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Abstract

The production of population-level trees using the genomic data of individuals is a
fundamental task in the field of population genetics. Typically, these trees are produced
using methods like hierarchical clustering, neighbor joining, or maximum likelihood.
However, such methods are non-parametric: they require all data to be present at the
time of tree formation, and the addition of new data points necessitates the regeneration
of the entire tree, a potentially expensive process. They also do not easily integrate with
larger workflows. In this study, we aim to address these problems by introducing
parametric deep learning methods for tree formation from genotype data. Our models
specifically create continuous representations of population trees in hyperbolic space,
which has previously proven highly effective in embedding hierarchically structured data.
We present two different architectures - a multi-layer perceptron (MLP) and a
variational autoencoder (VAE) - and we analyze their performance using a variety of
metrics along with comparisons to established tree-building methods. Both models
tested produce embedding spaces that reflect human evolutionary history. In addition,
we demonstrate the generalizability of these models by verifying that addition of new
samples to an existing tree occurs in a semantically meaningful manner. Finally, we use
Dasgupta’s Cost to compare the quality of trees generated by our models to those
produced by established methods. Despite the fact that the benchmark methods are
directly fit on the evaluation data, our models are able to outperform some of these and
achieve highly comparable performance overall.

Author summary

Tree production is a vital task in population genetics, but current approaches fall prey 1

to several common shortfalls. Most notably, they lack the ability to add new data 2

points after tree generation, and they are often difficult to use in larger pipelines. By 3

leveraging cutting-edge advances pairing deep learning with hyperbolic geometry, we 4

develop multiple models designed to rectify these issues. Through experiments on a 5

dataset of humans from globally widespread ancestries, we demonstrate the 6

generalizability of our models to new data, and we also show strong empirical 7

performance with respect to currently used methods. In addition, we show that the 8

data representations produced by our models are semantically meaningful and reflect 9
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known facts about human evolutionary history. Finally, we discuss the additional 10

benefits our models could provide, including improved visualization, greater privacy 11

preservation, and improved integration with downstream machine learning tasks. In 12

conclusion, we present models that are accurate, flexible, and generalizable, with the 13

potential to facilitate a variety of further applications. 14

Introduction 15

Recent advances in genetic sequencing technology, along with the wide availability of 16

genetic data, have resulted in the increased interest in predicting disease risk and other 17

traits directly from an individual’s genomic data. These predictions are made possible 18

through studies like Genome-Wide Asssociation Studies (GWAS), which determine 19

correlations between genomic variants and such traits, and the calculation of quantities 20

like Polygenic Risk Scores (PRS), which use an individual’s genotype to quantify disease 21

risk. However, these models do not always generalize across ancestries, often requiring 22

different models to be developed for different populations [1]. Accurate knowledge of an 23

individual’s genetic ancestry is therefore frequently important in making the most 24

accurate and effective healthcare decisions possible. 25

Ancestry categories are hierarchical, with each individual having a label at each level 26

in the hierarchy. For example, if we were to separate humans by continental population, 27

a particular individual could be described as European. If we then proceeded to cluster 28

the European population, the same individual could then be described as Italian. If we 29

then identified sub-clusters within the Italian population, this person could now be 30

identified as Sicilian, and so on. Trees are a natural choice to represent such 31

hierarchically structured data, and they have been widely used in the past in several 32

related paradigms. For example, Li et al. utilized trees from genotype data to elucidate 33

migration patterns and study relationships between human populations from across the 34

world [2]. Duda and Zrzavý combined genetic data with linguistic data to further probe 35

these relationships [3]. Trees are widely applicable to non-human species as well, as 36

evidenced by Parker et al.’s study utilizing trees to elucidate the population histories of 37

canids [4]. On a broader scale, of course, trees have been utilized to catalog and 38

categorize the entirety of life on Earth into an all-encompassing ”tree of life” [5]. 39

Finally, there has been much theoretical, mathematical, and computational work done 40

to devise and improve state-of-the-art tree production methods [6–8]. 41

Indeed, utilizing trees can provide several benefits in the study of ancestry. 42

Importantly, a tree can help assess how related two population groups or two 43

individuals are to each other. This fact can allow us to, for example, use population 44

trees to determine if GWAS or PRS results from one group are likely to generalize to 45

another. Similarly, we can use trees to determine which groups can be added to a 46

particular study and therefore increase its power while retaining accuracy. At present, 47

the majority of genome-trait association studies have been conducted in individuals of 48

European descent, largely neglecting individuals of other ancestries [1]. Population trees 49

can allow us to optimize study design for these groups and can be used for 50

pharmacogenomics, thus allowing for the delivery of vital healthcare information as 51

accurately and efficiently as possible [9]. 52

Genetic ancestry-based trees also have a variety of applications outside healthcare. 53

Notably, their structure can provide vital information regarding the course of human 54

evolution, and they can also potentially explain various migration events that have 55

occurred through history [2, 6]. Such information may prove valuable for historical or 56

demographic studies. Furthermore, trees can be produced for crops, livestock, and other 57

species, potentially aiding in decisions regarding agriculture and ecological health [4, 10]. 58

To create a tree from genomic data, it is necessary to leverage certain genetic 59
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signatures to calculate measures of similarity between the entities that will comprise the 60

tree. A common choice is to use Single Nucleotide Polymorphisms (SNPs), or single 61

genomic positions that are known to vary across human populations due to the 62

evolutionary history of the human species [2,11]. In general, it is expected that a pair of 63

closely related individuals will share more SNPs than a pair of more distantly related 64

ones. Typically, a tree-building algorithm like hierarchical clustering is employed 65

together with a similarity metric related to the number of SNPs shared in common 66

between each pair of individuals [12]. However, such trees cannot be easily included as 67

intermediate steps in larger workflows, and they are rigid and non-parametric - that is, 68

it is not possible to introduce new samples into the tree without recreating the entire 69

tree. This has two main disadvantages: first, it requires one to keep track of all the 70

samples to recreate the tree. Second, it is highly computationally inefficient, and it is 71

not a feasible solution for large modern biobanks and databases. Thanks to the 72

decreasing cost of sequencing, more datasets and biobanks that include a large number 73

of high-resolution SNP sequences are becoming available, generating a need for efficient 74

and scalable alternatives to tree-generation techniques. Thus, a parametric method to 75

embed tree nodes in a continuous space would, as illustrated in Fig 1, prove highly 76

useful in the study of population genetics.

Fig 1. An advantage of using continuous tree representations rather than discrete trees
is that new samples can be easily added to the current tree.

77

It has long been established that hyperbolic spaces are ideal for these embeddings, 78

and a method called HypHC has recently been developed to embed data such that the 79

embeddings reflect the structure of a hierarchical clustering tree [13]. Here, we present 80

two parametric adaptations of HypHC: a multi-layer perceptron (MLP) model, and a 81

Variational Autoencoder (VAE) model. We demonstrate the utility of these models to 82

embed genotype data in an informative manner, and we compare the quality of the trees 83

learnt to those produced by HypHC and hierarchical clustering. Overall, we 84

demonstrate the utility of hyperbolic geometry in creating flexible parametric methods 85

for tree creation for population genetics analysis. 86
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Methods 87

Hyperbolic Space and Poincare Embeddings 88

Previous studies have demonstrated the great efficacy of hyperbolic spaces in learning 89

embeddings for hierarchically structured data, including text, graphs, and in particular, 90

trees [14–16]. We will therefore describe the properties of hyperbolic spaces - in 91

particular, those following the Poincaré disc model - which allow for this hierarchical 92

structure to be captured, along with those that are relevant for the understanding of our 93

models. 94

In general, hyperbolic geometry is defined as a non-Euclidean geometry with a 95

constant negative curvature [13, 17]. Various types of hyperbolic spaces exist, and one 96

commonly used space is the Poincaré ball model, or its two-dimensional equivalent, the 97

Poincaré disk. In a Poincaré disk (as with other hyperbolic spaces), the distance 98

between two points zi and zj is calculated differently than in the standard Euclidean 99

formulation [13]. Specifically, the distance formula is given by: 100

d(zi, zj) = cosh−1(1 + 2
||zi − zj ||

2

(1− ||zi||2)(1− ||zj ||2)
) (1)

A byproduct of this distance metric is that surface area grows in an exponential 101

manner as we reach the edge of the disk. Since the number of leaves in a tree grows 102

exponentially with respect to the tree’s height, a Poincaré disk (or other hyperbolic 103

space) is therefore ideal for learning accurate tree representations without the need for 104

an excessively large embedding space. In fact, one can think of hyperbolic spaces as 105

continuous analogues of trees [14]. Previous studies have demonstrated methods to 106

embed trees into hyperbolic spaces with minimal error [16]. Euclidean spaces do not 107

possess this property of exponential growth, meaning modeling larger trees requires a 108

higher dimensionality, which can cause a variety of problems with training, including 109

overfitting and memory concerns [14]. 110

It is also important to consider the nature of the curves, or geodesics, which 111

represent the shortest paths between two points in the Poincaré disk. In this 112

formulation, geodesics are either lines through the origin or circular arcs that intersect 113

the two points and are orthogonal to the edges of the disk [18]. 114

Given our knowledge of geodesics, we must introduce one final important property: 115

the exponential map. Assume that we start with a point z, which is on a unit geodesic γ 116

such that γ(0) = z. There will exist only one possible γ such that the tangent vector at 117

z (i.e. γ′(0)) is a certain vector v. We then define the exponential map of v as 118

expz(v) = γ(1). A closed-form solution exists for this transformation, and it is used 119

frequently in the various architectures and probability distributions utilized in this 120

study [17]. 121

The HypHC Model 122

Central to the models employed in this study is Hyperbolic Hierarchical Clustering, or 123

HypHC, which was introduced by Chami et al. in 2020 [13]. This method utilizes a 124

differentiable objective function to embed data points in hyperbolic space such that 125

distances between embeddings reflect closeness in a hierarchical clustering tree. 126

Hyperbolic geometry was chosen for this task because it allows for more natural and 127

effective representations of trees than is possible in the standard Euclidean space [13]. 128

Specifically, the objective function of HypHC is a continuous relaxation in hyperbolic 129

space of Dasgupta’s Cost, a common metric used to evaluate the quality of hierarchical 130

cluster assignments. 131
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Given a similarity matrix w representing the data, and a tree T generated with 132

hierarchical clustering, Dasgupta’s cost can be written as follows: 133

Ld =
∑

i,j,k

(wij + wik + wjk − wijk|T ) + 2
∑

i,j

wij (2)

where wij is the similarity between sample i and j, wijk|T = wij if the tree first splits k 134

from i and j, wik if the tree first splits j from i and k, and wjk if the tree first splits i 135

from j and k [13]. 136

Dasgupta’s cost therefore calculates whether more similar nodes are located closer 137

together in the tree than less related ones. Alternatively, it gauges if the Lowest 138

Common Ancestors (LCA) - the points at which two nodes split from each other - of 139

more similar nodes are lower in the tree, while the LCAs of less similar nodes are higher 140

in the tree. The term wijk|T can therefore be interpreted as the similarity of the two 141

nodes in {i, j, k} with the LCA that is farthest from the root of the tree [13]. 142

Although this objective function is discrete, a continuous analog can be developed in 143

hyperbolic space. To do so, we must define the continuous equivalent of the LCA. Let zi 144

and zj be the hyperbolic embeddings of two data points i and j, and let qij be the 145

curve representing the geodesic (shortest path distance) between zi and zj . We first 146

consider that in a conventional tree, the LCA between two nodes will be the point on 147

the shortest path between the nodes that is closest to the root. Similarly, if we assume 148

our tree is rooted at the origin in hyperbolic space, the hyperbolic LCA between zi and 149

zj will be the point on the geodesic that is closest to the origin [13]. 150

If we define dLCA(zi, zj) to be the distance from the origin to the hyperbolic LCA of 151

zi and zj , we can define the continuous analog to Dasgupta’s cost as follows: 152

LHypHC =
∑

i,j,k

(wij + wik + wjk − wijk|HypHC) + 2
∑

i,j

wij (3)

The term wijk|HypHC is then defined as follows: 153

wijk|HypHC =

[wij , wik, wjk] · σT ([dLCA(zi, zj), dLCA(zi, zk), dLCA(zj , zk)])
T

(4)

where σT is the softmax function with a learned temperature scaling parameter 154

(specifically, the logits are scaled by 1
T

before the softmax is applied) [13]. Therefore, 155

the softmax output acts as a smooth relaxation of an indicator function. 156

This objective can then be optimized by gradient descent in a similar manner to a 157

conventional neural network. Even though all data points are considered at once, we 158

can divide the triplets i, j, k into batches for the sake of computational efficiency and 159

memory usage. 160

Finally, if desired, the HypHC paper provides algorithms to convert the continuous 161

space into a discrete tree. The most theoretically rigorous of these can be 162

computationally expensive under certain situations, but a greedy algorithm is provided 163

which runs far faster and has been validated to achieve comparable performance. In this 164

algorithm, points first are normalized to have the same distance from the origin in the 165

Poincaré Disk. Next, the points are sorted according to their angles in the disk, which 166

are analogous to their positions when normalized. We then calculate the two largest 167

gaps in this sorted list (ie. the two largest differences between consecutive angles), and 168

we split the dataset into points that have angles between these two gaps and points that 169

do not. Now that the first division has been determined, we recursively divide each split 170

at the largest gap until the full tree structure is reached [13]. In this manner, we have a 171

simple, efficient algorithm to produce discrete trees from HypHC embedding spaces. 172
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Novel Parametric Models 173

We will now discuss the parametric models developed as part of this study. 174

Hyperbolic MLP Model 175

The HypHC framework can easily be extended to a parametric model, with the simplest 176

example consisting of a fully connected multi-layer perceptron (MLP) with the HypHC 177

loss as the loss function. Unlike the HypHC model, loss values are not calculated using 178

all the training examples at once. Instead, we take the more conventional approach of 179

dividing data into batches and applying gradient updates per batch. Specifically, for 180

each individual in a batch, embeddings will be obtained using the fully connected layers. 181

Next, the HypHC loss will be calculated using only these embeddings, and a gradient 182

update will then be performed. 183

While the traditional HypHC model directly optimizes each embedding zi given an 184

input xi, our proposed Hyperbolic MLP model makes uses of a function f (represented 185

by the neural network) to translate between input and output, specifically by 186

calculating f(xi) = zi. Therefore, we learn a parametric model, f , that predicts zi given 187

an input xi. 188

When the model has been trained, embeddings for new data points can be obtained 189

by applying the fully connected layers to the input genotype. In this manner, the 190

embedding space is still optimized using a hierarchical clustering-based objective, but it 191

also retains the ability for new data points to be added in a semantically meaningful 192

manner. 193

Hyperbolic VAE Model 194

The model consists of MLP-based encoders and decoders, with transformations applied 195

to convert data into coordinates in hyperbolic space, following the framework provided 196

in [17]. Specifically, after applying linear layers, followed by ReLU non-linearities, to the 197

input data to obtain predicted means and standard deviations for the embedding 198

coordinates, the predicted means are applied along the exponential map (which does not 199

occur in the MLP model). Latent coordinates are then sampled. The decoder consists of 200

a logarithmic map - to undo the exponential map - followed by a series of linear layers 201

to reproduce the input. In all cases, the embedding space used was two-dimensional. 202

The optimization objective of the model consists of three weighted components. The 203

first two components result from the need to maximize the evidence lower bound 204

(ELBO), as in standard VAEs. When extended to Riemannian spaces, this is equivalent 205

to minimizing the expression [17]: 206

LELBO = −log(q(xi|z)) + (log(q(z|xi))− log(p(z)) (5)

The term −log(q(xi|z)) represents the likelihood of the reconstructed data, and it is 207

calculated in practice using the binary cross-entropy between the reconstructions and 208

the original data. The term (log(q(z|xi))− log(p(z))) represents the similarity between 209

the predicted and prior distributions for latent space coordinates, and it is analogous to 210

the KL divergence term in the standard VAE objective. For the latent prior, in lieu of 211

using a standard normal distribution, we use a Wrapped Normal distribution on a 212

Poincare Ball manifold. The Wrapped Normal consists of a Normal Distribution 213

mapped along the exponential map [17]. This term therefore consists of the difference in 214

log probabilities between a Wrapped Normal distribution with each predicted mean and 215

standard deviation, and a Wrapped Normal distribution with mean 0 and standard 216

deviation 1. 217
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The HypHC loss is the third and final component. This term is calculated 218

batch-wise; the triplets used in the HypHC objective consist of all possible combinations 219

of three data points from the current batch. 220

The final per-batch objective for the model can therefore be written as: 221

Lhvae =
λ1

n

∑

i

−log(q(xi|z)) +
λ2

n

∑

i

(log(q(z|xi))− log(p(z)))

+λ3LHypHC

(6)

where λ1, λ2, and λ3 are manually specified weights for each of the loss terms and n is 222

the batch size. In this architecture, the reconstruction loss is intended as an additional 223

objective to ensure the latent embedding space most accurately reflects the relationships 224

present in the raw data. We surmised that the combination of HypHC loss and 225

reconstruction loss could possibly prove more effective than simply using the HypHC 226

loss alone. 227

Furthermore, the model’s decoder could allow for several other promising 228

applications, including the reconstruction of genotype data from the embedding space 229

and the production of synthetic data with specified properties. However, as this study 230

focuses on tree creation, these properties are not extensively tested and benchmarked 231

and are left as future work. 232

Dataset and Training 233

For all experiments, data was derived from the 1000 genomes project, the Human 234

Genome Diversity Project (HGDP), and the Simons Genome Diversity Project 235

(SGDP) [19–21]. The combined dataset consists of genotype data at 23,155,158 SNPs for 236

a total of 2,965 individuals, or 5,930 haploid genotypes. Individuals are derived from a 237

total of 136 different ethnic groups, which in turn are grouped into 7 continental regions: 238

Africa, Europe, the Americas, Oceania, West Asia, East Asia, and South Asia. For the 239

purposes of this study, each haploid genotype was considered a separate data point, and 240

these genotypes were randomly divided into training, validation, and test data at a ratio 241

of 80% to 10% to 10%. The input feature set was then filtered to only keep the 500,000 242

SNPs with the highest variance on a random sample of 2,000 genotypes from the 243

training data. We then trained the MLP and the VAE models on this data, using a 244

manual search to find effective hyperparameters. For the hyperbolic aspects of the 245

parametric models (eg. exponential map, Wrapped Normal distribution, Poincaré Disk), 246

we utilized implementations found in the Poincare VAE repo by Mathieu et al., and our 247

implementation of the HypHC loss was adapted from the HypHC repo [13, 17]. Notably, 248

to ensure effective visualization, only two-dimensional embedding spaces were used. 249

We conducted a non-exhaustive hyperparameter and architecture search for each 250

model, which allowed us to arrive at the following values. The MLP model consisted of 251

three hidden layers, with sizes of 300, 200, and 100, and ReLU activation and dropout 252

after each layer. The encoder of the VAE model consisted of the same layer sizes, with 253

batch normalization in addition to ReLU and dropout with probability 0.2. The decoder 254

of the VAE model consisted of hidden layers of size 100, 200, and 300. All embeddings 255

were two-dimensional. Schematics of the models are illustrated in Fig 2 256

The MLP model was trained with a learning rate of 10−3 and a temperature of 10−4, 257

and the VAE model was trained with a learning rate of 10−2 and a temperature of 10−6. 258

Due to the nature of the HypHC loss calculation, the batch size is more consequential 259

than in most machine learning models. In both cases, a batch size of 64 was used to 260

balance runtime with a sufficient sample size for HypHC loss. In all cases, the 261

Riemannian Adam optimizer was used [13,22]. Finally, all models were trained using 262

early stopping with a patience of 5. 263
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Fig 2. Schematics of the MLP (top) and VAE (bottom) models utilized in training. All
layer sizes in the VAE match those in the MLP. Green boxes represent data or values,
and all other colors represent operations.

After inspecting the embedding spaces that were learnt, we compared the results of 264

these models to those from non-parametric models applied to the test dataset – namely, 265

HypHC and various forms of hierarchical clustering. In all cases, the similarity between 266

two data points was defined as the fraction of SNPs for which the same nucleotide was 267

present. 268

Results 269

Structure of Embedding Space 270

It is first instructive to determine whether the tree embedding space contains 271

informative representations which reflect relationships between ancestries. Fig 3 displays 272

the continuous tree representations produced by selected VAE (top) and MLP (bottom) 273

models when evaluated on the test dataset. In both cases, most continental populations 274

separate into clear clusters, thus accurately capturing the genetic differences between 275

these groups. Furthermore, the ordering and spacing of these clusters largely reflects the 276

predominant hypotheses of human migration and peopling of the planet. According to 277

these theories, the earliest Homo sapiens populations were found in Africa, and over 278

thousands of years, certain groups crossed into Eurasia and subsequently reached all 279

corners of the Earth. Thus, all non-African humans arose from a limited number of 280

founders who left Africa, meaning they share greater genetic similarity with each other 281

than they do with the more diverse populations of Africa. The spacing of clusters in 282

both plots - namely, the fact that the African cluster is the most separated from the 283

others - therefore perfectly represents established scholarship [23,24]. 284

Similarly, the order of continental populations in the plot reflects the history of 285

human migration. When early human populations left Africa, they likely did so via the 286

modern near East, which falls under the ”West Asia” category in our dataset. From 287
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Fig 3. Structure of embedding spaces produced on the test set by the VAE (top) and
MLP (bottom) models.

there, migrations are believed to have occurred to the east into Southern Asia, and 288

eventually to the west into Europe. Within Asia, migrations occurred to populate the 289

entire continent, and along the Indian Ocean coast into Oceania [25, 26]. Finally, 290

humans crossed the Bering Strait land bridge from East Asia into the Americas. Due to 291

West Asia being the immediate destination from Africa, and a region that has remained 292
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in contact with it, it is reasonable that West Asians are the closest groups to Africans in 293

the plot. It is also fitting that Europeans and South Asians are closest to West Asians, 294

due again both to geography and the migration patterns mentioned above. Finally, due 295

to the patterns of migration within and out of Asia, we would expect South Asians, 296

East Asians, Oceanians, and Americans to be present in close proximity to each other, 297

which is indeed the case. 298

The model can also deliver insights regarding the unique genetic ancestries of 299

specific ethnic groups. For example, consider the African (red) points that are located 300

nearby to the West Asian (pink) population. These individuals belong to either the 301

Mozabite or Saharawi ethnic groups. The Mozabites are a small Berber ethnic group in 302

Algeria, while the Saharawi occupy the disputed territory of Western Sahara. Due to 303

their locations in North Africa, both groups have strong cultural, linguistic - and genetic 304

- influences from the Arabian Peninsula. Thus, their placement between the West 305

Asians and the rest of the African populations is an accurate reflection of their 306

history [27,28]. In conclusion, both the MLP and VAE models produce embedding 307

spaces that largely reflect established knowledge regarding the genetic relationships 308

between human ancestries. 309

Insertion of New Genotypes 310

As stated, the chief advantage of parametric tree production methods is that new 311

samples can be added to an existing tree in a semantically meaningful manner. We 312

therefore performed a simple experiment to verify this functionality holds for our models. 313

First, we produced embeddings for all training examples, thus generating the tree 314

represenation for the entire training dataset. Next, we randomly selected 20 examples 315

from the test dataset and added those to the embedding space. As evidenced in Fig 4, 316

the test examples fall within their respective continental populations. Even small 317

populations like Oceanians, who occupy a limited area in the training embedding space 318

and therefore may not generalize well to unseen samples, display effective inference. 319

These results therefore illustrate that the models presented in this study are able to 320

effectively generalize beyond the data they were trained on. Specifically, one can easily 321

incorporate new samples into existing tree representations, a useful task for a variety of 322

experimental settings. 323

Performance Comparison 324

To explore comparisons with non-parametric methods, we performed the following 325

procedure for the MLP and VAE models. First, we used a trained model to predict on 326

all samples from the test dataset. These embeddings represent a continuous tree 327

consisting of all test datapoints, and we then converted them into a discrete tree using 328

the decoding method suggested in the HypHC paper. We then compared this tree to a 329

variety of non-parametric methods, with Dasgupta’s cost as the metric of choice. As 330

stated, these non-parametric methods include HypHC and various forms of hierarchical 331

clustering. These variations of hierarchical clustering differ in the manner in which 332

distances between clusters are calculated. If we assume we are calculating the distances 333

between clusters u and v, then these methods can be described as follows: 334

• Nearest Point Algorithm: d(u, v) = min(d(u[i], v[j]) 335

• Farthest Point Algorithm: d(u, v) = max(d(u[i], v[j])) 336

• UPGMA Algorithm: d(u, v) = 1
|u||v|

∑
i,j d(u[i], v[j]) 337

• WPGMA Algorithm: d(u, v) = 1
2
(d(s, v) + d(t, v)) where cluster u was created 338

from clusters s and t. 339
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Fig 4. Outcome of adding randomly selected test samples to a tree formed from the
training set by the VAE (top) and MLP (bottom) models. Training samples are
represented by dots, and test samples are represented by crosses with black edges.

These methods represent all hierarchical clustering variations found in the Scipy Python 340

package able to utilize a Hamming Distance metric [29]. HypHC was implemented by 341

adapting code found in the HypHC package to fit the specific use case [13]. For the 342

HypHC model, we used a learning rate of 10−2, a temperature of 10−3, and early 343
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stopping with a patience of 5. 344

Note that since the output of the VAE model is non-deterministic, the value 345

presented is the result of aggregating the Dasgupta’s Cost values produced by 346

predicting on the test set ten different times. Table 1 shows the Dasgupta’s Cost values 347

for all methods on the test set. 348

As shown in Table 1, both parametric methods achieved highly competitive 349

performance as compared to the non-parametric methods, even outperforming multiple 350

of these benchmarks. It is instructive to once again note the key difference between the 351

parametric and non-parametric methods with respect to this experiment - while the test 352

set was directly used to train or fit all non-parametric methods used in this experiment, 353

it represents completely unseen data for the parametric methods. The fact that the 354

VAE and MLP models performed similarly to the state-of-the-art methods despite this 355

disadvantage reflects their generalizability and ability to create effective tree 356

representations from previously unseen sequences.

Model Parametric? Dasgupta’s Cost (×107)

Hyperbolic MLP Yes 6.816

Hyperbolic VAE Yes 6.813 +/- 0.009

HypHC No 6.812

Nearest Point No 6.838

Farthest Point No 6.818

UPGMA No 6.807

WPGMA No 6.807

Table 1. Comparison of Dasgupta’s Cost values on the test dataset for all parametric
and non-parametric methods tested. Since the output of the VAE model is
non-deterministic, the value presented is the result of predicting on the test set ten
different times.

357

Notably, the performances of the VAE and MLP models were within the margin of 358

error from each other, indicating the efficacy of both training objectives in the creation 359

of continuous tree representations. Further experimentation is possibly needed to 360

determine the optimal strategy. 361

Discussion 362

Currently, if one desires to create a population tree from individual genotype data, 363

standard tree building algorithms require all data to be present at the time of tree 364

creation. If new data is obtained subsequently, it cannot easily be added to the 365

resultant tree; instead, the tree must be remade. In addition, as the method is discrete, 366

it cannot easily be incorporated into larger workflows. An effective parametric analog 367

for hierarchical clustering that can successfully represent genotype data is therefore 368

desirable. Hyperbolic geometry is generally seen as a natural choice for embedding 369

hierarchically structured data, so we focused in this area - and in particular, on 370

variations of the HypHC method - when designing methodologies for this study. 371

Overall, the performance of our two parametric methods - VAE and MLP-based 372

models - proved very promising when evaluated from a variety of different perspectives. 373

We first verified that our models’ embedding spaces grouped individuals by their 374

continental population, and we observed that the location and orientation of these 375

clusters reflected human evolutionary history. We also found cases in which 376

subpopulations with diverse influences were represented accordingly. We next tested 377

whether, given a tree already embedded into the model’s latent space, new samples were 378

projected in a semantically meaningful manner. Finally, when comparing Dasgupta’s 379
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cost values on the test dataset, both the VAE model and MLP model fell solidly in the 380

midst of the various hierarchical clustering methods tested. Taken together, these 381

results allow us to conclude that both models tested produce effective tree 382

representations and generalize well to unseen samples. 383

The properties of these models can allow for a variety of useful and interesting 384

applications. Of course, one of the most obvious pertains to adding a new sample to a 385

tree with a large number of nodes. Instead of performing the computationally expensive 386

process of remaking the tree each time a new node is added, we can simply add points 387

to the embedding space as we desire. A discrete tree can then be decoded from the 388

embedding space. In this manner, significant time is saved when producing updated 389

trees. Additionally, the frameworks presented makes it far easier to include hierarchical 390

clustering as part of larger machine learning workflows. Embeddings can be calculated 391

at some point in a pipeline, fed into the next step, and the entire model can eventually 392

be trained in an end-to-end fashion. One can imagine, for example, using hyperbolic 393

embeddings as inputs to a classifier for whether individuals are at risk for a particular 394

disease. Ultimately, a continuous and parametric model can greatly expand the realm of 395

tasks over which hierarchical clustering can contribute to a solution. Our models can 396

also potentially aid in preserving privacy of genetic data. If researchers desire to 397

produce a tree from certain individuals, they would normally need to access the raw 398

genotype data. Now, another option could be to receive the model embeddings instead, 399

after which the tree can be easily decoded. In this manner, the raw data will remain 400

hidden, thus protecting the privacy of the subjects. Furthermore, researchers without 401

permission to view the data could still perform analyses. Of course, such models would 402

likely require modifications, along with vigorous testing, to ensure they are truly 403

privacy-preserving. However, the models presented in this study represent a promising 404

approach. Finally, the dual methods of representation possible - a continuous 405

embedding space or a discrete tree - can allow for more comprehensive visualization of a 406

population. A tree is clearly effective at denoting the position of each node in the 407

overall hierarchy. However, relative distances between large groups or overall population 408

trends may be more intuitively depicted in a continuous plot. 409

It is also informative to compare the two parametric models. The MLP and VAE 410

achieved similar performance to each other, indicating that neither objective function is 411

intrinsically superior to the other. This is an interesting finding, as the MLP objective 412

is explicitly optimized for hierarchical clustering, while the VAE objective is not. It is 413

possible that for this data type simply embedding the data in hyperbolic space - which, 414

as stated previously, is highly effective for representing hierarchically structured data - is 415

enough to achieve strong hierarchical clustering performance. Both objective functions 416

can certainly produce semantically meaningful embeddings. Further elucidating the 417

specific behavior imparted by each objective function is an interesting future direction, 418

as is probing a larger number of architectures and objectives to determine the optimal 419

design choices. Another area of exploration pertains to fully studying the capabilities of 420

the VAE model. VAEs have a variety of functions that were not explicitly tested and 421

benchmarked in this study, including reconstruction of input data and generation of new 422

samples with desired properties [30]. Both properties could prove highly useful for 423

genetic ancestry. For example, to observe the genetic characteristics of particular 424

ethnicities, one could generate synthetic samples from desired locations in the 425

embedding space and analyze the resulting genotypes. By observing which SNPs in the 426

reconstructed genomes remain constant and which are allowed to vary, one can more 427

deeply understand the characteristic genetic signatures of the ethnic group in question. 428

Similar experiments can be performed for individuals of unknown origin. A VAE can be 429

used to produce several reconstructions of the individual’s genotype, and by analyzing 430

the variation present in these reconstructions, one can more fully discern the 431
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characteristics of the individual’s source population. A multifaceted model that is 432

effective in each of these areas, while still producing an embedding space optimized for 433

hierarchical clustering, would be a useful tool for the study of population genetics. 434

Several other areas of future work also exist. Most notably, while the models 435

separated continental populations from each other in the embedding space, stratification 436

of individual ancestries within continents was not nearly as effective. The most likely 437

explanation for this issue is simply a lack of training data. To improve performance 438

further, one would likely have to obtain more samples for each population or generate 439

them synthetically. More data would also allow us to train targeted models on specific 440

populations rather than individuals from around the world, thus allowing for greater 441

regional precision and resolution. One could also experiment with the metrics used for 442

hierarchical clustering. In all experiments performed in this study, the metric used was 443

directly derived from the genotype data, which was also the input to the model. 444

However, the similarity metric could also conceivably be used to add new information. 445

For example, one could craft a similarity metric around whether two samples are of the 446

same ethnicity, thus introducing supervised learning based on a sample’s population 447

labels. One could then take this idea a step further and introduce arbitrary similarity 448

metrics - for example, defining the metric based on the primary language spoken by 449

each individual. If a model can cluster according to this metric, while still grouping by 450

genotype within each cluster, it would prove an interesting tool. 451

In summary, this study introduces multiple parametric methods for tree formation 452

from genotype data, and it also puts forward several future directions for portable 453

private models, supervised approaches, and synthetic data generation based on these 454

methods. 455
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