
Single-cell data analysis in the browser

Aaron Lun1 and Jayaram Kancherla1

1Genentech, Inc. South San Francisco, CA

March 2, 2022

Abstract

We present kana, a web application for interactive single-cell RNA-seq
(scRNA-seq) data analysis in the browser. Like, literally, in the browser:
kana leverages web technologies such as WebAssembly to efficiently per-
form the relevant computations on the user’s machine, avoiding the need
to provision and maintain a backend service. The application provides a
streamlined one-click workflow for all steps in a typical scRNA-seq anal-
ysis, starting from a count matrix and finishing with marker detection.
Results are presented in an intuitive web interface for further exploration
and iterative analysis. Testing on public datasets shows that kana can
analyze over 100,000 cells within 5 minutes on a typical laptop.

1 Introduction

Modern web browsers are sophisticated pieces of software responsible for ren-
dering, scripting, networking, data storage and more. New web technologies
such as WebAssembly [20] have greatly enhanced browsers’ capabilities for in-
tensive computation, providing new opportunities to repurpose the browser as
an interactive data analysis tool. The idea is to use the browser itself to per-
form statistical and computational analyses directly on the user’s machine, i.e.,
“client-side compute”. Those analysis results can then be rendered on a web
page for convenient visualization and exploration within a familiar interface.

This paradigm of client-side compute in the browser has several advantages
over the traditional model of server-side data analysis. Most obviously, we do
not need a scalable backend server to perform any of the calculations, simplifying
deployment and reducing costs. As the entire analysis is performed on the client
machine, we avoid any data transfer - this reduces latency in the user interface
and circumvents concerns over data ownership and privacy. Finally, we do not
require installation of any data analysis environments like R or Python, ensuring
that the analyses are accessible to audiences of varying computational skill.

Some prior work already exists to realize these client-side benefits for bioin-
formatics data analysis. For example, the BioJS registry hosts Javascript com-
ponents for handling biological data [16], many of which focus on DNA and

1

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 4, 2022. ; https://doi.org/10.1101/2022.03.02.482701doi: bioRxiv preprint 

https://doi.org/10.1101/2022.03.02.482701
http://creativecommons.org/licenses/by/4.0/


protein sequence analysis. The BrowserGenome.org application performs read
alignment and transcript quantification for RNA sequencing data [50], while
the ubit2 application analyzes single-cell quantitative polymerase chain reac-
tion datasets [15]; both use Javascript implementations of the relevant algo-
rithms to run in the browser. However, these are exceptions to the rule; most
bioinformatics web applications only use the browser to visualize results that
were computed elsewhere, e.g., cellxgene [45], Epiviz [11], Cirrocumulus [17],
Vitessce [24], HiGlass [25] and every R/Shiny application ever [10]. This state
of affairs is not unexpected - after all, Javascript is not widely recognized as a
language for data science, nor it is particularly efficient for such tasks.

The client-side paradigm is especially appealing for single-cell genomics due
to the exploratory nature of its data analysis. Most use cases for single-cell
sequencing involve identifying new cell subpopulations or states from heteroge-
neous biological samples [52], which requires several iterations of data analy-
sis, visualization and interpretation. If the compute could be performed in the
browser, the results could be immediately rendered on a web page for a seamless
transition between analysis and interactive exploration. However, this is com-
plicated by the size of the datasets, each of which involves tens of thousands of
genes and up to millions of cells; and the paucity of browser-compatible imple-
mentations of relevant algorithms, most of which are written in R or Python.

We present kana, a web application for single-cell RNA-seq (scRNA-seq)
data analysis inside the browser. kana provides a streamlined one-click workflow
for all steps in a typical scRNA-seq analysis [2], starting from a count matrix
and finishing with marker detection. Users can interactively explore the low-
dimensional embeddings, clusterings and marker genes in an intuitive graphical
interface that encourages iterative re-analysis. Once finished, users can save
their analysis and results for later examination or sharing with collaborators.
By using technologies like WebAssembly and web workers, we achieve high-
performance compute for datasets containing hundreds of thousands of cells.

The kana application is available at https://www.jkanche.com/kana. De-
velopers can set up their own deployments by following the instructions at
https://github.com/jkanche/kana.

2 Application overview

Given a scRNA-seq dataset, kana implements a routine analysis with the steps
listed below. We will not discuss the statistical and scientific rationale behind
each step in much detail as this has been covered elsewhere [36].

1. We import a gene-by-cell count matrix from the user’s machine, typically
in the form of Matrix Market files such as those produced by the Cellranger
pipeline. HDF5 files are also supported, using either the 10X HDF5 feature
barcode matrix format or as H5AD files.

2. We compute common quality control (QC) metrics such as the total count,
number of detected genes and proportion of mitochondrial counts. Low-

2

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 4, 2022. ; https://doi.org/10.1101/2022.03.02.482701doi: bioRxiv preprint 

https://www.jkanche.com/kana
https://github.com/jkanche/kana
https://doi.org/10.1101/2022.03.02.482701
http://creativecommons.org/licenses/by/4.0/


quality cells are defined as those cells with outlier values for any of these
metrics; these are filtered out from subsequent steps.

3. We perform scaling normalization based on the library size to remove cell-
specific biases. This is followed by a log-transformation to obtain a matrix
of log-normalized expression values.

4. We fit a LOWESS trend [12] to the per-gene variances with respect to the
means, computed from the log-expression values. We sort on the residuals
to define a subset of highly variable genes (HVGs).

5. We perform principal components analysis (PCA) on the log-expression
matrix with the subset of HVGs. This yields a few top PCs that capture
the heterogeneity of the data in a compressed and denoised form.

6. We apply clustering techniques on the top PCs to generate discrete sub-
populations. By default, this uses multi-level (i.e., “louvain”) community
detection on a shared nearest neighbor (SNN) graph where each cell is
a node and edges connect neighboring cells. We also support k-means
clustering with some user-specified choice of the number of clusters.

7. Each cluster is characterized through differential expression analyses to
detect its marker genes. Specifically, we perform a series of pairwise com-
parisons between clusters and summarize the effect sizes into a ranking of
potential marker genes for each cluster.

8. We perform further dimensionality reduction on the top PCs to obtain
two-dimensional embeddings for visualization. This includes the usual t-
distributed stochastic neighbor embedding (t-SNE) and uniform manifold
approximation and projection (UMAP) [54, 44].

At each step, users can easily customize key parameters (Figure 1). For ex-
ample, we can adjust the QC thresholds, the number of HVGs and top PCs, the
granularity of the clustering, and more. Iterative refinements to the parameters
are encouraged in kana, as the application tracks dependencies between steps to
enable efficient re-analysis. Specifically, when parameters are modified for any
step, all subsequent steps are automatically re-executed to propagate the change
to downstream results. Conversely, kana does not rerun any steps upstream of
the change to avoid unnecessary recomputation and reduce latency.

Once each step of the analysis is complete, kana visualizes its results in a
multi-panel layout (Figure 2). One panel contains a scatter plot for the low-
dimensional embeddings, where each cell is a point that is colored by cluster
identity or gene expression. Another panel contains a table of marker statistics
for a selected cluster, where potential marker genes are ranked and filtered
according to the magnitude of upregulation over other clusters. We also provide
a gallery to visualize miscellaneous details such as the distribution of QCmetrics.

Finally, users can export the analysis parameters and results for later inspec-
tion. The exported analysis can be quickly reloaded in a new browser session,
allowing users to view the results without repeating the computation.

3

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 4, 2022. ; https://doi.org/10.1101/2022.03.02.482701doi: bioRxiv preprint 

https://doi.org/10.1101/2022.03.02.482701
http://creativecommons.org/licenses/by/4.0/


Figure 1: Screenshot showing the analysis configuration panel in the kana ap-
plication. Clicking “Analyze” will perform the entire analysis.

4

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 4, 2022. ; https://doi.org/10.1101/2022.03.02.482701doi: bioRxiv preprint 

https://doi.org/10.1101/2022.03.02.482701
http://creativecommons.org/licenses/by/4.0/


Figure 2: Screenshot showing the multi-panel layout for results in the kana
application. The top-left panel is used for the low-dimensional embeddings, the
right panel contains the marker table for a selected cluster, and the bottom-left
panel contains a gallery of miscellaneous plots.

3 Client-side computation

3.1 Efficient compute with WebAssembly

WebAssembly (Wasm) [20] is a binary instruction format that provides a web-
executable compilation target for languages like C/C++, Go and Rust. It aims
to provide near-native performance for computationally intensive tasks, running
alongside and complementing Javascript in web applications. The use of Wasm
allows us to convert the browser into a compute engine by integrating existing
scientific libraries for bioinformatics data analysis - see the biowasm project [1]
for previous efforts in this direction. For kana, we collected or created C++
implementations of the algorithms required for each analysis step:

• The tatami library [38] provides an abstract interface to different matrix
classes, based on similar ideas in the beachmat package [37]. In addition
to the usual dense and sparse representations, tatami also supports the
delayed operations implemented in the DelayedArray package [19]. This
allows the creation of QC-filtered and log-normalized matrices without
any duplication of expression data.

• The CppWeightedLowess library [35] contains a C++ port of the weight-
edLowess function from the limma package [49]. This function is, in turn,
based on the LOWESS algorithm [12] implemented in R’s lowess function,
modified with the ability to consider weights in the span calculations.

• The CppIrlba library [29] library contains a C++ port of the IRLBA

5

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 4, 2022. ; https://doi.org/10.1101/2022.03.02.482701doi: bioRxiv preprint 

https://doi.org/10.1101/2022.03.02.482701
http://creativecommons.org/licenses/by/4.0/


algorithm [7] to efficiently obtain the top PCs from an input matrix. This
is based on the C code in the irlba R package [8] with some refactoring
to eliminate R-specific dependencies. In particular, we now rely on the
Eigen library [18] for matrix operations.

• The CppKmeans library [30] implements the Hartigan-Wong [22] and
Lloyd algorithms [27] for k-means clustering. The Hartigan-Wong imple-
mentation was translated from the Fortran code used by R’s kmeans func-
tion. We also provide several initialization methods including kmeans++
[55] and PCA partitioning [53].

• The knncolle library [34] wraps several nearest neighbor detection algo-
rithms in a consistent interface. This includes exact methods like vantage
point tree search [56] as well as approximate methods like Annoy [9]. It is
based on the BiocNeighbors package from Bioconductor [28].

• The libscran library [31] implements high-level methods for scRNA-seq
data analysis, ranging from quality control to clustering. The code here
originates from the scran, scuttle and scater packages [42, 43] bundled
together into a single C++ library for convenience. This library relies on
the igraph C library [13] for community detection from the SNN graph.

• The qdtsne library [32] contains a C++ implementation of the Barnes-Hut
t-SNE algorithm [54]. This is mostly a refactored version of the code in
the Rtsne package [26]. Some additional optimizations have been applied
to improve scalability.

• The umappp library [33] contains a C++ implementation of the UMAP
algorithm [44]. This is derived from code in the uwot R package [46].

We created the scran.js library [41] to provide Javascript bindings to these
C++ libraries. Specifically, we compiled our C++ code to Wasm using the
Emscripten toolchain [57], allowing kana to perform scRNA-seq-related calcu-
lations from Javascript by calling scran.js functions. The same library can also
be used in other web applications via a standard NPM installation, or outside
the browser if a suitable Wasm runtime environment is available.

To evaluate the efficiency of our Wasm strategy, we compared a kana analysis
in the browser to that of a native executable compiled from the same C++
libraries [39]. We analyzed several public scRNA-seq datasets (Table 1) using
the default kana parameters for both approaches, i.e., QC filtering to 3 MADs
from the median; PCA on the top 2500 HVGs to obtain the top 25 PCs; SNN
graph construction with 10 neighbors and multi-level community detection at
a resolution of 0.5; t-SNE with a perplexity of 30; UMAP with 15 neighbors
and a minimum distance of 0.01; and 8 threads for all parallel sections (i.e.,
web workers for kana, see below). We collected timings on an Intel Core i7-
8850H CPU (2.60GHz, 6 cores, 32 GB memory) running Manjaro Linux. For
convenience, we ran the kana timings in batch using Puppeteer [4] to control a
headless Chrome browser (HeadlessChrome/98.0.4758.0).

6

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 4, 2022. ; https://doi.org/10.1101/2022.03.02.482701doi: bioRxiv preprint 

https://doi.org/10.1101/2022.03.02.482701
http://creativecommons.org/licenses/by/4.0/


Table 1: Collection of scRNA-seq datasets used for testing.

Study Species Tissue Technology Number of cells
Zeisel et al. (2015) [58] Mouse Brain STRT-seq 3005
Paul et al. (2015) [48] Mouse Bone marrow MARS-seq 10368
Bach et al. (2017) [5] Mouse Mammary gland 10x Genomics 25806
Ernst et al. (2019) [14] Mouse Spermatogonia 10x Genomics 68937
Bacher et al. (2020) [6] Human T cells 10x Genomics 104417
Zilionis et al. (2019) [59] Human Lung 10x Genomics 173954

Table 2: Analysis run times for several datasets with kana or a native executable.
Values are reported in seconds with standard errors from 3 runs.

Dataset Number of cells kana Native
Zeisel 3005 7.00 ± 0.10 5.60 ± 0.05
Paul 10368 17.59 ± 0.20 13.52 ± 0.38
Bach 25806 54.96 ± 1.13 43.33 ± 0.39
Ernst 68937 157.15 ± 7.39 114.67 ± 1.86
Bacher 104417 228.02 ± 2.85 170.32 ± 1.34
Zilionis 173954 272.265 ± 4.22 183.77 ± 2.46

Our results indicate that kana analyses took approximately 25-50% longer
to run compared to the native executable (Table 2). This is consistent with
other benchmarking results [23] where the performance gap is attributed to
Wasm’s design constraints and the overhead of the browser’s Wasm runtime
environment. Our native executable was also created with a different compiler
toolchain (GCC, instead of LLVM for the Wasm binary), where the same nom-
inal optimization level (O3) may have different effects. These results suggest
that some work may still be required to completely fulfill Wasm’s promise of
“near-native execution”. Nonetheless, the current performance is largely satis-
factory for kana, and will likely improve over time as browser implementations
evolve along with our understanding of the relevant optimizations.

3.2 Parallelization with web workers

Web workers provide a simple mechanism for parallelization inside the browser.
In kana, a web worker is used to run the compute-intensive analysis in its own
thread so that the application’s main thread is free to respond to user interac-
tion. We also use web workers to parallelize the operations within some anal-
ysis steps by compiling our C++ code with PThreads support; this instructs
Emscripten to implement POSIX threads as web workers for transparent paral-
lelization across genes or cells during calculation of QC metrics, nearest neighbor

7

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 4, 2022. ; https://doi.org/10.1101/2022.03.02.482701doi: bioRxiv preprint 

https://doi.org/10.1101/2022.03.02.482701
http://creativecommons.org/licenses/by/4.0/


detection and marker scoring. Finally, we parallelize across steps by manually
creating a separate web worker to execute the t-SNE, UMAP and clustering
steps, which are independent of each other and can run concurrently.

A minor complication with PThreads is that we need to enable cross-origin
isolation on the kana site. Briefly, this is a security measure that prevents
inappropriate data access from malicious scripts in the same browsing context.
Once cross-origin isolated, the site is permitted to use a SharedArrayBuffer
for copy-free transfer of data between web workers. To achieve this, we need to
serve the kana assets with the appropriate cross-origin headers – specifically, the
embedder and opener policies. However, this may not always be possible, e.g.,
when hosting on institutional sites or public sites such as GitHub Pages. Instead,
we use a service worker to cache and re-serve kana with the correct headers,
ensuring that it can be easily deployed in a range of hosting environments.

As a matter of etiquette, we limit kana to two-thirds of the available threads
at maximum utilization. The intention is to leave enough resources available
for other activities to pass the time while waiting for the analysis to finish.

3.3 Creating layered sparse matrices

To reduce memory usage for large single-cell count matrices, we use a “layered
matrix” approach that splits the input matrix by row into 3 sparse submatrices.
The first, second and third submatrices contain data for genes where all non-zero
counts can fit into 8-bit, 16-bit and 32-bit unsigned integers, respectively. This
improves memory efficiency for datasets with many cells but low sequencing
coverage; most counts can be represented as 8-bit integers to save space, leaving
a few high-abundance genes to be stored in the submatrices with larger integer
types. A similar strategy is applied to row indices for non-zero elements in a
sparse matrix, where most datasets have fewer than 60,000 genes and can be
accommodated with 16-bit integers. This gives a theoretical usage of 3 bytes
per non-zero element, e.g., a dataset with 30,000 genes and 100,000 cells at 5%
density requires around 500 MB of memory in this data structure.

The layered matrix representation is implemented through the delayed bind-
ing mechanism in tatami. Specifically, we create the individual sparse subma-
trices and then create an abstract represention of the full matrix where the
submatrices are combined by row. This preserves the memory-efficient repre-
sentation while presenting an interface that mimics that of a single matrix. The
layered representation can then be seamlessly used with all C++ code compat-
ible with the tatami interface. (Note that the genes are permuted from their
supplied order, which requires some extra attention in downstream analyses.)

3.4 Examining memory usage

As an additional evaluation, we recorded the memory usage of the kana analyses
(Table 3). For kana, we used the final size of the Wasm heap as a convenient
proxy for the peak memory used by the application. This omits some memory
usage on the Javascript side but should capture the most memory-intensive data

8

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 4, 2022. ; https://doi.org/10.1101/2022.03.02.482701doi: bioRxiv preprint 

https://doi.org/10.1101/2022.03.02.482701
http://creativecommons.org/licenses/by/4.0/


Table 3: Memory usage of kana or a native executable when analyzing datasets
from Table 1. Values are reported in megabytes with standard errors from 3
runs. The number of non-zero elements for each dataset is also shown in millions.

Dataset Cells Non-zeros kana Native
Zeisel 3005 11.3 148.31 ± 0 158.20 ± 0.05
Paul 10368 11.9 224.87 ± 0 306.26 ± 0.06
Bach 25806 61.2 761.12 ± 0 965.17 ± 0.03
Ernst 68937 163.1 1981.87 ± 0 2512.08 ± 0.06
Bacher 104417 143.0 2165.94 ± 0 2437.75 ± 1.34
Zilionis 173954 53.7 2480.81 ± 0 2600.66 ± 0.04

structures, particularly the count matrix. For comparison, we also recorded the
maximum resident set size after each run of the native executable. In all cases,
memory usage with Wasm was comparable to that of the native executable and
maintained below 3 gigabytes, which is reasonable for a client device.

Importantly, kana’s memory usage lies below Wasm’s hard limit of 4 giga-
bytes of addressable memory. This limit is a consequence of the use of 32-bit
pointers in the current Wasm specification, and exceeding this limit will cause
allocation errors and application failure. Future Wasm releases may support
64-bit pointers [51] or multiple memories [47]; if these proposals are accepted,
kana will be able to process datasets beyond the 4 GB limit.

4 User interface concepts

4.1 Interlinked graphics

Different panels of the kana application (Figure 2) can share information with
each other to facilitate interactive exploration of the dataset and analysis results.
For example, we can color the embeddings according to the expression of a
gene selected from the marker table. Upon selection, kana retrieves the log-
normalized expression values for that gene from the sparse matrix and passes
this data to the scatter plot for coloring. Users can also adjust the color gradient
to improve contrast and highlight differences at particular ranges of expression.

A more complex example involves the detection of new marker genes for
a custom selection of cells. Users can create a custom selection by brushing
on regions of interest in the embedding panel. If this selection is saved, kana
will perform a differential expression analysis to detect upregulation inside the
selection compared to all other cells. Statistics for each gene are then shown in
the marker table for examination. Each custom selection and its statistics are
treated as part of the analysis state and are saved during export.

Inspired by the gallery in Cirrocumulus, users can save specific views of the
embeddings for later perusal. This is useful for simultaneously viewing multiple

9

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 4, 2022. ; https://doi.org/10.1101/2022.03.02.482701doi: bioRxiv preprint 

https://doi.org/10.1101/2022.03.02.482701
http://creativecommons.org/licenses/by/4.0/


plots colored by different marker genes to characterize complex populations.

4.2 Progressive rendering

Each result is immediately rendered on the interface once the corresponding
analysis step is complete. For example, the distribution of QC metrics appear
once the QC step is finished, followed by the plot of the percentage of variance
explained once the PCA is done, and so on. This improves application per-
formance by avoiding the rendering bottleneck that would otherwise occur if
all plots were drawn at once. It also serves as a visual progress indicator and
improves the user experience by showing meaningful content as soon as possible.

The marker table is a more subtle example of progressive rendering. Only
the genes in the current view of the table are rendered, with the remaining
visual elements being dynamically created as the user scrolls up or down to see
other genes in the ranking. This ensures that we do not waste time rendering
tens of thousands of rows when only the top few are likely to be viewed.

Given that kana is computing the embeddings in the background, we can
actively monitor the change in the coordinates for each cell across t-SNE it-
erations or UMAP epochs. We do so by extracting the coordinates at regular
intervals and rendering them on the embedding panel with WebGL, effectively
creating an animation of the embedding as it is refined over time. This is mostly
present for entertainment value but may provide some educational insights into
the process of creating the embeddings (e.g., early exaggeration for t-SNE).

4.3 Exporting and reloading

Users can choose to export their analyses to the browser’s cache via its in-built
IndexedDB database system. This dumps the analysis state (i.e., parameters
and results) into a Gzip-compressed JSON inside the cache, along with the input
data files. Users can then reload their analysis in a new browser session without
needing to keep track of any files. Moreover, kana will attempt to deduplicate
input files in the cache based on the file name, size and MD5 checksum. This
reduces disk usage when storing multiple analysis states for the same dataset.

Alternatively, users may export the analysis state to a file that is down-
loaded to their machine. This creates a single binary file containing the Gzip-
compressed analysis state and the embedded input files. Supplying this file to
kana will then restore the previous analysis in the same manner as using the
browser cache. The benefit of this approach is that files exported by one user
can be reloaded by other users on different machines, allowing users to easily
share their analyses with each other by simply transferring the relevant files. In
fact, computationally savvy users can even parse the kana-exported file in other
programming frameworks (e.g., R, Python) for custom processing.

10

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 4, 2022. ; https://doi.org/10.1101/2022.03.02.482701doi: bioRxiv preprint 

https://doi.org/10.1101/2022.03.02.482701
http://creativecommons.org/licenses/by/4.0/


5 Discussion

Single-cell data analysis on the client is not a particularly novel concept. In
many cases, the dataset already lives on the user’s machine, so this is a natural
place to perform the analysis with the tool of choice (typically R or Python).
kana’s key innovation lies in its use of modern web technologies to perform
the analysis directly in the browser. This eliminates the difficulties of software
installation and makes the analysis accessible to a non-programming audience.
At the same time, we retain all the benefits of client-side operations. Specifically,
our availability only depends on the client device, not on a backend server; there
is no latency from transferring data or results across a network; ownership of
the dataset clearly remains with the user, avoiding issues with data privacy and
associated regulations; and compute time is cheap, if not effectively free.

Client-side compute has interesting scalability characteristics compared to
a traditional backend approach. Most obviously, we are constrained by the
computational resources available on the client machine, which can vary from
modest (e.g., most laptops) to extremely basic (e.g., mobile devices). This
limits the size of any single dataset that can be analyzed by a particular client.
However, in other respects, client-side compute is more scalable than backend
compute; the former automatically distributes analyses of many datasets across
any number of machines at no cost and with no configuration. This is especially
relevant for web applications like kana where the maintainers would otherwise
be responsible for provisioning backend computing resources. The cloud might
be infinitely scalable but - unfortunately - our bank accounts are not.

That said, how do we deal with large datasets? This is not straightforward
with the web technologies currently used in kana - our available memory is
limited by the Wasm specification and our CPU utilization is (somewhat arti-
ficially) capped, so even if a powerful client device was available, kana would
not be able to fully exploit its capabilities. Fortunately, our use of C++ means
that we are not limited to computation in the browser. We can easily provide
wrappers to the same underlying libraries in any client-side framework, e.g.,
as a command-line tool or as an extension to existing data science ecosystems.
For example, the scran.chan package [40] allows users to repeat the kana cal-
culations in an R session, where there are no restrictions on memory usage or
thread utilization. The same approach can be used for other languages that
support a foreign function interface like Python or Julia. Indeed, one could use
the wrapped C++ libraries to run large analyses on a sufficiently provisioned
backend, export the analysis state in a kana-compatible file format, and then
serve the exported state to client machines for exploration in the browser.

Future work will involve extending kana to handle other common tasks in
scRNA-seq data analysis, namely batch correction [21] and cell type assignment
[3]. We will also factor out kana’s graphical elements into custom Web Compo-
nents for re-use across multiple applications. Of greatest interest, though, will
be the continued evolution of web technologies - this includes further optimiza-
tions to the Wasm specification and its implementations, as well as upcoming
standards like WebGPU to leverage graphics hardware for general computa-

11

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 4, 2022. ; https://doi.org/10.1101/2022.03.02.482701doi: bioRxiv preprint 

https://doi.org/10.1101/2022.03.02.482701
http://creativecommons.org/licenses/by/4.0/


tion. By incorporating these advances, applications like kana can extend the
capabilities of the browser for compute-intensive bioinformatics in the client.

6 Software availability

Here we summarize the key software repositories used in this paper. For brevity,
we will omit the various C++ libraries that have been listed previously.

• The kana application is deployed at https://www.jkanche.com/kana with
source code at https://github.com/jkanche/kana.

• The scran.js library is available at https://npmjs.com/package/scran.
js with source code at https://github.com/jkanche/scran.js.

• The scran.chan R package based on the same C++ libraries is available
at https://github.com/LTLA/scran.chan.

• The command-line interface based on the same C++ libraries is available
at https://github.com/LTLA/scran-cli.

• All datasets used here can be downloaded from https://github.com/

jkanche/random-test-files.

• Benchmarking code and results are available at https://github.com/

jkanche/kana.perf.

References

[1] Robert Aboukhalil. Biowasm, 2019. https://github.com/biowasm/

biowasm.

[2] R. A. Amezquita, A. T. L. Lun, E. Becht, V. J. Carey, L. N. Carpp,
L. Geistlinger, F. Marini, K. Rue-Albrecht, D. Risso, C. Soneson, L. Wal-
dron, H. Pagès, M. L. Smith, W. Huber, M. Morgan, R. Gottardo, and S. C.
Hicks. Orchestrating single-cell analysis with Bioconductor. Nat Methods,
17(2):137–145, 02 2020.

[3] Dvir Aran, Agnieszka P Looney, Leqian Liu, Esther Wu, Valerie Fong,
Austin Hsu, Suzanna Chak, Ram P Naikawadi, Paul J Wolters, Adam R
Abate, et al. Reference-based analysis of lung single-cell sequencing reveals
a transitional profibrotic macrophage. Nature immunology, 20(2):163–172,
2019.

[4] The Chromium Authors. Puppeteer, 2004. https://github.com/

puppeteer/puppeteer.

12

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 4, 2022. ; https://doi.org/10.1101/2022.03.02.482701doi: bioRxiv preprint 

https://www.jkanche.com/kana
https://github.com/jkanche/kana
https://npmjs.com/package/scran.js
https://npmjs.com/package/scran.js
https://github.com/jkanche/scran.js
https://github.com/LTLA/scran.chan
https://github.com/LTLA/scran-cli
https://github.com/jkanche/random-test-files
https://github.com/jkanche/random-test-files
https://github.com/jkanche/kana.perf
https://github.com/jkanche/kana.perf
https://github.com/biowasm/biowasm
https://github.com/biowasm/biowasm
https://github.com/puppeteer/puppeteer
https://github.com/puppeteer/puppeteer
https://doi.org/10.1101/2022.03.02.482701
http://creativecommons.org/licenses/by/4.0/


[5] Karsten Bach, Sara Pensa, Marta Grzelak, James Hadfield, David J Adams,
John C Marioni, and Walid T Khaled. Differentiation dynamics of mam-
mary epithelial cells revealed by single-cell RNA sequencing. Nature com-
munications, 8(1):1–11, 2017.

[6] Petra Bacher, Elisa Rosati, Daniela Esser, Gabriela Rios Martini, Carina
Saggau, Esther Schiminsky, Justina Dargvainiene, Ina Schröder, Imke Wi-
eters, Yascha Khodamoradi, et al. Low-avidity CD4+ T cell responses to
SARS-CoV-2 in unexposed individuals and humans with severe COVID-19.
Immunity, 53(6):1258–1271, 2020.

[7] James Baglama and Lothar Reichel. Augmented implicitly restarted lanc-
zos bidiagonalization methods. SIAM Journal on Scientific Computing,
27(1):19–42, 2005.

[8] Jim Baglama, Lothar Reichel, and B. W. Lewis. irlba: Fast Truncated Sin-
gular Value Decomposition and Principal Components Analysis for Large
Dense and Sparse Matrices, 2019. R package version 2.3.3.

[9] E. Bernhardsson. Annoy, 2021. https://github.com/spotify/annoy.

[10] Winston Chang, Joe Cheng, JJ Allaire, Carson Sievert, Barret Schloerke,
Yihui Xie, Jeff Allen, Jonathan McPherson, Alan Dipert, and Barbara
Borges. shiny: Web Application Framework for R, 2021. R package version
1.7.1.

[11] Florin Chelaru, Llewellyn Smith, Naomi Goldstein, and Héctor Corrada
Bravo. Epiviz: interactive visual analytics for functional genomics data.
Nature methods, 11(9):938–940, 2014.

[12] William S. Cleveland. Robust locally weighted regression and smoothing
scatterplots. Journal of the American Statistical Association, 74(368):829–
836, 1979.

[13] Gabor Csardi and Tamas Nepusz. The igraph software package for complex
network research. InterJournal, Complex Systems:1695, 2006.

[14] Christina Ernst, Nils Eling, Celia P Martinez-Jimenez, John C Marioni,
and Duncan T Odom. Staged developmental mapping and X chromosome
transcriptional dynamics during mouse spermatogenesis. Nature commu-
nications, 10(1):1–20, 2019.

[15] Jean Fan, David Fan, Kamil Slowikowski, Nils Gehlenborg, and Peter
Kharchenko. UBiT2: a client-side web-application for gene expression data
analysis. bioRxiv, page 118992, 2017.

[16] John Gómez, Leyla J Garćıa, Gustavo A Salazar, Jose Villaveces, Swanand
Gore, Alexander Garćıa, Maria J Mart́ın, Guillaume Launay, Rafael
Alcántara, Noemi Del-Toro, et al. BioJS: an open source Javascript frame-
work for biological data visualization. Bioinformatics, 29(8):1103–1104,
2013.

13

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 4, 2022. ; https://doi.org/10.1101/2022.03.02.482701doi: bioRxiv preprint 

https://github.com/spotify/annoy
https://doi.org/10.1101/2022.03.02.482701
http://creativecommons.org/licenses/by/4.0/


[17] Joshua Gould, Yiming Yang, and Bo Li. Cirrocumulus, 2021. https:

//cirrocumulus.readthedocs.io/en/latest/.

[18] Gaël Guennebaud, Benôıt Jacob, et al. Eigen v3.
http://eigen.tuxfamily.org, 2010.

[19] Pagès H., Hickey P., and Lun A. T. L. DelayedArray: A unified framework
for working transparently with on-disk and -memory array-like datasets,
2021. R package version 0.20.0.

[20] Andreas Haas, Andreas Rossberg, Derek L. Schuff, Ben L. Titzer, Michael
Holman, Dan Gohman, LukeWagner, Alon Zakai, and JF Bastien. Bringing
the web up to speed with webassembly. SIGPLAN Not., 52(6):185–200, jun
2017.

[21] Laleh Haghverdi, Aaron TL Lun, Michael D Morgan, and John C Marioni.
Batch effects in single-cell rna-sequencing data are corrected by matching
mutual nearest neighbors. Nature biotechnology, 36(5):421–427, 2018.

[22] J. A. Hartigan and M. A. Wong. Algorithm as 136: A k-means cluster-
ing algorithm. Journal of the Royal Statistical Society. Series C (Applied
Statistics), 28(1):100–108, 1979.

[23] Abhinav Jangda, Bobby Powers, Emery D. Berger, and Arjun Guha. Not so
fast: Analyzing the performance of WebAssembly vs. native code. In 2019
USENIX Annual Technical Conference (USENIX ATC 19), pages 107–120,
Renton, WA, July 2019. USENIX Association.

[24] Mark Keller, Chuck McCallum, Ilan Gold, Trevor Manz, Tos Chan, Sehi
Lyi, Jennifer Marx, Peter Kharchenko, and Nils Gehlenborg. Vitessce,
2022. http://vitessce.io.

[25] Peter Kerpedjiev, Nezar Abdennur, Fritz Lekschas, Chuck McCallum,
Kasper Dinkla, Hendrik Strobelt, Jacob M Luber, Scott B Ouellette, Alaleh
Azhir, Nikhil Kumar, et al. Higlass: web-based visual exploration and anal-
ysis of genome interaction maps. Genome biology, 19(1):1–12, 2018.

[26] Jesse H. Krijthe. Rtsne: T-Distributed Stochastic Neighbor Embedding us-
ing Barnes-Hut Implementation, 2015. R package version 0.16.

[27] S. Lloyd. Least squares quantization in pcm. IEEE Transactions on Infor-
mation Theory, 28(2):129–137, 1982.

[28] A. T. L. Lun. BiocNeighbors: Nearest Neighbor Detection for Bioconductor
Packages, 2021. R package version 1.12.0.

[29] A. T. L. Lun. C++ library for IRLBA, 2021. https://github.com/LTLA/
CppIrlba.

[30] A. T. L. Lun. C++ library for k-means, 2021. https://github.com/LTLA/
CppKmeans.

14

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 4, 2022. ; https://doi.org/10.1101/2022.03.02.482701doi: bioRxiv preprint 

https://cirrocumulus.readthedocs.io/en/latest/
https://cirrocumulus.readthedocs.io/en/latest/
http://vitessce.io
https://github.com/LTLA/CppIrlba
https://github.com/LTLA/CppIrlba
https://github.com/LTLA/CppKmeans
https://github.com/LTLA/CppKmeans
https://doi.org/10.1101/2022.03.02.482701
http://creativecommons.org/licenses/by/4.0/


[31] A. T. L. Lun. A C++ library for single-cell data analysis, 2021. https:

//github.com/LTLA/libscran.

[32] A. T. L. Lun. C++ library for t-SNE, 2021. https://github.com/LTLA/
qdtsne.

[33] A. T. L. Lun. A C++ library for UMAP, 2021. https://github.com/

LTLA/umappp.

[34] A. T. L. Lun. Collection of KNN algorithms, 2021. https://github.com/
LTLA/knncolle.

[35] A. T. L. Lun. Weighted LOWESS for C++, 2021. https://github.com/
LTLA/CppWeightedLowess.

[36] A. T. L. Lun, R. A. Amezquita, R. Gottardo, and S. C. Hicks. Orchestrating
single-cell analysis with Bioconductor, 2020. https://bioconductor.org/
books/release/OSCA/.

[37] A. T. L. Lun, H. Pagès, and M. L. Smith. beachmat: A Bioconductor
C++ API for accessing high-throughput biological data from a variety of
R matrix types. PLoS Comput Biol, 14(5):e1006135, 05 2018.

[38] Aaron Lun. A C++ API for all sorts of matrices, 2021. https://github.
com/LTLA/tatami.

[39] Aaron Lun. CLI for single-cell analyses, 2021. https://github.com/LTLA/
scran-cli.

[40] Aaron Lun. A slimmed-down version of scran, 2021. https://github.

com/LTLA/scran.chan.

[41] Aaron Lun and Jayaram Kancherla. Single cell RNA-seq analysis in
Javascript, 2021. https://github.com/jkanche/scran.js.

[42] Aaron T. L. Lun, Davis J. McCarthy, and John C. Marioni. A step-by-step
workflow for low-level analysis of single-cell rna-seq data with bioconductor.
F1000Res., 5:2122, 2016.

[43] Davis J. McCarthy, Kieran R. Campbell, Aaron T. L. Lun, and Quin F.
Willis. Scater: pre-processing, quality control, normalisation and visual-
isation of single-cell RNA-seq data in R. Bioinformatics, 33:1179–1186,
2017.

[44] Leland McInnes, John Healy, Nathaniel Saul, and Lukas Grossberger.
UMAP: Uniform manifold approximation and projection. The Journal of
Open Source Software, 3(29):861, 2018.

15

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 4, 2022. ; https://doi.org/10.1101/2022.03.02.482701doi: bioRxiv preprint 

https://github.com/LTLA/libscran
https://github.com/LTLA/libscran
https://github.com/LTLA/qdtsne
https://github.com/LTLA/qdtsne
https://github.com/LTLA/umappp
https://github.com/LTLA/umappp
https://github.com/LTLA/knncolle
https://github.com/LTLA/knncolle
https://github.com/LTLA/CppWeightedLowess
https://github.com/LTLA/CppWeightedLowess
https://bioconductor.org/books/release/OSCA/
https://bioconductor.org/books/release/OSCA/
https://github.com/LTLA/tatami
https://github.com/LTLA/tatami
https://github.com/LTLA/scran-cli
https://github.com/LTLA/scran-cli
https://github.com/LTLA/scran.chan
https://github.com/LTLA/scran.chan
https://github.com/jkanche/scran.js
https://doi.org/10.1101/2022.03.02.482701
http://creativecommons.org/licenses/by/4.0/


[45] Colin Megill, Bruce Martin, Charlotte Weaver, Sidney Bell, Lia Prins, Seve
Badajoz, Brian McCandless, Angela Oliveira Pisco, Marcus Kinsella, Fiona
Griffin, Justin Kiggins, Genevieve Haliburton, Arathi Mani, Matthew Wei-
den, Madison Dunitz, Maximilian Lombardo, Timmy Huang, Trent Smith,
Signe Chambers, Jeremy Freeman, Jonah Cool, and Ambrose Carr. cel-
lxgene: a performant, scalable exploration platform for high dimensional
sparse matrices. bioRxiv, 2021.

[46] James Melville. uwot: The Uniform Manifold Approximation and Projec-
tion (UMAP) Method for Dimensionality Reduction. R package version
0.1.10.9000.

[47] Ömer Sinan Agacan and Andreas Rossberg. Multi memory proposal for
webassembly, 2021. https://github.com/WebAssembly/multi-memory.

[48] Franziska Paul, Ya’ara Arkin, Amir Giladi, Diego Adhemar Jaitin, Ephraim
Kenigsberg, Hadas Keren-Shaul, Deborah Winter, David Lara-Astiaso,
Meital Gury, Assaf Weiner, et al. Transcriptional heterogeneity and lin-
eage commitment in myeloid progenitors. Cell, 163(7):1663–1677, 2015.

[49] Matthew E Ritchie, Belinda Phipson, Di Wu, Yifang Hu, Charity W Law,
Wei Shi, and Gordon K Smyth. limma powers differential expression anal-
yses for RNA-sequencing and microarray studies. Nucleic Acids Research,
43(7):e47, 2015.

[50] Jonathan L Schmid-Burgk and Veit Hornung. BrowserGenome.org:
web-based RNA-seq data analysis and visualization. Nature Methods,
12(11):1001–1001, 2015.

[51] Ben Smith, Wouter van Oortmerssen, and Andreas Rossberg. Memory64
proposal for webassembly, 2021. https://github.com/WebAssembly/

memory64.

[52] Oliver Stegle, Sarah A Teichmann, and John C Marioni. Computational
and analytical challenges in single-cell transcriptomics. Nature Reviews
Genetics, 16(3):133–145, 2015.

[53] Ting Su and Jennifer G Dy. In search of deterministic methods for initial-
izing k-means and gaussian mixture clustering. Intelligent Data Analysis,
11(4):319–338, 2007.

[54] Laurens van der Maaten. Accelerating t-sne using tree-based algorithms.
Journal of Machine Learning Research, 15(93):3221–3245, 2014.

[55] Sergei Vassilvitskii and David Arthur. k-means++: The advantages of care-
ful seeding. In Proceedings of the eighteenth annual ACM-SIAM symposium
on Discrete algorithms, pages 1027–1035, 2006.

16

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 4, 2022. ; https://doi.org/10.1101/2022.03.02.482701doi: bioRxiv preprint 

https://github.com/WebAssembly/multi-memory
https://github.com/WebAssembly/memory64
https://github.com/WebAssembly/memory64
https://doi.org/10.1101/2022.03.02.482701
http://creativecommons.org/licenses/by/4.0/


[56] Peter N. Yianilos. Data structures and algorithms for nearest neighbor
search in general metric spaces. In Proceedings of the Fourth Annual ACM-
SIAM Symposium on Discrete Algorithms, SODA ’93, page 311–321, USA,
1993. Society for Industrial and Applied Mathematics.

[57] Alon Zakai. Emscripten: an llvm-to-javascript compiler. In Proceedings
of the ACM international conference companion on Object oriented pro-
gramming systems languages and applications companion, pages 301–312,
2011.

[58] Amit Zeisel, Ana B Muñoz-Manchado, Simone Codeluppi, Peter
Lönnerberg, Gioele La Manno, Anna Juréus, Sueli Marques, Hermany
Munguba, Liqun He, Christer Betsholtz, et al. Cell types in the
mouse cortex and hippocampus revealed by single-cell rna-seq. Science,
347(6226):1138–1142, 2015.

[59] Rapolas Zilionis, Camilla Engblom, Christina Pfirschke, Virginia Savova,
David Zemmour, Hatice D Saatcioglu, Indira Krishnan, Giorgia Maroni,
Claire V Meyerovitz, Clara M Kerwin, et al. Single-cell transcriptomics
of human and mouse lung cancers reveals conserved myeloid populations
across individuals and species. Immunity, 50(5):1317–1334, 2019.

17

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 4, 2022. ; https://doi.org/10.1101/2022.03.02.482701doi: bioRxiv preprint 

https://doi.org/10.1101/2022.03.02.482701
http://creativecommons.org/licenses/by/4.0/

	㤰‰⁯扪਼㰠⽔楴汥⣾Ｙㄠ〠潢樊㰼 呩瑬攨﻿㤲‰⁯扪਼㰠⽔楴汥⣾Ｙ㌠〠潢樊㰼 呩瑬攨﻿㤴‰⁯扪਼㰠⽔楴汥⣾Ｙ㔠〠潢樊㰼 呩瑬攨﻿㤶‰⁯扪਼㰠⽔楴汥⣾Ｙ㜠〠潢樊㰼 呩瑬攨﻿㤸‰⁯扪਼㰠⽔楴汥⣾Ｙ㤠〠潢樊㰼 呩瑬攨﻿㄰〠〠潢樊㰼 呩瑬攨﻿㄰ㄠ〠潢樊㰼 呩瑬攨﻿㄰㈠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‱崊⽃⁛〠ㄠそਯ䠯䤊⽒散琠嬲㌵⸲㤳″〹⸵㌹′㐷⸲㐸″ㄷ⸹㔲崊⽄敳琠嬹‰⁒ 塙娠ㄳ㌮㜶㠰‵㘵⸱㜵〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊㄰㌠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‱崊⽃⁛〠ㄠそਯ䠯䤊⽒散琠嬳〱⸳㤠ㄱ㠮㈵㜠㌱㌮㌴㘠ㄲ㘮㘶㥝ਯ䑥獴⁛㄰‰⁒ 塙娠ㄳ㌮㜶㠰‱㠰⸳㔲〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊㄰㐠〠潢樊㰼⽓⽕剉ਯ啒䤨桴瑰猺⼯摯椮潲术㄰⸱㄰ㄯ㈰㈲⸰㌮〲⸴㠲㜰ㄩ㸾敮摯扪਱〵‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ剥捴⁛ㄳ㔮㌴㐠㜷㠠㈸㠮ㄲ‷㠸崊⽁†㄰㐠〠删ਯ卵扴祰支䱩湫㸾敮摯扪਱〶‰⁯扪਼㰯匯啒䤊⽕剉⡨瑴瀺⼯捲敡瑩癥捯浭潮献潲术汩捥湳敳⽢礯㐮〯⤾㹥湤潢樊㄰㜠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽒散琠嬲㜶⸵㐸‷㘲″㤰⸱㐸‷㜲崊⽁†㄰㘠〠删ਯ卵扴祰支䱩湫㸾敮摯扪਱〸‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠ㅝਯ䌠嬰‱‰崊⽈⽉ਯ剥捴⁛㐳㌮㐸㐠㘴㐮㈸㐠㐴㔮㐳㤠㘵㈮㘹㝝ਯ䑥獴⁛ㄵ‰⁒ 塙娠ㄳ㌮㜶㠰″㤱⸷㌱〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊㄰㤠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‱崊⽃⁛〠ㄠそਯ䠯䤊⽒散琠嬱㤷⸲㘠㘲〮㌷㐠㈰㤮㈱㘠㘲㠮㜸㙝ਯ䑥獴⁛㄰‰⁒ 塙娠ㄳ㌮㜶㠰′㈲⸱㠵〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊ㄱ〠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‱崊⽃⁛〠ㄠそਯ䠯䤊⽒散琠嬳㈰⸴ㄱ‵㠴⸵〸″㌲⸳㘷‵㤲⸹㈱崊⽄敳琠嬱㔠〠删⽘奚‱㌳⸷㘸〠㘶㜮ㄹ㠰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪਱ㄱ‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠ㅝਯ䌠嬰‱‰崊⽈⽉ਯ剥捴⁛㌷㔮〷㜠㔸㐮㔰㠠㌸㜮〳㈠㔹㈮㤲ㅝਯ䑥獴⁛㄰‰⁒ 塙娠ㄳ㌮㜶㠰″㤴⸲㈲〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊ㄱ㈠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‱崊⽃⁛〠ㄠそਯ䠯䤊⽒散琠嬴㘰⸹㠶‵㠴⸵〸‴㜲⸹㐱‵㤲⸹㈱崊⽄敳琠嬹‰⁒ 塙娠ㄳ㌮㜶㠰‶㘷⸱㤸〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊ㄱ㌠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‱崊⽃⁛〠ㄠそਯ䠯䤊⽒散琠嬱㜴⸳㐴‵㜲⸵㔳‱㠶⸲㤹‵㠰⸹㘶崊⽄敳琠嬹‰⁒ 塙娠ㄳ㌮㜶㠰″㘸⸳㜴〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊ㄱ㐠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‱崊⽃⁛〠ㄠそਯ䠯䤊⽒散琠嬲㌳⸴㈶‵㜲⸵㔳′㐵⸳㠱‵㠰⸹㘶崊⽄敳琠嬹‰⁒ 塙娠ㄳ㌮㜶㠰″㈴⸸㜵〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊ㄱ㔠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‱崊⽃⁛〠ㄠそਯ䠯䤊⽒散琠嬴ㄱ⸸ㄶ‵㜲⸵㔳‴㈳⸷㜱‵㠰⸹㘶崊⽄敳琠嬱〠〠删⽘奚‱㌳⸷㘸〠㐴㘮〷㌰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪਱ㄶ‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠ㅝਯ䌠嬰‱‰崊⽈⽉ਯ剥捴⁛㈴㜮㌶㔠㔰〮㠲㈠㈵㤮㌲ㄠ㔰㤮㈳㕝ਯ䑥獴⁛ㄵ‰⁒ 塙娠ㄳ㌮㜶㠰″〴⸳㌷〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊ㄱ㜠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‱崊⽃⁛〠ㄠそਯ䠯䤊⽒散琠嬳㌴⸵㐶″㤳⸲㈵″㐱⸵㈠㐰ㄮ㘳㡝ਯ䑥獴⁛㠠〠删⽘奚‱㌳⸷㘸〠㌱㐮㔷㘰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪਱ㄸ‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠ㅝਯ䌠嬰‱‱崊⽈⽉ਯ剥捴⁛㌰㜮㄰ㄠ㌰㜮㌲㔠㐵㔮㔴㌠㌱㠮㐵崊⽁㰼⽓⽕剉ਯ呹灥⽁捴楯渊⽕剉⡨瑴灳㨯⽷睷⹪歡湣桥⹣潭⽫慮愩㸾ਯ卵扴祰支䱩湫㸾敮摯扪਱ㄹ‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠ㅝਯ䌠嬰‱‱崊⽈⽉ਯ剥捴⁛ㄳ㈮㜷㈠㈸㌮㐱㔠㈹㘮㤰㔠㈹㐮㔴崊⽁㰼⽓⽕剉ਯ呹灥⽁捴楯渊⽕剉⡨瑴灳㨯⽧楴桵戮捯洯橫慮捨支歡湡⤾㸊⽓畢瑹灥⽌楮款㹥湤潢樊ㄲ〠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‱崊⽃⁛〠ㄠそਯ䠯䤊⽒散琠嬳㤷⸹㐵′〷⸰㔸‴〹⸹′ㄵ⸴㜱崊⽄敳琠嬱㘠〠删⽘奚‱㌳⸷㘸〠㔱ㄮ㔵㤰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪਱㈱‰⁯扪਼㰯匯啒䤊⽕剉⡨瑴灳㨯⽤潩⹯牧⼱〮ㄱ〱⼲〲㈮〳⸰㈮㐸㈷〱⤾㹥湤潢樊ㄲ㈠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽒散琠嬱㌵⸳㐴‷㜸′㠸⸱㈠㜸㡝ਯ䄠‱㈱‰⁒ ⽓畢瑹灥⽌楮款㹥湤潢樊ㄲ㌠〠潢樊㰼⽓⽕剉ਯ啒䤨桴瑰㨯⽣牥慴楶散潭浯湳⹯牧⽬楣敮獥猯批⼴⸰⼩㸾敮摯扪਱㈴‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ剥捴⁛㈷㘮㔴㠠㜶㈠㌹〮ㄴ㠠㜷㉝ਯ䄠‱㈳‰⁒ ⽓畢瑹灥⽌楮款㹥湤潢樊ㄲ㔠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‱崊⽃⁛〠ㄠそਯ䠯䤊⽒散琠嬲㘸⸳㌸‵㠲⸸㘷′㠰⸲㤳‵㤱⸲㡝ਯ䑥獴⁛㄰‰⁒ 塙娠ㄳ㌮㜶㠰″㐹⸳㐴〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊ㄲ㘠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‱崊⽃⁛〠ㄠそਯ䠯䤊⽒散琠嬳㌵⸵㐠㌴〮㐸㈠㌴㜮㐹㔠㌴㠮㠹㕝ਯ䑥獴⁛ㄵ‰⁒ 塙娠ㄳ㌮㜶㠰′ㄶ⸳㠹〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊ㄲ㜠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‱崊⽃⁛〠ㄠそਯ䠯䤊⽒散琠嬳㔱⸵㤱″㐰⸴㠲″㘳⸵㐶″㐸⸸㤵崊⽄敳琠嬱㘠〠删⽘奚‱㌳⸷㘸〠ㄹ㠮㤵㐰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪਱㈸‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠ㅝਯ䌠嬱‰‰崊⽈⽉ਯ剥捴⁛㐲㤮㘰㐠㌱㤮〰㐠㐳㘮㔷㠠㌳〮㤵㥝ਯ䑥獴⁛㈱‰⁒ 塙娠ㄷ㠮㔱㜰′㘳⸵㔵〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊ㄲ㤠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‱崊⽃⁛ㄠ〠そਯ䠯䤊⽒散琠嬲㔳⸴〷′ㄱ⸴〷′㘰⸳㠱′㈳⸳㘲崊⽄敳琠嬲‰⁒ 塙娠ㄸㄮ㐱㘰‴㠳⸷㌹〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊ㄳ〠〠潢樊㰼⽓⽕剉ਯ啒䤨桴瑰猺⼯摯椮潲术㄰⸱㄰ㄯ㈰㈲⸰㌮〲⸴㠲㜰ㄩ㸾敮摯扪਱㌱‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ剥捴⁛ㄳ㔮㌴㐠㜷㠠㈸㠮ㄲ‷㠸崊⽁†ㄳ〠〠删ਯ卵扴祰支䱩湫㸾敮摯扪਱㌲‰⁯扪਼㰯匯啒䤊⽕剉⡨瑴瀺⼯捲敡瑩癥捯浭潮献潲术汩捥湳敳⽢礯㐮〯⤾㹥湤潢樊ㄳ㌠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽒散琠嬲㜶⸵㐸‷㘲″㤰⸱㐸‷㜲崊⽁†ㄳ㈠〠删ਯ卵扴祰支䱩湫㸾敮摯扪਱㌴‰⁯扪਼㰯呹灥⽇牯異ਯ匯呲慮獰慲敮捹ਯ䤠瑲略ਯ䍓⽄敶楣敒䝂㸾敮摯扪਱㌵‰⁯扪਼㰯呹灥⽇牯異ਯ匯呲慮獰慲敮捹ਯ䤠瑲略㸾敮摯扪਱㌶‰⁯扪਼㰯匯啒䤊⽕剉⡨瑴灳㨯⽤潩⹯牧⼱〮ㄱ〱⼲〲㈮〳⸰㈮㐸㈷〱⤾㹥湤潢樊ㄳ㜠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽒散琠嬱㌵⸳㐴‷㜸′㠸⸱㈠㜸㡝ਯ䄠‱㌶‰⁒ ⽓畢瑹灥⽌楮款㹥湤潢樊ㄳ㠠〠潢樊㰼⽓⽕剉ਯ啒䤨桴瑰㨯⽣牥慴楶散潭浯湳⹯牧⽬楣敮獥猯批⼴⸰⼩㸾敮摯扪਱㌹‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ剥捴⁛㈷㘮㔴㠠㜶㈠㌹〮ㄴ㠠㜷㉝ਯ䄠‱㌸‰⁒ ⽓畢瑹灥⽌楮款㹥湤潢樊ㄴ〠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‱崊⽃⁛〠ㄠそਯ䠯䤊⽒散琠嬲㌷⸴㤱″㘰⸸㤵′㐹⸴㐶″㘹⸳〷崊⽄敳琠嬹‰⁒ 塙娠ㄳ㌮㜶㠰‵㘵⸱㜵〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊ㄴㄠ〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‱崊⽃⁛〠ㄠそਯ䠯䤊⽒散琠嬴㘸⸷㌴″〱⸱ㄹ‴㜵⸷〸″〹⸵㌲崊⽄敳琠嬸‰⁒ 塙娠ㄳ㌮㜶㠰″㐶⸴㔶〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊ㄴ㈠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‱崊⽃⁛〠ㄠそਯ䠯䤊⽒散琠嬲㐶⸰㌳′㔵⸲㤱′㔷⸹㠹′㘳⸷〴崊⽄敳琠嬱㘠〠删⽘奚‱㌳⸷㘸〠㐲㌮㘱㄰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪਱㐳‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠ㅝਯ䌠嬰‱‰崊⽈⽉ਯ剥捴⁛㐰㜮㌱㠠㈴㌮㌳㔠㐱㤮㈷㌠㈵ㄮ㜴㡝ਯ䑥獴⁛ㄶ‰⁒ 塙娠ㄳ㌮㜶㠰‴㘹⸱〸〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊ㄴ㐠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‱崊⽃⁛〠ㄠそਯ䠯䤊⽒散琠嬴㌵⸷㌶′ㄹ⸴㈵‴㐷⸶㤱′㈷⸸㌸崊⽄敳琠嬹‰⁒ 塙娠ㄳ㌮㜶㠰‶〷⸸㐴〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊ㄴ㔠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‱崊⽃⁛〠ㄠそਯ䠯䤊⽒散琠嬳〵⸵㘳‱㜵⸵㠹″ㄷ⸵ㄸ‱㠴⸰〲崊⽄敳琠嬱㘠〠删⽘奚‱㌳⸷㘸〠㔴㐮㠲㐰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪਱㐶‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠ㅝਯ䌠嬰‱‰崊⽈⽉ਯ剥捴⁛㌴㤮㜲㜠ㄶ㌮㘳㐠㌶ㄮ㘸㈠ㄷ㈮〴㝝ਯ䑥獴⁛ㄵ‰⁒ 塙娠ㄳ㌮㜶㠰‴㐷⸵㈲〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊ㄴ㜠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‱崊⽃⁛〠ㄠそਯ䠯䤊⽒散琠嬳〶⸸㘹‱㔱⸶㜹″ㄸ⸸㈴‱㘰⸰㤲崊⽄敳琠嬱〠〠删⽘奚‱㌳⸷㘸〠㌴㤮㌴㐰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪਱㐸‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠ㅝਯ䌠嬰‱‰崊⽈⽉ਯ剥捴⁛㈶〮㌰㤠ㄱ㤮㜹㤠㈷㈮㈶㐠ㄲ㠮㈱㉝ਯ䑥獴⁛㤠〠删⽘奚‱㌳⸷㘸〠ㄷ㘮ㄷ㈰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪਱㐹‰⁯扪਼㰯匯啒䤊⽕剉⡨瑴灳㨯⽤潩⹯牧⼱〮ㄱ〱⼲〲㈮〳⸰㈮㐸㈷〱⤾㹥湤潢樊ㄵ〠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽒散琠嬱㌵⸳㐴‷㜸′㠸⸱㈠㜸㡝ਯ䄠‱㐹‰⁒ ⽓畢瑹灥⽌楮款㹥湤潢樊ㄵㄠ〠潢樊㰼⽓⽕剉ਯ啒䤨桴瑰㨯⽣牥慴楶散潭浯湳⹯牧⽬楣敮獥猯批⼴⸰⼩㸾敮摯扪਱㔲‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ剥捴⁛㈷㘮㔴㠠㜶㈠㌹〮ㄴ㠠㜷㉝ਯ䄠‱㔱‰⁒ ⽓畢瑹灥⽌楮款㹥湤潢樊ㄵ㌠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‱崊⽃⁛〠ㄠそਯ䠯䤊⽒散琠嬲〵⸴㠸‶㔶⸲㌹′ㄲ⸴㘲‶㘴⸶㔲崊⽄敳琠嬱〠〠删⽘奚‱㌳⸷㘸〠㔴㤮㌲㈰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪਱㔴‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠ㅝਯ䌠嬰‱‰崊⽈⽉ਯ剥捴⁛㌶㤮ㄲ‶㐴⸲㠴″㜶⸰㤳‶㔲⸶㤷崊⽄敳琠嬱〠〠删⽘奚‱㌳⸷㘸〠㔰㘮㤳㔰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪਱㔵‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠ㅝਯ䌠嬰‱‰崊⽈⽉ਯ剥捴⁛㈲〮㘹㌠㘲〮㌷㐠㈳㈮㘴㠠㘲㠮㜸㙝ਯ䑥獴⁛㤠〠删⽘奚‱㌳⸷㘸〠㘴〮㜷㄰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪਱㔶‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠ㅝਯ䌠嬰‱‰崊⽈⽉ਯ剥捴⁛㈷㔮㜱㈠㘰〮㜱㐠㈸㜮㘶㜠㘰㤮ㄲ㝝ਯ䑥獴⁛㤠〠删⽘奚‱㌳⸷㘸〠ㄴ㐮㘲㠰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪਱㔷‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠ㅝਯ䌠嬰‱‰崊⽈⽉ਯ剥捴⁛㐴㈮㐳㐠㘰〮㜱㐠㐵㐮㌸㤠㘰㤮ㄲ㝝ਯ䑥獴⁛㤠〠删⽘奚‱㌳⸷㘸〠㐶㘮㈲㄰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪਱㔸‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠ㅝਯ䌠嬰‱‰崊⽈⽉ਯ剥捴⁛㈳㜮㤰㘠㔸㠮㜵㤠㈴㤮㠶ㄠ㔹㜮ㄷ㉝ਯ䑥獴⁛㤠〠删⽘奚‱㌳⸷㘸〠㈳㠮㜰㜰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪਱㔹‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠ㅝਯ䌠嬰‱‰崊⽈⽉ਯ剥捴⁛ㄶ〮㐴㘠㔵㈮㠹㌠ㄷ㈮㐰ㄠ㔶ㄮ㌰㙝ਯ䑥獴⁛ㄵ‰⁒ 塙娠ㄳ㌮㜶㠰‱㠴⸵〸〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊ㄶ〠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‱崊⽃⁛〠ㄠそਯ䠯䤊⽒散琠嬲㜸⸲㈷‵㔲⸸㤳′㤰⸱㠲‵㘱⸳〶崊⽄敳琠嬱㔠〠删⽘奚‱㌳⸷㘸〠㈶〮㈲㐰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪਱㘱‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠ㅝਯ䌠嬰‱‰崊⽈⽉ਯ剥捴⁛㈵㐮㘶㜠㔳㌮㈳㐠㈶㘮㘲㈠㔴ㄮ㘴㝝ਯ䑥獴⁛ㄶ‰⁒ 塙娠ㄳ㌮㜶㠰‵㜵⸳㈰〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊ㄶ㈠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‱崊⽃⁛〠ㄠそਯ䠯䤊⽒散琠嬲㌵⸶㤸‵〹⸳㈳′㐷⸶㔳‵ㄷ⸷㌶崊⽄敳琠嬴〠〠删⽘奚‱㌳⸷㘸〠㘶㜮ㄹ㠰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪਱㘳‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠ㅝਯ䌠嬰‱‰崊⽈⽉ਯ剥捴⁛㐴㐮㐷㜠㔰㤮㌲㌠㐵ㄮ㐵ㄠ㔱㜮㜳㙝ਯ䑥獴⁛㄰‰⁒ 塙娠ㄳ㌮㜶㠰‴㘵⸱〲〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊ㄶ㐠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‱崊⽃⁛〠ㄠそਯ䠯䤊⽒散琠嬴〷⸷㘹‴㤷⸳㘸‴ㄹ⸷㈴‵〵⸷㠱崊⽄敳琠嬹‰⁒ 塙娠ㄳ㌮㜶㠰′〶⸸㠶〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊ㄶ㔠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‱崊⽃⁛〠ㄠそਯ䠯䤊⽒散琠嬲㔳⸹㘠㐷㜮㜰㤠㈶㔮㤱㔠㐸㘮ㄲㅝਯ䑥獴⁛ㄶ‰⁒ 塙娠ㄳ㌮㜶㠰‶㘷⸱㤸〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊ㄶ㘠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‱崊⽃⁛〠ㄠそਯ䠯䤊⽒散琠嬴〷⸰㔠㐵㌮㜹㠠㐱㤮〰㔠㐶㈮㈱ㅝਯ䑥獴⁛ㄶ‰⁒ 塙娠ㄳ㌮㜶㠰′㤶⸳㘶〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊ㄶ㜠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‱崊⽃⁛〠ㄠそਯ䠯䤊⽒散琠嬴㈴⸳㌲‴㔳⸷㤸‴㌶⸲㠷‴㘲⸲ㄱ崊⽄敳琠嬱㘠〠删⽘奚‱㌳⸷㘸〠㈵㈮㠰㠰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪਱㘸‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠ㅝਯ䌠嬰‱‰崊⽈⽉ਯ剥捴⁛㈵ㄮ㔷㜠㐲㤮㠸㠠㈶㌮㔳㈠㐳㠮㌰ㅝਯ䑥獴⁛㄰‰⁒ 塙娠ㄳ㌮㜶㠰″〷⸵ㄱ〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊ㄶ㤠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‱崊⽃⁛〠ㄠそਯ䠯䤊⽒散琠嬲㐲⸸㠱‴㄰⸲㈸′㔴⸸㌷‴ㄸ⸶㐱崊⽄敳琠嬱㘠〠删⽘奚‱㌳⸷㘸〠㘳㤮〸㄰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪਱㜰‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠ㅝਯ䌠嬰‱‰崊⽈⽉ਯ剥捴⁛㈳㜮〸㌠㌹㠮㈷㌠㈴㤮〳㠠㐰㘮㘸㙝ਯ䑥獴⁛ㄵ‰⁒ 塙娠ㄳ㌮㜶㠰′ㄶ⸳㠹〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊ㄷㄠ〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‱崊⽃⁛〠ㄠそਯ䠯䤊⽒散琠嬲㐲⸸㌹″㠶⸳ㄸ′㔴⸷㤴″㤴⸷㌱崊⽄敳琠嬹‰⁒ 塙娠ㄳ㌮㜶㠰′㘹⸴㈰〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊ㄷ㈠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‱崊⽃⁛〠ㄠそਯ䠯䤊⽒散琠嬲㔳⸴㌹″㔴⸷〳′㘵⸳㤴″㘳⸱ㄶ崊⽄敳琠嬱㘠〠删⽘奚‱㌳⸷㘸〠㘰㜮㈰㄰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪਱㜳‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠ㅝਯ䌠嬰‱‰崊⽈⽉ਯ剥捴⁛㈰㔮㠵㤠㌴㈮㜴㠠㈱㜮㠱㐠㌵ㄮㄶㅝਯ䑥獴⁛ㄶ‰⁒ 塙娠ㄳ㌮㜶㠰‱㤸⸹㔴〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊ㄷ㐠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‱崊⽃⁛〠ㄠそਯ䠯䤊⽒散琠嬴㐳⸶〷″㐲⸷㐸‴㔵⸵㘲″㔱⸱㘱崊⽄敳琠嬱㔠〠删⽘奚‱㌳⸷㘸〠㔷㤮㔸㈰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪਱㜵‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠ㅝਯ䌠嬰‱‰崊⽈⽉ਯ剥捴⁛㈸㤮㐶㔠㌲ㄮ㐹㐠㌰ㄮ㐲″㈹⸹〷崊⽄敳琠嬱㘠〠删⽘奚‱㌳⸷㘸〠㌲㤮㘳㄰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪਱㜶‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠ㅝਯ䌠嬰‱‰崊⽈⽉ਯ剥捴⁛㈳㈮㔱㤠㈹㜮㔸㐠㈴㐮㐷㔠㌰㔮㤹㝝ਯ䑥獴⁛㐰‰⁒ 塙娠ㄳ㌮㜶㠰‶ㄵ⸴㐸〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊ㄷ㜠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‱崊⽃⁛〠ㄠそਯ䠯䤊⽒散琠嬱㜴⸳㈠㈲㔮㠵㌠ㄸ㘮㈷㔠㈳㐮㈶㙝ਯ䑥獴⁛ㄶ‰⁒ 塙娠ㄳ㌮㜶㠰″㤳⸳㤱〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊ㄷ㠠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‱崊⽃⁛ㄠ〠そਯ䠯䤊⽒散琠嬴㐱⸰㜹′㈳⸳㘲‴㐸⸰㔳′㌵⸳ㄸ崊⽄敳琠嬳‰⁒ 塙娠㈱㘮㈶㐰‶㘲⸲㜲〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊ㄷ㤠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‱崊⽃⁛〠ㄠそਯ䠯䤊⽒散琠嬴ㄴ⸶㤲‱㌰⸲ㄲ‴㈱⸶㘶‱㌸⸶㈵崊⽄敳琠嬸‰⁒ 塙娠ㄳ㌮㜶㠰‱㜹⸰㠴〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊ㄸ〠〠潢樊㰼⽓⽕剉ਯ啒䤨桴瑰猺⼯摯椮潲术㄰⸱㄰ㄯ㈰㈲⸰㌮〲⸴㠲㜰ㄩ㸾敮摯扪਱㠱‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ剥捴⁛ㄳ㔮㌴㐠㜷㠠㈸㠮ㄲ‷㠸崊⽁†ㄸ〠〠删ਯ卵扴祰支䱩湫㸾敮摯扪਱㠲‰⁯扪਼㰯匯啒䤊⽕剉⡨瑴瀺⼯捲敡瑩癥捯浭潮献潲术汩捥湳敳⽢礯㐮〯⤾㹥湤潢樊ㄸ㌠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽒散琠嬲㜶⸵㐸‷㘲″㤰⸱㐸‷㜲崊⽁†ㄸ㈠〠删ਯ卵扴祰支䱩湫㸾敮摯扪਱㠴‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠ㅝਯ䌠嬰‱‰崊⽈⽉ਯ剥捴⁛ㄹ㠮㐴ㄠ㘱㔮㌰㐠㈱〮㌹㘠㘲㌮㜱㝝ਯ䑥獴⁛㐰‰⁒ 塙娠ㄳ㌮㜶㠰‵㘱⸵㤴〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊ㄸ㔠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‱崊⽃⁛〠ㄠそਯ䠯䤊⽒散琠嬱㤳⸸ㄹ‶〳⸳㐹′〵⸷㜴‶ㄱ⸷㘱崊⽄敳琠嬱㔠〠删⽘奚‱㌳⸷㘸〠㔰㌮㔸㤰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪਱㠶‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠ㅝਯ䌠嬰‱‰崊⽈⽉ਯ剥捴⁛ㄹ㔮㜵㘠㔹ㄮ㌹㌠㈰㈮㜳‵㤹⸸〶崊⽄敳琠嬱〠〠删⽘奚‱㌳⸷㘸〠㘶㜮ㄹ㠰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪਱㠷‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠ㅝਯ䌠嬰‱‰崊⽈⽉ਯ剥捴⁛ㄹ㠮〵㌠㔷㤮㐳㠠㈱〮〰㤠㔸㜮㠵ㅝਯ䑥獴⁛㄰‰⁒ 塙娠ㄳ㌮㜶㠰′㜷⸰㠰〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊ㄸ㠠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‱崊⽃⁛〠ㄠそਯ䠯䤊⽒散琠嬲〴⸰㠶‵㘷⸴㠳′ㄱ⸰㘠㔷㔮㠹㙝ਯ䑥獴⁛㄰‰⁒ 塙娠ㄳ㌮㜶㠰‶ㄵ⸶ㄹ〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊ㄸ㤠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‱崊⽃⁛〠ㄠそਯ䠯䤊⽒散琠嬲〵⸶㌶‵㔵⸵㈸′ㄷ⸵㤱‵㘳⸹㐱崊⽄敳琠嬴〠〠删⽘奚‱㌳⸷㘸〠㐹ㄮ㌵㜰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪਱㤰‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠ㅝਯ䌠嬱‰‰崊⽈⽉ਯ剥捴⁛㌵㘮〳㠠㌴㠮㜱㔠㌶㌮〱㈠㌶〮㘷崊⽄敳琠嬳‰⁒ 塙娠ㄷㄮ㠲㠰‵㈵⸶㤵〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊ㄹㄠ〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‱崊⽃⁛〠ㄠそਯ䠯䤊⽒散琠嬲㘲⸰㘸″㌹⸲㔠㈷㐮〲㌠㌴㜮㘶㍝ਯ䑥獴⁛㤠〠删⽘奚‱㌳⸷㘸〠㐲㈮㤹㠰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪਱㤲‰⁯扪਼㰯匯啒䤊⽕剉⡨瑴灳㨯⽤潩⹯牧⼱〮ㄱ〱⼲〲㈮〳⸰㈮㐸㈷〱⤾㹥湤潢樊ㄹ㌠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽒散琠嬱㌵⸳㐴‷㜸′㠸⸱㈠㜸㡝ਯ䄠‱㤲‰⁒ ⽓畢瑹灥⽌楮款㹥湤潢樊ㄹ㐠〠潢樊㰼⽓⽕剉ਯ啒䤨桴瑰㨯⽣牥慴楶散潭浯湳⹯牧⽬楣敮獥猯批⼴⸰⼩㸾敮摯扪਱㤵‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ剥捴⁛㈷㘮㔴㠠㜶㈠㌹〮ㄴ㠠㜷㉝ਯ䄠‱㤴‰⁒ ⽓畢瑹灥⽌楮款㹥湤潢樊ㄹ㘠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‱崊⽃⁛ㄠ〠そਯ䠯䤊⽒散琠嬱㘴⸵〳‱㐲⸷㘲‱㜱⸴㜶‱㔴⸷ㄷ崊⽄敳琠嬵‰⁒ 塙娠ㄷ㈮㤸㠰‶㘲⸲㜲〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊ㄹ㜠〠潢樊㰼⽓⽕剉ਯ啒䤨桴瑰猺⼯摯椮潲术㄰⸱㄰ㄯ㈰㈲⸰㌮〲⸴㠲㜰ㄩ㸾敮摯扪਱㤸‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ剥捴⁛ㄳ㔮㌴㐠㜷㠠㈸㠮ㄲ‷㠸崊⽁†ㄹ㜠〠删ਯ卵扴祰支䱩湫㸾敮摯扪਱㤹‰⁯扪਼㰯匯啒䤊⽕剉⡨瑴瀺⼯捲敡瑩癥捯浭潮献潲术汩捥湳敳⽢礯㐮〯⤾㹥湤潢樊㈰〠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽒散琠嬲㜶⸵㐸‷㘲″㤰⸱㐸‷㜲崊⽁†ㄹ㤠〠删ਯ卵扴祰支䱩湫㸾敮摯扪ਲ〱‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠ㅝਯ䌠嬱‰‰崊⽈⽉ਯ剥捴⁛ㄸ㔮㈳㐠㘳㔮㐲㠠ㄹ㈮㈰㠠㘴㘮㈷㙝ਯ䑥獴⁛㌠〠删⽘奚′ㄶ⸲㘴〠㘶㈮㈷㈰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪ਲ〲‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠ㅝਯ䌠嬰‱‰崊⽈⽉ਯ剥捴⁛㈰㌮㐳㘠㌹㐮〷㠠㈱㔮㌹ㄠ㐰㈮㐹ㅝਯ䑥獴⁛ㄵ‰⁒ 塙娠ㄳ㌮㜶㠰″㐷⸸㤵〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊㈰㌠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‱崊⽃⁛〠ㄠそਯ䠯䤊⽒散琠嬳ㄹ⸵㈵″㤴⸰㜸″㌱⸴㠠㐰㈮㐹ㅝਯ䑥獴⁛ㄵ‰⁒ 塙娠ㄳ㌮㜶㠰‵㌷⸶㠴〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊㈰㐠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‱崊⽃⁛ㄠ〠そਯ䠯䤊⽒散琠嬳㐵⸴㔴″〴⸴㠳″㔲⸴㈸″ㄶ⸴㌸崊⽄敳琠嬲‰⁒ 塙娠ㄸㄮ㐱㘰‴㠳⸷㌹〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊㈰㔠〠潢樊㰼⽓⽕剉ਯ啒䤨桴瑰猺⼯摯椮潲术㄰⸱㄰ㄯ㈰㈲⸰㌮〲⸴㠲㜰ㄩ㸾敮摯扪ਲ〶‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ剥捴⁛ㄳ㔮㌴㐠㜷㠠㈸㠮ㄲ‷㠸崊⽁†㈰㔠〠删ਯ卵扴祰支䱩湫㸾敮摯扪ਲ〷‰⁯扪਼㰯匯啒䤊⽕剉⡨瑴瀺⼯捲敡瑩癥捯浭潮献潲术汩捥湳敳⽢礯㐮〯⤾㹥湤潢樊㈰㠠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽒散琠嬲㜶⸵㐸‷㘲″㤰⸱㐸‷㜲崊⽁†㈰㜠〠删ਯ卵扴祰支䱩湫㸾敮摯扪ਲ〹‰⁯扪਼㰯匯啒䤊⽕剉⡨瑴灳㨯⽤潩⹯牧⼱〮ㄱ〱⼲〲㈮〳⸰㈮㐸㈷〱⤾㹥湤潢樊㈱〠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽒散琠嬱㌵⸳㐴‷㜸′㠸⸱㈠㜸㡝ਯ䄠′〹‰⁒ ⽓畢瑹灥⽌楮款㹥湤潢樊㈱ㄠ〠潢樊㰼⽓⽕剉ਯ啒䤨桴瑰㨯⽣牥慴楶散潭浯湳⹯牧⽬楣敮獥猯批⼴⸰⼩㸾敮摯扪ਲㄲ‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ剥捴⁛㈷㘮㔴㠠㜶㈠㌹〮ㄴ㠠㜷㉝ਯ䄠′ㄱ‰⁒ ⽓畢瑹灥⽌楮款㹥湤潢樊㈱㌠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‱崊⽃⁛〠ㄠそਯ䠯䤊⽒散琠嬳〱⸹㠷′㜵⸷㘳″ㄳ⸹㐲′㠴⸱㜶崊⽄敳琠嬱㘠〠删⽘奚‱㌳⸷㘸〠㌶〮㠴㜰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪ਲㄴ‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠ㅝਯ䌠嬰‱‰崊⽈⽉ਯ剥捴⁛㌵㐮㤶㠠ㄸ〮ㄲ㈠㌶㘮㤲㐠ㄸ㠮㔳㕝ਯ䑥獴⁛㤠〠删⽘奚‱㌳⸷㘸〠㔱ㄮ㤳㐰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪ਲㄵ‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠ㅝਯ䌠嬰‱‰崊⽈⽉ਯ剥捴⁛ㄳ㔮㔴‱㘸⸱㘷‱㐲⸵ㄳ‱㜶⸵㡝ਯ䑥獴⁛㠠〠删⽘奚‱㌳⸷㘸〠㈴㐮㌳㤰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪ਲㄶ‰⁯扪਼㰯匯啒䤊⽕剉⡨瑴灳㨯⽤潩⹯牧⼱〮ㄱ〱⼲〲㈮〳⸰㈮㐸㈷〱⤾㹥湤潢樊㈱㜠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽒散琠嬱㌵⸳㐴‷㜸′㠸⸱㈠㜸㡝ਯ䄠′ㄶ‰⁒ ⽓畢瑹灥⽌楮款㹥湤潢樊㈱㠠〠潢樊㰼⽓⽕剉ਯ啒䤨桴瑰㨯⽣牥慴楶散潭浯湳⹯牧⽬楣敮獥猯批⼴⸰⼩㸾敮摯扪ਲㄹ‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ剥捴⁛㈷㘮㔴㠠㜶㈠㌹〮ㄴ㠠㜷㉝ਯ䄠′ㄸ‰⁒ ⽓畢瑹灥⽌楮款㹥湤潢樊㈲〠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‱崊⽃⁛〠ㄠㅝਯ䠯䤊⽒散琠嬳〹⸹㐱‵㔳⸴㌠㐵㠮㌸㌠㔶㐮㔵㕝ਯ䄼㰯匯啒䤊⽔祰支䅣瑩潮ਯ啒䤨桴瑰猺⼯睷眮橫慮捨攮捯洯歡湡⤾㸊⽓畢瑹灥⽌楮款㹥湤潢樊㈲ㄠ〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‱崊⽃⁛〠ㄠㅝਯ䠯䤊⽒散琠嬲㈳⸳㐹‵㐱⸴㜵″㠷⸴㠲‵㔲⸶崊⽁㰼⽓⽕剉ਯ呹灥⽁捴楯渊⽕剉⡨瑴灳㨯⽧楴桵戮捯洯橫慮捨支歡湡⤾㸊⽓畢瑹灥⽌楮款㹥湤潢樊㈲㈠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‱崊⽃⁛〠ㄠㅝਯ䠯䤊⽒散琠嬳〹⸱ㄲ‵㈱⸵㔠㐷㠮㐷㘠㔳㈮㘷㕝ਯ䄼㰯匯啒䤊⽔祰支䅣瑩潮ਯ啒䤨桴瑰猺⼯湰浪献捯洯灡捫慧支獣牡渮橳⤾㸊⽓畢瑹灥⽌楮款㹥湤潢樊㈲㌠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‱崊⽃⁛〠ㄠㅝਯ䠯䤊⽒散琠嬱㔷⸶㜹‵〹⸵㤵‱㜰⸱㌲‵㈰⸷㉝ਯ䄼㰯匯啒䤊⽔祰支䅣瑩潮ਯ啒䤨桴瑰猺⼯湰浪献捯洯灡捫慧支獣牡渮橳⤾㸊⽓畢瑹灥⽌楮款㹥湤潢樊㈲㐠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‱崊⽃⁛〠ㄠㅝਯ䠯䤊⽒散琠嬲㔹⸸㈳‵〹⸵㤵‴㐴⸸㜸‵㈰⸷㉝ਯ䄼㰯匯啒䤊⽔祰支䅣瑩潮ਯ啒䤨桴瑰猺⼯杩瑨畢⹣潭⽪歡湣桥⽳捲慮⹪猩㸾ਯ卵扴祰支䱩湫㸾敮摯扪ਲ㈵‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠ㅝਯ䌠嬰‱‱崊⽈⽉ਯ剥捴⁛ㄶ㤮㠵㔠㐷㜮㜱㐠㌴㤮㘷㤠㐸㠮㠳㥝ਯ䄼㰯匯啒䤊⽔祰支䅣瑩潮ਯ啒䤨桴瑰猺⼯杩瑨畢⹣潭⽌呌䄯獣牡渮捨慮⤾㸊⽓畢瑹灥⽌楮款㹥湤潢樊㈲㘠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‱崊⽃⁛〠ㄠㅝਯ䠯䤊⽒散琠嬱㘹⸸㔵‴㐵⸸㌴″㐴⸹㐷‴㔶⸹㔹崊⽁㰼⽓⽕剉ਯ呹灥⽁捴楯渊⽕剉⡨瑴灳㨯⽧楴桵戮捯洯䱔䱁⽳捲慮ⵣ汩⤾㸊⽓畢瑹灥⽌楮款㹥湤潢樊㈲㜠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‱崊⽃⁛〠ㄠㅝਯ䠯䤊⽒散琠嬳㜷⸱〷‴㈵⸹〸‴㜸⸴㜶‴㌷⸰㌳崊⽁㰼⽓⽕剉ਯ呹灥⽁捴楯渊⽕剉⡨瑴灳㨯⽧楴桵戮捯洯橫慮捨支牡湤潭⵴敳琭晩汥猩㸾ਯ卵扴祰支䱩湫㸾敮摯扪ਲ㈸‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠ㅝਯ䌠嬰‱‱崊⽈⽉ਯ剥捴⁛ㄵ㜮㘷㤠㐱㌮㤵㌠㈹ㄮ㐲㘠㐲㔮〷㡝ਯ䄼㰯匯啒䤊⽔祰支䅣瑩潮ਯ啒䤨桴瑰猺⼯杩瑨畢⹣潭⽪歡湣桥⽲慮摯洭瑥獴ⵦ楬敳⤾㸊⽓畢瑹灥⽌楮款㹥湤潢樊㈲㤠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‱崊⽃⁛〠ㄠㅝਯ䠯䤊⽒散琠嬳㜷⸱〷″㤴⸰㈸‴㜸⸴㜶‴〵⸱㔳崊⽁㰼⽓⽕剉ਯ呹灥⽁捴楯渊⽕剉⡨瑴灳㨯⽧楴桵戮捯洯橫慮捨支歡湡⹰敲昩㸾ਯ卵扴祰支䱩湫㸾敮摯扪ਲ㌰‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠ㅝਯ䌠嬰‱‱崊⽈⽉ਯ剥捴⁛ㄵ㜮㘷㤠㌸㈮〷㌠㈴㠮㔸㜠㌹㌮ㄹ㡝ਯ䄼㰯匯啒䤊⽔祰支䅣瑩潮ਯ啒䤨桴瑰猺⼯杩瑨畢⹣潭⽪歡湣桥⽫慮愮灥牦⤾㸊⽓畢瑹灥⽌楮款㹥湤潢樊㈳ㄠ〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‱崊⽃⁛〠ㄠㅝਯ䠯䤊⽒散琠嬳㌵⸲㘴″㈷⸰㈹‴㜸⸴㜶″㌸⸹㠴崊⽁㰼⽓⽕剉ਯ呹灥⽁捴楯渊⽕剉⡨瑴灳㨯⽧楴桵戮捯洯扩潷慳洯扩潷慳洩㸾ਯ卵扴祰支䱩湫㸾敮摯扪ਲ㌲‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠ㅝਯ䌠嬰‱‱崊⽈⽉ਯ剥捴⁛ㄵ㌮㈵ㄠ㌱㜮㔶㔠ㄹㄮ㠵㘠㌲㔮㘴㙝ਯ䄼㰯匯啒䤊⽔祰支䅣瑩潮ਯ啒䤨桴瑰猺⼯杩瑨畢⹣潭⽢楯睡獭⽢楯睡獭⤾㸊⽓畢瑹灥⽌楮款㹥湤潢樊㈳㌠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‱崊⽃⁛〠ㄠㅝਯ䠯䤊⽒散琠嬳㜷⸱〷‱㔹⸶㔷‴㜸⸴㜶‱㜱⸶ㄲ崊⽁㰼⽓⽕剉ਯ呹灥⽁捴楯渊⽕剉⡨瑴灳㨯⽧楴桵戮捯洯灵灰整敥爯灵灰整敥爩㸾ਯ卵扴祰支䱩湫㸾敮摯扪ਲ㌴‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠ㅝਯ䌠嬰‱‱崊⽈⽉ਯ剥捴⁛ㄵ㌮㈵ㄠㄴ㜮㤷㤠㈵㐮㘲‱㔹⸱〳崊⽁㰼⽓⽕剉ਯ呹灥⽁捴楯渊⽕剉⡨瑴灳㨯⽧楴桵戮捯洯灵灰整敥爯灵灰整敥爩㸾ਯ卵扴祰支䱩湫㸾敮摯扪ਲ㌵‰⁯扪਼㰯匯啒䤊⽕剉⡨瑴灳㨯⽤潩⹯牧⼱〮ㄱ〱⼲〲㈮〳⸰㈮㐸㈷〱⤾㹥湤潢樊㈳㘠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽒散琠嬱㌵⸳㐴‷㜸′㠸⸱㈠㜸㡝ਯ䄠′㌵‰⁒ ⽓畢瑹灥⽌楮款㹥湤潢樊㈳㜠〠潢樊㰼⽓⽕剉ਯ啒䤨桴瑰㨯⽣牥慴楶散潭浯湳⹯牧⽬楣敮獥猯批⼴⸰⼩㸾敮摯扪ਲ㌸‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ剥捴⁛㈷㘮㔴㠠㜶㈠㌹〮ㄴ㠠㜷㉝ਯ䄠′㌷‰⁒ ⽓畢瑹灥⽌楮款㹥湤潢樊㈳㤠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‱崊⽃⁛〠ㄠㅝਯ䠯䤊⽒散琠嬲㤳⸴㈶‴㐸⸳㌷‴㘲⸷㠹‴㘰⸲㤲崊⽁㰼⽓⽕剉ਯ呹灥⽁捴楯渊⽕剉⡨瑴灳㨯⽧楴桵戮捯洯獰潴楦礯慮湯礩㸾ਯ卵扴祰支䱩湫㸾敮摯扪ਲ㐰‰⁯扪਼㰯匯啒䤊⽕剉⡨瑴灳㨯⽤潩⹯牧⼱〮ㄱ〱⼲〲㈮〳⸰㈮㐸㈷〱⤾㹥湤潢樊㈴ㄠ〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽒散琠嬱㌵⸳㐴‷㜸′㠸⸱㈠㜸㡝ਯ䄠′㐰‰⁒ ⽓畢瑹灥⽌楮款㹥湤潢樊㈴㈠〠潢樊㰼⽓⽕剉ਯ啒䤨桴瑰㨯⽣牥慴楶散潭浯湳⹯牧⽬楣敮獥猯批⼴⸰⼩㸾敮摯扪ਲ㐳‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ剥捴⁛㈷㘮㔴㠠㜶㈠㌹〮ㄴ㠠㜷㉝ਯ䄠′㐲‰⁒ ⽓畢瑹灥⽌楮款㹥湤潢樊㈴㐠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‱崊⽃⁛〠ㄠㅝਯ䠯䤊⽒散琠嬴㐵⸱〱‶㔳⸷㐸‴㜸⸴㜶‶㘵⸷〴崊⽁㰼⽓⽕剉ਯ呹灥⽁捴楯渊⽕剉⡨瑴灳㨯⽣楲牯捵浵汵献牥慤瑨敤潣献楯⽥港污瑥獴⼩㸾ਯ卵扴祰支䱩湫㸾敮摯扪ਲ㐵‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠ㅝਯ䌠嬰‱‱崊⽈⽉ਯ剥捴⁛ㄵ㌮㈵ㄠ㘴㌮㐵㐠㌶㐮㐵㜠㘵㌮ㄹ㕝ਯ䄼㰯匯啒䤊⽔祰支䅣瑩潮ਯ啒䤨桴瑰猺⼯捩牲潣畭畬畳⹲敡摴桥摯捳⹩漯敮⽬慴敳琯⤾㸊⽓畢瑹灥⽌楮款㹥湤潢樊㈴㘠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‱崊⽃⁛〠ㄠㅝਯ䠯䤊⽒散琠嬱㠰⸳㘠㌲㜮㔵㜠㈷㘮㐹㤠㌳㠮㘸㉝ਯ䄼㰯匯啒䤊⽔祰支䅣瑩潮ਯ啒䤨桴瑰㨯⽶楴敳獣攮楯⤾㸊⽓畢瑹灥⽌楮款㹥湤潢樊㈴㜠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‱崊⽃⁛〠ㄠㅝਯ䠯䤊⽒散琠嬳㔰⸹㔵‱㔸⸹㠸‴㜸⸴㜶‱㜰⸹㐴崊⽁㰼⽓⽕剉ਯ呹灥⽁捴楯渊⽕剉⡨瑴灳㨯⽧楴桵戮捯洯䱔䱁⽃灰䥲汢愩㸾ਯ卵扴祰支䱩湫㸾敮摯扪ਲ㐸‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠ㅝਯ䌠嬰‱‱崊⽈⽉ਯ剥捴⁛ㄵ㌮㈵ㄠㄴ㜮㌱‱㤷⸰㠶‱㔷⸶〵崊⽁㰼⽓⽕剉ਯ呹灥⽁捴楯渊⽕剉⡨瑴灳㨯⽧楴桵戮捯洯䱔䱁⽃灰䥲汢愩㸾ਯ卵扴祰支䱩湫㸾敮摯扪ਲ㐹‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠ㅝਯ䌠嬰‱‱崊⽈⽉ਯ剥捴⁛㌵〮㤵㔠ㄲ㜮㜲ㄠ㐷㠮㐷㘠ㄳ㤮㘷㙝ਯ䄼㰯匯啒䤊⽔祰支䅣瑩潮ਯ啒䤨桴瑰猺⼯杩瑨畢⹣潭⽌呌䄯䍰灋浥慮猩㸾ਯ卵扴祰支䱩湫㸾敮摯扪ਲ㔰‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠ㅝਯ䌠嬰‱‱崊⽈⽉ਯ剥捴⁛ㄵ㌮㈵ㄠㄱ㘮〴㌠㈰㈮㌱㘠ㄲ㘮㌳㝝ਯ䄼㰯匯啒䤊⽔祰支䅣瑩潮ਯ啒䤨桴瑰猺⼯杩瑨畢⹣潭⽌呌䄯䍰灋浥慮猩㸾ਯ卵扴祰支䱩湫㸾敮摯扪ਲ㔱‰⁯扪਼㰯匯啒䤊⽕剉⡨瑴灳㨯⽤潩⹯牧⼱〮ㄱ〱⼲〲㈮〳⸰㈮㐸㈷〱⤾㹥湤潢樊㈵㈠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽒散琠嬱㌵⸳㐴‷㜸′㠸⸱㈠㜸㡝ਯ䄠′㔱‰⁒ ⽓畢瑹灥⽌楮款㹥湤潢樊㈵㌠〠潢樊㰼⽓⽕剉ਯ啒䤨桴瑰㨯⽣牥慴楶散潭浯湳⹯牧⽬楣敮獥猯批⼴⸰⼩㸾敮摯扪ਲ㔴‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ剥捴⁛㈷㘮㔴㠠㜶㈠㌹〮ㄴ㠠㜷㉝ਯ䄠′㔳‰⁒ ⽓畢瑹灥⽌楮款㹥湤潢樊㈵㔠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‱崊⽃⁛〠ㄠㅝਯ䠯䤊⽒散琠嬴㐵⸱〱‶㔳⸷㐸‴㜸⸴㜶‶㘵⸷〴崊⽁㰼⽓⽕剉ਯ呹灥⽁捴楯渊⽕剉⡨瑴灳㨯⽧楴桵戮捯洯䱔䱁⽬楢獣牡温㸾ਯ卵扴祰支䱩湫㸾敮摯扪ਲ㔶‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠ㅝਯ䌠嬰‱‱崊⽈⽉ਯ剥捴⁛ㄵ㌮㈵ㄠ㘴㈮〷′㤱⸲㌲‶㔳⸱㤵崊⽁㰼⽓⽕剉ਯ呹灥⽁捴楯渊⽕剉⡨瑴灳㨯⽧楴桵戮捯洯䱔䱁⽬楢獣牡温㸾ਯ卵扴祰支䱩湫㸾敮摯扪ਲ㔷‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠ㅝਯ䌠嬰‱‱崊⽈⽉ਯ剥捴⁛㌵〮㤵㔠㘲ㄮ㠶㠠㐷㠮㐷㘠㘳㌮㠲㍝ਯ䄼㰯匯啒䤊⽔祰支䅣瑩潮ਯ啒䤨桴瑰猺⼯杩瑨畢⹣潭⽌呌䄯煤瑳湥⤾㸊⽓畢瑹灥⽌楮款㹥湤潢樊㈵㠠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‱崊⽃⁛〠ㄠㅝਯ䠯䤊⽒散琠嬱㔳⸲㔱‶㄰⸱㤠ㄸ㘮㘲㔠㘲〮㐸㑝ਯ䄼㰯匯啒䤊⽔祰支䅣瑩潮ਯ啒䤨桴瑰猺⼯杩瑨畢⹣潭⽌呌䄯煤瑳湥⤾㸊⽓畢瑹灥⽌楮款㹥湤潢樊㈵㤠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‱崊⽃⁛〠ㄠㅝਯ䠯䤊⽒散琠嬳㜷⸱〷‵㠹⸹㠸‴㜸⸴㜶‶〱⸹㐳崊⽁㰼⽓⽕剉ਯ呹灥⽁捴楯渊⽕剉⡨瑴灳㨯⽧楴桵戮捯洯䱔䱁⽵浡灰瀩㸾ਯ卵扴祰支䱩湫㸾敮摯扪ਲ㘰‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠ㅝਯ䌠嬰‱‱崊⽈⽉ਯ剥捴⁛ㄵ㌮㈵ㄠ㔷㠮㌰㤠㈱㈮㜷㜠㔸㤮㐳㑝ਯ䄼㰯匯啒䤊⽔祰支䅣瑩潮ਯ啒䤨桴瑰猺⼯杩瑨畢⹣潭⽌呌䄯畭慰灰⤾㸊⽓畢瑹灥⽌楮款㹥湤潢樊㈶ㄠ〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‱崊⽃⁛〠ㄠㅝਯ䠯䤊⽒散琠嬳㜷⸱〷‵㔸⸱〷‴㜸⸴㜶‵㜰⸰㘲崊⽁㰼⽓⽕剉ਯ呹灥⽁捴楯渊⽕剉⡨瑴灳㨯⽧楴桵戮捯洯䱔䱁⽫湮捯汬攩㸾ਯ卵扴祰支䱩湫㸾敮摯扪ਲ㘲‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠ㅝਯ䌠嬰‱‱崊⽈⽉ਯ剥捴⁛ㄵ㌮㈵ㄠ㔴㜮㠱㈠㈲㌮㈳㠠㔵㜮㔵㑝ਯ䄼㰯匯啒䤊⽔祰支䅣瑩潮ਯ啒䤨桴瑰猺⼯杩瑨畢⹣潭⽌呌䄯歮湣潬汥⤾㸊⽓畢瑹灥⽌楮款㹥湤潢樊㈶㌠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‱崊⽃⁛〠ㄠㅝਯ䠯䤊⽒散琠嬳㜷⸱〷‵㈶⸲㈷‴㜸⸴㜶‵㌸⸱㠲崊⽁㰼⽓⽕剉ਯ呹灥⽁捴楯渊⽕剉⡨瑴灳㨯⽧楴桵戮捯洯䱔䱁⽃灰坥楧桴敤䱯睥獳⤾㸊⽓畢瑹灥⽌楮款㹥湤潢樊㈶㐠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‱崊⽃⁛〠ㄠㅝਯ䠯䤊⽒散琠嬱㔳⸲㔱‵ㄴ⸵㐸′㜰⸳ㄱ‵㈵⸶㜳崊⽁㰼⽓⽕剉ਯ呹灥⽁捴楯渊⽕剉⡨瑴灳㨯⽧楴桵戮捯洯䱔䱁⽃灰坥楧桴敤䱯睥獳⤾㸊⽓畢瑹灥⽌楮款㹥湤潢樊㈶㔠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‱崊⽃⁛〠ㄠㅝਯ䠯䤊⽒散琠嬳㐵⸷㈵‴㠲⸶㘸‴㜸⸴㜶‴㤳⸷㤳崊⽁㰼⽓⽕剉ਯ呹灥⽁捴楯渊⽕剉⡨瑴灳㨯⽢楯捯湤畣瑯爮潲术扯潫猯牥汥慳支体䍁⼩㸾ਯ卵扴祰支䱩湫㸾敮摯扪ਲ㘶‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠ㅝਯ䌠嬰‱‱崊⽈⽉ਯ剥捴⁛ㄵ㌮㈵ㄠ㐷㈮〹㘠㈵㐮㘲‴㠱⸸㌸崊⽁㰼⽓⽕剉ਯ呹灥⽁捴楯渊⽕剉⡨瑴灳㨯⽢楯捯湤畣瑯爮潲术扯潫猯牥汥慳支体䍁⼩㸾ਯ卵扴祰支䱩湫㸾敮摯扪ਲ㘷‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠ㅝਯ䌠嬰‱‱崊⽈⽉ਯ剥捴⁛㌹㠮〲㠠㐰㘮㘷㔠㐷㠮㐷㘠㐱㠮㘳崊⽁㰼⽓⽕剉ਯ呹灥⽁捴楯渊⽕剉⡨瑴灳㨯⽧楴桵戮捯洯䱔䱁⽴慴慭椩㸾ਯ卵扴祰支䱩湫㸾敮摯扪ਲ㘸‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠ㅝਯ䌠嬰‱‱崊⽈⽉ਯ剥捴⁛ㄵ㌮㈵ㄠ㌹㘮㌸′㌳⸶㤹‴〶⸱㈱崊⽁㰼⽓⽕剉ਯ呹灥⽁捴楯渊⽕剉⡨瑴灳㨯⽧楴桵戮捯洯䱔䱁⽴慴慭椩㸾ਯ卵扴祰支䱩湫㸾敮摯扪ਲ㘹‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠ㅝਯ䌠嬰‱‱崊⽈⽉ਯ剥捴⁛㌵〮㤵㔠㌷㐮㜹㔠㐷㠮㐷㘠㌸㘮㜵崊⽁㰼⽓⽕剉ਯ呹灥⽁捴楯渊⽕剉⡨瑴灳㨯⽧楴桵戮捯洯䱔䱁⽳捲慮ⵣ汩⤾㸊⽓畢瑹灥⽌楮款㹥湤潢樊㈷〠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‱崊⽃⁛〠ㄠㅝਯ䠯䤊⽒散琠嬱㔳⸲㔱″㘳⸸㌶′〲⸸ㄵ″㜳⸴ㄱ崊⽁㰼⽓⽕剉ਯ呹灥⽁捴楯渊⽕剉⡨瑴灳㨯⽧楴桵戮捯洯䱔䱁⽳捲慮ⵣ汩⤾㸊⽓畢瑹灥⽌楮款㹥湤潢樊㈷ㄠ〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‱崊⽃⁛〠ㄠㅝਯ䠯䤊⽒散琠嬳㤸⸰㈸″㐲⸹ㄴ‴㜸⸴㜶″㔴⸸㘹崊⽁㰼⽓⽕剉ਯ呹灥⽁捴楯渊⽕剉⡨瑴灳㨯⽧楴桵戮捯洯䱔䱁⽳捲慮⹣桡温㸾ਯ卵扴祰支䱩湫㸾敮摯扪ਲ㜲‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠ㅝਯ䌠嬰‱‱崊⽈⽉ਯ剥捴⁛ㄵ㌮㈵ㄠ㌳㈮㘱㤠㈵㐮㘲″㐲⸳㘱崊⽁㰼⽓⽕剉ਯ呹灥⽁捴楯渊⽕剉⡨瑴灳㨯⽧楴桵戮捯洯䱔䱁⽳捲慮⹣桡温㸾ਯ卵扴祰支䱩湫㸾敮摯扪ਲ㜳‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠ㅝਯ䌠嬰‱‱崊⽈⽉ਯ剥捴⁛㈳〮㌹㔠㈹㤮㌵㔠㐱㔮㐵″㄰⸴㡝ਯ䄼㰯匯啒䤊⽔祰支䅣瑩潮ਯ啒䤨桴瑰猺⼯杩瑨畢⹣潭⽪歡湣桥⽳捲慮⹪猩㸾ਯ卵扴祰支䱩湫㸾敮摯扪ਲ㜴‰⁯扪਼㰯匯啒䤊⽕剉⡨瑴灳㨯⽤潩⹯牧⼱〮ㄱ〱⼲〲㈮〳⸰㈮㐸㈷〱⤾㹥湤潢樊㈷㔠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽒散琠嬱㌵⸳㐴‷㜸′㠸⸱㈠㜸㡝ਯ䄠′㜴‰⁒ ⽓畢瑹灥⽌楮款㹥湤潢樊㈷㘠〠潢樊㰼⽓⽕剉ਯ啒䤨桴瑰㨯⽣牥慴楶散潭浯湳⹯牧⽬楣敮獥猯批⼴⸰⼩㸾敮摯扪ਲ㜷‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ剥捴⁛㈷㘮㔴㠠㜶㈠㌹〮ㄴ㠠㜷㉝ਯ䄠′㜶‰⁒ ⽓畢瑹灥⽌楮款㹥湤潢樊㈷㠠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‱崊⽃⁛〠ㄠㅝਯ䠯䤊⽒散琠嬲㐱⸳㔴‵〶⸵㜸‴㘸⸷㐹‵ㄷ⸷〳崊⽁㰼⽓⽕剉ਯ呹灥⽁捴楯渊⽕剉⡨瑴灳㨯⽧楴桵戮捯洯坥扁獳敭扬礯浵汴椭浥浯特⤾㸊⽓畢瑹灥⽌楮款㹥湤潢樊㈷㤠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‱崊⽃⁛〠ㄠㅝਯ䠯䤊⽒散琠嬳ㄴ⸳㐳″ㄹ⸲㠠㐷㠮㐷㘠㌳〮㐰㕝ਯ䄼㰯匯啒䤊⽔祰支䅣瑩潮ਯ啒䤨桴瑰猺⼯杩瑨畢⹣潭⽗敢䅳獥浢汹⽭敭潲礶㐩㸾ਯ卵扴祰支䱩湫㸾敮摯扪ਲ㠰‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠ㅝਯ䌠嬰‱‱崊⽈⽉ਯ剥捴⁛ㄵ㌮㈵ㄠ㌰㜮㌲㔠ㄹ㜮〸㘠㌱㜮㘲崊⽁㰼⽓⽕剉ਯ呹灥⽁捴楯渊⽕剉⡨瑴灳㨯⽧楴桵戮捯洯坥扁獳敭扬礯浥浯特㘴⤾㸊⽓畢瑹灥⽌楮款㹥湤潢樊㈸ㄠ〠潢樊㰼⽓⽕剉ਯ啒䤨桴瑰猺⼯摯椮潲术㄰⸱㄰ㄯ㈰㈲⸰㌮〲⸴㠲㜰ㄩ㸾敮摯扪ਲ㠲‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ剥捴⁛ㄳ㔮㌴㐠㜷㠠㈸㠮ㄲ‷㠸崊⽁†㈸ㄠ〠删ਯ卵扴祰支䱩湫㸾敮摯扪ਲ㠳‰⁯扪਼㰯匯啒䤊⽕剉⡨瑴瀺⼯捲敡瑩癥捯浭潮献潲术汩捥湳敳⽢礯㐮〯⤾㹥湤潢樊㈸㐠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽒散琠嬲㜶⸵㐸‷㘲″㤰⸱㐸‷㜲崊⽁†㈸㌠〠删ਯ卵扴祰支䱩湫㸾敮摯扪ਲ㠵‰⁯扪਼㰯匯啒䤊⽕剉⡨瑴灳㨯⽤潩⹯牧⼱〮ㄱ〱⼲〲㈮〳⸰㈮㐸㈷〱⤾㹥湤潢樊㈸㘠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽒散琠嬱㌵⸳㐴‷㜸′㠸⸱㈠㜸㡝ਯ䄠′㠵‰⁒ ⽓畢瑹灥⽌楮款㹥湤潢樊㈸㜠〠潢樊㰼⽓⽕剉ਯ啒䤨桴瑰㨯⽣牥慴楶散潭浯湳⹯牧⽬楣敮獥猯批⼴⸰⼩㸾敮摯扪ਲ㠸‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ剥捴⁛㈷㘮㔴㠠㜶㈠㌹〮ㄴ㠠㜷㉝ਯ䄠′㠷‰⁒ ⽓畢瑹灥⽌楮款㹥湤潢樊㈹㈠〠潢樊㰼⽔祰支䵥瑡摡瑡ਯ卵扴祰支塍䰯䱥湧瑨‱㐱㠾㹳瑲敡洊㰿硰慣步琠扥杩渽⟯뮿✠楤㴧圵䴰䵰䍥桩䡺牥卺乔捺正㥤✿㸊㰿慤潢攭硡瀭晩汴敲猠敳挽≃剌䘢㼾਼砺硭灭整愠硭汮猺砽❡摯扥㩮猺浥瑡⼧⁸㩸浰瑫㴧塍倠瑯潬歩琠㈮㤮ㄭㄳⰠ晲慭敷潲欠ㄮ㘧㸊㱲摦㩒䑆⁸浬湳㩲摦㴧桴瑰㨯⽷睷⹷㌮潲术ㄹ㤹⼰㈯㈲⵲摦⵳祮瑡砭湳⌧⁸浬湳㩩堽❨瑴瀺⼯湳⹡摯扥⹣潭⽩堯ㄮ〯✾਼牤昺䑥獣物灴楯渠牤昺慢潵琽∢⁸浬湳㩰摦㴧桴瑰㨯⽮献慤潢攮捯洯灤是ㄮ㌯✾㱰摦㩐牯摵捥爾䝐䰠䝨潳瑳捲楰琠㄰⸰〮〼⽰摦㩐牯摵捥爾਼灤昺䭥祷潲摳㸼⽰摦㩋敹睯牤猾਼⽲摦㩄敳捲楰瑩潮㸊㱲摦㩄敳捲楰瑩潮⁲摦㩡扯畴㴢∠硭汮猺硭瀽❨瑴瀺⼯湳⹡摯扥⹣潭⽸慰⼱⸰⼧㸼硭瀺䵯摩晹䑡瑥㸲〲㌭㄰ⴲ㝔〳㨲ㄺㄱ娼⽸浰㩍潤楦祄慴放਼硭瀺䍲敡瑥䑡瑥㸲〲㌭㄰ⴲ㝔〳㨲ㄺㄱ娼⽸浰㩃牥慴敄慴放਼硭瀺䍲敡瑯牔潯氾䱡呥堠睩瑨⁨祰敲牥昼⽸浰㩃牥慴潲呯潬㸼⽲摦㩄敳捲楰瑩潮㸊㱲摦㩄敳捲楰瑩潮⁲摦㩡扯畴㴢∠硭汮猺硡灍䴽❨瑴瀺⼯湳⹡摯扥⹣潭⽸慰⼱⸰⽭洯✠硡灍䴺䑯捵浥湴䥄㴧畵楤㨶搴つ㐵㠭慣㤴ⴱㅦ㤭〰〰ⴵ㘳㙤㐶㤹搸攧⼾਼牤昺䑥獣物灴楯渠牤昺慢潵琽∢⁸浬湳㩤挽❨瑴瀺⼯灵牬⹯牧⽤振敬敭敮瑳⼱⸱⼧⁤挺景牭慴㴧慰灬楣慴楯港灤昧㸼摣㩴楴汥㸼牤昺䅬琾㱲摦㩬椠硭氺污湧㴧砭摥晡畬琧㹓楮杬攭捥汬⁤慴愠慮慬祳楳⁩渠瑨攠扲潷獥爼⽲摦㩬椾㰯牤昺䅬琾㰯摣㩴楴汥㸼摣㩣牥慴潲㸼牤昺卥焾㱲摦㩬椾㰯牤昺汩㸼⽲摦㩓敱㸼⽤挺捲敡瑯爾㱤挺摥獣物灴楯渾㱲摦㩁汴㸼牤昺汩⁸浬㩬慮朽❸ⵤ敦慵汴✾㰯牤昺汩㸼⽲摦㩁汴㸼⽤挺摥獣物灴楯渾㰯牤昺䑥獣物灴楯渾਼⽲摦㩒䑆㸊㰯砺硭灭整愾ਠ††††††††††††††††††††††††††††††††††† ††††††††††††††††††††††††††††††††††††਼㽸灡捫整⁥湤㴧眧㼾੥湤獴牥慭੥湤潢樊硲敦ਰ′㤳ਰ〰〰〰〰〠㘵㔳㔠映ਰ〰〰㌶㔱㘠〰〰〠渠ਰ〰〲㌰㌷㠠〰〰〠渠ਰ〰〷ㄷ〰㔠〰〰〠渠ਰ〰〷㈲㔹㜠〰〰〠渠ਰ〰〷㈹㜶㘠〰〰〠渠ਰ〰〷㌵㠰㈠〰〰〠渠ਰ〰〷㐲㈸〠〰〰〠渠ਰ〰〷㐹㠴㈠〰〰〠渠ਰ〰〷㘰㐹㔠〰〰〠渠ਰ〰〷㔴㌰㘠〰〰〠渠ਰ〰〰㌶㜸㤠〰〰〠渠ਰ〰〰㐳㐲㔠〰〰〠渠ਰ〰〰㐳㐴㘠〰〰〠渠ਰ〰〰㐳㜸㘠〰〰〠渠ਰ〰〷㜰㐵ㄠ〰〰〠渠ਰ〰〷㘶㈶㌠〰〰〠渠ਰ〰〰㐴〹ㄠ〰〰〠渠ਰ〰〰㐶ㄲ㔠〰〰〠渠ਰ〰〰㐶㌳㔠〰〰〠渠ਰ〰〰㔲㜳㜠〰〰〠渠ਰ〰〰㔲㠰㌠〰〰〠渠ਰ〰〰㔲㜵㠠〰〰〠渠ਰ〰〰㔳〱㈠〰〰〠渠ਰ〰〰㔳㤶〠〰〰〠渠ਰ〰〰㔳㤸〠〰〰〠渠ਰ〰〰㘰〹㠠〰〰〠渠ਰ〰〲㌰㈹〠〰〰〠渠ਰ〰〲㌰㌳㌠〰〰〠渠ਰ〰〲㌰㘵㠠〰〰〠渠ਰ〰〲㌴㤲㌠〰〰〠渠ਰ〰〲㌴㤴㐠〰〰〠渠ਰ〰〲㐳㤵ㄠ〰〰〠渠ਰ〰〷㜹㘴㤠〰〰〠渠ਰ〰〷㜹㜹㤠〰〰〠渠ਰ〰〷㄰㈴㌠〰〰〠渠ਰ〰〷㄰㈸㠠〰〰〠渠ਰ〰〷㄰㌵㜠〰〰〠渠ਰ〰〷㄰㜴㌠〰〰〠渠ਰ〰〷ㄶ㤲㜠〰〰〠渠ਰ〰〷㜶ㄴ㤠〰〰〠渠ਰ〰〷ㄶ㤴㠠〰〰〠渠ਰ〰〷ㄷ㈳㠠〰〰〠渠ਰ〰〷㈲㐹㔠〰〰〠渠ਰ〰〷㠰〱㔠〰〰〠渠ਰ〰〷㠰㐹〠〰〰〠渠ਰ〰〷㠰㠷㌠〰〰〠渠ਰ〰〷㠱〱㜠〰〰〠渠ਰ〰〷㈲㔱㘠〰〰〠渠ਰ〰〷㈲㜷㐠〰〰〠渠ਰ〰〷㈹㘸㠠〰〰〠渠ਰ〰〷㈹㜰㤠〰〰〠渠ਰ〰〷㈹㤶㜠〰〰〠渠ਰ〰〷㌵㜱㈠〰〰〠渠ਰ〰〷㌵㜳㌠〰〰〠渠ਰ〰〷㌵㤷ㄠ〰〰〠渠ਰ〰〷㐲㈰㈠〰〰〠渠ਰ〰〷㐲㈲㌠〰〰〠渠ਰ〰〷㐲㐷㌠〰〰〠渠ਰ〰〷㐹㜶㐠〰〰〠渠ਰ〰〷㐹㜸㔠〰〰〠渠ਰ〰〷㔰ㄳㄠ〰〰〠渠ਰ〰〷㔴ㄹ㈠〰〰〠渠ਰ〰〷㠱㈳ㄠ〰〰〠渠ਰ〰〷㠱㘱㔠〰〰〠渠ਰ〰〷㔴㈱㌠〰〰〠渠ਰ〰〷㔴㐸㐠〰〰〠渠ਰ〰〷㘰㐰㔠〰〰〠渠ਰ〰〷㘰㐲㘠〰〰〠渠ਰ〰〷㘰㜲〠〰〰〠渠ਰ〰〷㘶ㄷ㌠〰〰〠渠ਰ〰〷㘶ㄹ㐠〰〰〠渠ਰ〰〷㘶㔸㔠〰〰〠渠ਰ〰〷㜰㌶ㄠ〰〰〠渠ਰ〰〷㜰㌸㈠〰〰〠渠ਰ〰〷㜰㘴㔠〰〰〠渠ਰ〰〷㜶〵㤠〰〰〠渠ਰ〰〷㜶〸〠〰〰〠渠ਰ〰〷㜶㌱㤠〰〰〠渠ਰ〰〷㜹㔷ㄠ〰〰〠渠ਰ〰〷㜹㔹㈠〰〰〠渠ਰ〰〷㠱㤶㤠〰〰〠渠ਰ〰〷㠸㘲㠠〰〰〠渠ਰ〰〰㐴ㄵ㤠〰〰〠渠ਰ〰〷㠸㠶㌠〰〰〠渠ਰ〰〷㠹ㄱㄠ〰〰〠渠ਰ〰〷㤲㔸㠠〰〰〠渠ਰ〰〷㤲㘷㈠〰〰〠渠ਰ〰〷㤲㜶ㄠ〰〰〠渠ਰ〰〷㤳㌳㐠〰〰〠渠ਰ〰〷㤳㌵㔠〰〰〠渠ਰ〰〷㤳㌷㘠〰〰〠渠ਰ〰〷㤳㌹㜠〰〰〠渠ਰ〰〷㤳㐱㠠〰〰〠渠ਰ〰〷㤳㐳㤠〰〰〠渠ਰ〰〷㤳㐶〠〰〰〠渠ਰ〰〷㤳㐸ㄠ〰〰〠渠ਰ〰〷㤳㔰㈠〰〰〠渠ਰ〰〷㤳㔲㌠〰〰〠渠ਰ〰〷㤳㔴㐠〰〰〠渠ਰ〰〷㤳㔶㔠〰〰〠渠ਰ〰〷㤳㔸㜠〰〰〠渠ਰ〰〷㤳㘰㤠〰〰〠渠ਰ〰〷㤳㜶㤠〰〰〠渠ਰ〰〷㤳㤲㤠〰〰〠渠ਰ〰〷㤴〰㐠〰〰〠渠ਰ〰〷㤴ㄱ〠〰〰〠渠ਰ〰〷㤴ㄸ㜠〰〰〠渠ਰ〰〷㤴㈹㐠〰〰〠渠ਰ〰〷㤴㐵㔠〰〰〠渠ਰ〰〷㤴㘱㔠〰〰〠渠ਰ〰〷㤴㜷㘠〰〰〠渠ਰ〰〷㤴㤳㜠〰〰〠渠ਰ〰〷㤵〹㜠〰〰〠渠ਰ〰〷㤵㈵㜠〰〰〠渠ਰ〰〷㤵㐱㜠〰〰〠渠ਰ〰〷㤵㔷㠠〰〰〠渠ਰ〰〷㤵㜳㤠〰〰〠渠ਰ〰〷㤵㠹㠠〰〰〠渠ਰ〰〷㤶〷㘠〰〰〠渠ਰ〰〷㤶㈵㜠〰〰〠渠ਰ〰〷㤶㐱㘠〰〰〠渠ਰ〰〷㤶㐹ㄠ〰〰〠渠ਰ〰〷㤶㔹㜠〰〰〠渠ਰ〰〷㤶㘷㐠〰〰〠渠ਰ〰〷㤶㜸ㄠ〰〰〠渠ਰ〰〷㤶㤴ㄠ〰〰〠渠ਰ〰〷㤷㄰ㄠ〰〰〠渠ਰ〰〷㤷㈶㈠〰〰〠渠ਰ〰〷㤷㐲㌠〰〰〠渠ਰ〰〷㤷㔸㌠〰〰〠渠ਰ〰〷㤷㘵㠠〰〰〠渠ਰ〰〷㤷㜶㐠〰〰〠渠ਰ〰〷㤷㠴ㄠ〰〰〠渠ਰ〰〷㤷㤴㠠〰〰〠渠ਰ〰〷㤸〱㠠〰〰〠渠ਰ〰〷㤸〷㐠〰〰〠渠ਰ〰〷㤸ㄴ㤠〰〰〠渠ਰ〰〷㤸㈵㔠〰〰〠渠ਰ〰〷㤸㌳㈠〰〰〠渠ਰ〰〷㤸㐳㤠〰〰〠渠ਰ〰〷㤸㔹㤠〰〰〠渠ਰ〰〷㤸㜵㤠〰〰〠渠ਰ〰〷㤸㤲〠〰〰〠渠ਰ〰〷㤹〸ㄠ〰〰〠渠ਰ〰〷㤹㈴ㄠ〰〰〠渠ਰ〰〷㤹㐰㈠〰〰〠渠ਰ〰〷㤹㔶㌠〰〰〠渠ਰ〰〷㤹㜲㐠〰〰〠渠ਰ〰〷㤹㠸㐠〰〰〠渠ਰ〰〷㤹㤵㤠〰〰〠渠ਰ〰〸〰〶㔠〰〰〠渠ਰ〰〸〰ㄴ㈠〰〰〠渠ਰ〰〸〰㈴㤠〰〰〠渠ਰ〰〸〰㐱〠〰〰〠渠ਰ〰〸〰㔷〠〰〰〠渠ਰ〰〸〰㜳〠〰〰〠渠ਰ〰〸〰㠹〠〰〰〠渠ਰ〰〸〱〵〠〰〰〠渠ਰ〰〸〱㈱〠〰〰〠渠ਰ〰〸〱㌷ㄠ〰〰〠渠ਰ〰〸〱㔳㈠〰〰〠渠ਰ〰〸〱㘹㌠〰〰〠渠ਰ〰〸〱㠵㐠〰〰〠渠ਰ〰〸〲〱㔠〰〰〠渠ਰ〰〸〲ㄷ㔠〰〰〠渠ਰ〰〸〲㌳㔠〰〰〠渠ਰ〰〸〲㐹㔠〰〰〠渠ਰ〰〸〲㘵㘠〰〰〠渠ਰ〰〸〲㠱㜠〰〰〠渠ਰ〰〸〲㤷㠠〰〰〠渠ਰ〰〸〳ㄳ㤠〰〰〠渠ਰ〰〸〳㈹㤠〰〰〠渠ਰ〰〸〳㐶〠〰〰〠渠ਰ〰〸〳㘲ㄠ〰〰〠渠ਰ〰〸〳㜸㈠〰〰〠渠ਰ〰〸〳㤴㈠〰〰〠渠ਰ〰〸〴㄰㌠〰〰〠渠ਰ〰〸〴㈶㌠〰〰〠渠ਰ〰〸〴㐲㌠〰〰〠渠ਰ〰〸〴㔸㌠〰〰〠渠ਰ〰〸〴㘵㠠〰〰〠渠ਰ〰〸〴㜶㐠〰〰〠渠ਰ〰〸〴㠴ㄠ〰〰〠渠ਰ〰〸〴㤴㠠〰〰〠渠ਰ〰〸〵㄰㤠〰〰〠渠ਰ〰〸〵㈷〠〰〰〠渠ਰ〰〸〵㐳〠〰〰〠渠ਰ〰〸〵㔹ㄠ〰〰〠渠ਰ〰〸〵㜵ㄠ〰〰〠渠ਰ〰〸〵㤱㈠〰〰〠渠ਰ〰〸〶〷ㄠ〰〰〠渠ਰ〰〸〶㈳〠〰〰〠渠ਰ〰〸〶㌰㔠〰〰〠渠ਰ〰〸〶㐱ㄠ〰〰〠渠ਰ〰〸〶㐸㠠〰〰〠渠ਰ〰〸〶㔹㔠〰〰〠渠ਰ〰〸〶㜵㔠〰〰〠渠ਰ〰〸〶㠳〠〰〰〠渠ਰ〰〸〶㤳㘠〰〰〠渠ਰ〰〸〷〱㌠〰〰〠渠ਰ〰〸〷ㄲ〠〰〰〠渠ਰ〰〸〷㈸〠〰〰〠渠ਰ〰〸〷㐴ㄠ〰〰〠渠ਰ〰〸〷㘰ㄠ〰〰〠渠ਰ〰〸〷㜶ㄠ〰〰〠渠ਰ〰〸〷㠳㘠〰〰〠渠ਰ〰〸〷㤴㈠〰〰〠渠ਰ〰〸〸〱㤠〰〰〠渠ਰ〰〸〸ㄲ㘠〰〰〠渠ਰ〰〸〸㈰ㄠ〰〰〠渠ਰ〰〸〸㌰㜠〰〰〠渠ਰ〰〸〸㌸㐠〰〰〠渠ਰ〰〸〸㐹ㄠ〰〰〠渠ਰ〰〸〸㘵㈠〰〰〠渠ਰ〰〸〸㠱㈠〰〰〠渠ਰ〰〸〸㤷〠〰〰〠渠ਰ〰〸〹〴㔠〰〰〠渠ਰ〰〸〹ㄵㄠ〰〰〠渠ਰ〰〸〹㈲㠠〰〰〠渠ਰ〰〸〹㌳㔠〰〰〠渠ਰ〰〸〹㔱㌠〰〰〠渠ਰ〰〸〹㘹㌠〰〰〠渠ਰ〰〸〹㠷㜠〰〰〠渠ਰ〰〸㄰〶ㄠ〰〰〠渠ਰ〰〸㄰㈴㘠〰〰〠渠ਰ〰〸㄰㐳ㄠ〰〰〠渠ਰ〰〸㄰㘱㔠〰〰〠渠ਰ〰〸㄰㠱〠〰〰〠渠ਰ〰〸ㄱ〰㔠〰〰〠渠ਰ〰〸ㄱㄹ㈠〰〰〠渠ਰ〰〸ㄱ㌷㤠〰〰〠渠ਰ〰〸ㄱ㔶㐠〰〰〠渠ਰ〰〸ㄱ㜴㤠〰〰〠渠ਰ〰〸ㄱ㤳㠠〰〰〠渠ਰ〰〸ㄲㄲ㘠〰〰〠渠ਰ〰〸ㄲ㈰ㄠ〰〰〠渠ਰ〰〸ㄲ㌰㜠〰〰〠渠ਰ〰〸ㄲ㌸㐠〰〰〠渠ਰ〰〸ㄲ㐹ㄠ〰〰〠渠ਰ〰〸ㄲ㘷㐠〰〰〠渠ਰ〰〸ㄲ㜴㤠〰〰〠渠ਰ〰〸ㄲ㠵㔠〰〰〠渠ਰ〰〸ㄲ㤳㈠〰〰〠渠ਰ〰〸ㄳ〳㤠〰〰〠渠ਰ〰〸ㄳ㈳㘠〰〰〠渠ਰ〰〸ㄳ㐳㌠〰〰〠渠ਰ〰〸ㄳ㘰ㄠ〰〰〠渠ਰ〰〸ㄳ㜸㐠〰〰〠渠ਰ〰〸ㄳ㤶㘠〰〰〠渠ਰ〰〸ㄴㄵ〠〰〰〠渠ਰ〰〸ㄴ㌳㐠〰〰〠渠ਰ〰〸ㄴ㐰㤠〰〰〠渠ਰ〰〸ㄴ㔱㔠〰〰〠渠ਰ〰〸ㄴ㔹㈠〰〰〠渠ਰ〰〸ㄴ㘹㤠〰〰〠渠ਰ〰〸ㄴ㠸㈠〰〰〠渠ਰ〰〸ㄵ〶㐠〰〰〠渠ਰ〰〸ㄵ㈴㔠〰〰〠渠ਰ〰〸ㄵ㐲㔠〰〰〠渠ਰ〰〸ㄵ㘰㘠〰〰〠渠ਰ〰〸ㄵ㜸㜠〰〰〠渠ਰ〰〸ㄵ㤷〠〰〰〠渠ਰ〰〸ㄶㄵ㌠〰〰〠渠ਰ〰〸ㄶ㌴㔠〰〰〠渠ਰ〰〸ㄶ㔳㜠〰〰〠渠ਰ〰〸ㄶ㜳㈠〰〰〠渠ਰ〰〸ㄶ㤲㘠〰〰〠渠ਰ〰〸ㄷ㄰㘠〰〰〠渠ਰ〰〸ㄷ㈸㘠〰〰〠渠ਰ〰〸ㄷ㐶㤠〰〰〠渠ਰ〰〸ㄷ㘵㌠〰〰〠渠ਰ〰〸ㄷ㠳㠠〰〰〠渠ਰ〰〸ㄸ〲㈠〰〰〠渠ਰ〰〸ㄸ㈰㘠〰〰〠渠ਰ〰〸ㄸ㈸ㄠ〰〰〠渠ਰ〰〸ㄸ㌸㜠〰〰〠渠ਰ〰〸ㄸ㐶㐠〰〰〠渠ਰ〰〸ㄸ㔷ㄠ〰〰〠渠ਰ〰〸ㄸ㜶㔠〰〰〠渠ਰ〰〸ㄸ㤵㐠〰〰〠渠ਰ〰〸ㄹㄴ㌠〰〰〠渠ਰ〰〸ㄹ㈱㠠〰〰〠渠ਰ〰〸ㄹ㌲㐠〰〰〠渠ਰ〰〸ㄹ㐰ㄠ〰〰〠渠ਰ〰〸ㄹ㔰㠠〰〰〠渠ਰ〰〸ㄹ㔸㌠〰〰〠渠ਰ〰〸ㄹ㘸㤠〰〰〠渠ਰ〰〸ㄹ㜶㘠〰〰〠渠ਰ〰〷㤲㠵ㄠ〰〰〠渠ਰ〰〷㤳〹ㄠ〰〰〠渠ਰ〰〷㤳㈵㠠〰〰〠渠ਰ〰〸ㄹ㠷㌠〰〰〠渠ੴ牡楬敲਼㰯卩穥′㤳㸾ੳ瑡牴硲敦ਲ㈱ਥ╅但�

