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ABSTRACT 

Alzheimer’s disease (AD) is a chronic neurodegenerative disease characterized by the 

progressive accumulation of amyloid-beta and neurofibrillary tangles of tau in the neocortex. 

Utilizing extensive neuropathology data from the Brains for Dementia Research (BDR) 

cohort we performed the most systematic epigenome-wide association study (EWAS) of 

multiple measures of AD neuropathology yet undertaken, profiling DNA methylation in two 

cortical regions from 631 donors. We meta-analyzed our results with those from previous 

studies of DNA methylation in AD cortex (total n = 2,013 donors), identifying 334 cortical 

differentially methylated positions (DMPs) associated with AD pathology including 

methylomic variation at novel loci not previously implicated in dementia. We subsequently 

characterized DNA methylation in purified nuclei populations - enriched for neurons, 

oligodendrocytes and microglia - exploring the extent to which cortex AD-associated DMPs 

reflect differences manifest in specific cell populations. We find that the majority of DMPs 

identified in ‘bulk’ cortex tissue actually reflect DNA methylation differences occurring in non-

neuronal cells, with dramatically increased effect sizes observed in microglia-enriched nuclei 

populations. Our study highlights the power of utilizing multiple measures of neuropathology 

to identify epigenetic signatures of AD and the importance of characterizing disease-

associated variation in purified neural cell-types. 
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INTRODUCTION 

Alzheimer’s disease (AD) is a chronic and incurable neurodegenerative disease that is 

clinically characterized by progressive memory loss and declining cognition. Although AD is 

neuropathologically associated with the accumulation of extracellular amyloid-beta (Aβ) 

plaques and the deposit of intracellular neurofibrillary tangles of tau (NFT)1,2, it is also 

frequently accompanied by pathological features associated with other types of dementia3,4. 

Lewy-body (LB) and TDP-43 pathology, for example, are often present alongside tau and 

amyloid pathology in individuals with AD4. Despite progress in identifying both genetic5–9 and 

non-genetic risk factors for AD, the molecular mechanisms driving AD pathology remain 

elusive.  

There is growing recognition about the importance of non-sequence-based regulatory 

variation in health and disease. Building on the hypothesis that epigenomic dysregulation is 

important in the etiology and progression of AD neuropathology10, we and others have 

identified DNA methylation differences in several regions of the brain associated with AD 

and also other forms of dementia including Parkinson’s disease (PD)11–19. A recent 

epigenome-wide association study (EWAS) meta-analysis, for example, reported >200 

differentially methylated positions (DMPs) in the cortex associated with tau pathology13. 

There are, however, important limitations to existing studies of epigenetic variation in AD. 

First, because the cortex comprises a heterogeneous mix of different neural cell types - each 

characterized by a specific epigenetic signature - it is difficult to fully account for differences 

in cellular proportions between samples derived from ‘bulk’ cortex tissue. Furthermore, 

because the progression of AD neuropathology is associated with changes in both the 

number and activation of specific cell types - for example AD is associated with both the loss 

of neurons20,21 and the proliferation and activation of microglia22,23 – studies on bulk cortex 

cannot identify disease-associated variation occurring within individual cellular populations. 

Second, the clinical and neuropathological heterogeneity among patients with AD, alongside 

the high level of comorbidity with other types of dementia, complicates the interpretation of 

associations between epigenetic variation and pathology. Although existing EWAS analyses 

of AD have largely focused on a single pathology measure (i.e. Braak NFT staging1,24), the 

simultaneous analysis of multiple measures of different types of pathology is likely to 

facilitate a better understanding of the molecular mechanisms involved in disease 

progression. 

In this study we quantified genome-wide patterns of DNA methylation in the Brains for 

Dementia Research (BDR) cohort, a clinically- and phenotypically- well-characterized study 

established with the aim of integrating standardized measures of neuropathology with 
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detailed phenotypic and multiomic data25. First, we performed the most systematic EWAS of 

AD neuropathology yet undertaken, profiling DNA methylation across >800,000 sites in two 

cortical brain regions (the dorsolateral prefrontal cortex [DLPFC] and occipital cortex [OCC]) 

differentially impacted by AD pathology from ~650 well-characterized donors. Second, we 

meta-analyzed our results with those from previous AD EWAS analyses13, enabling an 

analysis of AD-associated differential cortical DNA methylation in tissue from over 2,000 

individuals. Third, we characterized genome-wide patterns of DNA methylation in purified 

nuclei populations enriched for neurons, oligodendrocytes and microglia from a subset of 

donors, exploring the extent to which AD-associated cortical differences in DNA methylation 

are driven by changes within specific cell populations. Our analyses identify neuropathology-

associated variation at multiple novel loci not previously implicated in dementia, and show 

that AD-associated methylomic variation in the cortex primarily reflects differences in non-

neuronal cell populations, especially microglia. This study highlights the power of utilizing 

multiple neuropathology measures to understand molecular pathogenesis of AD and the 

importance of characterizing disease-associated variation in distinct neural cell-types. 

RESULTS 

An overview of the BDR DNA methylation dataset 

After stringent data pre-processing and quality control filtering (see Methods) the final BDR 

dataset comprised of DNA methylation estimates for 800,916 DNA methylation sites profiled 

in 1,221 tissue samples from two cortical brain regions (DLPFC and OCC) dissected from 

631 donors (53% male, age range = 41-104 years, median age = 84 years, interquartile 

range [IQR] = 78-90 years, Table 1). Males were significantly younger at death compared to 

females (by 2.69 years, P = 2.33E-07), which is consistent with observations from 

epidemiological studies26,27. NFT pathology was quantified using Braak NFT staging1,24 

(mean Braak score = 3.72, SD = 1.90, Supplementary Figure S1 and Table 1). Amyloid 

pathology was quantified using both Thal phase2 (mean = 3.09, SD = 1.78) and neuritic 

plaque density scored using the CERAD classification method28,29 (mean = 1.69, SD = 1.28). 

In addition, donors were also assessed for several hallmarks of non-AD pathology including 

both α-synuclein pathology using Braak LB staging30 (mean = 1.34, SD = 2.26) and TDP-43 

status (127 (22%) of 590 tested donors were TDP-43 positive). 
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Alzheimer’s disease pathology is associated with altered cell-type proportions in the 

dorsolateral prefrontal cortex 

The progression of AD pathology is associated with changes in the abundance of specific 

cell-types in the cortex; such changes in neural cell proportions are a major confounding 

factor for studies of DNA methylation and other genomic marks performed on ‘bulk’ cortical 

tissue31,32. Although several methods have been developed to derive cell-type proportion 

estimates from bulk DNA methylation data for use as covariates in EWAS31,33–36, these 

approaches are limited by the availability of DNA methylation reference data for specific 

cortical cell-types. We therefore used a fluorescence activated nuclei sorting (FANS) method 

recently described by our group37 to develop novel DNA methylation reference panels from 

neuron-enriched (NeuN+), oligodendrocyte-enriched (SOX10+) and microglial-enriched 

(NeuN-/SOX10-) nuclei populations isolated from the DLPFC from a subset of BDR donors 

(n = 12, see Methods and Table 1). DNA methylation profiles were generated from each 

purified population of nuclei using the Illumina HumanMethylation EPIC microarray and used 

in combination with an established algorithm31 to derive estimates for the proportion of each 

neural cell-type in individual BDR cortex samples  (see Methods). Of note, derived relative 

cell proportions were significantly associated with Braak NFT stage, CERAD score and Thal 

phase in the DLPFC but not the OCC (see Figure 1 and Supplementary Table S1), likely 

reflecting known differences in the progression of neuropathology across the two brain 

regions. In the DLPFC, increasing tau pathology was significantly associated (Bonferroni P < 

0.008 [0.05/6]) with reduced neuronal cell proportion estimates (effect size = -2.74; P = 

0.00011), reduced microglial proportions (effect size = -2.00; P = 0.004) and increased 

oligodendrocyte proportions (effect size = 1.60; P = 0.00017). This pattern was mirrored for 

the two measures of amyloid pathology (Supplementary Figure S2 and Supplementary 

Table S1). 

Multiple differentially methylated positions were associated with AD neuropathology 

in the cortex 

We used the detailed neuropathological data available for each BDR donor to identify 

cortical differentially methylated positions (DMPs) associated with the accumulation of both 

tau (measured by Braak NFT stage) and amyloid (measured by both CERAD score and Thal 

Phase) pathology. We first conducted an analysis of combined AD pathology incorporating 

all three AD pathology measures in a model including matched DLPFC and OCC DNA 

methylation data from individual donors that controlled for age, sex, derived cellular 

proportions, experimental batch and principal component (PC) 1 (see Methods). We 
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identified 67 DMPs annotated to 45 genes that were associated with the overall burden of 

core AD neuropathology at a stringent experiment wide significance threshold (P <9E-08) 

(Figure 2a and Supplementary Table S2). Of note, 32 (48%) of the significant DMPs 

represent sites that are specific to the Illumina EPIC array and have not been assessed in 

previous analyses of AD cortex undertaken that have predominantly used the preceding 

Illumina 450K array. The top-ranked cortical DMP associated with AD pathology was 

cg06913337, which was significantly hypomethylated with increasing AD pathology (P = 

1.27E-10, Figure 1b and 1c). Of note, this site is annotated to the ZFPM1 gene which 

encodes a zinc finger protein that has been previously associated with DLB38 and psychosis 

in AD39.  

Differential methylation was associated with specific Tau and Amyloid pathology 

measures 

We next undertook analyses to identify variable DNA methylation associated with each of 

the three individual AD pathology measures (Braak NFT stage, CERAD score, and Thal 

phase). First, we identified 26 DMPs annotated to 21 genes associated with tau pathology at 

an experiment-wide significance threshold (P < 9E-08) (Supplementary Figure S3 and 

Supplementary Table S3). 23 (88%) of these DMPs overlapped with sites identified in the 

AD neuropathology analysis. The average magnitude of effect per Braak NFT stage across 

these DMPs was 0.44% (SD=0.17%), with a cumulative mean DNA methylation change of 

2.63% (SD=1.04%) from Braak stage 0 to VI. Of note, 22 (83%) of the DMPs were 

significantly hypermethylated with higher Braak NFT stage (enrichment P = 0.000267) 

reflecting the enrichment of hypermethylated loci observed in previous studies of tau 

pathology13,16. The top ranked DMP (cg16021126) is annotated to SERP2, and was 

significantly hypermethylated with elevated Braak NFT stage (P = 7.48E-10, effect size = 

0.29% per Braak NFT stage, Supplementary Figure S4). SERP2 is dysregulated in FTDP-

17 (frontotemporal dementia and Parkinsonism linked to chromosome 17) iPSC-derived 

neurons40. 16 (62%) of the 26 tau-associated DMPs identified in the BDR dataset were 

tested in a recent meta-analysis of tau pathology performed across sites on the Illumina 

450K array13; effect sizes for these sites were perfectly consistent across all tau-associated 

DMPs (100% concordant, binomial sign test P = 1.53E-05, Supplementary Figure S5a). It 

is notable that the magnitude of DNA methylation difference was approximately 2.2-fold 

larger in BDR than in the tau pathology meta-analysis (mean change per Braak NFT stage 

=0.20% [SD =0.09 %]). 6 (38%) of the 16 overlapping DMPs reached experiment-wide 

significance (P < 9E-08) in the previous meta-analysis and 14 (88%) reached Bonferroni 

significance correcting for 16 sites (Bonferroni P = 0.00313). Likewise, of the 220 DMPs 
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identified in the tau pathology meta-analysis, 208 are included on the Illumina EPIC array 

and tested in the BDR dataset. These were characterized by highly consistent effect sizes 

observed across both analyses (100% concordant, binomial sign test P = 5.08E-61, see 

Supplementary Figure S5b); of note, effect sizes in the BDR cohort were again larger 

(average ~1.2-fold larger) than those reported in the tau pathology meta-analysis.  

Second, we identified 14 DMPs annotated to 12 genes associated with CERAD score 

(Supplementary Figure S6 and Supplementary Table S3). The average magnitude of 

effect for the significant DMPs per unit of CERAD score was 0.57% (SD=0.16%), with a 

cumulative absolute mean DNA methylation difference of 2.29% (SD=0.63%) from low to 

high CERAD score and again an enrichment of hypermethylated sites (10 (71%) of DMPs 

showing higher DNA methylation with increasing pathology). The top ranked DMP 

(cg13515047) is annotated to BCAR1, which encodes a Cas scaffolding protein that acts as 

a functional key regulator in the pathogenesis of AD41, and was significantly hypermethylated 

with elevated CERAD score (P = 4.96E-09, effect size = 0.44%, Supplementary Figure S7 

and Supplementary Table S3). Finally, we identified two experiment-wide significant DMPs 

associated with Thal phase, both hypermethylated with increasing pathology 

(Supplementary Figure S8 and Supplementary Table S3). The top ranked DMP 

(cg11658414, unannotated to a gene) was significantly hypermethylated with elevated Thal 

phase (P = 9.11E-09, effect size = 0.30%, Supplementary Figure S9).  

It is well established that the neuropathological signatures of AD are correlated and higher 

levels of NFTs are associated with elevated amyloid burden42. As expected, therefore, there 

was a strong positive correlation in patterns of differential DNA methylation across DMPs for 

the individual neuropathology measures assessed in BDR (see Supplementary Figure 

S10). Effect sizes for the 26 Braak NFT stage DMPs, for example, were highly concordant 

(100%, binomial sign test P = 1.39E-17 across all analyses) with effect sizes at the same 

DNA methylation sites in analyses of the other neuropathological measures in BDR 

(Supplementary Figure S11). Additionally, when fitting the full model controlling for all AD 

neuropathology measures, no DMPs remained significant (P > 9E-08) for each specific 

measure, indicative of common effects showing consistent differences in DNA methylation 

across the different measures of AD neuropathology. 

Effect sizes at DMPs associated with AD pathology are correlated with those from an 

analysis of Lewy body and TDP-43 pathology 

Because other dementia neuropathologies are frequently present alongside tau and amyloid 

pathology in AD we sought to explore whether DNA methylation at AD-associated DMPs 
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was associated with Braak LB stage and TDP-43 status, two measures of common co-

pathology. The samples included in our study were characterized by limited amounts of both 

LB and TDP-43 pathology - the majority of donors were Braak LB Stage 0 (n = 386, 72%) 

and TDP-43 negative (n = 463, 78%) - and we therefore had limited power to identify novel 

DMPs associated with either type of pathology. Elevated TDP-43 status was associated with 

significant hypomethylation at a single DMP (cg06423355: P = 5.47E-08, effect size = -

2.26%). Although this site is not directly annotated to any gene, it resides ~50kb from 

STK38L which encodes a protein kinase involved in neuronal cell division and morphology 

and has been identified to control axonal growth in mouse hippocampal neurons43. Overall, 

effect sizes for the 67 AD pathology DMPs were found to be highly consistent between 

analyses of the AD (Braak NFT stage, CERAD score, Thal phase) and non-AD (Braak LB 

Stage and TDP-43 status) neuropathology measures (see Supplementary Figure S12) 

suggesting consistent effects across each type of neuropathology or that these effects are 

driven by underlying disease (i.e. a consequence rather than directly related to 

neuropathology).  

AD-associated differential DNA methylation is highly consistent across DLPFC and 

OCC 

Our initial EWAS model leveraged matched DNA methylation data from both the DLPFC and 

OCC for each donor to maximize power to detect cortical DMPs associated with AD 

pathology. As expected, pathology-associated DNA methylation differences were highly 

consistent between both cortical regions across the 67 DMPs identified using this cross-

cortex analysis model (binomial sign test P = 6.78E-21, Supplementary Figure S13). Given 

the progressive nature of AD pathology across different areas of the cortex, however, with 

more severe degeneration in the DLPFC compared to OCC1,2,24 - as reflected in our finding 

of pathology-associated cell proportion changes in the DLPFC but not the OCC - it is 

plausible that there are brain region-specific differences in AD-associated patterns of DNA 

methylation. Therefore, we repeated our analysis including an interaction term for brain 

region, identifying no significant region-specific associations with AD pathology (P > 9E-08). 

We also performed an EWAS of AD pathology (including the same three measures of tau 

and amyloid pathology) independently in each cortical region (Supplementary Table S4), 

identifying 30 significant DMPs in the DLPFC and 8 DMPs in the OCC (Supplementary 

Table S5 and Supplementary Table S6). Although the larger number of DMPs identified in 

the DLPFC is consistent with the more advanced levels of AD pathology in this brain region 

compared to the OCC 1,2,24, effect sizes were strongly concordant across regions 

(Supplementary Figures S14 and S15) with one DMP (cg18100976, annotated to PDLIM2) 
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being identified in both the DLPFC and OCC. Of note, PDLIM2 encodes a protein that 

suppresses anchorage-dependent growth and promotes cell migration and adhesion, and 

has been implicated in PD by GWAS44,45. The consistency of findings between DLPFC and 

OCC suggests that variable DNA methylation at the identified DMPs is unlikely to simply 

reflect a consequence of neuropathology or neural cell loss. 

A meta-analysis of data from over 2,000 donors identified over 300 cortical DMPs 

associated with tau pathology 

We combined our BDR tau pathology EWAS results with the summary statistics from a 

recent analysis of tau pathology performed by our group13, performing a cross-cortex inverse 

variance weighted meta-analysis of Braak NFT stage including data for 403,763 DNA 

methylation sites from 2,013 donors (Supplementary Table S7). In total we identified 334 

cortical DMPs (Bonferroni P < 1.24E-07) annotated to 171 genes (Figure 3, Supplementary 

Tables S8 and S9); of note 140 (42% of total) of these DMPs represented novel 

associations not previously identified in the previous meta-analysis, reflecting the elevated 

power achieved by including the additional data from BDR donors. The top-ranked DMP, 

which was characterized by increasing DNA methylation with increased tau pathology 

(cg07061298: P = 8.06E-18, effect size = 0.32%, Figure 3a) is annotated to HOXA3; of note, 

previous studies have strongly implicated differential DNA methylation across the HOXA 

region as being associated with AD pathology13,46,47, and we found that 17 (5%) of the 334 

meta-analysis DMPs are annotated to this genomic region (Supplementary Figure S16). 

We also confirmed other previous AD EWAS associations, including a site annotated to 

ANK1 (cg05066959; P=1.16E-13, effect size =0.41%) which has been robustly associated 

with AD pathology in previous EWAS studies of AD 11,15,16 and was characterized by elevated 

DNA methylation with increased tau pathology (Figure 3b). Interestingly, several of the 

identified DMPs are annotated to genes that been also been implicated in GWAS analyses 

of AD pathology, including cg06784824 (P = 1.71E-11, effect size = 0.21%, Figure 3c) 

annotated to SPI1, a gene hypothesized to regulate AD-associated genes in primary human 

microglia7,48. We performed gene ontology (GO) pathway analysis of the 171 genes 

annotated to the significant DMPs in the cross cortex meta-analysis using methylGSA (see 

Methods) identifying significant enrichment of multiple pathways including pathways related 

to brain development and immune and inflammatory processes (see Supplementary Table 

S10). Mounting evidence suggests the immune system plays a role in the etiology of AD and 

other dementias49; both local and peripheral inflammation is triggered by the degeneration of 

tissues (e.g. damaged neurons and neurites) and the deposition and highly insoluble 

proteins such as Aβ and NFTs49. We subsequently repeated the meta-analysis focussing 
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only on DLPFC samples from 1,545 individuals, identifying 300 significant DMPs annotated 

to 161 genes (Supplementary Figure S17 and Supplementary Tables S11 and S12). 

There was considerable overlap between the results from both meta-analyses with 215 

DMPs being significant in both, and the direction of effect being 100% concordant between 

the cross-cortex DMPs (P = 2.86E-101) and DLPFC DMPs (P = 4.91E-91) (Supplementary 

Figure S18).  

An analysis of purified nuclei populations shows that the majority of DMPs identified 

in bulk cortex tissue reflect DNA methylation differences occurring in non-neuronal 

cells, with dramatically increased effect sizes observed in microglia-enriched nuclei 

populations. 

Although we attempted to control for potential heterogeneity in the proportion of different 

neural cell-types in our analysis of bulk cortex DNA methylation by using novel reference 

panels generated on neuron-enriched (NeuN+), oligodendrocyte-enriched (SOX10+) and 

microglial-enriched (NeuN-/SOX10-) nuclei populations, our EWAS approach could not 

identify AD-associated differences occurring within specific cell populations. We therefore 

used our FANS protocol (see Methods) to profile DNA methylation in purified NeuN+, 

SOX10+ and NeuN-/SOX10- nuclei populations - in addition to a ‘total’ nuclei population 

reflecting the cellular makeup of bulk cortex - from DLPFC tissue from a subset of ‘low’ 

pathology (Braak score f II, n = 15) and ‘high’ pathology (Braak score g V, n = 13) donors 

(Supplementary Table S13). Of the DMPs identified in the DLPFC tau pathology EWAS 

meta-analysis, we obtained data for 327 sites in the purified nuclei populations (n = 327 

DMPs). First we looked at between-group effect sizes in the ‘total’ nuclei population finding 

highly consistent DNA methylation differences to those seen in the large DLPFC meta-

analysis despite the small number of samples, confirming the validity of our EWAS results 

(sign-test P = 7.24E-46, 87% concordant direction of effect). We then examined high vs low 

Braak score differences in DNA methylation at the 327 DLPFC DMPs finding a striking 

difference in the consistency and magnitude of effect sizes across each of the nuclei 

populations (Figure 4). Although 67 DMPs (20%) had consistent directions of effects across 

all nuclei populations (Supplementary Table S14), the NeuN-/SOX10- (microglial-enriched) 

population showed the most consistent between-group differences in DNA methylation (sign-

test P = 1.2E-75, 96% concordant direction of effect) and was also characterized by a 

dramatic increase in effect sizes compared to those observed in bulk DLPFC (mean fold-

change in effect size compared to bulk DLPFC =10.72, Figure 4). A similar pattern of 

differential DNA methylation was also observed in the SOX10+ (oligodendrocyte-enriched) 

population (sign-test P = 2.15E-10, 67% concordant direction of effect) again with an 
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elevated effect sizes compared to bulk DLPFC, albeit to a lesser extent (mean fold-change 

in effect size compared to bulk DLPFC = 1.93, Figure 4). These results suggest that the 

widespread cortical DNA methylation differences associated with AD neuropathology are 

primarily manifest in non-neuronal cell-types, although there is evidence for pathology-

associated differences in DNA methylation in neuronal cell types for a subset (5%) of DMPs 

(Supplementary Table S14). 

DISCUSSION 

Our study represents the most systematic analysis to date of cortical differences in DNA 

methylation associated with AD neuropathology. Using tissue and rich neuropathological 

data from 631 donors in the BDR cohort, we identified DMPs associated with levels of tau, 

amyloid, Lewy body and TDP-43 pathology across two cortical regions (DLPFC and OCC). 

We subsequently combined our results with those from previous studies of DNA methylation 

in AD cortex13, performing a meta-analysis incorporating results from over 2,000 donors and 

identifying 334 DMPs associated with AD pathology including many novel loci not previously 

identified in AD EWAS. We also characterized DNA methylation in purified DLPFC nuclei 

populations (enriched for neurons, oligodendrocytes and microglia) isolated from a subset of 

BDR donors with low and high AD pathology, exploring the extent to which pathology-

associated DMPs are driven by differential DNA methylation in specific cell populations. 

Importantly, we find that the majority of DMPs identified in bulk cortex tissue reflect DNA 

methylation differences occurring in non-neuronal cells, with dramatically increased effect 

sizes observed in the microglia-enriched nuclei population. Our study highlights the power of 

utilizing multiple measures of neuropathology to identify epigenetic signatures of disease 

and the importance of characterizing disease-associated variation in purified neural cell-

types. 

Many of the pathology-associated DMPs identified in this study are annotated to genes that 

have previously been implicated in dementia. This includes multiple DMPs annotated to the 

HOXA region which has been previously identified in EWAS analyses of AD pathology13,46,47. 

The HOXA cluster is involved in the control of neuronal development, neuronal circuit 

organization and the regulation of post mitotic neurons50,51, and in addition to AD methylomic 

variation across the HOX region has been associated with  other neurodegenerative 

diseases including PD, Huntington’s disease and C9ORF72-related dementia52–54. AD 

pathology-associated DMPs were also annotated to many immune related genes (e.g. 

TNFRSF1A and OSCAR) with gene ontology pathway analyses finding an enrichment of 

immune and inflammatory pathways. These findings build on existing evidence that immune 

dysregulation plays a key role in the etiology of AD and other dementias49. In addition, 
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differential DNA methylation in the vicinity of the SPI1 gene was identified in our cortical 

meta-analysis of AD pathology. SPI1 has been identified in recent AD GWAS7,55 and 

EWAS13 analyses and encodes the transcription factor PU.1, a pioneer factor for myeloid 

macrophages and microglial populations that has been implicated in regulating genes 

leading to inflammatory response in AD48,56. This is particularly interesting in the context of 

our analyses of sorted nuclei populations which identified that the majority of methylomic 

differences associated with AD pathology occur in the microglial population. 

The high overlap of DMPs and consistency of differences in DNA methylation across the 

different types of neuropathology assessed in BDR donors suggests that they may reflect 

some common signature of neurodegeneration. This could imply that these differences are a 

common consequence of pathology or that they reflect the known pleiotropy between 

different types of dementia. For example, SNPs within the HLA region, MAPT and APOE all 

contribute to increased risk for FTD, AD and PD57. Additionally, mutations in the fEOAD 

genes (APP, PSEN1 and PSEN2) are also present in PD cases highlighting the pleiotropic 

effects associated with monogenic forms of neurodegeneration58. Previous EWAS analyses 

have also identified methylomic similarities between different neurodegenerative diseases59 

reporting significant over-representation in pathways related to brain function and immune 

response. The evidence for pleiotropy suggests that common pathological mechanisms 

likely underlie neurodegenerative disorders. Although neurodegenerative diseases differ in 

their neuropathological hallmarks and the specific brain regions involved, a common feature 

is the progressive accumulation of toxic protein deposits that ultimately lead to neuronal cell 

death and brain atrophy 60. One key strength of the BDR dataset is that multiple 

neuropathology measures have been collected for each individual, enabling us to identify 

DMPs robustly associated with overall levels of AD neuropathology and leveraging greater 

power than analyses based on single pathology measures. Of note, although the findings 

suggest there are general methylomic signatures of neuropathological burden, we cannot 

exclude the presence of differential DNA methylation associated with specific types of 

neuropathology. Interestingly the BDR effect sizes are larger than those observed in our 

recent meta-analysis of tau pathology13; this could potentially reflect cohort differences, the 

reduced heterogeneity in BDR, array platform differences or by the fact that association 

statistics for variants meeting an experiment-wide threshold tend to be overestimated61. In 

addition, the consistency in the direction of effect demonstrates how robust the EWAS 

results for AD pathology are across studies. 

A major strength of our study is our use of FANS to purify nuclei populations from neuronal, 

oligodendrocyte and microglial cells on a subset of donors prior to DNA methylation profiling. 
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This enabled us to develop a refined cell type deconvolution model that better controls for 

cellular heterogeneity in bulk cortex measurements of DNA methylation than previous 

models that only estimate the proportion of neuronal cells. Even when controlling for cell-

type proportions, the bulk cortex analysis does not enable the identification of pathology-

associated DNA methylation differences occurring in specific cell types. We therefore 

profiled DNA methylation in FANS-purified nuclei populations from individuals with high and 

low AD pathology to explore the extent to which differences identified in bulk tissue were 

driven by variation in specific cell-types. Our analyses showed that most of the DMPs 

identified in the bulk cortex reflect variation in non-neuronal cell-types, with the biggest effect 

sizes identified in nuclei from microglial cells. These results support recent work highlighting 

a key role for microglia in AD62; with the activation of microglia colocalized with amyloid 

plaques in the brains of individuals with AD. The larger effect sizes observed at AD-

associated DMPs in the microglial-enriched population might reflect the elevated reactivity of 

microglia in AD compared to other neural cell types, presumably driven by cell-type-specific 

transcriptional signatures62,63.  

There are several limitations that should be considered when interpreting the results of this 

study. First, although we attempted to control for cellular heterogeneity and profiled FANS-

purified populations to compare effect sizes across different cell-types, there are some 

limitations to this approach – for example there is still considerable heterogeneity in each of 

the purified nuclei populations used to generate our deconvolution reference panels. The 

microglial enriched fraction, for example, will also incorporate other cell types including 

astrocytes, which have been implicated in neurodegeneration64, although co-staining of the 

double-negative nuclei population with the microglial marker IRF8 shows that this population 

is enriched for microglial cells (Supplementary Figure 19). Furthermore, the use of NeuN 

as a marker to purify neuronal nuclei is not perfect65.  Since neurodegenerative processes 

are associated with atrophy of astrocytes64, they are an important cell-type to consider. 

However, it is difficult to find robust nuclear markers for this cell type. In the future a 

reference dataset which includes astrocytes and other cell types would be optimal. The 

heterogeneity of the microglial fraction may also explain the potentially surprising result of 

decreasing microglia proportions with increasing pathology. It is worth noting, however, that 

if one cell proportion decreases (e.g. the neuronal proportion) it does not necessarily mean 

the absolute abundance of the cell-type is changing. Despite the relatively small number of 

purified nuclei samples profiled in our study we were able to identify dramatically increased 

effect sizes in specific cell populations, highlighting the additional power gained by profiling 

purified cell populations. 
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A key limitation of epigenetic epidemiology relates to the issue of causality; it is not possible 

to elucidate whether the DMPs identified in this study play a causal role in driving disease 

pathogenesis, or whether they represent a downstream consequence of neuropathology. In 

this regard it is interesting that AD-associated differences identified in the OCC - a region of 

the cortex relatively protected from tau and amyloid pathology - were highly consistent with 

those identified in the DLPFC, which is affected much earlier in the disease process 1,2,24. 

This consistency across both cortical regions suggests that the AD-associated variation 

identified in this study do not simply represent a consequence of AD neuropathology. Of 

note, however, we cannot exclude the possibility that the differences identified reflect the 

influence of other factors related to AD pathology that were not controlled for in this study, 

for example environmental factors such as medication exposure. 

In summary, utilizing extensive neuropathology data from the BDR cohort we have 

performed the most systematic EWAS of multiple measures of AD neuropathology yet 

undertaken. Our meta-analysis with other AD DNA methylation datasets identified 334 

cortical DMPs associated with AD pathology including methylomic variation at multiple loci 

not previously implicated in dementia. We subsequently characterized DNA methylation in 

purified nuclei populations finding that the majority of DMPs identified in bulk cortex tissue 

reflect DNA methylation differences occurring in non-neuronal cells, with dramatically 

increased effect sizes observed in oligodendrocyte- and microglia-enriched nuclei 

populations. Our study highlights the power of utilizing multiple measures of neuropathology 

to understand epigenetic signatures of disease and the importance of characterizing 

disease-associated variation in purified neural cell-types. 

METHODS 

The Brains for Dementia Research (BDR) cohort 

The Brains for Dementia research (BDR) cohort was established in 2008 and represents a 

network of six dementia research centers across England and Wales (based at Bristol, 

Cardiff, King’s College London, Manchester, Oxford and Newcastle Universities) and five 

brain banks (brain donations from Cardiff are banked at King’s College London)25. Briefly, 

participants >65 years of age were recruited using both national and local press (e.g. 

newspapers, newsletters, leaflets), TV and radio coverage as well as at memory clinics and 

support groups. There were no exclusion or inclusion criteria for individuals with specific 

diagnoses or those carrying genetic variants associated with neurodegenerative diseases; 

the cohort includes those with and without dementia and covers the full range of dementia 
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diagnoses. Participants underwent a series of longitudinal cognitive and psychometric 

assessments and registered for brain donation.  

Post-mortem neuropathological assessment of BDR brain donations 

Post-mortem brain donations to BDR undergo full neuropathological dissection, sampling 

and characterization by experienced neuropathologists in each of the five network brain 

banks using a standardized BDR protocol based on the BrainNet Europe initiative66 67. This 

protocol was used to generate a description of the regional pathology within the brain 

together with standardized scoring. Five variables representing four neuropathological 

features were used in the analyses presented in this paper: 1) Braak NFT stage which 

captures the progression of NFT pathology 1,24, 2) Thal phase which captures the regional 

distribution of Aβ plaques 2, 3) CERAD score  which quantifies neuritic plaque density29, 4) 

Braak LB stage which captures the progression of α-synuclein throughout the brain30,68, and 

5) TDP-43 status - a binary indicator of the TDP-43 inclusions, which was assessed using 

immunohistochemistry to identify the presence of phosphorylated TDP-43 in the amygdala, 

hippocampus, and adjacent temporal cortex.Braak NFT stage, Thal phase, CERAD score 

and Braak LB stage were analyzed as continuous variables, utilizing the semi-quantitative 

nature of these measures to identify dose-dependent relationships of increasing 

neuropathology with variable DNA methylation. TDP-43 status was analyzed as a binary 

variable. 

DNA methylation profiling in bulk cortex tissue 

DNA methylation data were generated on two cortical regions (DLPFC and OCC) from each 

BDR donor. DNA was isolated from ~100mg of tissue using the Qiagen AllPrep DNA/RNA 

96 Kit (Qiagen, cat no.80311) following tissue disruption using BeadBug 1.5 mm Zirconium 

beads (Sigma Aldrich, cat no. Z763799) in a 96-well Deep Well Plate (Fisher Scientific, cat 

no. 12194162) shaking at 2500rpm for 5 minutes. Genome-wide DNA methylation was 

profiled using the Illumina EPIC DNA methylation array (Illumina Inc), which interrogates 

>850,000 DNA methylation sites across the genome69. After stringent data quality control 

(see below) the BDR dataset consisted of DNA methylation estimates for 800,916 DNA 

methylation sites profiled in 1,221 samples (631 donors [53% male], 610 DLPFC, 611 OCC; 

age range = 41-104 years, median age = 84 years, mean age = 83.49 years, Table 1). 
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Fluorescence-activated nuclei sorting (FANS) of neural cell populations from DLPFC 

Neuronal-enriched, oligodendrocyte-enriched and microglia-enriched nuclei populations 

were isolated from ~700mg of DLPFC tissue using a method previously described by our 

group37. First, nuclei populations were isolated from 12 donors with low neuropathology 

(Table 1) to generate reference DNA methylation profiles for purified nuclei populations for 

subsequent statistical deconvolution of neural cell proportions from bulk cortex DNA 

methylation data. Second, nuclei populations were isolated from DLPFC tissue from 15 low 

pathology (Braak score f II) and 13 high pathology (Braak score g V) BDR donors (Table 1 

and Supplementary Table S13) to identify cell-type-specific variable DNA methylation 

associated with AD pathology. Briefly, following tissue homogenization and nuclei 

purification using sucrose gradient centrifugation we used a FACS Aria III cell sorter (BD 

Biosciences) to simultaneously collect populations of NeuN+ (neuronal-enriched) and 

SOX10+ (oligodendrocyte-enriched) immunolabeled populations from bulk DLPFC tissue 

prior to genomic profiling, with the double negative fraction (microglial-enriched) and an 

aliquot of the ‘total’ nuclei fraction (analogous to ‘bulk’ cortex) also being collected from each 

tissue sample (Supplementary Figure S19). Nuclei suspensions were assessed for the 

presence of debris by adjusting the gating strategy before proceeding with nuclei capture. 

For each sorted population, ~200,000 nuclei were collected for extraction of genomic DNA 

(Supplementary Table S13). Genomic DNA was isolated from each nuclei population using 

a standard phenol:chloroform extraction protocol70 and DNA methylation was profiled using 

the Illumina EPIC array as described above.  

DNA methylation data pre-processing and quality-control 

Raw Illumina EPIC data was processed using the wateRmelon package as previously 

described71. Our stringent QC pipeline included the following steps: (1) checking methylated 

and unmethylated signal intensities and excluding poorly performing samples; (2) assessing 

the chemistry of the experiment by calculating a bisulphite conversion statistic for each 

sample, excluding samples with a conversion rate <80%; (3) identifying the fully methylated 

control sample included on each plate was in the correct location; (4) multidimensional 

scaling of sites on the X and Y chromosomes separately to confirm reported sex; (5) using 

the 59 SNP probes present on the Illumina EPIC array to confirm that matched samples from 

the same individual (but different brain regions or nuclei populations) were genetically 

identical and to check for sample duplications and mismatches; (6) using the pfilter() function 

in wateRmelon to exclude samples with >1% of probes with a detection P value�>�0.05 

and probes with >1% of samples with detection P value� >�0.05; (8) using principal 
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component (PC) analysis on data from each tissue to exclude outliers based on any of the 

first three PCs; and (9) the removal of cross-hybridising and SNP probes72. The subsequent 

normalization of the DNA methylation data was performed using the dasen() function in 

either wateRmelon or bigmelon71,73. The purified nuclei populations were normalized within 

each cell type.  

Identification of differential DNA methylation associated with neuropathology 

To identify associations between variable DNA methylation and neuropathology we fitted 

regression models using the R (version 3.5.2) statistical environment74. As DNA methylation 

data for each donor was derived from two cortical regions, a mixed effects regression model 

was used, implemented with the lme4 75 and lmerTest 76 packages (see supplementary 

Figure S20). To identify DNA methylation sites associated with AD neuropathology we 

conducted an EWAS in which DNA methylation at each probe was regressed against the 

three measures of tau and amyloid pathology (Braak NFT stage, CERAD density and Thal 

Phase) using mixed effect regression models where age, sex, experimental batch, PC1 

(which accounted for residual structure in the data) and derived neural cell proportions were 

included as fixed effects and individual was included as a random effect. Cell proportion 

estimates were derived from bulk cortex DNA methylation data using the Houseman method, 

implemented with minfi functions and default parameters, and a novel reference dataset 

generated on 12 DLPFC samples for three nuclei populations (neuronal enriched, 

oligodendrocyte enriched and microglial enriched) (see Supplementary Figure S19). Two 

of the three proportions (neuronal enriched and microglial enriched) were included in the 

model to eliminate the effects of multicollinearity. To generate P values, an ANOVA was 

conducted, comparing the full model including the three AD neuropathology measures to a 

null model in which the three measures were excluded. We next conducted an EWAS for 

each of the five neuropathology measures separately (Braak NFT stage, CERAD score, Thal 

Phase, Braak LB stage and TDP43-status) using the same set of covariates. Additionally, we 

ran analyses where cell proportions were regressed against neuropathology in each brain 

region using linear regression models, controlling for age and sex. To identify tissue specific 

effects, linear regressions models were run in each brain region for the three main AD 

neuropathology measures controlling for age, sex, experimental batch, PC1 and derived 

neural cell proportions. Finally, to further explore if there was an effect present in one cortical 

region and not the other we ran a heterogeneity test, where we included an interaction 

between neuropathology and brain region in the mixed effects models, controlling for age, 

sex, experimental batch, brain region, PC1, derived cell proportions and individual. EWAS 
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results were subsequently processed using the bacon R package77, which applies a 

Bayesian method to adjust for inflation in EWAS. 

Meta-analysis of variable DNA methylation associated with AD pathology 

Cross-cortex and DLPFC specific meta-analyses of Braak NFT stage were conducted 

incorporating the BDR with cohort level summary statistics from the recent meta-analysis 

conducted by Smith and colleagues13 . First, the Braak NFT stage EWAS was re-run in the 

BDR cohort excluding 14 samples which were also present in the LBB1 cohort. In the cross-

cortex meta-analysis a total of 2,939 samples (from 2,013 donors) were included 

(Supplementary Table S12). In the DLPFC meta-analysis, a total of 1,545 individuals were 

included (Supplementary Table S12). An inverse variance weighted (IVW) method was 

used which summarizes effect sizes from multiple independent studies by calculating the 

weighted mean of the effect sizes using the inverse of the variance of each study as weights. 

The EWAS results from each cohort were processed using the bacon R package77. A meta-

analysis was then performed using the metagen function in the R package meta78, using the 

effect sizes and standard errors from each individual cohort to calculate weighted pooled 

estimates and test for significance. Probes were limited to those present in at least two of the 

cohorts (cross cortex n= 403,763 DNA methylation probes; DLPFC n = 402,412) and the P-

value was Bonferroni corrected to control for this number of sites tested (cross cortex P 

<0.05/403,763 =1.24E-07; DLPFC P <0.05/402,412 = 1.24E-07). P-values are from two-

sided tests and significant DMPs were taken from a fixed effects model. Pathway analyses 

were subsequently performed on the significant DMPs using the methylglm function within 

the methylGSA package developed by Ren and Kuan79 using the default parameters.  

Regression against AD in FANS sorted nuclei populations 

To determine whether associations identified in the bulk cortex are primarily driven by 

alterations in specific neural cell types we used data generated on purified nuclei populations 

from individuals with high or low AD pathology. Briefly, we conducted an analysis of DNA 

methylation differences for significant sites from the bulk cortex meta-analyses comparing 

high and low pathology (defined as Braak high g V [N = 13]; Braak low f II [N = 15]) (Braak 

score), which was modeled as a binary variable, in the four FANS sorted nuclei populations 

(total nuclei [analogous to ‘bulk’ cortex], neuronal enriched, oligodendrocyte enriched and 

microglial enriched) separately. Linear regression models were used, whereby the significant 

DNA methylation sites identified in the cross-cortex and DLPFC meta-analysis were 

regressed against high/ low pathology status controlling for age, sex, and batch (brain bank). 
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The results were then compared to the meta-analysis results where a binomial test (sign 

test) was used to statistically evaluate consistency in direction of effect across the analyses. 

Data availability 

BDR DNA methylation data are available via the Dementias Platform UK (DPUK) data portal 

(https://portal.dementiasplatform.uk/) and the Gene Expression Omnibus (GEO) at 

accession number GSE197305. Analysis scripts used in this manuscript are available on 

GitHub (https://github.com/gemmashireby/BDR_neuropathology_EWAS). 
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FIGURE LEGENDS 

Figure 1: Elevated tau pathology is associated with cell proportion estimates derived 

from DNA methylation data in the DLPFC but not the OCC. a) Levels of tau pathology 

(measured using Braak NFT stage) are significantly associated with the proportion of 

neurons (effect size = -2.74, SE = 0.705, P = 1.15E-04), oligodendrocytes (effect size = 1.60, 

SE = 0.423 , P = 1.72E-04) and microglia (effect size = -2.00,  SE = 0.687, P = 0.004) in the 

DLPFC using neural cell proportion estimates derived from ‘bulk’ DNA methylation data. 

Boxplots plots for the estimated proportion of cell type across Braak NFT stages are shown, 

where the box in the middle represents the interquartile range (IQR), and the whisker lines 

represent the minimum (quartile 1 – 1.5 x IQR) and the maximum (quartile 3 + 1.5 x IQR). 

Tau pathology (Braak NFT stage) is shown on the x-axis split by cell-type and estimated cell 

proportions are shown on the y-axis. b) In contrast no associations between levels of tau 

pathology and cell proportion estimates derived from bulk DNA methylation data were 

observed in the OCC (P > 0.008). A similar pattern of results was found for levels of amyloid 

pathology as shown in Supplementary Figure S2).   

Figure 2: Differentially methylated positions in the cortex associated with Alzheimer’s 

disease neuropathology. a) Manhattan plot highlighting significant cortical DMPs 

associated with AD neuropathology (Braak NFT Stage, CERAD score, Thal phase). In total 

67 DMPs associated with AD neuropathology were identified at an experiment-wide 

significance level (P < 9E-08). Genes annotated to significant DMPs are labelled. The x-axis 

depicts chromosomes 1-22 and the y-axis gives the significance level (-log10(P)) for each 

DNA methylation site tested. The horizontal red line represents the experiment-wide 

significance level (P < 9E-08). A complete list of results is given in Supplementary Table S3 

and Manhattan plots showing results from EWAS analyses of individual AD neuropathology 

measures are given in Supplementary Figures S3, S6 and S9. The top-ranked 

hypomethylated cortical DMP associated with AD neuropathology is cg06913337 (annotated 

to ZFPM1). Lower DNA methylation at this site is significantly associated with b) tau 

pathology (Braak NFT stage: effect size = -0.656%, SE=0.0881%, P = 2.68E-09) and c) 

amyloid pathology (CERAD score: effect size = -0.937%, SE = 0.162%, P = 6.64E-09). The 

top-ranked hypermethylated cortical DMP associated with AD neuropathology is 

cg18032191 (annotated to TNFRSF1A). Higher DNA methylation at this site is significantly 

associated with d) tau pathology (Braak NFT stage: effect size =0.322%, SE = 0.0598%, P = 

7.20E-08) and e) amyloid pathology (CERAD score: effect size = 0.46%, SE = 0.0893%, P = 

2.53E-07). Shown are violin plots depicting DNA methylation values (adjusted for covariates, 

see Methods) across pathology groups, where the box in the middle represents the 
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interquartile range (IQR), and the whisker lines represent the minimum (quartile 1 – 1.5 x 

IQR) and the maximum (quartile 3 + 1.5 x IQR).  

Figure 3: Differentially methylated positions identified in a cross-cortex meta-analysis 

include sites that are annotated to genes which have been previously implicated in 

Alzheimer’s disease. a) Manhattan plot highlighting significant cortical DMPs associated 

with Braak NFT Stage from a comprehensive EWAS meta-analysis of AD datasets (total n = 

2,026 individuals). In total 334 DMPs associated with tau pathology were identified at an 

experiment-wide significance level (P < 9E-08). The x-axis depicts chromosomes 1-22 and 

the y-axis gives the significance level (-log10(P)) for each DNAm site tested. The horizontal 

red line represents the experiment-wide significance level (P < 9E-08). Gene annotations are 

given for the 50 top-ranked DMPs and a full list of results is given in Supplementary Table 

S9. Many of the DMPs associated with tau pathology have been previously implicated in AD. 

b) Elevated tau pathology is associated with b) hypermethylation at cg07061298 (effect size 

= 0.32%, SE = 0.037%, P =  8.06E-18) which is annotated to HOXA3 that is strongly 

implicated in previous EWAS analyses of AD pathology, c) hypermethylation at cg05066959 

(effect size =0.41%, SE = 0.056%, P= 1.16E-13) which is annotated to ANK1 that is also 

strongly implicated in previous EWAS analyses of AD pathology , and d) hypermethylation at 

cg06784824 (effect size = 0.21%, SE = 0.032%, P= 1.71E-11) which is annotated to SPI1 

that is implicated in GWAS analyses of AD. The X-axis shows the beta effect size (% DNA 

methylation difference per SD increase in Braak NFT stage), with squares representing 

effect size and arms indicating the 95% confidence intervals. 

Figure 4: Differentially methylated positions associated with AD pathology in the 

cortex are largely driven by DNA methylation differences in non-neuronal cell types. 

We compared effect sizes for the 334 overlapping tau-associated DMPs identified in our bulk 

cortex meta-analysis with those at the same sites in an analysis of purified DLPFC nuclei 

populations from low (Braak NFT stage 0 to II) and high (Braak NFT stage > V) tau-

pathology donors. Shown is a comparison of effect sizes between the meta-analysis (bulk) 

and the a) total nuclei (bulk) nuclei fraction (direction of effect = 87% concordant, sign test P 

= 7.24E-46); b) neuron enriched (direction of effect = 60% concordant, sign test P = 7.59E-

05), c) SOX10+ (oligodendrocyte-enriched) nuclei fraction ( direction of effect = 67% 

concordant, sign test P =  2.15E-10), and d) double-negative (microglial enriched) nuclei 

population (direction of effect = 96% concordant, sign test P =  1.2E-75). The x-axis shows 

effect sizes from the bulk cortex meta-analysis and the y-axis shows effect sizes for those 

same DMPs in each purified nuclei population. Grey dashed line represents y = x. e) 

Barplots of the mean absolute relative effect sizes in each purified nuclei population 
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compared to the bulk cortex across the 334 tau-associated DMPs, with error bars denoting 

the 95% confidence intervals.  

TABLE LEGEND  

Table 1: Characteristics of the samples profiled in this study. IQR = interquartile 

range. SD = standard deviation.  
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