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Abstract

Molecular quantitative trait loci (molQTL), which can provide functional evidence on the
mechanisms underlying phenotype-genotype associations, are increasingly used in drug target
validation and safety assessment. In particular, protein abundance QTLs (pQTLs) and gene
expression QTLs (eQTLs) are the most commonly used for this purpose. However, questions remain

on how to best consolidate results from pQTLs and eQTLs for target validation.

In this study, we combined blood cell-derived eQTLs and plasma-derived pQTLs to form QTL pairs

representing each gene and its product. We performed a series of enrichment analyses to identify
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features of QTL pairs that provide consistent evidence for drug targets based on the concordance of
the direction of effect of the pQTL and eQTL. We repeated these analyses using eQTLs derived in 49

tissues.

We found that 25-30% of blood-cell derived QTL pairs have discordant effects. The difference in
tissues of origin for molecular markers contributes to, but is not likely a major source of, this
observed discordance. Finally, druggable genes were as likely to have discordant QTL pairs as

concordant.

Our analyses suggest combining and consolidating evidence from pQTLs and eQTLs for drug target
validation is crucial and should be done whenever possible, as many potential drug targets show
discordance between the two molecular phenotypes that could be misleading if only one is
considered. We also encourage investigating QTL tissue-specificity in target validation applications to
help identify reasons for discordance and emphasise that concordance and discordance of QTL pairs

across tissues are both informative in target validation.

Main Text

Millions of genetic variants have now been identified as being associated with a variety of diseases.
The protein product of proximal genes to these genetic variants are more likely to be successful drug
targets than proteins without proximal genetic variation related to the disease of interest *. It
follows that if the supporting disease-associated genetic variants are also associated directly with
protein abundance, the protein will be more likely to be a successful drug target *>. However, a
genetic variant may have different effects on the expression level of a protein coding gene and the
actual protein abundance. Variants with discordant genetic effects on gene expression levels and
protein abundance are difficult to interpret and are frequently de-prioritised in target validation. So-
called “opposite eQTL effects” have been previously observed in tissue-specific gene regulation *;
however, few studies have investigated concordance of QTLs across different omic layers and how

this may affect drug target validation and prioritisation. Using protein quantitative trait loci (pQTLs)
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from the recently published Fenland study ® and Zhang, et a/ ®, and expression quantitative trait loci
(eQTLs) from eQTLGen ’ and expanded tissue data from GTEx v8 ®, we investigated whether
discordance of QTL effects influenced the validity of proteins as drug targets and what might be
responsible for this discordance. We proposed two hypotheses to guide this work: firstly, for a given
gene, if the pQTL and eQTL are concordant, the protein encoded by the gene will be more likely to
be a valid drug target; secondly, the discordance between pQTL and eQTL effects can be partially
explained by tissue differences in which these data are measured. For example, many blood pQTLs
are based on the abundance of proteins which are commonly secreted to the blood from other
tissues (i.e. these proteins form part of the secretome °) whereas blood eQTLs are generally derived

from blood cells 7 2.

We extracted 3,764 conditionally independent cis-pQTLs (within 1Mb of the gene coding region)
derived in plasma for 1,693 proteins from their original publications (Fenland study: 3,498 pQTLs for
1,627 proteins; Zhang, et al: 266 non-overlapping pQTLs for 66 proteins) * °. We constructed QTL
pairs by performing a one-to-one SNP lookup for eQTLs from eQTLGen ’, allowing for proxy SNPs (r?
>0.8) to increase power, and harmonising beta estimates to the same effect allele. SNPs were
subjected to a P value threshold for selection adjusted for the number of available proteins (P <
2.95x107, 0.05 / 1693). This threshold was applied to both the pQTL and eQTL P value for each QTL

pair.

Generally, many of the proteins had at least one associated pQTL. To avoid sampling bias due to
proteins with more than one associated pQTL, we categorised the QTL pairs as either primary or
non-primary. Primary QTL pairs were defined as those QTL pairs where the pQTL had the lowest P
value and non-primary QTL pairs were defined as all other QTL pairs. Primary status was determined
before creating QTL pairs, so it was possible for some proteins to have only non-primary QTL pairs if
the primary pQTL was not paired with an eQTL. We made use of only the primary QTL pairs in the

main analyses, and we conducted sensitivity analyses with both primary and non-primary QTL pairs.
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The pQTL studies used Somalogic SOMAmers, which can suffer bias in measurement due to
differential binding to non-synonymous variants in the target sequence > *°. To address this, we
dropped QTL pairs which included an indel pQTL as it is expected that indels have a stronger effect

on protein structure, and hence binding affinity, compared to SNPs.

To determine concordance between QTL pairs, we conducted a naive sign test comparing the beta
estimates between pQTLs and eQTLs (Figure 1). However, we were concerned that discrepancies in
statistical power might lead to observing discordance between QTL pairs so we utilised a Bayesian
winner’s curse correction (described previously in Okbay, et al. **; code supplied as supplement) to
check if this was the case. Results from the winner’s curse corrected analysis determined whether
differences in the signs of the beta estimates was due to lack of power and were used to determine

whether the definition of concordance from the naive test was biased.

In the enrichment analysis, we utilised the categorisation of concordance for QTL pairs to determine
whether terms from the Drug-Gene Interaction database (DGIdb) ** are enriched for concordant or
discordant QTL pairs. Terms included were those that are drug target relevant such as the
“druggable genome”, that annotates genes which encode druggable proteins and are likely to be

clinically relevant % ***>

. P values for this analysis were calculated using Fisher’s exact test on a 2x2
contingency table for each term present in the enrichment analyses (concordant/discordant against
linked to term/not linked to term). We present both unadjusted and false discovery rate (FDR)-

adjusted P values based on the number of terms present in DGldb. However, given the hierarchical

structure and overlap between the DGldb terms, FDR-adjusted P values are likely to be conservative.

Finally, as we hypothesised that discordance between QTLs may arise due to differences in the tissue
where the QTLs are measured, we constructed QTL pairs using eQTLs across 49 tissues present in
GTEx v8 %. The construction strategy was similar to the main analysis, except that we did not search
for proxy SNPs in the GTEx dataset as there was comparable coverage between QTL pairs using

eQTLs from blood and other tissue eQTLs; however, there were fewer QTL pairs available at the
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selection threshold of P < 2.95x10” due to lower power which varied by tissue (Table $1). We

repeated both concordance tests for the GTEx QTL pairs.

A potential reason for discordance in QTL pairs constructed with GTEx eQTLs could be that plasma
proteins are generally secreted to blood from the tissue where the gene is primarily expressed.
Therefore, it could be expected that the abundance of a plasma protein would be more correlated to
the expression of its coding gene within the tissue that secretes that protein into the plasma, rather
than its expression in other tissues. While many plasma proteins originate from the liver, they can

potentially be secreted from many other tissues ¥ *°

. To ascertain whether proteins without evidence
of secretion from specific tissues to plasma (instead of, for example, to the intra-cellular region)
were driving discordance, we combined GTEx QTL pairs with secretome evidence from the Human

Protein Atlas (HPA) °. Specifically, QTL pairs were linked to those proteins with evidence of being

secreted to plasma from a tissue which matched with a GTEx eQTL that formed the QTL pair.

There were a total of 1,296 QTL pairs for 838 proteins constructed using plasma-derived pQTLs from
the Zhang, et al. and Fenland studies and blood-cell derived eQTLs from eQTLGen which met the P
value threshold of P < 2.95x107 (both the pQTL and eQTL had to pass this threshold) (Tables S1 and
S2). Of these, 736 QTL pairs were classified as primary and the remaining 560 QTL pairs as non-
primary (not all 838 proteins had a primary QTL pair because the primary pQTL was not paired with
eQTL). We observed a concordance rate of 71.8% for primary QTL pairs and 72.4% for all QTL pairs
using the naive concordance test (Figure 1). In the Bayesian winner’s curse analysis with primary QTL
pairs only, all 736 primary QTL pairs were expected to be significant at the 5% level and to have
matching signs. However, only 528 QTL pairs (71.8%) were observed to have a matching sign
although all 736 QTL pairs were observed to be significant at the 5% level. A similar pattern of
concordance rate after correction for winner’s curse was seen for the all QTL pairs analysis (Table

$3). Therefore, the results from the Bayesian winner’s curse correction analysis agreed with the
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naive concordance test which indicated that concordance was not affected by differential power

between the pQTL and eQTL datasets.

We performed a post hoc analysis to determine if the rate of concordance differed for primary and
non-primary signals. There was no significant difference in the pattern of concordance between the
primary and non-primary QTL pairs (primary QTL pairs: concordant = 528, discordant = 208; non-

primary QTL pairs: concordant = 410, discordant = 150; Fisher’s exact test P = 0.57).

For the enrichment analysis, we observed that primary discordant QTL pairs were enriched for the
terms “cell surface” (P = 0.003, Prpr = 0.07) and “protease” (P = 0.014, Prpr = 0.15) (Figure 2i).
Including non-primary QTL pairs showed enrichment for discordant QTL pairs with the term “protein
phosphatase” (P =0.022, Prpr = 0.48) (Figure 2ii). The term “druggable genome”, which is an
umbrella term for many of the terms DGIdb collate, was not enriched for either concordant or
discordant QTL pairs. There was no longer any evidence for enrichment for the terms “cell surface”

and “protease”.

We further hypothesised that discordance between QTL pairs may arise due to tissue differences in
the datasets used to estimate the effects of gene expression and protein abundance. To examine
this, we combined the same plasma pQTLs with GTEx eQTLs, which we refer to as GTEx QTL pairs to
differentiate from the blood QTL pairs (Table S4). There were 12,923 GTEx QTL pairs after selection
(pQTL and eQTL P value < 2.95x10°), of which 8,730 were classified as primary and 4,193 were non-
primary. Concordance rates varied across individual tissues, where primary QTL pairs consisting of
eQTLs measured in the kidney (100.0%), uterus (96.8%) and small intestine (93.5%) showed the
highest concordance rate, while the cerebellum (69.0%), cerebellar hemisphere (74.3%) and testis
(76.4%) showed the lowest rate of concordance (Figures 3i and 3ii). Overall, the mean concordance
rate for primary GTEx QTL pairs was 85.6% and for all GTEx QTL pairs was 83.6%. Combining GTEx
QTL pairs with HPA secretome evidence, there were 111 QTL pairs with such evidence and which

met the P value threshold of 2.95x10°. These 111 QTL pairs consisted of 66 primary and 45 non-
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primary pairs across 23 tissues. Using the subset of GTEx QTL pairs which had secretome evidence,
we observed a concordance rate of 90.9% for primary pairs and 86.5% for all pairs. There were too

few pairs to robustly examine concordance on a per-tissue level (Figure 4).

As concordance rates across tissues were broadly similar, we conducted a post hoc analysis to
determine if this was because the GTEx eQTLs showed similar effects across tissues. We performed a
test for heterogeneity between the GTEx eQTLs for each tissue and found strong evidence for

homogeneity of eQTL effect estimates (STable 5).

We proposed two hypotheses to guide our work: firstly, proteins encoded by genes with a
concordant pQTL and eQTL would more likely be druggable; and secondly, tissue differences may

partially explain discordance between pQTL and eQTL effects for corresponding gene products.

Initially, we paired plasma-derived pQTLs with blood cell-derived eQTLs and observed a concordance
rate of 71.7% for primary QTL pairs which reached a threshold of P < 2.95x107°. As there was lower
statistical power to identify pQTLs than eQTLs, we implemented a sensitivity analysis to determine
whether discordance between QTLs were due to this difference in power. We found that all QTL
pairs’ P values were expected and observed to be significant at the 5% level but that the same
percentage of QTL pairs were discordant as in the naive concordance test. Therefore, discordance
between the plasma-derived pQTLs and blood cell-derived eQTLs was not due to the differences in
sample sizes from which these data were measured. We noted that concordance rates between
GTEx QTL pairs ranged from 69.0% to 100.0% and the mean overall concordance rate for all GTEx
QTL pairs was 83.6%. Concordance between GTEx QTL pairs increased further to 90.9% when

combined with secretome evidence (though there were only 111 pairs included in this comparison).

A previous study conducted a similar concordance test for eQTLs in GTEx and found that tissue-
dependent discordant eQTLs effects were present for 2,323 genes of the 31,212 they analysed
(7.4%) *. Our study is the first to have looked at concordance rates between different omics layers.

Whilst our analyses included a relatively smaller number of proteins/genes, we observed that
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concordance rates between pQTLs and eQTLs increased as tissue differences were taken into
account, e.g. by using tissue-derived eQTLs and combining QTL pairs with secretome evidence which
better captures the effects of plasma-derived pQTLs. However, there appeared to be a consistent set
of QTL pairs which did not show concordance between pQTL and eQTL effects. By way of example,
the HP gene (which encodes haptoglobin) is well-characterised and has been shown to be highly
expressed in the liver and secreted to blood where its primary function of binding free haemoglobin

16-18

takes place . However, we found that the genetic effect on HP expression measured in liver

tissue was discordant with the genetic effect on protein abundance measured in blood plasma.

We conceived of the following possible explanations for why QTL pairs might be discordant, even
when considering tissue differences in the QTLs: 1) measurement error; for example, a variant may
positively affect gene expression but negatively affect SOMAmer binding efficacy; 2) the QTL effect is
simultaneously affecting transcript stability and translation efficiency in opposite directions; for
example, a variant may reduce translational efficiency and could lead to a “backlog” of transcripts; 3)
temporal effects; for example, the protein product of a gene may be more persistent or stable whilst
the expression of the gene oscillates. More broadly, point 2 is an example of how molecular
pleiotropy can manifest and cause discordance across different omics layers. Considering the
example of the HP gene, although the biology surrounding HP is well-studied and the path from gene
to protein is clear, the effects of genetic variants on these biological processes might still differ. The
functional characterisation of molecular QTLs is important to understanding discordance between

types of QTLs.

We also hypothesised that those proteins whose QTLs were concordant would have greater
evidence of being druggable; however, our results suggested this was not the case. We observed no
strong evidence for a difference in enrichment for the DGIdb “druggable genome” term between
concordant and discordant QTLs. We did observe that discordant QTL pairs were enriched for “cell

surface”, a Gene Ontology (GO) term to annotate proteins which attach to the plasma membrane or
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cell wall, “protease”, an enzyme which catalyses proteolysis which is likely to be the mechanism of
effect of a druggable protein, and “protease inhibitor”, a class of drugs which target proteases;
however, these generally contained small number of QTL pairs and should be treated with caution. It
should also be noted that although the FDR-adjusted P value showed weak evidence, many of the
DGldb terms are correlated and so this adjustment is likely to be conservative. Given that both
concordant and discordant QTL pairs are equally likely to be druggable, we advise that authors in
future studies should not base their evidence on a single molecular phenotype, and should consider
how to interpret the evidence from discordant QTL pairs as these may still be informative for

evidencing drug targets.

The data we leveraged to perform these analyses were derived from large sample sizes; however, it
is clear that the lack of tissue-specific pQTL data limited our ability to further test concordance
across omics layers at a per-tissue level. Our selection criteria for QTLs meant that we minimised
common sources of bias: we excluded trans-QTLs as these tend to be more pleiotropic than variants
measured in the cis region ; QTL pairs were categorised as primary or non-primary to address
sampling bias; and pQTLs were independent as reported by the original authors (for example, as

determined by conditional analyses).

However, there were some limitations to our study. Firstly, it is possible that discordance between
QTL pairs could be due to distinct causal variants for gene expression and protein abundance that
are in high LD with each other. Full summary statistics for the pQTL data were not available and so
we could not conduct colocalisation analyses between the pQTL and eQTL data to test this.
Secondly, there is the possibility of collider bias in the enrichment analysis (Figure 5). This bias can
be induced due to the selection criteria for a protein to be included in a proteomic panel, for
example, Somalogic’s SomaScan assay can currently measure up to 7,000 proteins, a small
percentage of the overall human proteome. However, these proteins are likely to have been

selected on particular characteristics potentially including, but not limited to, 1) uniqueness, where
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paralogues of proteins are harder to specifically measure; 2) sequence variation, i.e. it is harder to
measure proteins with higher sequence variability; and 3) circulating levels, where proteins with low
abundance or high temporal variability will be inherently harder to measure. Furthermore, it is likely
that proteins, whose associated genes form part of the druggable genome, are more likely to have a
protein assay exist to measure that protein as they will be informative for drug discovery efforts.
Though unlikely, this can lead to an induced association which may bias the results from our

enrichment analysis.

Our analyses showed that discordance between plasma-derived pQTLs and blood cell-derived eQTLs
is common but can be mitigated when considering tissue differences in which these QTLs are
measured. Utilising tissue-derived QTLs and considering the biological differences in how these QTLs
are measured greatly increases concordance rates, implying these are relevant considerations to
make in studies which integrate multiple omics layers. Importantly, our results suggested that
discordant QTLs pairs are common for druggable genes and that a careful consideration of cross-
tissue effects is warranted to avoid unnecessarily discarding evidence for potential drug targets. As
larger and more comprehensive pQTL datasets become available, so too will our ability to assess
discordance between the genetic effects on gene expression and protein abundance. Integrating
these data into multidimensional studies for evidencing drug targets will aid such efforts and lead to

translational benefits.

Data and Code Availability

All data used for this work are publicly available. pQTL data are available from the original

publications (Fenland cohort: https://doi.org/10.1126/science.abjl541 and Zhang, et al.:

https://doi.org/10.1101/2021.03.15.435533). eQTLGen and GTEx data are available on their

websites https://www.eqtlgen.org/, and https://gtexportal.org/home/ respectively. Our code used

to generate these results is available at https://github.com/jwr-git/gtl_analysis.
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Supplemental Data

Six supplemental tables are provided in one Excel file. Supplemental note contains code to run the

winner’s curse correction analysis.
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Figures

Figure 1

Schematic of Datarmining Cencordance for QTL Paire
[ ]
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Schematic showing how concordance between pQTL and eQTL pairs was determined using a naive
sign test. QTL pairs whose direction of effect for the beta estimates were in agreement were
classified as concordant, regardless of whether that effect was positive or negative (cases #1 and
#2). In case #3, where the direction of effects do not agree then this QTL pair was classified as
discordant. It is important to note that our definition of concordance did not exclude non-
overlapping effect estimates for the two QTLs, so long as their beta estimates were in the same
direction of effect (case #4). Finally, for case #5, where one of the QTLs is consistent with the null
hypothesis according to our threshold (P < 2.95x10, 0.05 / 1,693), these were dropped from the

analysis.
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Figure 2
Results for the enrichment analysis using the Drug-Gene Interaction database (DGldb) for druggability-related terms. The bars show the percentage of
concordant or discordant QTL pairs which were enriched for a given term. P values were calculated using Fisher’s exact test, and unadjusted and FDR-

adjusted P values are shown for those terms which reached at least nominal significance.
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Concordance rates for QTL pairs formed of plasma pQTLs and GTEx eQTLs. Number of concordant or discordant QTL pairs are given as numbers in the bars.

Figure 3
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Concordance rates for all QTL pairs (primary and non-primary) with HPA secretome evidence (i.e. the protein is secreted to plasma). These data consisted of

plasma-derived pQTLs and GTEx eQTLs and were combined with secretome evidence from HPA. Number of QTL pairs are given as numbers in the bars.

Figure 4
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Figure 5

Directed acyclic graph showing how collider bias may be induced due to the existence of protein
characteristics associated with both the existence of an assay to measure abundance of a protein
and concordance between the pQTL and eQTL. Some examples of protein characteristics that may
induce collider bias are given in the main text. For example, paralogues may influence the existence
of an assay which measures the abundance of a protein and may also influence concordance

between a pQTL associated with that protein and an eQTL associated with the encoding gene.
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Schematic of Determining Concordance for QTL Pairs
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