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Abstract 

Introduction: The predictive utility of polygenic scores (PGS) is steadily increasing as genome-wide 

association studies (GWAS) increase in sample size and diversity, and as PGS methodology is further 

developed. Multivariate PGS approaches incorporate GWAS results for secondary phenotypes which 

are genetically correlated with the target phenotype. These improve prediction over using PGS for 

only the target phenotype. However, previous methods have only considered the genome-wide 

estimates of SNP-based heritability (h2
SNP) and genetic correlation (rg) between target and secondary 

phenotypes. In this study, we assess the impact of local h2
SNP and rg within specific loci on cross-trait 

prediction. 

Methods: We evaluate PGS using three target phenotypes (depression, intelligence, BMI) in the UK 

Biobank, with GWAS summary statistics matching the target phenotypes and 14 genetically 

correlated secondary phenotypes. PGS SNP-weights were derived using MegaPRS. Local h2
SNP and rg 

were estimated using LAVA. We then evaluated PGS after reweighting SNP-weights according to 

local h2
SNP and rg estimates between the target and secondary phenotypes. Elastic net models 

containing PGS for multiple phenotypes were evaluated using nested 10-fold cross validation. 

Results: Modelling target and secondary PGS significantly improved target phenotype prediction 

over the target PGS alone, with relative improvements ranging from 0.8-12.2%. Furthermore, we 

show reweighting PGS by local h2
SNP and rg estimates can enhance the predictive utility of PGS across 

phenotypes, with additional relative improvements of 0.2%-2.8%. Reweighting PGS by local h2
SNP and 

rg improved target phenotype prediction most when there was a mixture of positive and negative 

local rg estimates between target and secondary phenotypes. 

Conclusion: Modelling PGS for secondary phenotypes consistently improves prediction of target 

phenotypes, and this approach can be further enhanced by incorporating local h2
SNP and rg estimates 

to highlight relevant genetic effects across phenotypes.  
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Introduction 

The predictive utility of polygenic scores (PGS) is steadily increasing as genome-wide association 

studies (GWAS) increase in sample size and become available for a wider range of phenotypes and 

populations. Furthermore, advances in PGS methodology are making important improvements to 

the predictive utility of PGS (1). PGS methods that utilise GWAS summary statistics together with 

linkage disequilibrium (LD) reference data typically provide the highest predictive utility as 

individual-level data for large sample sizes is often unavailable. 

PGS are a commonly used research tool and are being increasing studied for clinical application to 

enhance personalised medicine. PGS for a target phenotype typically only explain a small proportion 

of variance and will therefore be most useful when integrated into prediction models that also 

consider other predictors. For example, integrating coronary artery disease PGS with established 

clinical predictors significantly improved prediction of coronary artery disease events (2). Prediction 

of a target phenotype can also be improved by incorporating PGS for secondary phenotypes that are 

genetically correlated with the target phenotype (3).  

Other multivariate approaches have also been considered for improving the prediction of a target 

phenotype, such as SMTpred (4), Genomic SEM (5), and MTAG (6). All these approaches improve 

prediction of a target phenotype by incorporating GWAS summary statistics for genetically 

correlated secondary phenotypes. However, these previous approaches only consider the genome-

wide genetic correlation (rg) between the target and secondary phenotypes, thereby not allowing for 

rg to differ at specific loci. Recently developed methods allow the estimation of local rg, such as LAVA 

(7) and HESS (8). This more granular insight into the shared and unique genetic effects across traits 

has highlighted that although two phenotypes may have a significant genome-wide rg, this may be 

driven by only a few loci, and may even involve a mixture of positive and negative rg loci. Current 

multivariate PGS approaches assume a consistent rg across the genome and will therefore 

incorporate genetic effects from secondary phenotypes that are irrelevant and potentially inversely 
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related to the target phenotype, thereby reducing the value of adding the secondary PGS in 

prediction.  

In this study we explore whether local rg estimates can be leveraged to enhance the predictive utility 

of PGS across phenotypes. In a similar approach to Krapohl et al., we use an elastic net to model PGS 

for the target PGS and multiple secondary PGS (3). We then evaluate the effect of reweighting 

variants within specific loci based on local rg estimates computed using LAVA. Using three traits of 

depression, intelligence and BMI in the UK Biobank, our findings support previous literature showing 

improved prediction of the target phenotype prediction when modelling PGS for secondary 

phenotypes over target phenotype PGS alone. Further, we demonstrate for the first time that using 

local rg alongside the secondary PGS provides further statistically significantly improvements in 

predicting the target phenotype. 
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Methods 

UK Biobank (UKB) 

UKB is a prospective cohort study that recruited >500,000 individuals aged between 40-69 years 

across the United Kingdom (9). The UKB received ethical approval from the North West - Haydock 

Research Ethics Committee (reference 16/NW/0274). 

Phenotype data 

Three UKB phenotypes were analysed: depression, body mass index (BMI) and intelligence. 

For depression, UKB participants were coded as cases if they met the Composite International 

Diagnostic Interview Short Form criteria for lifetime depression which was assessed in the online 

Mental Health Questionnaire (MHQ) using scoring protocols proposed by Davis et al (10). Depression 

cases were screened for indications of schizophrenia or bipolar disorder in the MHQ. Controls were 

excluded if they showed any psychiatric indications in the MHQ or other depression indications: ICD-

10 diagnoses; endorsement of self-reported depression; endorsement of current antidepressant 

usage; single or current depression according to the Smith criteria (11). Full details of the exclusion 

criteria have been previously described (12). 

BMI was defined using the Body mass index variable (Field ID: f.21001.0.0). 

Intelligence was defined using the Fluid intelligence score, assessed using the 13 item UKB Touch-

screen Fluid intelligence test (13). The test measures the capacity to solve problems that require 

logic and reasoning ability, independent of acquired knowledge. The fluid intelligence variable (Field 

ID: f.20191.0.0) was derived by UKB as an unweighted sum of the number of correct answers, 

assigning a score of 0 to unanswered questions. 
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This study analysed a subset of ~50,000 UKB participants for each phenotype to reduce computation 

burden. For intelligence and BMI, a random sub-sample was selected. For depression, a random 

sample of 25,000 cases and 25,000 controls was selected.  

Genetic data 

UKB released imputed dosage data for 488,377 individuals and ~96 million variants, generated using 

IMPUTE4 software (9) with the Haplotype Reference Consortium reference panel (14) and the 

UK10K Consortium reference panel (15). This study retained individuals that were of European 

ancestry based on 4-means clustering on the first two principal components provided by the UKB, 

had congruent genetic and self-reported sex, passed quality assurance tests by UKB, and removed 

related individuals (>3rd degree relative, KING threshold > 0.044) using relatedness kinship (KING) 

estimates provided by the UKB (9). The imputed dosages were converted to hard-call format for all 

variants. 

 

Polygenic scoring 

Polygenic scores were derived within a reference-standardised framework, where polygenic scores 

are derived using a common set of genetic variants, linkage disequilibrium estimates, and allele 

frequency estimates (1). This reproducible and standardised approach is good research practice and 

is also well suited for the clinical setting. 

 

SNP-level QC 

HapMap3 variants from the LD-score regression website (see Web Resources) were extracted from 

UKB, inserting any HapMap3 variants that were not available in the target sample as missing 

genotypes (as required for reference MAF imputation by the PLINK allelic scoring function) (16). No 

other SNP-level QC was performed. 

 

Individual-level QC 
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Individuals of European ancestry were retained for polygenic score analysis. They were identified 

using 1000 Genomes Phase 3 projected principal components of population structure, retaining only 

those within three standard deviations from the mean for the top 100 principal components. This 

process will also remove individuals who are outliers due to technical genotyping or imputation 

errors. 

 

GWAS summary statistics 

GWAS summary statistics independent of UK Biobank were identified for the three target 

phenotypes, and 14 secondary phenotypes previously shown to have a genetic correlation with at 

least one of the target phenotypes (Table 1). GWAS summary statistics underwent quality control to 

extract HapMap3 variants, remove ambiguous variants, remove variants with missing data, flip 

variants to match the reference, retain variants with a minor allele frequency (MAF) > 0.01 in the 

European subset of 1KG Phase 3, retain variants with a MAF > 0.01 in the GWAS sample (if available), 

retain variants with a INFO > 0.6 (if available), remove variants with a discordant MAF (>0.2) 

between the reference and GWAS sample (if available), remove variants with association p-values >1 

or </=0, remove duplicate variants, and remove variants with sample size >3SD from the median 

sample size (if per variant sample size is available). 

 

Reference genotype datasets 

Target sample genotype-based scoring was standardised using the European subset of 1000 

Genomes Phase 3 (N=503).  

 

MegaPRS 

GWAS summary statistics were processed for polygenic scoring using MegaPRS (17), as implemented 

by LDAK. MegaPRS implements polygenic scoring approaches using the LDAK heritability model (18), 

is computationally efficient, and has good predictive utility compared with other widely-used PRS 
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methods (1)(See URLs for updated results including MegaPRS). Like many PGS methods, MegaPRS 

uses a range of effect size distribution parameters to optimise the PGS. For simplicity, we used the 

model selected using the pseudo summary approach, also referred to as pseudo validation 

approach, which estimates the best set of parameters without requiring an external validation 

sample. This has been shown to perform well compared to other pseudo validation approaches and 

performs similarly to the best models identified using formal validation procedures. 

 

LAVA 

LAVA (Local Analysis of [co]Variant Annotation) was used to estimate the local h2
SNP and rg between 

target and secondary phenotypes (7). LAVA splits the genome into 2,495 non-overlapping and 

broadly LD independent loci, and then for each locus LAVA estimates the SNP-based heritability for a 

given phenotype, and the genetic correlation between phenotypes. As recommended, the genetic 

covariance intercept estimated by bivariate LD score regression was used to account for any sample 

overlap between GWAS (19). LAVA was then run between each target GWAS and all secondary 

GWAS using the run.univ.bivar function, with default settings, restricting the bivariate rg test to loci 

with a h2
SNP p-value < 0.05 for both phenotypes. When running LAVA, all GWAS were set as 

continuous phenotypes to reduce computation time, and local h2
SNP estimates were subsequently 

converted to the liability scale for binary phenotypes (assumed population prevalence listed in Table 

1) (20). 

 

Reweighting PGS by local h2
SNP and rg 

Several approaches were used to reweight SNPs -with local h2
SNP and rg estimates from LAVA.  First, 

we restricted all PGS analyses to a subset of SNPs with local h2
SNP p-value < 0.05 for both phenotypes.  

We then further defined subsets of these SNPs with local rg p-value < 0.05, and with false discovery 

rate (FDR)-corrected local rg p-value < 0.05. These thresholds give three SNP subsets of increasing 
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stringency, where the numbers of loci included within the reweighted PGS, depend on the statistical 

significance of local h2
SNP and rg estimates. We then reweighted variants in MegaPRS using two 

approaches scaling the secondary phenotype PGS effect size (β) by (1) local rg estimates only, 

βsecondary × local rg, and 2) local rg estimates scaled by the ratio of local h2
SNP between target and 

secondary phenotypes, βsecondary × local rg × h2
SNP-target / h2

SNP-secondary.  

After GWAS summary statistics were processed by MegaPRS and reweighted according to LAVA 

estimates, polygenic scores were calculated using PLINK with reference MAF imputation of missing 

data (16). All scores were standardized (scaled and centred) based on the mean and standard 

deviation of polygenic scores in the reference sample. 

 

Evaluating PGS 

Prediction accuracy was evaluated as the Pearson correlation between the observed and predicted 

phenotype outcomes. Correlation was used as the main test statistic as it is applicable for both 

binary and continuous phenotypes, and standard errors are easily computed. Correlations can be 

converted to test statistics such as R2 (observed or liability) and area under the curve (AUC) 

(equations 8 and 11 in (20)), with relative performance of each method remaining unchanged.  

Logistic regression was used for predicting binary phenotypes, and linear regression for predicting 

continuous phenotypes. If the model contained only one predictor, a generalized linear model was 

used. If the model contained more than one predictor, an elastic net model was applied to avoid 

overfitting from  including multiple correlated predictors (21).  

A nested cross validation procedure (22) was used to estimate the predictive utility of each model, 

where hyperparameter selection is performed using inner 10-fold cross-validation, while an outer 5-

fold cross-validation computes an unbiased estimate of the predictive utility of the model with the 

inner cross-validation based hyperparameter tuning. This approach avoids overfitting whilst 
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providing modelling predictions for the full sample. The inner 10-fold cross validation for 

hyperparameter optimisation was carried out using the 8caret9 R package. 

The correlations between observed and predicted values of each model were compared using the 

William9s test (also known as the Hotelling-Williams test) (23) as implemented by the 8psych9 R 

package9s 8paired.r9 function, with the correlation between model predictions of each method 

specified to account for their non-independence. A two-sided test was used when calculating p-

values.  
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Results 

PGS for three target phenotypes and 14 secondary phenotypes were derived using MegaPRS, and 

SNPs were reweighted with local h2
SNP and rg estimates. Models using nested 10-fold cross-validation 

were then derived to evaluate whether secondary PGS can improve target phenotype prediction 

over the target PGS alone, and whether reweighting secondary PGS by local h2
SNP and rg estimates 

can further improve target phenotype prediction. See Figure 1 for a schematic representation this 

study design. 

 

Genome-wide estimates of h2
SNP and rg from LD score regression supported our selection of target 

and secondary GWAS, with statistically significant estimates of h2
SNP for all phenotypes, and at least 

13 statistically significant estimates of rg between target and secondary phenotypes (Figure 2). In 

local analysis, LAVA often highlighted a mixture of positive and negative local rg estimates between 

target and secondary phenotypes, even where the genome-wide genetic correlation was not 

significant (Figure 2). For example, the genome-wide rg between major depression (DEPR06) and 

adult intelligence (INTE03) was not statistically significant (rg = −0.013, SE = 0.024), but LAVA 

identified 43 positive and 57 negative local genetic correlations surviving FDR correction for multiple 

testing. 

 

Inclusion of PGS for secondary phenotypes improves prediction 

Using an elastic net to model PGS for both the target phenotype and secondary phenotypes 

provided statistically significant improvements in prediction over the target phenotype PGS alone. 

The relative improvement in correlation between observed and predicted values for BMI, 

depression, and intelligence were 12.2% (p=1.7×10-54), 10.1% (p=7.7×10-15), and 0.8% (p=3.1×10-12) 

respectively (Figure 3). The relative improvement attained by including secondary PGS varied by the 
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genome-wide rg with the target phenotype, the h2
SNP and GWAS sample size of the secondary 

phenotype, and the predictive utility of the target PGS alone. 

 

Reweighting secondary PGS by local h2
SNP and rg enhances PGS across phenotypes 

Here, we describe results when analysing each secondary phenotype PGS separately to determine 

the effect of reweighting PGS by local h2
SNP and rg. Restricting secondary phenotype PGS to variants 

within loci with significant local h2
SNP for both phenotypes or significant local rg between phenotypes 

often led to a decrease in predictive utility compared to the genome-wide and unadjusted PGS. 

However, reweighting secondary phenotype PGS according to the local rg with the target trait often 

increased the variance explained by unrestricted PGS and unweighted PGS restricted to the same 

loci (Figure 4).  

Modelling both reweighted secondary PGS restricted to loci with rg p-value < 0.05 and unweighted 

secondary PGS for the remaining loci, significantly improved prediction over the standard 

unweighted secondary PGS alone (Figure 5). Reweighting loci by both local rg and h2
SNP provided 

gains over standard secondary PGS of 3.8% (p=1.02×102), 1.5% (p=2.5×10-6) and 11% (p=9.2×10-14) 

for depression, BMI and intelligence respectively. The relative improvement provided by the 

different weighting schemes varied across phenotypes, with BMI showing a significant improvement 

when modelling unweighted loci with rg p-value < 0.05 and other loci separately, but minimal further 

gains when reweighting according to local rg and h2
SNP. In contrast, the largest improvements for 

depression and intelligence occurred when reweighted by local rg and h2
SNP.  

The effect of reweighting variants by local rg was greater when the direction of local rg estimates 

were less consistent across the genome (i.e., there was a mixture of positive and negative local rg 

estimates) (Figure 6). There was little difference when restricting loci to those with nominally 

significant or FDR significant local genetic correlation (Figure S1). 
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Local h2
SNP and rg informed PGS can improve prediction over target and unweighted secondary PGS 

We then tested whether inclusion of local h2
SNP and rg informed PGS can improve prediction over 

models including target PGS and secondary PGS alone. The results were mixed when including 

secondary PGS reweighted according to local h2
SNP and rg (Figure 7). For BMI, a relative improvement 

of 2.7% (p=2.8×10-15) was seen when restricting the PGS to loci with a rg p-value < 0.05 without 

reweighting variants according to local h2
SNP and rg. Reweighting variants according to local h2

SNP and 

rg provided no further gain in prediction for BMI. For Intelligence, merely restricting PGS to loci with 

rg p-value < 0.05 provided no improvement in prediction. However, there was a nominally significant 

relative improvement of 0.1% (p=0.025) when reweighting PGS by local rg estimates, and relative 

improvement of 0.2% (p=1.7×10-3) when reweighting PGS according to local rg estimates and 

rescaling by differences in h2
SNP. For depression, inclusion of the local h2

SNP and rg reweighted PGS 

appeared to lead to overfitting, with a small decrease in prediction accuracy. There was little 

difference when restricting loci to those with nominally significant or FDR significant local genetic 

correlation (Figures S2-S4).  
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Discussion 

This study has evaluated a multivariate PGS approach for improving prediction of three target 

phenotypes in the UK Biobank sample. We initially estimate genome-wide and local heritability and 

genetic correlations between phenotypes using LAVA. We then evaluate the gain in target 

phenotype prediction by including secondary PGS derived using MegaPRS, and secondary PGS 

restricted and reweighted according to local heritability (h2
SNP) and genetic correlation (rg) estimates. 

Comparison of genome-wide and local estimates of h2
SNP and rg demonstrates that there are often 

significant positive and negative local rg even in the absence of significant genome-wide rg. This 

finding supports previous literature and highlights the novel insights that local methods can provide 

into the overlapping genetic effects between phenotypes (7, 8). Furthermore, the presence of mixed 

direction of local genetic correlations highlights the limitation of current multivariate PGS methods, 

which rely on genome-wide estimates between target and secondary phenotypes. 

We then applied elastic net models containing PGS for the target phenotype and secondary 

phenotypes, derived using MegaPRS. This analysis showed that inclusion of PGS for secondary 

phenotype improved target phenotype prediction over the target phenotype PGS alone. This finding 

is congruent with a previous study evaluating the predictive utility of secondary PGS in the Twins 

Early Development Study (TEDS)(3). 

To explore the utility of local h2
SNP and rg estimates when using secondary PGS to predict the target 

phenotype, we first compared standard secondary PGS to secondary PGS restricted to loci with a 

significant h2
SNP for both traits and significant rg between traits. In many instances the standard PGS 

was a better predictor of the target phenotype than h2
SNP and rg restricted PGS. This highlights that 

locus with non-significant h2
SNP and rg can still contribute to the variance explained by secondary 

PGS. This may occur due to reduced power in the target phenotype GWAS for detection of 

statistically significant local h2
SNP or rg.  
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We then tested whether leveraging local h2
SNP or rg estimates can increase the predictive utility of 

secondary PGS compared to unweighted secondary PGS restricted to the same loci. As expected, 

based on the mixture of positive and negative local rg estimates between target and secondary 

phenotypes, reweighting PGS according to local rg estimates did often lead to an increased 

correlation between the secondary PGS and the target phenotype, compared to the unweighted PGS 

based on the same loci. Conversely, reweighting PGS by difference in local h2
SNP had no consistent 

effect on the predictive utility of the secondary PGS. These findings support the concept that 

accounting for local genetic correlation estimates when using GWAS/PGS for secondary phenotypes 

can improve target phenotype prediction.  To highlight the effect of reweighting loci by h2
SNP or rg 

more clearly, we evaluated the predictive utility of models containing reweighted secondary PGS 

restricted to loci with significant local rg and unweighted secondary PGS for the remaining loci that 

did not have a significant local rg. This analysis again clearly demonstrated that reweighting 

secondary PGS according to local h2
SNP or rg significantly increased the prediction of the target 

phenotype. 

Finally, we demonstrate that inclusion of secondary PGS restricted to loci that have a significant rg  

for both phenotypes, and reweighting PGS according to local rg estimates, provides further improved 

target phenotype prediction over target and secondary PGS alone. However, the gain in prediction 

accuracy by including reweighted secondary PGS was limited, and for depression the inclusion of 

reweighted secondary PGS reduced prediction accuracy. This highlights a tradeoff between inclusion 

of additional weak predictors and the risk of overfitting, even when using large training samples and 

penalized regression such as elastic net. Further methodological development is required to harness 

the increased predictive utility of PGS reweighted according to rg or h2
SNP, whilst preserving the 

information in other regions of the genome.  

Here we discuss several limitations of the current study and possible future directions. First, we only 

compare these approaches using three target phenotypes and a modest selection of GWAS 
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summary statistics based on previously reported genome-wide rg estimates. Future studies should 

compare methods using a wider range of target phenotypes and secondary phenotype GWAS. 

Second, we do not compare our approach directly with other multivariate PGS methods such as 

MTAG, SMTpred and GSEM. We have focused on an adaptation only for the elastic net approach for 

simplicity, but it is possible that adaptions of these methods to account for local h2
SNP and rg may 

provide further gains in prediction. Third, we only use LAVA to estimate local genetic correlation, but 

other methods such as HESS are available. Fourth, local h2
SNP and rg can only be reliably incorporated 

if an independent and well powered GWAS for the target phenotype is available. 

In conclusion, we demonstrate that local heritability and genetic correlation can enhance the target 

phenotype prediction when using PGS for secondary phenotypes. We expect this more granular view 

of genetic overlap to be an important advance over current multivariate PGS methodology, and it 

should be integrated into other multivariate PGS methodologies in the future. 
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URLs 

- Updated GenoPred PGS methods comparison including LDAK9s MegaPRS: 

https://opain.github.io/GenoPred/Determine_optimal_polygenic_scoring_approach_update

_21102021.html  
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Tables 

Table 1. GWAS summary statistics, for three target phenotypes, depression, body mass index and 

intelligence and 14 secondary phenotypes.  

Code Phenotype N Ncase Ncon Prev. PMID Ref. 

Target phenotypes             

DEPR06 Major Depression (excl. UKB) 431394 116404 314990 0.15 29700475 (24) 

INTE03 Intelligence 269867 NA NA NA 29942086 (25) 

BODY04 BMI 322154 NA NA NA 25673413 (26) 

Secondary phenotypes (binary)             

SCHI02 Schizophrenia 77096 33640 43456 0.01 25056061 (27) 

BIPO02 Bipolar Disorder 51710 20352 31358 0.015 31043756 (28) 

AUTI07 Autism 46350 18381 27969 0.012 30804558 (29) 

SMOK04 Smoking (Ever/Never Regular) 74035 41969 32066 0.5 20418890 (30) 

ADHD05 Attention Deficit Hyperactivity Disorder 53293 19099 34194 0.05 30478444 (31) 

DIAB05 Type-2 Diabetes 159208 26676 132532 0.05 28566273 (32) 

OBES01 Obesity Class 1 98697 32858 65839 0.13 23563607 (33) 

COAD01 Coronary Artery Disease 184305 60801 123504 0.03 26343387 (34) 

Secondary phenotypes (continuous)             

ANXI02 Anxiety (Factor Score) 17310 NA NA NA 26754954 (35) 

MENA01F Age at Menarche 132989 NA NA NA 25231870 (36) 

WAIS01 Waist Circumference 231927 NA NA NA 25673412 (37) 

GLYC05 Fasting Insulin (Age- & Sex-adjusted) 38238 NA NA NA 20081858 (38) 

INTE01 Childhood Intelligence 12441 NA NA NA 23358156 (39) 

COLL01 College Completion 95427 NA NA NA 23722424 (40) 

 

Note. Prev. = Assumed population prevalence for binary GWAS phenotypes; Ref. = Reference for each 

GWAS.   
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Figures 

 

Figure 1. Schematic representation of study design. A) Local h2
SNP and rg are estimated for target and 

secondary GWAS. B) After processing by MegaPRS, PGS are stratified and reweighted according to 

local h2
SNP and rg. C) Models containing standard PGS, and local h2

SNP and rg adjusted PGS are 

evaluated and compared. 
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Figure 2. Summary of h2
SNP, genome-wide rg, and local rg for target and secondary phenotypes. h2

SNP 

and genome-wide rg were estimated using LD score regression. h2
SNP is shown on the liability scale for 

binary phenotypes. The standard error of h2
SNP and genome-wide rg are shown in parentheses. 

Significant genome-wide rg estimates (p<0.05) are highlight in bold, with heat plot colours from rg = 1 

(red) to rg = -1 (blue). Local rg was estimated using LAVA. The values in the local rg plot indicate the 

number of positive (left) and negative (right) FDR significant local genetic correlations, with the 

colour indicating the proportion of local genetic correlations that are in a consistent direction (deeper 

colour = consistent; white = discordant, with equal proportion of positive and negative correlations). 
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Figure 3. Predictive utility of models predicting depression, BMI, and intelligence. Models include 

target PGS only (Target PGS; red), secondary PGS only (Secondary PGS; green), and both target and 

secondary PGS (All); blue). Y-axis shows the Pearson correlation between predicted and observed 

phenotype values, with error bars indicating the standard error (note different scale by target 

phenotype). Pairwise comparisons of each model above the bars show the percentage difference in 

Pearson correlation and p-value. 
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Figure 4. Absolute Pearson correlation between PGS and phenotypes. The 8Standard9 PGS is an 
unrestricted and unadjusted PGS. All other PGS are restricted to loci with a local rg p-value < 0.05 for 

both phenotypes. The plot compares the three SNP-weightings, unadjusted (Unweighted), adjusted 

for the local rg (rho*BETA2), and for the local rg and h2
SNP (rho*BETA2/(hsq2/hsq1)). Error bars 

indicate the standard error. 
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Figure 5. Predictive utility of models for depression, BMI, and intelligence. The 'Standard' model, 

containing standard unweighted secondary PGS, is compared to models additionally containing 

secondary unweighted PGS restricted to loci with non-significant local rg (p-value ≥ 0.05) and PGS 

restricted to loci with local rg p-value < 0.05 either unadjusted (Unweighted), adjusted for local rg 

(Local rG Weighted), or adjusted for local rg and scaled by the ratio of local h2
SNP between target and 

secondary phenotypes (Local rG + hsq Weighted). Y-axis shows the Pearson correlation between 

predicted and observed phenotype values, with error bars indicating the standard error. A 

comparison of each model is shown above the bars, with the text first indicating the percentage 

difference in Pearson correlation between each model and the Baseline model, and then showing the 

p-value of the difference between models. 
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Figure 6. Effect of inconsistent direction in local rg estimates on absolute improvement in Pearson 

correlation between unweighted and local rg weighted PGS. All PGS are restricted to loci with 

nominally significant local rg (p<0.05). The size of the points indicates the number of loci with 

nominally significant local rg. Proportion Inconsistent = proportion of loci with rg direction opposing 

the most common local rg direction. 
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Figure 7. Predictive utility of models for depression, BMI, and intelligence. The 'Baseline' model 

(containing target and secondary PGS) is compared to models additionally containing secondary 

weighted/unweighted PGS restricted to loci with local rg p-value < 0.05 either unadjusted 

(Unweighted), adjusted for local rg (Local rG Weighted), or adjusted for local rg and scaled by the 

ratio of local h2
SNP between target and secondary phenotypes (Local rG + hsq Weighted). Y-axis shows 

the Pearson correlation between predicted and observed phenotype values, with error bars indicating 

the standard error. A comparison of each model is shown above the bars, with the text first 

indicating the percentage difference in Pearson correlation between each model and the Baseline 

model, and then showing the p-value of the difference between models. 
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Figure S1. Absolute Pearson correlation between PGS and phenotypes. PGS are restricted to loci with 

either a local h2
SNP p-value < 0.05 for both phenotypes (hsq-p < 0.05), a nominally significant local rg 

(rho-p < 0.05), or an FDR significant local rg (rho-fdr.p < 0.05). The plot compares unadjusted PGS 

SNP-weights (Unweighted), PGS SNP-weights adjusted for the local rg (rho*BETA2), and PGS SNP-

weights adjusted for the local rg and h2
SNP (rho*BETA2/(hsq2/hsq1)). Pearson correlation standard 

errors are shown in parentheses. 
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Figure S2. Predictive utility of models predicting depression. Models include either target and 

secondary PGS, secondary weighted/unweighted and restricted PGS, or both target and secondary 

PGS, and secondary weighted/unweighted and restricted PGS (All). The secondary PGS are either 

restricted to loci with a local h2
SNP p-value < 0.05 (hsq-p < 0.05), a nominally significant local rg (rho-p 

< 0.05), or an FDR significant local rg (rho-fdr.p < 0.05), and were either unadjusted (Unweighted), 

adjusted for local rg (local rg weighted), or adjusted for local rg and scaled by the difference in local 

h2
SNP (local rg + hsq weighted). Y-axis shows the Pearson correlation between predicted and observed 

phenotype values, with error bars indicating the standard error. A comparison of each model is 

shown above the bars, with the text first indicating the percentage difference in Pearson correlation 

between the left and right bar, and then showing the p-value of the different between models. 
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Figure S3. Predictive utility of models predicting BMI. Models include either target and secondary 

PGS, secondary weighted/unweighted and restricted PGS, or both target and secondary PGS, and 

secondary weighted/unweighted and restricted PGS (All). The secondary PGS are either restricted to 

loci with a local h2
SNP p-value < 0.05 (hsq-p < 0.05), a nominally significant local rg (rho-p < 0.05), or an 

FDR significant local rg (rho-fdr.p < 0.05), and were either unadjusted (Unweighted), adjusted for 

local rg (local rg weighted), or adjusted for local rg and scaled by the difference in local h2
SNP (local rg + 

hsq weighted). Y-axis shows the Pearson correlation between predicted and observed phenotype 

values, with error bars indicating the standard error. A comparison of each model is shown above the 

bars, with the text first indicating the percentage difference in Pearson correlation between the left 

and right bar, and then showing the p-value of the different between models. 
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Figure S4. Predictive utility of models predicting intelligence. Models include either target and 

secondary PGS, secondary weighted/unweighted and restricted PGS, or both target and secondary 

PGS, and secondary weighted/unweighted and restricted PGS (All). The secondary PGS are either 

restricted to loci with a local h2
SNP p-value < 0.05 (hsq-p < 0.05), a nominally significant local rg (rho-p 

< 0.05), or an FDR significant local rg (rho-fdr.p < 0.05), and were either unadjusted (Unweighted), 

adjusted for local rg (local rg weighted), or adjusted for local rg and scaled by the difference in local 

h2
SNP (local rg + hsq weighted). Y-axis shows the Pearson correlation between predicted and observed 

phenotype values, with error bars indicating the standard error. A comparison of each model is 

shown above the bars, with the text first indicating the percentage difference in Pearson correlation 

between the left and right bar, and then showing the p-value of the different between models. 
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