a distribution of
549  mean 1 cM/Mb, while values in the last 500kb were drawn from a distribution of mean 3 cM/Mb.
550  Our approach thus mimics both the large scale variation in recombination rate existing in
551 humans (Buard and de Massy, 2007; Myers et al. 2005; Nachman, 2002; Pratto et al. 2014)
552  and the nearly absence of recombination events outside hotspots (96% of CO occur in
553  hotspots in mice, (Li et al. 2019; Pratto et al. 2014). In total, 5 underlying landscapes were
554  generated (mean r = 2 cM/Mb), which can be considered as independent replicates driven
555 from the same distribution (i.e. parts of different chromosomes of the same species, or
556  orthologous chromosome part from closely related species).

557

558 Simulated landscapes

559 For each of the 5 underlying landscapes, 10 simulated landscapes were generated via
560 coalescent simulations using the program MSPRIME (Kelleher and Lohse, 2020), varying the
561  effective population size (Ne= 25,000 or 250,000) and the sample size (SS=10 or 20) and
562  setting the mutation rate to y = 10-8. These four combinations of simulation parameters were
563 combined with three values of the Block Penalty (BP) parameter of the LDhelmet program
564 (see below), resulting in twelve conditions tested (Supplementary Table S1). For each

565 condition, ten population samples were simulated, to generate independent replicates of the
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566  coalescent history. A VCF file was generated with MSPRIME for each simulated population
567  (Figure 1), which contains the genotypes of variants that segregate in the population sample
568 consisting of 2n sequences (with n being the number of samples) following the given
569  underlying recombination landscape.

570

571  Inferred landscapes

572 Recombination rates were estimated for each of the simulated samples with LDhelmet
573 (v1.10, (Chan et al. 2012), Figure 1). Briefly, LDhemet uses phased sequence data to infer
574  the rho parameter locally, using likelihood computation betweens pairs of SNPs and then

575  averaging over 50 consecutive variants to obtain a composite likelihood. The p parameter is

576 inferred with a reversible-jump Markov Chain Monte Carlo algorithm using a step function
577  applied to every window of 50 consecutive SNPs and determined by three parameters: the
578  number of change-points, the locations of changes, and the recombination rate value of each
579  constant fragment between two changes. We used VCFtools 0.1.17 (Danecek et al. 2011) and
580 the vcf2fasta function of vcflib (https:/github.com/vcflib/vcilib) to convert the SNP data
581  obtained from MSPRIME simulations into the input format to LDhelmet, consisting of FASTA

582  sequences of each individual haplotype. Ancestral states defined as the reference allele of
583 each variant were also used as inputs. Each simulated replicate was analysed with LDhelmet
584 using the following parameters. The haplotype configuration files were created with the
585 find_conf function using the recommended window size of 50 SNPs. The likelihood look-up
586  tables were created with the table_gen function using the recommended grid for the population
587  recombination rate (p/pb) (i.e. p from 0 to 10 by increments of 0.1, then from 10 to 100 by
588 increments of 1), and with the Watterson' 6 = 4Neu parameter corresponding to the condition
589 analysed. The Padé files were created using 11 Padé coefficients as recommended. The
590  Monte Carlo Markov chain was run for 1 million iterations with a burn-in period of 100,000 and
591  a window size of 50 SNPs. An important parameter to LDhelmet is the block penalty (BP),
592  which determines the number of change-points, and thus the variance of the inferred
593 recombination rates at a fine scale (i.e. smaller block penalty generates more heterogeneous
594  recombination landscapes). For each of the 4 combinations of Ne and SS simulated, the block
595  penalty was set to either 5, 10 or 50, resulting in 12 combinations tested (Supplementary Table
596  S1). Finally, the population recombination rates between each SNP pair were extracted with

597  the post_to_text function, and were reported in p=4Ner per pb unit.

598 The reliability of the inferences was evaluated in various ways. For each of the 12
599 conditions, the inferred, simulated and underlying landscapes were compared, in order to
600 assess the ability of LDhelmet to reliably infer the true biological landscape (Figure 1A and
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601  see below Hotspot detection and Statistical Analysis). In a second simulation framework aimed
602 at evaluating the convergence of LDhelmet inferences across replicate runs, LDhelmet was
603 run 10 times using the same parameters on each of two independently simulated VCF files
604 from populations sharing the same underlying landscape (Figure 1B). Finally, for each of the
605 twelve tested conditions, the inferred recombination landscapes of these two populations were
606 compared in order to assess the reproducibility of the LDhelmet inference, i.e., the expected
607  variance between inferred maps in the absence of underlying biological variation (Figure 1B).
608

609 Variation in the p/r ratio

610 To explore the influence of variation in mutation and recombination rates on the
611 inference of recombination maps, two additional underlying landscapes were generated using
612  the same procedure, this time targeting a ten times higher (i.e. 20 cM/Mb) or ten times lower
613 (0.2 cM/Mb) mean recombination rate. Then, using one of the 5 underlying landscapes (r ~
614 10-8 M/pb) and the 2 newly generated landscapes with mean r = 10-7 and 10-9 M/pb,
615 respectively, sets of simulations were run with a p/r ratio of 0.1, 1 and 10. This was achieved
616 by fixing u to either 10-9, 10-8 or 10-7, while keeping a fixed N. = 100,000 and SS = 20 (Table
617  2). For each of the 6 tested combinations of y and r, 10 populations were simulated. These
618 simulated landscapes were inferred with LDhelmet, using a block penalty of 5.

619

620 Hotspot detection

621 Underlying and simulated landscapes were first converted into population
622 recombination rate landscapes by scaling them by 4N.. Underlying, simulated and inferred
623 landscapes were then smoothed at a 500 bp and 2,500 bp resolution using the Python
624  package scipy.stats. The former corresponds to the underlying landscape resolution, and the
625 latter to a trade off between the density of segregating sites and the resolution often used in
626 the litterature. For each underlying landscape and each of the 12 tested conditions, a mean
627 simulated landscape and a mean inferred landscape were generated by averaging
628 recombination rates across replicates.

629 Recombination hotspots of the underlying, simulated and inferred landscapes were
630 called by comparing local vs surrounding recombination rates at each genomic window. A
631 hotspot was defined as a window of 2.5 kb with an average recombination rate either 2.5, 5 or
632 10 times higher than the 50kb flanking regions (excluding the focal window). Hotspot locations
633  were compared among landscapes using the same threshold values (i.e. 2.5/2.5, 5/5, or
634  10/10), except for three combinations in which lower thresholds were used for simulated
635 compared to inferred landscapes (i.e. conditions 2.5/5, 2.5/10 and 5/10).

636
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637  Statistical analyses

638 Statistical analyses were run with R 4.0.3. The length of underlying, simulated and
639 inferred maps (L) was calculated at the 2.5 kb resolution using the formula:

640 L =Y(p x win)/4Ne,

641  with p the population-scaled recombination rate, win the window size resolution used to
642  smooth the maps in bp, and N¢ the effective size of the simulated population. Several indices
643  of the sensitivity, specificity, reliability, and repeatability of LDhelmet were computed, using
644  the mean simulated and inferred landscapes from each of the 12 tested conditions. For each
645  condition, Spearman’s rank correlation coefficient was calculated between the underlying and
646  the corresponding simulated landscapes, between the simulated and inferred landscapes, and
647  pairwise Spearman’s coefficients among the 10 replicates inferred from the two simulated
648 populations sharing the same underlying landscape. True/false positive rates (TPR =
649 TP/(TP+FN) ; FPR = FP/(FP+TN)), true/false negative rates (TNR = TN/(TN+FP) ; FNR =
650  FN/(FN/(TP+FN)), and true/false discovery rates (TDR = TP/(TP+FP) ; FDR = FP/(TP+FP))
651  were calculated by comparing the simulated and inferred landscapes. The mean pairwise
652 linear correlation (R?) and the proportion of shared hotspots was calculated between the 5
653 underlying landscapes, and for each condition and for the three threshold values tested (i.e.
654 2.5, 5 and 10) between the simulated and inferred landscapes from the 5 different underlying
655 landscapes, as well as between the two populations from the same underlying landscape.
656 The statistical analyses were performed using home-made R scripts available upon
657  request.

658

659

660 Data availability

661 The Singularity container recipe built to run the simulations is available at:

662  https:/github.com/PA-GAGNAIRE/Singularity-Recipes/tree/master/HotRec-Recipes. This
663  recipe contains the installation command lines of the required programs, the scripts used for

664 the simulations, and the five underlying landscapes used in our study.

665
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928 Supplementary Figures

929

930 Supplementary Table S1. The 4 combinations of coalescent simulation parameters (N. and
931 SS) in combination with three values of the block penalty parameter to LDhelmet (BP),
932  resulting in a total of 12 tested conditions in our analysis.
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937 Supplementary Figure S1. The 5 underlying recombination landscapes (represented in units
938 of cM/Mb (y-axis) along a chromosomal region of 1Mb (x axis)) generated using human ChlIP-
939 seqdata from Pratto et al. (2014).
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was u = 10-8.

33


https://doi.org/10.1101/2022.03.30.486352
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.03.30.486352; this version posted March 31, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

B
_] .
2 o
%
3
4
g
E |, F
8 e
i) = i
= @
o 3
3 i
— -4
L7y ]
[a}]
= 5 4 3 -2
=
2
m H
= 4.4
£
24 ®
: 82
-3«
k3 ®
@
o -4
.E P(' T ™ oy pioes
& 5 4 3 2 -
@
=
J K
-1= 4
2= ]
@
3l @ 3
i
@ )
K ‘we
5 4 3 -2 - 5 4 -3 -2 -1
952 Mean simulated recombination rates (log10 rho/bp)

953 Supplementary Figure S4. Quality assessment of local recombination rates estimated by
954  LDhelmet and averaged within 2.5kb windows across 10 replicates, for the 12 conditions
955 tested in our analysis. The x axis shows the recombination rates of the mean simulated
956 landscapes and the y axis the recombination rates of the mean inferred landscapes, both on
957  alogarithmic scale. Each blue point corresponds to a local 2.5kb-window average calculated
958 across 10 replicate populations obtained under identical simulation parameters. A) N, =
959 25,000, SS =10, BP = 5. B) N, = 25,000, SS = 10, BP = 10. C) N, = 25,000, SS = 10, BP =
960 50. D) N =25,000, SS =20, BP = 5. E) N. = 25,000, SS = 20, BP = 10. F) N, = 25,000, SS =
961 20, BP =50.G) N. = 250,000, SS = 10, BP = 5. H) N. = 250,000, SS = 10, BP = 10.I) Ne =
962 250,000, SS =10, BP =50. J) N. = 250,000, SS = 20, BP = 5. K) N, = 250,000, SS = 20, BP
963 =10.L) N.=250,000, SS =20, BP = 50.
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967 Supplementary Figure S5. Influence of the block penalty value on the recombination
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969 ofp/bp) is shown in blue for one of the five underlying landscapes. The corresponding
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971  red respectively, for SS = 20 and N, = 25,000 (A) and N, = 250,000 (B).
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973
974  Supplementary Figure S6. Mean number of hotspots detected from the simulated (A) and

975 inferred (B) landscapes originating from the 5 different underlying landscapes. Results are
976  represented for each of the 12 conditions tested, and for three hotspots detection threshold
977  as shown by colours (i.e. 2.5, 5 and 10). The sample size parameter is shown on the x axis
978  (i.e. 10 or 20), the upper panels correspond to conditions where N, = 25,000, the lower panels
979  correspond to conditions where N. =250,000, and the BP parameter values correspond to the
980 vertical panels (i.e. from left to right : 5, 10 and 50). A) Mean number of simulated hotspots.
981  B) Mean number of inferred hotspots.

36


https://doi.org/10.1101/2022.03.30.486352
http://creativecommons.org/licenses/by-nc-nd/4.0/

982
983

984
985
986
987
988
989
990

bioRxiv preprint doi: https://doi.org/10.1101/2022.03.30.486352; this version posted March 31, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

made available under aCC-BY-NC-ND 4.0 International license.

A | ] | ——
100 - [] []
—~ 75- = .
& q- g &
s o - - "* _* ** S| Threshold
w <
~ _ e _ = _ — || mao=s
E 100 - L [ ] L] & 8 ™ e * 5
a gl o R
a 75 - - | 10
8 s0- T - . =
= o5- 2
0= i i ey Pee— e o —
10 20 10 20 10 20
Sample size
B | 5 || 10 | 50 l
8- . ]
< 6- +- -
B o S| Threshold
EE' _— .T- - - * '-* -
2. | | B 25
Eav ml:E
[ B: E ‘ 10
24 . = = 2
L 2- L =
s =paes S e s
10 20 10 20 10 20
Sample size
c | | s | o s
e == . ‘ *
Th= L ] = - E‘]?I
50- o
. el + i ¥ * == * § Threshold

False Discovery rate (%)

[‘l_

10

20

EU: ﬁ- _._* =

Sample size

14

1

0oooseg

Bl 25
BE 5
Bl 10

Supplementary Figure S7. Hotspot detection from the 5 mean inferred landscapes
originating from the 5 different underlying landscapes. Results are represented for each of the
12 conditions tested, and for three hotspot detection thresholds as shown by colours (i.e. 2.5,
5 and 10). The sample size parameter is shown on the x axis (i.e. 10 or 20), the upper panels
correspond to conditions where N, =25,000, the lower panels correspond to conditions where
N. =250,000, and the BP parameter values correspond to the vertical panels (i.e. from left to
right : 5, 10 and 50). A) True positive rate (sensitivity). B) False positive rate. C) False
discovery rate.
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993 Supplementary Figure S8. Hotspot detection from the 5 mean inferred landscapes

994  originating from 5 different underlying landscapes, for each of the 12 conditions tested (on the
995 vy axis), and for three combinations of “real hotspots definition / inferred hotspot detection
996 threshold” applied to the mean simulated and the mean inferred landscape, respectively (i.e.
997 2.5/5,5/10,2.5/10, as shown by colours). A) True positive rate (sensitivity). B) False discovery
998 rate.
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1001  Supplementary Table S2. Percentages of shared hotspots from simulated and inferred
1002 landscapes between populations with either different or identical underlying recombination
1003 landscapes. R? and mean proportion of shared hotspots are indicated for each type of
1004  comparison, including pairwise comparisons among simulated (left) or inferred (right)
1005 landscapes originating from either different underlying landscapes (top, following simulation
1006  framework from Figure 1A), or from the same underlying landscape (down, following
1007  simulation framework from Figure 1B).

Mean proportion of shared simulated hotspots MMean proportion of shared inferred hotspots

R? log(simuli~simulj}  Threshold = 5  Threshold = 2.5 Threshold = 100 B? log{inferi~inferj) Threshold = 5  Threshold = 2.5 Threshold = 10
iff underlying landscapes
Ne W00 58 = 10BP = 5 0.012 1.715 OGS (.00 [FXLER) 5.385 13.99 3.215
N 5000 55 = 10 BP = 10 0015 1535 7.275 0,00 0.043 1.945 11.28 0.00
N W00 55 = 10 BP = 50 0.014 1.55 {IR1] 0.03% 5075 5.805 2.51
Nu 25000 55 20 BP 5 0014 2.00 (.00 002 3.05 0.735 1535
N G000 55 = 20 BP = 10 0013 1.55 0.00 0.042 1.125 TAG 0.00
N W00 55 = 20 BP = 50 0015 143 {IXT)) [EXLLE [EXEI] 128 .00
N 30000 55 = 10 BP =5 0.017 2.085 0,00 0.013 0,00 11.245 0,00
N W0 55 = 10 BF = 10 LT 2.00 10 LRI E) 3.065 11125 .00
Ne 0015 2.00 .00 0.012 0.97 0.86 0.00
N o017 1715 0.00 0.014 1.17 9.55 0.00
N 0.013 1.56 (.00 0014 118 8695 .00
N 0016 167 .00 0.01% 134 T.az 0.00
I
N G000 SS = 10BP =5 (7465 1] 0.2139 30.65 28.55 20.95
N V55 = IO BP = 10 0. 7386 o 0.1429 i
N } 55 = 10 BP = 50 0.7101 1] 01173 0
N W00 55 = 200BF = 5 07497 1 il i
N S000 55 = 20 BP = 10 0.7908 0 0.3035 229
N W0 55 = 20 BP = 50 7622 0 0.2206 i
Ny 00466 o 0.6301 o
N 01,9346 0 06671 0
Ny (.9391 1] 0.601% 1
N 10,9554 0 0.7514 11.65
N (.9562 1] 0.T157 1
Ne = 250000 58 = 20 BP = 50 00488 ) 0.7421 0
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