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Abstract

The production of population-level trees using the genomic data of individuals is a
fundamental task in the field of population genetics. Typically, these trees are produced
using methods like hierarchical clustering, neighbor joining, or maximum likelihood.
However, such methods are non-parametric: they require all data to be present at the
time of tree formation, and the addition of new data points necessitates the regeneration
of the entire tree, a potentially expensive process. They also do not easily integrate with
larger workflows. In this study, we aim to address these problems by introducing
parametric deep learning methods for tree formation from genotype data. Our models
specifically create continuous representations of population trees in hyperbolic space,
which has previously proven highly effective in embedding hierarchically structured data.
We present two different architectures - a multi-layer perceptron (MLP) and a
variational autoencoder (VAE) - and we analyze their performance using a variety of
metrics along with comparisons to established tree-building methods. Both models
tested produce embedding spaces that reflect human evolutionary history. In addition,
we demonstrate the generalizability of these models by verifying that addition of new
samples to an existing tree occurs in a semantically meaningful manner. Finally, we use
Dasgupta’s Cost to compare the quality of trees generated by our models to those
produced by established methods. Despite the fact that the benchmark methods are
directly fit on the evaluation data, our models are able to outperform some of these and
achieve highly comparable performance overall.

Author summary

Tree production is a vital task in population genetics, but current approaches fall prey
to several common shortfalls. Most notably, they lack the ability to add new data
points after tree generation, and they are often difficult to use in larger pipelines. By
leveraging cutting-edge advances pairing deep learning with hyperbolic geometry, we
develop multiple models designed to rectify these issues. Through experiments on a
dataset of humans from globally widespread ancestries, we demonstrate the
generalizability of our models to new data, and we also show strong empirical
performance with respect to currently used methods. In addition, we show that the
data representations produced by our models are semantically meaningful and reflect
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known facts about human evolutionary history. Finally, we discuss the additional
benefits our models could provide, including improved visualization, greater privacy
preservation, and improved integration with downstream machine learning tasks. In
conclusion, we present models that are accurate, flexible, and generalizable, with the
potential to facilitate a variety of further applications.

Introduction

Recent advances in genetic sequencing technology, along with the wide availability of
genetic data, have resulted in the increased interest in predicting disease risk and other
traits directly from an individual’s genomic data. These predictions are made possible
through studies like Genome-Wide Asssociation Studies (GWAS), which determine
correlations between genomic variants and such traits, and the calculation of quantities
like Polygenic Risk Scores (PRS), which use an individual’s genotype to quantify disease
risk. However, these models do not always generalize across ancestries, often requiring
different models to be developed for different populations [1]. Accurate knowledge of an
individual’s genetic ancestry is therefore frequently important in making the most
accurate and effective healthcare decisions possible.

Ancestry categories are hierarchical, with each individual having a label at each level
in the hierarchy. For example, if we were to separate humans by continental population,
a particular individual could be described as European. If we then proceeded to cluster
the European population, the same individual could then be described as Italian. If we
then identified sub-clusters within the Italian population, this person could now be
identified as Sicilian, and so on. Trees are a natural choice to represent such
hierarchically structured data, and they have been widely used in the past in several
related paradigms. For example, Li et al. utilized trees from genotype data to elucidate
migration patterns and study relationships between human populations from across the
world [2]. Duda and Zrzavy combined genetic data with linguistic data to further probe
these relationships [3]. Trees are widely applicable to non-human species as well, as
evidenced by Parker et al.’s study utilizing trees to elucidate the population histories of
canids [4]. On a broader scale, of course, trees have been utilized to catalog and
categorize the entirety of life on Earth into an all-encompassing ”tree of life” [5].
Finally, there has been much theoretical, mathematical, and computational work done
to devise and improve state-of-the-art tree production methods [6H3].

Indeed, utilizing trees can provide several benefits in the study of ancestry.
Importantly, a tree can help assess how related two population groups or two
individuals are to each other. This fact can allow us to, for example, use population
trees to determine if GWAS or PRS results from one group are likely to generalize to
another. Similarly, we can use trees to determine which groups can be added to a
particular study and therefore increase its power while retaining accuracy. At present,
the majority of genome-trait association studies have been conducted in individuals of
European descent, largely neglecting individuals of other ancestries [1]. Population trees
can allow us to optimize study design for these groups and can be used for
pharmacogenomics, thus allowing for the delivery of vital healthcare information as
accurately and efficiently as possible [9].

Genetic ancestry-based trees also have a variety of applications outside healthcare.
Notably, their structure can provide vital information regarding the course of human
evolution, and they can also potentially explain various migration events that have
occurred through history [2,/6]. Such information may prove valuable for historical or
demographic studies. Furthermore, trees can be produced for crops, livestock, and other

species, potentially aiding in decisions regarding agriculture and ecological health [4}/10].

To create a tree from genomic data, it is necessary to leverage certain genetic
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signatures to calculate measures of similarity between the entities that will comprise the
tree. A common choice is to use Single Nucleotide Polymorphisms (SNPs), or single
genomic positions that are known to vary across human populations due to the
evolutionary history of the human species [2,/11]. In general, it is expected that a pair of
closely related individuals will share more SNPs than a pair of more distantly related
ones. Typically, a tree-building algorithm like hierarchical clustering is employed
together with a similarity metric related to the number of SNPs shared in common
between each pair of individuals [12]. However, such trees cannot be easily included as
intermediate steps in larger workflows, and they are rigid and non-parametric - that is,
it is not possible to introduce new samples into the tree without recreating the entire
tree. This has two main disadvantages: first, it requires one to keep track of all the
samples to recreate the tree. Second, it is highly computationally inefficient, and it is
not a feasible solution for large modern biobanks and databases. Thanks to the
decreasing cost of sequencing, more datasets and biobanks that include a large number
of high-resolution SNP sequences are becoming available, generating a need for efficient
and scalable alternatives to tree-generation techniques. Thus, a parametric method to
embed tree nodes in a continuous space would, as illustrated in Fig [l prove highly
useful in the study of population genetics.

& .

1
) PN ‘ ‘ ‘
- ' Em
Neural network Continuous tree Decoded tree
model representation

=
1 T

Discrete tree - new data cannot be easily added

Fig 1. An advantage of using continuous tree representations rather than discrete trees
is that new samples can be easily added to the current tree.

It has long been established that hyperbolic spaces are ideal for these embeddings,
and a method called HypHC has recently been developed to embed data such that the
embeddings reflect the structure of a hierarchical clustering tree [13]. Here, we present
two parametric adaptations of HypHC: a multi-layer perceptron (MLP) model, and a
Variational Autoencoder (VAE) model. We demonstrate the utility of these models to
embed genotype data in an informative manner, and we compare the quality of the trees
learnt to those produced by HypHC and hierarchical clustering. Overall, we
demonstrate the utility of hyperbolic geometry in creating flexible parametric methods
for tree creation for population genetics analysis.
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Methods

Hyperbolic Space and Poincare Embeddings

Previous studies have demonstrated the great efficacy of hyperbolic spaces in learning
embeddings for hierarchically structured data, including text, graphs, and in particular,
trees |14H16]. We will therefore describe the properties of hyperbolic spaces - in
particular, those following the Poincaré disc model - which allow for this hierarchical
structure to be captured, along with those that are relevant for the understanding of our
models.

In general, hyperbolic geometry is defined as a non-Euclidean geometry with a
constant negative curvature [13,/17]. Various types of hyperbolic spaces exist, and one
commonly used space is the Poincaré ball model, or its two-dimensional equivalent, the
Poincaré disk. In a Poincaré disk (as with other hyperbolic spaces), the distance
between two points z; and z; is calculated differently than in the standard Euclidean
formulation [13]. Specifically, the distance formula is given by:

2 — 2>
(T =1zl P) (= llz5112)

A byproduct of this distance metric is that surface area grows in an exponential
manner as we reach the edge of the disk. Since the number of leaves in a tree grows
exponentially with respect to the tree’s height, a Poincaré disk (or other hyperbolic
space) is therefore ideal for learning accurate tree representations without the need for
an excessively large embedding space. In fact, one can think of hyperbolic spaces as
continuous analogues of trees [14]. Previous studies have demonstrated methods to
embed trees into hyperbolic spaces with minimal error [16]. Euclidean spaces do not
possess this property of exponential growth, meaning modeling larger trees requires a
higher dimensionality, which can cause a variety of problems with training, including
overfitting and memory concerns [14].

It is also important to consider the nature of the curves, or geodesics, which
represent the shortest paths between two points in the Poincaré disk. In this
formulation, geodesics are either lines through the origin or circular arcs that intersect
the two points and are orthogonal to the edges of the disk [18].

Given our knowledge of geodesics, we must introduce one final important property:
the exponential map. Assume that we start with a point z, which is on a unit geodesic ~y
such that v(0) = z. There will exist only one possible v such that the tangent vector at
z (i.e. 4/(0)) is a certain vector v. We then define the exponential map of v as
exp,(v) = v(1). A closed-form solution exists for this transformation, and it is used
frequently in the various architectures and probability distributions utilized in this
study [17].

d(zi, 2;) = cosh™ (1 4 2

) (1)

The HypHC Model

Central to the models employed in this study is Hyperbolic Hierarchical Clustering, or
HypHC, which was introduced by Chami et al. in 2020 [13]. This method utilizes a
differentiable objective function to embed data points in hyperbolic space such that
distances between embeddings reflect closeness in a hierarchical clustering tree.
Hyperbolic geometry was chosen for this task because it allows for more natural and
effective representations of trees than is possible in the standard Euclidean space [13].
Specifically, the objective function of HypHC is a continuous relaxation in hyperbolic
space of Dasgupta’s Cost, a common metric used to evaluate the quality of hierarchical
cluster assignments.
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Given a similarity matrix w representing the data, and a tree T generated with
hierarchical clustering, Dasgupta’s cost can be written as follows:

Lq= Z(wij + Wik + Wik — Wijk|T) + 22“&';‘ (2)

i,5,k 4,J

where w;; is the similarity between sample ¢ and j, w;;g7 = w;; if the tree first splits k
from 4 and j, w;y if the tree first splits j from ¢ and k, and wjy, if the tree first splits ¢
from j and k [13].

Dasgupta’s cost therefore calculates whether more similar nodes are located closer
together in the tree than less related ones. Alternatively, it gauges if the Lowest
Common Ancestors (LCA) - the points at which two nodes split from each other - of
more similar nodes are lower in the tree, while the LCAs of less similar nodes are higher
in the tree. The term w;;; 1 can therefore be interpreted as the similarity of the two
nodes in {4, j, k} with the LCA that is farthest from the root of the tree [13].

Although this objective function is discrete, a continuous analog can be developed in
hyperbolic space. To do so, we must define the continuous equivalent of the LCA. Let z;
and z; be the hyperbolic embeddings of two data points ¢ and j, and let g;; be the
curve representing the geodesic (shortest path distance) between z; and z;. We first
consider that in a conventional tree, the LCA between two nodes will be the point on
the shortest path between the nodes that is closest to the root. Similarly, if we assume
our tree is rooted at the origin in hyperbolic space, the hyperbolic LCA between z; and
z; will be the point on the geodesic that is closest to the origin [13].

If we define drca(zi, ;) to be the distance from the origin to the hyperbolic LCA of
z; and z;, we can define the continuous analog to Dasgupta’s cost as follows:

Luyprc = Z(wzj + Wik + Wik — Wik HypHC) T 2 Z Wi (3)
1,5,k 4,7

The term w; g gyprc is then defined as follows:

Wijk|HypHC =

[wij, Wik, wik] - or([droalzi, ), droa(zi k), droa(zy, zi)]) "

(4)

where o is the softmax function with a learned temperature scaling parameter
(specifically, the logits are scaled by % before the softmax is applied) |13]|. Therefore,
the softmax output acts as a smooth relaxation of an indicator function.

This objective can then be optimized by gradient descent in a similar manner to a
conventional neural network. Even though all data points are considered at once, we
can divide the triplets i, 7, k into batches for the sake of computational efficiency and
memory usage.

Finally, if desired, the HypHC paper provides algorithms to convert the continuous
space into a discrete tree. The most theoretically rigorous of these can be
computationally expensive under certain situations, but a greedy algorithm is provided
which runs far faster and has been validated to achieve comparable performance. In this
algorithm, points first are normalized to have the same distance from the origin in the
Poincaré Disk. Next, the points are sorted according to their angles in the disk, which
are analogous to their positions when normalized. We then calculate the two largest
gaps in this sorted list (ie. the two largest differences between consecutive angles), and
we split the dataset into points that have angles between these two gaps and points that
do not. Now that the first division has been determined, we recursively divide each split
at the largest gap until the full tree structure is reached [13|. In this manner, we have a
simple, efficient algorithm to produce discrete trees from HypHC embedding spaces.
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Novel Parametric Models

We will now discuss the parametric models developed as part of this study.

Hyperbolic MLP Model

The HypHC framework can easily be extended to a parametric model, with the simplest
example consisting of a fully connected multi-layer perceptron (MLP) with the HypHC
loss as the loss function. Unlike the HypHC model, loss values are not calculated using
all the training examples at once. Instead, we take the more conventional approach of
dividing data into batches and applying gradient updates per batch. Specifically, for

each individual in a batch, embeddings will be obtained using the fully connected layers.

Next, the HypHC loss will be calculated using only these embeddings, and a gradient
update will then be performed.

While the traditional HypHC model directly optimizes each embedding z; given an
input x;, our proposed Hyperbolic MLP model makes uses of a function f (represented
by the neural network) to translate between input and output, specifically by
calculating f(z;) = z;. Therefore, we learn a parametric model, f, that predicts z; given
an input x;.

When the model has been trained, embeddings for new data points can be obtained
by applying the fully connected layers to the input genotype. In this manner, the
embedding space is still optimized using a hierarchical clustering-based objective, but it
also retains the ability for new data points to be added in a semantically meaningful
manner.

Hyperbolic VAE Model

The model consists of MLP-based encoders and decoders, with transformations applied
to convert data into coordinates in hyperbolic space, following the framework provided
in [17). Specifically, after applying linear layers, followed by ReLU non-linearities, to the
input data to obtain predicted means and standard deviations for the embedding
coordinates, the predicted means are applied along the exponential map (which does not
occur in the MLP model). Latent coordinates are then sampled. The decoder consists of
a logarithmic map - to undo the exponential map - followed by a series of linear layers
to reproduce the input. In all cases, the embedding space used was two-dimensional.

The optimization objective of the model consists of three weighted components. The
first two components result from the need to maximize the evidence lower bound
(ELBO), as in standard VAEs. When extended to Riemannian spaces, this is equivalent
to minimizing the expression [17]:

Lerpo = —log(q(w:|2)) + (log(q(z]z:)) — log(p(2)) (5)

The term —log(q(z;|z)) represents the likelihood of the reconstructed data, and it is
calculated in practice using the binary cross-entropy between the reconstructions and
the original data. The term (log(q(z|z;)) — log(p(z))) represents the similarity between
the predicted and prior distributions for latent space coordinates, and it is analogous to
the KL divergence term in the standard VAE objective. For the latent prior, in lieu of
using a standard normal distribution, we use a Wrapped Normal distribution on a
Poincare Ball manifold. The Wrapped Normal consists of a Normal Distribution
mapped along the exponential map [17]. This term therefore consists of the difference in
log probabilities between a Wrapped Normal distribution with each predicted mean and
standard deviation, and a Wrapped Normal distribution with mean 0 and standard
deviation 1.

March 31, 2022

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217


https://doi.org/10.1101/2022.03.28.484797
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.03.28.484797; this version posted March 31, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY 4.0 International license.

The HypHC loss is the third and final component. This term is calculated
batch-wise; the triplets used in the HypHC objective consist of all possible combinations
of three data points from the current batch.

The final per-batch objective for the model can therefore be written as:

L = 34 57 ~loalatee) + 32 3 (loglalele) ~losp@)

+A3Lgyprc

where A1, A2, and A3 are manually specified weights for each of the loss terms and n is
the batch size. In this architecture, the reconstruction loss is intended as an additional
objective to ensure the latent embedding space most accurately reflects the relationships
present in the raw data. We surmised that the combination of HypHC loss and
reconstruction loss could possibly prove more effective than simply using the HypHC
loss alone.

Furthermore, the model’s decoder could allow for several other promising
applications, including the reconstruction of genotype data from the embedding space
and the production of synthetic data with specified properties. However, as this study
focuses on tree creation, these properties are not extensively tested and benchmarked
and are left as future work.

Dataset and Training

For all experiments, data was derived from the 1000 genomes project, the Human
Genome Diversity Project (HGDP), and the Simons Genome Diversity Project
(SGDP) [19-21]. The combined dataset consists of genotype data at 23,155,158 SNPs for
a total of 2,965 individuals, or 5,930 haploid genotypes. Individuals are derived from a
total of 136 different ethnic groups, which in turn are grouped into 7 continental regions:
Africa, Europe, the Americas, Oceania, West Asia, East Asia, and South Asia. For the
purposes of this study, each haploid genotype was considered a separate data point, and
these genotypes were randomly divided into training, validation, and test data at a ratio
of 80% to 10% to 10%. The input feature set was then filtered to only keep the 500,000
SNPs with the highest variance on a random sample of 2,000 genotypes from the
training data. We then trained the MLP and the VAE models on this data, using a
manual search to find effective hyperparameters. For the hyperbolic aspects of the
parametric models (eg. exponential map, Wrapped Normal distribution, Poincaré Disk),
we utilized implementations found in the Poincare VAE repo by Mathieu et al., and our
implementation of the HypHC loss was adapted from the HypHC repo [13,[17]. Notably,
to ensure effective visualization, only two-dimensional embedding spaces were used.

We conducted a non-exhaustive hyperparameter and architecture search for each
model, which allowed us to arrive at the following values. The MLP model consisted of
three hidden layers, with sizes of 300, 200, and 100, and ReLLU activation and dropout
after each layer. The encoder of the VAE model consisted of the same layer sizes, with
batch normalization in addition to ReLU and dropout with probability 0.2. The decoder
of the VAE model consisted of hidden layers of size 100, 200, and 300. All embeddings
were two-dimensional. Schematics of the models are illustrated in Fig

The MLP model was trained with a learning rate of 1072 and a temperature of 1074,
and the VAE model was trained with a learning rate of 1072 and a temperature of 107.
Due to the nature of the HypHC loss calculation, the batch size is more consequential
than in most machine learning models. In both cases, a batch size of 64 was used to
balance runtime with a sufficient sample size for HypHC loss. In all cases, the
Riemannian Adam optimizer was used [13|22]. Finally, all models were trained using
early stopping with a patience of 5.
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Fig 2. Schematics of the MLP (top) and VAE (bottom) models utilized in training. All
layer sizes in the VAE match those in the MLP. Green boxes represent data or values,
and all other colors represent operations.

After inspecting the embedding spaces that were learnt, we compared the results of
these models to those from non-parametric models applied to the test dataset — namely,
HypHC and various forms of hierarchical clustering. In all cases, the similarity between
two data points was defined as the fraction of SNPs for which the same nucleotide was
present.

Results

Structure of Embedding Space

It is first instructive to determine whether the tree embedding space contains
informative representations which reflect relationships between ancestries. Fig [3] displays
the continuous tree representations produced by selected VAE (top) and MLP (bottom)
models when evaluated on the test dataset. In both cases, most continental populations
separate into clear clusters, thus accurately capturing the genetic differences between
these groups. Furthermore, the ordering and spacing of these clusters largely reflects the
predominant hypotheses of human migration and peopling of the planet. According to
these theories, the earliest Homo sapiens populations were found in Africa, and over
thousands of years, certain groups crossed into Eurasia and subsequently reached all
corners of the Earth. Thus, all non-African humans arose from a limited number of
founders who left Africa, meaning they share greater genetic similarity with each other
than they do with the more diverse populations of Africa. The spacing of clusters in
both plots - namely, the fact that the African cluster is the most separated from the
others - therefore perfectly represents established scholarship [23}24].

Similarly, the order of continental populations in the plot reflects the history of
human migration. When early human populations left Africa, they likely did so via the
modern near East, which falls under the ”West Asia” category in our dataset. From
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Fig 3. Structure of embedding spaces produced on the test set by the VAE (top) and
MLP (bottom) models.

there, migrations are believed to have occurred to the east into Southern Asia, and
eventually to the west into Europe. Within Asia, migrations occurred to populate the
entire continent, and along the Indian Ocean coast into Oceania [25,26]. Finally,
humans crossed the Bering Strait land bridge from East Asia into the Americas. Due to
West Asia being the immediate destination from Africa, and a region that has remained
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in contact with it, it is reasonable that West Asians are the closest groups to Africans in
the plot. It is also fitting that Europeans and South Asians are closest to West Asians,
due again both to geography and the migration patterns mentioned above. Finally, due
to the patterns of migration within and out of Asia, we would expect South Asians,
East Asians, Oceanians, and Americans to be present in close proximity to each other,
which is indeed the case.

The model can also deliver insights regarding the unique genetic ancestries of
specific ethnic groups. For example, consider the African (red) points that are located
nearby to the West Asian (pink) population. These individuals belong to either the
Mozabite or Saharawi ethnic groups. The Mozabites are a small Berber ethnic group in
Algeria, while the Saharawi occupy the disputed territory of Western Sahara. Due to
their locations in North Africa, both groups have strong cultural, linguistic - and genetic
- influences from the Arabian Peninsula. Thus, their placement between the West
Asians and the rest of the African populations is an accurate reflection of their
history [27,28]. In conclusion, both the MLP and VAE models produce embedding
spaces that largely reflect established knowledge regarding the genetic relationships
between human ancestries.

Insertion of New Genotypes

As stated, the chief advantage of parametric tree production methods is that new
samples can be added to an existing tree in a semantically meaningful manner. We
therefore performed a simple experiment to verify this functionality holds for our models.
First, we produced embeddings for all training examples, thus generating the tree
represenation for the entire training dataset. Next, we randomly selected 20 examples
from the test dataset and added those to the embedding space. As evidenced in Fig[4]
the test examples fall within their respective continental populations. Even small
populations like Oceanians, who occupy a limited area in the training embedding space
and therefore may not generalize well to unseen samples, display effective inference.

These results therefore illustrate that the models presented in this study are able to
effectively generalize beyond the data they were trained on. Specifically, one can easily
incorporate new samples into existing tree representations, a useful task for a variety of
experimental settings.

Performance Comparison

To explore comparisons with non-parametric methods, we performed the following
procedure for the MLP and VAE models. First, we used a trained model to predict on
all samples from the test dataset. These embeddings represent a continuous tree
consisting of all test datapoints, and we then converted them into a discrete tree using
the decoding method suggested in the HypHC paper. We then compared this tree to a
variety of non-parametric methods, with Dasgupta’s cost as the metric of choice. As
stated, these non-parametric methods include HypHC and various forms of hierarchical
clustering. These variations of hierarchical clustering differ in the manner in which
distances between clusters are calculated. If we assume we are calculating the distances
between clusters u and v, then these methods can be described as follows:

e Nearest Point Algorithm: d(u,v) = min(d(uli],v[j])
e Farthest Point Algorithm: d(u,v) = max(d(u[i],v[j]))
e UPGMA Algorithm: d(u,v) = > d(uli], v[4])

[uflv]

WPGMA Algorithm: d(u,v) = 1(d(s,v) + d(t,v)) where cluster u was created
from clusters s and t.
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Embedding Weights for Train and Inserted Test Data - VAE Model
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South Asia
Oceania
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% Test

Embedding 2
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Embedding 1
Embedding Weights for Train and Inserted Test Data - MLP Model

0.30
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“Embedding 1
Fig 4. Outcome of adding randomly selected test samples to a tree formed from the
training set by the VAE (top) and MLP (bottom) models. Training samples are
represented by dots, and test samples are represented by crosses with black edges.

These methods represent all hierarchical clustering variations found in the Scipy Python
package able to utilize a Hamming Distance metric . HypHC was implemented by
adapting code found in the HypHC package to fit the specific use case . For the
HypHC model, we used a learning rate of 1072, a temperature of 1073, and early
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stopping with a patience of 5.

Note that since the output of the VAE model is non-deterministic, the value
presented is the result of aggregating the Dasgupta’s Cost values produced by
predicting on the test set ten different times. Table 1 shows the Dasgupta’s Cost values
for all methods on the test set.

As shown in Table 1, both parametric methods achieved highly competitive
performance as compared to the non-parametric methods, even outperforming multiple
of these benchmarks. It is instructive to once again note the key difference between the
parametric and non-parametric methods with respect to this experiment - while the test
set was directly used to train or fit all non-parametric methods used in this experiment,
it represents completely unseen data for the parametric methods. The fact that the
VAE and MLP models performed similarly to the state-of-the-art methods despite this
disadvantage reflects their generalizability and ability to create effective tree
representations from previously unseen sequences.

Model Parametric? | Dasgupta’s Cost (x10")
Hyperbolic MLP | Yes 6.816

Hyperbolic VAE | Yes 6.813 +/- 0.009

HypHC No 6.812

Nearest Point No 6.838

Farthest Point No 6.818

UPGMA No 6.807

WPGMA No 6.807

Table 1. Comparison of Dasgupta’s Cost values on the test dataset for all parametric
and non-parametric methods tested. Since the output of the VAE model is
non-deterministic, the value presented is the result of predicting on the test set ten
different times.

Notably, the performances of the VAE and MLP models were within the margin of
error from each other, indicating the efficacy of both training objectives in the creation
of continuous tree representations. Further experimentation is possibly needed to
determine the optimal strategy.

Discussion

Currently, if one desires to create a population tree from individual genotype data,
standard tree building algorithms require all data to be present at the time of tree
creation. If new data is obtained subsequently, it cannot easily be added to the
resultant tree; instead, the tree must be remade. In addition, as the method is discrete,
it cannot easily be incorporated into larger workflows. An effective parametric analog
for hierarchical clustering that can successfully represent genotype data is therefore
desirable. Hyperbolic geometry is generally seen as a natural choice for embedding
hierarchically structured data, so we focused in this area - and in particular, on
variations of the HypHC method - when designing methodologies for this study.
Overall, the performance of our two parametric methods - VAE and MLP-based
models - proved very promising when evaluated from a variety of different perspectives.
We first verified that our models’ embedding spaces grouped individuals by their
continental population, and we observed that the location and orientation of these
clusters reflected human evolutionary history. We also found cases in which
subpopulations with diverse influences were represented accordingly. We next tested
whether, given a tree already embedded into the model’s latent space, new samples were
projected in a semantically meaningful manner. Finally, when comparing Dasgupta’s
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cost values on the test dataset, both the VAE model and MLP model fell solidly in the
midst of the various hierarchical clustering methods tested. Taken together, these
results allow us to conclude that both models tested produce effective tree
representations and generalize well to unseen samples.

The properties of these models can allow for a variety of useful and interesting
applications. Of course, one of the most obvious pertains to adding a new sample to a
tree with a large number of nodes. Instead of performing the computationally expensive
process of remaking the tree each time a new node is added, we can simply add points
to the embedding space as we desire. A discrete tree can then be decoded from the
embedding space. In this manner, significant time is saved when producing updated
trees. Additionally, the frameworks presented makes it far easier to include hierarchical
clustering as part of larger machine learning workflows. Embeddings can be calculated
at some point in a pipeline, fed into the next step, and the entire model can eventually
be trained in an end-to-end fashion. One can imagine, for example, using hyperbolic
embeddings as inputs to a classifier for whether individuals are at risk for a particular
disease. Ultimately, a continuous and parametric model can greatly expand the realm of
tasks over which hierarchical clustering can contribute to a solution. Our models can
also potentially aid in preserving privacy of genetic data. If researchers desire to
produce a tree from certain individuals, they would normally need to access the raw
genotype data. Now, another option could be to receive the model embeddings instead,
after which the tree can be easily decoded. In this manner, the raw data will remain
hidden, thus protecting the privacy of the subjects. Furthermore, researchers without
permission to view the data could still perform analyses. Of course, such models would
likely require modifications, along with vigorous testing, to ensure they are truly
privacy-preserving. However, the models presented in this study represent a promising
approach. Finally, the dual methods of representation possible - a continuous
embedding space or a discrete tree - can allow for more comprehensive visualization of a
population. A tree is clearly effective at denoting the position of each node in the
overall hierarchy. However, relative distances between large groups or overall population
trends may be more intuitively depicted in a continuous plot.

It is also informative to compare the two parametric models. The MLP and VAE
achieved similar performance to each other, indicating that neither objective function is
intrinsically superior to the other. This is an interesting finding, as the MLP objective
is explicitly optimized for hierarchical clustering, while the VAE objective is not. It is
possible that for this data type simply embedding the data in hyperbolic space - which,
as stated previously, is highly effective for representing hierarchically structured data - is
enough to achieve strong hierarchical clustering performance. Both objective functions
can certainly produce semantically meaningful embeddings. Further elucidating the
specific behavior imparted by each objective function is an interesting future direction,
as is probing a larger number of architectures and objectives to determine the optimal
design choices. Another area of exploration pertains to fully studying the capabilities of
the VAE model. VAEs have a variety of functions that were not explicitly tested and
benchmarked in this study, including reconstruction of input data and generation of new
samples with desired properties [30]. Both properties could prove highly useful for
genetic ancestry. For example, to observe the genetic characteristics of particular
ethnicities, one could generate synthetic samples from desired locations in the
embedding space and analyze the resulting genotypes. By observing which SNPs in the
reconstructed genomes remain constant and which are allowed to vary, one can more
deeply understand the characteristic genetic signatures of the ethnic group in question.
Similar experiments can be performed for individuals of unknown origin. A VAE can be
used to produce several reconstructions of the individual’s genotype, and by analyzing
the variation present in these reconstructions, one can more fully discern the
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characteristics of the individual’s source population. A multifaceted model that is
effective in each of these areas, while still producing an embedding space optimized for
hierarchical clustering, would be a useful tool for the study of population genetics.

Several other areas of future work also exist. Most notably, while the models
separated continental populations from each other in the embedding space, stratification
of individual ancestries within continents was not nearly as effective. The most likely
explanation for this issue is simply a lack of training data. To improve performance
further, one would likely have to obtain more samples for each population or generate
them synthetically. More data would also allow us to train targeted models on specific
populations rather than individuals from around the world, thus allowing for greater
regional precision and resolution. One could also experiment with the metrics used for
hierarchical clustering. In all experiments performed in this study, the metric used was
directly derived from the genotype data, which was also the input to the model.
However, the similarity metric could also conceivably be used to add new information.
For example, one could craft a similarity metric around whether two samples are of the
same ethnicity, thus introducing supervised learning based on a sample’s population
labels. One could then take this idea a step further and introduce arbitrary similarity
metrics - for example, defining the metric based on the primary language spoken by
each individual. If a model can cluster according to this metric, while still grouping by
genotype within each cluster, it would prove an interesting tool.

In summary, this study introduces multiple parametric methods for tree formation
from genotype data, and it also puts forward several future directions for portable
private models, supervised approaches, and synthetic data generation based on these
methods.
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