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Abstract 32 

Mercury methylation genes (hgcAB) mediate the formation of the toxic methylmercury and 33 

have been identified from diverse environments, including freshwater and marine ecosystems, 34 

Arctic permafrost, forest and paddy soils, coal-ash amended sediments, chlor-alkali plants 35 

discharges and geothermal springs. Here we present the first attempt at a standardized protocol 36 

for the detection, identification and quantification of hgc genes from metagenomes. Our Hg-37 

MATE (Hg-cycling Microorganisms in Aquatic and Terrestrial Ecosystems) database, a 38 

catalogue of hgc genes, provides the most accurate information to date on the taxonomic 39 

identity and functional/metabolic attributes of microorganisms responsible for Hg methylation 40 

in the environment. Furthermore, we introduce <marky-coco=, a ready-to-use bioinformatic 41 

pipeline based on de novo single-metagenome assembly, for easy and accurate characterization 42 

of hgc genes from environmental samples. We compared the recovery of hgc genes from 43 

environmental metagenomes using the marky-coco pipeline with an approach based on co-44 

assembly of multiple metagenomes. Our data show similar efficiency in both approaches for 45 

most environments except those with high diversity (i.e., paddy soils) for which a co-assembly 46 

approach was preferred. Finally, we discuss the definition of true hgc genes and methods to 47 

normalize hgc gene counts from metagenomes. 48 
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Introduction 53 

Environmental mercury methylation is primarily a biotic process carried out by 54 

microorganisms that transform inorganic mercury (Hg) into the more toxic and 55 

bioaccumulative monomethylmercury (MeHg). The capacity to perform Hg methylation was 56 

historically associated with certain sulfate-reducing bacteria, iron-reducing bacteria and 57 

methanogenic archaea (Compeau and Bartha, 1985; Fleming et al., 2006; Kerin et al., 2006; 58 

Hamelin et al., 2011). Field observations revealed links between Hg methylation and sulfate-59 

reduction, iron-reduction and methanogenesis in organic matter-rich anaerobic environments 60 

(Bravo and Cosio, 2020 for review), as well as subsequent studies that tested cultured 61 

representatives of these clades for Hg-methylation capability (Fleming et al. 2006; Gilmour et 62 

al., 2011; 2013; 2018). The discovery of the hgc genes (Parks et al., 2013) has facilitated the 63 

detection of novel putative Hg methylating bacteria and archaea through cultivation-64 

independent molecular methods (Podar et al., 2015; Gionfriddo et al., 2016). Recent works 65 

analyzing publicly available genomes and environmental metagenome-assembled genomes 66 

(MAGs) identified hgc-containing (hgc+) microorganisms from microbial lineages not 67 

formerly associated with Hg-methylation, such as members of the PVC superphylum (Jones et 68 

al., 2019; Gionfriddo et al., 2019; Peterson et al., 2020; McDaniel et al., 2020; Lin et al., 2021). 69 

Identifying hgc genes in microbial genomes from meta-omic datasets greatly expanded our 70 

view of the phylogenetic diversity of putative Hg methylators (Fig 1), but we still do not fully 71 

understand which microorganisms are the main drivers of Hg methylation in diverse 72 

environments, particularly outside of anoxic sediments. 73 

 74 

Figure 1. Simplified unrooted phylogenetic tree of hgcA sequences from the Hg-MATE 75 

database. Taxonomy is based on NCBI classification with the exception of Deltaproteobacteria 76 

(Desulfobacterota with GTDB classification) and Chloroflexi (Chloroflexota with GTDB 77 

classification). For visualization ease, microbial groups were collapsed by the dominant 78 

monophyletic group. Microbial groups with the highest diversity of hgc+ microorganisms are 79 

denoted by colors. 80 
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Significant knowledge gaps in the identification of microorganisms capable of Hg methylation 81 

remain, largely because of the absence of hgc+ cultured representatives from novel clades (i.e., 82 

outside the Desulfobacterota, Firmicutes, Methanomicrobia) with experimentally validated 83 

Hg-methylating capability (Gilmour et al., 2018). One reason for this is the difficulty in 84 

selecting for hgc+ microorganisms during cultivation, and another is the lack of a successful 85 

methodology for isolating all relevant microbes in controlled laboratory conditions. Microbes 86 

that have yet to be cultivated, and for which successful laboratory growth parameters need to 87 

be identified, are often referred to as the <unculturable= (Hug et al., 2016; Steen et al., 2019). 88 

High-throughput meta-omic and targeted amplicon sequencing studies have become the main 89 

methods for identifying putative Hg methylating microorganisms of this unculturable fraction 90 

(Bravo et al., 2018; Gionfriddo et al., 2020; Xu et al., 2021). While directly testing for Hg 91 

methylation capacity may not be a viable strategy, pairing these sequencing methods with 92 

biogeochemical measurements, Hg methylation assays, and other manipulation studies can 93 

connect a Hg-methylating microbiome to MeHg production and metabolic activity and help to 94 

elucidate the potential contribution of these novel clades to Hg methylation (Kronberg et al., 95 

2016; Bouchet et al., 2018; Schaefer et al., 2020; Roth et al., 2021).  96 

The detection of hgc+ MAGs provides the most precise information about the taxonomic and 97 

metabolic characteristics of putative Hg methylators (Jones et al., 2019; Peterson et al., 2020; 98 

Lin et al., 2021; Vigneron et al., 2021). However, the microbial diversity in some environments 99 

is too high and/or Hg methylators are too rare to identify them effectively (Podar et al., 2015; 100 

Christensen et al., 2019). In these cases, read-based metagenomic analyses and hgc 101 

metabarcoding are easier and more economical. Accurately identifying Hg-methylating clades 102 

(and metabolic guilds) from hgc sequences alone therefore requires a universally used and 103 

updated hgcAB database, coupled to consistent and robust bioinformatic practices, in order to 104 

identify precisely the target genes in complex meta-omic datasets.  105 

In this work, we introduce Hg-MATE (Hg-cycling Microorganisms in Aquatic and Terrestrial 106 

Ecosystems) database version 1 (https://doi.org/10.25573/serc.13105370.v1), an up-to-date 107 

hgcAB catalog compiled from isolated, single-cell and metagenome-reconstructed genomes. 108 

Additionally, we present marky-coco (https://github.com/ericcapo/marky-coco), a ready-to-109 

use bioinformatic pipeline to detect, identify and count hgc genes from metagenomes (Fig 2). 110 

We apply this pipeline to metagenomes collected from paddy soils, brackish and lake waters, 111 

as well as sediments from reservoirs and lakes in which hgc genes have been previously 112 

detected (Liu et al., 2018; Jones et al., 2019; Capo et al., 2020; Millera Ferriz et al., 2021). 113 

Further, we specifically compared the reliability of (i) applying the marky-coco pipeline based 114 

on de novo single assembly approach from single metagenomes with (ii) co-assembling of 115 

multiple metagenomes (co-assembly) prior to mapping and identification. Finally, we discuss 116 

appropriate definitions and cutoff criteria for hgc genes and also best practices to normalize 117 

data for an accurate count of hgc genes in metagenomes from environmental samples. 118 

 119 

 120 

 121 
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 122 

Figure 2. (A) Workflow illustrating how the hgcAB gene catalogue Hg-MATE database was 123 

built, (B) Simplified workflow of the marky-coco pipeline (C) Illustration of the two assembly 124 

approaches compared in this work: single assembly vs co-assembly. 125 

 126 

 127 

 128 

  129 
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2. Material and Methods 130 

2.1 Description of the Hg-MATE database v1 131 

The Hg-MATE database v1 was released on 14 January 2021 132 

(https://doi.org/10.25573/serc.13105370.v1), and contains an extensive hgcAB dataset from a 133 

wide range of microorganisms and environments. The catalog contains 1053 unique HgcA/B 134 

amino acid sequences (Table 1). We categorized the HgcAB amino acid sequences into four 135 

types depending on whether they were encoded in (i) pure culture/environmental microbial 136 

isolates (ISO) (ii) single-cell genome sequences (CEL) (iii) metagenome-assembled genomes 137 

(MAGs) (iv) or an environmental meta-omic contig (CON). Amino acid sequences of HgcA, 138 

HgcB, and concatenated HgcA and HgcB were included in the database. If hgcB was not co-139 

localized with hgcA in the genome and/or could not be identified, then 8na9 was listed in the 140 

8HgcB9 sequence column. Both genes need to be present and encode functional proteins for a 141 

microbe to methylate Hg (see Parks et al., 2013; Smith et al., 2015). One reason hgcB may not 142 

be identified in some genomes carrying hgcA is because HgcB is highly homologous to other 143 

4Fe-4S ferredoxins. Therefore, hgcB can be difficult to differentiate from other ferredoxin-144 

encoding genes if not co-localized with hgcA on a contiguous sequence. In addition, hgcB may 145 

be missing from 8MAGs9, 8CEL9 and 8CON9 sequences due to incomplete coverage of the 146 

genome or incomplete contig assembly, or failure to bin the contig carrying hgcB. Some hgc 147 

genes are predicted to encode a 8fused HgcAB protein9 which has been previously described 148 

(Podar et al., 2015), and is characterized by one gene that encodes for a 4Fe-4S ferredoxin-like 149 

protein with shared homology to HgcA and HgcB. This 8fused HgcAB9 protein contains the 150 

corrinoid iron-sulfur and transmembrane domains characteristic of HgcA as well as the 4Fe-151 

4S ferredoxin motif of HgcB (e.g., Uniprot Q8U2U9, NCBI Refseq: WP_011011854.1, 152 

Pyrococcus furiosus DSM 3638). These sequences are provided in the 8HgcA9 column, and 153 

labeled 8fused HgcAB9 in the HgcB column. These 8fused HgcAB9 sequences should be treated 154 

with caution because, while they share significant sequence homology to HgcA and HgcB from 155 

confirmed Hg methylators, to date all organisms with a 8fused HgcAB9 that have been tested 156 

do not seem to produce MeHg in culture (Podar et al., 2015; Gilmour et al., 2018). 157 

 158 

Table 1. Summary of HgcAB sequence types in version 1 of the Hg-MATE database. 159 

Genome type 

Total HgcA(B) 

sequences 

Encode both 

HgcA and HgcB 

Encode fused 

HgcAB 

Only HgcA (or 

HgcB) present 

ISO 204 173 10 21 
CEL 29 4 18 7 
MAG 787 696 17 74 
CON 33 9 0 21(3) 

 160 

The resources within the Hg-MATE database v1 include a catalog with the amino acid 161 

sequences and metadata of all microorganisms. Only sequences with genomic identifying 162 

information (i.e., 8ISO9, 8CEL9, 8MAG9) were used to compile further resources. Resources 163 

include: (i) FASTA files containing Hgc amino acid sequences; (ii) Multiple Sequence 164 

Alignments (MSA) in FASTA format of Hgc amino acid sequences built with MUSCLE 165 

implemented in MEGAX (Kumar et al., 2018) with the cluster method UPGMA; and (iii) 166 
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Hidden Markov models (HMM) of aligned Hgc amino acid sequences built from MSAs using 167 

the hmmbuild function from the hmmer software (3.2.1 version, Finn et al., 2011). 168 

Additionally, resources include reference packages that can be used to identify and classify: 169 

(1) the corrinoid-binding domain of HgcA which corresponds to residues ~37-156 of the HgcA 170 

sequence from Pseudodesulfovibrio mercurii ND132 and includes the characteristic cap helix 171 

domain (2) full HgcA sequence and (3) concatenated HgcA and HgcB. Each reference package 172 

contains sequence alignments, an HMM model, a phylogenetic tree, and NCBI taxonomy. 173 

Reference packages were constructed using the program Taxtastic 174 

(https://github.com/fhcrc/taxtastic) for HgcA(B) amino acid sequences from ISO, CEL & 175 

MAG. Phylogenetic trees were built from MSA files by RAxML using the GAMMA model of 176 

rate heterogeneity and LG amino acid substitution matrix (Le and Gascuel, 2008). Trees were 177 

rooted by HgcA paralog sequences, carbon monoxide dehydrogenases (PF03599) from non-178 

HgcA coding microorganisms Candidatus Omnitrophica bacterium CG1_02_41_171 and 179 

Thermosulfurimonas dismutans. These organisms were chosen because of their distant 180 

phylogenetic relationship to hgcA+ microorganisms. Confidence values on branches were 181 

calculated from 100 bootstraps. Using the HgcA reference tree, a simplified tree of 8ISO9, 182 

8CEL9, 8MAG9 hgcA genes was built using iTOL (Letunic and Bork, 2019) and clades were 183 

collapsed by the dominant monophyletic group, when possible, for visualization ease. 184 

 185 

2.2 Data collection 186 

A total of 29 metagenomes from recent studies studying hgc genes in environments with known 187 

active Hg methylation were used for the bioinformatic analyses performed in this work (Table 188 

1, Datasheet 1A). Metagenomes from brackish waters (BARM8s) were collected in 2014 in 189 

the Gotland Deep basin of the Central Baltic Sea. Out of 81 available metagenomes (Alneberg 190 

et al., 2018; BioProject ID PRJEB22997), 8 metagenomes where hgc genes have been detected 191 

(Capo et al., 2020) were used in the present analysis. Water depths of these metagenomes 192 

ranged from 76 to 200 m with oxygen concentrations either low (hypoxic zone) or undetectable 193 

(anoxic zone), salinity ranging between 9.2-12.1 psu and MeHg concentrations measuring up 194 

to 1640 fM (Soerensen et al., 2018). Lake sediments and water metagenomes (MANGA6s) 195 

were obtained in 2013-2014 from the sulfate-impacted Manganika lake in Northern Minnesota 196 

(Jones et al., 2019, BioProject ID PRJNA488162). This hypereutrophic lake is characterized 197 

by dissolved oxygen approaching 16 mg/L (nearly 200% saturation) near the surface, pH 198 

exceeding 8.7 and MeHg accumulating over 3 ng/L in bottom waters. Dissolved oxygen and 199 

pH decreased with depth, and anoxic conditions were encountered below 4 m. Sulfide 200 

concentrations up to 2 mM were observed in bottom waters and sediments. Water samples were 201 

collected at these anoxic depths. Five metagenomes (RES5S) were obtained from reservoir 202 

sediments from the St. Maurice River near Wemotaci, Canada in 2017 and 2018 (Millera-Ferriz 203 

et al., 2021, GOLD-JGI Ga0393614 Ga0393582, Ga0393617, Ga0393586, Ga0393589). The 204 

studied river section has been affected by the construction of two run-of-river power plant dams 205 

and its watershed has been disturbed by a forest fire, logging, and the construction of wetlands. 206 

MeHg concentrations in samples varied from <0.02 to 19 ng/g. Metagenomes from paddy and 207 

upland soils (PADDY10s) were collected from two historical Hg mining sites, Fenghuang (FH) 208 

and Wanshan (WS), in Southwest China in August 2016 (Liu et al., 2018, BioProject ID 209 

PRJNA450451). The pH of paddy soils ranged from 6 to 7.5. Historical discharge from Hg 210 
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mining operations and ongoing atmospheric deposition contribute to high concentrations of 211 

MeHg in the soils around these areas with values up to 7.9 ng g-1 in the collected samples.  212 

 213 

 214 

Table 2. Metagenomes collected from previously published papers investigating the presence 215 

of Hg methylators in the environment.  216 

Systems #metagenomes dataset id References 

Brackish waters 8 BARM8s Capo et al., 2020 

Lake sediments and water 6 MANGA6s Jones et al., 2019 

River/reservoir sediments 5 RES5s Millera Ferriz et al., 2021 

Paddy soils/upland soils 10 PADDY10s Liu et al., 2018 

 217 

2.3 Bioinformatics 218 

The detection, taxonomic identification and counting of hgc genes was done with the marky-219 

coco snakemake-implemented pipeline (https://github.com/ericcapo/marky-coco). A brief 220 

overview of this workflow is as follows: the metagenomes were trimmed and cleaned using 221 

fastp (Chen et al., 2018) with the following parameters: quality threshold of 30 (-q 30), length 222 

threshold of 25 (-l 25), and with trimming of adapters and polyG tails enabled (--223 

detect_adapter_for_pe --trim_poly_g --trim_poly_x). A de novo single assembly approach, in 224 

which each metagenome was assembled individually, was applied using the assembler megahit 225 

1.1.2 (Li et al., 2016) with default settings. The annotation of the contigs for prokaryotic 226 

protein-coding gene prediction was done with the software Prodigal 2.6.3 (Hyatt et al., 2010). 227 

The DNA reads were mapped against the contigs with bowtie2 (Langdmead and Salzberg, 228 

2012), and the resulting .sam files were converted to .bam files using samtools 1.9 (Li et al., 229 

2009). The .bam files and the prodigal output .gff file were used to estimate read counts by 230 

using featureCounts (Liao et al., 2014). In order to detect hgc homologs, HMM profiles derived 231 

from the Hg-MATE database v1 were applied to the amino acid FASTA file generated with 232 

Prodigal from each assembly with the function hmmsearch from HMMER 3.2.1 (Finn et al., 233 

2011). The reference package 8hgcA9 from Hg-MATE.db was used for phylogenetic analysis 234 

of the HgcA amino acid sequences. Briefly, the predicted amino acid sequences from gene 235 

identified as putative hgcA gene were (i) compiled in a FASTA file, (ii) aligned to the 236 

Stockholm formatted HgcA alignment from the reference package with the function hmmalign 237 

from HMMER 3.2.1 (iii) placed onto the HgcA reference tree and classified using the functions 238 

pplacer, rppr and guppy_classify from the program pplacer (Matsen et al., 2010). For more 239 

details, see the README.txt of the Hg-MATE database v1 240 

(https://doi.org/10.25573/serc.13105370.v1). Additionally, to compare the efficiency of the 241 

marky-coco pipeline to detect hgc genes from metagenomes with a co-assembly approach 242 

(multiple metagenomes used for assembly), we performed co-assemblies on metagenomes 243 

within each environmental system (BARM8s, MANGA6s, RES5s, PADDY10s, Table 2). 244 

Post-assembly, all other steps of the analysis procedure were performed similarly to the marky-245 

coco pipeline. Detection of dsrA genes were detected in metagenomes with the function 246 

hmmsearch and HMM profile from TIGRFAM (Selengut et al., 2007). The amount of 247 
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sequencing required to cover the total diversity and the estimated diversity of each metagenome 248 

were evaluated using the Nonpareil method (Rodriguez-R and Konstantinidis, 2014). 249 

2.4 Stringency cut-offs for the definition of true hgc genes 250 

Based on knowledge from confirmed isolated Hg methylators, we propose several stringency 251 

cutoffs that could be used to distinguish between an hgcA gene homolog and an hgcA-like gene 252 

that encodes for a protein of unknown Hg methylation capability. (i) High stringency cutoff: 253 

amino acid sequence includes one of the cap-helix motifs with the conserved cysteine (Cys93 254 

in P. mercurii ND132), NVWCAAGK, NVWCASGK, NVWCAGGK, NIWCAAGK, 255 

NIWCAGGK or NVWCSAGK. This cutoff is based on previous findings that showed isolated 256 

microorganisms carrying HgcA proteins with the cap helix domain are capable of Hg 257 

methylation (Parks et al., 2013; Smith et al., 2015; Gilmour et al., 2018; Cooper et al., 2020). 258 

Within the high stringency cutoff, there is a possible need to distinguish between the amino 259 

acid sequences from fused HgcAB-like proteins and those from true HgcA proteins, since 260 

isolates that encode fused HgcAB-like genes do not have the capacity to methylate Hg in 261 

culture (Podar et al., 2015; Gilmour et al., 2018). The fused HgcAB include the cap-helix and 262 

ferredoxin motifs of HgcA and HgcB. (ii) Moderate stringency cutoff: in addition to amino 263 

acid sequences that include the motifs described above, any sequence with a bitscore value 264 

obtained from the HMM analysis greater than or equal to 100 is included (iii) Low stringency 265 

cutoff: in addition to amino acid sequences that include the motifs described above, any 266 

sequence with a bitscore value greater than or equal to 60 is included. For hgcB gene homologs, 267 

we propose two cutoffs that could be used for their description as hgcB genes. (i) High 268 

stringency cutoff: their amino acid sequences include one of the following motifs featuring the 269 

conserved Cys (Cys73 in P. mercurii ND132, Cooper et al., 2020), C(M/I)ECGA motifs and 270 

that the genes are found on the same contig as an hgcA genes. (ii) Moderate stringency cutoff: 271 

amino acid sequences include the C(M/I)ECGA motif, but the gene are not co-located on a 272 

contig with an hgcA gene. 273 

 274 

2.5 Estimation of hgcA abundance in metagenomes 275 

Coverage values of hgcA genes were calculated, for each gene and each sample, as the number 276 

of reads mapping to the gene divided by the length of the gene (read/bp). We compared the 277 

reliability of four procedures for normalizing read counts of hgcA genes. Normalization metrics 278 

were (i) the total number of mapped reads (ii) the summed coverage values of rpoB genes, (iii) 279 

the median coverage values of 257 marker genes (GTDB-Tk r89 release, Chaumeil et al., 280 

2019), or (iv) the genome equivalents values calculated using the software MicrobeCensus 281 

(Nayfach and Pollard, 2015) which normalizes the relative abundance by the metagenomic 282 

dataset size and the community average genome size of the microbial community. The 283 

coverage of each marker gene was calculated as the sum of the coverages of all the ORFs 284 

assigned to that gene (Datasheet 1A). The rpoB and the 256 other marker genes were detected 285 

using the function hmmsearch from hmmer software (v3.2.1, Finn et al., 2011) and applying 286 

the trusted cut-off provided in HMM files (GTDB-Tk r89 release, Chaumeil et al., 2019).  287 

 288 

 289 
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2.6 Data analysis 290 

A non-metric multidimensional scaling analysis (nMDS) was performed applying the function 291 

metaMDS from the R package vegan (Oksanen et al., 2015) to the table of hgcA gene coverage 292 

values, clustered at the lowest level of NCBI taxonomic identification (txid), obtained with 293 

single assembly and co-assembly approaches (Datasheet 1B). A PROTEST permutation 294 

procedure analysis (1000 permutations) was performed using the function Procrustes to 295 

evaluate the level of concordance of the outputs between both approaches. The functions rcorr 296 

from the R package Hmisc (Harrell and Harrell, 2019), corrplot from the R package corrplot 297 

(Taiyun et al., 2017) and plot3D from the R package rgkl (Adler et al., 2019) were used to 298 

investigate correlations between normalization methods. 299 

3. Results  300 

3.1 Dataset outputs 301 

A total of 29 single assemblies (one for each metagenome) and 4 co-assemblies (reads from 302 

each of the BARM8s, MANGA6s, RES5S, and PADDY10s metagenome sets assembled 303 

together) were used to compare the efficiency of a single assembly using the marky-coco 304 

pipeline and a co-assembly approach to detect, identify and count hgc genes from metagenomes 305 

(Fig. 2). The number of mapped reads of the analyzed metagenomes ranged between 10.2-306 

110.9 M reads (average, 29.4 ± 19.6) with single assembly and 16.6-120.7 M reads (average, 307 

36.0 ± 19.9) with co-assembly, with the percentage of mapped reads ranging between 16-76 % 308 

and 24-89 %, respectively (Datasheet 1A). Nonpareil diversity index values (Nd) of 309 

metagenomes were between 18.7 and 23.7 with the highest found in paddy soil metagenomes 310 

(Fig. S1, Table 3). Nonpareil curves showed that paddy soil samples from this study required 311 

the highest sequencing effort for nearly complete coverage followed by reservoir sediments, 312 

and then lake sediment and lake waters and brackish waters (Fig S1). Estimated coverage of 313 

paddy soils metagenomes was relatively low (average, 0.30-0.37) compared to other 314 

metagenomes (0.49-0.83) showing that only a portion of the diversity of these environmental 315 

samples was recovered despite the relatively high sequencing depth (88.6 ± 5.6 M reads) (Table 316 

3). Seven metagenomes (S02, S03, S19, S22, S26, S28, S29) that were used in coassemblies 317 

but with low hgcA coverage values (i.e., <0.40 obtained from co-assemblies) were not used for 318 

further comparison analysis. The remaining 22 metagenomes, labeled MG01 - MG22, had 319 

hgcA unnormalized coverage values between 0.44 and 3.06 (1.22 ± 0.79) (Datasheet 1A). Only 320 

hgcA genes (and not hgcB) from these metagenomes were used for comparison of the two 321 

assembly approaches as hgcAB gene pairs were not 100 % similar between the two approaches 322 

(Datasheet 1B). Additionally, hgcAB-like homologs that are predicted to encode for fused 323 

HgcAB proteins were excluded from further analysis. 324 

 325 

3.2 Distribution of hgcA genes with different stringency cutoffs 326 

By definition, all hgcA genes detected with the high stringency cutoff are predicted to encode 327 

proteins that include the conserved amino acid motifs characteristic of functional HgcA 328 

proteins, while this is not the case for those additionally detected when lowering the stringency 329 
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cutoffs (i.e., moderate or low). We therefore considered that gene homologs to hgcA found 330 

with bitscore values below 100 and without conserved motifs cannot with confidence be 331 

defined as true hgcA genes. Nevertheless, we wanted here to highlight how <false= hgcA genes 332 

i.e., detected without the conserved amino acid motifs characteristic of functional HgcA 333 

proteins, were taxonomically assigned using the pplacer approach applied to the Hg-MATE 334 

hgcA reference tree. The hgcA genes detected with a high stringency cutoff and those 335 

additionally detected with moderate stringency cutoffs were predominantly identified as 336 

Desulfobacterota, Chloroflexota and Euryarchaeota (Fig S2). In contrast, the hgcA genes 337 

additionally detected with low stringency cutoff were primarily identified as members of the 338 

PVC superphylum but were unclassified at lower taxonomic levels. For further comparison, 339 

we used information only from hgcA genes detected with the high stringency.  340 

 341 

3.3 Comparison between co-assembly vs single assembly approaches 342 

For all metagenomes, 1.50-7.25 times more hgcA genes were detected in co-assemblies (19-343 

147 genes) compared to linked single assemblies (4-69 genes) (Table 3). We investigated the 344 

differences in hgcA gene lengths, discriminating between genes (i) found at the extremity of 345 

contigs (potentially truncated) and (ii) between other genes in contigs therefore expected to be 346 

complete. A higher number of 8complete9 hgcA gene sequences were detected with the co-347 

assembly (1-17, average 6.8 ± 4.4 genes) compared to the single assembly (0-6, average 2.0 ± 348 

2.7 genes), e.g., for metagenomes from brackish and lake waters (Datasheet 1A). No complete 349 

genes were identified in the single assemblies that were not also identified in the co-assembly. 350 

Violin plots illustrated that, overall, a higher number of 8complete9 hgcA sequences (> 950 bp) 351 

were found with the co-assembly versus the single assembly (Fig. S3). 352 

 353 

Table 3. For each metagenome, Non-pareil diversity index values, estimated average coverage, 354 

number of mapped reads, number of hgcA genes and hgcA coverage values (reads/bp) for co-355 

assembly ´c´ and single assembly ´s´ approaches. See Datasheet 1A for extended description 356 

of the dataset. 357 

 358 

Environments 

Metagenomes 

id 

Non 

pareil 

diversit

y index 

(Nd) 

Estimated 

average 

coverage 

Number of 

mapped 

reads 

(millions 

reads) 

Number 

of hgcA 

genes 

hgcA 

coverage 

values 

c s c s c s 

brackish water MG01 19.51 0.83 
120.

7 110.9 
38 14 

2.04 1.85 
 MG02 21.12 0.55 33.9 25.5 40 16 1.05 0.91 
 MG03 19.49 0.70 32.0 25.8 29 7 1.01 0.75 
 MG04 20.52 0.63 35.1 26.9 34 10 0.84 0.75 
 MG05 18.69 0.76 35.6 30.5 23 5 0.52 0.46 
 MG06 20.73 0.48 16.6 10.2 29 4 0.58 0.35 

reservoir sediment MG07 22.46 0.59 28.6 21.8 147 69 3.06 2.36 
 MG08 21.99 0.64 33.6 29.4 103 53 2.19 1.98 
 MG09 21.82 0.68 47.2 43.5 74 35 1.98 1.78 
 MG10 22.10 0.63 36.1 32.7 102 68 2.32 3.00 
 MG11 22.15 0.63 36.7 29.8 122 62 2.69 2.43 

lake sediment MG12 20.55 0.62 22.7 26.7 23 10 0.83 0.78 
 MG13 20.75 0.57 27.2 22.5 26 9 0.41 0.32 

lake water MG14 21.57 0.49 29.6 24.8 31 13 1.19 1.05 
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 MG15 20.24 0.66 38.5 34.6 31 8 0.62 0.50 
 MG16 19.51 0.67 30.5 29.2 19 10 0.47 0.50 

paddy soils MG17 23.48 0.34 31.1 20.4 77 21 0.69 0.45 
 MG18 23.31 0.33 30.8 18.5 60 13 0.59 0.33 
 MG19 23.67 0.27 27.1 14.3 85 20 0.76 0.43 
 MG20 23.14 0.37 37.5 28.8 61 15 0.58 0.32 
 MG21 23.49 0.30 30.5 18.7 57 25 0.60 0.51 

  MG22 23.64 0.30 30.6 20.5 84 33 1.12 0.89 

 359 

In a comparison of HgcA amino acid sequences recovered from the two assembly approaches, 360 

no HgcA sequence from the single assembly had 100% sequence identity to sequences in the 361 

co-assembly (Datasheet 1B). The highest sequence similarity of HgcA sequences from 362 

different assemblies of the same dataset was 99%. To compare, we investigated differences 363 

between assemblies for detecting dsrA gene, which encodes for dissimilatory sulfite reductase 364 

subunit A, an essential enzyme in sulfate reduction and expected to be present in these datasets. 365 

Identical amino acid sequences of DsrA-encoding genes were found when comparing single 366 

assemblies to the related co-assembly with numbers ranging from 1 to 33 depending on 367 

metagenomes (Datasheet 1D). Comparatively, dsrA genes were 3-34x more abundant (in 368 

coverage) than hgcA genes. This higher abundance helps explain why more identical dsrA were 369 

found between co-assembly and single assembly approaches than for hgcA genes. 370 

 371 

Distribution plots showed unnormalized coverage values of hgcA clustered by environment 372 

types (Fig. 3A) or for each metagenome (Fig. S4). Importantly, unnormalized values were used 373 

here to compare single assembly vs coassembly results for each metagenome but not to 374 

compare difference between environments for which normalization would be required (Fig S4). 375 

Overall, higher hgcA coverage values were observed with the co-assembly for all types of 376 

environments (Fig 3A) and for each metagenome with the exception of reservoir sediment 377 

MG10 (Fig. S4, Table 3). The application of normalization methods (as described in the section 378 

below) revealed contrasting patterns in hgcA relative abundance, with higher values observed 379 

for single assembly methods when applying, for instance, a normalization method based on 380 

rpoB coverage values (Fig. S4). For each metagenome, the nMDS analysis showed a high level 381 

of similarity in taxonomy-based hgcA inventories obtained from single assembly vs co-382 

assembly (Fig. 3B). This was confirmed by a procrustean analysis that showed significant 383 

levels of concordance for the hgcA inventories obtained between both approaches (p  0.001). 384 

Looking at each dataset independently, reservoir sediments and brackish waters showed 385 

significant levels of concordances (p  0.008, p  0.002) while lake waters and paddy soils had 386 

non-significant levels of concordances (p  0.17, p  0.30; no statistics possible with only two 387 

metagenomes for lake sediments). 388 
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 389 

Figure 3 (A) Distribution of hgcA genes in the metagenomes obtained from five types of 390 

environments with the co-assembly 8c9 and the single assembly 8s9 methods. For these barplots, 391 

unnormalized hgcA coverage values were used. (B) Dissimilarities in the structure of hgcA 392 

inventories obtained with the co-assembly 8c9 and the single assembly 8s9 approaches. nMDS 393 

stress values = 0.1909. The id of each metagenome is denoted as follows: numbers 394 

corresponding to the metagenome id (e.g., MG01 is 01), ´c´ or ´s´ stands for analysis with the 395 

co-assembly or the single assembly.  396 

 397 

3.4 Comparison between normalization methods 398 

In order to compare normalization methods to estimate the abundance of hgcA genes, we 399 

calculated the (i) total number mapped prokaryotic reads, (ii) rpoB genes coverage values, (iii) 400 

median coverage value of 257 marker genes and (iv) genome equivalents values (Microbe 401 

Census) (Fig 4, Datasheet 1E). Overall, significant correlations were observed between the 402 

total number of reads, rpoB coverage values, and the median coverage values of 257 marker 403 

genes (Fig. 4A), while no significant correlations were observed between these metrics and 404 

genome equivalent values. The 3D plot shows the relationships between the total number of 405 

reads, the median coverage values of 257 marker genes and genome equivalent values (Fig. 406 

4B).  407 

 408 
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 409 

Figure 4. Plots showing correlations between metrics used for normalization. Only outputs 410 

presented here were calculated from data obtained with the single assembly approach.  411 

 412 

 413 

4. Discussion  414 

 415 

4.1 Identification of true hgc genes from environmental genomic data 416 

The absence of cultured representatives of hgc+ microorganisms from novel clades (i.e., outside 417 

the Desulfobacterota, Firmicutes, Methanomicrobia) with experimentally validated Hg-418 

methylating capability (Gilmour et al., 2013; 2018) hampers confirmation that newly 419 

discovered hgc genes from environmental samples truly code for Hg methylating enzymes. 420 

Indeed, the recent analysis of publicly available metagenomes revealed the high diversity of 421 

microbial lineages with hgc+ microorganisms, with the vast majority yet uncultured and 422 

therefore unstudied for Hg methylation activity (Gionfriddo et al., 2019; McDaniel et al., 423 

2020). To date, all hgcA+ microorganisms that have been experimentally tested have been 424 

found shown to produce MeHg (except for those with fused hgcAB-like sequences) (Gilmour 425 

et al., 2013; 2018), and protein modeling of novel hgcA sequences suggest they have 426 

comparable active sites to HgcA sequences in experimentally verified Hg methylators. 427 

Therefore, although recent findings revealed relationships between microbial expression of hgc 428 

transcripts and MeHg formation in the environment (Capo, Feng et al. 2022 bioRxiv), and some 429 

putative hgcAB genes have been computationally modelled to possess functionality for 430 

methylation (Gionfriddo et al. 2016, Lin et al. 2021), we remain cautious about defining true 431 

hgc genes from environmental samples. As such, some studies have qualified hgc genes found 432 

in the environment as hgc genes (e.g., Gionfriddo et al., 2016; Bowman et al., 2020; Villar et 433 

al., 2020; Capo et al., 2020).  434 

 435 

Here, we defined three stringency cutoffs to describe hgcA genes in environmental 436 

metagenomes. By definition, the HgcA-encoding genes detected with the high stringency 437 

cutoffs include the key amino acid residues (i.e., the cap helix motif 438 

N[V/I]WC[A/S][A/G/S]GK), Parks et al., 2013) present in HgcA from known Hg methylators. 439 
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In contrast, all other hits to the HMM, from moderate and low stringency cut-offs, lack these 440 

amino acid residues. To date none of the isolates lacking these key amino acid residues has 441 

been found to methylate Hg, or no cultured isolate exists to test for Hg methylation capability 442 

(Gilmour et al., 2018). Substitution of some of these amino acids in the cap helix of HgcA may 443 

not result in loss of Hg methylation activity, as demonstrated by site-directed mutagenesis 444 

experiments with P. mercurii ND132 (Smith et al., 2015). However, in addition to the cap helix 445 

domain of HgcA, the transmembrane domain of HgcA may also be required for Hg methylation 446 

activity. Unfortunately, the transmembrane region of HgcA has no detectable sequence 447 

homology (Cooper et al., 2020).  448 

 449 

Thus, we recommend using the high stringency cutoff defined in the present study for routine 450 

identification of hgcA from environmental metagenomes. Lower stringency could reveal novel 451 

HgcA sequences that have lower similarity to HgcA from known Hg methylators, but if the 452 

lower stringency cutoff is used, we advise careful manual inspection of the sequences to ensure 453 

that they have important motifs and other HgcA features like the cap-helix region. If the amino 454 

acid sequence in the cap helix domain is highly divergent from known sequences, we 455 

recommend protein modeling efforts to determine if the active site is similar enough to known 456 

sequences to validate classification as HgcA. Additional verification of true HgcA sequences 457 

include prediction of transmembrane domain regions (e.g., using TMHMM software, Krogh et 458 

al., 2001) and identification of other key conserved residues (Parks et al., 2013; Smith et al., 459 

2015; Jones et al., 2019). A combination of several methods will certainly help to improve our 460 

description of hgcA genes in the coming years. 461 

 462 

4.2 Effectiveness of the Hg-MATE database  463 

The Hg-MATE database originates from the combination of two recent works (Gionfriddo et 464 

al., 2019; McDaniel et al., 2020). The present work is a collaborative project of the Meta-Hg 465 

working group that aimed to provide a living database that will be periodically updated. It 466 

provides several useful tools (HMM profiles and references phylogenetic trees) and a 467 

documented workflow that allows for the identification of hgc genes for easy comparison 468 

between studies. One major advantage of Hg-MATE is the assignment of NCBI taxonomy IDs 469 

(txid) to hgcA genes allowing for easy comparison with datasets from other studies that also 470 

use the Hg-MATE database (Datasheet 1B). In contrast, outputs from previous hgc-related 471 

studies are difficult to compare with each other because hgc taxonomic identification is usually 472 

done with different in-house databases and/or phylogenetic tools, and is based on the manual 473 

inspection of phylogenetic trees increasing the level of uncertainties and subjectivity in 474 

taxonomic identification. While the used pplacer approach here is not perfect - since 475 

phylogenetic relatedness of the gene does not necessarily mean the same organismal taxonomy 476 

because of potential horizontal gene transfer (McDaniel et al., 2020) - it is a standardized 477 

approach allowing for a robust and automated identification of hgc genes from metagenomes.  478 

 479 

A side-by-side comparison of previous and present taxonomic identification of putative Hg 480 

methylators is presented in this section. For water and sediment metagenomes from Lake 481 

Manganika our identification by HgcA phylogeny showed consistent results with previous 482 

identification from hgc+ MAGs (Jones et al., 2019), with Desulfobacterota, Aminicenantes, 483 
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Kiritimatiellaeota and Spirochaetes being the predominant putative Hg methylators. In the case 484 

of Baltic Sea water metagenomes, the comparison of our Hg-MATE taxonomy identification 485 

with the previous identification using a set of hgc sequences from Podar et al. (2015) revealed 486 

consistency in the predominant hgc+ groups detected (Desulfobacterota, Spirochaetes, 487 

Kiritimatiellota) but noticeable differences for others i.e., Planctomycetes and 488 

Verrucomicrobia (Datasheet 1B). Consistent with previous characterization, reservoir 489 

sediments were characterized by predominant hgc+ Methanomicrobia, Desulfobacterota, 490 

Bacteroidetes, and Chloroflexota. Finally, in paddy soils, Liu et al. (2018) identified mostly 491 

hgc+ Desulfobacterota, Firmicutes and Methanomicrobia while, in the present study, the two 492 

last microbial groups were found less predominant to the benefit of hgc+ Nitrospirae and 493 

Chloroflexota. 494 

 495 

In addition to using phylogenetic placements of hgc genes in reference trees from the Hg-496 

MATE database, a more precise approach to identification of putative Hg methylators is 497 

probably the identification of hgc+ MAGs (i.e., Jones et al., 2019; Peterson et al., 2020; Lin et 498 

al., 2021). However, the recovery of MAGs from metagenomes is not always possible due to 499 

(i) the difficulty of obtaining MAGs from certain environments such as sediments and (ii) the 500 

low predominance of Hg methylators compared to other microorganisms in the environment, 501 

and therefore the lower probability of recovering hgc+ MAGs. A recent work revealed the good 502 

congruence between the identification of hgc+ MAGs and a hgc phylogeny based on Hg-MATE 503 

phylogeny (Capo, Feng et al., 2022 bioRxiv) highlighting that both approaches could be used 504 

to ensure the reliability in the identification of Hg methylators. 505 

 506 

4.3 Assembly methods depend of the diversity of the metagenome 507 

 508 

The increasing amount of publicly available environmental genomic data (Thompson et al., 509 

2017; Nayfach et al., 2021) opens avenues to answer ecological questions related to the 510 

biogeography patterns and dispersal barriers of Hg methylators in interconnected systems (such 511 

as the global ocean and coastal systems). Co-assembly of multiple metagenomes has been 512 

shown to have many important benefits compared to single assemblies including improved 513 

binning and better recovery of low abundance environmental genomes from studies that use 514 

multiple low-coverage metagenomes. However, co-assembly requires higher computational 515 

costs and potentially masks microdiversity by collapsing the genomes of multiple related 516 

strains into a single MAG (Narasingarao et al., 2012; Van der Walt et al., 2017; Ramos-Barbero 517 

et al., 2019; Tamames et al., 2020; Paoli et al., 2021).  Here, we compared hgcA recovery from 518 

single assembled metagenomes versus co-assemblies of multiple metagenomes from the same 519 

environment. In all cases except one, co-assembly significantly increased the recovery of hgcA 520 

genes (Fig S4). Additionally, we showed that when the diversity and composition of the hgcA+ 521 

community was compared across all the samples included in the analysis, single assemblies 522 

and co-assemblies performed similarly in this regard, suggesting that also single metagenomes 523 

can provide adequate information (similar level of hgc coverage and detected diversity) on the 524 

hgc+ community.  525 

 526 
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Differences in the diversity of environments can have an effect on the recovery of hgc genes 527 

from metagenomes. Nonpareil diversity index values of the metagenomes ranged between 18.7 528 

and 23.7 with the highest being found in paddy soils metagenomes (Fig. S1, Datasheet 1A). 529 

Here, for the paddy soils that exhibited higher Non-pareil diversity index values (Fig S1), 530 

consistently with Rodriguez-R and Konstantinidis (2014), the co-assembly approach 531 

outperforms single sample assemblies in the recovery of hgc genes (Fig 3). Noticeably, 532 

although no identical HgcA amino acid sequences were detected between single assembly and 533 

co-assembly approach, identical DsrA amino acid sequences were observed. We hypothesized 534 

that the low proportion of hgcA genes in metagenomes, compared to dsrA genes, explained 535 

such discrepancies, although it did not strongly impact the overall hgcA coverage values 536 

recovery.  In these situations, we recommend aiming for either higher depth of coverage or 537 

sequencing of multiple adjacent or linked metagenomes or replicates from a single sample. In 538 

contrast, we recommend avoiding the co-assembly of metagenomes from different 539 

environments that could produce more misassembles and chimerism (Mikheenko et al., 2016; 540 

Sczyrba et al., 2017; Tamames et al., 2020). For other environments such as brackish and lake 541 

waters, our work highlights that using the marky-coco pipeline based on a single assembly 542 

approach provide similar results to a co-assembly approach in detecting hgc genes. 543 

 544 

 545 

4.4 Robust normalization methods are needed for quantitative inferences 546 

The normalization of gene counts from environmental metagenomes and metatranscriptomes 547 

is a key aspect of works aiming to study the prevalence of certain microorganisms in specific 548 

environments (Pereira et al., 2018; Salazar et al., 2019; Pierella Karlusich et al., 2022). In 549 

hgcAB omics studies, the number of mapped reads and the coverage values of marker genes or 550 

housekeeping genes is usually used to normalize the coverage values of hgc genes (Lin et al., 551 

2021; Vigneron et al., 2021; Tada et al., 2021; Capo et al., 2022). Tests here revealed that a 552 

wide range of contrasting normalization methods all provided reasonable abundance estimates 553 

that were significantly correlated with one another with the exception of genome equivalent 554 

values (Fig 4). Non-significant correlations found between genome equivalent values and other 555 

metrics can be explained by the weaker relationships observed for the metrics in paddy soils 556 

and reservoir sediments metagenomes, while metrics from brackish waters, lake sediment and 557 

waters appear to have linear relationships. Therefore, we do not strongly recommend any single 558 

method over others. Instead, we suggest that it may be prudent to report data that employ 559 

multiple normalization methods to allow for easy comparisons to be carried out between 560 

studies. Such normalizations can without too much of an effort be included in the supporting 561 

information for later usage. Suggested normalization methods include the total number of 562 

prokaryotic reads, coverage values of rpoB genes and the median coverage values of 257 563 

marker genes (example in Datasheet 1E).  564 

 565 

 566 

  567 
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5. Conclusion 568 

The study of the taxonomic diversity and metabolic capacities of microorganisms involved in 569 

Hg methylation will lead to a better understanding of the environmental factors triggering 570 

microbial methylation of divalent Hg. Although metagenomic and metatranscriptomic-based 571 

studies have provided better insights into the environmental role of those microorganisms, there 572 

is still a need to standardize methods to detect hgc genes from environmental omic data. 573 

Furthermore, since Hg methylators often constitute such a small proportion of the microbiome, 574 

methods outlined in this study provide best practices for improving their detection and recovery 575 

from metagenomes. We provide here an up-to-date hgc gene catalogue, Hg-MATE database 576 

v1, and the marky-coco bioinformatic pipeline to detect, identify and count hgc genes from 577 

metagenomes. We recommend using our high stringency cutoff to detect hgcA genes in 578 

metagenomes and applying our protocol in future prospects of Hg methylation genes, 579 

especially for cross-comparison between studies. Finally, although a co-assembly approach 580 

should be chosen when analyzing metagenomes from highly diverse environments (i.e., paddy 581 

soils), we recommend using marky-coco pipeline, based on a de novo assembly for recovering 582 

hgc genes in metagenomes from aquatic environments. 583 
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Datasheet 1. This file includes information related to different parameters collected or 808 

measured in this work from the 29 metagenomes used in this work (A) For each metagenome, 809 

metagenome id, type of environment, non-pareil metrics, genome equivalents (Microbe 810 

Census) values, number of cleaned and mapped reads, number of hgcA genes, hgcA coverage 811 

values and normalization metrics values, dsrA coverage values (B) List of all hgcA genes 812 

detected in the 29 metagenomes with both a single assembly and co-assembly approaches, with 813 

the three stringency cutoffs. Gene length, number of mapped reads, coverage values, NBCI 814 

taxonomy txid and amino acid sequences are presented. (C) List of all hgcA genes detected in 815 

the 29 metagenomes with both a single assembly and co-assembly approaches, with the high 816 

stringency cutoff. Gene length, number of mapped reads, coverage values, NBCI taxonomy 817 

txid and amino acid sequences are presented. (D) List of all dsrA genes detected in the 29 818 

metagenomes with both a single assembly and co-assembly approaches, with the high 819 

stringency cutoff. Gene length, number of mapped reads, coverage values and amino acid 820 

sequences are presented. (F) Coverage values of the 257 marker genes (including rpoB) 821 

obtained using the single assembly vs co-assembly approaches.  822 

 823 

Supporting Information 824 

Figure S1: Nonpareil curves for the 22 metagenomes. The plot displays the fitted models of 825 

the Nonpareil curves. The horizontal dashed lines indicate 100 (gray) and 95% (red) coverage. 826 

The empty circles indicate the size and estimated average coverage of the datasets, and the 827 

lines after that point are projections of the fitted model.  828 

 829 

 830 

Figure S2. Distribution of hgcA genes in the 22 metagenomes recovered using the co-assembly 831 

´c´ and the single assembly ´s´ methods and applying the three stringency cutoffs defined in 832 

this manuscript for the definition of hgcA genes. Abundance values were calculated as hgcA 833 

coverage values normalized by rpoB normalized values. Colors denote taxonomic affiliations 834 

of hgcA genes.  835 
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836 

Figure S3: Violin boxplots showing, for each metagenome, the difference in hgcA sequence 837 

length distribution comparing the outputs of the co-assembly and the single assembly 838 

approaches. 839 

 840 

 841 

 842 
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Figure S4: Distribution of hgcA genes in the 22 metagenomes with the co-assembly (c) and 844 

the single assembly (s) methods with different normalization methods 845 

 846 
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