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Abstract

Introduction: The predictive utility of polygenic scores (PGS) is steadily increasing as genome-wide
association studies (GWAS) increase in sample size and diversity, and as PGS methodology is further
developed. Multivariate PGS approaches incorporate GWAS results for secondary phenotypes which
are genetically correlated with the target phenotype. These improve prediction over using PGS for
only the target phenotype. However, previous methods have only considered the genome-wide
estimates of SNP-based heritability (h%np) and genetic correlation (r,) between target and secondary
phenotypes. In this study, we assess the impact of local h’yp and ry within specific loci on cross-trait

prediction.

Methods: We evaluate PGS using three target phenotypes (depression, intelligence, BMI) in the UK
Biobank, with GWAS summary statistics matching the target phenotypes and 14 genetically
correlated secondary phenotypes. PGS SNP-weights were derived using MegaPRS. Local h%np and ry
were estimated using LAVA. We then evaluated PGS after reweighting SNP-weights according to
local h’sye and ryestimates between the target and secondary phenotypes. Elastic net models

containing PGS for multiple phenotypes were evaluated using nested 10-fold cross validation.

Results: Modelling target and secondary PGS significantly improved target phenotype prediction
over the target PGS alone, with relative improvements ranging from 0.8-12.2%. Furthermore, we
show reweighting PGS by local h%ye and r, estimates can enhance the predictive utility of PGS across
phenotypes, with additional relative improvements of 0.2%-2.8%. Reweighting PGS by local h%spand
rg improved target phenotype prediction most when there was a mixture of positive and negative

local ry estimates between target and secondary phenotypes.

Conclusion: Modelling PGS for secondary phenotypes consistently improves prediction of target
phenotypes, and this approach can be further enhanced by incorporating local h’ye and rg estimates

to highlight relevant genetic effects across phenotypes.
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Introduction

The predictive utility of polygenic scores (PGS) is steadily increasing as genome-wide association
studies (GWAS) increase in sample size and become available for a wider range of phenotypes and
populations. Furthermore, advances in PGS methodology are making important improvements to
the predictive utility of PGS (1). PGS methods that utilise GWAS summary statistics together with
linkage disequilibrium (LD) reference data typically provide the highest predictive utility as

individual-level data for large sample sizes is often unavailable.

PGS are a commonly used research tool and are being increasing studied for clinical application to
enhance personalised medicine. PGS for a target phenotype typically only explain a small proportion
of variance and will therefore be most useful when integrated into prediction models that also
consider other predictors. For example, integrating coronary artery disease PGS with established
clinical predictors significantly improved prediction of coronary artery disease events (2). Prediction
of a target phenotype can also be improved by incorporating PGS for secondary phenotypes that are

genetically correlated with the target phenotype (3).

Other multivariate approaches have also been considered for improving the prediction of a target
phenotype, such as SMTpred (4), Genomic SEM (5), and MTAG (6). All these approaches improve
prediction of a target phenotype by incorporating GWAS summary statistics for genetically
correlated secondary phenotypes. However, these previous approaches only consider the genome-
wide genetic correlation (ry) between the target and secondary phenotypes, thereby not allowing for
rq to differ at specific loci. Recently developed methods allow the estimation of local rg, such as LAVA
(7) and HESS (8). This more granular insight into the shared and unique genetic effects across traits
has highlighted that although two phenotypes may have a significant genome-wide ry, this may be
driven by only a few loci, and may even involve a mixture of positive and negative ryloci. Current
multivariate PGS approaches assume a consistent ry across the genome and will therefore

incorporate genetic effects from secondary phenotypes that are irrelevant and potentially inversely
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related to the target phenotype, thereby reducing the value of adding the secondary PGS in

prediction.

In this study we explore whether local ry estimates can be leveraged to enhance the predictive utility
of PGS across phenotypes. In a similar approach to Krapohl et al., we use an elastic net to model PGS
for the target PGS and multiple secondary PGS (3). We then evaluate the effect of reweighting
variants within specific loci based on local rg estimates computed using LAVA. Using three traits of
depression, intelligence and BMI in the UK Biobank, our findings support previous literature showing
improved prediction of the target phenotype prediction when modelling PGS for secondary
phenotypes over target phenotype PGS alone. Further, we demonstrate for the first time that using
local rgy alongside the secondary PGS provides further statistically significantly improvements in

predicting the target phenotype.
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Methods

UK Biobank (UKB)
UKB is a prospective cohort study that recruited >500,000 individuals aged between 40-69 years
across the United Kingdom (9). The UKB received ethical approval from the North West - Haydock

Research Ethics Committee (reference 16/NW/0274).

Phenotype data

Three UKB phenotypes were analysed: depression, body mass index (BMI) and intelligence.

For depression, UKB participants were coded as cases if they met the Composite International
Diagnostic Interview Short Form criteria for lifetime depression which was assessed in the online
Mental Health Questionnaire (MHQ) using scoring protocols proposed by Davis et al (10). Depression
cases were screened for indications of schizophrenia or bipolar disorder in the MHQ. Controls were
excluded if they showed any psychiatric indications in the MHQ or other depression indications: ICD-
10 diagnoses; endorsement of self-reported depression; endorsement of current antidepressant
usage; single or current depression according to the Smith criteria (11). Full details of the exclusion

criteria have been previously described (12).

BMI was defined using the Body mass index variable (Field ID: f.21001.0.0).

Intelligence was defined using the Fluid intelligence score, assessed using the 13 item UKB Touch-
screen Fluid intelligence test (13). The test measures the capacity to solve problems that require
logic and reasoning ability, independent of acquired knowledge. The fluid intelligence variable (Field
ID: £.20191.0.0) was derived by UKB as an unweighted sum of the number of correct answers,

assigning a score of 0 to unanswered questions.
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This study analysed a subset of ~50,000 UKB participants for each phenotype to reduce computation
burden. For intelligence and BMI, a random sub-sample was selected. For depression, a random

sample of 25,000 cases and 25,000 controls was selected.

Genetic data

UKB released imputed dosage data for 488,377 individuals and ~96 million variants, generated using
IMPUTEA4 software (9) with the Haplotype Reference Consortium reference panel (14) and the
UK10K Consortium reference panel (15). This study retained individuals that were of European
ancestry based on 4-means clustering on the first two principal components provided by the UKB,
had congruent genetic and self-reported sex, passed quality assurance tests by UKB, and removed
related individuals (>3™ degree relative, KING threshold > 0.044) using relatedness kinship (KING)
estimates provided by the UKB (9). The imputed dosages were converted to hard-call format for all

variants.

Polygenic scoring

Polygenic scores were derived within a reference-standardised framework, where polygenic scores
are derived using a common set of genetic variants, linkage disequilibrium estimates, and allele
frequency estimates (1). This reproducible and standardised approach is good research practice and

is also well suited for the clinical setting.

SNP-level QC

HapMap3 variants from the LD-score regression website (see Web Resources) were extracted from
UKB, inserting any HapMap3 variants that were not available in the target sample as missing
genotypes (as required for reference MAF imputation by the PLINK allelic scoring function) (16). No

other SNP-level QC was performed.

Individual-level QC
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Individuals of European ancestry were retained for polygenic score analysis. They were identified
using 1000 Genomes Phase 3 projected principal components of population structure, retaining only
those within three standard deviations from the mean for the top 100 principal components. This
process will also remove individuals who are outliers due to technical genotyping or imputation

errors.

GWAS summary statistics

GWAS summary statistics independent of UK Biobank were identified for the three target
phenotypes, and 14 secondary phenotypes previously shown to have a genetic correlation with at
least one of the target phenotypes (Table 1). GWAS summary statistics underwent quality control to
extract HapMap3 variants, remove ambiguous variants, remove variants with missing data, flip
variants to match the reference, retain variants with a minor allele frequency (MAF) > 0.01 in the
European subset of 1KG Phase 3, retain variants with a MAF > 0.01 in the GWAS sample (if available),
retain variants with a INFO > 0.6 (if available), remove variants with a discordant MAF (>0.2)
between the reference and GWAS sample (if available), remove variants with association p-values >1
or </=0, remove duplicate variants, and remove variants with sample size >3SD from the median

sample size (if per variant sample size is available).

Reference genotype datasets

Target sample genotype-based scoring was standardised using the European subset of 1000

Genomes Phase 3 (N=503).

MegaPRS

GWAS summary statistics were processed for polygenic scoring using MegaPRS (17), as implemented
by LDAK. MegaPRS implements polygenic scoring approaches using the LDAK heritability model (18),

is computationally efficient, and has good predictive utility compared with other widely-used PRS
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methods (1)(See URLs for updated results including MegaPRS). Like many PGS methods, MegaPRS
uses a range of effect size distribution parameters to optimise the PGS. For simplicity, we used the
model selected using the pseudo summary approach, also referred to as pseudo validation
approach, which estimates the best set of parameters without requiring an external validation
sample. This has been shown to perform well compared to other pseudo validation approaches and

performs similarly to the best models identified using formal validation procedures.

LAVA

LAVA (Local Analysis of [co]Variant Annotation) was used to estimate the local h%yprand ry between
target and secondary phenotypes (7). LAVA splits the genome into 2,495 non-overlapping and
broadly LD independent loci, and then for each locus LAVA estimates the SNP-based heritability for a
given phenotype, and the genetic correlation between phenotypes. As recommended, the genetic
covariance intercept estimated by bivariate LD score regression was used to account for any sample
overlap between GWAS (19). LAVA was then run between each target GWAS and all secondary
GWAS using the run.univ.bivar function, with default settings, restricting the bivariate rytest to loci
with a h%spe p-value < 0.05 for both phenotypes. When running LAVA, all GWAS were set as
continuous phenotypes to reduce computation time, and local h%yp estimates were subsequently
converted to the liability scale for binary phenotypes (assumed population prevalence listed in Table

1) (20).

Reweighting PGS by local h’swpand ry

Several approaches were used to reweight SNPs -with local h’sxe and ry estimates from LAVA. First,
we restricted all PGS analyses to a subset of SNPs with local h%p p-value < 0.05 for both phenotypes.
We then further defined subsets of these SNPs with local ry p-value < 0.05, and with false discovery

rate (FDR)-corrected local ry p-value < 0.05. These thresholds give three SNP subsets of increasing
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stringency, where the numbers of loci included within the reweighted PGS, depend on the statistical
significance of local h%sp and ry estimates. We then reweighted variants in MegaPRS using two
approaches scaling the secondary phenotype PGS effect size (B) by (1) local rg estimates only,
Bsecondary % local rg, and 2) local ry estimates scaled by the ratio of local h%y» between target and

Secondary phenOtypeS, 6secondary x local rg X thNP—target/thNP—secondary-

After GWAS summary statistics were processed by MegaPRS and reweighted according to LAVA
estimates, polygenic scores were calculated using PLINK with reference MAF imputation of missing
data (16). All scores were standardized (scaled and centred) based on the mean and standard

deviation of polygenic scores in the reference sample.

Evaluating PGS

Prediction accuracy was evaluated as the Pearson correlation between the observed and predicted
phenotype outcomes. Correlation was used as the main test statistic as it is applicable for both
binary and continuous phenotypes, and standard errors are easily computed. Correlations can be
converted to test statistics such as R? (observed or liability) and area under the curve (AUC)

(equations 8 and 11 in (20)), with relative performance of each method remaining unchanged.

Logistic regression was used for predicting binary phenotypes, and linear regression for predicting
continuous phenotypes. If the model contained only one predictor, a generalized linear model was
used. If the model contained more than one predictor, an elastic net model was applied to avoid

overfitting from including multiple correlated predictors (21).

A nested cross validation procedure (22) was used to estimate the predictive utility of each model,
where hyperparameter selection is performed using inner 10-fold cross-validation, while an outer 5-
fold cross-validation computes an unbiased estimate of the predictive utility of the model with the

inner cross-validation based hyperparameter tuning. This approach avoids overfitting whilst
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providing modelling predictions for the full sample. The inner 10-fold cross validation for

hyperparameter optimisation was carried out using the ‘caret’ R package.

The correlations between observed and predicted values of each model were compared using the
William'’s test (also known as the Hotelling-Williams test) (23) as implemented by the ‘psych’ R
package’s ‘paired.r’ function, with the correlation between model predictions of each method
specified to account for their non-independence. A two-sided test was used when calculating p-

values.
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Results

PGS for three target phenotypes and 14 secondary phenotypes were derived using MegaPRS, and
SNPs were reweighted with local h%se and r, estimates. Models using nested 10-fold cross-validation
were then derived to evaluate whether secondary PGS can improve target phenotype prediction
over the target PGS alone, and whether reweighting secondary PGS by local h’se and r, estimates
can further improve target phenotype prediction. See Figure 1 for a schematic representation this

study design.

Genome-wide estimates of h’%ypand rgfrom LD score regression supported our selection of target
and secondary GWAS, with statistically significant estimates of h%e for all phenotypes, and at least
13 statistically significant estimates of ry between target and secondary phenotypes (Figure 2). In
local analysis, LAVA often highlighted a mixture of positive and negative local ry estimates between
target and secondary phenotypes, even where the genome-wide genetic correlation was not
significant (Figure 2). For example, the genome-wide r, between major depression (DEPR06) and
adult intelligence (INTEO3) was not statistically significant (ry = -0.013, SE = 0.024), but LAVA
identified 43 positive and 57 negative local genetic correlations surviving FDR correction for multiple

testing.

Inclusion of PGS for secondary phenotypes improves prediction

Using an elastic net to model PGS for both the target phenotype and secondary phenotypes
provided statistically significant improvements in prediction over the target phenotype PGS alone.
The relative improvement in correlation between observed and predicted values for BMI,
depression, and intelligence were 12.2% (p=1.7x10">*), 10.1% (p=7.7x10"), and 0.8% (p=3.1x10"?)

respectively (Figure 3). The relative improvement attained by including secondary PGS varied by the
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genome-wide rg with the target phenotype, the h’sxve and GWAS sample size of the secondary

phenotype, and the predictive utility of the target PGS alone.

Reweighting secondary PGS by local h’sxe and ryenhances PGS across phenotypes

Here, we describe results when analysing each secondary phenotype PGS separately to determine
the effect of reweighting PGS by local h%yp and r,. Restricting secondary phenotype PGS to variants
within loci with significant local h%ye for both phenotypes or significant local ry between phenotypes
often led to a decrease in predictive utility compared to the genome-wide and unadjusted PGS.
However, reweighting secondary phenotype PGS according to the local ry with the target trait often
increased the variance explained by unrestricted PGS and unweighted PGS restricted to the same

loci (Figure 4).

Modelling both reweighted secondary PGS restricted to loci with rg p-value < 0.05 and unweighted
secondary PGS for the remaining loci, significantly improved prediction over the standard
unweighted secondary PGS alone (Figure 5). Reweighting loci by both local rg and h%sye provided
gains over standard secondary PGS of 3.8% (p=1.02x102), 1.5% (p=2.5x10%) and 11% (p=9.2x104)
for depression, BMI and intelligence respectively. The relative improvement provided by the
different weighting schemes varied across phenotypes, with BMI showing a significant improvement
when modelling unweighted loci with rg p-value < 0.05 and other loci separately, but minimal further
gains when reweighting according to local rg and h%yp. In contrast, the largest improvements for

depression and intelligence occurred when reweighted by local rg and h%sye.

The effect of reweighting variants by local rq was greater when the direction of local rg4 estimates
were less consistent across the genome (i.e., there was a mixture of positive and negative local rg
estimates) (Figure 6). There was little difference when restricting loci to those with nominally

significant or FDR significant local genetic correlation (Figure S1).
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Local h®*syp and r,informed PGS can improve prediction over target and unweighted secondary PGS

We then tested whether inclusion of local h’e and rginformed PGS can improve prediction over
models including target PGS and secondary PGS alone. The results were mixed when including
secondary PGS reweighted according to local h’yeand ry (Figure 7). For BMI, a relative improvement
of 2.7% (p=2.8x10"°) was seen when restricting the PGS to loci with a rq p-value < 0.05 without
reweighting variants according to local h%\e and ry. Reweighting variants according to local h%ypsand
rg provided no further gain in prediction for BMI. For Intelligence, merely restricting PGS to loci with
rg p-value < 0.05 provided no improvement in prediction. However, there was a nominally significant
relative improvement of 0.1% (p=0.025) when reweighting PGS by local rg estimates, and relative
improvement of 0.2% (p=1.7x103) when reweighting PGS according to local ryestimates and
rescaling by differences in h%yp. For depression, inclusion of the local h’se and ry reweighted PGS
appeared to lead to overfitting, with a small decrease in prediction accuracy. There was little
difference when restricting loci to those with nominally significant or FDR significant local genetic

correlation (Figures S2-S4).
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Discussion

This study has evaluated a multivariate PGS approach for improving prediction of three target
phenotypes in the UK Biobank sample. We initially estimate genome-wide and local heritability and
genetic correlations between phenotypes using LAVA. We then evaluate the gain in target
phenotype prediction by including secondary PGS derived using MegaPRS, and secondary PGS

restricted and reweighted according to local heritability (h%sne) and genetic correlation (ry) estimates.

Comparison of genome-wide and local estimates of h%ye and ry demonstrates that there are often
significant positive and negative local rg even in the absence of significant genome-wide r,. This
finding supports previous literature and highlights the novel insights that local methods can provide
into the overlapping genetic effects between phenotypes (7, 8). Furthermore, the presence of mixed
direction of local genetic correlations highlights the limitation of current multivariate PGS methods,

which rely on genome-wide estimates between target and secondary phenotypes.

We then applied elastic net models containing PGS for the target phenotype and secondary
phenotypes, derived using MegaPRS. This analysis showed that inclusion of PGS for secondary
phenotype improved target phenotype prediction over the target phenotype PGS alone. This finding
is congruent with a previous study evaluating the predictive utility of secondary PGS in the Twins

Early Development Study (TEDS)(3).

To explore the utility of local h%np and ry estimates when using secondary PGS to predict the target
phenotype, we first compared standard secondary PGS to secondary PGS restricted to loci with a
significant h%se for both traits and significant ry between traits. In many instances the standard PGS
was a better predictor of the target phenotype than h%ye and rg restricted PGS. This highlights that
locus with non-significant h’ye and ry can still contribute to the variance explained by secondary
PGS. This may occur due to reduced power in the target phenotype GWAS for detection of

statistically significant local h’se or rg.

14
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We then tested whether leveraging local h’yp or ry estimates can increase the predictive utility of
secondary PGS compared to unweighted secondary PGS restricted to the same loci. As expected,
based on the mixture of positive and negative local ry estimates between target and secondary
phenotypes, reweighting PGS according to local rg estimates did often lead to an increased
correlation between the secondary PGS and the target phenotype, compared to the unweighted PGS
based on the same loci. Conversely, reweighting PGS by difference in local h%ye had no consistent
effect on the predictive utility of the secondary PGS. These findings support the concept that
accounting for local genetic correlation estimates when using GWAS/PGS for secondary phenotypes
can improve target phenotype prediction. To highlight the effect of reweighting loci by h%e or ry
more clearly, we evaluated the predictive utility of models containing reweighted secondary PGS
restricted to loci with significant local ryand unweighted secondary PGS for the remaining loci that
did not have a significant local rg. This analysis again clearly demonstrated that reweighting
secondary PGS according to local h%p or rysignificantly increased the prediction of the target

phenotype.

Finally, we demonstrate that inclusion of secondary PGS restricted to loci that have a significant rg
for both phenotypes, and reweighting PGS according to local ry estimates, provides further improved
target phenotype prediction over target and secondary PGS alone. However, the gain in prediction
accuracy by including reweighted secondary PGS was limited, and for depression the inclusion of
reweighted secondary PGS reduced prediction accuracy. This highlights a tradeoff between inclusion
of additional weak predictors and the risk of overfitting, even when using large training samples and
penalized regression such as elastic net. Further methodological development is required to harness
the increased predictive utility of PGS reweighted according to ry or h%se, whilst preserving the

information in other regions of the genome.

Here we discuss several limitations of the current study and possible future directions. First, we only

compare these approaches using three target phenotypes and a modest selection of GWAS
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summary statistics based on previously reported genome-wide rg estimates. Future studies should
compare methods using a wider range of target phenotypes and secondary phenotype GWAS.
Second, we do not compare our approach directly with other multivariate PGS methods such as
MTAG, SMTpred and GSEM. We have focused on an adaptation only for the elastic net approach for
simplicity, but it is possible that adaptions of these methods to account for local h%.ne and rg may
provide further gains in prediction. Third, we only use LAVA to estimate local genetic correlation, but
other methods such as HESS are available. Fourth, local h%ye and rg can only be reliably incorporated

if an independent and well powered GWAS for the target phenotype is available.

In conclusion, we demonstrate that local heritability and genetic correlation can enhance the target
phenotype prediction when using PGS for secondary phenotypes. We expect this more granular view
of genetic overlap to be an important advance over current multivariate PGS methodology, and it

should be integrated into other multivariate PGS methodologies in the future.
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