

1

2 Persistent Immune and Clotting Dysfunction 3 Detected in Saliva and Blood Plasma after COVID-19

4

5 **Running title: Proteomics Detection of Persistent Host-Responses after COVID-19**

6

7 Hyesun Jang¹, Saibyasachi Choudhury², Yanbao Yu³, Benjamin L. Sievers¹, Terri
8 Gelbart¹, Harinder Singh¹, Stephen A. Rawlings⁴, Amy Proal⁶, Gene S. Tan^{1,5}, Davey
9 Smith⁵, Marcelo Freire*^{1,5}

10

11

12 ¹ Genomic Medicine and Infectious Diseases, J. Craig Venter Institute, La Jolla, CA, and
13 Rockville, MD, USA

14 ² DGG-Genomics Division, Agilent, Technologies, Inc., La Jolla, CA 92037

15 ³ Department of Chemistry & Biochemistry, University of Delaware, Newark, DE, USA,
16 19716

17 ⁴ MMP Adult Infectious Disease, Maine Medical Center, South Portland, ME, 04106

18 ⁵ Division of Infectious Diseases and Global Public Health Department of Medicine,
19 University of California San Diego, La Jolla, CA, USA

20 ⁶PolyBio Research Foundation. Mercer Island, WA, USA

31 **Corresponding Author***

32 Marcelo Freire, D.D.S., Ph.D., D.Med.Sc.
33 Associate Professor
34 Genomic Medicine and Infectious Diseases
35 J. Craig Venter Institute
36 4120 Capricorn Lane, La Jolla, CA 92037, USA
37 Phone: 858-200-1846
38 Fax: 858-200-1880
39 E-mail: mfreira@jcv.org

41
42
43

44 **Abstract**

45 A growing number of studies indicate that coronavirus disease 2019 (COVID-19) is
46 associated with inflammatory sequelae, but molecular signatures governing the normal vs.
47 pathologic convalescence process have not been well-delineated. We characterized global immune
48 and proteome responses in matched plasma and saliva samples obtained from COVID-19 patients
49 collected between 4-6 weeks after initial clinical symptoms resolved. Convalescent subjects
50 showed robust IgA and IgG responses and positive antibody correlations between matched saliva
51 and plasma samples. However, global shotgun proteomics revealed persistent inflammatory
52 patterns in convalescent samples including dysfunction of salivary innate immune cells and
53 clotting factors in plasma (e.g., fibrinogen and antithrombin), with positive correlations to acute
54 COVID-19 disease severity. Saliva samples were characterized by higher concentrations of IgA,
55 and proteomics showed altered pathways that correlated positively with IgA levels. Our study
56 positions saliva as a viable fluid to monitor immunity beyond plasma to document COVID-19
57 immune, inflammatory, and coagulation-related sequelae.

58
59

60 **Introduction**

61 Patients infected with the SARS-CoV-2 virus driving the COVID-19 pandemic generally
62 experience a course of acute illness that lasts for approximately 2 weeks. For example, Byrne *et*
63 *al.* reported that the estimated mean time from COVID-19 symptom onset to two negative PCR
64 tests was 13.4 days (1). After this acute phase of illness, COVID-19 patients who do not experience
65 further complications generally produce SARS-CoV-2 associated antibodies and enter the
66 recovery or convalescent stage of the disease. However, despite SARS-CoV-2 antibody production
67 and a decrease in clinical symptoms, it is possible that convalescent COVID-19 patients (3-6 weeks
68 after initial illness) still experience immune or coagulation-related sequelae. Indeed, an increasing
69 number of complications are being reported in individuals after acute COVID-19 (2, 3). One
70 longitudinal study followed COVID-19 survivors for up to 6-, and 12-month after symptom onset.
71 While the majority of subjects returned to normal life and produced antibody levels, they exhibited
72 a dynamic range of recovery levels (4) and the complete molecular fingerprint caused by virus
73 exposure remains unknown. It is consequently important to document molecular signatures in
74 convalescent COVID-19 subjects to better define the normal vs. pathologic convalescence process
75 and to detect the possible initiation of aberrant innate immune activation, especially in fluids that
76 are in direct contact with SARS-CoV-2 (5).

77 We characterized global immune and proteome responses after SARS-CoV-2 infection in
78 matched plasma and saliva obtained from convalescent COVID-19 subjects (n=34), with samples
79 obtained from healthy individuals pre-COVID-19 era serving as healthy controls (n=13). We
80 focused on the analysis of saliva in addition to plasma for the following reasons: 1) saliva is a
81 practical and optimal body fluid to monitor for host and immune-inflammatory markers 2) saliva
82 is a direct surrogate for SARS-CoV-2 antibody responses derived from bronchial-alveolar
83 lymphoid tissues (BALT) (6), 3) saliva can reflect systemic reactions to infection since more than
84 90% of body protein components are detected from saliva (7-9), 4) saliva contains oral
85 microbiome commensals which shape the host immune profile (10, 11), and 5) oral inflammation
86 can influence the severity of systemic inflammatory responses (12-14). A human salivary

87 proteome database was initially developed to explore saliva as a source of mapping markers in
88 health and disease and to further advance comparisons to other body fluids (15). The current effort
89 is now publicly available to share studies related to the composition and function of saliva biofluid
90 (salivaryproteome.org). To date, evidence is lacking to understand immune responses (present in
91 fluids such as saliva and plasma) on a global scale to evaluate subjects that experienced and
92 resolved from SARS-CoV-2 infection.

93 Here, we measured and compared SARS-CoV-2 antibody responses in matched saliva and
94 plasma samples, with SARS-CoV-2 S bearing pseudovirus particles used to evaluate virus
95 neutralization. We used shotgun proteomics to analyze early immune and host cell-mediated
96 markers that may activate inflammation and endothelial damage during COVID-19 convalescence.
97 Last, we characterized host functional pathways impaired by SARS-CoV-2 infection by comparing
98 responses in convalescent COVID-19 subjects to that of healthy controls and by comparing
99 responses in saliva to that of plasma.

100 **Results**

101

102 ***The salivary antibody repertoire towards SARS-CoV-2 antigens significantly correlated with***
103 ***matched plasma serology***

104 As body fluids are exposed to different antigens, we investigated how SARS-CoV-2
105 antibody responses in saliva compared to those in matched plasma. Paired saliva and plasma
106 samples from COVID-19 donors in the convalescent phase (3-6 weeks) were collected and
107 subjected to comparative analyses among demographic factors (age, gender, and initial COVID-
108 19 disease severity), antibody, and proteomic responses (**Fig. 1**) (**Table. S1**). Samples collected
109 from healthy individuals collected pre-COVID-19 were included for comparison between health
110 vs. convalescent COVID-19 (**Fig.1**). We first evaluated antibody responses detected in saliva and
111 plasma specific for the SARS-CoV-2 receptor-binding domain (RBD), subunit 1 (S1), and subunit
112 2 (S2) of the spike protein, and the nucleoprotein (NP) (**Fig. 2A-C**). Antibodies to common cold
113 coronaviruses were also evaluated by measuring antibodies that bind to the NL63 (NL63) Spike
114 Glycoprotein (S1). Our primary interest was antibodies specific to the RBD and S1 of SARS-CoV-
115 2, the sites responsible for virus binding to cell receptors and major mutation sites. When
116 comparing antibody titers in convalescent subjects versus healthy controls, significant increases
117 were observed in RBD binding IgA in saliva ($p=0.0001$), RBD binding IgA in plasma ($p=0.0003$),
118 S1 RBD binding IgG in plasma ($p<0.0001$), and RBD binding IgM in saliva ($p=0.0118$) (**Fig. 2A-C**). Interestingly,
119 significant correlations between paired saliva and plasma were also observed for
120 SARS-CoV-2 RBD or S1 binding immunoglobulins (**Fig. 2D**). Significant correlations among
121 immunoglobulin subclasses in plasma and saliva are summarized in **Table S2**.

122

123 ***Immunoglobulin composition and neutralizing functions displayed unique patterns between***
124 ***saliva and plasma***

125 We next investigated the antibody responses to confirm that our subjects were in the
126 COVID-19 convalescent phase and produced protective antibody responses. While antibody
127 responses to the SARS-CoV-2 RBD and S1 showed a significant correlation between saliva and
128 plasma, the overall antibody profile of saliva was different than plasma. For IgA response,
129 convalescent saliva was significantly higher than convalescent plasma for SARS-CoV-2 S1, S2,

130 NP, and NL63 ($p<0.0001$, $p=0.0036$ S1, $p=0.0009$ S2, and $p<0.0001$, respectively) (**Fig. 2A**). The
131 IgG response showed an opposite trend in that the titers in convalescent plasma were significantly
132 higher than in convalescent saliva for SARS-CoV-2 RBD, S1, S2, and NP ($p=0.0178$, $p<0.0001$,
133 $p<0.0001$, and $p<0.0001$) (**Fig. 2B**). The IgM response was also significantly higher in plasma
134 than saliva for all four SARS-CoV and NL63 antigens ($p<0.0001$ for RBD, $p=0.0117$ for S1,
135 $p<0.0001$ for S2, $p=0.0338$ for NP, and $p<0.0001$ for NL63).

136

137 We evaluated saliva and plasma for neutralizing activity against SARS-CoV-2 S bearing
138 pseudovirus particles (rVSV-GFP Δ G*Spike). Saliva showed obviously lower neutralizing activity
139 in comparison to plasma (**Fig. S1**). Neutralizing activity in plasma samples was surprisingly higher
140 than expected. Despite the fact that the donors in the healthy group were collected pre-COVID-19
141 era and may have never encountered the SARS-CoV-2 virus, more than half of their plasma
142 displayed cross reactivity with a significant level of neutralizing activity (62.5 %, median
143 $IC_{50}=271.10$). Convalescent COVID-19 subjects showed increased neutralizing activity in plasma
144 for both positive rate and titer (92.16%, median $IC_{50}=317.30$). In contrast, paired saliva samples
145 were poor at neutralizing the pseudoviral particles, despite the robust RBD S1-binding IgA
146 responses detected by ELISA (**Fig. 2A**). Only after purification and concentration of the IgAs in
147 saliva (16), neutralizing activity was detected within a limited range from two convalescent
148 COVID-19 salivary samples (16.22%, $IC_{50}=10.00$).
149

150 *A global proteome analysis identified differentially expressed proteins*

151 To characterize oral mucosal and systemic responses following SARS-CoV-2 infection
152 more comprehensively we profiled saliva and plasma samples with mass spectrometry and
153 proteomics. Dimension reduction by principal component analysis (PCA) showed a separation of
154 convalescent COVID-19 donors from healthy controls for both saliva and plasma samples (**Fig.**
155 **3A&B**). Differentially expressed (DE) proteins between convalescent versus healthy samples are
156 displayed as in volcano plots (**Fig. 3C&D**) and all significant observations are summarized in
157 **Table 1**. The DE proteins, significantly enriched in convalescent saliva and plasma (fold
158 change >2 , p -value <0.05), are presented as in bar graphs (**Fig. 3E&F**). There were no DE proteins
159 significantly enriched in healthy over convalescent COVID-19 (fold change <-2 , p -value <0.05 in
160 **Fig. 3C&E**). In saliva, convalescent COVID-19 samples showed a significant increase in
161 expression of moesin (Uniprot accession number, AC=P26038, fold changes= 2.622, p -
162 value <0.001), transmembrane protease serin D (AC=O60235, fold change=2.109, p -value=0.004),
163 alpha-actin-1 (AC=P12814, fold changes= 2.450, p -value=0.004), nuclear transport factor 2
164 (AC=P61970, fold changes=2.251, p -value=0.0498), and serpin B13 (AC=Q9UIV8, fold
165 changes= 2.293, p -value=0.001) (**Fig. 3C, E** and **Table. 1A**). The significantly enriched DEs in
166 convalescent plasma in comparison to the healthy plasma were the fibrinogen alpha chain
167 (AC=P0267, fold changes=3.279, p -value <0.001), Keratin, type II cytoskeletal 1 (AC=P04264,
168 fold change=2.0231, p -value <0.001), apolipoprotein C-II (AC=P02655, fold changes=3.688,
169 $p=0.027$), and REST corepressor2 (AC=Q8IZ40, fold changes=2.247, p -value=0.0122) (**Fig. 3D,**
170 **F**, and **Table. 1B**). Significant proteins showed enrichment by acute COVID-19 disease severity
171 (No symptom (n=15), mild (n=19), and moderate to severe (n=13)) including salivary IL-1
172 inhibitor, salivary sulfhydryl oxidase 1, salivary alpha-1B-glycoprotein, salivary protein kinase C
173 inhibitor protein 1, salivary Immunoglobulin kappa chain V-III region CLL, plasma apolipoprotein
174 A-IV, plasma REST corepressor 2, and plasma cytokeratin-1 (**Fig. 3F**). Salivary moesin and
175 plasma fibrinogen alpha, which showed robust expression in participants who recovered from mild

176 illness, clearly differentiated no-symptom participants but did not show a further increase in
177 moderate to severe cases.

178
179 The proteomic signature was evaluated by random forest machine learning and network
180 analyses (STRING enrichment analyses). The hierarchical clustering heatmap generated from the
181 random forest machine learning demonstrated the pathway is clustered into two groups based on
182 convalescent COVID-19 vs. healthy (**Fig. 4A**). Network analyses performed based on
183 differentially expressed proteins between convalescent COVID-19 and healthy samples (**Table 1**)
184 showed that the convalescent plasma proteome displayed suppressed biological functions involved
185 in oxidative damage response, and antimicrobial properties against opportunistic infection
186 (*Staphylococcus aureus* infection) and complement and coagulation cascades (**Fig. 4B**). In
187 contrast, the pathways enriched in convalescent COVID-19 plasma were all associated with fibrin
188 clot formation (**Fig. 4B**). Pathways enriched in convalescent samples included hemostasis, platelet
189 degranulation, immune system, interleukin-12 signaling, and leukocyte activation (**Fig. 4B**).
190 Pathways related to granule or lysozyme formation were suppressed in saliva from convalescent
191 COVID-19 donors (**Fig. 4B**).
192

193 ***Altered proteomic functions in COVID19 convalescent saliva directly correlated with the***
194 ***expression of RBD-binding IgA response in saliva***

195 Comparative proteomic analyses between healthy vs. convalescent COVID-19 suggest that
196 inflammatory markers induced by SARS-CoV-2 remain in both body fluids during the recovery
197 phase. For a better understanding of the inflammatory patterns occurring in the oral local mucosal
198 and systemic immune system, we performed a separate set of analyses that compared the salivary
199 and plasma proteome (**Fig. 5A**). The PCA analysis showed a clear separation between the saliva
200 and plasma proteome for both healthy and convalescent COVID-19 samples (**Fig. 5B**). Hierarchical
201 clustering heatmaps were clustered into two groups based on the origin of samples (saliva vs.
202 plasma) while demographic factors (gender, age, and acute COVID-19 disease severity) did not
203 contribute to the clustering. (**Fig. 5C**). In a healthy state, most DE proteins were higher in saliva,
204 but proteins related to coagulation pathways (complement C3, C5, antithrombin) were higher in
205 plasma (**Fig. 5C**). The convalescent COVID-19 heatmap had a similar pattern to the healthy
206 heatmap, except that the expression pattern of apolipoprotein and fibrinogen was reversed
207 (saliva>plasma in healthy; plasma>saliva in COVID-19, **Fig. 5C**). The cluster of saliva in the
208 convalescent COVID-19 heatmap further diverged into three subclusters (Blue arrows and roman
209 numerals on top of the **Fig. 5C**), suggesting a link between the humoral immune response and the
210 innate inflammatory response in the oral mucosa. Each cluster was labeled as I, II, and III in
211 increasing order of protein expression level.
212

213 We then determined the influence of the immune subclusters in relation to serological
214 results for each fluid by investigating correlations with immunoglobulin levels (**Fig. 6A-C**).
215 Strikingly, significant correlations were observed with the RBD-binding saliva IgA, IgM, and
216 plasma IgA titers, as in a linear increase by the order of subcluster numbers ($p=0.0274$, $p=0.0038$,
217 and $p=0.0409$, respectively, **Fig. 6A-C**). Since we observed an increasing trend in the expression
218 level of DE protein, we also performed a correlation analysis between each RBD binding
219 immunoglobulin with each DE protein involved in the convalescent COVID-19 saliva sub-
220 clustering (**Fig. 6D-H**). The Clusterin showed significant positive correlations with RBD binding
221 IgA in both saliva and plasma (**Fig. 6D&E**). Fibrinogen beta chain was significantly correlated

222 with RBD binding IgA in saliva (**Fig. 6F**), and Apolipoprotein A1 was correlated with the RBD
223 binding salivary IgM and plasma IgA (**Fig. 6G&H**).
224

225 Together, our results indicate that measurement of only antibody levels during the COVID-
226 19 convalescent phase does not provide a full picture of the host response mounted after SARS-
227 CoV-2 infection. Indeed, while we confirmed that our convalescent COVID-19 subjects had
228 produced antibodies, our global proteomics analysis revealed novel aberrant immune signatures
229 and clotting dynamics in plasma and saliva when compared to healthy controls. Overall, we
230 demonstrated that population-based investigations of saliva can be used to map global host
231 responses to local mucosal and systemic functions in addition to the characterization of antibody
232 responses.
233

234 235 **Discussion**

236
237 Increasing evidence indicates that the immune and endothelial health of convalescent
238 COVID-19 subjects may be compromised when compared to healthy controls (5). Recovery from
239 inflammatory responses to viral infection is mediated by multiple systems (17) and dependent on
240 the overall host response. Molecular delineation of such components during physiological
241 recovery versus pathologic transition is pivotal to develop host-directed strategies, aiming to
242 sustain physiological function (18). Our findings also demonstrate that abnormal inflammatory
243 and clotting responses can be identified in both saliva and plasma fluids of convalescent COVID-
244 19 subjects. This indicates that even when SARS-CoV-2 antibody responses are mounted, the
245 COVID-19 convalescent phase does not necessarily define disease resolution. We also highlight
246 saliva as an important and accessible fluid that can be monitored to identify not just antibody
247 responses, but also diverse immune pathways, including mucosal immunity, innate immune
248 responses, neutrophil functions, and clotting pathways.
249

250 Carefully designed serosurveillance studies aimed at implementing antibody testing by
251 investigations of blood-derived fluids (19, 20), but not saliva. Convalescent COVID-19 subjects
252 from our study successfully mounted antibody responses to SARS-CoV-2 in both blood plasma
253 and saliva fluids, confirming the clinical phase of our subjects and the feasibility of our
254 investigations. While the majority of serological testing in SARS-CoV-2 cases detect IgG
255 antibodies at individual and population levels (21), our study showed a significant increase in RBD
256 binding IgA in both convalescent saliva and plasma, S1 binding IgG in plasma, and RBD binding
257 IgM in saliva. Significant correlations between paired saliva and plasma showed positivity for
258 SARS-CoV-2 RBD or S1 binding immunoglobulins, indicating that saliva is an available biofluid
259 for monitoring the presence of protective antibody responses and immune responses. There were
260 several similarities detected among both fluid types, we also found unique patterns within saliva
261 when compared to blood plasma. The IgA response in convalescence was significantly higher in
262 saliva than in plasma, whereas the IgG response showed an opposite trend in that the titers in
263 convalescent plasma were significantly higher than in saliva. This is expected as IgG is the
264 dominant subtype in the blood (22), while IgA is found in mucosal tissues (23). To date, however,
265 evidence on antibody responses and neutralization levels to SARS-CoV-2 provided a limited range
266 of information regarding the immune responses and pathogenesis of subjects that recovered, or
267 not, from the natural infection.
268

269 Next-generation plasma profiling demonstrates a comprehensive overview of the immune
270 response and has the potential to elucidate the impact of COVID-19 on the host. Zhong *et al.*
271 showed that more than 200 proteins were found significantly different in plasma levels at the time
272 of infection as compared to 14 days later (24). In comparison to Zhong et al's findings, our plasma
273 proteome appears to reflect a recovery process, displaying much fewer numbers of significantly
274 enriched DE proteins (p-value<0.05, fold change>2)(Fig. 3D and Table 1). Yet, the participants of
275 our cohort still displayed a significant enrichment of fibrinogen in plasma. If not limited to the
276 proteins upregulated by 2 fold or higher, convalescent plasma showed an increase in numerous
277 proteins associated with neutrophil functions or migration, such as annexin 1 (25, 26),
278 antileukoproteinase (27), and Matrix metalloproteinase-9 (28, 29) (**Table 1A**). Interestingly,
279 salivary proteome appears to maintain activated inflammatory status longer than plasma, as
280 significantly increased neutrophil activation markers, myeloperoxidase (MPO), annexin 1-2,
281 alpha-actinin-1, and nuclear transport factor 2 are involved in the migration of neutrophils (30–
282 32). The convalescent saliva fluid also showed a significant increase in transmembrane protease
283 serine 11D, which is known to activate the SARS-CoV-2 spike protein and facilitate the viral-cell
284 fusion process (33, 34), and serpin B13, known for regulating neutrophil serine proteases and
285 inflammatory caspases (35)(**Table 1B**). Other interesting proteins found in our study are the
286 inhibitors of cathepsin, which have been involved in viral cell entry and replication (36). This was
287 found to be significantly higher in plasma during acute infection versus convalescent COVID-19
288 cases and their analysis demonstrated that a group of patients display a “disease profile”, despite
289 not having no symptoms of the disease (24).
290

291 We further demonstrated that salivary IgA antibody responses to SARS-CoV-2 could be
292 involved in neutrophil-fibrinogen interactions at the oral mucosal surface. The plasma fibrinogen
293 alpha chain displayed a significant correlation with salivary markers, such as salivary RBD IgA
294 and salivary IgM (**Table 2**). Significant correlations were also observed between the salivary RBD
295 IgM and salivary RBD IgA; salivary RBD IgM and salivary fibrinogen beta chain; salivary RBD
296 IgM and severity of clinical illness during the acute disease phase. This suggests that salivary
297 antibodies to the SARS-CoV-2 infection participate in the inflammatory response mediated via
298 neutrophil extracellular traps (NETs)-fibrin in oral mucosa and possibly contribute to the systemic
299 inflammatory response represented by enhanced plasma fibrinogen. In severe COVID-19,
300 neutrophil degradation and NETosis in blood and in the lung have been functionally linked to
301 severe inflammation and thrombosis (37–42). Abnormal fibrinolysis is known to impact networks
302 with neutrophil functions, including NET formation (38, 43, 44). Indeed, excessive release of
303 NETs, with a low resolution of inflammation, can lead to immune thrombosis in blood vessels,
304 with NET-fibrin interactions contributing to the severity of tissue injury and pathogenesis (45).
305 Unique to the oral organ, the NET-fibrin axis also plays a unique role in regulating the constant
306 deposition of fibrin produced by the commensal microbiome-triggered inflammation (46).

307 Other specific drivers of the abnormal inflammatory and clotting responses observed in our
308 convalescent COVID-19 subjects require further study. Several research teams have identified
309 SARS-CoV-2 or protein in "viral reservoir" tissue samples collected from subjects months after
310 acute COVID-19 (47, 48). For example, Gaebler *et al.* identified SARS-CoV-2 RNA and protein
311 in 7 of 14 intestinal tissue samples obtained from asymptomatic COVID-19 patients with negative
312 nasal-swab PCR at an average of 4 months after acute disease (49). The SARS-CoV-2 spike
313 antigen S1 itself appears capable of directly interacting with platelets and fibrinogen to drive blood
314 hypercoagulation (50). This suggests that further studies of convalescent COVID-19 saliva and

315 plasma would benefit from the measurement of SARS-CoV-2 RNA and spike antigen in addition
316 to inflammatory and proteomic signatures. SARS-CoV-2 persistence in intestinal tissue or the oral
317 mucosa, and possible shedding of spike antigen into saliva or blood, could also perpetuate chronic
318 inflammatory and clotting sequelae.

319 The molecular mechanisms underlying higher concentrations of IgA but lower IgA
320 neutralizing activity in convalescent saliva also require further exploration. It is possible that
321 higher salivary IgA concentrations represent some form of extended antibody-mediated disease
322 enhancement. Antibody-mediated disease enhancement has been reported in diverse RNA viral
323 diseases, such as influenza, SARS-CoV-2, Dengue, and human immunodeficiency viruses
324 infections (51–54). One team found that SARS-CoV-2 RBD-specific neutralizing dimeric IgAs
325 isolated from nasal turbinate could facilitate viral infection, transmission, and injury in Syrian
326 hamsters (55). Aleyd *et al* (56) demonstrated that IgA enhances NETosis as an effective defense
327 mechanism to eliminate pathogens at mucosal surfaces. In contrast, neutrophil activation by IgA
328 immune complex is also known to contribute to the immunopathogenesis of autoimmune diseases,
329 such as IgA vasculitis, and nephropathy (57–59). In respiratory viral disease models, such as
330 influenza and SARS-CoV-2, the formation of an IgA-virus immune complex led to exacerbated
331 NETosis of neutrophils isolated from peripheral blood mononuclear cells (PBMCs) *ex vivo* (60).

332 Our study has several limitations. Samples were collected at only a one-time point, and
333 antibody levels or proteomic responses were not adjusted by the different baseline of each
334 individual intervariability. It was also not possible to draw predictive conclusions from our
335 findings but instead predictive correlations. While study subjects were able to report the severity
336 of their acute COVID-19 illness (asymptomatic, mild, or moderate/severe), clinical symptom data
337 was not obtained after convalescent phase when saliva and plasma were collected.

338 Future studies would benefit from requiring convalescent COVID-19 subjects to report
339 possible chronic symptoms longitudinally. This is especially pressing since up to 30% of patients
340 infected with SARS-CoV-2 are developing a wide range of persistent symptoms that do not resolve
341 over months or years (61). These patients are being given the diagnosis LongCovid or Post-Acute
342 Sequelae of COVID-19 (PASC) (62). Persistence of SARS-CoV-2 in tissue, aberrant immune
343 signaling, and microclot formation have been documented in PASC (63, 64), but early molecular
344 signs indicating direct risk to chronic symptoms have been elusive. Our current study sets the stage
345 for global immune and proteome analyses that characterize inflammatory and clotting processes
346 in PACs saliva and plasma in a manner that may be able to elucidate key aspects of the disease
347 process and contribute to the development of targeted therapeutics.

348
349 **Materials and Methods**

350 The research reported in this manuscript complies with all relevant ethical regulations and
351 informed consent was obtained from all human participants. Additional information was collected
352 on donor demographics (age and gender).

353
354 **Ethics Approval**

355
356 This study has been approved by the University of California, San Diego Institutional
357 Review Board, and the J. Craig Venter Institute (IRB, no. 200236X) and the J. Craig Venter
358 Institute (IRB, no. 2020-286).

359 **Experimental study design**

360 Blood and saliva samples were collected from convalescent COVID-19 donors who visited
361 the COVID clinic at the University of California, San Diego (n=34). Confirmed COVID-19 cases
362 were defined as previously described (65). Throughout the sample collection, the major SARS-
363 CoV-2 strain circulating throughout the study was the original strain (USA-WA1/2020) and the
364 vaccine against SARS-CoV-2 was not available. For comparison, we included healthy donors
365 (n=13) from the pre-pandemic era, and subjects recruited to the study signed the institutional
366 review board (IRB)– approved consent form (# 2018-268) (66).

367 Peripheral blood samples were collected by venipuncture and collected into BD vacutainer
368 SST tubes (Vitality Medical, Salt Lake City, Utah). After 1hr., the collected blood sample was
369 centrifuged for serum separation. Saliva was collected by the “passive drool technique” using the
370 Saliva Collection Aid (Salimetrics, Carlsbad, CA). All samples were aliquoted and stored at -80°C
371 for long-term storage.

372 The general experimental approach was summarized in Figure 1. Briefly, all collected
373 plasma and saliva samples were tested for SARS-CoV-2 specific antibodies by enzyme-linked
374 immunosorbent assay (ELISA) and pseudovirus neutralization assay (**Fig. 2 and Suppl. Fig. 1**,
375 respectively). Correlations among all immunoglobulins (Ig) were investigated with Pearson’s
376 correlation and simple linear regression analysis using the GraphPad Prism version 8.3.1. In
377 parallel, separate sets of samples were processed and used for mass spectrometry to detect host
378 antiviral-, and microbial proteins and peptides (**Fig. 3-5**). In the end, all collected data were
379 collectively analyzed to verify the interaction among systemic and oral mucosal immune responses
380 to the SARS-CoV-2 infection (**Fig. 6**).

381 **Antibody responses**

382 **SARS-CoV-2 binding ELISAs** Plasma and saliva samples were tested for binding to recombinant
383 SARS-CoV-2 using an Enzyme-linked immunosorbent assay (ELISA) according to the
384 manufacturers with slight modifications. The recombinant spike protein from human coronavirus
385 NL63 (NL63) was also included as a coating antigen to estimate the presence of cross-reactive
386 antibodies to common cold coronaviruses. All procedures were repeated twice, once manually and
387 once by using Hamilton Microlab STAR (Hamilton, Reno, NV). Briefly, ELISA plates (Nunc
388 MaxiSorp™ flat-bottom, Thermo Fisher Scientific, Waltham, MA) were coated with antigen
389 (10ng/50µL) at 4 °C overnight. Four different coating antigens were included; SARS-CoV-2 Spike
390 Glycoprotein (S1) RBD, His-Tag (HEK293)(NativeAntigen, Oxfordshore, United Kingdom),
391 SARS-CoV-2 Spike Glycoprotein (S1), His-Tag (Insect Cells) (NativeAntigen, Oxfordshore,
392 United Kingdom), SARS-CoV-2 Spike Glycoprotein (S2), His-Tag (Insect Cells) (NativeAntigen,
393 Oxfordshore, United Kingdom), SARS-CoV-2 Nucleoprotein, His-Tag (E. coli) (NativeAntigen,
394 Oxfordshore, United Kingdom), and Human Coronavirus NL63 Spike Glycoprotein (S1) His-Tag
395 (HEK293) (NativeAntigen, Oxfordshore, United Kingdom). The next day, coated plates
396 were washed three times with PBS-Tween (0.05%) and blocked with 200 µl of 5% milk blocking
397 solution at room temperature for 30 min. During incubation, plasma and saliva samples were
398 initially diluted 1:54 and 1:2, respectively, and three-fold serial dilution was performed. After
399 blocking, diluted samples were added to the wells (50 µL/well) and incubated for 1 hr at room
400 temperature. After 4X washing, 100 µL of 1:5000 diluted Goat anti-human secondary antibody
401 was added into each well and incubated at 37°C for 1 hr (Goat Anti-Human IgG γ Chain Specific

402 HRP conjugated, species Adsorbed (Human IgM, IgD, and IgA) Polyclonal Antibody for IgG
403 (Cat# AP504P, EMD Millipore, Burlington, MA), Goat Anti-Human IgA, a-chain specific
404 Peroxidase conjugate for IgA (Cat# 401132-2ML, Calbiochem, San Diego, CA) for IgA, and Goat
405 Anti-Human IgM Fc5 μ Fragment specific HRP conjugated secondary antibody for IgM (Cat#
406 AP114P, EMD Millipore, Burlington, MA). After the incubation, plates were washed four times
407 and 200 μ L of the substrate (cat# P9187, Sigma, St. Louis, MO) was added for color development.
408 After incubation in a dark room for 20 minutes, the reaction was stopped by the addition of 50 μ L
409 3M H₂SO₄, and plates were read at 450 nm. The positive response was determined by the area
410 under the curve (AUC) using GraphPad Prism version 8.3.1 (GraphPad Software, Inc., San Diego,
411 CA, USA).

412 ***Generation of pseudo-virus (rVSV-GFP Δ G*Spikes)***

413 For pseudoviruses construction, spike genes from strain Wuhan-Hu-1 (GenBank:
414 MN908947) were codon-optimized for human cells and cloned into eukaryotic expression plasmid
415 pCAGGS to generate the envelope recombinant plasmids pCAGGS.S as described previously with
416 slight modifications (67). For this VSV pseudovirus system, the backbone was provided by VSV
417 G pseudotyped virus (G* Δ G-VSV) that packages expression cassettes for firefly luciferase instead
418 of VSV-G in the VSV genome. Briefly, 293T cells were transfected with pCAGGS.S (30 μ g for a
419 T75 flask) using Lipofectamine 3000 (Invitrogen, L3000015) following the manufacturer's
420 instructions. Twenty-four hours later, the transfected cells were infected with G* Δ G-VSV with a
421 multiplicity of four. Two hours after infection, cells were washed with PBS three times, and then
422 a new complete culture medium was added. Twenty-four hours post-infection, SARS-CoV-2
423 pseudoviruses containing culture supernatants were harvested, filtered (0.45- μ m pore size,
424 Millipore, SLHP033RB), and stored at -70°C in 2-ml aliquots until use. The 50% tissue culture
425 infectious dose (TCID₅₀) of SARS-CoV-2 pseudovirus was determined using a single-use aliquot
426 from the pseudovirus bank; all stocks were used only once to avoid inconsistencies that could have
427 resulted from repeated freezing-thawing cycles. For titration of the SARS-CoV-2 pseudovirus, a
428 2-fold initial dilution was made in hexuplicate wells of 96-well culture plates followed by serial 3-
429 fold dilutions (nine dilutions in total). The last column served as the cell control without the
430 addition of pseudovirus. Then, the 96-well plates were seeded with trypsin-treated mammalian
431 cells adjusted to a pre-defined concentration. After 24 h incubation in a 5% CO₂ environment at
432 37°C, the culture supernatant was aspirated gently to leave 100 μ l in each well; then, 100 μ l of
433 luciferase substrate (PerkinElmer, 6066769) was added to each well. Two min after incubation at
434 room temperature, 150 μ l of lysate was transferred to white solid 96-well plates for the detection
435 of luminescence using a microplate luminometer (PerkinElmer, Ensight). The positive well was
436 determined as ten-fold relative luminescence unit (RLU) values higher than the cell background.
437 The 50% tissue culture infectious dose (TCID₅₀) was calculated using the Reed-Muench method,
438 as described previously (68).

439 ***Pseudovirus neutralization assay***

440 Neutralizing activity against rVSV-GFP Δ G*Spikes was determined as previously described
441 with slight modification (69). Briefly, Vero cells were seeded at a density of 2.5 X 10⁴/50 μ L in a
442 Greiner Bio-One™ CellStar™ μ Clear™ 96-Well, Cell Culture-Treated, Flat-Bottom, Half-Area
443 Microplate (Thermo Fisher Scientific, Waltham, MA). The next day, the cell monolayer was rinsed
444 with 0.01M PBS (Thermo Fisher Scientific, Waltham, MA). Due to the contamination by the
445 commensal bacteria in saliva, total IgA was purified from saliva using Peptide M/agarose

446 (InvivoGen Inc., San Diego, CA, USA) and used for the neutralization at low-dilution (1:2-1:10),
447 as previously described(16). Plasma and saliva IgAs were three-fold diluted (starting from 1:50
448 and 1:2 dilution, respectively) with infection media (DMEM medium (cat# 11995065, Thermo
449 Fisher Scientific, Waltham, MA) containing 2% fetal bovine serum (FBS)). Twenty-five μ L of
450 diluted samples was incubated with the same volume of pseudovirus (rVSV-GFP Δ G*Spoke) at
451 37°C for one hr. The sample-virus mixture was added to the Vero Cell monolayer and incubated
452 at 37°C with 5% CO₂. On the following day (12~16 hrs.), the expression of GFP was visualized
453 and quantified by Celigo Image Cytometer (Cyntellect Inc, San Diego, CA). The neutralizing
454 activity of the plasma sample was determined as pNT₅₀ calculated from a transformed non-linear
455 regression curve generated by GraphPad Prism version 8.3.1. (GraphPad Software, Inc., San
456 Diego, CA, USA). Due to the low titer of salivary samples, the 50% inhibitory dilution (IC₅₀) was
457 determined by the reciprocal of the highest dilution of the sample corresponding to 50% reduction
458 in GFP count compared with virus control minus sample control using the Reed-Muench method
459 (70).

460 ***Proteomics and peptidomics sample preparation***

461 Deactivated saliva and plasma specimens were first passed through 10-kDa cutoff filters
462 (Microcon, Millipore). The filtrates and the remaining materials on filters were subjected to
463 peptidomics and proteomics analysis, respectively. For peptidomics analysis, the filtrates were
464 dried in SpeedVac, and resuspended in 20 μ l LC buffer A (0.1% formic acid in water). For
465 proteomics analysis, the proteins remaining on filters were digested using the filter aided sample
466 preparation (FASP) approach as described previously (66).

467 ***Liquid Chromatography with tandem mass spectrometry (LC-MS/MS) analysis***

468 For the LC-MS/MS analysis, the Ultimate 3000 nanoLC coupled to Q Exactive mass
469 spectrometer (Thermo Scientific) was used as previously described (9). Peptides were first loaded
470 onto a trap column (PepMap C18, 2 cm x 100 mm x I.D.; Thermo Scientific), and they were
471 separated using an in-house packed analytical column (C18 ReproSil, 3.0 mm, Dr. Maisch GmbH;
472 20 cm x 75 mm I.D.) and binary buffer system (buffer A: 0.1% formic acid in water; buffer B:
473 0.1% formic acid in acetonitrile) with a 150-min gradient (2-35% buffer B over 105min; 35-80%
474 buffer B over 10min; back to 2% B in 5 min for equilibration after staying on 80% B for 5 min).
475 For the MS data acquisition, a top-10 data-dependent acquisition (DDA) method was applied. The
476 maximum injection time was set to 20 ms, and the scan range was set to 350–1800 m/z with an
477 AGC target of 1e6. The MS/MS acquisition was performed with 30% HCD collision energy. The
478 target value was set to 5e5, and the maximum injection time was set to 100ms. Full MS and MS/MS
479 scans were acquired at resolutions of 70,000 and 17,500, respectively. Dynamic exclusion was set
480 to 20s. The mass to charge ratio (m/z [Da]) from mass spectrometry data was normalized and used
481 for the calculation of fold changes of differentially expressed (DE) proteins (health vs. COVID-
482 19; saliva vs. plasma).

483 ***Database Search and Bioinformatics Analysis***

484 For proteomics data analysis, protein identification and quantitation were performed using
485 the MaxQuant-Andromeda software suite (version 1.6.3.4) as previously described(71)⁸. The
486 majority of the default settings were taken, including trypsin as the enzyme, two missed cleavage
487 sites, peptide length with minimum of seven amino acids, oxidation (M) as variable modification,

488 and carbamidomethylation (C) as fixed modification. A UniProt human sequence database (20,376
489 sequences) was used for the protein database search. The false discovery rate (FDR) was set at 1%
490 on both protein and peptide levels. Significantly enriched proteins in convalescent samples
491 ($p < 0.05$)(**Table 2**) were subjected to the network analysis by STRING enrichment analysis
492 (Cytoscape software v. 3.9.1)(72). The heatmap was created using the pheatmap package in R
493 using a hierarchical distance matrix and clustering option (73). The volcano plots were generated
494 using the EnhancedVolcano package in R (73).

495 **Statistics**

496 Data was statistically analyzed using the R or Graphpad Prism-8 suites of software
497 (GraphPad Software, Inc., San Diego, CA, USA). Representatives of a minimum of two
498 independent experiments were presented as the median and standard deviation and are
499 representative of a minimum of two independent experiments. Data points for quantitative *in vitro*
500 experiments represent all technical repeats for experiments done in triplicate. Antibody titers were
501 analyzed by mixed-effect analysis with Tukey's multiple comparisons. The significance of fold
502 changes in DE proteins were measured using the Student's t-test. Correlation among different
503 parameters (antibody titers, proteomic marker expression levels, categorized demographic
504 information, and salivary protein subgrouping) was evaluated by both Pearson's R and simple
505 linear regression analyses using Graphpad Prism-8 suites of software (GraphPad Software, Inc.,
506 San Diego, CA, USA).

507

508

509

510 **References**

511

- 512 1. A. W. Byrne, D. McEvoy, A. B. Collins, K. Hunt, M. Casey, A. Barber, F. Butler, J. Griffin, E. A. Lane, C. McAloon, K. O'Brien, P. Wall, K. A. Walsh, S. J. More, Inferred duration of infectious period of SARS-CoV-2: rapid scoping review and analysis of available evidence for asymptomatic and symptomatic COVID-19 cases. *BMJ Open*. 10, e039856 (2020).
- 516 2. H. E. Davis, G. S. Assaf, L. McCormick, H. Wei, R. J. Low, Y. Re'em, S. Redfield, J. P. Austin, A. Akrami, Characterizing long COVID in an international cohort: 7 months of symptoms and their impact. *EClinicalMedicine*. 38, 101019 (2021).
- 519 3. P. A. Fenstemacher, P. Winn, *Post-Acute and Long-Term Medicine: A Pocket Guide* (Humana Press, 2015).
- 521 4. L. Huang, Q. Yao, X. Gu, Q. Wang, L. Ren, Y. Wang, P. Hu, L. Guo, M. Liu, J. Xu, X. Zhang, Y. Qu, Y. Fan, X. Li, C. Li, T. Yu, J. Xia, M. Wei, L. Chen, Y. Li, F. Xiao, D. Liu, J. Wang, X. Wang, B. Cao, 1-year outcomes in hospital survivors with COVID-19: a longitudinal cohort study. *Lancet*. 398, 747–758 (2021).
- 525 5. F. W. Chioh, S.-W. Fong, B. E. Young, K.-X. Wu, A. Siau, S. Krishnan, Y.-H. Chan, G. Carissimo, L. L. Teo, F. Gao, R. S. Tan, L. Zhong, A. S. Koh, S.-Y. Tan, P. A. Tambyah, L. Renia, L. F. Ng, D. C. Lye, C. Cheung, Convalescent COVID-19 patients are susceptible to

528 endothelial dysfunction due to persistent immune activation. *Elife*. 10 (2021),
529 doi:10.7554/eLife.64909.

530 6. P. Brandtzaeg, Secretory immunity with special reference to the oral cavity. *J. Oral*
531 *Microbiol.* 5 (2013), doi:10.3402/jom.v5i0.20401.

532 7. W. L. Siqueira, E. Salih, D. L. Wan, E. J. Helmerhorst, F. G. Oppenheim, Proteome of
533 human minor salivary gland secretion. *J. Dent. Res.* 87, 445–450 (2008).

534 8. C. X. Wei, Y. Yu, G. Aleti, M. Torralba, A. Edlund, K. E. Nelson, M. Freire, in *Salivary*
535 *Bioscience: Foundations of Interdisciplinary Saliva Research and Applications*, D. A. Granger,
536 M. K. Taylor, Eds. (Springer International Publishing, Cham, 2020), pp. 419–447.

537 9. Y.-H. Lin, R. V. Eguez, M. G. Torralba, H. Singh, P. Golusinski, W. Golusinski, M.
538 Masternak, K. E. Nelson, M. Freire, Y. Yu, Self-assembled STrap for global proteomics and
539 salivary biomarker discovery. *J. Proteome Res.* 18, 1907–1915 (2019).

540 10. C. Zenobia, K.-L. Herpoldt, M. Freire, Is the oral microbiome a source to enhance
541 mucosal immunity against infectious diseases? *NPJ Vaccines*. 6, 80 (2021).

542 11. M. G. Torralba, G. Aleti, W. Li, K. J. Moncera, Y.-H. Lin, Y. Yu, M. M. Masternak, W.
543 Golusinski, P. Golusinski, K. Lamperska, A. Edlund, M. Freire, K. E. Nelson, Oral Microbial
544 Species and Virulence Factors Associated with Oral Squamous Cell Carcinoma. *Microb. Ecol.*
545 (2020), doi:10.1007/s00248-020-01596-5.

546 12. D. A. Brandini, A. S. Takamiya, P. Thakkar, S. Schaller, R. Rahat, A. R. Naqvi, Covid-
547 19 and oral diseases: Crosstalk, synergy or association? *Rev. Med. Virol.* 31, e2226 (2021).

548 13. H. Hasturk, A. Kantarci, T. E. Van Dyke, Oral inflammatory diseases and systemic
549 inflammation: role of the macrophage. *Front. Immunol.* 3, 118 (2012).

550 14. S. E. Heron, S. Elahi, HIV Infection and Compromised Mucosal Immunity: Oral
551 Manifestations and Systemic Inflammation. *Front. Immunol.* 8, 241 (2017).

552 15. W. W. Lau, M. Hardt, Y. H. Zhang, M. Freire, S. Ruhl, The Human Salivary Proteome
553 Wiki: A Community-Driven Research Platform. *J. Dent. Res.* 100, 1510–1519 (2021).

554 16. Y. Tsunetsugu-Yokota, S. Ito, Y. Adachi, T. Onodera, T. Kageyama, Y. Takahashi,
555 Saliva as a useful tool for evaluating upper mucosal antibody response to influenza. *PLoS One*.
556 17, e0263419 (2022).

557 17. M. A. Sugimoto, J. P. Vago, M. Perretti, M. M. Teixeira, Mediators of the Resolution of
558 the Inflammatory Response. *Trends Immunol.* 40, 212–227 (2019).

559 18. J. S. Ayres, Surviving COVID-19: A disease tolerance perspective. *Sci Adv.* 6, eabc1518
560 (2020).

561 19. C. J. E. Metcalf, J. Farrar, F. T. Cutts, N. E. Basta, A. L. Graham, J. Lessler, N. M.
562 Ferguson, D. S. Burke, B. T. Grenfell, Use of serological surveys to generate key insights into
563 the changing global landscape of infectious disease. *Lancet*. 388, 728–730 (2016).

564 20. W. H. Organization, Others, Unity studies: early investigation protocols. Geneva: WHO
565 (2020).

566 21. J. E. Bryant, A. S. Azman, M. J. Ferrari, B. F. Arnold, M. F. Boni, Y. Boum, K. Hayford,
567 F. J. Luquero, M. J. Mina, I. Rodriguez-Barraquer, J. T. Wu, D. Wade, G. Vernet, D. T. Leung,

568 Serology for SARS-CoV-2: Apprehensions, opportunities, and the path forward. *Sci Immunol.* 5
569 (2020), doi:10.1126/sciimmunol.abc6347.

570 22. G. Vidarsson, G. Dekkers, T. Rispens, IgG subclasses and allotypes: from structure to
571 effector functions. *Front. Immunol.* 5, 520 (2014).

572 23. R. Alexander, J. Mestecky, Neutralizing antibodies in mucosal secretions: IgG or IgA?
573 *Curr. HIV Res.* 5, 588–593 (2007).

574 24. W. Zhong, O. Altay, M. Arif, F. Edfors, L. Doganay, A. Mardinoglu, M. Uhlen, L.
575 Fagerberg, Next generation plasma proteome profiling of COVID-19 patients with mild to
576 moderate symptoms. *EBioMedicine.* 74, 103723 (2021).

577 25. M. Perretti, R. J. Flower, Annexin 1 and the biology of the neutrophil. *J. Leukoc. Biol.*
578 76, 25–29 (2004).

579 26. M. Perretti, E. Solito, Annexin 1 and neutrophil apoptosis. *Biochem. Soc. Trans.* 32, 507–
580 510 (2004).

581 27. B. Sehnert, A. Cavcic, B. Böhm, J. R. Kalden, K. S. Nandakumar, R. Holmdahl, H.
582 Burkhardt, Antileukoproteinase: modulation of neutrophil function and therapeutic effects on
583 anti-type II collagen antibody-induced arthritis. *Arthritis Rheum.* 50, 2347–2359 (2004).

584 28. B. Heissig, C. Nishida, Y. Tashiro, Y. Sato, M. Ishihara, M. Ohki, I. Gritli, J. Rosenkvist,
585 K. Hattori, Role of neutrophil-derived matrix metalloproteinase-9 in tissue regeneration. *Histol.*
586 *Histopathol.* 25, 765–770 (2010).

587 29. M. Gelzo, S. Cacciapuoti, B. Pinchera, A. De Rosa, G. Cernera, F. Scialò, M. Comegna,
588 M. Mormile, G. Fabbrocini, R. Parrella, G. Corso, I. Gentile, G. Castaldo, Matrix
589 metalloproteinases (MMP) 3 and 9 as biomarkers of severity in COVID-19 patients. *Sci. Rep.*
590 12, 1212 (2022).

591 30. M. Matsumoto, T. Hirata, Moesin regulates neutrophil rolling velocity in vivo. *Cell.*
592 *Immunol.* 304-305, 59–62 (2016).

593 31. X. Liu, T. Yang, K. Suzuki, S. Tsukita, M. Ishii, S. Zhou, G. Wang, L. Cao, F. Qian, S.
594 Taylor, M.-J. Oh, I. Levitan, R. D. Ye, G. K. Carnegie, Y. Zhao, A. B. Malik, J. Xu, Moesin and
595 myosin phosphatase confine neutrophil orientation in a chemotactic gradient. *J. Exp. Med.* 212,
596 267–280 (2015).

597 32. B. Yürüker, V. Niggli, Alpha-actinin and vinculin in human neutrophils: reorganization
598 during adhesion and relation to the actin network. *J. Cell Sci.* 101 (Pt 2), 403–414 (1992).

599 33. T. Lan, L. Han, L. Zhang, H. Li, S. K. Sahu, Y. Zhu, H. Liu, Y. Hua, The functional
600 prediction of transmembrane serine protease 2 (TMPRSS2) in priming S-protein of SARS-CoV-
601 2 among vertebrates, , doi:10.22541/au.159225464.44600406.

602 34. I. Berdowska, M. Matusiewicz, Cathepsin L, transmembrane peptidase/serine subfamily
603 member 2/4, and other host proteases in COVID-19 pathogenesis - with impact on
604 gastrointestinal tract. *World J. Gastroenterol.* 27, 6590–6600 (2021).

605 35. Y. J. Choi, S. Kim, Y. Choi, T. B. Nielsen, J. Yan, A. Lu, J. Ruan, H.-R. Lee, H. Wu, B.
606 Spellberg, J. U. Jung, SERPINB1-mediated checkpoint of inflammatory caspase activation. *Nat.*
607 *Immunol.* 20, 276–287 (2019).

608 36. M. Kawase, K. Shirato, S. Matsuyama, F. Taguchi, Protease-mediated entry via the
609 endosome of human coronavirus 229E. *J. Virol.* 83, 712–721 (2009).

610 37. H. F. Peñaloza, J. S. Lee, P. Ray, Neutrophils and lymphopenia, an unknown axis in
611 severe COVID-19 disease. *PLoS Pathog.* 17, e1009850 (2021).

612 38. M. Ackermann, H.-J. Anders, R. Bilyy, G. L. Bowlin, C. Daniel, R. De Lorenzo, M.
613 Egeblad, T. Henneck, A. Hidalgo, M. Hoffmann, B. Hohberger, Y. Kanthi, M. J. Kaplan, J. S.
614 Knight, J. Knopf, E. Kolaczkowska, P. Kubes, M. Leppkes, A. Mahajan, A. A. Manfredi, C.

615 Maueröder, N. Maugeri, I. Mitroulis, L. E. Muñoz, T. Narasaraju, E. Naschberger, I. Neeli, L. G.
616 Ng, M. Z. Radic, K. Ritis, P. Rovere-Querini, M. Schapher, C. Schauer, H.-U. Simon, J. Singh,
617 P. Skendros, K. Stark, M. Stürzl, J. van der Vlag, P. Vandenabeele, L. Vitkov, M. von Köckritz-
618 Blickwede, C. Yanginlar, S. Yousefi, A. Zarbock, G. Schett, M. Herrmann, Patients with
619 COVID-19: in the dark-NETs of neutrophils. *Cell Death Differ.* 28, 3125–3139 (2021).

620 39. C. Gillot, J. Favresse, F. Mullier, T. Lecompte, J.-M. Dogné, J. Douxfils, NETosis and
621 the Immune System in COVID-19: Mechanisms and Potential Treatments. *Front. Pharmacol.* 12,
622 708302 (2021).

623 40. B. Tomar, H.-J. Anders, J. Desai, S. R. Mulay, Neutrophils and Neutrophil Extracellular
624 Traps Drive Necroinflammation in COVID-19. *Cells.* 9 (2020), doi:10.3390/cells9061383.

625 41. S. R. Paludan, T. H. Mogensen, Innate immunological pathways in COVID-19
626 pathogenesis. *Sci Immunol.* 7, eabm5505 (2022).

627 42. L. Borges, T. C. Pithon-Curi, R. Curi, E. Hatanaka, COVID-19 and Neutrophils: The
628 Relationship between Hyperinflammation and Neutrophil Extracellular Traps. *Mediators
629 Inflamm.* 2020, 8829674 (2020).

630 43. J. Huckriede, S. B. Anderberg, A. Morales, F. de Vries, M. Hultström, A. Bergqvist, J. T.
631 Ortiz-Pérez, J. W. Sels, K. Wichapong, M. Lipcsey, M. van de Poll, A. Larsson, T. Luther, C.
632 Reutelingsperger, P. G. de Frutos, R. Frithiof, G. A. F. Nicolaes, Evolution of NETosis markers
633 and DAMPs have prognostic value in critically ill COVID-19 patients. *Sci. Rep.* 11, 15701
634 (2021).

635 44. A. Arcanjo, J. Logullo, C. C. B. Menezes, T. C. de Souza Carvalho Giangiarulo, M. C.
636 Dos Reis, G. M. M. de Castro, Y. da Silva Fontes, A. R. Todeschini, L. Freire-de-Lima, D.
637 Decoté-Ricardo, A. Ferreira-Pereira, C. G. Freire-de-Lima, S. P. C. Barroso, C. Takiya, F.
638 Conceição-Silva, W. Savino, A. Morrot, The emerging role of neutrophil extracellular traps in
639 severe acute respiratory syndrome coronavirus 2 (COVID-19). *Sci. Rep.* 10, 19630 (2020).

640 45. I. Varjú, K. Kolev, Networks that stop the flow: A fresh look at fibrin and neutrophil
641 extracellular traps. *Thromb. Res.* 182, 1–11 (2019).

642 46. L. M. Silva, A. D. Doyle, C. L. Tran, T. Greenwell-Wild, N. Dutzan, A. G. Lum, C. S.
643 Agler, M. Sibree, P. Jani, D. Martin, V. Kram, F. J. Castellino, M. J. Flick, K. Divaris, T. H.
644 Bugge, N. M. Moutsopoulos, Fibrin is a critical regulator of neutrophil effector function at
645 mucosal barrier sites. *bioRxiv* (2021), p. 2021.01.15.426743.

646 47. C. C. L. Cheung, D. Goh, X. Lim, T. Z. Tien, J. C. T. Lim, J. N. Lee, B. Tan, Z. E. A.
647 Tay, W. Y. Wan, E. X. Chen, S. N. Nerurkar, S. Loong, P. C. Cheow, C. Y. Chan, Y. X. Koh, T.
648 T. Tan, S. Kalimuddin, W. M. D. Tai, J. L. Ng, J. G.-H. Low, J. Yeong, K. H. Lim, Residual
649 SARS-CoV-2 viral antigens detected in GI and hepatic tissues from five recovered patients with
650 COVID-19. *Gut.* 71 (2022), pp. 226–229.

651 48. J. Silva, C. Lucas, M. Sundaram, B. Israelow, P. Wong, J. Klein, M. Tokuyama, P. Lu, A.
652 Venkataraman, F. Liu, T. Mao, J. E. Oh, A. Park, A. Casanovas-Massana, C. B. F. Vogels, C. M.
653 Muenker, J. Zell, J. B. Fournier, M. Campbell, M. Chiorazzi, E. Ruiz Fuentes, M. Petrone, C. C.
654 Kalinich, I. M. Ott, A. Watkins, A. J. Moore, M. I. Nakahata, N. D. Grubaugh, S. Farhadian, C.
655 Dela Cruz, A. Ko, W. L. Schulz, A. M. Ring, S. Ma, S. Omer, A. L. Wyllie, A. Iwasaki, Saliva
656 viral load is a dynamic unifying correlate of COVID-19 severity and mortality. *medRxiv* (2021),
657 doi:10.1101/2021.01.04.21249236.

658 49. C. Gaebler, Z. Wang, J. C. C. Lorenzi, F. Muecksch, S. Finkin, M. Tokuyama, A. Cho,
659 M. Jankovic, D. Schaefer-Babajew, T. Y. Oliveira, M. Cipolla, C. Viant, C. O. Barnes, Y. Bram,
660 G. Breton, T. Hägglöf, P. Mendoza, A. Hurley, M. Turroja, K. Gordon, K. G. Millard, V. Ramos,
661 F. Schmidt, Y. Weisblum, D. Jha, M. Tankelevich, G. Martinez-Delgado, J. Yee, R. Patel, J.

662 Dizon, C. Unson-O'Brien, I. Shimeliovich, D. F. Robbiani, Z. Zhao, A. Gazumyan, R. E.
663 Schwartz, T. Hatzioannou, P. J. Bjorkman, S. Mehandru, P. D. Bieniasz, M. Caskey, M. C.
664 Nussenzweig, Evolution of antibody immunity to SARS-CoV-2. *Nature*. 591, 639–644 (2021).
665 50. L. M. Grobbelaar, C. Venter, M. Vlok, M. Ngoepe, G. J. Laubscher, P. J. Lourens, J.
666 Steenkamp, D. B. Kell, E. Pretorius, SARS-CoV-2 spike protein S1 induces fibrin(ogen)
667 resistant to fibrinolysis: Implications for microclot formation in COVID-19, ,
668 doi:10.1101/2021.03.05.21252960.
669 51. K. L. Winarski, J. Tang, L. Klenow, J. Lee, E. M. Coyle, J. Manischewitz, H. L. Turner,
670 K. Takeda, A. B. Ward, H. Golding, S. Khurana, Antibody-dependent enhancement of influenza
671 disease promoted by increase in hemagglutinin stem flexibility and virus fusion kinetics. *Proc.*
672 *Natl. Acad. Sci. U. S. A.* 116, 15194–15199 (2019).
673 52. C. Osiowy, D. Horne, R. Anderson, Antibody-dependent enhancement of respiratory
674 syncytial virus infection by sera from young infants. *Clin. Diagn. Lab. Immunol.* 1, 670–677
675 (1994).
676 53. R. de Alwis, K. L. Williams, M. A. Schmid, C.-Y. Lai, B. Patel, S. A. Smith, J. E. Crowe,
677 W.-K. Wang, E. Harris, A. M. de Silva, Dengue viruses are enhanced by distinct populations of
678 serotype cross-reactive antibodies in human immune sera. *PLoS Pathog.* 10, e1004386 (2014).
679 54. G. Füst, Enhancing antibodies in HIV infection. *Parasitology*. 115 Suppl, S127–40
680 (1997).
681 55. B. Zhou, R. Zhou, J. F.-W. Chan, J. Zeng, Q. Zhang, S. Yuan, L. Liu, R. Robinot, S.
682 Shan, J. Ge, H. Y.-H. Kwong, D. Zhou, H. Xu, C. C.-S. Chan, V. K.-M. Poon, H. Chu, M. Yue,
683 K.-Y. Kwan, C.-Y. Chan, N. Liu, C. C.-Y. Chan, K. K.-H. Chik, Z. Du, K.-K. Au, H. Huang, H.-
684 O. Man, J. Cao, C. Li, Z. Wang, J. Zhou, Y. Song, M.-L. Yeung, K. K.-W. To, D. D. Ho, L. A.
685 Chakrabarti, X. Wang, L. Zhang, K.-Y. Yuen, Z. Chen, SARS-CoV-2 hijacks neutralizing
686 dimeric IgA for enhanced nasal infection and injury. *bioRxiv* (2021), p. 2021.10.05.463282.
687 56. E. Aleyd, M. W. M. van Hout, S. H. Ganzevles, K. A. Hoeben, V. Everts, J. E. Bakema,
688 M. van Egmond, IgA Enhances NETosis and Release of Neutrophil Extracellular Traps by
689 Polymorphonuclear Cells via Fc α Receptor I. *The Journal of Immunology*. 192 (2014), pp.
690 2374–2383.
691 57. X.-Q. Chen, L. Tu, J.-S. Zou, S.-Q. Zhu, Y.-J. Zhao, Y.-H. Qin, The Involvement of
692 Neutrophil Extracellular Traps in Disease Activity Associated With IgA Vasculitis. *Front.*
693 *Immunol.* 12, 668974 (2021).
694 58. M. H. Heineke, A. V. Ballering, A. Jamin, S. Ben Mkadem, R. C. Monteiro, M. Van
695 Egmond, New insights in the pathogenesis of immunoglobulin A vasculitis (Henoch-Schönlein
696 purpura). *Autoimmun. Rev.* 16, 1246–1253 (2017).
697 59. Q. Li, P. Chen, S. Shi, L. Liu, J. Lv, L. Zhu, H. Zhang, Neutrophil-to-lymphocyte ratio as
698 an independent inflammatory indicator of poor prognosis in IgA nephropathy. *Int.*
699 *Immunopharmacol.* 87, 106811 (2020).
700 60. H. D. Stacey, D. Golubeva, A. Posca, J. C. Ang, K. E. Novakowski, M. A. Zahoor, C.
701 Kaushic, E. Cairns, D. M. E. Bowdish, C. E. Mullarkey, M. S. Miller, IgA potentiates NETosis

702 in response to viral infection. *Proc. Natl. Acad. Sci. U. S. A.* 118 (2021),
703 doi:10.1073/pnas.2101497118.

704 61. J. K. Logue, N. M. Franko, D. J. McCulloch, D. McDonald, A. Magedson, C. R. Wolf, H.
705 Y. Chu, Sequelae in Adults at 6 Months After COVID-19 Infection. *JAMA Network Open*. 4
706 (2021), p. e210830.

707 62. A. D. Proal, M. B. VanElzakker, Long COVID or Post-acute Sequelae of COVID-19
708 (PASC): An Overview of Biological Factors That May Contribute to Persistent Symptoms.
709 *Front. Microbiol.* 12, 698169 (2021).

710 63. S. Mehandru, M. Merad, Pathological sequelae of long-haul COVID. *Nat. Immunol.* 23,
711 194–202 (2022).

712 64. E. Pretorius, M. Vlok, C. Venter, J. A. Bezuidenhout, G. J. Laubscher, J. Steenkamp, D.
713 B. Kell, Persistent clotting protein pathology in Long COVID/Post-Acute Sequelae of COVID-
714 19 (PASC) is accompanied by increased levels of antiplasmin. *Cardiovasc. Diabetol.* 20, 172
715 (2021).

716 65. X. Yan, J. Wang, J. Yao, J. Estill, S. Wu, J. Lu, B. Liang, H. Li, S. Tao, H. Bai, H. Liu,
717 Y. Chen, COVID-19 evidence and recommendations working group, A cross-sectional study of
718 the epidemic situation on COVID-19 in Gansu Province, China - a big data analysis of the
719 national health information platform. *BMC Infect. Dis.* 21, 146 (2021).

720 66. Y. Yu, P. Sikorski, M. Smith, C. Bowman-Gholston, N. Cacciabeve, K. E. Nelson, R.
721 Pieper, Comprehensive Metaproteomic Analyses of Urine in the Presence and Absence of
722 Neutrophil-Associated Inflammation in the Urinary Tract. *Theranostics*. 7, 238–252 (2017).

723 67. M. A. Whitt, Generation of VSV pseudotypes using recombinant ΔG-VSV for studies on
724 virus entry, identification of entry inhibitors, and immune responses to vaccines. *J. Virol.*
725 *Methods*. 169, 365–374 (2010).

726 68. C. Lei, J. Yang, J. Hu, X. Sun, On the Calculation of TCID50 for Quantitation of Virus
727 Infectivity. *Virol. Sin.* 36, 141–144 (2021).

728 69. J. Nie, Q. Li, J. Wu, C. Zhao, H. Hao, H. Liu, L. Zhang, L. Nie, H. Qin, M. Wang, Q. Lu,
729 X. Li, Q. Sun, J. Liu, C. Fan, W. Huang, M. Xu, Y. Wang, Quantification of SARS-CoV-2
730 neutralizing antibody by a pseudotyped virus-based assay. *Nat. Protoc.* 15, 3699–3715 (2020).

731 70. L. J. Reed, H. Muench, A SIMPLE METHOD OF ESTIMATING FIFTY PER CENT
732 ENDPOINTS12. *American Journal of Epidemiology*. 27 (1938), pp. 493–497.

733 71. A. M. Cantwell, H. Singh, M. Platt, Y. Yu, Y.-H. Lin, Y. Ikeno, G. Hubbard, Y. Xiang,
734 N. Gonzalez-Juarbe, P. H. Dube, Kinetic Multi-omic Analysis of Responses to SARS-CoV-2
735 Infection in a Model of Severe COVID-19. *J. Virol.* 95, e0101021 (2021).

736 72. P. Shannon, A. Markiel, O. Ozier, N. S. Baliga, J. T. Wang, D. Ramage, N. Amin, B.
737 Schwikowski, T. Ideker, Cytoscape: a software environment for integrated models of
738 biomolecular interaction networks. *Genome Res.* 13, 2498–2504 (2003).

739 73. R. C. Team, Others, R: A language and environment for statistical computing (2013)
740 (available at <http://r.meteo.uni.wroc.pl/web/packages/dplR/vignettes/intro-dplR.pdf>).

741

742

743 Acknowledgments

744 We would like to thank Wan Choi for his technical support, and staff at the J. Craig Venter
745 Institute and University of California San Diego for support during the sample collection and
746 transferring.

747

748 **Funding:**

749 The Conrad Prebys Foundation Grant (20-122) (MF, GT).
750 U.S. Public Health Service Grants (R00 DE0234804) from the National Institute of
751 Dental and Cranial Research (MF).

752

753 **Author contributions:**

754 Conceptualization: MF
755 Methodology: MF, GT, DS, YY
756 Investigation: SR, SC, HJ, YY, HS, TG, BS, GT, MF, SR
757 Visualization: HS, MF, HJ, YY, GT
758 Supervision: MF, GT, DS
759 Writing—original draft: MF, HJ
760 Writing—review & editing: HJ, MF, GT, AP

761

762 **Competing interests:** Dr. Davey Smith DMS has consulted for FluxErgy Inc, Kiadis
763 Pharmaceuticals, Bayer Pharmaceuticals, Linear Therapies, Matrix Biomed, Model
764 Medicines, VxBiosciences, and Brio Clinical. Dr. Marcelo Freire has consulted for Mars
765 Wrigley, Bristle Health.

766

767 **Data and materials availability:** All data are available in the main text or the
768 supplementary materials. The raw proteomic data that support the findings of this study are
769 shown in the source data file (<ftp://MSV000086946@massive.ucsd.edu>) at the Global
770 Natural Products Social (GNPS) molecular networking depository via the Mass
771 spectrometry Interactive Virtual Environment (MASSIVE).

772

773 **Figures and Tables**

774

775 **Fig. 1. Study Design.** Saliva and plasma samples were collected from convalescent
776 coronavirus disease (COVID-19) donors (n=34) and healthy (n=13) to investigate
777 the viral-immune axis in health versus disease. The serology coupled with the
778 global shotgun proteomic analysis of plasma and saliva samples was conducted in
779 parallel, followed by correlation analyses to demographic factors, antibody-, and
780 proteomic responses. This study was designed to capture the inflammatory
781 response (yellow/red dots) during the start of the convalescent phase (>2 weeks after
782 clinical symptom; antibody drawings) and investigate the correlation between
783 biological, and demographic factors. Ultimately, our findings will be applied to
784 discover early detection markers for the post-acute sequelae of SARS-CoV-2
785 infection.

786

787 **Fig. 2. Compartmentalized antibody responses found in saliva and plasma collaborate**
788 **in response to the SARS-CoV-2 infection.** (A-C) The individual area under the
789 curve (AUC) was plotted as blue or red hollow circles (saliva or plasma,
790 respectively). Bars and whiskers represent median and standard deviation,
791 respectively. Mixed-effect analysis with Tukey's multiple comparisons test was
792 used to measure statistical significance. *p ≤ 0.05; **p ≤ 0.01; ***p ≤ 0.001; ****p
793 ≤ 0.0001. (D) Five paired immunoglobulins showing significant correlation
(p < 0.05) between plasma and saliva were depicted as simple linear regression

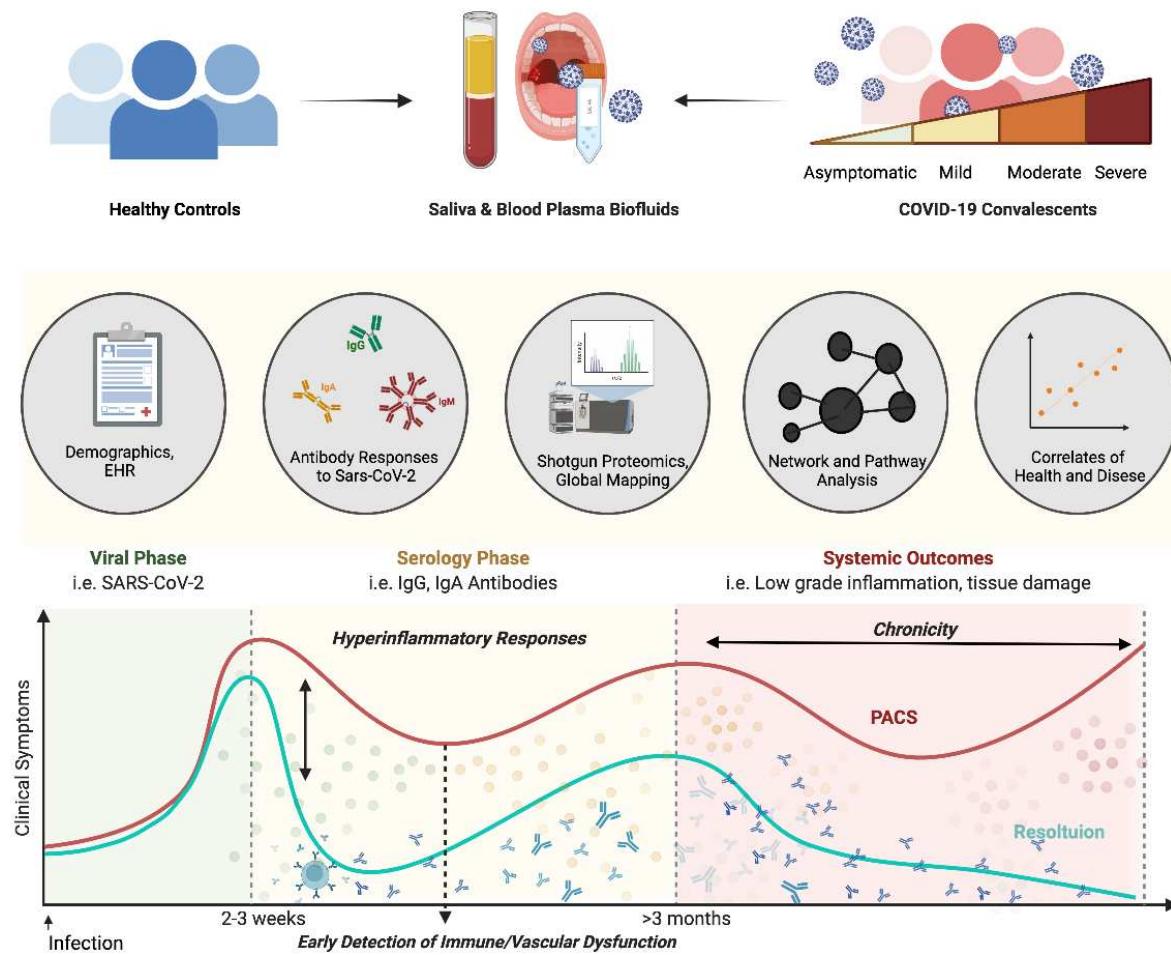
794 models. The individual titer of saliva was plotted by paired plasma titers. The
795 predicted regression line and deviations were depicted as a solid and dotted lines,
796 respectively. Functions and p-value of regression analyses were indicated next to
797 the regression lines. Correlations of immunoglobulins specific to the SARS-CoV-
798 2 receptor binding site (RBD) or Spike protein 1 (S1) were colored yellow and red,
799 respectively.

800 **Fig. 3. Comparative proteomic analyses revealed differentially expressed proteins**
801 **(DEs) enriched in convalescent COVID-19 saliva and plasma.** (A&B) Dimension
802 reduction by principal component analysis (PCA) showed a separation
803 of proteins from convalescent COVID-19 donors from healthy controls in saliva
804 and plasma, respectively. Circles indicate 95% confidence intervals of group
805 memberships. Percentages along the axes indicate the degree of variance explained
806 by that principal component. (C&D) Fold changes of protein expression of
807 convalescent COVID-19 over healthy samples were plotted by negative log-
808 transformed p-values in volcano plots. Dotted lines of the volcano plot represent
809 thresholds for the fold changes (Log2 fold changes >1) and statistical significance
810 ($p < 0.05$). (E&F) Differentially expressed proteins (Log2 fold changes >1, $p < 0.05$)
811 in saliva and plasma, were depicted as in a relative abundance of five significantly
812 up-regulated proteins. Individual dots represent individual values. The interquartile
813 range, median, and min/max values were illustrated as box, middle line, and
814 whiskers, respectively. Mixed-effect analysis with Tukey's multiple comparisons
815 test was used to measure statistical significance. * $p \leq 0.05$; ** $p \leq 0.01$; *** $p \leq 0.001$;
816 **** $p \leq 0.0001$. (G) Heatmaps of proteins significantly enriched ($p < 0.05$)
817 in saliva (top) and plasma (bottom) were collected from moderate to severe
818 participants, in comparison to no participants without apparent symptoms. Heatmap
819 was color-coded based on the normalized level.

820 **Fig. 4. Network analyses depicted altered pathways and functions in convalescent**
821 **plasma and saliva.** (A) Heatmaps of proteins significantly enriched ($p < 0.05$) in
822 saliva (top) and plasma (bottom) collected from moderate to severe participants, in
823 comparison to no participants without apparent symptoms. Heatmap was color-
824 coded based on the normalized level. (B) Significantly enriched differentially
825 expressed protein (DE) proteins in convalescent COVID-19 vs. Healthy individuals
826 were subjected to the random forest machine learning and proteins that showed
827 100% accuracy predicted were plotted in the heatmap. A dendrogram was
828 constructed based on hierarchical clustering and the group information (healthy vs.
829 COVID-19) was color-coded. (C) In parallel, interactions among DE proteins were
830 predicted by the STRING enrichment analyses and depicted as network maps using
831 Cytoscape. Pathways associated with each DE protein were depicted in a donut
832 graph, color-coded based on terms discovered by the STRING enrichment assay.

833 **Fig.5. Comparative proteomic analyses between saliva and plasma revealed the**
834 **heterologous signatures of each biofluid and further divarication of**
835 **convalescent COVID-19 saliva.** (A) The proteomics data were further analyzed to
836 compare proteomic composition between saliva vs. plasma. The data obtained from
837 healthy and convalescent COVID-19 participants were separately analyzed. (B)
838 Differentially expressed proteins (Log2 fold changes >1, $p < 0.05$) in saliva and
839 plasma, were depicted as in a relative abundance of five significantly up-regulated

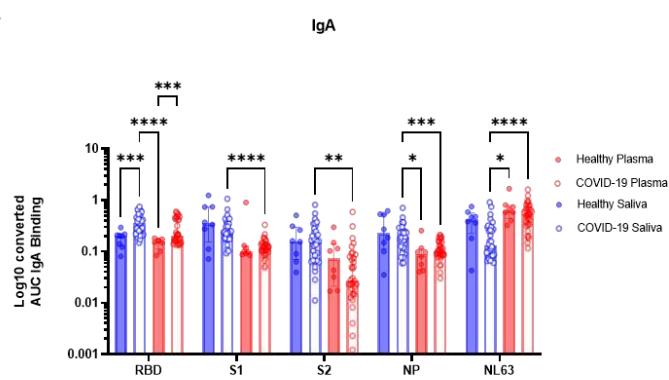
840 proteins. The 95% confidence intervals of group memberships and degree of
841 variance were indicated as circle and percentages on the axes, respectively. (C&D)
842 The heterologous proteomic profile between saliva and plasma was further
843 analyzed using clustered heatmap for both healthy and convalescent COVID-19.
844 Relative abundance was calculated based on the proportion of normalized reads and
845 displayed as color gradients. A dendrogram was constructed based on hierarchical
846 clustering of relative abundances and color-coded demographic information of each
847 participant was added to show their association with each clade. Blue Roman
848 numerals and arrows indicate subclades in COVID-19 saliva. The numbering was
849 in crescent with the expression level of DE proteins.

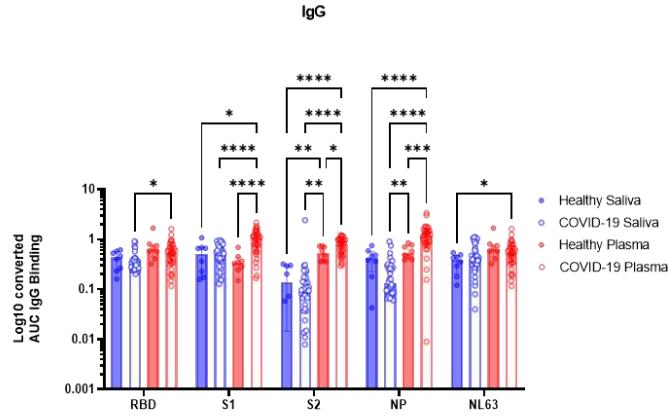

850 **Fig. 6. Correlation analyses suggests that proteomic alterations in convalescent saliva**
851 **are associated with antibody responses specific to the receptor binding site**
852 **(RBD) of SARS-CoV-2. (A-C)** A significant correlation ($p<0.05$) between SARS-
853 CoV-2 RBD specific immunoglobulins and convalescent COVID-19 salivary sub-
854 clusters was depicted as simple linear regression models. The individual titer of
855 immunoglobulin was plotted by subcluster numbers. The predicted regression line
856 and deviations were depicted as solid and dotted lines, respectively. Functions and
857 p-value of regression analyses were indicated next to the regression lines. (D-H)
858 Three differentially expressed proteins responsible for the clustering were
859 illustrated as simple regression models as described above.

860 **Table 1. Significant observations ($p<0.05$) in fold changes of differentially expressed**
861 **proteins in the saliva of convalescent COVID-19 and healthy samples.**

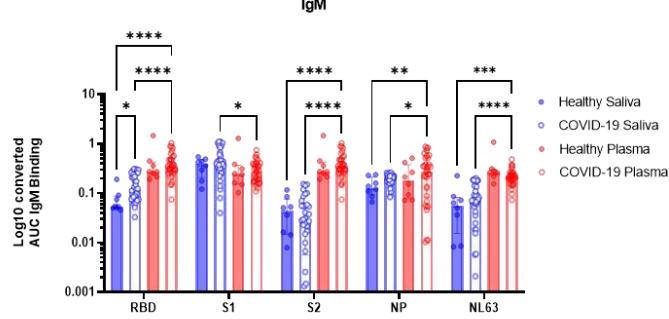
862 **Table 2. Correlations among RBD binding immunoglobulins, fibrinogen proteins,**
863 **and demographic factors.**

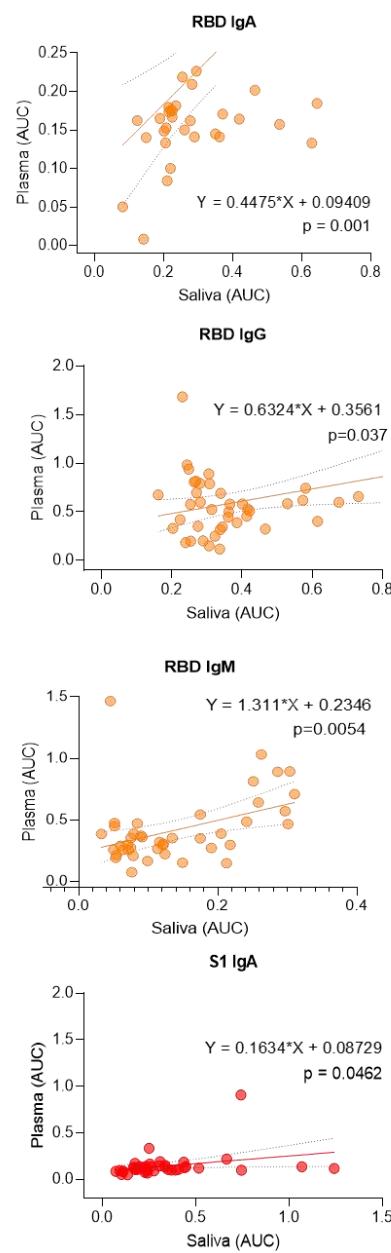
864
865
866
867


868 **Figure 1. Study design.**


869
870

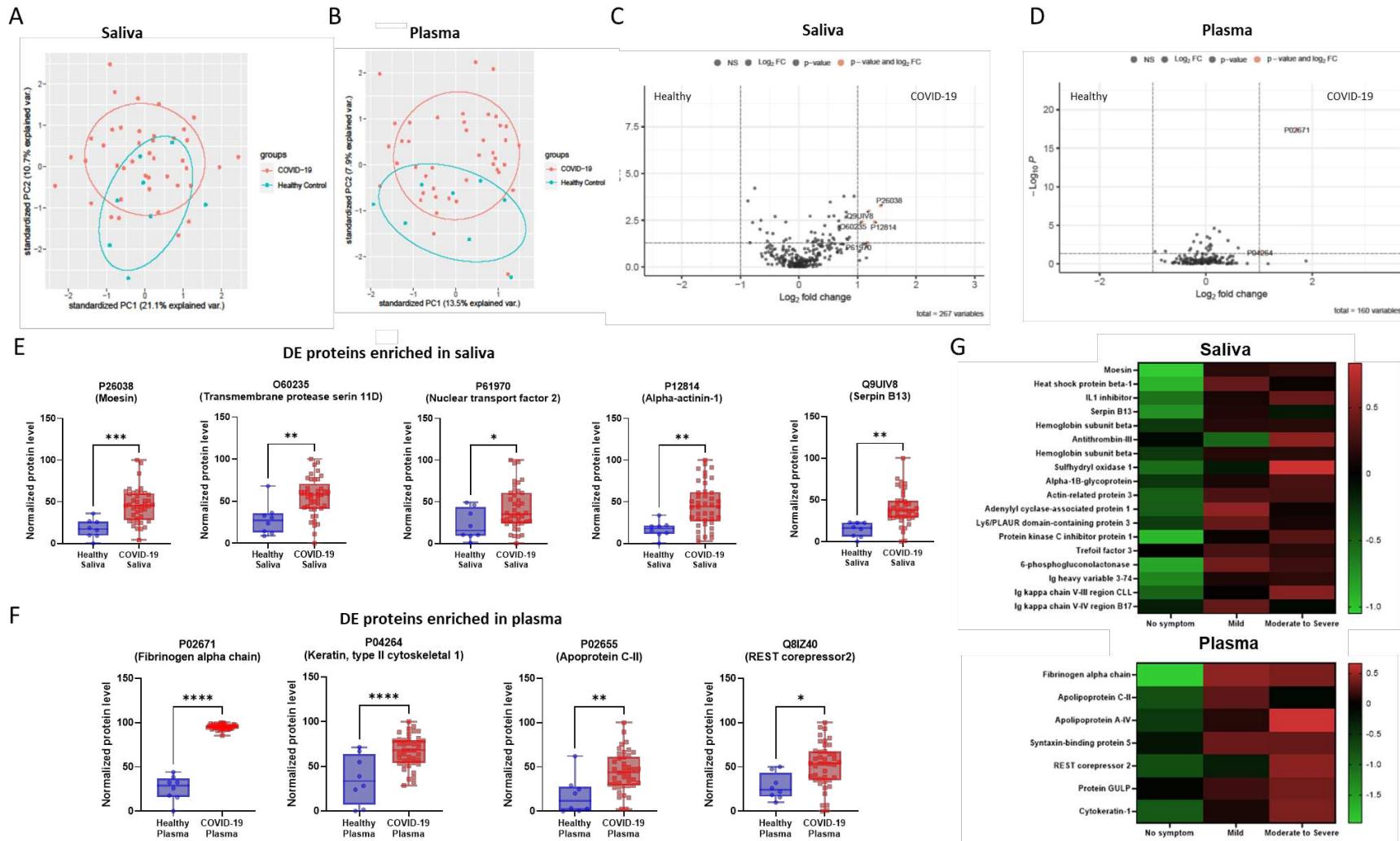
871 **Figure 2. Compartmentalized antibody responses found in saliva and plasma collaborate in**
 872 **response to the SARS-CoV-2 infection.**


A


B

C

D



873

874 **Figure 3. Comparative proteomic analyses revealed differentially expressed proteins (DEs) enriched in convalescent COVID-19**
 875 **saliva and plasma.**

876

877

878

879

880

881

882

883

Table 1. Significant observations (p<0.05) in fold changes of differentially expressed proteins in the saliva of convalescent COVID-19 and healthy samples.

A. Plasma

Uniprot code (AC)	Healthy Median	COVID-19 Median	Fold changes (COVID-19/Healthy)	P-value	Function
P02655	11.8027	43.5327	3.6884	0.0027	Apolipoprotein C-II (Apo-CII) (ApoC-II) (Apolipoprotein C2) [Cleaved into: Proapolipoprotein C-II (ProapoC-II)]
P02671	29.1875	95.7101	3.2791	0.0000	Fibrinogen alpha chain [Cleaved into: Fibrinopeptide A; Fibrinogen alpha chain]
Q8IZ40	23.9837	53.8844	2.2467	0.0122	REST corepressor 2
P04264	33.4788	67.7300	2.0231	0.0001	Keratin, type II cytoskeletal 1 (67kDa cytokeratin) (Cytokeratin-1) (CK-1) (Hair alpha protein) (Keratin-1) (K1) (Type-II keratin Kb1)
P01594	30.1460	51.6788	1.7143	0.0414	Immunoglobulin kappa variable 1-33 (Ig kappa chain V-I region AU) (Ig kappa chain V-I region Ka)
P00734	33.2410	49.7230	1.4958	0.0150	Prothrombin (EC 3.4.21.5) (Coagulation factor II) [Cleaved into: Activation peptide fragment 1; Activation peptide fragment 2; Thrombin light chain; Thrombin heavy chain]
P00748	33.0656	46.1847	1.3968	0.0390	Coagulation factor XII (EC 3.4.21.38) (Hageman factor) (HAF) [Cleaved into: Coagulation factor XIIa heavy chain; Beta-factor XIIa part 1; Coagulation factor XIIa light chain (Beta-factor XIIa part 2)]
P08697	36.4384	50.8219	1.3947	0.0279	Alpha-2-antiplasmin (Alpha-2-AP) (Alpha-2-plasmin inhibitor) (Alpha-2-PI) (Serpine F2)
Q9UBP9	57.9882	77.2189	1.3316	0.0009	PTB domain-containing engulfment adapter protein 1 (Cell death protein 6)

					homolog) (PTB domain adapter protein CED-6) (Protein GULP)
Q5T5C0	71.3590	85.0463	1.1918	0.0153	Syntaxin-binding protein 5 (Lethal(2) giant larvae protein homolog 3) (Tomosyn-1)
P09871	87.7720	78.0244	0.8889	0.0413	Complement C1s subcomponent (EC 3.4.21.42) (C1 esterase) (Complement component 1 subcomponent s) [Cleaved into: Complement C1s subcomponent heavy chain; Complement C1s subcomponent light chain]
P02743	85.6530	70.3051	0.8208	0.0024	Serum amyloid P-component (SAP) (9.5S alpha-1-glycoprotein) [Cleaved into: Serum amyloid P-component (1-203)]
A0A0B4J1X5	77.7429	60.2926	0.7755	0.0233	Immunoglobulin heavy variable 3-74
P01871	43.7500	33.1422	0.7575	0.0397	Immunoglobulin heavy constant mu (Ig mu chain C region) (Ig mu chain C region BOT) (Ig mu chain C region GAL) (Ig mu chain C region OU)
P27169	60.6238	45.7115	0.7540	0.0226	Serum paraoxonase/arylesterase 1 (PON 1) (EC 3.1.1.2) (EC 3.1.1.81) (EC 3.1.8.1) (Aromatic esterase 1) (A-esterase 1) (K-45) (Serum arylalkylphosphatase 1)
P01591	65.5666	49.2849	0.7517	0.0054	Immunoglobulin J chain (Joining chain of multimeric IgA and IgM)
P01011	57.4541	42.7752	0.7445	0.0442	Alpha-1-antichymotrypsin (ACT) (Cell growth-inhibiting gene 24/25 protein) (Serpine A3) [Cleaved into: Alpha-1-antichymotrypsin His-Pro-less]
P00738	81.8642	60.6936	0.7414	0.0209	Haptoglobin (Zonulin) [Cleaved into: Haptoglobin alpha chain; Haptoglobin beta chain]
P06276	60.0000	43.2934	0.7216	0.0014	Cholinesterase (EC 3.1.1.8) (Acetylcholine acylhydrolase) (Butyrylcholine esterase)

					(Choline esterase II) (Pseudocholinesterase)
POC0L5	61.3569	44.1003	0.7187	0.0061	Complement C4-B (Basic complement C4) (C3 and PZP-like alpha-2-macroglobulin domain-containing protein 3) [Cleaved into: Complement C4 beta chain; Complement C4-B alpha chain; C4a anaphylatoxin; C4b-B; C4d-B; Complement C4 gamma chain]
P80108	83.2759	58.6207	0.7039	0.0144	Phosphatidylinositol-glycan-specific phospholipase D (PI-G PLD) (EC 3.1.4.50) (Glycoprotein phospholipase D) (Glycosyl-phosphatidylinositol-specific phospholipase D) (GPI-PLD) (GPI-specific phospholipase D)
P02747	63.9785	43.6559	0.6824	0.0159	Complement C1q subcomponent subunit C
P36955	87.1739	58.6232	0.6725	0.0007	Pigment epithelium-derived factor (PEDF) (Cell proliferation-inducing gene 35 protein) (EPC-1) (Serpine F1)
P00736	85.4198	56.7176	0.6640	0.0141	Complement C1r subcomponent (EC 3.4.21.41) (Complement component 1 subcomponent r) [Cleaved into: Complement C1r subcomponent heavy chain; Complement C1r subcomponent light chain]
P02775	70.5570	45.6233	0.6466	0.0040	Platelet basic protein (PBP) (C-X-C motif chemokine 7) (Leukocyte-derived growth factor) (LDGF) (Macrophage-derived growth factor) (MDGF) (Small-inducible cytokine B7) [Cleaved into: Connective tissue-activating peptide III (CTAP-III) (LA-PF4) (Low-affinity platelet factor IV); TC-2; Connective tissue-activating peptide III(1-81) (CTAP-III(1-81));

					Beta-thromboglobulin (Beta-TG); Neutrophil-activating peptide 2(74) (NAP-2(74)); Neutrophil-activating peptide 2(73) (NAP-2(73)); Neutrophil-activating peptide 2 (NAP-2); TC-1; Neutrophil-activating peptide 2(1-66) (NAP-2(1-66)); Neutrophil-activating peptide 2(1-63) (NAP-2(1-63))]
P08603	75.2708	44.0433	0.5851	0.0016	Complement factor H (H factor 1)
P02746	73.7319	37.9529	0.5147	0.0000	Complement C1q subcomponent subunit B

884

885

886

B. Saliva

Uniprot code (AC)	Healthy Median	COVID-19 Median	Fold changes (COVID-19/Healthy)	P-value	Function
P26038	17.3506	45.4951	2.6221	0.0005	Moesin (Membrane-organizing extension spike protein)
P12814	18.1181	44.3925	2.4502	0.0039	Alpha-actinin-1 (Alpha-actinin cytoskeletal isoform) (F-actin cross-linking protein) (Non-muscle alpha-actinin-1)
Q9UIV8	16.3197	37.4158	2.2927	0.0010	Serpin B13 (HaCaT UV-repressible serpin) (Hurpin) (Headpin) (Peptidase inhibitor 13) (PI-13) (Proteinase inhibitor 13)
P61970	15.7125	35.3690	2.2510	0.0498	Nuclear transport factor 2 (NTF-2) (Placental protein 15) (PP15)
O60235	27.2652	57.5138	2.1094	0.0037	Transmembrane protease serine 11D (EC 3.4.21.-) (Airway trypsin-like protease) [Cleaved into: Transmembrane protease serine 11D non-catalytic chain; Transmembrane protease serine 11D catalytic chain]
P02533	23.8479	45.7757	1.9195	0.0002	Keratin, type I cytoskeletal 14 (Cytokeratin-14) (CK-14) (Keratin-14) (K14)

P47756	33.9481	61.7486	1.8189	0.0254	F-actin-capping protein subunit beta (CapZ beta)
P07737	23.2971	41.5104	1.7818	0.0337	Profilin-I (Epididymis tissue protein Li 184a) (Profilin I)
O95336	37.0038	65.1229	1.7599	0.0304	6-phosphogluconolactonase (6PGL) (EC 3.1.1.31)
P31946	34.4017	60.1709	1.7491	0.0011	14-3-3 protein beta/alpha (Protein 1054) (Protein kinase C inhibitor protein 1) (KCIP-1) [Cleaved into: 14-3-3 protein beta/alpha, N-terminally processed]
Q9P1F3	29.0120	50.5459	1.7422	0.0022	Costars family protein ABRACL (ABRA C-terminal-like protein)
P04083	38.1212	64.8081	1.7001	0.0002	Annexin A1 (Annexin I) (Annexin-1) (Calpactin II) (Calpactin-2) (Chromobindin-9) (Lipocortin I) (Phospholipase A2 inhibitory protein) (p35)
P01877	38.7187	62.3788	1.6111	0.0100	Immunoglobulin heavy constant alpha 2 (Ig alpha-2 chain C region) (Ig alpha-2 chain C region BUT) (Ig alpha-2 chain C region LAN)
P01624	34.8145	55.9570	1.6073	0.0066	Immunoglobulin kappa variable 3-15 (Ig kappa chain V-III region CLL) (Ig kappa chain V-III region POM)
P04792	34.3107	55.1068	1.6061	0.0077	Heat shock protein beta-1 (HspB1) (28 kDa heat shock protein) (Estrogen-regulated 24 kDa protein) (Heat shock 27 kDa protein) (HSP 27) (Stress-responsive protein 27) (SRP27)
P03973	38.2868	61.3574	1.6026	0.0034	Antileukoproteinase (ALP) (BLPI) (HUSI-1) (Mucus proteinase inhibitor) (MPI) (Protease inhibitor WAP4) (Secretory leukocyte protease inhibitor) (Seminal proteinase inhibitor) (WAP four-disulfide core domain protein 4)
P22079	22.2845	33.7772	1.5157	0.0330	Lactoperoxidase (LPO) (EC 1.11.1.7) (Salivary peroxidase) (SPO)

Q01518	43.5573	65.9063	1.5131	0.0018	Adenyl cyclase-associated protein 1 (CAP 1)
P14780	40.0000	59.8204	1.4955	0.0280	Matrix metalloproteinase-9 (MMP-9) (EC 3.4.24.35) (92 kDa gelatinase) (92 kDa type IV collagenase) (Gelatinase B) (GELB) [Cleaved into: 67 kDa matrix metalloproteinase-9; 82 kDa matrix metalloproteinase-9]
P61158	51.1722	74.2110	1.4502	0.0003	Actin-related protein 3 (Actin-like protein 3)
P18510	40.5000	58.6667	1.4486	0.0187	Interleukin-1 receptor antagonist protein (IL-1RN) (IL-1ra) (IRAP) (ICIL-1RA) (IL1 inhibitor) (Anakinra)
P37802	34.2496	48.8856	1.4273	0.0378	Transgelin-2 (Epididymis tissue protein Li 7e) (SM22-alpha homolog)
A0A0B4J1X5	32.2115	45.8654	1.4239	0.0020	Immunoglobulin heavy variable 3-74
P07858	45.6759	61.9913	1.3572	0.0060	Cathepsin B (EC 3.4.22.1) (APP secretase) (APPS) (Cathepsin B1) [Cleaved into: Cathepsin B light chain; Cathepsin B heavy chain]
P27482	56.7964	75.4308	1.3281	0.0179	Calmodulin-like protein 3 (CaM-like protein) (CLP) (Calmodulin-related protein NB-1)
Q01469	50.5788	66.5325	1.3154	0.0468	Fatty acid-binding protein 5 (Epidermal-type fatty acid-binding protein) (E-FABP) (Fatty acid-binding protein, epidermal) (Psoriasis-associated fatty acid-binding protein homolog) (PA-FABP)
P60709	48.5144	63.6549	1.3121	0.0368	Actin, cytoplasmic 1 (Beta-actin) [Cleaved into: Actin, cytoplasmic 1, N-terminally processed]
P07195	55.9759	70.2851	1.2556	0.0365	L-lactate dehydrogenase B chain (LDH-B) (EC 1.1.1.27) (LDH heart subunit) (LDH-H) (Renal carcinoma antigen NY-REN-46)
P07339	58.2806	71.5190	1.2271	0.0405	Cathepsin D (EC 3.4.23.5) [Cleaved into: Cathepsin D light chain; Cathepsin D heavy chain]

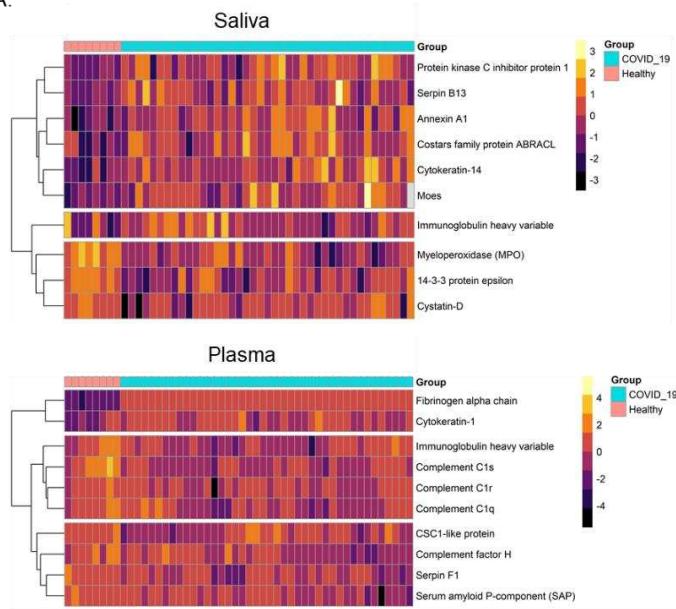
O15144	50.5818	61.4430	1.2147	0.0301	Actin-related protein 2/3 complex subunit 2 (Arp2/3 complex 34 kDa subunit) (p34-ARC)
Q8NFU4	54.5973	65.9801	1.2085	0.0147	Follicular dendritic cell secreted peptide (FDC secreted protein) (FDC-SP)
P55058	58.0352	68.9266	1.1877	0.0438	Phospholipid transfer protein (Lipid transfer protein II)
P0DOY2	61.4466	72.3315	1.1771	0.0478	Immunoglobulin lambda constant 2 (Ig lambda chain C region Kern) (Ig lambda chain C region NIG-64) (Ig lambda chain C region SH) (Ig lambda chain C region X) (Ig lambda-2 chain C region)
O95274	63.3065	73.1720	1.1558	0.0134	Ly6/PLAUR domain-containing protein 3 (GPI-anchored metastasis-associated protein C4.4A homolog) (Matrigel-induced gene C4 protein) (MIG-C4)
Q07654	73.2726	83.5565	1.1404	0.0019	Trefoil factor 3 (Intestinal trefoil factor) (hITF) (Polypeptide P1.B) (hP1.B)
P68871	66.2918	73.3739	1.1068	0.0398	Hemoglobin subunit beta (Beta-globin) (Hemoglobin beta chain) [Cleaved into: LVV-hemorphin-7; Spinorphin]
Q96BQ1	80.6410	72.3077	0.8967	0.0287	Protein FAM3D
P28325	88.8382	76.2557	0.8584	0.0338	Cystatin-D (Cystatin-5)
P01037	61.6983	52.8035	0.8558	0.0039	Cystatin-SN (Cystain-SA-I) (Cystatin-1) (Salivary cystatin-SA-1)
P06702	72.0779	60.3175	0.8368	0.0410	Protein S100-A9 (Calgranulin-B) (Calprotectin L1H subunit) (Leukocyte L1 complex heavy chain) (Migration inhibitory factor-related protein 14) (MRP-14) (p14) (S100 calcium-binding protein A9)
P07384	85.5193	64.5104	0.7543	0.0020	Calpain-1 catalytic subunit (EC 3.4.22.52) (Calcium-activated neutral proteinase 1) (CANP 1) (Calpain mu-type) (Calpain-1 large subunit)

					(Cell proliferation-inducing gene 30 protein) (Micromolar-calpain) (muCANP)
O60888	58.5434	43.0439	0.7352	0.0163	Protein CutA (Acetylcholinesterase-associated protein) (Brain acetylcholinesterase putative membrane anchor)
P50395	75.2077	51.7572	0.6882	0.0415	Rab GDP dissociation inhibitor beta (Rab GDI beta) (Guanosine diphosphate dissociation inhibitor 2) (GDI-2)
P06331	71.5901	49.0953	0.6858	0.0148	Immunoglobulin heavy variable 4-34 (Ig heavy chain V-II region ARH-77)
P06870	64.1864	40.8901	0.6371	0.0032	Kallikrein-1 (EC 3.4.21.35) (Kidney/pancreas/salivary gland kallikrein) (Tissue kallikrein)
PODUB6	55.9848	35.3483	0.6314	0.0095	Alpha-amylase 1A (EC 3.2.1.1) (1,4-alpha-D-glucan glucanohydrolase 1) (Salivary alpha-amylase)
P05164	81.4325	48.3310	0.5935	0.0001	Myeloperoxidase (MPO) (EC 1.11.2.2) [Cleaved into: Myeloperoxidase; 89 kDa myeloperoxidase; 84 kDa myeloperoxidase; Myeloperoxidase light chain; Myeloperoxidase heavy chain]
P23141	77.4447	44.7537	0.5779	0.0042	Liver carboxylesterase 1 (Acyl-coenzyme A:cholesterol acyltransferase) (ACAT) (Brain carboxylesterase hBr1) (Carboxylesterase 1) (CE-1) (hCE-1) (EC 3.1.1.1) (Cholesteryl ester hydrolase) (CEH) (EC 3.1.1.13) (Cocaine carboxylesterase) (Egasyn) (HMSE) (Methylumbelliferyl-acetate deacetylase 1) (EC 3.1.1.56) (Monocyte/macrophage serine esterase) (Retinyl ester hydrolase) (REH) (Serine

					esterase 1) (Triacylglycerol hydrolase) (TGH)
P59666	65.3631	36.6480	0.5607	0.0496	Neutrophil defensin 3 (Defensin, alpha 3) (HNP-3) (HP-3) (HP3) [Cleaved into: HP 3-56; Neutrophil defensin 2 (HNP-2) (HP-2) (HP2)]
P62258	90.6659	49.5838	0.5469	0.0003	14-3-3 protein epsilon (14-3-3E)

887

888


889

890

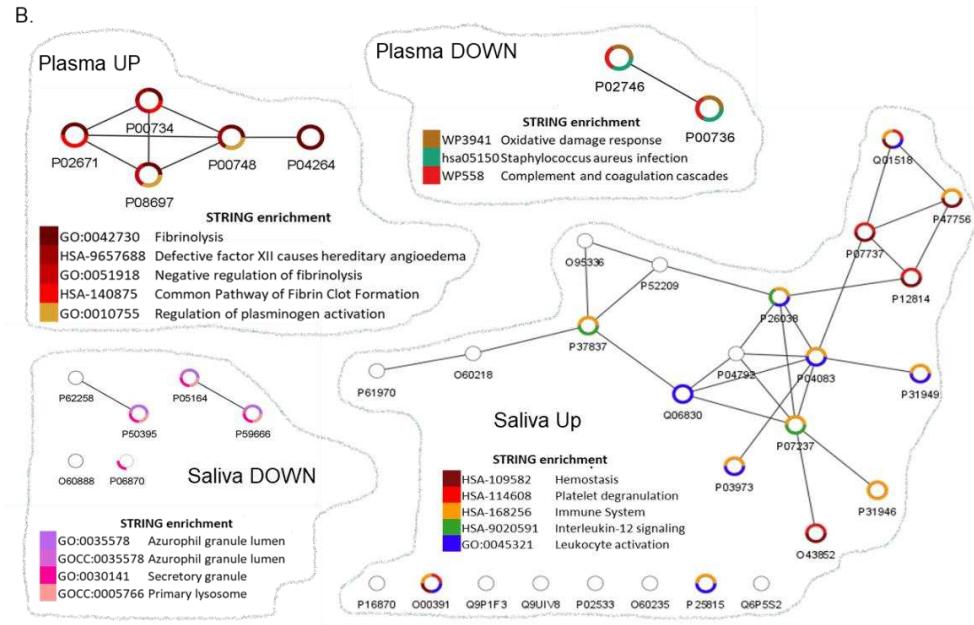
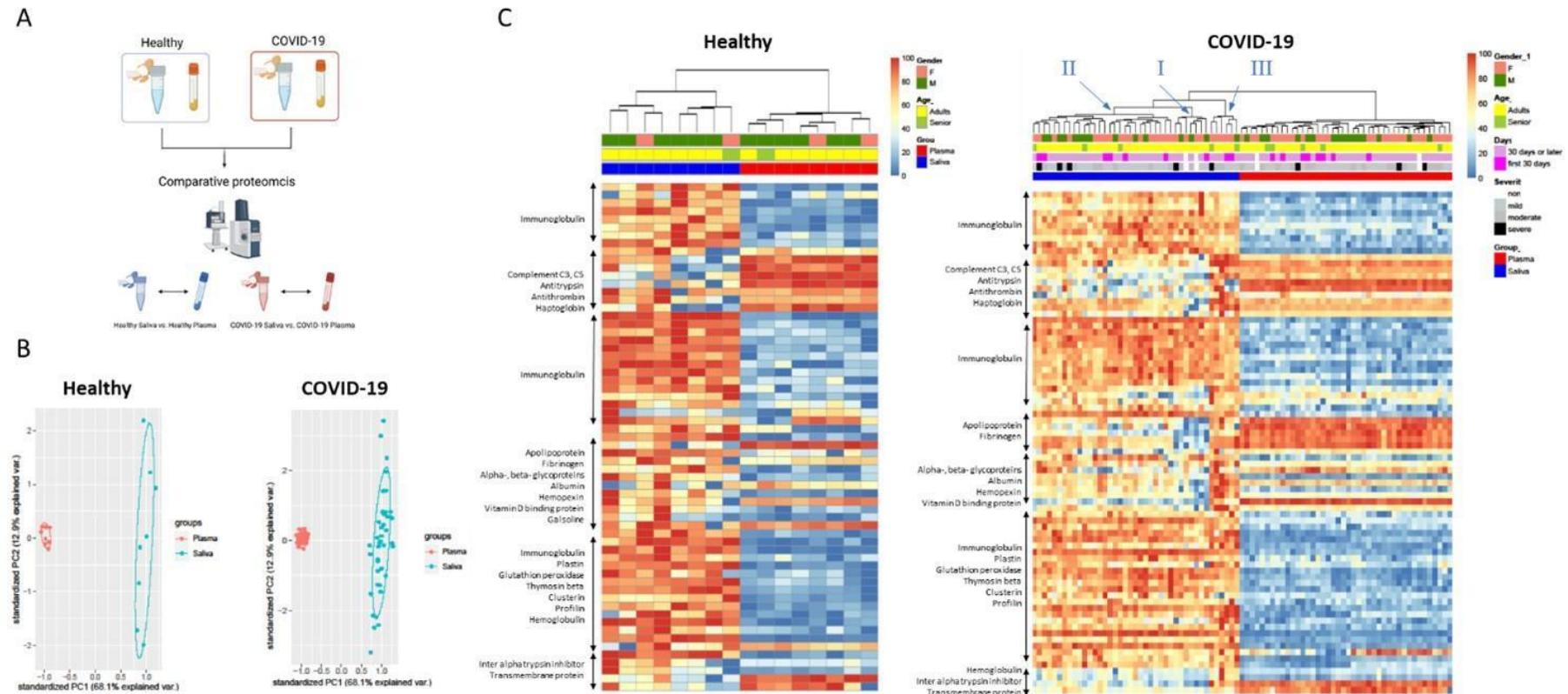

891
892

Figure 4. Network analyses depicted biological functions altered in convalescent plasma and saliva.

A.

B.

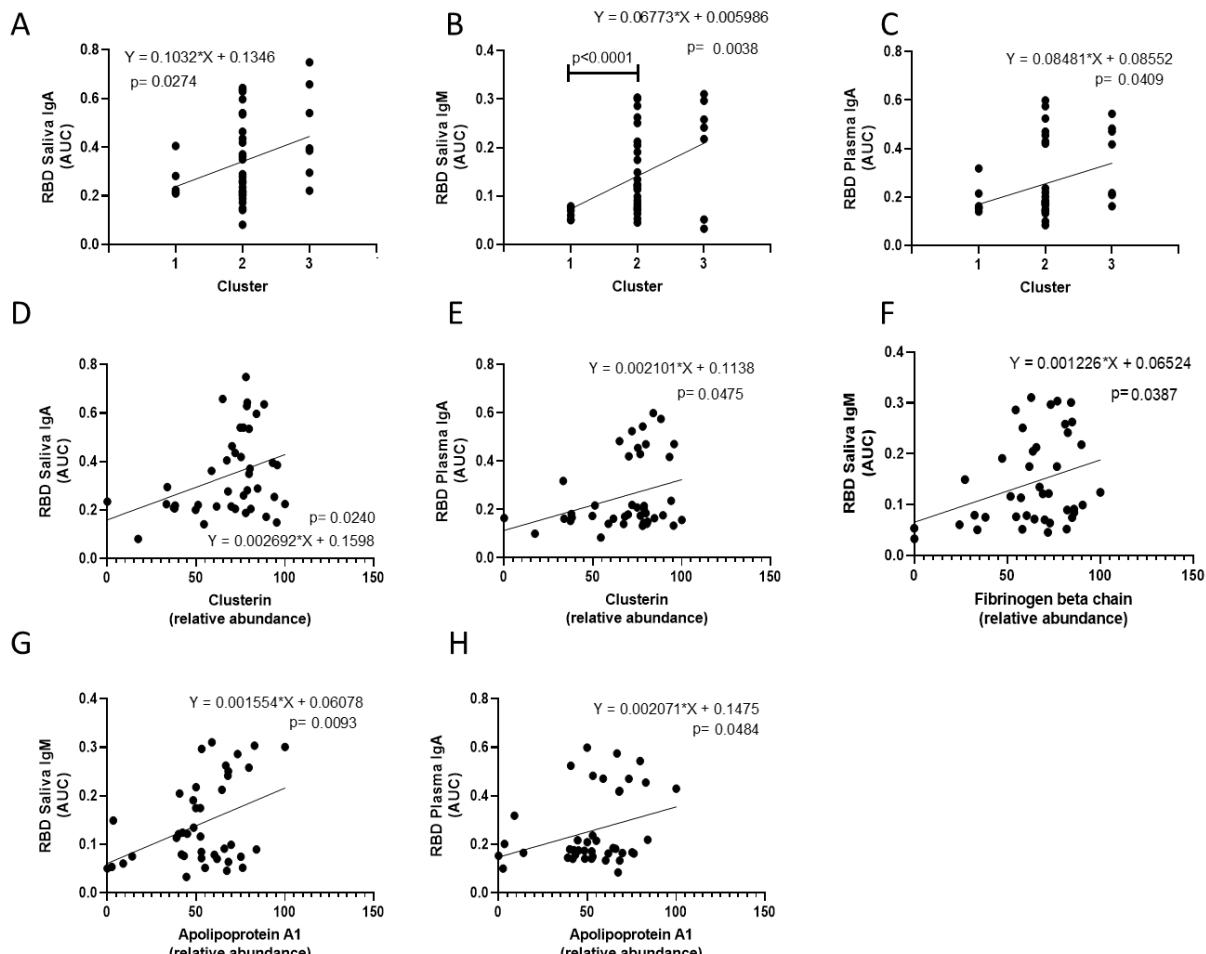

893
894

895

896

897

Figure 5. Comparative proteomic analyses between saliva and plasma revealed the heterologous signatures of each biofluid and further diversification of convalescent COVID-19 saliva.


898

899

900

901
902

Figure 6. Correlation analyses suggests that proteomic alterations in convalescent saliva are associated with antibody responses specific to the receptor binding site (RBD) of SARS-CoV-2.

903
904
905

906
907
908
909
910
911
912

Table 2. Correlations among RBD binding immunoglobulins, fibrinogen proteins, and demographic factors.

All			
Factor A	Factor B	Pearson R	P value
Plasma fibrinogen alpha chain	Saliva fibrinogen beta chain	-0.051	0.033
Plasma fibrinogen alpha chain	Saliva fibrinogen gamma chain	-0.305	0.004
Plasma fibrinogen alpha chain	Saliva RBD IgA	0.406	<0.0005
Plasma fibrinogen alpha chain	Saliva RBD IgM	-0.493	0.010
Plasma fibrinogen alpha chain	Plasma RBD IgA	0.364	<0.0005
Saliva fibrinogen alpha chain	Saliva fibrinogen beta chain	0.845	<0.0005
Saliva fibrinogen beta chain	Saliva fibrinogen gamma chain	0.284	0.048
Saliva fibrinogen beta chain	Saliva RBD IgM	0.298	0.037
Saliva RBD IgA	Saliva RBD IgM	0.344	0.016
Plasma RBD IgA	Saliva RBD IgM	-0.355	0.012
Plasma RBD IgA	Aging (60yrs or higher)	-0.301	0.036
Categorized Disease severity	Saliva RBD IgM	-0.352	0.013
Categorized Disease severity	Days since onset of symptoms	0.468	0.003
Days since onset of symptoms	Saliva RBD IgM	-0.442	0.005
Healthy only			
Factor A	Factor B	Pearson R	P value
Plasma fibrinogen alpha chain	Saliva RBD IgM	-0.720	0.044
Saliva fibrinogen alpha chain	Saliva fibrinogen beta chain	0.847	0.008
Saliva fibrinogen beta chain	Saliva fibrinogen gamma chain	0.776	0.024
Saliva fibrinogen beta chain	Saliva RBD IgA	-0.887	0.003
Saliva fibrinogen beta chain	Categorized gender	-0.787	0.020
Saliva fibrinogen gamma chain	Categorized gender	-0.859	0.006
COVID-19 only			
Factor A	Factor B	Pearson R	P value
Saliva fibrinogen alpha chain	Saliva fibrinogen beta chain	0.917	<0.0005
Saliva fibrinogen alpha chain	Saliva RBD IgM	0.309	0.049
Saliva fibrinogen beta chain	Saliva RBD IgM	0.324	0.039
Saliva RBD IgA	Saliva RBD IgM	0.716	<0.0005
Saliva RBD IgM	Days since onset of symptoms	-0.442	0.005
Plasma RBD IgA	Aging (60yrs or higher)	-0.312	0.047
Categorized Disease severity	Days since onset of symptoms	0.468	0.003

913
914
915
916
917
918
919
920