

1 **A consensus protocol for the recovery of mercury methylation genes from metagenomes**

2 Eric Capo^{1,2}, Benjamin D. Peterson³, Minjae Kim⁴, Daniel S. Jones^{5,6}, Silvia G. Acinas¹, Marc
3 Amyot⁷, Stefan Bertilsson², Erik Björn⁸, Moritz Buck², Claudia Cosio⁹, Dwayne Elias¹⁰,
4 Cynthia Gilmour¹¹, Maria Soledad Goñi Urriza¹², Baohua Gu¹⁰, Heyu Lin¹³, Yu-Rong Liu¹⁴,
5 Katherine McMahon³, John W. Moreau¹⁵, Jarone Pinhassi¹⁶, Mircea Podar¹⁰, Fernando Puente-
6 Sánchez², Pablo Sánchez¹, Veronika Storck⁷, Yuya Tada¹⁷, Adrien Vigneron¹², David Walsh¹⁸,
7 Marine Vandewalle-Capo², Andrea G. Bravo^{1*}, Caitlin Gionfriddo^{11*}

8

9 Corresponding author: Eric Capo eric.capo@hotmail.fr

10 *joint last authors

11

12 ¹Department of Marine Biology and Oceanography, Institute of Marine Sciences, CSIC, Barcelona, 08003, Spain

13 ²Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Uppsala, 75007, Sweden

14 ³Department of Bacteriology, University of Wisconsin at Madison, Madison, WI 53706, United States

15 ⁴Natural Resource Ecology Laboratory, Colorado State University, Fort Collins, CO 80523, USA

16 ⁵Department of Earth and Environmental Science, New Mexico Institute of Mining and Technology, Socorro, NM 87801, USA.

17 ⁶National Cave and Karst Research Institute, Carlsbad, NM 88220, USA

18 ⁷Department of Biological Sciences, University of Montréal, Montréal, QC, H3C 5J9, Canada

19 ⁸Department of Chemistry, Umeå University, Umeå, 90736, Sweden

20 ⁹University of Reims Champagne-Ardenne, UMR-102 SEBIO, Reims, 51100, France.

21 ¹⁰Oak Ridge National Lab, Oak Ridge, TN 37830, USA

22 ¹¹Smithsonian Environmental Research Center, Edgewater, MD 21037, USA

23 ¹²University of Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, Pau, 64000, France

24 ¹³School of Geography, Earth and Atmospheric Sciences, The University of Melbourne, Parkville, VIC 3010, Australia

25 ¹⁴College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China

26 ¹⁵School of Geographical and Earth Sciences, University of Glasgow, Glasgow, G12 8RZ, UK

27 ¹⁶Centre for Ecology and Evolution in Microbial Model Systems - EEMiS, Linnaeus University, Kalmar, 39231, Sweden

28 ¹⁷National Institute for Minamata Disease, Department of Environment and Public Health, Kumamoto, 867-0008, Japan

29 ¹⁸Department of Biology, Concordia University, Montreal, Quebec H4BIR6, Canada

30

31

32 **Abstract**

33 Mercury methylation genes (*hgcAB*) mediate the formation of the toxic methylmercury and
34 have been identified from diverse environments, including freshwater and marine ecosystems,
35 Arctic permafrost, forest and paddy soils, coal-ash amended sediments, chlor-alkali plants
36 discharges and geothermal springs. Here we present the first attempt at a standardized protocol
37 for the detection, identification and quantification of *hgc* genes from metagenomes. Our Hg-
38 MATE (Hg-cycling Microorganisms in Aquatic and Terrestrial Ecosystems) database, a
39 catalogue of *hgc* genes, provides the most accurate information to date on the taxonomic
40 identity and functional/metabolic attributes of microorganisms responsible for Hg methylation
41 in the environment. Furthermore, we introduce “marky-coco”, a ready-to-use bioinformatic
42 pipeline based on *de novo* single-metagenome assembly, for easy and accurate characterization
43 of *hgc* genes from environmental samples. We compared the recovery of *hgc* genes from
44 environmental metagenomes using the marky-coco pipeline with an approach based on co-
45 assembly of multiple metagenomes. Our data show similar efficiency in both approaches for
46 most environments except those with high diversity (i.e., paddy soils) for which a co-assembly
47 approach was preferred. Finally, we discuss the definition of true *hgc* genes and methods to
48 normalize *hgc* gene counts from metagenomes.

49

50 **Keywords:** mercury, *hgcAB* genes, Hg methylation, metagenomics, bioinformatics, Hg-
51 MATE, marky-coco

52 **Running title:** Recovering *hgcAB* genes from metagenomes

53 Introduction

54 Environmental mercury methylation is primarily a biotic process carried out by
55 microorganisms that transform inorganic mercury (Hg) into the more toxic and
56 bioaccumulative monomethylmercury (MeHg). The capacity to perform Hg methylation was
57 historically associated with certain sulfate-reducing bacteria, iron-reducing bacteria and
58 methanogenic archaea (Compeau and Bartha, 1985; Fleming et al., 2006; Kerin et al., 2006;
59 Hamelin et al., 2011). Field observations revealed links between Hg methylation and sulfate-
60 reduction, iron-reduction and methanogenesis in organic matter-rich anaerobic environments
61 (Bravo and Cosio, 2020 for review), as well as subsequent studies that tested cultured
62 representatives of these clades for Hg-methylation capability (Fleming et al. 2006; Gilmour et
63 al., 2011; 2013; 2018). The discovery of the *hgc* genes (Parks et al., 2013) has facilitated the
64 detection of novel putative Hg methylating bacteria and archaea through cultivation-
65 independent molecular methods (Podar et al., 2015; Gionfriddo et al., 2016). Recent works
66 analyzing publicly available genomes and environmental metagenome-assembled genomes
67 (MAGs) identified *hgc*-containing (*hgc*⁺) microorganisms from microbial lineages not
68 formerly associated with Hg-methylation, such as members of the PVC superphylum (Jones et
69 al., 2019; Gionfriddo et al., 2019; Peterson et al., 2020; McDaniel et al., 2020; Lin et al., 2021).
70 Identifying *hgc* genes in microbial genomes from meta-omic datasets greatly expanded our
71 view of the phylogenetic diversity of putative Hg methylators (Fig 1), but we still do not fully
72 understand which microorganisms are the main drivers of Hg methylation in diverse
73 environments, particularly outside of anoxic sediments.



74
75 **Figure 1.** Simplified unrooted phylogenetic tree of *hgcA* sequences from the Hg-MATE
76 database. Taxonomy is based on NCBI classification with the exception of Deltaproteobacteria
77 (Desulfobacterota with GTDB classification) and Chloroflexi (Chloroflexota with GTDB
78 classification). For visualization ease, microbial groups were collapsed by the dominant
79 monophyletic group. Microbial groups with the highest diversity of *hgc*⁺ microorganisms are
80 denoted by colors.

81 Significant knowledge gaps in the identification of microorganisms capable of Hg methylation
82 remain, largely because of the absence of *hgc⁺* cultured representatives from novel clades (i.e.,
83 outside the Desulfobacterota, Firmicutes, Methanomicrobia) with experimentally validated
84 Hg-methylating capability (Gilmour et al., 2018). One reason for this is the difficulty in
85 selecting for *hgc⁺* microorganisms during cultivation, and another is the lack of a successful
86 methodology for isolating all relevant microbes in controlled laboratory conditions. Microbes
87 that have yet to be cultivated, and for which successful laboratory growth parameters need to
88 be identified, are often referred to as the “unculturable” (Hug et al., 2016; Steen et al., 2019).
89 High-throughput meta-omic and targeted amplicon sequencing studies have become the main
90 methods for identifying putative Hg methylating microorganisms of this unculturable fraction
91 (Bravo et al., 2018; Gionfriddo et al., 2020; Xu et al., 2021). While directly testing for Hg
92 methylation capacity may not be a viable strategy, pairing these sequencing methods with
93 biogeochemical measurements, Hg methylation assays, and other manipulation studies can
94 connect a Hg-methylating microbiome to MeHg production and metabolic activity and help to
95 elucidate the potential contribution of these novel clades to Hg methylation (Kronberg et al.,
96 2016; Bouchet et al., 2018; Schaefer et al., 2020; Roth et al., 2021).

97 The detection of *hgc⁺* MAGs provides the most precise information about the taxonomic and
98 metabolic characteristics of putative Hg methylators (Jones et al., 2019; Peterson et al., 2020;
99 Lin et al., 2021; Vigneron et al., 2021). However, the microbial diversity in some environments
100 is too high and/or Hg methylators are too rare to identify them effectively (Podar et al., 2015;
101 Christensen et al., 2019). In these cases, read-based metagenomic analyses and *hgc*
102 metabarcoding are easier and more economical. Accurately identifying Hg-methylating clades
103 (and metabolic guilds) from *hgc* sequences alone therefore requires a universally used and
104 updated *hgcAB* database, coupled to consistent and robust bioinformatic practices, in order to
105 identify precisely the target genes in complex meta-omic datasets.

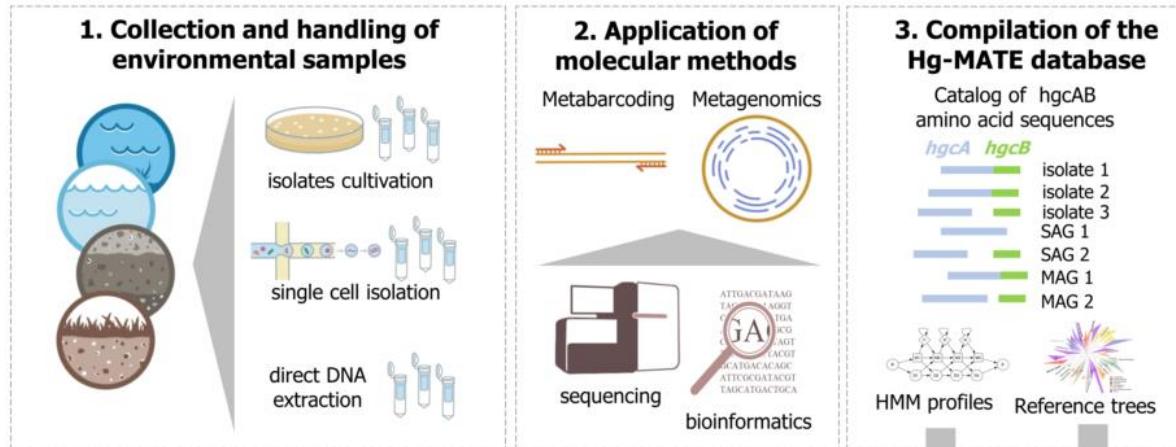
106 In this work, we introduce Hg-MATE (Hg-cycling Microorganisms in Aquatic and Terrestrial
107 Ecosystems) database version 1 (<https://doi.org/10.25573/serc.13105370.v1>), an up-to-date
108 *hgcAB* catalog compiled from isolated, single-cell and metagenome-reconstructed genomes.
109 Additionally, we present marky-coco (<https://github.com/ericcapo/marky-coco>), a ready-to-
110 use bioinformatic pipeline to detect, identify and count *hgc* genes from metagenomes (**Fig 2**).
111 We apply this pipeline to metagenomes collected from paddy soils, brackish and lake waters,
112 as well as sediments from reservoirs and lakes in which *hgc* genes have been previously
113 detected (Liu et al., 2018; Jones et al., 2019; Capo et al., 2020; Millera Ferriz et al., 2021).
114 Further, we specifically compared the reliability of (i) applying the marky-coco pipeline based
115 on *de novo* single assembly approach from single metagenomes with (ii) co-assembling of
116 multiple metagenomes (co-assembly) prior to mapping and identification. Finally, we discuss
117 appropriate definitions and cutoff criteria for *hgc* genes and also best practices to normalize
118 data for an accurate count of *hgc* genes in metagenomes from environmental samples.

119

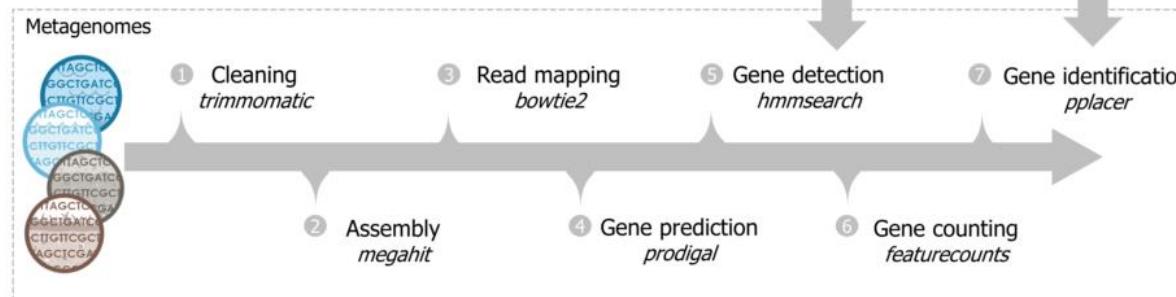
120

121

(A) Building of the gene database Hg-MATE



(B) Workflow of Marky-coco pipeline



(C) Single assembly vs coassembly methods



122

123 **Figure 2.** (A) Workflow illustrating how the *hgcAB* gene catalogue Hg-MATE database was
124 built, (B) Simplified workflow of the marky-coco pipeline (C) Illustration of the two assembly
125 approaches compared in this work: single assembly vs co-assembly.

126

127

128

129

130 **2. Material and Methods**

131 **2.1 Description of the Hg-MATE database v1**

132 The Hg-MATE database v1 was released on 14 January 2021
133 (<https://doi.org/10.25573/serc.13105370.v1>), and contains an extensive *hgcAB* dataset from a
134 wide range of microorganisms and environments. The catalog contains 1053 unique HgcA/B
135 amino acid sequences (Table 1). We categorized the HgcAB amino acid sequences into four
136 types depending on whether they were encoded in (i) pure culture/environmental microbial
137 isolates (ISO) (ii) single-cell genome sequences (CEL) (iii) metagenome-assembled genomes
138 (MAGs) (iv) or an environmental meta-omic contig (CON). Amino acid sequences of HgcA,
139 HgcB, and concatenated HgcA and HgcB were included in the database. If *hgcB* was not co-
140 localized with *hgcA* in the genome and/or could not be identified, then 'na' was listed in the
141 'HgcB' sequence column. Both genes need to be present and encode functional proteins for a
142 microbe to methylate Hg (see Parks et al., 2013; Smith et al., 2015). One reason *hgcB* may not
143 be identified in some genomes carrying *hgcA* is because HgcB is highly homologous to other
144 4Fe-4S ferredoxins. Therefore, *hgcB* can be difficult to differentiate from other ferredoxin-
145 encoding genes if not co-localized with *hgcA* on a contiguous sequence. In addition, *hgcB* may
146 be missing from 'MAGs', 'CEL' and 'CON' sequences due to incomplete coverage of the
147 genome or incomplete contig assembly, or failure to bin the contig carrying *hgcB*. Some *hgc*
148 genes are predicted to encode a 'fused HgcAB protein' which has been previously described
149 (Podar et al., 2015), and is characterized by one gene that encodes for a 4Fe-4S ferredoxin-like
150 protein with shared homology to HgcA and HgcB. This 'fused HgcAB' protein contains the
151 corrinoid iron-sulfur and transmembrane domains characteristic of HgcA as well as the 4Fe-
152 4S ferredoxin motif of HgcB (e.g., Uniprot Q8U2U9, NCBI Refseq: WP_011011854.1,
153 *Pyrococcus furiosus* DSM 3638). These sequences are provided in the 'HgcA' column, and
154 labeled 'fused HgcAB' in the HgcB column. These 'fused HgcAB' sequences should be treated
155 with caution because, while they share significant sequence homology to HgcA and HgcB from
156 confirmed Hg methylators, to date all organisms with a 'fused HgcAB' that have been tested
157 do not seem to produce MeHg in culture (Podar et al., 2015; Gilmour et al., 2018).
158

159 **Table 1.** Summary of HgcAB sequence types in version 1 of the Hg-MATE database.

Genome type	Total HgcA(B) sequences	Encode both HgcA and HgcB	Encode fused HgcAB	Only HgcA (or HgcB) present
ISO	204	173	10	21
CEL	29	4	18	7
MAG	787	696	17	74
CON	33	9	0	21(3)

160

161 The resources within the Hg-MATE database v1 include a catalog with the amino acid
162 sequences and metadata of all microorganisms. Only sequences with genomic identifying
163 information (i.e., 'ISO', 'CEL', 'MAG') were used to compile further resources. Resources
164 include: (i) FASTA files containing Hgc amino acid sequences; (ii) Multiple Sequence
165 Alignments (MSA) in FASTA format of Hgc amino acid sequences built with MUSCLE
166 implemented in MEGAX (Kumar et al., 2018) with the cluster method UPGMA; and (iii)

167 Hidden Markov models (HMM) of aligned Hgc amino acid sequences built from MSAs using
168 the *hmmbuild* function from the hmmer software (3.2.1 version, Finn et al., 2011).
169 Additionally, resources include reference packages that can be used to identify and classify:
170 (1) the corrinoid-binding domain of HgcA which corresponds to residues ~37-156 of the HgcA
171 sequence from *Pseudodesulfovibrio mercurii* ND132 and includes the characteristic cap helix
172 domain (2) full HgcA sequence and (3) concatenated HgcA and HgcB. Each reference package
173 contains sequence alignments, an HMM model, a phylogenetic tree, and NCBI taxonomy.
174 Reference packages were constructed using the program Taxtastic
175 (<https://github.com/fhcrc/taxtastic>) for HgcA(B) amino acid sequences from ISO, CEL &
176 MAG. Phylogenetic trees were built from MSA files by RAxML using the GAMMA model of
177 rate heterogeneity and LG amino acid substitution matrix (Le and Gascuel, 2008). Trees were
178 rooted by HgcA paralog sequences, carbon monoxide dehydrogenases (PF03599) from non-
179 HgcA coding microorganisms *Candidatus Omnitrophica bacterium* CG1_02_41_171 and
180 *Thermosulfurimonas dismutans*. These organisms were chosen because of their distant
181 phylogenetic relationship to *hgcA*⁺ microorganisms. Confidence values on branches were
182 calculated from 100 bootstraps. Using the HgcA reference tree, a simplified tree of ‘ISO’,
183 ‘CEL’, ‘MAG’ *hgcA* genes was built using iTOL (Letunic and Bork, 2019) and clades were
184 collapsed by the dominant monophyletic group, when possible, for visualization ease.
185

186 2.2 Data collection

187 A total of 29 metagenomes from recent studies studying *hgc* genes in environments with known
188 active Hg methylation were used for the bioinformatic analyses performed in this work (Table
189 1, Datasheet 1A). Metagenomes from brackish waters (BARM8s) were collected in 2014 in
190 the Gotland Deep basin of the Central Baltic Sea. Out of 81 available metagenomes (Alneberg
191 et al., 2018; BioProject ID PRJEB22997), 8 metagenomes where *hgc* genes have been detected
192 (Capo et al., 2020) were used in the present analysis. Water depths of these metagenomes
193 ranged from 76 to 200 m with oxygen concentrations either low (hypoxic zone) or undetectable
194 (anoxic zone), salinity ranging between 9.2-12.1 psu and MeHg concentrations measuring up
195 to 1640 fM (Soerensen et al., 2018). Lake sediments and water metagenomes (MANGA6s)
196 were obtained in 2013-2014 from the sulfate-impacted Manganika lake in Northern Minnesota
197 (Jones et al., 2019, BioProject ID PRJNA488162). This hypereutrophic lake is characterized
198 by dissolved oxygen approaching 16 mg/L (nearly 200% saturation) near the surface, pH
199 exceeding 8.7 and MeHg accumulating over 3 ng/L in bottom waters. Dissolved oxygen and
200 pH decreased with depth, and anoxic conditions were encountered below 4 m. Sulfide
201 concentrations up to 2 mM were observed in bottom waters and sediments. Water samples were
202 collected at these anoxic depths. Five metagenomes (RES5S) were obtained from reservoir
203 sediments from the St. Maurice River near Wemotaci, Canada in 2017 and 2018 (Millera-Ferriz
204 et al., 2021, GOLD-JGI Ga0393614 Ga0393582, Ga0393617, Ga0393586, Ga0393589). The
205 studied river section has been affected by the construction of two run-of-river power plant dams
206 and its watershed has been disturbed by a forest fire, logging, and the construction of wetlands.
207 MeHg concentrations in samples varied from <0.02 to 19 ng/g. Metagenomes from paddy and
208 upland soils (PADDY10s) were collected from two historical Hg mining sites, Fenghuang (FH)
209 and Wanshan (WS), in Southwest China in August 2016 (Liu et al., 2018, BioProject ID
210 PRJNA450451). The pH of paddy soils ranged from 6 to 7.5. Historical discharge from Hg

211 mining operations and ongoing atmospheric deposition contribute to high concentrations of
212 MeHg in the soils around these areas with values up to 7.9 ng g⁻¹ in the collected samples.

213

214

215 **Table 2.** Metagenomes collected from previously published papers investigating the presence
216 of Hg methylators in the environment.

Systems	#metagenomes	dataset id	References
Brackish waters	8	BARM8s	Capo et al., 2020
Lake sediments and water	6	MANGA6s	Jones et al., 2019
River/reservoir sediments	5	RES5s	Millera Ferriz et al., 2021
Paddy soils/upland soils	10	PADDY10s	Liu et al., 2018

217

218 2.3 Bioinformatics

219 The detection, taxonomic identification and counting of *hgc* genes was done with the marky-
220 coco snakemake-implemented pipeline (<https://github.com/ericcupo/marky-coco>). A brief
221 overview of this workflow is as follows: the metagenomes were trimmed and cleaned using
222 fastp (Chen et al., 2018) with the following parameters: quality threshold of 30 (-q 30), length
223 threshold of 25 (-l 25), and with trimming of adapters and polyG tails enabled (–
224 detect_adapter_for_pe –trim_poly_g –trim_poly_x). A *de novo* single assembly approach, in
225 which each metagenome was assembled individually, was applied using the assembler megahit
226 1.1.2 (Li et al., 2016) with default settings. The annotation of the contigs for prokaryotic
227 protein-coding gene prediction was done with the software Prodigal 2.6.3 (Hyatt et al., 2010).
228 The DNA reads were mapped against the contigs with bowtie2 (Langmead and Salzberg,
229 2012), and the resulting .sam files were converted to .bam files using samtools 1.9 (Li et al.,
230 2009). The .bam files and the prodigal output .gff file were used to estimate read counts by
231 using featureCounts (Liao et al., 2014). In order to detect *hgc* homologs, HMM profiles derived
232 from the Hg-MATE database v1 were applied to the amino acid FASTA file generated with
233 Prodigal from each assembly with the function *hmmsearch* from HMMER 3.2.1 (Finn et al.,
234 2011). The reference package ‘*hgcA*’ from Hg-MATE.db was used for phylogenetic analysis
235 of the HgcA amino acid sequences. Briefly, the predicted amino acid sequences from gene
236 identified as putative *hgcA* gene were (i) compiled in a FASTA file, (ii) aligned to the
237 Stockholm formatted HgcA alignment from the reference package with the function *hmmalign*
238 from HMMER 3.2.1 (iii) placed onto the HgcA reference tree and classified using the functions
239 *pplacer*, *rppr* and *guppy_classify* from the program *pplacer* (Matsen et al., 2010). For more
240 details, see the README.txt of the Hg-MATE database v1
241 (<https://doi.org/10.25573/serc.13105370.v1>). Additionally, to compare the efficiency of the
242 marky-coco pipeline to detect *hgc* genes from metagenomes with a co-assembly approach
243 (multiple metagenomes used for assembly), we performed co-assemblies on metagenomes
244 within each environmental system (BARM8s, MANGA6s, RES5s, PADDY10s, Table 2).
245 Post-assembly, all other steps of the analysis procedure were performed similarly to the marky-
246 coco pipeline. Detection of *dsrA* genes were detected in metagenomes with the function
247 *hmmsearch* and HMM profile from TIGRFAM (Selengut et al., 2007). The amount of

248 sequencing required to cover the total diversity and the estimated diversity of each metagenome
249 were evaluated using the Nonpareil method (Rodriguez-R and Konstantinidis, 2014).

250 **2.4 Stringency cut-offs for the definition of true *hgc* genes**

251 Based on knowledge from confirmed isolated Hg methylators, we propose several stringency
252 cutoffs that could be used to distinguish between an *hgcA* gene homolog and an *hgcA*-like gene
253 that encodes for a protein of unknown Hg methylation capability. (i) High stringency cutoff:
254 amino acid sequence includes one of the cap-helix motifs with the conserved cysteine (Cys93
255 in *P. mercurii* ND132), NVWCAAGK, NVWCASGK, NVWCAGGK, NIWCAAGK,
256 NIWCAGGK or NVWCSAGK. This cutoff is based on previous findings that showed isolated
257 microorganisms carrying HgcA proteins with the cap helix domain are capable of Hg
258 methylation (Parks et al., 2013; Smith et al., 2015; Gilmour et al., 2018; Cooper et al., 2020).
259 Within the high stringency cutoff, there is a possible need to distinguish between the amino
260 acid sequences from fused HgcAB-like proteins and those from true HgcA proteins, since
261 isolates that encode fused HgcAB-like genes do not have the capacity to methylate Hg in
262 culture (Podar et al., 2015; Gilmour et al., 2018). The fused HgcAB include the cap-helix and
263 ferredoxin motifs of HgcA and HgcB. (ii) Moderate stringency cutoff: in addition to amino
264 acid sequences that include the motifs described above, any sequence with a bitscore value
265 obtained from the HMM analysis greater than or equal to 100 is included (iii) Low stringency
266 cutoff: in addition to amino acid sequences that include the motifs described above, any
267 sequence with a bitscore value greater than or equal to 60 is included. For *hgcB* gene homologs,
268 we propose two cutoffs that could be used for their description as *hgcB* genes. (i) High
269 stringency cutoff: their amino acid sequences include one of the following motifs featuring the
270 conserved Cys (Cys73 in *P. mercurii* ND132, Cooper et al., 2020), C(M/I)ECGA motifs and
271 that the genes are found on the same contig as an *hgcA* genes. (ii) Moderate stringency cutoff:
272 amino acid sequences include the C(M/I)ECGA motif, but the gene are not co-located on a
273 contig with an *hgcA* gene.

274

275 **2.5 Estimation of *hgcA* abundance in metagenomes**

276 Coverage values of *hgcA* genes were calculated, for each gene and each sample, as the number
277 of reads mapping to the gene divided by the length of the gene (read/bp). We compared the
278 reliability of four procedures for normalizing read counts of *hgcA* genes. Normalization metrics
279 were (i) the total number of mapped reads (ii) the summed coverage values of *rpoB* genes, (iii)
280 the median coverage values of 257 marker genes (GTDB-Tk r89 release, Chaumeil et al.,
281 2019), or (iv) the genome equivalents values calculated using the software MicrobeCensus
282 (Nayfach and Pollard, 2015) which normalizes the relative abundance by the metagenomic
283 dataset size and the community average genome size of the microbial community. The
284 coverage of each marker gene was calculated as the sum of the coverages of all the ORFs
285 assigned to that gene (Datasheet 1A). The *rpoB* and the 256 other marker genes were detected
286 using the function *hmmsearch* from hmmer software (v3.2.1, Finn et al., 2011) and applying
287 the trusted cut-off provided in HMM files (GTDB-Tk r89 release, Chaumeil et al., 2019).

288

289

290 **2.6 Data analysis**

291 A non-metric multidimensional scaling analysis (nMDS) was performed applying the function
292 *metaMDS* from the R package *vegan* (Oksanen et al., 2015) to the table of *hgcA* gene coverage
293 values, clustered at the lowest level of NCBI taxonomic identification (txid), obtained with
294 single assembly and co-assembly approaches (Datasheet 1B). A PROTEST permutation
295 procedure analysis (1000 permutations) was performed using the function *Procrustes* to
296 evaluate the level of concordance of the outputs between both approaches. The functions *rcorr*
297 from the R package *Hmisc* (Harrell and Harrell, 2019), *corrplot* from the R package *corrplot*
298 (Taiyun et al., 2017) and *plot3D* from the R package *rgkl* (Adler et al., 2019) were used to
299 investigate correlations between normalization methods.

300 **3. Results**

301 **3.1 Dataset outputs**

302 A total of 29 single assemblies (one for each metagenome) and 4 co-assemblies (reads from
303 each of the BARM8s, MANGA6s, RES5S, and PADDY10s metagenome sets assembled
304 together) were used to compare the efficiency of a single assembly using the marky-coco
305 pipeline and a co-assembly approach to detect, identify and count *hgc* genes from metagenomes
306 (Fig. 2). The number of mapped reads of the analyzed metagenomes ranged between 10.2-
307 110.9 M reads (average, 29.4 ± 19.6) with single assembly and 16.6-120.7 M reads (average,
308 36.0 ± 19.9) with co-assembly, with the percentage of mapped reads ranging between 16-76 %
309 and 24-89 %, respectively (Datasheet 1A). Nonpareil diversity index values (N_d) of
310 metagenomes were between 18.7 and 23.7 with the highest found in paddy soil metagenomes
311 (Fig. S1, Table 3). Nonpareil curves showed that paddy soil samples from this study required
312 the highest sequencing effort for nearly complete coverage followed by reservoir sediments,
313 and then lake sediment and lake waters and brackish waters (Fig S1). Estimated coverage of
314 paddy soils metagenomes was relatively low (average, 0.30-0.37) compared to other
315 metagenomes (0.49-0.83) showing that only a portion of the diversity of these environmental
316 samples was recovered despite the relatively high sequencing depth (88.6 ± 5.6 M reads) (Table
317 3). Seven metagenomes (S02, S03, S19, S22, S26, S28, S29) that were used in coassemblies
318 but with low *hgcA* coverage values (i.e., <0.40 obtained from co-assemblies) were not used for
319 further comparison analysis. The remaining 22 metagenomes, labeled MG01 - MG22, had
320 *hgcA* unnormalized coverage values between 0.44 and 3.06 (1.22 ± 0.79) (Datasheet 1A). Only
321 *hgcA* genes (and not *hgcB*) from these metagenomes were used for comparison of the two
322 assembly approaches as *hgcAB* gene pairs were not 100 % similar between the two approaches
323 (Datasheet 1B). Additionally, *hgcAB*-like homologs that are predicted to encode for fused
324 *HgcAB* proteins were excluded from further analysis.

325

326 **3.2 Distribution of *hgcA* genes with different stringency cutoffs**

327 By definition, all *hgcA* genes detected with the high stringency cutoff are predicted to encode
328 proteins that include the conserved amino acid motifs characteristic of functional *HgcA*
329 proteins, while this is not the case for those additionally detected when lowering the stringency

330 cutoffs (i.e., moderate or low). We therefore considered that gene homologs to *hgcA* found
331 with bitscore values below 100 and without conserved motifs cannot with confidence be
332 defined as true *hgcA* genes. Nevertheless, we wanted here to highlight how “false” *hgcA* genes
333 i.e., detected without the conserved amino acid motifs characteristic of functional HgcA
334 proteins, were taxonomically assigned using the *pplacer* approach applied to the Hg-MATE
335 *hgcA* reference tree. The *hgcA* genes detected with a high stringency cutoff and those
336 additionally detected with moderate stringency cutoffs were predominantly identified as
337 Desulfobacterota, Chloroflexota and Euryarchaeota (Fig S2). In contrast, the *hgcA* genes
338 additionally detected with low stringency cutoff were primarily identified as members of the
339 PVC superphylum but were unclassified at lower taxonomic levels. For further comparison,
340 we used information only from *hgcA* genes detected with the high stringency.

341

342 3.3 Comparison between co-assembly vs single assembly approaches

343 For all metagenomes, 1.50-7.25 times more *hgcA* genes were detected in co-assemblies (19-
344 147 genes) compared to linked single assemblies (4-69 genes) (Table 3). We investigated the
345 differences in *hgcA* gene lengths, discriminating between genes (i) found at the extremity of
346 contigs (potentially truncated) and (ii) between other genes in contigs therefore expected to be
347 complete. A higher number of ‘complete’ *hgcA* gene sequences were detected with the co-
348 assembly (1-17, average 6.8 ± 4.4 genes) compared to the single assembly (0-6, average $2.0 \pm$
349 2.7 genes), e.g., for metagenomes from brackish and lake waters (Datasheet 1A). No complete
350 genes were identified in the single assemblies that were not also identified in the co-assembly.
351 Violin plots illustrated that, overall, a higher number of ‘complete’ *hgcA* sequences (> 950 bp)
352 were found with the co-assembly versus the single assembly (Fig. S3).

353

354 **Table 3.** For each metagenome, Non-pareil diversity index values, estimated average coverage,
355 number of mapped reads, number of *hgcA* genes and *hgcA* coverage values (reads/bp) for co-
356 assembly ‘c’ and single assembly ‘s’ approaches. See Datasheet 1A for extended description
357 of the dataset.

358

Environments	Metagenomes id	Non pareil diversity index (N_d)	Estimated average coverage	Number of mapped reads (millions reads)		Number of <i>hgcA</i> genes		<i>hgcA</i> coverage values	
				c	s	c	s	c	s
brackish water	MG01	19.51	0.83	7	110.9	38	14	2.04	1.85
	MG02	21.12	0.55	33.9	25.5	40	16	1.05	0.91
	MG03	19.49	0.70	32.0	25.8	29	7	1.01	0.75
	MG04	20.52	0.63	35.1	26.9	34	10	0.84	0.75
	MG05	18.69	0.76	35.6	30.5	23	5	0.52	0.46
	MG06	20.73	0.48	16.6	10.2	29	4	0.58	0.35
reservoir sediment	MG07	22.46	0.59	28.6	21.8	147	69	3.06	2.36
	MG08	21.99	0.64	33.6	29.4	103	53	2.19	1.98
	MG09	21.82	0.68	47.2	43.5	74	35	1.98	1.78
	MG10	22.10	0.63	36.1	32.7	102	68	2.32	3.00
	MG11	22.15	0.63	36.7	29.8	122	62	2.69	2.43
lake sediment	MG12	20.55	0.62	22.7	26.7	23	10	0.83	0.78
	MG13	20.75	0.57	27.2	22.5	26	9	0.41	0.32
lake water	MG14	21.57	0.49	29.6	24.8	31	13	1.19	1.05

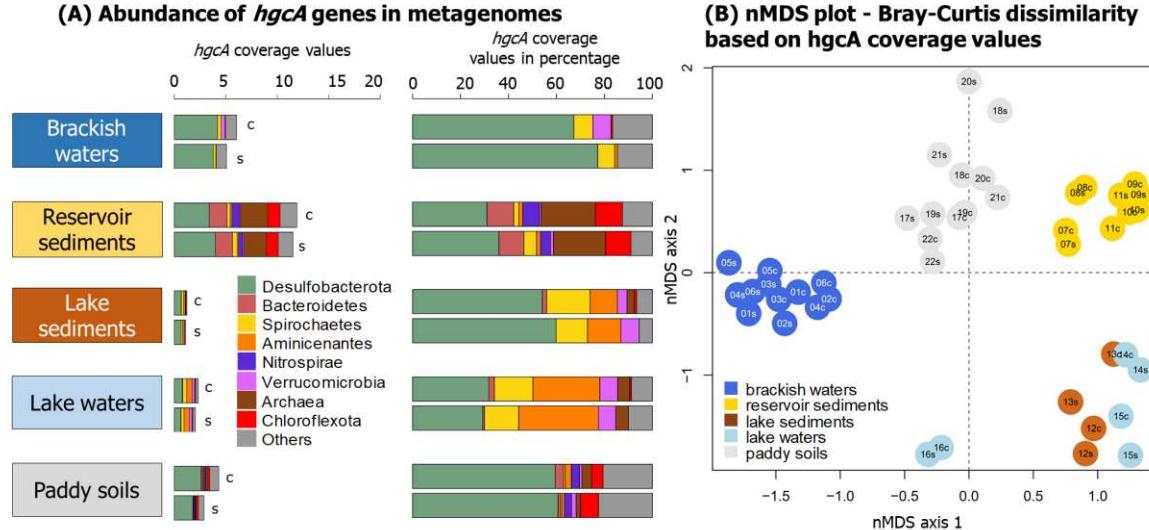
	MG15	20.24	0.66	38.5	34.6	31	8	0.62	0.50
	MG16	19.51	0.67	30.5	29.2	19	10	0.47	0.50
paddy soils	MG17	23.48	0.34	31.1	20.4	77	21	0.69	0.45
	MG18	23.31	0.33	30.8	18.5	60	13	0.59	0.33
	MG19	23.67	0.27	27.1	14.3	85	20	0.76	0.43
	MG20	23.14	0.37	37.5	28.8	61	15	0.58	0.32
	MG21	23.49	0.30	30.5	18.7	57	25	0.60	0.51
	MG22	23.64	0.30	30.6	20.5	84	33	1.12	0.89

359

360 In a comparison of HgcA amino acid sequences recovered from the two assembly approaches,
361 no HgcA sequence from the single assembly had 100% sequence identity to sequences in the
362 co-assembly (Datasheet 1B). The highest sequence similarity of HgcA sequences from
363 different assemblies of the same dataset was 99%. To compare, we investigated differences
364 between assemblies for detecting *dsrA* gene, which encodes for dissimilatory sulfite reductase
365 subunit A, an essential enzyme in sulfate reduction and expected to be present in these datasets.
366 Identical amino acid sequences of DsrA-encoding genes were found when comparing single
367 assemblies to the related co-assembly with numbers ranging from 1 to 33 depending on
368 metagenomes (Datasheet 1D). Comparatively, *dsrA* genes were 3-34x more abundant (in
369 coverage) than *hgcA* genes. This higher abundance helps explain why more identical *dsrA* were
370 found between co-assembly and single assembly approaches than for *hgcA* genes.

371

372 Distribution plots showed unnormalized coverage values of *hgcA* clustered by environment
373 types (Fig. 3A) or for each metagenome (Fig. S4). Importantly, unnormalized values were used
374 here to compare single assembly vs coassembly results for each metagenome but not to
375 compare difference between environments for which normalization would be required (Fig S4).
376 Overall, higher *hgcA* coverage values were observed with the co-assembly for all types of
377 environments (Fig 3A) and for each metagenome with the exception of reservoir sediment
378 MG10 (Fig. S4, Table 3). The application of normalization methods (as described in the section
379 below) revealed contrasting patterns in *hgcA* relative abundance, with higher values observed
380 for single assembly methods when applying, for instance, a normalization method based on
381 *rpoB* coverage values (Fig. S4). For each metagenome, the nMDS analysis showed a high level
382 of similarity in taxonomy-based *hgcA* inventories obtained from single assembly vs co-
383 assembly (Fig. 3B). This was confirmed by a procrustean analysis that showed significant
384 levels of concordance for the *hgcA* inventories obtained between both approaches ($p \leq 0.001$).
385 Looking at each dataset independently, reservoir sediments and brackish waters showed
386 significant levels of concordances ($p \leq 0.008$, $p \leq 0.002$) while lake waters and paddy soils had
387 non-significant levels of concordances ($p \leq 0.17$, $p \leq 0.30$; no statistics possible with only two
388 metagenomes for lake sediments).



389

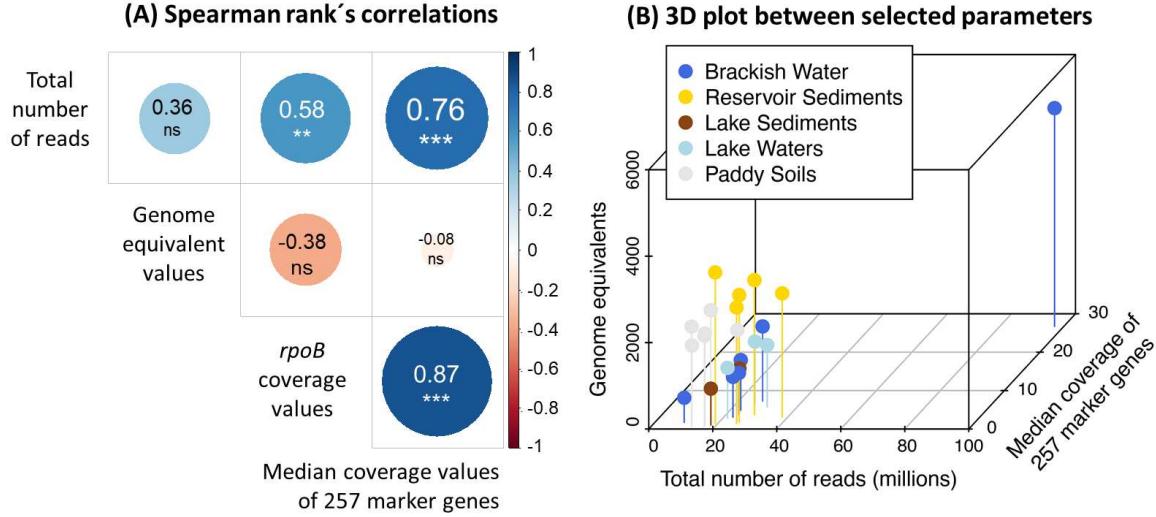
390 **Figure 3** (A) Distribution of *hgcA* genes in the metagenomes obtained from five types of
391 environments with the co-assembly 'c' and the single assembly 's' methods. For these barplots,
392 unnormalized *hgcA* coverage values were used. (B) Dissimilarities in the structure of *hgcA*
393 inventories obtained with the co-assembly 'c' and the single assembly 's' approaches. nMDS
394 stress values = 0.1909. The id of each metagenome is denoted as follows: numbers
395 corresponding to the metagenome id (e.g., MG01 is 01), 'c' or 's' stands for analysis with the
396 co-assembly or the single assembly.

397

398 3.4 Comparison between normalization methods

399 In order to compare normalization methods to estimate the abundance of *hgcA* genes, we
400 calculated the (i) total number mapped prokaryotic reads, (ii) *rpoB* genes coverage values, (iii)
401 median coverage value of 257 marker genes and (iv) genome equivalents values (Microbe
402 Census) (Fig 4, Datasheet 1E). Overall, significant correlations were observed between the
403 total number of reads, *rpoB* coverage values, and the median coverage values of 257 marker
404 genes (Fig. 4A), while no significant correlations were observed between these metrics and
405 genome equivalent values. The 3D plot shows the relationships between the total number of
406 reads, the median coverage values of 257 marker genes and genome equivalent values (Fig.
407 4B).

408



409
410
411
412

Figure 4. Plots showing correlations between metrics used for normalization. Only outputs presented here were calculated from data obtained with the single assembly approach.

413

414 4. Discussion

415

416 4.1 Identification of true *hgc* genes from environmental genomic data

417 The absence of cultured representatives of *hgc⁺* microorganisms from novel clades (i.e., outside
418 the Desulfobacterota, Firmicutes, Methanomicrobia) with experimentally validated Hg-
419 methylating capability (Gilmour et al., 2013; 2018) hampers confirmation that newly
420 discovered *hgc* genes from environmental samples truly code for Hg methylating enzymes.
421 Indeed, the recent analysis of publicly available metagenomes revealed the high diversity of
422 microbial lineages with *hgc⁺* microorganisms, with the vast majority yet uncultured and
423 therefore unstudied for Hg methylation activity (Gionfriddo et al., 2019; McDaniel et al.,
424 2020). To date, all *hgcA⁺* microorganisms that have been experimentally tested have been
425 found shown to produce MeHg (except for those with fused *hgcAB*-like sequences) (Gilmour
426 et al., 2013; 2018), and protein modeling of novel *hgcA* sequences suggest they have
427 comparable active sites to HgcA sequences in experimentally verified Hg methylators.
428 Therefore, although recent findings revealed relationships between microbial expression of *hgc*
429 transcripts and MeHg formation in the environment (Capo, Feng et al. 2022 bioRxiv), and some
430 putative *hgcAB* genes have been computationally modelled to possess functionality for
431 methylation (Gionfriddo et al. 2016, Lin et al. 2021), we remain cautious about defining true
432 *hgc* genes from environmental samples. As such, some studies have qualified *hgc* genes found
433 in the environment as *hgc* genes (e.g., Gionfriddo et al., 2016; Bowman et al., 2020; Villar et
434 al., 2020; Capo et al., 2020).

435

436 Here, we defined three stringency cutoffs to describe *hgcA* genes in environmental
437 metagenomes. By definition, the HgcA-encoding genes detected with the high stringency
438 cutoffs include the key amino acid residues (i.e., the cap helix motif
439 N[V/I]WC[A/S][A/G/S]GK, Parks et al., 2013) present in HgcA from known Hg methylators.

440 In contrast, all other hits to the HMM, from moderate and low stringency cut-offs, lack these
441 amino acid residues. To date none of the isolates lacking these key amino acid residues has
442 been found to methylate Hg, or no cultured isolate exists to test for Hg methylation capability
443 (Gilmour et al., 2018). Substitution of some of these amino acids in the cap helix of HgcA may
444 not result in loss of Hg methylation activity, as demonstrated by site-directed mutagenesis
445 experiments with *P. mercurii* ND132 (Smith et al., 2015). However, in addition to the cap helix
446 domain of HgcA, the transmembrane domain of HgcA may also be required for Hg methylation
447 activity. Unfortunately, the transmembrane region of HgcA has no detectable sequence
448 homology (Cooper et al., 2020).

449

450 Thus, we recommend using the high stringency cutoff defined in the present study for routine
451 identification of *hgcA* from environmental metagenomes. Lower stringency could reveal novel
452 HgcA sequences that have lower similarity to HgcA from known Hg methylators, but if the
453 lower stringency cutoff is used, we advise careful manual inspection of the sequences to ensure
454 that they have important motifs and other HgcA features like the cap-helix region. If the amino
455 acid sequence in the cap helix domain is highly divergent from known sequences, we
456 recommend protein modeling efforts to determine if the active site is similar enough to known
457 sequences to validate classification as HgcA. Additional verification of true HgcA sequences
458 include prediction of transmembrane domain regions (e.g., using TMHMM software, Krogh et
459 al., 2001) and identification of other key conserved residues (Parks et al., 2013; Smith et al.,
460 2015; Jones et al., 2019). A combination of several methods will certainly help to improve our
461 description of *hgcA* genes in the coming years.

462

463 **4.2 Effectiveness of the Hg-MATE database**

464 The Hg-MATE database originates from the combination of two recent works (Gionfriddo et
465 al., 2019; McDaniel et al., 2020). The present work is a collaborative project of the Meta-Hg
466 working group that aimed to provide a living database that will be periodically updated. It
467 provides several useful tools (HMM profiles and references phylogenetic trees) and a
468 documented workflow that allows for the identification of *hgc* genes for easy comparison
469 between studies. One major advantage of Hg-MATE is the assignment of NCBI taxonomy IDs
470 (txid) to *hgcA* genes allowing for easy comparison with datasets from other studies that also
471 use the Hg-MATE database (Datasheet 1B). In contrast, outputs from previous *hgc*-related
472 studies are difficult to compare with each other because *hgc* taxonomic identification is usually
473 done with different in-house databases and/or phylogenetic tools, and is based on the manual
474 inspection of phylogenetic trees increasing the level of uncertainties and subjectivity in
475 taxonomic identification. While the used *pplacer* approach here is not perfect - since
476 phylogenetic relatedness of the gene does not necessarily mean the same organismal taxonomy
477 because of potential horizontal gene transfer (McDaniel et al., 2020) - it is a standardized
478 approach allowing for a robust and automated identification of *hgc* genes from metagenomes.

479

480 A side-by-side comparison of previous and present taxonomic identification of putative Hg
481 methylators is presented in this section. For water and sediment metagenomes from Lake
482 Manganika our identification by HgcA phylogeny showed consistent results with previous
483 identification from *hgc*⁺ MAGs (Jones et al., 2019), with Desulfobacterota, Aminicenantes,

484 Kiritimatiellaeota and Spirochaetes being the predominant putative Hg methylators. In the case
485 of Baltic Sea water metagenomes, the comparison of our Hg-MATE taxonomy identification
486 with the previous identification using a set of *hgc* sequences from Podar et al. (2015) revealed
487 consistency in the predominant *hgc⁺* groups detected (Desulfobacterota, Spirochaetes,
488 Kiritimatiellota) but noticeable differences for others i.e., Planctomycetes and
489 Verrucomicrobia (Datasheet 1B). Consistent with previous characterization, reservoir
490 sediments were characterized by predominant *hgc⁺* Methanomicrobia, Desulfobacterota,
491 Bacteroidetes, and Chloroflexota. Finally, in paddy soils, Liu et al. (2018) identified mostly
492 *hgc⁺* Desulfobacterota, Firmicutes and Methanomicrobia while, in the present study, the two
493 last microbial groups were found less predominant to the benefit of *hgc⁺* Nitrospirae and
494 Chloroflexota.

495

496 In addition to using phylogenetic placements of *hgc* genes in reference trees from the Hg-
497 MATE database, a more precise approach to identification of putative Hg methylators is
498 probably the identification of *hgc⁺* MAGs (i.e., Jones et al., 2019; Peterson et al., 2020; Lin et
499 al., 2021). However, the recovery of MAGs from metagenomes is not always possible due to
500 (i) the difficulty of obtaining MAGs from certain environments such as sediments and (ii) the
501 low predominance of Hg methylators compared to other microorganisms in the environment,
502 and therefore the lower probability of recovering *hgc⁺* MAGs. A recent work revealed the good
503 congruence between the identification of *hgc⁺* MAGs and a *hgc* phylogeny based on Hg-MATE
504 phylogeny (Capo, Feng et al., 2022 bioRxiv) highlighting that both approaches could be used
505 to ensure the reliability in the identification of Hg methylators.

506

507 **4.3 Assembly methods depend of the diversity of the metagenome**

508

509 The increasing amount of publicly available environmental genomic data (Thompson et al.,
510 2017; Nayfach et al., 2021) opens avenues to answer ecological questions related to the
511 biogeography patterns and dispersal barriers of Hg methylators in interconnected systems (such
512 as the global ocean and coastal systems). Co-assembly of multiple metagenomes has been
513 shown to have many important benefits compared to single assemblies including improved
514 binning and better recovery of low abundance environmental genomes from studies that use
515 multiple low-coverage metagenomes. However, co-assembly requires higher computational
516 costs and potentially masks microdiversity by collapsing the genomes of multiple related
517 strains into a single MAG (Narasingarao et al., 2012; Van der Walt et al., 2017; Ramos-Barbero
518 et al., 2019; Tamames et al., 2020; Paoli et al., 2021). Here, we compared *hgcA* recovery from
519 single assembled metagenomes versus co-assemblies of multiple metagenomes from the same
520 environment. In all cases except one, co-assembly significantly increased the recovery of *hgcA*
521 genes (Fig S4). Additionally, we showed that when the diversity and composition of the *hgcA⁺*
522 community was compared across all the samples included in the analysis, single assemblies
523 and co-assemblies performed similarly in this regard, suggesting that also single metagenomes
524 can provide adequate information (similar level of *hgc* coverage and detected diversity) on the
525 *hgc⁺* community.

526

527 Differences in the diversity of environments can have an effect on the recovery of *hgc* genes
528 from metagenomes. Nonpareil diversity index values of the metagenomes ranged between 18.7
529 and 23.7 with the highest being found in paddy soils metagenomes (Fig. S1, Datasheet 1A).
530 Here, for the paddy soils that exhibited higher Non-pareil diversity index values (Fig S1),
531 consistently with Rodriguez-R and Konstantinidis (2014), the co-assembly approach
532 outperforms single sample assemblies in the recovery of *hgc* genes (Fig 3). Noticeably,
533 although no identical HgcA amino acid sequences were detected between single assembly and
534 co-assembly approach, identical DsrA amino acid sequences were observed. We hypothesized
535 that the low proportion of *hgcA* genes in metagenomes, compared to *dsrA* genes, explained
536 such discrepancies, although it did not strongly impact the overall *hgcA* coverage values
537 recovery. In these situations, we recommend aiming for either higher depth of coverage or
538 sequencing of multiple adjacent or linked metagenomes or replicates from a single sample. In
539 contrast, we recommend avoiding the co-assembly of metagenomes from different
540 environments that could produce more misassembles and chimerism (Mikheenko et al., 2016;
541 Sczyluba et al., 2017; Tamames et al., 2020). For other environments such as brackish and lake
542 waters, our work highlights that using the marky-coco pipeline based on a single assembly
543 approach provide similar results to a co-assembly approach in detecting *hgc* genes.
544
545

546 **4.4 Robust normalization methods are needed for quantitative inferences**

547 The normalization of gene counts from environmental metagenomes and metatranscriptomes
548 is a key aspect of works aiming to study the prevalence of certain microorganisms in specific
549 environments (Pereira et al., 2018; Salazar et al., 2019; Pierella Karlusich et al., 2022). In
550 *hgcAB* omics studies, the number of mapped reads and the coverage values of marker genes or
551 housekeeping genes is usually used to normalize the coverage values of *hgc* genes (Lin et al.,
552 2021; Vigneron et al., 2021; Tada et al., 2021; Capo et al., 2022). Tests here revealed that a
553 wide range of contrasting normalization methods all provided reasonable abundance estimates
554 that were significantly correlated with one another with the exception of genome equivalent
555 values (Fig 4). Non-significant correlations found between genome equivalent values and other
556 metrics can be explained by the weaker relationships observed for the metrics in paddy soils
557 and reservoir sediments metagenomes, while metrics from brackish waters, lake sediment and
558 waters appear to have linear relationships. Therefore, we do not strongly recommend any single
559 method over others. Instead, we suggest that it may be prudent to report data that employ
560 multiple normalization methods to allow for easy comparisons to be carried out between
561 studies. Such normalizations can without too much of an effort be included in the supporting
562 information for later usage. Suggested normalization methods include the total number of
563 prokaryotic reads, coverage values of *rpoB* genes and the median coverage values of 257
564 marker genes (example in Datasheet 1E).
565
566
567

568 **5. Conclusion**

569 The study of the taxonomic diversity and metabolic capacities of microorganisms involved in
570 Hg methylation will lead to a better understanding of the environmental factors triggering
571 microbial methylation of divalent Hg. Although metagenomic and metatranscriptomic-based
572 studies have provided better insights into the environmental role of those microorganisms, there
573 is still a need to standardize methods to detect *hgc* genes from environmental omic data.
574 Furthermore, since Hg methylators often constitute such a small proportion of the microbiome,
575 methods outlined in this study provide best practices for improving their detection and recovery
576 from metagenomes. We provide here an up-to-date *hgc* gene catalogue, Hg-MATE database
577 v1, and the marky-coco bioinformatic pipeline to detect, identify and count *hgc* genes from
578 metagenomes. We recommend using our high stringency cutoff to detect *hgcA* genes in
579 metagenomes and applying our protocol in future prospects of Hg methylation genes,
580 especially for cross-comparison between studies. Finally, although a co-assembly approach
581 should be chosen when analyzing metagenomes from highly diverse environments (i.e., paddy
582 soils), we recommend using marky-coco pipeline, based on a de novo assembly for recovering
583 *hgc* genes in metagenomes from aquatic environments.

584

585 **Acknowledgements**

586 This work was funded by the Severo Ochoa Excellence Program postdoctoral fellowship
587 awarded in 2021 to Eric Capo (CEX2019-000928-S), the Swedish research council Formas
588 (grant 2018-01031), the EMFF-Blue Economy project MER-CLUB (grant 863584). Caitlin
589 Gionfriddo was a Robert and Arlene Kogod Secretarial Scholar with the Smithsonian
590 Environmental Research Center while conducting work described in this manuscript. Benjamin
591 Peterson was funded as a postdoctoral research associate by the National Science Foundation
592 (Award 1935173) during the work in this manuscript. The computations were performed on
593 resources provided by SNIC through Uppsala Multidisciplinary Center for Advanced
594 Computational Science (UPPMAX) using the compute project SNIC 2021/5-53. Some of the
595 computations for compiling the Hg-MATE database were conducted on the Smithsonian High
596 Performance Cluster (SI/HPC), Smithsonian Institution. <https://doi.org/10.25572/SIHPC>. The
597 authors are thankful to the members of the Meta-Hg working group
598 (<https://ercapo.wixsite.com/meta-hg>) and Mersorcium network
599 (<https://mersorcium.github.io/>).

600

601 **Conflict of interest**

602 The author declares no conflict of interest

603

604 **Benefit-sharing statement**

605 Benefits from this research is the creation and curation of Hg-MATE database
606 (<https://doi.org/10.25573/serc.13105370.v1>) and release of the bioinformatic pipeline marky-
607 coco (<https://github.com/ericcapo/marky-coco>).

608

609 **Data availability statements**

610 All metagenomes analyzed in this study are of public access as described in Table 2.

611

612 References

613 Adler, D., Murdoch, M. D., (2019). Package ‘rgl’.

614 Alneberg, J., Sundh, J., Bennke, C., Beier, S., Lundin, D., Hugerth, L. W., ... Andersson, A. F. (2018). Data
615 descriptor: BARM and balticmicrobeDB, a reference metagenome and interface to meta-omic data for the
616 baltic sea. *Scientific Data*, 5, 1–10. doi: 10.1038/sdata.2018.146

617 Bouchet, S., Goñi-Urriza, M., Monperrus, M., Guyoneaud, R., Fernandez, P., Heredia, C., ... Amouroux, D.
618 (2018). Linking Microbial Activities and Low-Molecular-Weight Thiols to Hg Methylation in Biofilms
619 and Periphyton from High-Altitude Tropical Lakes in the Bolivian Altiplano. *Environmental Science and
620 Technology*, 52(17), 9758–9767. doi: 10.1021/acs.est.8b01885

621 Bowman, K. L., Collins, R. E., Agather, A. M., Lamborg, C. H., Hammerschmidt, C. R., Kaul, D., ... Elias, D.
622 A. (2020). Distribution of mercury-cycling genes in the Arctic and equatorial Pacific Oceans and their
623 relationship to mercury speciation. *Limnology and Oceanography*, 65(S1), S310–S320. doi:
624 10.1002/lno.11310

625 Bravo, A. G., & Cosio, C. (2020). Biotic formation of methylmercury: A bio–physico–chemical conundrum.
626 *Limnology and Oceanography*, 65(5), 1010–1027. doi: 10.1002/lno.11366

627 Bravo, A., Peura, S., Buck, M., Ahmed, O., Mateos-Rivera, A., Ortega, S., ... Bertilsson, S. (2018).
628 Methanogens and Iron-Reducing Bacteria : the Overlooked Members of Mercury-Methylating Microbial
629 Communities in. *Applied and Environmental Microbiology*, 84(23), 1–16.

630 Capo, E., Bravo, A. G., Soerensen, A. L., Bertilsson, S., Pinhassi, J., Feng, C., ... Björn, E. (2020).
631 Deltaproteobacteria and Spirochaetes-Like Bacteria Are Abundant Putative Mercury Methylators in
632 Oxygen-Deficient Water and Marine Particles in the Baltic Sea. *Frontiers in Microbiology*, 11(574080),
633 1–11. doi: 10.3389/fmicb.2020.574080

634 Capo, E., Broman, E., Bonaglia, S., Bravo, A. G., Bertilsson, S., Soerensen, A. L., ... Björn, E. (2022). Oxygen-
635 deficient water zones in the Baltic Sea promote uncharacterized Hg methylating microorganisms in
636 underlying sediments. *Limnology and Oceanography*, 67(1), 135–146. doi: 10.1002/lno.11981

637 Capo, E., Feng, C., Bravo, A. G., Bertilsson, S., Soerensen, A. L., Pinhassi, J., ... Björn, E. (2022). Abundance
638 and expression of hgcAB genes and mercury availability jointly explain methylmercury formation in
639 stratified brackish waters. *BioRxiv*.

640 Chaumeil, P.-A., Mussig, A. J., Hugenholtz, P., & Parks, D. H. (2019). GTDB-Tk: a toolkit to classify genomes
641 with the Genome Taxonomy Database. *Bioinformatics*, 36(6), 1925–1927. doi:
642 10.1093/bioinformatics/btz848

643 Chen, S., Zhou, Y., Chen, Y., & Gu, J. (2018). fastp: an ultra-fast all-in-one FASTQ preprocessor.
644 *Bioinformatics*, 34(17), i884–i890. doi: 10.1093/bioinformatics/bty560

645 Christensen, G. A., Gionfriddo, C. M., King, A. J., Moberly, J. G., Miller, C. L., Somenahally, A. C., ... Elias,
646 D. A. (2019). Determining the Reliability of Measuring Mercury Cycling Gene Abundance with
647 Correlations with Mercury and Methylmercury Concentrations. *Environmental Science and Technology*,
648 53(15), 8649–8663. doi: 10.1021/acs.est.8b06389

649 Compeau, G. C., & Bartha, R. (1985). Sulfate-reducing bacteria: Principal methylators of Mercury in Anoxic
650 Estuarine Sediment. *Applied and Environmental Microbiology*, 50(2), 498–502.

651 Cooper, C. J., Zheng, K., Rush, K. W., Johs, A., Sanders, B. C., Pavlopoulos, G. A., ... Parks, J. M. (2020).
652 Structure determination of the HgcAB complex using metagenome sequence data: insights into microbial
653 mercury methylation. *Communications Biology*, 3(1), 1–9. doi: 10.1038/s42003-020-1047-5

654 Finn, R. D., Clements, J., & Eddy, S. R. (2011). HMMER web server: interactive sequence similarity searching.
655 *Nucleic Acids Research*, 39(suppl), W29–W37. doi: 10.1093/nar/gkr367

656 Fleming, E. J., Mack, E. E., Green, P. G., & Nelson, D. C. (2006). Mercury methylation from unexpected
657 sources: molybdate-inhibited freshwater sediments and an iron-reducing bacterium. *Applied and*
658 *Environmental Microbiology*, 72(1), 457–464. doi: 10.1128/AEM.72.1.457-464.2006

659 Gilmour, C. C., Elias, D. A., Kucken, A. M., Brown, S. D., Palumbo, A. V., Schadt, C. W., & Wall, J. D.
660 (2011). Sulfate-reducing bacterium *Desulfovibrio desulfuricans* ND132 as a model for understanding bac-
661 terial mercury methylation. *Applied and Environmental Microbiology*, 77(12), 3938–3951. doi:
662 10.1128/AEM.02993-10

663 Gilmour, C. C., Podar, M., Bullock, A. L., Graham, A. M., Brown, S. D., Somenahally, A. C., ... Elias, D. A.
664 (2013). Mercury methylation by novel microorganisms from new environments. *Environmental Science*
665 *and Technology*, 47(20), 11810–11820. doi: 10.1021/es403075t

666 Gilmour, C. C., Bullock, A. L., McBurney, A., Podar, M., & Elias, D. A. (2018). Robust mercury methylation
667 across diverse methanogenic Archaea. *MBio*, 9(2), 1–13. doi: 10.1128/mBio.02403-17

668 Gionfriddo, C. M., Tate, M. T., Wick, R. R., Schultz, M. B., Zemla, A., Thelen, M. P., ... Moreau, J. W. (2016).
669 Microbial mercury methylation in Antarctic sea ice. *Nature Microbiology*, 1(August), 1–12. doi:
670 10.1038/nmicrobiol.2016.127

671 Gionfriddo C, Podar M, Gilmour C, Pierce E, Elias D. (2019) ORNL Compiled Mercury Methylator Database
672 <https://www.osti.gov/dataexplorer/biblio/dataset/1569274>

673 Gionfriddo, C. M., Wymore, A. M., Jones, D. S., Wilpiszeski, R. L., Lynes, M. M., Christensen, G. A., ... Elias,
674 D. A. (2020). An Improved hgcAB Primer Set and Direct High-Throughput Sequencing Expand Hg-
675 Methylator Diversity in Nature. *Frontiers in Microbiology*, 11, 2275. doi: 10.3389/fmicb.2020.541554

676 Hamelin, S., Amyot, M., Barkay, T., Wang, Y., & Planas, D. (2011). Methanogens: Principal methylators of
677 mercury in lake periphyton. *Environmental Science and Technology*, 45(18), 7693–7700. doi:
678 10.1021/es2010072

679 Harrell, F., & Harrell, M. (2013). Package ‘Hmisc.’ *CRAN*, 235(6).

680 Hug, L. A., Baker, B. J., Anantharaman, K., Brown, C. T., Probst, A. J., Castelle, C. J., ... Ban, J. F. (2016). A
681 new view of the tree of life. *Nature Microbiology*, 1(16048), 1–6. doi: 10.1038/nmicrobiol.2016.48

682 Hyatt, D., Chen, G.-L., LoCascio, P. F., Land, M. L., Larimer, F. W., & Hauser, L. J. (2010). Prodigal:
683 prokaryotic gene recognition and translation initiation site identification. *BMC Bioinformatics*, 11(1), 119.
684 doi: 10.1186/1471-2105-11-119

685 Jones, D. S., Walker, G. M., Johnson, N. W., Mitchell, C. P. J., Coleman Wasik, J. K., & Bailey, J. V. (2019).
686 Molecular evidence for novel mercury methylating microorganisms in sulfate-impacted lakes. *ISME*
687 *Journal*, 13(7), 1659–1675. doi: 10.1038/s41396-019-0376-1

688 Kerin, E. J., Gilmour, C. C., Roden, E., Suzuki, M. T., Coates, J. D., & Mason, R. P. (2006). Mercury
689 methylation by dissimilatory iron-reducing bacteria. *Applied and Environmental Microbiology*, 72(12),
690 7919–7921. doi: 10.1128/AEM.01602-06

691 Krogh, A., Larsson, B., von Heijne, G., & Sonnhammer, E. L. . (2001). Predicting transmembrane protein
692 topology with a hidden markov model: application to complete genomes. *Journal of Molecular Biology*,
693 305(3), 567–580. doi: 10.1006/JMBI.2000.4315

694 Kronberg, R.-M., Jiskra, M., Wiederhold, J. G., Björn, E., & Skyllberg, U. (2016). Methyl Mercury Formation
695 in Hillslope Soils of Boreal Forests: The Role of Forest Harvest and Anaerobic Microbes. *Environmental*
696 *Science & Technology*, 50(17), 9177–9186. doi: 10.1021/acs.est.6b00762

697 Kumar, S., Stecher, G., Li, M., Knyaz, C., & Tamura, K. (2018). MEGA X: Molecular Evolutionary Genetics
698 Analysis across Computing Platforms. *Molecular Biology and Evolution*, 35(6), 1547–1549. doi:
699 10.1093/molbev/msy096

700 Langmead, B., & Salzberg, S. L. (2012). Fast gapped-read alignment with Bowtie 2. *Nature Methods*, 9(4),
701 357–359. doi: 10.1038/nmeth.1923

702 Le, S. Q., & Gascuel, O. (2008). An Improved General Amino Acid Replacement Matrix. *Molecular Biology*
703 *and Evolution*, 25(7), 1307–1320. doi: 10.1093/molbev/msn067

704 Letunic, I., & Bork, P. (2019). Interactive Tree Of Life (iTOL) v4: recent updates and new developments.
705 *Nucleic Acids Research*, 47(W1), W256–W259. doi: 10.1093/nar/gkz239

706 Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., ... Durbin, R. (2009). The Sequence
707 Alignment/Map format and SAMtools. *Bioinformatics*, 25(16), 2078–2079. doi:
708 10.1093/bioinformatics/btp352

709 Li, D., Liu, C.-M., Luo, R., Sadakane, K., & Lam, T.-W. (2016). MEGAHIT: an ultra-fast single-node solution
710 for large and complex metagenomics assembly via succinct de Bruijn graph. *Bioinformatics*, 31(10),
711 1674–1676. doi: 10.1093/bioinformatics/btv033

712 Liao, Y., Smyth, G. K., & Shi, W. (2014). featureCounts: an efficient general purpose program for assigning
713 sequence reads to genomic features. *Bioinformatics*, 30(7), 923–930. doi: 10.1093/bioinformatics/btt656

714 Lin, H., Ascher, D. B., Myung, Y., Lamborg, C. H., Hallam, S. J., Gionfriddo, C. M., ... Moreau, J. W. (2021).
715 Mercury methylation by metabolically versatile and cosmopolitan marine bacteria. *The ISME Journal*, 15,
716 1810–1825. doi: 10.1038/s41396-020-00889-4

717 Liu, Y. R., Johs, A., Bi, L., Lu, X., Hu, H. W., Sun, D., ... Gu, B. (2018). Unraveling Microbial Communities
718 Associated with Methylmercury Production in Paddy Soils. *Environmental Science and Technology*,
719 52(22), 13110–13118. doi: 10.1021/acs.est.8b03052

720 Matsen, F. A., Kodner, R. B., & Armbrust, E. V. (2010). pplacer: linear time maximum-likelihood and Bayesian
721 phylogenetic placement of sequences onto a fixed reference tree. *BMC Bioinformatics*, 11(1), 538. doi:
722 10.1186/1471-2105-11-538

723 McDaniel, E., Peterson, B., Stevens, S., Tran, P., Anantharaman, K., & McMahon, K. (2020). Expanded
724 Phylogenetic Diversity and Metabolic Flexibility of Mercury-Methylating Microorganism. *MSystems*,
725 5(4), 1–21.

726 Mikheenko, A., Saveliev, V., & Gurevich, A. (2016). MetaQUAST: evaluation of metagenome assemblies.
727 *Bioinformatics*, 32(7), 1088–1090. doi: 10.1093/bioinformatics/btv697

728 Millera Ferriz, L., Ponton, D. E., Storck, V., Leclerc, M., Bilodeau, F., Walsh, D. A., & Amyot, M. (2021). Role
729 of organic matter and microbial communities in mercury retention and methylation in sediments near run-
730 of-river hydroelectric dams. *Science of the Total Environment*, 774(February), 145686. doi:
731 10.1016/j.scitotenv.2021.145686

732 Narasingarao, P., Podeil, S., Ugalde, J. A., Brochier-Armanet, C., Emerson, J. B., Brocks, J. J., ... Allen, E. E.
733 (2012). De novo metagenomic assembly reveals abundant novel major lineage of Archaea in hypersaline
734 microbial communities. *The ISME Journal*, 6(1), 81–93. doi: 10.1038/ismej.2011.78

735 Nayfach, S., & Pollard, K. S. (2015). Average genome size estimation improves comparative metagenomics and
736 sheds light on the functional ecology of the human microbiome. *Genome Biology*, 16(1), 1–18. doi:
737 10.1186/s13059-015-0611-7

738 Nayfach, S., Roux, S., Seshadri, R., Udwyar, D., Varghese, N., Schulz, F., ... Eloe-Fadrosh, E. A. (2021). A
739 genomic catalog of Earth's microbiomes. *Nature Biotechnology*, 39(4), 499–509. doi: 10.1038/s41587-
740 020-0718-6

741 Oksanen, A. J., Blanchet, F. G., Kindt, R., Legendre, P., Minchin, P. R., Hara, R. B. O., ... Wagner, H. (2015).
742 The vegan package. Community ecology package. [Http://CRAN.R-Project.Org/Package=vegan](http://CRAN.R-Project.Org/Package=vegan).

743 Paoli, L., Ruscheweyh, H.-J., Forneris, C. C., Kautsar, S., Clayssen, Q., Salazar, G., ... Sunagawa, S. (2021).
744 Uncharted biosynthetic potential of the ocean microbiome. *BioRxiv*, 2021.03.24.436479. doi:
745 10.1101/2021.03.24.436479

746 Parks, J. M., Johs, A., Podar, M., Bridou, R., Hurt, R. A., Smith, S. D., ... Liang, L. (2013). The genetic basis
747 for bacterial mercury methylation. *Science*, 339(6125), 1332–1335. doi: 10.1126/science.1230667

748 Pereira, M. B., Wallroth, M., Jonsson, V., & Kristiansson, E. (2018). Comparison of normalization methods for
749 the analysis of metagenomic gene abundance data. *BMC Genomics*, 19(1), 274. doi: 10.1186/s12864-018-
750 4637-6

751 Peterson, B. D., McDaniel, E. A., Schmidt, A. G., Lepak, R. F., Janssen, S. E., Tran, P. Q., ... McMahon, K. D.
752 (2020). Mercury Methylation Genes Identified across Diverse Anaerobic Microbial Guilds in a Eutrophic
753 Sulfate-Enriched Lake. *Environmental Science & Technology*, 54(24), 15840–15851. doi:
754 10.1021/acs.est.0c05435

755 Pierella Karlusich, J. J., Pelletier, E., Zinger, L., Lombard, F., Zingone, A., Colin, S., ... Bowler, C. (2022). A
756 robust approach to estimate relative phytoplankton cell abundances from metagenomes. *Molecular
757 Ecology Resources*. doi: 10.1111/1755-0998.13592

758 Podar, M., Gilmour, C. C., Brandt, C. C., Soren, A., Brown, S. D., Crable, B. R., ... Elias, D. A. (2015). Global
759 prevalence and distribution of genes and microorganisms involved in mercury methylation. *Science
760 Advances*, 1(9), 1–13. doi: 10.1126/sciadv.1500675

761 Ramos-Barbero, M. D., Martin-Cuadrado, A.-B., Viver, T., Santos, F., Martinez-Garcia, M., & Antón, J. (2019).
762 Recovering microbial genomes from metagenomes in hypersaline environments: The Good, the Bad and
763 the Ugly. *Systematic and Applied Microbiology*, 42(1), 30–40. doi: 10.1016/J.SYAPM.2018.11.001

764 Rodriguez-R, L. M., & Konstantinidis, K. T. (2014). Nonpareil: A redundancy-based approach to assess the
765 level of coverage in metagenomic datasets. *Bioinformatics*, 30(5), 629–635. doi:
766 10.1093/bioinformatics/btt584

767 Roth, S., Poulin, B. A., Baumann, Z., Liu, X., Zhang, L., Krabbenhoft, D. P., ... Barkay, T. (2021). Nutrient
768 Inputs Stimulate Mercury Methylation by Syntrophs in a Subarctic Peatland. *Frontiers in Microbiology*,
769 12, 741523. doi: 10.3389/fmicb.2021.741523

770 Salazar, G., Paoli, L., Alberti, A., Huerta-Cepas, J., Ruscheweyh, H. J., Cuenca, M., ... Wincker, P. (2019).
771 Gene Expression Changes and Community Turnover Differentially Shape the Global Ocean
772 Metatranscriptome. *Cell*, 179(5), 1068-1083.e21. doi: 10.1016/j.cell.2019.10.014

773 Selengut, J. D., Haft, D. H., Davidsen, T., Ganapathy, A., Gwinn-Giglio, M., Nelson, W. C., ... White, O.
774 (2007). TIGRFAMs and Genome Properties: tools for the assignment of molecular function and biological
775 process in prokaryotic genomes. *Nucleic Acids Research*, 35(Database), D260–D264. doi:
776 10.1093/nar/gkl1043

777 Schaefer, J. K., Kronberg, R. M., Björn, E., & Skyllberg, U. (2020). Anaerobic guilds responsible for mercury
778 methylation in boreal wetlands of varied trophic status serving as either a methylmercury source or sink.
779 *Environmental Microbiology*, 22(9), 3685–3699. doi: 10.1111/1462-2920.15134

780 Sczyrba, A., Hofmann, P., Belmann, P., Koslicki, D., Janssen, S., Dröge, J., ... McHardy, A. C. (2017). Critical
781 Assessment of Metagenome Interpretation—a benchmark of metagenomics software. *Nature Methods*,
782 14(11), 1063–1071. doi: 10.1038/nmeth.4458

783 Smith, S. D., Bridou, R., Johs, A., Parks, J. M., Elias, D. A., Hurt, R. A., ... Wall, J. D. (2015). Site-directed
784 mutagenesis of HgcA and HgcB reveals amino acid residues important for mercury methylation. *Applied*
785 and *Environmental Microbiology*, 81(9), 3205–3217. doi: 10.1128/AEM.00217-15

786 Soerensen, A. L., Schartup, A. T., Skrobonja, A., Bouchet, S., Amouroux, D., Liem-Nguyen, V., & Björn, E.
787 (2018). Deciphering the Role of Water Column Redoxclines on Methylmercury Cycling Using Speciation
788 Modeling and Observations From the Baltic Sea. *Global Biogeochemical Cycles*, 32(10), 1498–1513. doi:
789 10.1029/2018GB005942

790 Tamames, J., Cobo-Simón, M., & Puente-Sánchez, F. (2019). Assessing the performance of different
791 approaches for functional and taxonomic annotation of metagenomes. *BMC Genomics*, 20(1), 960. doi:
792 10.1186/s12864-019-6289-6

793 Thompson, L. R., Sanders, J. G., McDonald, D., Amir, A., Ladau, J., Locey, K. J., ... Zhao, H. (2017). A
794 communal catalogue reveals Earth's multiscale microbial diversity. *Nature*, 551(7681), 457–463. doi:
795 10.1038/nature24621

796 van der Walt, A. J., van Goethem, M. W., Ramond, J.-B., Makhalyane, T. P., Reva, O., & Cowan, D. A.
797 (2017). Assembling metagenomes, one community at a time. *BMC Genomics*, 18(1), 521. doi:
798 10.1186/s12864-017-3918-9

799 Vigneron, A., Cruaud, P., Aubé, J., Guyoneaud, R., & Goñi-Urriza, M. (2021). Transcriptomic evidence for
800 versatile metabolic activities of mercury cycling microorganisms in brackish microbial mats. *Npj Biofilms*
801 and *Microbiomes*, 7(1), 1–11. doi: 10.1038/s41522-021-00255-y

802 Villar, E., Cabrol, L., & Heimbürger-Boavida, L. E. (2020). Widespread microbial mercury methylation genes
803 in the global ocean. *Environmental Microbiology Reports*, 12(3), 277–287. doi: 10.1111/1758-2229.12829

804 Xu, J., Liem-Nguyen, V., Buck, M., ... S. B.-F. in, & 2020, U. (2021). Mercury methylating microbial
805 community structure in boreal wetlands explained by local physicochemical conditions. *Frontiers*.
806 Retrieved from <https://scholar.google.com/scholar?cluster=13616141145651252883&hl=en&oi=scholarr>

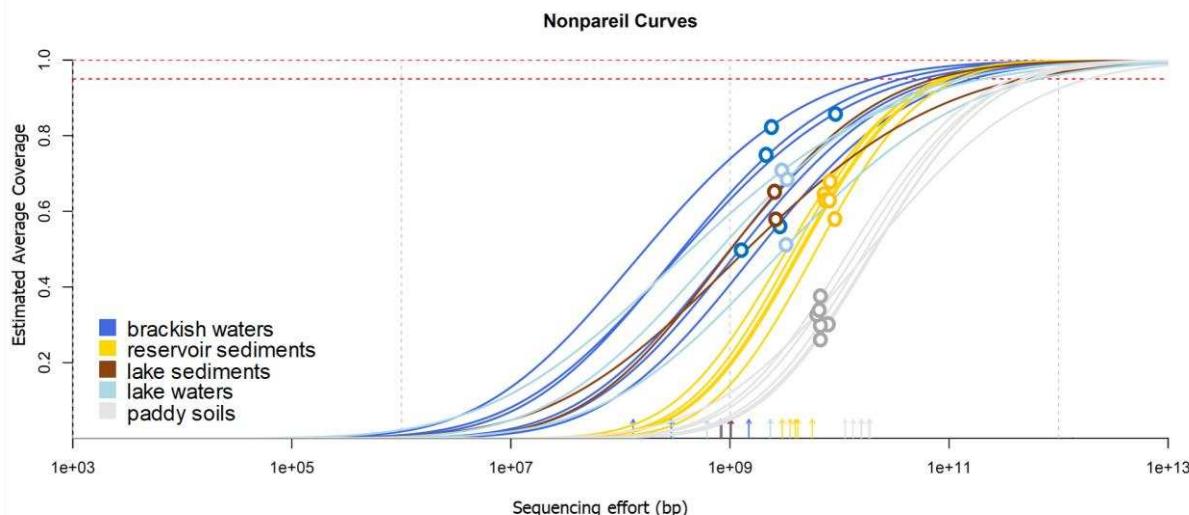
807

808 **Datasheet 1.** This file includes information related to different parameters collected or
809 measured in this work from the 29 metagenomes used in this work (A) For each metagenome,
810 metagenome id, type of environment, non-pareil metrics, genome equivalents (Microbe
811 Census) values, number of cleaned and mapped reads, number of *hgcA* genes, *hgcA* coverage
812 values and normalization metrics values, *dsrA* coverage values (B) List of all *hgcA* genes
813 detected in the 29 metagenomes with both a single assembly and co-assembly approaches, with
814 the three stringency cutoffs. Gene length, number of mapped reads, coverage values, NBCI
815 taxonomy txid and amino acid sequences are presented. (C) List of all *hgcA* genes detected in
816 the 29 metagenomes with both a single assembly and co-assembly approaches, with the high
817 stringency cutoff. Gene length, number of mapped reads, coverage values, NBCI taxonomy
818 txid and amino acid sequences are presented. (D) List of all *dsrA* genes detected in the 29
819 metagenomes with both a single assembly and co-assembly approaches, with the high
820 stringency cutoff. Gene length, number of mapped reads, coverage values and amino acid
821 sequences are presented. (F) Coverage values of the 257 marker genes (including *rpoB*)
822 obtained using the single assembly vs co-assembly approaches.

823

824 Supporting Information

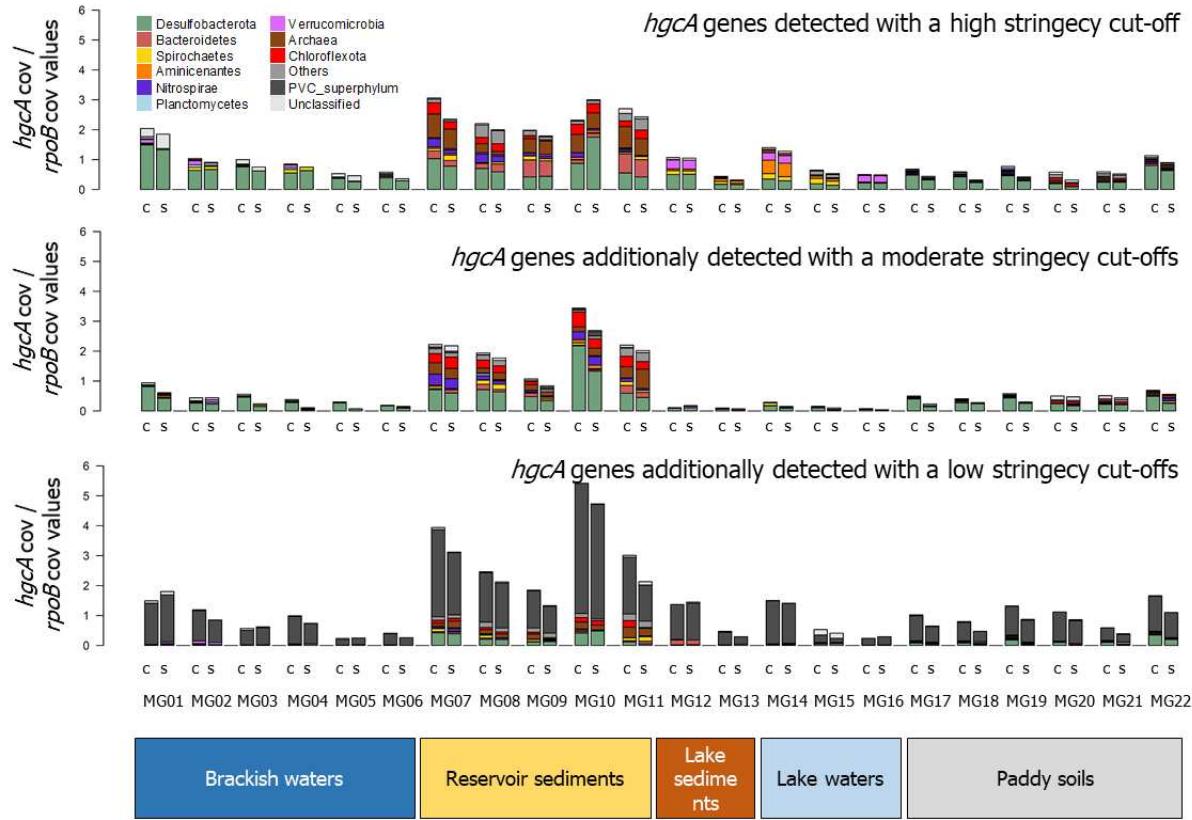
825 **Figure S1:** Nonpareil curves for the 22 metagenomes. The plot displays the fitted models of
826 the Nonpareil curves. The horizontal dashed lines indicate 100 (gray) and 95% (red) coverage.
827 The empty circles indicate the size and estimated average coverage of the datasets, and the
828 lines after that point are projections of the fitted model.



829

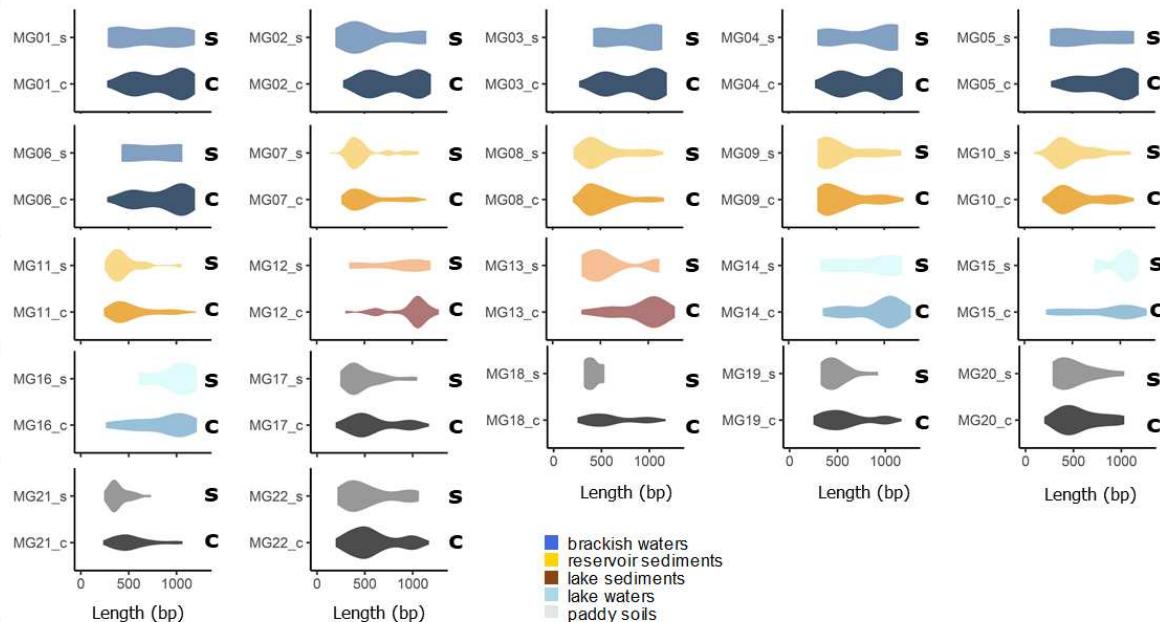
830

831 **Figure S2.** Distribution of *hgcA* genes in the 22 metagenomes recovered using the co-assembly
832 'c' and the single assembly 's' methods and applying the three stringency cutoffs defined in
833 this manuscript for the definition of *hgcA* genes. Abundance values were calculated as *hgcA*
834 coverage values normalized by *rpoB* normalized values. Colors denote taxonomic affiliations
835 of *hgcA* genes.



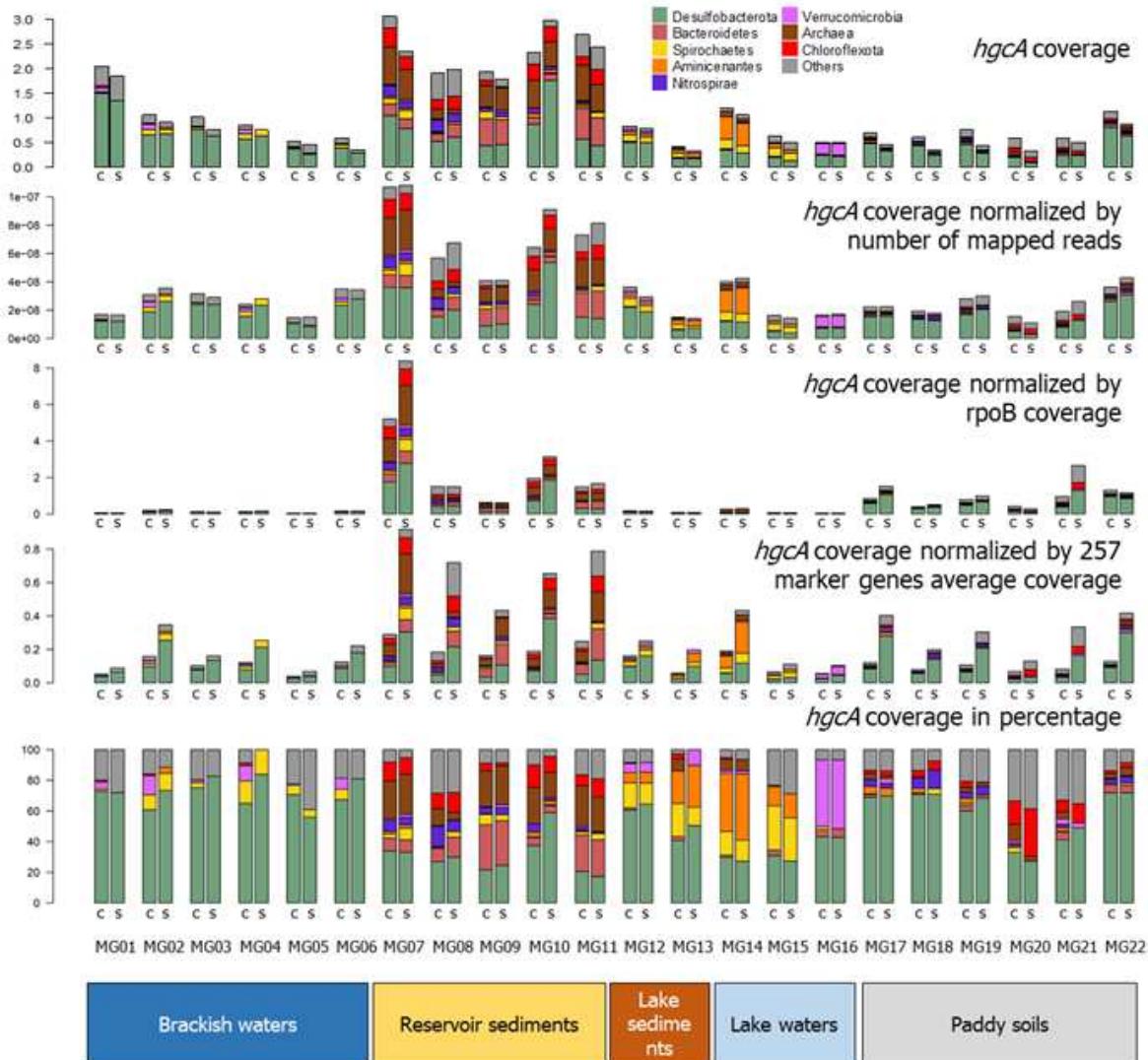
836
837
838
839

Figure S3: Violin boxplots showing, for each metagenome, the difference in *hgcA* sequence length distribution comparing the outputs of the co-assembly and the single assembly approaches.



840
841
842
843

844 **Figure S4:** Distribution of *hgcA* genes in the 22 metagenomes with the co-assembly (c) and
845 the single assembly (s) methods with different normalization methods



846