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Abstract

Mercury methylation genes (hgcAB) mediate the formation of the toxic methylmercury and
have been identified from diverse environments, including freshwater and marine ecosystems,
Arctic permafrost, forest and paddy soils, coal-ash amended sediments, chlor-alkali plants
discharges and geothermal springs. Here we present the first attempt at a standardized protocol
for the detection, identification and quantification of hgc genes from metagenomes. Our Hg-
MATE (Hg-cycling Microorganisms in Aquatic and Terrestrial Ecosystems) database, a
catalogue of hgc genes, provides the most accurate information to date on the taxonomic
identity and functional/metabolic attributes of microorganisms responsible for Hg methylation
in the environment. Furthermore, we introduce “marky-coco”, a ready-to-use bioinformatic
pipeline based on de novo single-metagenome assembly, for easy and accurate characterization
of hgc genes from environmental samples. We compared the recovery of hgc genes from
environmental metagenomes using the marky-coco pipeline with an approach based on co-
assembly of multiple metagenomes. Our data show similar efficiency in both approaches for
most environments except those with high diversity (i.e., paddy soils) for which a co-assembly
approach was preferred. Finally, we discuss the definition of true hgc genes and methods to
normalize hgc gene counts from metagenomes.

Keywords: mercury, hgcAB genes, Hg methylation, metagenomics, bioinformatics, Hg-
MATE, marky-coco
Running title: Recovering hgcAB genes from metagenomes
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Introduction

Environmental mercury methylation is primarily a biotic process carried out by
microorganisms that transform inorganic mercury (Hg) into the more toxic and
bioaccumulative monomethylmercury (MeHg). The capacity to perform Hg methylation was
historically associated with certain sulfate-reducing bacteria, iron-reducing bacteria and
methanogenic archaea (Compeau and Bartha, 1985; Fleming et al., 2006; Kerin et al., 2006;
Hamelin et al., 2011). Field observations revealed links between Hg methylation and sulfate-
reduction, iron-reduction and methanogenesis in organic matter-rich anaerobic environments
(Bravo and Cosio, 2020 for review), as well as subsequent studies that tested cultured
representatives of these clades for Hg-methylation capability (Fleming et al. 2006; Gilmour et
al., 2011; 2013; 2018). The discovery of the hgc genes (Parks et al., 2013) has facilitated the
detection of novel putative Hg methylating bacteria and archaea through cultivation-
independent molecular methods (Podar et al., 2015; Gionfriddo et al., 2016). Recent works
analyzing publicly available genomes and environmental metagenome-assembled genomes
(MAGs) identified hgc-containing (hgc®) microorganisms from microbial lineages not
formerly associated with Hg-methylation, such as members of the PVC superphylum (Jones et
al., 2019; Gionfriddo et al., 2019; Peterson et al., 2020; McDaniel et al., 2020; Lin et al., 2021).
Identifying hgc genes in microbial genomes from meta-omic datasets greatly expanded our
view of the phylogenetic diversity of putative Hg methylators (Fig 1), but we still do not fully
understand which microorganisms are the main drivers of Hg methylation in diverse
environments, particularly outside of anoxic sediments.
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Figure 1. Simplified unrooted phylogenetic tree of hgcA sequences from the Hg-MATE
database. Taxonomy is based on NCBI classification with the exception of Deltaproteobacteria
(Desulfobacterota with GTDB classification) and Chloroflexi (Chloroflexota with GTDB
classification). For visualization ease, microbial groups were collapsed by the dominant
monophyletic group. Microbial groups with the highest diversity of Agc* microorganisms are
denoted by colors.
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81 Significant knowledge gaps in the identification of microorganisms capable of Hg methylation
82 remain, largely because of the absence of hgc™ cultured representatives from novel clades (i.e.,
83 outside the Desulfobacterota, Firmicutes, Methanomicrobia) with experimentally validated
84 Hg-methylating capability (Gilmour et al., 2018). One reason for this is the difficulty in
85 selecting for hgc™ microorganisms during cultivation, and another is the lack of a successful
86 methodology for isolating all relevant microbes in controlled laboratory conditions. Microbes
87 that have yet to be cultivated, and for which successful laboratory growth parameters need to
88 Dbe identified, are often referred to as the “unculturable” (Hug et al., 2016; Steen et al., 2019).
89 High-throughput meta-omic and targeted amplicon sequencing studies have become the main
90 methods for identifying putative Hg methylating microorganisms of this unculturable fraction
91 (Bravo et al., 2018; Gionfriddo et al., 2020; Xu et al., 2021). While directly testing for Hg
92 methylation capacity may not be a viable strategy, pairing these sequencing methods with
93 Dbiogeochemical measurements, Hg methylation assays, and other manipulation studies can
94  connect a Hg-methylating microbiome to MeHg production and metabolic activity and help to
95 elucidate the potential contribution of these novel clades to Hg methylation (Kronberg et al.,
96 2016; Bouchet et al., 2018; Schaefer et al., 2020; Roth et al., 2021).

97 The detection of hgc™ MAGs provides the most precise information about the taxonomic and

98 metabolic characteristics of putative Hg methylators (Jones et al., 2019; Peterson et al., 2020;

99 Linetal., 2021; Vigneron et al., 2021). However, the microbial diversity in some environments
100 is too high and/or Hg methylators are too rare to identify them effectively (Podar et al., 2015;
101  Christensen et al., 2019). In these cases, read-based metagenomic analyses and hgc
102 metabarcoding are easier and more economical. Accurately identifying Hg-methylating clades
103 (and metabolic guilds) from hgc sequences alone therefore requires a universally used and
104 updated hgcAB database, coupled to consistent and robust bioinformatic practices, in order to
105 1identify precisely the target genes in complex meta-omic datasets.

106  In this work, we introduce Hg-MATE (Hg-cycling Microorganisms in Aquatic and Terrestrial
107 Ecosystems) database version 1 (https://doi.org/10.25573/serc.13105370.v1), an up-to-date
108 hgcAB catalog compiled from isolated, single-cell and metagenome-reconstructed genomes.
109 Additionally, we present marky-coco (https://github.com/ericcapo/marky-coco), a ready-to-
110 use bioinformatic pipeline to detect, identify and count hgc genes from metagenomes (Fig 2).
111 We apply this pipeline to metagenomes collected from paddy soils, brackish and lake waters,
112 as well as sediments from reservoirs and lakes in which hgc genes have been previously
113 detected (Liu et al., 2018; Jones et al., 2019; Capo et al., 2020; Millera Ferriz et al., 2021).
114  Further, we specifically compared the reliability of (i) applying the marky-coco pipeline based
115 on de novo single assembly approach from single metagenomes with (ii) co-assembling of
116  multiple metagenomes (co-assembly) prior to mapping and identification. Finally, we discuss
117  appropriate definitions and cutoff criteria for hgc genes and also best practices to normalize
118 data for an accurate count of hgc genes in metagenomes from environmental samples.

119

120
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123  Figure 2. (A) Workflow illustrating how the hgcAB gene catalogue Hg-MATE database was
124  built, (B) Simplified workflow of the marky-coco pipeline (C) Illustration of the two assembly
125 approaches compared in this work: single assembly vs co-assembly.
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130 2. Material and Methods

131 2.1 Description of the Hg-MATE database vl

132 The  Hg-MATE  database vl was  released  on 14 January 2021
133  (https://doi.org/10.25573/serc.13105370.v1), and contains an extensive hgcAB dataset from a
134  wide range of microorganisms and environments. The catalog contains 1053 unique HgcA/B
135 amino acid sequences (Table 1). We categorized the HgcAB amino acid sequences into four
136 types depending on whether they were encoded in (i) pure culture/environmental microbial

137 isolates (ISO) (ii) single-cell genome sequences (CEL) (iii) metagenome-assembled genomes
138 (MAGS) (iv) or an environmental meta-omic contig (CON). Amino acid sequences of HgcA,
139 HgcB, and concatenated HgcA and HgeB were included in the database. If ~gcB was not co-
140 localized with hgcA in the genome and/or could not be identified, then ‘na’ was listed in the
141 ‘HgcB’ sequence column. Both genes need to be present and encode functional proteins for a
142  microbe to methylate Hg (see Parks et al., 2013; Smith et al., 2015). One reason hgcB may not
143  be identified in some genomes carrying hgcA is because HgcB is highly homologous to other
144  4Fe-4S ferredoxins. Therefore, hgcB can be difficult to differentiate from other ferredoxin-
145 encoding genes if not co-localized with igcA on a contiguous sequence. In addition, hgcB may
146 be missing from ‘MAGs’, ‘CEL’ and ‘CON’ sequences due to incomplete coverage of the
147  genome or incomplete contig assembly, or failure to bin the contig carrying hgcB. Some hgc
148 genes are predicted to encode a ‘fused HgcAB protein” which has been previously described
149  (Podar et al., 2015), and is characterized by one gene that encodes for a 4Fe-4S ferredoxin-like
150 protein with shared homology to HgcA and HgcB. This ‘fused HgcAB’ protein contains the
151  corrinoid iron-sulfur and transmembrane domains characteristic of HgcA as well as the 4Fe-
152 4S ferredoxin motif of HgcB (e.g., Uniprot Q8U2U9, NCBI Refseq: WP_011011854.1,
153  Pyrococcus furiosus DSM 3638). These sequences are provided in the ‘HgcA’ column, and
154  labeled ‘fused HgcAB’ in the HgeB column. These ‘fused HgcAB’ sequences should be treated
155  with caution because, while they share significant sequence homology to HgcA and HgceB from
156 confirmed Hg methylators, to date all organisms with a ‘fused HgcAB’ that have been tested
157 do not seem to produce MeHg in culture (Podar et al., 2015; Gilmour et al., 2018).

158

159 Table 1. Summary of HgcAB sequence types in version 1 of the Hg-MATE database.

Total HgcA(B) Encode both Encode fused Only HgcA (or
Genome type sequences HgcA and HgcB HgcAB HgcB) present

ISO 204 173 10 21
CEL 29 4 18 7
MAG 787 696 17 74
CON 33 9 0 21(3)

160

161 The resources within the Hg-MATE database vl include a catalog with the amino acid
162 sequences and metadata of all microorganisms. Only sequences with genomic identifying
163 information (i.e., ‘ISO’, ‘CEL’, ‘MAG’) were used to compile further resources. Resources
164 include: (i) FASTA files containing Hgc amino acid sequences; (ii) Multiple Sequence
165 Alignments (MSA) in FASTA format of Hgc amino acid sequences built with MUSCLE
166 implemented in MEGAX (Kumar et al., 2018) with the cluster method UPGMA; and (iii)
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167 Hidden Markov models (HMM) of aligned Hgc amino acid sequences built from MSAs using
168 the hmmbuild function from the hmmer software (3.2.1 version, Finn et al., 2011).
169  Additionally, resources include reference packages that can be used to identify and classify:
170 (1) the corrinoid-binding domain of HgcA which corresponds to residues ~37-156 of the HgcA
171 sequence from Pseudodesulfovibrio mercurii ND132 and includes the characteristic cap helix
172  domain (2) full HgcA sequence and (3) concatenated HgcA and HgcB. Each reference package
173 contains sequence alignments, an HMM model, a phylogenetic tree, and NCBI taxonomy.
174  Reference packages were constructed using the program Taxtastic
175  (https://github.com/fhcrc/taxtastic) for HgcA(B) amino acid sequences from ISO, CEL &
176  MAG. Phylogenetic trees were built from MSA files by RAXML using the GAMMA model of
177  rate heterogeneity and LG amino acid substitution matrix (Le and Gascuel, 2008). Trees were
178 rooted by HgcA paralog sequences, carbon monoxide dehydrogenases (PF03599) from non-
179 HgcA coding microorganisms Candidatus Omnitrophica bacterium CG1_02_41_171 and
180 Thermosulfurimonas dismutans. These organisms were chosen because of their distant
181 phylogenetic relationship to hgcA* microorganisms. Confidence values on branches were
182 calculated from 100 bootstraps. Using the HgcA reference tree, a simplified tree of ‘ISO’,
183 ‘CEL’, ‘MAG’ hgcA genes was built using iTOL (Letunic and Bork, 2019) and clades were
184  collapsed by the dominant monophyletic group, when possible, for visualization ease.

185

186 2.2 Data collection

187 A total of 29 metagenomes from recent studies studying Agc genes in environments with known
188 active Hg methylation were used for the bioinformatic analyses performed in this work (Table
189 1, Datasheet 1A). Metagenomes from brackish waters (BARMSs) were collected in 2014 in
190 the Gotland Deep basin of the Central Baltic Sea. Out of 81 available metagenomes (Alneberg
191 etal., 2018; BioProject ID PRIEB22997), 8 metagenomes where hgc genes have been detected
192  (Capo et al., 2020) were used in the present analysis. Water depths of these metagenomes
193 ranged from 76 to 200 m with oxygen concentrations either low (hypoxic zone) or undetectable
194  (anoxic zone), salinity ranging between 9.2-12.1 psu and MeHg concentrations measuring up
195 to 1640 fM (Soerensen et al., 2018). Lake sediments and water metagenomes (MANGAG6s)
196 were obtained in 2013-2014 from the sulfate-impacted Manganika lake in Northern Minnesota
197  (Jones et al., 2019, BioProject ID PRINA488162). This hypereutrophic lake is characterized
198 by dissolved oxygen approaching 16 mg/L (nearly 200% saturation) near the surface, pH
199 exceeding 8.7 and MeHg accumulating over 3 ng/L in bottom waters. Dissolved oxygen and
200 pH decreased with depth, and anoxic conditions were encountered below 4 m. Sulfide
201  concentrations up to 2 mM were observed in bottom waters and sediments. Water samples were
202 collected at these anoxic depths. Five metagenomes (RES5S) were obtained from reservoir
203 sediments from the St. Maurice River near Wemotaci, Canada in 2017 and 2018 (Millera-Ferriz
204 et al., 2021, GOLD-JGI Ga0393614 Ga0393582, Ga0393617, Ga0393586, Ga0393589). The
205 studied river section has been affected by the construction of two run-of-river power plant dams
206 and its watershed has been disturbed by a forest fire, logging, and the construction of wetlands.
207 MeHg concentrations in samples varied from <0.02 to 19 ng/g. Metagenomes from paddy and
208 upland soils (PADDY10s) were collected from two historical Hg mining sites, Fenghuang (FH)
209 and Wanshan (WS), in Southwest China in August 2016 (Liu et al., 2018, BioProject ID
210 PRINA450451). The pH of paddy soils ranged from 6 to 7.5. Historical discharge from Hg

6
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211 mining operations and ongoing atmospheric deposition contribute to high concentrations of
212 MeHg in the soils around these areas with values up to 7.9 ng g"! in the collected samples.
213

214

215 Table 2. Metagenomes collected from previously published papers investigating the presence
216  of Hg methylators in the environment.

Systems #metagenomes dataset id References

Brackish waters 8 BARMSs Capo et al., 2020

Lake sediments and water 6 MANGAG6s Jones et al., 2019
River/reservoir sediments 5 RESS5s Millera Ferriz et al., 2021
Paddy soils/upland soils 10 PADDY 10s Liu et al.,, 2018

217

218 2.3 Bioinformatics

219 The detection, taxonomic identification and counting of hgc genes was done with the marky-
220 coco snakemake-implemented pipeline (https://github.com/ericcapo/marky-coco). A brief
221 overview of this workflow is as follows: the metagenomes were trimmed and cleaned using
222 fastp (Chen et al., 2018) with the following parameters: quality threshold of 30 (-q 30), length
223 threshold of 25 (-1 25), and with trimming of adapters and polyG tails enabled (--
224  detect_adapter_for_pe --trim_poly_g --trim_poly_x). A de novo single assembly approach, in

225 which each metagenome was assembled individually, was applied using the assembler megahit
226 1.1.2 (L1 et al., 2016) with default settings. The annotation of the contigs for prokaryotic
227 protein-coding gene prediction was done with the software Prodigal 2.6.3 (Hyatt et al., 2010).
228 The DNA reads were mapped against the contigs with bowtie2 (Langdmead and Salzberg,
229 2012), and the resulting .sam files were converted to .bam files using samtools 1.9 (Li et al.,
230 2009). The .bam files and the prodigal output .gff file were used to estimate read counts by
231 using featureCounts (Liao et al., 2014). In order to detect ~gc homologs, HMM profiles derived
232 from the Hg-MATE database vl were applied to the amino acid FASTA file generated with
233 Prodigal from each assembly with the function hmmsearch from HMMER 3.2.1 (Finn et al.,
234 2011). The reference package ‘hgcA’ from Hg-MATE.db was used for phylogenetic analysis
235 of the HgcA amino acid sequences. Briefly, the predicted amino acid sequences from gene
236 identified as putative hgcA gene were (1) compiled in a FASTA file, (i1) aligned to the
237  Stockholm formatted HgcA alignment from the reference package with the function hmmalign
238 from HMMER 3.2.1 (iii) placed onto the HgcA reference tree and classified using the functions
239 pplacer, rppr and guppy_classify from the program pplacer (Matsen et al., 2010). For more
240 detalils, see the README.txt of the Hg-MATE database vl
241  (https://doi.org/10.25573/serc.13105370.v1). Additionally, to compare the efficiency of the
242 marky-coco pipeline to detect hgc genes from metagenomes with a co-assembly approach
243 (multiple metagenomes used for assembly), we performed co-assemblies on metagenomes
244  within each environmental system (BARMS8s, MANGAG6s, RESSs, PADDY10s, Table 2).
245 Post-assembly, all other steps of the analysis procedure were performed similarly to the marky-
246 coco pipeline. Detection of dsrA genes were detected in metagenomes with the function
247  hmmsearch and HMM profile from TIGRFAM (Selengut et al., 2007). The amount of
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248 sequencing required to cover the total diversity and the estimated diversity of each metagenome
249  were evaluated using the Nonpareil method (Rodriguez-R and Konstantinidis, 2014).

250 2.4 Stringency cut-offs for the definition of true hgc genes

251 Based on knowledge from confirmed isolated Hg methylators, we propose several stringency
252  cutoffs that could be used to distinguish between an hgcA gene homolog and an hgcA-like gene
253 that encodes for a protein of unknown Hg methylation capability. (i) High stringency cutoft:
254 amino acid sequence includes one of the cap-helix motifs with the conserved cysteine (Cys93
255 in P. mercurii ND132), NVWCAAGK, NVWCASGK, NVWCAGGK, NIWCAAGK,
256 NIWCAGGK or NVWCSAGK. This cutoff is based on previous findings that showed isolated
257 microorganisms carrying HgcA proteins with the cap helix domain are capable of Hg
258 methylation (Parks et al., 2013; Smith et al., 2015; Gilmour et al., 2018; Cooper et al., 2020).
259  Within the high stringency cutoff, there is a possible need to distinguish between the amino
260 acid sequences from fused HgcAB-like proteins and those from true HgcA proteins, since
261 isolates that encode fused HgcAB-like genes do not have the capacity to methylate Hg in
262 culture (Podar et al., 2015; Gilmour et al., 2018). The fused HgcAB include the cap-helix and
263 ferredoxin motifs of HgcA and HgcB. (i) Moderate stringency cutoff: in addition to amino
264 acid sequences that include the motifs described above, any sequence with a bitscore value
265 obtained from the HMM analysis greater than or equal to 100 is included (ii1) Low stringency
266 cutoff: in addition to amino acid sequences that include the motifs described above, any
267 sequence with a bitscore value greater than or equal to 60 is included. For hgcB gene homologs,
268 we propose two cutoffs that could be used for their description as hgcB genes. (i) High
269 stringency cutoff: their amino acid sequences include one of the following motifs featuring the
270 conserved Cys (Cys73 in P. mercurii ND132, Cooper et al., 2020), C(M/I)ECGA motifs and
271 that the genes are found on the same contig as an hgcA genes. (ii) Moderate stringency cutoff:
272 amino acid sequences include the C(M/I)ECGA motif, but the gene are not co-located on a
273 contig with an hgcA gene.

274

275 2.5 Estimation of hgcA abundance in metagenomes

276 Coverage values of hgcA genes were calculated, for each gene and each sample, as the number
277 of reads mapping to the gene divided by the length of the gene (read/bp). We compared the
278 reliability of four procedures for normalizing read counts of 4gcA genes. Normalization metrics
279 were (i) the total number of mapped reads (ii) the summed coverage values of rpoB genes, (iii)
280 the median coverage values of 257 marker genes (GTDB-Tk r89 release, Chaumeil et al.,
281 2019), or (iv) the genome equivalents values calculated using the software MicrobeCensus
282 (Nayfach and Pollard, 2015) which normalizes the relative abundance by the metagenomic
283 dataset size and the community average genome size of the microbial community. The
284 coverage of each marker gene was calculated as the sum of the coverages of all the ORFs
285 assigned to that gene (Datasheet 1A). The rpoB and the 256 other marker genes were detected
286 using the function hmmsearch from hmmer software (v3.2.1, Finn et al., 2011) and applying
287 the trusted cut-off provided in HMM files (GTDB-Tk r89 release, Chaumeil et al., 2019).

288

289
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290 2.6 Data analysis

291 A non-metric multidimensional scaling analysis (nMDS) was performed applying the function
292 metaMDS from the R package vegan (Oksanen et al., 2015) to the table of 4gcA gene coverage
293 values, clustered at the lowest level of NCBI taxonomic identification (txid), obtained with
294 single assembly and co-assembly approaches (Datasheet 1B). A PROTEST permutation
295 procedure analysis (1000 permutations) was performed using the function Procrustes to
296 evaluate the level of concordance of the outputs between both approaches. The functions rcorr
297 from the R package Hmisc (Harrell and Harrell, 2019), corrplot from the R package corrplot
298 (Taiyun et al., 2017) and plot3D from the R package rgkl (Adler et al., 2019) were used to
299 investigate correlations between normalization methods.

300 3. Results

301 3.1 Dataset outputs

302 A total of 29 single assemblies (one for each metagenome) and 4 co-assemblies (reads from
303 each of the BARMS8s, MANGAG6s, RESSS, and PADDY10s metagenome sets assembled
304 together) were used to compare the efficiency of a single assembly using the marky-coco
305 pipeline and a co-assembly approach to detect, identify and count 4gc genes from metagenomes
306 (Fig. 2). The number of mapped reads of the analyzed metagenomes ranged between 10.2-
307 110.9 M reads (average, 29.4 £ 19.6) with single assembly and 16.6-120.7 M reads (average,
308 36.0 = 19.9) with co-assembly, with the percentage of mapped reads ranging between 16-76 %
309 and 24-89 %, respectively (Datasheet 1A). Nonpareil diversity index values (Ng) of
310 metagenomes were between 18.7 and 23.7 with the highest found in paddy soil metagenomes
311  (Fig. S1, Table 3). Nonpareil curves showed that paddy soil samples from this study required
312 the highest sequencing effort for nearly complete coverage followed by reservoir sediments,
313 and then lake sediment and lake waters and brackish waters (Fig S1). Estimated coverage of
314 paddy soils metagenomes was relatively low (average, 0.30-0.37) compared to other
315 metagenomes (0.49-0.83) showing that only a portion of the diversity of these environmental
316 samples was recovered despite the relatively high sequencing depth (88.6 + 5.6 M reads) (Table
317  3). Seven metagenomes (S02, S03, S19, S22, S26, S28, S29) that were used in coassemblies
318 but with low hgcA coverage values (i.e., <0.40 obtained from co-assemblies) were not used for
319 further comparison analysis. The remaining 22 metagenomes, labeled MGO1 - MG22, had
320 hgcA unnormalized coverage values between 0.44 and 3.06 (1.22 + 0.79) (Datasheet 1A). Only
321 hgcA genes (and not hgcB) from these metagenomes were used for comparison of the two
322 assembly approaches as hgcAB gene pairs were not 100 % similar between the two approaches
323 (Datasheet 1B). Additionally, hgcAB-like homologs that are predicted to encode for fused
324 HgcAB proteins were excluded from further analysis.

325

326 3.2 Distribution of hgcA genes with different stringency cutoffs

327 By definition, all hgcA genes detected with the high stringency cutoff are predicted to encode
328 proteins that include the conserved amino acid motifs characteristic of functional HgcA
329 proteins, while this is not the case for those additionally detected when lowering the stringency
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330 cutoffs (i.e., moderate or low). We therefore considered that gene homologs to hgcA found
331  with bitscore values below 100 and without conserved motifs cannot with confidence be
332 defined as true hgcA genes. Nevertheless, we wanted here to highlight how “false” hgcA genes
333 i.e., detected without the conserved amino acid motifs characteristic of functional HgcA
334 proteins, were taxonomically assigned using the pplacer approach applied to the Hg-MATE
335 hgcA reference tree. The hgcA genes detected with a high stringency cutoff and those
336 additionally detected with moderate stringency cutoffs were predominantly identified as
337 Desulfobacterota, Chloroflexota and Euryarchaeota (Fig S2). In contrast, the hgcA genes
338 additionally detected with low stringency cutoff were primarily identified as members of the
339 PVC superphylum but were unclassified at lower taxonomic levels. For further comparison,
340 we used information only from hgcA genes detected with the high stringency.

341

342 3.3 Comparison between co-assembly vs single assembly approaches

343 For all metagenomes, 1.50-7.25 times more hgcA genes were detected in co-assemblies (19-
344 147 genes) compared to linked single assemblies (4-69 genes) (Table 3). We investigated the
345 differences in hgcA gene lengths, discriminating between genes (1) found at the extremity of
346 contigs (potentially truncated) and (i1) between other genes in contigs therefore expected to be
347 complete. A higher number of ‘complete’ hgcA gene sequences were detected with the co-
348 assembly (1-17, average 6.8 + 4.4 genes) compared to the single assembly (0-6, average 2.0 +
349 2.7 genes), e.g., for metagenomes from brackish and lake waters (Datasheet 1A). No complete
350 genes were identified in the single assemblies that were not also identified in the co-assembly.
351  Violin plots illustrated that, overall, a higher number of ‘complete’ hgcA sequences (> 950 bp)
352 were found with the co-assembly versus the single assembly (Fig. S3).

353

354 Table 3. For each metagenome, Non-pareil diversity index values, estimated average coverage,
355 number of mapped reads, number of hgcA genes and hgcA coverage values (reads/bp) for co-
356 assembly ‘c” and single assembly “s” approaches. See Datasheet 1A for extended description
357  of the dataset.

358
Non Number of
pareil  Estimated mapped Number hgcA
. X . reads of hgcA coverage
Environments diversit average e
. (millions genes values
yindex coverage
Metagenomes reads)
" (Na)
id c S c S [ S
120. 38 14
brackish water MGO1 19.51 0.83 7 110.9 2.04 1.85
MGO02 21.12 0.55 339 255 40 16 1.05 091
MGO03 19.49 0.70 320 258 29 7 1.01 0.75
MGO04 20.52 0.63 351 269 34 10 0.84 0.75
MGO05 18.69 0.76 356 305 23 5 052 046
MGO06 20.73 0.48 16,6 102 29 4 058 035
reservoir sediment MGO7 22.46 0.59 286 21.8 147 69 3.06 2.36
MGO08 21.99 0.64 336 294 103 53 219 1.98
MGO09 21.82 0.68 472 435 74 35 198 1.78
MGI10 22.10 0.63 36.1 327 102 68 232 3.00
MGI11 22.15 0.63 36.7 298 122 62 269 243
lake sediment MGI12 20.55 0.62 2277 267 23 10 0.83 0.78
MG13 20.75 0.57 272 225 26 9 041 0.32
lake water MG14 21.57 0.49 296 248 31 13 1.19 1.05
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MG15 20.24 0.66 38,5 346 31 & 062 050
MG16 19.51 0.67 305 292 19 10 047 0.50
paddy soils MG17 23.48 0.34 31,1 204 77 21 0.69 045
MG18 23.31 0.33 30.8 185 60 13 059 0.33
MG19 23.67 0.27 27.1 143 8 20 0.76 043
MG20 23.14 0.37 375 288 6l 15 058 0.32
MG21 23.49 0.30 305 187 57 25 0.60 0.51
MG22 23.64 0.30 306 205 84 33 1.12 0.89

359

360 In a comparison of HgcA amino acid sequences recovered from the two assembly approaches,
361 no HgcA sequence from the single assembly had 100% sequence identity to sequences in the
362 co-assembly (Datasheet 1B). The highest sequence similarity of HgcA sequences from
363 different assemblies of the same dataset was 99%. To compare, we investigated differences
364 between assemblies for detecting dsrA gene, which encodes for dissimilatory sulfite reductase
365 subunit A, an essential enzyme in sulfate reduction and expected to be present in these datasets.
366 Identical amino acid sequences of DsrA-encoding genes were found when comparing single
367 assemblies to the related co-assembly with numbers ranging from 1 to 33 depending on
368 metagenomes (Datasheet 1D). Comparatively, dsrA genes were 3-34x more abundant (in
369 coverage) than hgcA genes. This higher abundance helps explain why more identical dsrA were
370 found between co-assembly and single assembly approaches than for hgcA genes.

371

372 Distribution plots showed unnormalized coverage values of hgcA clustered by environment
373  types (Fig. 3A) or for each metagenome (Fig. S4). Importantly, unnormalized values were used
374 here to compare single assembly vs coassembly results for each metagenome but not to
375 compare difference between environments for which normalization would be required (Fig S4).
376 Overall, higher hgcA coverage values were observed with the co-assembly for all types of
377 environments (Fig 3A) and for each metagenome with the exception of reservoir sediment
378 MGIO (Fig. S4, Table 3). The application of normalization methods (as described in the section
379 Dbelow) revealed contrasting patterns in hgcA relative abundance, with higher values observed
380 for single assembly methods when applying, for instance, a normalization method based on
381 rpoB coverage values (Fig. S4). For each metagenome, the nMDS analysis showed a high level
382 of similarity in taxonomy-based hgcA inventories obtained from single assembly vs co-
383 assembly (Fig. 3B). This was confirmed by a procrustean analysis that showed significant
384 levels of concordance for the hgcA inventories obtained between both approaches (p < 0.001).
385 Looking at each dataset independently, reservoir sediments and brackish waters showed
386 significant levels of concordances (p < 0.008, p <0.002) while lake waters and paddy soils had
387 non-significant levels of concordances (p <0.17, p < 0.30; no statistics possible with only two
388 metagenomes for lake sediments).
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(A) Abundance of AgcA genes in metagenomes

(B) nMDS plot - Bray-Curtis dissimilarity
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390 Figure 3 (A) Distribution of hgcA genes in the metagenomes obtained from five types of
391 environments with the co-assembly ‘c’ and the single assembly ‘s’ methods. For these barplots,
392 unnormalized hgcA coverage values were used. (B) Dissimilarities in the structure of hgcA
393 inventories obtained with the co-assembly ‘c’ and the single assembly ‘s’ approaches. nMDS
394 stress values = 0.1909. The id of each metagenome is denoted as follows: numbers
395 corresponding to the metagenome id (e.g., MGO1 is 01), “c” or “s” stands for analysis with the
396 co-assembly or the single assembly.
397
398 3.4 Comparison between normalization methods
399 In order to compare normalization methods to estimate the abundance of hgcA genes, we
400 calculated the (i) total number mapped prokaryotic reads, (ii) rpoB genes coverage values, (iii)
401 median coverage value of 257 marker genes and (iv) genome equivalents values (Microbe
402 Census) (Fig 4, Datasheet 1E). Overall, significant correlations were observed between the
403 total number of reads, rpoB coverage values, and the median coverage values of 257 marker
404 genes (Fig. 4A), while no significant correlations were observed between these metrics and
405 genome equivalent values. The 3D plot shows the relationships between the total number of
406 reads, the median coverage values of 257 marker genes and genome equivalent values (Fig.
407 4B).
408
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(A) Spearman rank’s correlations (B) 3D plot between selected parameters
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of 257 marker genes

409

410 Figure 4. Plots showing correlations between metrics used for normalization. Only outputs

411 presented here were calculated from data obtained with the single assembly approach.
412

413

414 4. Discussion

415

416 4.1 Identification of true hgc genes from environmental genomic data

417  The absence of cultured representatives of ~gc* microorganisms from novel clades (i.e., outside
418 the Desulfobacterota, Firmicutes, Methanomicrobia) with experimentally validated Hg-
419 methylating capability (Gilmour et al., 2013; 2018) hampers confirmation that newly
420 discovered hgc genes from environmental samples truly code for Hg methylating enzymes.
421 Indeed, the recent analysis of publicly available metagenomes revealed the high diversity of
422 microbial lineages with hgc™ microorganisms, with the vast majority yet uncultured and
423 therefore unstudied for Hg methylation activity (Gionfriddo et al., 2019; McDaniel et al.,
424  2020). To date, all hgcA* microorganisms that have been experimentally tested have been
425 found shown to produce MeHg (except for those with fused hgcAB-like sequences) (Gilmour
426 et al.,, 2013; 2018), and protein modeling of novel hgcA sequences suggest they have
427 comparable active sites to HgcA sequences in experimentally verified Hg methylators.
428 Therefore, although recent findings revealed relationships between microbial expression of hgc
429 transcripts and MeHg formation in the environment (Capo, Feng et al. 2022 bioRxiv), and some
430 putative hgcAB genes have been computationally modelled to possess functionality for
431 methylation (Gionfriddo et al. 2016, Lin et al. 2021), we remain cautious about defining true
432  hgc genes from environmental samples. As such, some studies have qualified hgc genes found
433 in the environment as hgc genes (e.g., Gionfriddo et al., 2016; Bowman et al., 2020; Villar et
434 al., 2020; Capo et al., 2020).

435

436 Here, we defined three stringency cutoffs to describe hgcA genes in environmental
437 metagenomes. By definition, the HgcA-encoding genes detected with the high stringency
438 cutoffs include the key amino acid residues (i.e., the cap helix motif
439 N[V/IJWCIA/S][A/G/S]GK), Parks et al., 2013) present in HgcA from known Hg methylators.
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440 In contrast, all other hits to the HMM, from moderate and low stringency cut-offs, lack these
441 amino acid residues. To date none of the isolates lacking these key amino acid residues has
442  been found to methylate Hg, or no cultured isolate exists to test for Hg methylation capability
443  (Gilmour et al., 2018). Substitution of some of these amino acids in the cap helix of HgcA may
444  not result in loss of Hg methylation activity, as demonstrated by site-directed mutagenesis
445  experiments with P. mercurii ND132 (Smith et al., 2015). However, in addition to the cap helix
446  domain of HgcA, the transmembrane domain of HgcA may also be required for Hg methylation
447  activity. Unfortunately, the transmembrane region of HgcA has no detectable sequence
448 homology (Cooper et al., 2020).

449

450 Thus, we recommend using the high stringency cutoff defined in the present study for routine
451 identification of #gcA from environmental metagenomes. Lower stringency could reveal novel
452 HgcA sequences that have lower similarity to HgcA from known Hg methylators, but if the
453 lower stringency cutoff is used, we advise careful manual inspection of the sequences to ensure
454  that they have important motifs and other HgcA features like the cap-helix region. If the amino
455 acid sequence in the cap helix domain is highly divergent from known sequences, we
456 recommend protein modeling efforts to determine if the active site is similar enough to known
457 sequences to validate classification as HgcA. Additional verification of true HgcA sequences
458 include prediction of transmembrane domain regions (e.g., using TMHMM software, Krogh et
459 al., 2001) and identification of other key conserved residues (Parks et al., 2013; Smith et al.,
460 2015; Jones et al., 2019). A combination of several methods will certainly help to improve our
461 description of hgcA genes in the coming years.

462

463 4.2 Effectiveness of the Hg-MATE database

464 The Hg-MATE database originates from the combination of two recent works (Gionfriddo et
465 al., 2019; McDaniel et al., 2020). The present work is a collaborative project of the Meta-Hg
466 working group that aimed to provide a living database that will be periodically updated. It
467 provides several useful tools (HMM profiles and references phylogenetic trees) and a
468 documented workflow that allows for the identification of hgc genes for easy comparison
469 Dbetween studies. One major advantage of Hg-MATE is the assignment of NCBI taxonomy IDs
470 (txid) to hgcA genes allowing for easy comparison with datasets from other studies that also
471 use the Hg-MATE database (Datasheet 1B). In contrast, outputs from previous hgc-related
472  studies are difficult to compare with each other because hgc taxonomic identification is usually
473 done with different in-house databases and/or phylogenetic tools, and is based on the manual
474 inspection of phylogenetic trees increasing the level of uncertainties and subjectivity in
475 taxonomic identification. While the used pplacer approach here is not perfect - since
476 phylogenetic relatedness of the gene does not necessarily mean the same organismal taxonomy
477 because of potential horizontal gene transfer (McDaniel et al., 2020) - it is a standardized
478 approach allowing for a robust and automated identification of hgc genes from metagenomes.
479

480 A side-by-side comparison of previous and present taxonomic identification of putative Hg
481 methylators is presented in this section. For water and sediment metagenomes from Lake
482 Manganika our identification by HgcA phylogeny showed consistent results with previous
483 identification from hgc™ MAGs (Jones et al., 2019), with Desulfobacterota, Aminicenantes,
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484  Kiritimatiellaeota and Spirochaetes being the predominant putative Hg methylators. In the case
485 of Baltic Sea water metagenomes, the comparison of our Hg-MATE taxonomy identification
486 with the previous identification using a set of 4gc sequences from Podar et al. (2015) revealed
487 consistency in the predominant hgc® groups detected (Desulfobacterota, Spirochaetes,
488 Kiritimatiellota) but noticeable differences for others i.e., Planctomycetes and
489 Verrucomicrobia (Datasheet 1B). Consistent with previous characterization, reservoir
490 sediments were characterized by predominant hgc* Methanomicrobia, Desulfobacterota,
491 Bacteroidetes, and Chloroflexota. Finally, in paddy soils, Liu et al. (2018) identified mostly
492  hgc* Desulfobacterota, Firmicutes and Methanomicrobia while, in the present study, the two
493 last microbial groups were found less predominant to the benefit of hgc™ Nitrospirae and
494  Chloroflexota.

495

496 In addition to using phylogenetic placements of hgc genes in reference trees from the Hg-
497 MATE database, a more precise approach to identification of putative Hg methylators is
498 probably the identification of hgc™ MAGs (i.e., Jones et al., 2019; Peterson et al., 2020; Lin et
499 al., 2021). However, the recovery of MAGs from metagenomes is not always possible due to
500 (i) the difficulty of obtaining MAGs from certain environments such as sediments and (ii) the
501 low predominance of Hg methylators compared to other microorganisms in the environment,
502 and therefore the lower probability of recovering hgc* MAGs. A recent work revealed the good
503 congruence between the identification of hgc™ MAGs and a hgc phylogeny based on Hg-MATE
504 phylogeny (Capo, Feng et al., 2022 bioRxiv) highlighting that both approaches could be used
505 to ensure the reliability in the identification of Hg methylators.

506

507 4.3 Assembly methods depend of the diversity of the metagenome

508

509 The increasing amount of publicly available environmental genomic data (Thompson et al.,
510 2017; Nayfach et al., 2021) opens avenues to answer ecological questions related to the
511 biogeography patterns and dispersal barriers of Hg methylators in interconnected systems (such
512 as the global ocean and coastal systems). Co-assembly of multiple metagenomes has been
5183 shown to have many important benefits compared to single assemblies including improved
514 binning and better recovery of low abundance environmental genomes from studies that use
515 multiple low-coverage metagenomes. However, co-assembly requires higher computational
516 costs and potentially masks microdiversity by collapsing the genomes of multiple related
517 strains into a single MAG (Narasingarao et al., 2012; Van der Walt et al., 2017; Ramos-Barbero
518 etal., 2019; Tamames et al., 2020; Paoli et al., 2021). Here, we compared hgcA recovery from
519 single assembled metagenomes versus co-assemblies of multiple metagenomes from the same
520 environment. In all cases except one, co-assembly significantly increased the recovery of hgcA
521  genes (Fig S4). Additionally, we showed that when the diversity and composition of the hgcA*
522 community was compared across all the samples included in the analysis, single assemblies
523 and co-assemblies performed similarly in this regard, suggesting that also single metagenomes
524  can provide adequate information (similar level of hgc coverage and detected diversity) on the
525  hgc* community.

526
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527 Differences in the diversity of environments can have an effect on the recovery of hgc genes
528 from metagenomes. Nonpareil diversity index values of the metagenomes ranged between 18.7
529 and 23.7 with the highest being found in paddy soils metagenomes (Fig. S1, Datasheet 1A).
530 Here, for the paddy soils that exhibited higher Non-pareil diversity index values (Fig S1),
531 consistently with Rodriguez-R and Konstantinidis (2014), the co-assembly approach
532 outperforms single sample assemblies in the recovery of hgc genes (Fig 3). Noticeably,
533 although no identical HgcA amino acid sequences were detected between single assembly and
534 co-assembly approach, identical DsrA amino acid sequences were observed. We hypothesized
535 that the low proportion of hgcA genes in metagenomes, compared to dsrA genes, explained
536 such discrepancies, although it did not strongly impact the overall AgcA coverage values
537 recovery. In these situations, we recommend aiming for either higher depth of coverage or
538 sequencing of multiple adjacent or linked metagenomes or replicates from a single sample. In
539 contrast, we recommend avoiding the co-assembly of metagenomes from different
540 environments that could produce more misassembles and chimerism (Mikheenko et al., 2016;
541 Sczyrba et al., 2017; Tamames et al., 2020). For other environments such as brackish and lake
542  waters, our work highlights that using the marky-coco pipeline based on a single assembly
543  approach provide similar results to a co-assembly approach in detecting hgc genes.

544

545

546 4.4 Robust normalization methods are needed for quantitative inferences

547 The normalization of gene counts from environmental metagenomes and metatranscriptomes
548 is a key aspect of works aiming to study the prevalence of certain microorganisms in specific
549 environments (Pereira et al., 2018; Salazar et al., 2019; Pierella Karlusich et al., 2022). In
550 hgcAB omics studies, the number of mapped reads and the coverage values of marker genes or
551 housekeeping genes is usually used to normalize the coverage values of hgc genes (Lin et al.,
552 2021; Vigneron et al., 2021; Tada et al., 2021; Capo et al., 2022). Tests here revealed that a
553 wide range of contrasting normalization methods all provided reasonable abundance estimates
554  that were significantly correlated with one another with the exception of genome equivalent
555 values (Fig 4). Non-significant correlations found between genome equivalent values and other
556 metrics can be explained by the weaker relationships observed for the metrics in paddy soils
557 and reservoir sediments metagenomes, while metrics from brackish waters, lake sediment and
558 waters appear to have linear relationships. Therefore, we do not strongly recommend any single
559 method over others. Instead, we suggest that it may be prudent to report data that employ
560 multiple normalization methods to allow for easy comparisons to be carried out between
561 studies. Such normalizations can without too much of an effort be included in the supporting
562 information for later usage. Suggested normalization methods include the total number of
563 prokaryotic reads, coverage values of rpoB genes and the median coverage values of 257
564 marker genes (example in Datasheet 1E).

565

566

567
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568 5. Conclusion

569 The study of the taxonomic diversity and metabolic capacities of microorganisms involved in
570 Hg methylation will lead to a better understanding of the environmental factors triggering
571 microbial methylation of divalent Hg. Although metagenomic and metatranscriptomic-based
572 studies have provided better insights into the environmental role of those microorganisms, there
573 s still a need to standardize methods to detect hgc genes from environmental omic data.
574  Furthermore, since Hg methylators often constitute such a small proportion of the microbiome,
575 methods outlined in this study provide best practices for improving their detection and recovery
576 from metagenomes. We provide here an up-to-date hgc gene catalogue, Hg-MATE database
577 vl, and the marky-coco bioinformatic pipeline to detect, identify and count hgc genes from
578 metagenomes. We recommend using our high stringency cutoff to detect hgcA genes in
579 metagenomes and applying our protocol in future prospects of Hg methylation genes,
580 especially for cross-comparison between studies. Finally, although a co-assembly approach
581 should be chosen when analyzing metagenomes from highly diverse environments (i.e., paddy
582 soils), we recommend using marky-coco pipeline, based on a de novo assembly for recovering
583 hgc genes in metagenomes from aquatic environments.
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808 Datasheet 1. This file includes information related to different parameters collected or
809 measured in this work from the 29 metagenomes used in this work (A) For each metagenome,
810 metagenome id, type of environment, non-pareil metrics, genome equivalents (Microbe
811 Census) values, number of cleaned and mapped reads, number of hgcA genes, hgcA coverage
812 values and normalization metrics values, dsrA coverage values (B) List of all hgcA genes
813 detected in the 29 metagenomes with both a single assembly and co-assembly approaches, with
814 the three stringency cutoffs. Gene length, number of mapped reads, coverage values, NBCI
815 taxonomy txid and amino acid sequences are presented. (C) List of all AgcA genes detected in
816 the 29 metagenomes with both a single assembly and co-assembly approaches, with the high
817 stringency cutoff. Gene length, number of mapped reads, coverage values, NBCI taxonomy
818 txid and amino acid sequences are presented. (D) List of all dsrA genes detected in the 29
819 metagenomes with both a single assembly and co-assembly approaches, with the high
820 stringency cutoff. Gene length, number of mapped reads, coverage values and amino acid
821 sequences are presented. (F) Coverage values of the 257 marker genes (including rpoB)
822 obtained using the single assembly vs co-assembly approaches.

823
824 Supporting Information

825 Figure S1: Nonpareil curves for the 22 metagenomes. The plot displays the fitted models of
826 the Nonpareil curves. The horizontal dashed lines indicate 100 (gray) and 95% (red) coverage.
827 The empty circles indicate the size and estimated average coverage of the datasets, and the
828 lines after that point are projections of the fitted model.
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831  Figure S2. Distribution of 4gcA genes in the 22 metagenomes recovered using the co-assembly
832 “c” and the single assembly “s” methods and applying the three stringency cutoffs defined in
833  this manuscript for the definition of 4gcA genes. Abundance values were calculated as hgcA
834 coverage values normalized by rpoB normalized values. Colors denote taxonomic affiliations
835 of hgcA genes.
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836
837 Figure S3: Violin boxplots showing, for each metagenome, the difference in hgcA sequence

838 length distribution comparing the outputs of the co-assembly and the single assembly
839 approaches.
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844  Figure S4: Distribution of hgcA genes in the 22 metagenomes with the co-assembly (c) and
845 the single assembly (s) methods with different normalization methods
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