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ABSTRACT

Alzheimer’s disease (AD) is a chronic neurodegenerative disease characterized by the
progressive accumulation of amyloid-beta and neurofibrillary tangles of tau in the neocortex.
Utilizing extensive neuropathology data from the Brains for Dementia Research (BDR)
cohort we performed the most systematic epigenome-wide association study (EWAS) of
multiple measures of AD neuropathology yet undertaken, profiling DNA methylation in two
cortical regions from 631 donors. We meta-analyzed our results with those from previous
studies of DNA methylation in AD cortex (total n = 2,013 donors), identifying 334 cortical
differentially methylated positions (DMPs) associated with AD pathology including
methylomic variation at novel loci not previously implicated in dementia. We subsequently
characterized DNA methylation in purified nuclei populations - enriched for neurons,
oligodendrocytes and microglia - exploring the extent to which cortex AD-associated DMPs
reflect differences manifest in specific cell populations. We find that the majority of DMPs
identified in ‘bulk’ cortex tissue actually reflect DNA methylation differences occurring in non-
neuronal cells, with dramatically increased effect sizes observed in microglia-enriched nuclei
populations. Our study highlights the power of utilizing multiple measures of neuropathology
to identify epigenetic signatures of AD and the importance of characterizing disease-

associated variation in purified neural cell-types.
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INTRODUCTION

Alzheimer’s disease (AD) is a chronic and incurable neurodegenerative disease that is
clinically characterized by progressive memory loss and declining cognition. Although AD is
neuropathologically associated with the accumulation of extracellular amyloid-beta (AB)
plaques and the deposit of intracellular neurofibrillary tangles of tau (NFT)*?, itis also
frequently accompanied by pathological features associated with other types of dementia®*.
Lewy-body (LB) and TDP-43 pathology, for example, are often present alongside tau and
amyloid pathology in individuals with AD*. Despite progress in identifying both genetic®® and
non-genetic risk factors for AD, the molecular mechanisms driving AD pathology remain

elusive.

There is growing recognition about the importance of non-sequence-based regulatory
variation in health and disease. Building on the hypothesis that epigenomic dysregulation is
important in the etiology and progression of AD neuropathology*’, we and others have
identified DNA methylation differences in several regions of the brain associated with AD
and also other forms of dementia including Parkinson’s disease (PD)***°. A recent
epigenome-wide association study (EWAS) meta-analysis, for example, reported >200
differentially methylated positions (DMPs) in the cortex associated with tau pathology™.
There are, however, important limitations to existing studies of epigenetic variation in AD.
First, because the cortex comprises a heterogeneous mix of different neural cell types - each
characterized by a specific epigenetic signature - it is difficult to fully account for differences
in cellular proportions between samples derived from ‘bulk’ cortex tissue. Furthermore,
because the progression of AD neuropathology is associated with changes in both the

number and activation of specific cell types - for example AD is associated with both the loss

20,21 22,23

of neurons and the proliferation and activation of microglia — studies on bulk cortex
cannot identify disease-associated variation occurring within individual cellular populations.
Second, the clinical and neuropathological heterogeneity among patients with AD, alongside
the high level of comorbidity with other types of dementia, complicates the interpretation of
associations between epigenetic variation and pathology. Although existing EWAS analyses
of AD have largely focused on a single pathology measure (i.e. Braak NFT staging™?*), the
simultaneous analysis of multiple measures of different types of pathology is likely to
facilitate a better understanding of the molecular mechanisms involved in disease

progression.

In this study we quantified genome-wide patterns of DNA methylation in the Brains for
Dementia Research (BDR) cohort, a clinically- and phenotypically- well-characterized study

established with the aim of integrating standardized measures of neuropathology with
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detailed phenotypic and multiomic data®. First, we performed the most systematic EWAS of
AD neuropathology yet undertaken, profiling DNA methylation across >800,000 sites in two
cortical brain regions (the dorsolateral prefrontal cortex [DLPFC] and occipital cortex [OCC])
differentially impacted by AD pathology from ~650 well-characterized donors. Second, we
meta-analyzed our results with those from previous AD EWAS analyses'?, enabling an
analysis of AD-associated differential cortical DNA methylation in tissue from over 2,000
individuals. Third, we characterized genome-wide patterns of DNA methylation in purified
nuclei populations enriched for neurons, oligodendrocytes and microglia from a subset of
donors, exploring the extent to which AD-associated cortical differences in DNA methylation
are driven by changes within specific cell populations. Our analyses identify neuropathology-
associated variation at multiple novel loci not previously implicated in dementia, and show
that AD-associated methylomic variation in the cortex primarily reflects differences in non-
neuronal cell populations, especially microglia. This study highlights the power of utilizing
multiple neuropathology measures to understand molecular pathogenesis of AD and the

importance of characterizing disease-associated variation in distinct neural cell-types.

RESULTS

An overview of the BDR DNA methylation dataset

After stringent data pre-processing and quality control filtering (see Methods) the final BDR
dataset comprised of DNA methylation estimates for 800,916 DNA methylation sites profiled
in 1,221 tissue samples from two cortical brain regions (DLPFC and OCC) dissected from
631 donors (53% male, age range = 41-104 years, median age = 84 years, interquartile
range [IQR] = 78-90 years, Table 1). Males were significantly younger at death compared to
females (by 2.69 years, P = 2.33E-07), which is consistent with observations from
epidemiological studies?®?’. NFT pathology was quantified using Braak NFT staging™?*
(mean Braak score = 3.72, SD = 1.90, Supplementary Figure S1 and Table 1). Amyloid
pathology was quantified using both Thal phase® (mean = 3.09, SD = 1.78) and neuritic
plaque density scored using the CERAD classification method®?° (mean = 1.69, SD = 1.28).
In addition, donors were also assessed for several hallmarks of non-AD pathology including
both a-synuclein pathology using Braak LB staging®™ (mean = 1.34, SD = 2.26) and TDP-43
status (127 (22%) of 590 tested donors were TDP-43 positive).
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Alzheimer’s disease pathology is associated with altered cell-type proportions in the

dorsolateral prefrontal cortex

The progression of AD pathology is associated with changes in the abundance of specific
cell-types in the cortex; such changes in neural cell proportions are a major confounding
factor for studies of DNA methylation and other genomic marks performed on ‘bulk’ cortical
tissue®>*. Although several methods have been developed to derive cell-type proportion
estimates from bulk DNA methylation data for use as covariates in EWAS®** these
approaches are limited by the availability of DNA methylation reference data for specific
cortical cell-types. We therefore used a fluorescence activated nuclei sorting (FANS) method
recently described by our group® to develop novel DNA methylation reference panels from
neuron-enriched (NeuN+), oligodendrocyte-enriched (SOX10+) and microglial-enriched
(NeuN-/SOX10-) nuclei populations isolated from the DLPFC from a subset of BDR donors
(n =12, see Methods and Table 1). DNA methylation profiles were generated from each
purified population of nuclei using the Illumina HumanMethylation EPIC microarray and used
in combination with an established algorithm®® to derive estimates for the proportion of each
neural cell-type in individual BDR cortex samples (see Methods). Of note, derived relative
cell proportions were significantly associated with Braak NFT stage, CERAD score and Thal
phase in the DLPFC but not the OCC (see Figure 1 and Supplementary Table S1), likely
reflecting known differences in the progression of neuropathology across the two brain
regions. In the DLPFC, increasing tau pathology was significantly associated (Bonferroni P <
0.008 [0.05/6]) with reduced neuronal cell proportion estimates (effect size =-2.74; P =
0.00011), reduced microglial proportions (effect size = -2.00; P = 0.004) and increased
oligodendrocyte proportions (effect size = 1.60; P = 0.00017). This pattern was mirrored for
the two measures of amyloid pathology (Supplementary Figure S2 and Supplementary
Table S1).

Multiple differentially methylated positions were associated with AD neuropathology

in the cortex

We used the detailed neuropathological data available for each BDR donor to identify
cortical differentially methylated positions (DMPs) associated with the accumulation of both
tau (measured by Braak NFT stage) and amyloid (measured by both CERAD score and Thal
Phase) pathology. We first conducted an analysis of combined AD pathology incorporating
all three AD pathology measures in a model including matched DLPFC and OCC DNA
methylation data from individual donors that controlled for age, sex, derived cellular

proportions, experimental batch and principal component (PC) 1 (see Methods). We
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identified 67 DMPs annotated to 45 genes that were associated with the overall burden of
core AD neuropathology at a stringent experiment wide significance threshold (P <9E-08)
(Figure 2a and Supplementary Table S2). Of note, 32 (48%) of the significant DMPs
represent sites that are specific to the lllumina EPIC array and have not been assessed in
previous analyses of AD cortex undertaken that have predominantly used the preceding
lllumina 450K array. The top-ranked cortical DMP associated with AD pathology was
€g06913337, which was significantly hypomethylated with increasing AD pathology (P =
1.27E-10, Figure 1b and 1c). Of note, this site is annotated to the ZFPM1 gene which
encodes a zinc finger protein that has been previously associated with DLB®* and psychosis
in AD*.

Differential methylation was associated with specific Tau and Amyloid pathology

measures

We next undertook analyses to identify variable DNA methylation associated with each of
the three individual AD pathology measures (Braak NFT stage, CERAD score, and Thal
phase). First, we identified 26 DMPs annotated to 21 genes associated with tau pathology at
an experiment-wide significance threshold (P < 9E-08) (Supplementary Figure S3 and
Supplementary Table S3). 23 (88%) of these DMPs overlapped with sites identified in the
AD neuropathology analysis. The average magnitude of effect per Braak NFT stage across
these DMPs was 0.44% (SD=0.17%), with a cumulative mean DNA methylation change of
2.63% (SD=1.04%) from Braak stage 0 to VI. Of note, 22 (83%) of the DMPs were
significantly hypermethylated with higher Braak NFT stage (enrichment P = 0.000267)
reflecting the enrichment of hypermethylated loci observed in previous studies of tau
pathology*®*°. The top ranked DMP (cg16021126) is annotated to SERP2, and was
significantly hypermethylated with elevated Braak NFT stage (P = 7.48E-10, effect size =
0.29% per Braak NFT stage, Supplementary Figure S4). SERP2 is dysregulated in FTDP-
17 (frontotemporal dementia and Parkinsonism linked to chromosome 17) iPSC-derived
neurons®. 16 (62%) of the 26 tau-associated DMPs identified in the BDR dataset were
tested in a recent meta-analysis of tau pathology performed across sites on the lllumina
450K array™®; effect sizes for these sites were perfectly consistent across all tau-associated
DMPs (100% concordant, binomial sign test P = 1.53E-05, Supplementary Figure S5a). It
is notable that the magnitude of DNA methylation difference was approximately 2.2-fold
larger in BDR than in the tau pathology meta-analysis (mean change per Braak NFT stage
=0.20% [SD =0.09 %]). 6 (38%) of the 16 overlapping DMPs reached experiment-wide
significance (P < 9E-08) in the previous meta-analysis and 14 (88%) reached Bonferroni
significance correcting for 16 sites (Bonferroni P = 0.00313). Likewise, of the 220 DMPs
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identified in the tau pathology meta-analysis, 208 are included on the Illlumina EPIC array
and tested in the BDR dataset. These were characterized by highly consistent effect sizes
observed across both analyses (100% concordant, binomial sign test P = 5.08E-61, see
Supplementary Figure S5b); of note, effect sizes in the BDR cohort were again larger

(average ~1.2-fold larger) than those reported in the tau pathology meta-analysis.

Second, we identified 14 DMPs annotated to 12 genes associated with CERAD score
(Supplementary Figure S6 and Supplementary Table S3). The average magnitude of
effect for the significant DMPs per unit of CERAD score was 0.57% (SD=0.16%), with a
cumulative absolute mean DNA methylation difference of 2.29% (SD=0.63%) from low to
high CERAD score and again an enrichment of hypermethylated sites (10 (71%) of DMPs
showing higher DNA methylation with increasing pathology). The top ranked DMP
(cg13515047) is annotated to BCARL, which encodes a Cas scaffolding protein that acts as
a functional key regulator in the pathogenesis of AD*', and was significantly hypermethylated
with elevated CERAD score (P = 4.96E-09, effect size = 0.44%, Supplementary Figure S7
and Supplementary Table S3). Finally, we identified two experiment-wide significant DMPs
associated with Thal phase, both hypermethylated with increasing pathology
(Supplementary Figure S8 and Supplementary Table S3). The top ranked DMP
(cg11658414, unannotated to a gene) was significantly hypermethylated with elevated Thal
phase (P = 9.11E-09, effect size = 0.30%, Supplementary Figure S9).

It is well established that the neuropathological signatures of AD are correlated and higher
levels of NFTs are associated with elevated amyloid burden*?. As expected, therefore, there
was a strong positive correlation in patterns of differential DNA methylation across DMPs for
the individual neuropathology measures assessed in BDR (see Supplementary Figure
S10). Effect sizes for the 26 Braak NFT stage DMPs, for example, were highly concordant
(100%, binomial sign test P = 1.39E-17 across all analyses) with effect sizes at the same
DNA methylation sites in analyses of the other neuropathological measures in BDR
(Supplementary Figure S11). Additionally, when fitting the full model controlling for all AD
neuropathology measures, no DMPs remained significant (P > 9E-08) for each specific
measure, indicative of common effects showing consistent differences in DNA methylation

across the different measures of AD neuropathology.

Effect sizes at DMPs associated with AD pathology are correlated with those from an

analysis of Lewy body and TDP-43 pathology

Because other dementia neuropathologies are frequently present alongside tau and amyloid

pathology in AD we sought to explore whether DNA methylation at AD-associated DMPs
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was associated with Braak LB stage and TDP-43 status, two measures of common co-
pathology. The samples included in our study were characterized by limited amounts of both
LB and TDP-43 pathology - the majority of donors were Braak LB Stage 0 (n = 386, 72%)
and TDP-43 negative (n = 463, 78%) - and we therefore had limited power to identify novel
DMPs associated with either type of pathology. Elevated TDP-43 status was associated with
significant hypomethylation at a single DMP (cg06423355: P = 5.47E-08, effect size = -
2.26%). Although this site is not directly annotated to any gene, it resides ~50kb from
STK38L which encodes a protein kinase involved in neuronal cell division and morphology
and has been identified to control axonal growth in mouse hippocampal neurons*®. Overall,
effect sizes for the 67 AD pathology DMPs were found to be highly consistent between
analyses of the AD (Braak NFT stage, CERAD score, Thal phase) and non-AD (Braak LB
Stage and TDP-43 status) neuropathology measures (see Supplementary Figure S12)
suggesting consistent effects across each type of neuropathology or that these effects are
driven by underlying disease (i.e. a consequence rather than directly related to

neuropathology).

AD-associated differential DNA methylation is highly consistent across DLPFC and
occC

Our initial EWAS model leveraged matched DNA methylation data from both the DLPFC and
OCC for each donor to maximize power to detect cortical DMPs associated with AD
pathology. As expected, pathology-associated DNA methylation differences were highly
consistent between both cortical regions across the 67 DMPs identified using this cross-
cortex analysis model (binomial sign test P = 6.78E-21, Supplementary Figure S13). Given
the progressive nature of AD pathology across different areas of the cortex, however, with
more severe degeneration in the DLPFC compared to OCC>%% - as reflected in our finding
of pathology-associated cell proportion changes in the DLPFC but not the OCC - it is
plausible that there are brain region-specific differences in AD-associated patterns of DNA
methylation. Therefore, we repeated our analysis including an interaction term for brain
region, identifying no significant region-specific associations with AD pathology (P > 9E-08).
We also performed an EWAS of AD pathology (including the same three measures of tau
and amyloid pathology) independently in each cortical region (Supplementary Table S4),
identifying 30 significant DMPs in the DLPFC and 8 DMPs in the OCC (Supplementary
Table S5 and Supplementary Table S6). Although the larger number of DMPs identified in
the DLPFC is consistent with the more advanced levels of AD pathology in this brain region
compared to the OCC %%
(Supplementary Figures S14 and S15) with one DMP (cg18100976, annotated to PDLIM2)

, effect sizes were strongly concordant across regions
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being identified in both the DLPFC and OCC. Of note, PDLIM2 encodes a protein that
suppresses anchorage-dependent growth and promotes cell migration and adhesion, and
has been implicated in PD by GWAS***°. The consistency of findings between DLPFC and
OCC suggests that variable DNA methylation at the identified DMPs is unlikely to simply

reflect a consequence of neuropathology or neural cell loss.

A meta-analysis of data from over 2,000 donors identified over 300 cortical DMPs

associated with tau pathology

We combined our BDR tau pathology EWAS results with the summary statistics from a
recent analysis of tau pathology performed by our group®?, performing a cross-cortex inverse
variance weighted meta-analysis of Braak NFT stage including data for 403,763 DNA
methylation sites from 2,013 donors (Supplementary Table S7). In total we identified 334
cortical DMPs (Bonferroni P < 1.24E-07) annotated to 171 genes (Figure 3, Supplementary
Tables S8 and S9); of note 140 (42% of total) of these DMPs represented novel
associations not previously identified in the previous meta-analysis, reflecting the elevated
power achieved by including the additional data from BDR donors. The top-ranked DMP,
which was characterized by increasing DNA methylation with increased tau pathology
(cg07061298: P = 8.06E-18, effect size = 0.32%, Figure 3a) is annotated to HOXAS; of note,
previous studies have strongly implicated differential DNA methylation across the HOXA
region as being associated with AD pathology*®“®*’, and we found that 17 (5%) of the 334
meta-analysis DMPs are annotated to this genomic region (Supplementary Figure S16).
We also confirmed other previous AD EWAS associations, including a site annotated to
ANK1 (cg05066959; P=1.16E-13, effect size =0.41%) which has been robustly associated

with AD pathology in previous EWAS studies of AD **°1°

and was characterized by elevated
DNA methylation with increased tau pathology (Figure 3b). Interestingly, several of the
identified DMPs are annotated to genes that been also been implicated in GWAS analyses
of AD pathology, including cg06784824 (P = 1.71E-11, effect size = 0.21%, Figure 3c)
annotated to SPI1, a gene hypothesized to regulate AD-associated genes in primary human

microglia’®

. We performed gene ontology (GO) pathway analysis of the 171 genes
annotated to the significant DMPs in the cross cortex meta-analysis using methylGSA (see
Methods) identifying significant enrichment of multiple pathways including pathways related
to brain development and immune and inflammatory processes (see Supplementary Table
S10). Mounting evidence suggests the immune system plays a role in the etiology of AD and
other dementias®; both local and peripheral inflammation is triggered by the degeneration of
tissues (e.g. damaged neurons and neurites) and the deposition and highly insoluble

proteins such as AB and NFTs*. We subsequently repeated the meta-analysis focussing
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only on DLPFC samples from 1,545 individuals, identifying 300 significant DMPs annotated
to 161 genes (Supplementary Figure S17 and Supplementary Tables S11 and S12).
There was considerable overlap between the results from both meta-analyses with 215
DMPs being significant in both, and the direction of effect being 100% concordant between
the cross-cortex DMPs (P = 2.86E-101) and DLPFC DMPs (P = 4.91E-91) (Supplementary
Figure S18).

An analysis of purified nuclei populations shows that the majority of DMPs identified
in bulk cortex tissue reflect DNA methylation differences occurring in non-neuronal
cells, with dramatically increased effect sizes observed in microglia-enriched nuclei

populations.

Although we attempted to control for potential heterogeneity in the proportion of different
neural cell-types in our analysis of bulk cortex DNA methylation by using novel reference
panels generated on neuron-enriched (NeuN+), oligodendrocyte-enriched (SOX10+) and
microglial-enriched (NeuN-/SOX10-) nuclei populations, our EWAS approach could not
identify AD-associated differences occurring within specific cell populations. We therefore
used our FANS protocol (see Methods) to profile DNA methylation in purified NeuN+,
SOX10+ and NeuN-/SOX10- nuclei populations - in addition to a ‘total’ nuclei population
reflecting the cellular makeup of bulk cortex - from DLPFC tissue from a subset of ‘low’
pathology (Braak score < I, n = 15) and ‘high’ pathology (Braak score = V, n = 13) donors
(Supplementary Table S13). Of the DMPs identified in the DLPFC tau pathology EWAS
meta-analysis, we obtained data for 327 sites in the purified nuclei populations (n = 327
DMPs). First we looked at between-group effect sizes in the ‘total’ nuclei population finding
highly consistent DNA methylation differences to those seen in the large DLPFC meta-
analysis despite the small number of samples, confirming the validity of our EWAS results
(sign-test P = 7.24E-46, 87% concordant direction of effect). We then examined high vs low
Braak score differences in DNA methylation at the 327 DLPFC DMPs finding a striking
difference in the consistency and magnitude of effect sizes across each of the nuclei
populations (Figure 4). Although 67 DMPs (20%) had consistent directions of effects across
all nuclei populations (Supplementary Table S14), the NeuN-/SOX10- (microglial-enriched)
population showed the most consistent between-group differences in DNA methylation (sign-
test P = 1.2E-75, 96% concordant direction of effect) and was also characterized by a
dramatic increase in effect sizes compared to those observed in bulk DLPFC (mean fold-
change in effect size compared to bulk DLPFC =10.72, Figure 4). A similar pattern of
differential DNA methylation was also observed in the SOX10+ (oligodendrocyte-enriched)

population (sign-test P = 2.15E-10, 67% concordant direction of effect) again with an
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elevated effect sizes compared to bulk DLPFC, albeit to a lesser extent (mean fold-change
in effect size compared to bulk DLPFC = 1.93, Figure 4). These results suggest that the
widespread cortical DNA methylation differences associated with AD neuropathology are
primarily manifest in non-neuronal cell-types, although there is evidence for pathology-
associated differences in DNA methylation in neuronal cell types for a subset (5%) of DMPs

(Supplementary Table S14).

DISCUSSION

Our study represents the most systematic analysis to date of cortical differences in DNA
methylation associated with AD neuropathology. Using tissue and rich neuropathological
data from 631 donors in the BDR cohort, we identified DMPs associated with levels of tau,
amyloid, Lewy body and TDP-43 pathology across two cortical regions (DLPFC and OCC).
We subsequently combined our results with those from previous studies of DNA methylation
in AD cortex*®, performing a meta-analysis incorporating results from over 2,000 donors and
identifying 334 DMPs associated with AD pathology including many novel loci not previously
identified in AD EWAS. We also characterized DNA methylation in purified DLPFC nuclei
populations (enriched for neurons, oligodendrocytes and microglia) isolated from a subset of
BDR donors with low and high AD pathology, exploring the extent to which pathology-
associated DMPs are driven by differential DNA methylation in specific cell populations.
Importantly, we find that the majority of DMPs identified in bulk cortex tissue reflect DNA
methylation differences occurring in non-neuronal cells, with dramatically increased effect
sizes observed in the microglia-enriched nuclei population. Our study highlights the power of
utilizing multiple measures of neuropathology to identify epigenetic signatures of disease

and the importance of characterizing disease-associated variation in purified neural cell-

types.

Many of the pathology-associated DMPs identified in this study are annotated to genes that
have previously been implicated in dementia. This includes multiple DMPs annotated to the
HOXA region which has been previously identified in EWAS analyses of AD pathology*3#®#’,
The HOXA cluster is involved in the control of neuronal development, neuronal circuit

organization and the regulation of post mitotic neurons®*>*

, and in addition to AD methylomic
variation across the HOX region has been associated with other neurodegenerative
diseases including PD, Huntington’s disease and C9ORF72-related dementia®*>*. AD
pathology-associated DMPs were also annotated to many immune related genes (e.qg.
TNFRSF1A and OSCAR) with gene ontology pathway analyses finding an enrichment of
immune and inflammatory pathways. These findings build on existing evidence that immune

dysregulation plays a key role in the etiology of AD and other dementias. In addition,
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differential DNA methylation in the vicinity of the SPI1 gene was identified in our cortical
meta-analysis of AD pathology. SPI1 has been identified in recent AD GWAS’*® and
EWAS® analyses and encodes the transcription factor PU.1, a pioneer factor for myeloid
macrophages and microglial populations that has been implicated in regulating genes
leading to inflammatory response in AD*®*°, This is particularly interesting in the context of
our analyses of sorted nuclei populations which identified that the majority of methylomic
differences associated with AD pathology occur in the microglial population.

The high overlap of DMPs and consistency of differences in DNA methylation across the
different types of neuropathology assessed in BDR donors suggests that they may reflect
some common signature of neurodegeneration. This could imply that these differences are a
common consequence of pathology or that they reflect the known pleiotropy between
different types of dementia. For example, SNPs within the HLA region, MAPT and APOE all
contribute to increased risk for FTD, AD and PD®’. Additionally, mutations in the fEOAD
genes (APP, PSEN1 and PSENZ2) are also present in PD cases highlighting the pleiotropic
effects associated with monogenic forms of neurodegeneration®. Previous EWAS analyses
have also identified methylomic similarities between different neurodegenerative diseases™
reporting significant over-representation in pathways related to brain function and immune
response. The evidence for pleiotropy suggests that common pathological mechanisms
likely underlie neurodegenerative disorders. Although neurodegenerative diseases differ in
their neuropathological hallmarks and the specific brain regions involved, a common feature
is the progressive accumulation of toxic protein deposits that ultimately lead to neuronal cell
death and brain atrophy °°. One key strength of the BDR dataset is that multiple
neuropathology measures have been collected for each individual, enabling us to identify
DMPs robustly associated with overall levels of AD neuropathology and leveraging greater
power than analyses based on single pathology measures. Of note, although the findings
suggest there are general methylomic signatures of neuropathological burden, we cannot
exclude the presence of differential DNA methylation associated with specific types of
neuropathology. Interestingly the BDR effect sizes are larger than those observed in our
recent meta-analysis of tau pathology™®; this could potentially reflect cohort differences, the
reduced heterogeneity in BDR, array platform differences or by the fact that association
statistics for variants meeting an experiment-wide threshold tend to be overestimated®. In
addition, the consistency in the direction of effect demonstrates how robust the EWAS

results for AD pathology are across studies.

A major strength of our study is our use of FANS to purify nuclei populations from neuronal,
oligodendrocyte and microglial cells on a subset of donors prior to DNA methylation profiling.
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This enabled us to develop a refined cell type deconvolution model that better controls for
cellular heterogeneity in bulk cortex measurements of DNA methylation than previous
models that only estimate the proportion of neuronal cells. Even when controlling for cell-
type proportions, the bulk cortex analysis does not enable the identification of pathology-
associated DNA methylation differences occurring in specific cell types. We therefore
profiled DNA methylation in FANS-purified nuclei populations from individuals with high and
low AD pathology to explore the extent to which differences identified in bulk tissue were
driven by variation in specific cell-types. Our analyses showed that most of the DMPs
identified in the bulk cortex reflect variation in non-neuronal cell-types, with the biggest effect
sizes identified in nuclei from microglial cells. These results support recent work highlighting
a key role for microglia in AD®?; with the activation of microglia colocalized with amyloid
plagues in the brains of individuals with AD. The larger effect sizes observed at AD-
associated DMPs in the microglial-enriched population might reflect the elevated reactivity of
microglia in AD compared to other neural cell types, presumably driven by cell-type-specific

transcriptional signatures®*®.

There are several limitations that should be considered when interpreting the results of this
study. First, although we attempted to control for cellular heterogeneity and profiled FANS-
purified populations to compare effect sizes across different cell-types, there are some
limitations to this approach — for example there is still considerable heterogeneity in each of
the purified nuclei populations used to generate our deconvolution reference panels. The
microglial enriched fraction, for example, will also incorporate other cell types including
astrocytes, which have been implicated in neurodegeneration®, although co-staining of the
double-negative nuclei population with the microglial marker IRF8 shows that this population
is enriched for microglial cells (Supplementary Figure 19). Furthermore, the use of NeuN

as a marker to purify neuronal nuclei is not perfect®

. Since neurodegenerative processes
are associated with atrophy of astrocytes®, they are an important cell-type to consider.
However, it is difficult to find robust nuclear markers for this cell type. In the future a
reference dataset which includes astrocytes and other cell types would be optimal. The
heterogeneity of the microglial fraction may also explain the potentially surprising result of
decreasing microglia proportions with increasing pathology. It is worth noting, however, that
if one cell proportion decreases (e.g. the neuronal proportion) it does not necessarily mean
the absolute abundance of the cell-type is changing. Despite the relatively small number of
purified nuclei samples profiled in our study we were able to identify dramatically increased
effect sizes in specific cell populations, highlighting the additional power gained by profiling

purified cell populations.
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A key limitation of epigenetic epidemiology relates to the issue of causality; it is not possible
to elucidate whether the DMPs identified in this study play a causal role in driving disease
pathogenesis, or whether they represent a downstream consequence of neuropathology. In
this regard it is interesting that AD-associated differences identified in the OCC - a region of
the cortex relatively protected from tau and amyloid pathology - were highly consistent with
those identified in the DLPFC, which is affected much earlier in the disease process *#?*.
This consistency across both cortical regions suggests that the AD-associated variation
identified in this study do not simply represent a consequence of AD neuropathology. Of
note, however, we cannot exclude the possibility that the differences identified reflect the
influence of other factors related to AD pathology that were not controlled for in this study,

for example environmental factors such as medication exposure.

In summary, utilizing extensive neuropathology data from the BDR cohort we have
performed the most systematic EWAS of multiple measures of AD neuropathology yet
undertaken. Our meta-analysis with other AD DNA methylation datasets identified 334
cortical DMPs associated with AD pathology including methylomic variation at multiple loci
not previously implicated in dementia. We subsequently characterized DNA methylation in
purified nuclei populations finding that the majority of DMPs identified in bulk cortex tissue
reflect DNA methylation differences occurring in non-neuronal cells, with dramatically
increased effect sizes observed in oligodendrocyte- and microglia-enriched nuclei
populations. Our study highlights the power of utilizing multiple measures of neuropathology
to understand epigenetic signatures of disease and the importance of characterizing

disease-associated variation in purified neural cell-types.

METHODS

The Brains for Dementia Research (BDR) cohort

The Brains for Dementia research (BDR) cohort was established in 2008 and represents a
network of six dementia research centers across England and Wales (based at Bristol,
Cardiff, King’s College London, Manchester, Oxford and Newcastle Universities) and five
brain banks (brain donations from Cardiff are banked at King’s College London)®. Briefly,
participants >65 years of age were recruited using both national and local press (e.g.
newspapers, newsletters, leaflets), TV and radio coverage as well as at memory clinics and
support groups. There were no exclusion or inclusion criteria for individuals with specific
diagnoses or those carrying genetic variants associated with neurodegenerative diseases;

the cohort includes those with and without dementia and covers the full range of dementia
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diagnoses. Participants underwent a series of longitudinal cognitive and psychometric

assessments and registered for brain donation.

Post-mortem neuropathological assessment of BDR brain donations

Post-mortem brain donations to BDR undergo full neuropathological dissection, sampling
and characterization by experienced neuropathologists in each of the five network brain
banks using a standardized BDR protocol based on the BrainNet Europe initiative®® ®’. This
protocol was used to generate a description of the regional pathology within the brain
together with standardized scoring. Five variables representing four neuropathological
features were used in the analyses presented in this paper: 1) Braak NFT stage which
captures the progression of NFT pathology “**, 2) Thal phase which captures the regional
distribution of AB plaques 2, 3) CERAD score which quantifies neuritic plaque density?®, 4)

30,68, and

Braak LB stage which captures the progression of a-synuclein throughout the brain
5) TDP-43 status - a binary indicator of the TDP-43 inclusions, which was assessed using
immunohistochemistry to identify the presence of phosphorylated TDP-43 in the amygdala,
hippocampus, and adjacent temporal cortex.Braak NFT stage, Thal phase, CERAD score
and Braak LB stage were analyzed as continuous variables, utilizing the semi-quantitative
nature of these measures to identify dose-dependent relationships of increasing
neuropathology with variable DNA methylation. TDP-43 status was analyzed as a binary

variable.

DNA methylation profiling in bulk cortex tissue

DNA methylation data were generated on two cortical regions (DLPFC and OCC) from each
BDR donor. DNA was isolated from ~100mg of tissue using the Qiagen AllPrep DNA/RNA
96 Kit (Qiagen, cat n0.80311) following tissue disruption using BeadBug 1.5 mm Zirconium
beads (Sigma Aldrich, cat no. Z763799) in a 96-well Deep Well Plate (Fisher Scientific, cat
no. 12194162) shaking at 2500rpm for 5 minutes. Genome-wide DNA methylation was
profiled using the lllumina EPIC DNA methylation array (lllumina Inc), which interrogates
>850,000 DNA methylation sites across the genome®. After stringent data quality control
(see below) the BDR dataset consisted of DNA methylation estimates for 800,916 DNA
methylation sites profiled in 1,221 samples (631 donors [53% male], 610 DLPFC, 611 OCC;
age range = 41-104 years, median age = 84 years, mean age = 83.49 years, Table 1).
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Fluorescence-activated nuclei sorting (FANS) of neural cell populations from DLPFC

Neuronal-enriched, oligodendrocyte-enriched and microglia-enriched nuclei populations
were isolated from ~700mg of DLPFC tissue using a method previously described by our
group®’. First, nuclei populations were isolated from 12 donors with low neuropathology
(Table 1) to generate reference DNA methylation profiles for purified nuclei populations for
subsequent statistical deconvolution of neural cell proportions from bulk cortex DNA
methylation data. Second, nuclei populations were isolated from DLPFC tissue from 15 low
pathology (Braak score < Il) and 13 high pathology (Braak score =2 V) BDR donors (Table 1
and Supplementary Table S13) to identify cell-type-specific variable DNA methylation
associated with AD pathology. Briefly, following tissue homogenization and nuclei
purification using sucrose gradient centrifugation we used a FACS Aria Il cell sorter (BD
Biosciences) to simultaneously collect populations of NeuN+ (neuronal-enriched) and
SOX10+ (oligodendrocyte-enriched) immunolabeled populations from bulk DLPFC tissue
prior to genomic profiling, with the double negative fraction (microglial-enriched) and an
aliquot of the ‘total’ nuclei fraction (analogous to ‘bulk’ cortex) also being collected from each
tissue sample (Supplementary Figure S19). Nuclei suspensions were assessed for the
presence of debris by adjusting the gating strategy before proceeding with nuclei capture.
For each sorted population, ~200,000 nuclei were collected for extraction of genomic DNA
(Supplementary Table S13). Genomic DNA was isolated from each nuclei population using

70
I

a standard phenol:chloroform extraction protocol”™ and DNA methylation was profiled using

the lllumina EPIC array as described above.

DNA methylation data pre-processing and quality-control

Raw lllumina EPIC data was processed using the wateRmelon package as previously
described”. Our stringent QC pipeline included the following steps: (1) checking methylated
and unmethylated signal intensities and excluding poorly performing samples; (2) assessing
the chemistry of the experiment by calculating a bisulphite conversion statistic for each
sample, excluding samples with a conversion rate <80%; (3) identifying the fully methylated
control sample included on each plate was in the correct location; (4) multidimensional
scaling of sites on the X and Y chromosomes separately to confirm reported sex; (5) using
the 59 SNP probes present on the lllumina EPIC array to confirm that matched samples from
the same individual (but different brain regions or nuclei populations) were genetically
identical and to check for sample duplications and mismatches; (6) using the pfilter() function
in wateRmelon to exclude samples with >1% of probes with a detection P value ~>"0.05

and probes with >1% of samples with detection P value[] >[10.05; (8) using principal
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component (PC) analysis on data from each tissue to exclude outliers based on any of the
first three PCs; and (9) the removal of cross-hybridising and SNP probes’?. The subsequent
normalization of the DNA methylation data was performed using the dasen() function in
either wateRmelon or bigmelon™"3. The purified nuclei populations were normalized within

each cell type.

Identification of differential DNA methylation associated with neuropathology

To identify associations between variable DNA methylation and neuropathology we fitted
regression models using the R (version 3.5.2) statistical environment™*. As DNA methylation
data for each donor was derived from two cortical regions, a mixed effects regression model
was used, implemented with the Ime4 "® and ImerTest "® packages (see supplementary
Figure S20). To identify DNA methylation sites associated with AD neuropathology we
conducted an EWAS in which DNA methylation at each probe was regressed against the
three measures of tau and amyloid pathology (Braak NFT stage, CERAD density and Thal
Phase) using mixed effect regression models where age, sex, experimental batch, PC1
(which accounted for residual structure in the data) and derived neural cell proportions were
included as fixed effects and individual was included as a random effect. Cell proportion
estimates were derived from bulk cortex DNA methylation data using the Houseman method,
implemented with minfi functions and default parameters, and a novel reference dataset
generated on 12 DLPFC samples for three nuclei populations (neuronal enriched,
oligodendrocyte enriched and microglial enriched) (see Supplementary Figure S19). Two
of the three proportions (neuronal enriched and microglial enriched) were included in the
model to eliminate the effects of multicollinearity. To generate P values, an ANOVA was
conducted, comparing the full model including the three AD neuropathology measures to a
null model in which the three measures were excluded. We next conducted an EWAS for
each of the five neuropathology measures separately (Braak NFT stage, CERAD score, Thal
Phase, Braak LB stage and TDP43-status) using the same set of covariates. Additionally, we
ran analyses where cell proportions were regressed against neuropathology in each brain
region using linear regression models, controlling for age and sex. To identify tissue specific
effects, linear regressions models were run in each brain region for the three main AD
neuropathology measures controlling for age, sex, experimental batch, PC1 and derived
neural cell proportions. Finally, to further explore if there was an effect present in one cortical
region and not the other we ran a heterogeneity test, where we included an interaction
between neuropathology and brain region in the mixed effects models, controlling for age,
sex, experimental batch, brain region, PC1, derived cell proportions and individual. EWAS
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results were subsequently processed using the bacon R package’’, which applies a

Bayesian method to adjust for inflation in EWAS.

Meta-analysis of variable DNA methylation associated with AD pathology

Cross-cortex and DLPFC specific meta-analyses of Braak NFT stage were conducted
incorporating the BDR with cohort level summary statistics from the recent meta-analysis
conducted by Smith and colleagues®® . First, the Braak NFT stage EWAS was re-run in the
BDR cohort excluding 14 samples which were also present in the LBB1 cohort. In the cross-
cortex meta-analysis a total of 2,939 samples (from 2,013 donors) were included
(Supplementary Table S12). In the DLPFC meta-analysis, a total of 1,545 individuals were
included (Supplementary Table S12). An inverse variance weighted (IVW) method was
used which summarizes effect sizes from multiple independent studies by calculating the
weighted mean of the effect sizes using the inverse of the variance of each study as weights.
The EWAS results from each cohort were processed using the bacon R package’’. A meta-
analysis was then performed using the metagen function in the R package meta’®, using the
effect sizes and standard errors from each individual cohort to calculate weighted pooled
estimates and test for significance. Probes were limited to those present in at least two of the
cohorts (cross cortex n= 403,763 DNA methylation probes; DLPFC n = 402,412) and the P-
value was Bonferroni corrected to control for this number of sites tested (cross cortex P
<0.05/403,763 =1.24E-07; DLPFC P <0.05/402,412 = 1.24E-07). P-values are from two-
sided tests and significant DMPs were taken from a fixed effects model. Pathway analyses
were subsequently performed on the significant DMPs using the methylglm function within

the methylGSA package developed by Ren and Kuan’® using the default parameters.

Regression against AD in FANS sorted nuclei populations

To determine whether associations identified in the bulk cortex are primarily driven by
alterations in specific neural cell types we used data generated on purified nuclei populations
from individuals with high or low AD pathology. Briefly, we conducted an analysis of DNA
methylation differences for significant sites from the bulk cortex meta-analyses comparing
high and low pathology (defined as Braak high = V [N = 13]; Braak low < Il [N = 15]) (Braak
score), which was modeled as a binary variable, in the four FANS sorted nuclei populations
(total nuclei [analogous to ‘bulk’ cortex], neuronal enriched, oligodendrocyte enriched and
microglial enriched) separately. Linear regression models were used, whereby the significant
DNA methylation sites identified in the cross-cortex and DLPFC meta-analysis were

regressed against high/ low pathology status controlling for age, sex, and batch (brain bank).
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The results were then compared to the meta-analysis results where a binomial test (sign

test) was used to statistically evaluate consistency in direction of effect across the analyses.
Data availability

BDR DNA methylation data are available via the Dementias Platform UK (DPUK) data portal
(https://portal.dementiasplatform.uk/) and the Gene Expression Omnibus (GEO) at
accession number GSE197305. Analysis scripts used in this manuscript are available on
GitHub (https://github.com/gemmashireby/BDR_neuropathology EWAS).
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FIGURE LEGENDS

Figure 1: Elevated tau pathology is associated with cell proportion estimates derived
from DNA methylation data in the DLPFC but not the OCC. a) Levels of tau pathology
(measured using Braak NFT stage) are significantly associated with the proportion of
neurons (effect size =-2.74, SE =0.705, P = 1.15E-04), oligodendrocytes (effect size = 1.60,
SE =0.423, P = 1.72E-04) and microglia (effect size =-2.00, SE =0.687, P =0.004) in the
DLPFC using neural cell proportion estimates derived from ‘bulk’ DNA methylation data.
Boxplots plots for the estimated proportion of cell type across Braak NFT stages are shown,
where the box in the middle represents the interquartile range (IQR), and the whisker lines
represent the minimum (quartile 1 — 1.5 x IQR) and the maximum (quartile 3 + 1.5 x IQR).
Tau pathology (Braak NFT stage) is shown on the x-axis split by cell-type and estimated cell
proportions are shown on the y-axis. b) In contrast no associations between levels of tau
pathology and cell proportion estimates derived from bulk DNA methylation data were
observed in the OCC (P > 0.008). A similar pattern of results was found for levels of amyloid

pathology as shown in Supplementary Figure S2).

Figure 2: Differentially methylated positions in the cortex associated with Alzheimer’s
disease neuropathology. a) Manhattan plot highlighting significant cortical DMPs
associated with AD neuropathology (Braak NFT Stage, CERAD score, Thal phase). In total
67 DMPs associated with AD neuropathology were identified at an experiment-wide
significance level (P < 9E-08). Genes annotated to significant DMPs are labelled. The x-axis
depicts chromosomes 1-22 and the y-axis gives the significance level (-log10(P)) for each
DNA methylation site tested. The horizontal red line represents the experiment-wide
significance level (P < 9E-08). A complete list of results is given in Supplementary Table S3
and Manhattan plots showing results from EWAS analyses of individual AD neuropathology
measures are given in Supplementary Figures S3, S6 and S9. The top-ranked
hypomethylated cortical DMP associated with AD neuropathology is cg06913337 (annotated
to ZFPM1). Lower DNA methylation at this site is significantly associated with b) tau
pathology (Braak NFT stage: effect size = -0.656%, SE=0.0881%, P = 2.68E-09) and c)
amyloid pathology (CERAD score: effect size =-0.937%, SE = 0.162%, P = 6.64E-09). The
top-ranked hypermethylated cortical DMP associated with AD neuropathology is
€g18032191 (annotated to TNFRSF1A). Higher DNA methylation at this site is significantly
associated with d) tau pathology (Braak NFT stage: effect size =0.322%, SE = 0.0598%, P =
7.20E-08) and e) amyloid pathology (CERAD score: effect size = 0.46%, SE = 0.0893%, P =
2.53E-07). Shown are violin plots depicting DNA methylation values (adjusted for covariates,

see Methods) across pathology groups, where the box in the middle represents the
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interquartile range (IQR), and the whisker lines represent the minimum (quartile 1 — 1.5 x
IQR) and the maximum (quatrtile 3 + 1.5 x IQR).

Figure 3: Differentially methylated positions identified in a cross-cortex meta-analysis
include sites that are annotated to genes which have been previously implicated in
Alzheimer’s disease. a) Manhattan plot highlighting significant cortical DMPs associated
with Braak NFT Stage from a comprehensive EWAS meta-analysis of AD datasets (total n =
2,026 individuals). In total 334 DMPs associated with tau pathology were identified at an
experiment-wide significance level (P < 9E-08). The x-axis depicts chromosomes 1-22 and
the y-axis gives the significance level (-log10(P)) for each DNAm site tested. The horizontal
red line represents the experiment-wide significance level (P < 9E-08). Gene annotations are
given for the 50 top-ranked DMPs and a full list of results is given in Supplementary Table
S9. Many of the DMPs associated with tau pathology have been previously implicated in AD.
b) Elevated tau pathology is associated with b) hypermethylation at cg07061298 (effect size
=0.32%, SE = 0.037%, P = 8.06E-18) which is annotated to HOXA3 that is strongly
implicated in previous EWAS analyses of AD pathology, c) hypermethylation at cg05066959
(effect size =0.41%, SE = 0.056%, P= 1.16E-13) which is annotated to ANK1 that is also
strongly implicated in previous EWAS analyses of AD pathology , and d) hypermethylation at
€g06784824 (effect size = 0.21%, SE = 0.032%, P= 1.71E-11) which is annotated to SPI1
that is implicated in GWAS analyses of AD. The X-axis shows the beta effect size (% DNA
methylation difference per SD increase in Braak NFT stage), with squares representing

effect size and arms indicating the 95% confidence intervals.

Figure 4: Differentially methylated positions associated with AD pathology in the
cortex are largely driven by DNA methylation differences in non-neuronal cell types.
We compared effect sizes for the 334 overlapping tau-associated DMPs identified in our bulk
cortex meta-analysis with those at the same sites in an analysis of purified DLPFC nuclei
populations from low (Braak NFT stage 0 to Il) and high (Braak NFT stage > V) tau-
pathology donors. Shown is a comparison of effect sizes between the meta-analysis (bulk)
and the a) total nuclei (bulk) nuclei fraction (direction of effect = 87% concordant, sign test P
= 7.24E-46); b) neuron enriched (direction of effect = 60% concordant, sign test P = 7.59E-
05), ¢) SOX10+ (oligodendrocyte-enriched) nuclei fraction ( direction of effect = 67%
concordant, sign test P = 2.15E-10), and d) double-negative (microglial enriched) nuclei
population (direction of effect = 96% concordant, sign test P = 1.2E-75). The x-axis shows
effect sizes from the bulk cortex meta-analysis and the y-axis shows effect sizes for those
same DMPs in each purified nuclei population. Grey dashed line represents y = x. e)
Barplots of the mean absolute relative effect sizes in each purified nuclei population
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compared to the bulk cortex across the 334 tau-associated DMPs, with error bars denoting

the 95% confidence intervals.
TABLE LEGEND

Table 1: Characteristics of the samples profiled in this study. IQR = interquartile

range. SD = standard deviation.
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