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Abstract

We present kana, a web application for interactive single-cell RNA-seq
(scRNA-seq) data analysis in the browser. Like, literally, in the browser:
kana leverages web technologies such as WebAssembly to efficiently per-
form the relevant computations on the user’s machine, avoiding the need
to provision and maintain a backend service. The application provides a
streamlined one-click workflow for all steps in a typical scRNA-seq anal-
ysis, starting from a count matrix and finishing with marker detection.
Results are presented in an intuitive web interface for further exploration
and iterative analysis. Testing on public datasets shows that kana can
analyze over 100,000 cells within 5 minutes on a typical laptop.

1 Introduction

Modern web browsers are sophisticated pieces of software responsible for ren-
dering, scripting, networking, data storage and more. New web technologies
such as WebAssembly [20] have greatly enhanced browsers’ capabilities for in-
tensive computation, providing new opportunities to repurpose the browser as
an interactive data analysis tool. The idea is to use the browser itself to per-
form statistical and computational analyses directly on the user’s machine, i.e.,
“client-side compute”. Those analysis results can then be rendered on a web
page for convenient visualization and exploration within a familiar interface.

This paradigm of client-side compute in the browser has several advantages
over the traditional model of server-side data analysis. Most obviously, we do
not need a scalable backend server to perform any of the calculations, simplifying
deployment and reducing costs. As the entire analysis is performed on the client
machine, we avoid any data transfer - this reduces latency in the user interface
and circumvents concerns over data ownership and privacy. Finally, we do not
require installation of any data analysis environments like R or Python, ensuring
that the analyses are accessible to audiences of varying computational skill.

Some prior work already exists to realize these client-side benefits for bioin-
formatics data analysis. For example, the BioJS registry hosts Javascript com-
ponents for handling biological data [16], many of which focus on DNA and
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protein sequence analysis. The BrowserGenome.org application performs read
alignment and transcript quantification for RNA sequencing data [50], while
the ubit2 application analyzes single-cell quantitative polymerase chain reac-
tion datasets [15]; both use Javascript implementations of the relevant algo-
rithms to run in the browser. However, these are exceptions to the rule; most
bioinformatics web applications only use the browser to visualize results that
were computed elsewhere, e.g., cellxgene [45], Epiviz [11], Cirrocumulus [17],
Vitessce [24], HiGlass [25] and every R/Shiny application ever [10]. This state
of affairs is not unexpected - after all, Javascript is not widely recognized as a
language for data science, nor it is particularly efficient for such tasks.

The client-side paradigm is especially appealing for single-cell genomics due
to the exploratory nature of its data analysis. Most use cases for single-cell
sequencing involve identifying new cell subpopulations or states from heteroge-
neous biological samples [52], which requires several iterations of data analy-
sis, visualization and interpretation. If the compute could be performed in the
browser, the results could be immediately rendered on a web page for a seamless
transition between analysis and interactive exploration. However, this is com-
plicated by the size of the datasets, each of which involves tens of thousands of
genes and up to millions of cells; and the paucity of browser-compatible imple-
mentations of relevant algorithms, most of which are written in R or Python.

We present kana, a web application for single-cell RNA-seq (scRNA-seq)
data analysis inside the browser. kana provides a streamlined one-click workflow
for all steps in a typical scRNA-seq analysis [2], starting from a count matrix
and finishing with marker detection. Users can interactively explore the low-
dimensional embeddings, clusterings and marker genes in an intuitive graphical
interface that encourages iterative re-analysis. Once finished, users can save
their analysis and results for later examination or sharing with collaborators.
By using technologies like WebAssembly and web workers, we achieve high-
performance compute for datasets containing hundreds of thousands of cells.

The kana application is available at https://www.jkanche.com/kana. De-
velopers can set up their own deployments by following the instructions at
https://github.com/jkanche/kana.

2 Application overview

Given a scRNA-seq dataset, kana implements a routine analysis with the steps
listed below. We will not discuss the statistical and scientific rationale behind
each step in much detail as this has been covered elsewhere [36].

1. We import a gene-by-cell count matrix from the user’s machine, typically
in the form of Matrix Market files such as those produced by the Cellranger
pipeline. HDF5 files are also supported, using either the 10X HDF5 feature
barcode matrix format or as H5AD files.

2. We compute common quality control (QC) metrics such as the total count,
number of detected genes and proportion of mitochondrial counts. Low-
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quality cells are defined as those cells with outlier values for any of these
metrics; these are filtered out from subsequent steps.

3. We perform scaling normalization based on the library size to remove cell-
specific biases. This is followed by a log-transformation to obtain a matrix
of log-normalized expression values.

4. We fit a LOWESS trend [12] to the per-gene variances with respect to the
means, computed from the log-expression values. We sort on the residuals
to define a subset of highly variable genes (HVGs).

5. We perform principal components analysis (PCA) on the log-expression
matrix with the subset of HVGs. This yields a few top PCs that capture
the heterogeneity of the data in a compressed and denoised form.

6. We apply clustering techniques on the top PCs to generate discrete sub-
populations. By default, this uses multi-level (i.e., “louvain”) community
detection on a shared nearest neighbor (SNN) graph where each cell is
a node and edges connect neighboring cells. We also support k-means
clustering with some user-specified choice of the number of clusters.

7. Each cluster is characterized through differential expression analyses to
detect its marker genes. Specifically, we perform a series of pairwise com-
parisons between clusters and summarize the effect sizes into a ranking of
potential marker genes for each cluster.

8. We perform further dimensionality reduction on the top PCs to obtain
two-dimensional embeddings for visualization. This includes the usual t-
distributed stochastic neighbor embedding (t-SNE) and uniform manifold
approximation and projection (UMAP) [54, 44].

At each step, users can easily customize key parameters (Figure 1). For ex-
ample, we can adjust the QC thresholds, the number of HVGs and top PCs, the
granularity of the clustering, and more. Iterative refinements to the parameters
are encouraged in kana, as the application tracks dependencies between steps to
enable efficient re-analysis. Specifically, when parameters are modified for any
step, all subsequent steps are automatically re-executed to propagate the change
to downstream results. Conversely, kana does not rerun any steps upstream of
the change to avoid unnecessary recomputation and reduce latency.

Once each step of the analysis is complete, kana visualizes its results in a
multi-panel layout (Figure 2). One panel contains a scatter plot for the low-
dimensional embeddings, where each cell is a point that is colored by cluster
identity or gene expression. Another panel contains a table of marker statistics
for a selected cluster, where potential marker genes are ranked and filtered
according to the magnitude of upregulation over other clusters. We also provide
a gallery to visualize miscellaneous details such as the distribution of QCmetrics.

Finally, users can export the analysis parameters and results for later inspec-
tion. The exported analysis can be quickly reloaded in a new browser session,
allowing users to view the results without repeating the computation.
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Figure 1: Screenshot showing the analysis configuration panel in the kana ap-
plication. Clicking “Analyze” will perform the entire analysis.
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Figure 2: Screenshot showing the multi-panel layout for results in the kana
application. The top-left panel is used for the low-dimensional embeddings, the
right panel contains the marker table for a selected cluster, and the bottom-left
panel contains a gallery of miscellaneous plots.

3 Client-side computation

3.1 Efficient compute with WebAssembly

WebAssembly (Wasm) [20] is a binary instruction format that provides a web-
executable compilation target for languages like C/C++, Go and Rust. It aims
to provide near-native performance for computationally intensive tasks, running
alongside and complementing Javascript in web applications. The use of Wasm
allows us to convert the browser into a compute engine by integrating existing
scientific libraries for bioinformatics data analysis - see the biowasm project [1]
for previous efforts in this direction. For kana, we collected or created C++
implementations of the algorithms required for each analysis step:

• The tatami library [38] provides an abstract interface to different matrix
classes, based on similar ideas in the beachmat package [37]. In addition
to the usual dense and sparse representations, tatami also supports the
delayed operations implemented in the DelayedArray package [19]. This
allows the creation of QC-filtered and log-normalized matrices without
any duplication of expression data.

• The CppWeightedLowess library [35] contains a C++ port of the weight-
edLowess function from the limma package [49]. This function is, in turn,
based on the LOWESS algorithm [12] implemented in R’s lowess function,
modified with the ability to consider weights in the span calculations.

• The CppIrlba library [29] library contains a C++ port of the IRLBA
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algorithm [7] to efficiently obtain the top PCs from an input matrix. This
is based on the C code in the irlba R package [8] with some refactoring
to eliminate R-specific dependencies. In particular, we now rely on the
Eigen library [18] for matrix operations.

• The CppKmeans library [30] implements the Hartigan-Wong [22] and
Lloyd algorithms [27] for k-means clustering. The Hartigan-Wong imple-
mentation was translated from the Fortran code used by R’s kmeans func-
tion. We also provide several initialization methods including kmeans++
[55] and PCA partitioning [53].

• The knncolle library [34] wraps several nearest neighbor detection algo-
rithms in a consistent interface. This includes exact methods like vantage
point tree search [56] as well as approximate methods like Annoy [9]. It is
based on the BiocNeighbors package from Bioconductor [28].

• The libscran library [31] implements high-level methods for scRNA-seq
data analysis, ranging from quality control to clustering. The code here
originates from the scran, scuttle and scater packages [42, 43] bundled
together into a single C++ library for convenience. This library relies on
the igraph C library [13] for community detection from the SNN graph.

• The qdtsne library [32] contains a C++ implementation of the Barnes-Hut
t-SNE algorithm [54]. This is mostly a refactored version of the code in
the Rtsne package [26]. Some additional optimizations have been applied
to improve scalability.

• The umappp library [33] contains a C++ implementation of the UMAP
algorithm [44]. This is derived from code in the uwot R package [46].

We created the scran.js library [41] to provide Javascript bindings to these
C++ libraries. Specifically, we compiled our C++ code to Wasm using the
Emscripten toolchain [57], allowing kana to perform scRNA-seq-related calcu-
lations from Javascript by calling scran.js functions. The same library can also
be used in other web applications via a standard NPM installation, or outside
the browser if a suitable Wasm runtime environment is available.

To evaluate the efficiency of our Wasm strategy, we compared a kana analysis
in the browser to that of a native executable compiled from the same C++
libraries [39]. We analyzed several public scRNA-seq datasets (Table 1) using
the default kana parameters for both approaches, i.e., QC filtering to 3 MADs
from the median; PCA on the top 2500 HVGs to obtain the top 25 PCs; SNN
graph construction with 10 neighbors and multi-level community detection at
a resolution of 0.5; t-SNE with a perplexity of 30; UMAP with 15 neighbors
and a minimum distance of 0.01; and 8 threads for all parallel sections (i.e.,
web workers for kana, see below). We collected timings on an Intel Core i7-
8850H CPU (2.60GHz, 6 cores, 32 GB memory) running Manjaro Linux. For
convenience, we ran the kana timings in batch using Puppeteer [4] to control a
headless Chrome browser (HeadlessChrome/98.0.4758.0).
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Table 1: Collection of scRNA-seq datasets used for testing.

Study Species Tissue Technology Number of cells
Zeisel et al. (2015) [58] Mouse Brain STRT-seq 3005
Paul et al. (2015) [48] Mouse Bone marrow MARS-seq 10368
Bach et al. (2017) [5] Mouse Mammary gland 10x Genomics 25806
Ernst et al. (2019) [14] Mouse Spermatogonia 10x Genomics 68937
Bacher et al. (2020) [6] Human T cells 10x Genomics 104417
Zilionis et al. (2019) [59] Human Lung 10x Genomics 173954

Table 2: Analysis run times for several datasets with kana or a native executable.
Values are reported in seconds with standard errors from 3 runs.

Dataset Number of cells kana Native
Zeisel 3005 7.00 ± 0.10 5.60 ± 0.05
Paul 10368 17.59 ± 0.20 13.52 ± 0.38
Bach 25806 54.96 ± 1.13 43.33 ± 0.39
Ernst 68937 157.15 ± 7.39 114.67 ± 1.86
Bacher 104417 228.02 ± 2.85 170.32 ± 1.34
Zilionis 173954 272.265 ± 4.22 183.77 ± 2.46

Our results indicate that kana analyses took approximately 25-50% longer
to run compared to the native executable (Table 2). This is consistent with
other benchmarking results [23] where the performance gap is attributed to
Wasm’s design constraints and the overhead of the browser’s Wasm runtime
environment. Our native executable was also created with a different compiler
toolchain (GCC, instead of LLVM for the Wasm binary), where the same nom-
inal optimization level (O3) may have different effects. These results suggest
that some work may still be required to completely fulfill Wasm’s promise of
“near-native execution”. Nonetheless, the current performance is largely satis-
factory for kana, and will likely improve over time as browser implementations
evolve along with our understanding of the relevant optimizations.

3.2 Parallelization with web workers

Web workers provide a simple mechanism for parallelization inside the browser.
In kana, a web worker is used to run the compute-intensive analysis in its own
thread so that the application’s main thread is free to respond to user interac-
tion. We also use web workers to parallelize the operations within some anal-
ysis steps by compiling our C++ code with PThreads support; this instructs
Emscripten to implement POSIX threads as web workers for transparent paral-
lelization across genes or cells during calculation of QC metrics, nearest neighbor
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detection and marker scoring. Finally, we parallelize across steps by manually
creating a separate web worker to execute the t-SNE, UMAP and clustering
steps, which are independent of each other and can run concurrently.

A minor complication with PThreads is that we need to enable cross-origin
isolation on the kana site. Briefly, this is a security measure that prevents
inappropriate data access from malicious scripts in the same browsing context.
Once cross-origin isolated, the site is permitted to use a SharedArrayBuffer
for copy-free transfer of data between web workers. To achieve this, we need to
serve the kana assets with the appropriate cross-origin headers – specifically, the
embedder and opener policies. However, this may not always be possible, e.g.,
when hosting on institutional sites or public sites such as GitHub Pages. Instead,
we use a service worker to cache and re-serve kana with the correct headers,
ensuring that it can be easily deployed in a range of hosting environments.

As a matter of etiquette, we limit kana to two-thirds of the available threads
at maximum utilization. The intention is to leave enough resources available
for other activities to pass the time while waiting for the analysis to finish.

3.3 Creating layered sparse matrices

To reduce memory usage for large single-cell count matrices, we use a “layered
matrix” approach that splits the input matrix by row into 3 sparse submatrices.
The first, second and third submatrices contain data for genes where all non-zero
counts can fit into 8-bit, 16-bit and 32-bit unsigned integers, respectively. This
improves memory efficiency for datasets with many cells but low sequencing
coverage; most counts can be represented as 8-bit integers to save space, leaving
a few high-abundance genes to be stored in the submatrices with larger integer
types. A similar strategy is applied to row indices for non-zero elements in a
sparse matrix, where most datasets have fewer than 60,000 genes and can be
accommodated with 16-bit integers. This gives a theoretical usage of 3 bytes
per non-zero element, e.g., a dataset with 30,000 genes and 100,000 cells at 5%
density requires around 500 MB of memory in this data structure.

The layered matrix representation is implemented through the delayed bind-
ing mechanism in tatami. Specifically, we create the individual sparse subma-
trices and then create an abstract represention of the full matrix where the
submatrices are combined by row. This preserves the memory-efficient repre-
sentation while presenting an interface that mimics that of a single matrix. The
layered representation can then be seamlessly used with all C++ code compat-
ible with the tatami interface. (Note that the genes are permuted from their
supplied order, which requires some extra attention in downstream analyses.)

3.4 Examining memory usage

As an additional evaluation, we recorded the memory usage of the kana analyses
(Table 3). For kana, we used the final size of the Wasm heap as a convenient
proxy for the peak memory used by the application. This omits some memory
usage on the Javascript side but should capture the most memory-intensive data
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Table 3: Memory usage of kana or a native executable when analyzing datasets
from Table 1. Values are reported in megabytes with standard errors from 3
runs. The number of non-zero elements for each dataset is also shown in millions.

Dataset Cells Non-zeros kana Native
Zeisel 3005 11.3 148.31 ± 0 158.20 ± 0.05
Paul 10368 11.9 224.87 ± 0 306.26 ± 0.06
Bach 25806 61.2 761.12 ± 0 965.17 ± 0.03
Ernst 68937 163.1 1981.87 ± 0 2512.08 ± 0.06
Bacher 104417 143.0 2165.94 ± 0 2437.75 ± 1.34
Zilionis 173954 53.7 2480.81 ± 0 2600.66 ± 0.04

structures, particularly the count matrix. For comparison, we also recorded the
maximum resident set size after each run of the native executable. In all cases,
memory usage with Wasm was comparable to that of the native executable and
maintained below 3 gigabytes, which is reasonable for a client device.

Importantly, kana’s memory usage lies below Wasm’s hard limit of 4 giga-
bytes of addressable memory. This limit is a consequence of the use of 32-bit
pointers in the current Wasm specification, and exceeding this limit will cause
allocation errors and application failure. Future Wasm releases may support
64-bit pointers [51] or multiple memories [47]; if these proposals are accepted,
kana will be able to process datasets beyond the 4 GB limit.

4 User interface concepts

4.1 Interlinked graphics

Different panels of the kana application (Figure 2) can share information with
each other to facilitate interactive exploration of the dataset and analysis results.
For example, we can color the embeddings according to the expression of a
gene selected from the marker table. Upon selection, kana retrieves the log-
normalized expression values for that gene from the sparse matrix and passes
this data to the scatter plot for coloring. Users can also adjust the color gradient
to improve contrast and highlight differences at particular ranges of expression.

A more complex example involves the detection of new marker genes for
a custom selection of cells. Users can create a custom selection by brushing
on regions of interest in the embedding panel. If this selection is saved, kana
will perform a differential expression analysis to detect upregulation inside the
selection compared to all other cells. Statistics for each gene are then shown in
the marker table for examination. Each custom selection and its statistics are
treated as part of the analysis state and are saved during export.

Inspired by the gallery in Cirrocumulus, users can save specific views of the
embeddings for later perusal. This is useful for simultaneously viewing multiple
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plots colored by different marker genes to characterize complex populations.

4.2 Progressive rendering

Each result is immediately rendered on the interface once the corresponding
analysis step is complete. For example, the distribution of QC metrics appear
once the QC step is finished, followed by the plot of the percentage of variance
explained once the PCA is done, and so on. This improves application per-
formance by avoiding the rendering bottleneck that would otherwise occur if
all plots were drawn at once. It also serves as a visual progress indicator and
improves the user experience by showing meaningful content as soon as possible.

The marker table is a more subtle example of progressive rendering. Only
the genes in the current view of the table are rendered, with the remaining
visual elements being dynamically created as the user scrolls up or down to see
other genes in the ranking. This ensures that we do not waste time rendering
tens of thousands of rows when only the top few are likely to be viewed.

Given that kana is computing the embeddings in the background, we can
actively monitor the change in the coordinates for each cell across t-SNE it-
erations or UMAP epochs. We do so by extracting the coordinates at regular
intervals and rendering them on the embedding panel with WebGL, effectively
creating an animation of the embedding as it is refined over time. This is mostly
present for entertainment value but may provide some educational insights into
the process of creating the embeddings (e.g., early exaggeration for t-SNE).

4.3 Exporting and reloading

Users can choose to export their analyses to the browser’s cache via its in-built
IndexedDB database system. This dumps the analysis state (i.e., parameters
and results) into a Gzip-compressed JSON inside the cache, along with the input
data files. Users can then reload their analysis in a new browser session without
needing to keep track of any files. Moreover, kana will attempt to deduplicate
input files in the cache based on the file name, size and MD5 checksum. This
reduces disk usage when storing multiple analysis states for the same dataset.

Alternatively, users may export the analysis state to a file that is down-
loaded to their machine. This creates a single binary file containing the Gzip-
compressed analysis state and the embedded input files. Supplying this file to
kana will then restore the previous analysis in the same manner as using the
browser cache. The benefit of this approach is that files exported by one user
can be reloaded by other users on different machines, allowing users to easily
share their analyses with each other by simply transferring the relevant files. In
fact, computationally savvy users can even parse the kana-exported file in other
programming frameworks (e.g., R, Python) for custom processing.
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5 Discussion

Single-cell data analysis on the client is not a particularly novel concept. In
many cases, the dataset already lives on the user’s machine, so this is a natural
place to perform the analysis with the tool of choice (typically R or Python).
kana’s key innovation lies in its use of modern web technologies to perform
the analysis directly in the browser. This eliminates the difficulties of software
installation and makes the analysis accessible to a non-programming audience.
At the same time, we retain all the benefits of client-side operations. Specifically,
our availability only depends on the client device, not on a backend server; there
is no latency from transferring data or results across a network; ownership of
the dataset clearly remains with the user, avoiding issues with data privacy and
associated regulations; and compute time is cheap, if not effectively free.

Client-side compute has interesting scalability characteristics compared to
a traditional backend approach. Most obviously, we are constrained by the
computational resources available on the client machine, which can vary from
modest (e.g., most laptops) to extremely basic (e.g., mobile devices). This
limits the size of any single dataset that can be analyzed by a particular client.
However, in other respects, client-side compute is more scalable than backend
compute; the former automatically distributes analyses of many datasets across
any number of machines at no cost and with no configuration. This is especially
relevant for web applications like kana where the maintainers would otherwise
be responsible for provisioning backend computing resources. The cloud might
be infinitely scalable but - unfortunately - our bank accounts are not.

That said, how do we deal with large datasets? This is not straightforward
with the web technologies currently used in kana - our available memory is
limited by the Wasm specification and our CPU utilization is (somewhat arti-
ficially) capped, so even if a powerful client device was available, kana would
not be able to fully exploit its capabilities. Fortunately, our use of C++ means
that we are not limited to computation in the browser. We can easily provide
wrappers to the same underlying libraries in any client-side framework, e.g.,
as a command-line tool or as an extension to existing data science ecosystems.
For example, the scran.chan package [40] allows users to repeat the kana cal-
culations in an R session, where there are no restrictions on memory usage or
thread utilization. The same approach can be used for other languages that
support a foreign function interface like Python or Julia. Indeed, one could use
the wrapped C++ libraries to run large analyses on a sufficiently provisioned
backend, export the analysis state in a kana-compatible file format, and then
serve the exported state to client machines for exploration in the browser.

Future work will involve extending kana to handle other common tasks in
scRNA-seq data analysis, namely batch correction [21] and cell type assignment
[3]. We will also factor out kana’s graphical elements into custom Web Compo-
nents for re-use across multiple applications. Of greatest interest, though, will
be the continued evolution of web technologies - this includes further optimiza-
tions to the Wasm specification and its implementations, as well as upcoming
standards like WebGPU to leverage graphics hardware for general computa-

11

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 4, 2022. ; https://doi.org/10.1101/2022.03.02.482701doi: bioRxiv preprint 

https://doi.org/10.1101/2022.03.02.482701
http://creativecommons.org/licenses/by/4.0/


tion. By incorporating these advances, applications like kana can extend the
capabilities of the browser for compute-intensive bioinformatics in the client.

6 Software availability

Here we summarize the key software repositories used in this paper. For brevity,
we will omit the various C++ libraries that have been listed previously.

• The kana application is deployed at https://www.jkanche.com/kana with
source code at https://github.com/jkanche/kana.

• The scran.js library is available at https://npmjs.com/package/scran.
js with source code at https://github.com/jkanche/scran.js.

• The scran.chan R package based on the same C++ libraries is available
at https://github.com/LTLA/scran.chan.

• The command-line interface based on the same C++ libraries is available
at https://github.com/LTLA/scran-cli.

• All datasets used here can be downloaded from https://github.com/

jkanche/random-test-files.

• Benchmarking code and results are available at https://github.com/

jkanche/kana.perf.
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[18] Gaël Guennebaud, Benôıt Jacob, et al. Eigen v3.
http://eigen.tuxfamily.org, 2010.

[19] Pagès H., Hickey P., and Lun A. T. L. DelayedArray: A unified framework
for working transparently with on-disk and -memory array-like datasets,
2021. R package version 0.20.0.

[20] Andreas Haas, Andreas Rossberg, Derek L. Schuff, Ben L. Titzer, Michael
Holman, Dan Gohman, LukeWagner, Alon Zakai, and JF Bastien. Bringing
the web up to speed with webassembly. SIGPLAN Not., 52(6):185–200, jun
2017.

[21] Laleh Haghverdi, Aaron TL Lun, Michael D Morgan, and John C Marioni.
Batch effects in single-cell rna-sequencing data are corrected by matching
mutual nearest neighbors. Nature biotechnology, 36(5):421–427, 2018.

[22] J. A. Hartigan and M. A. Wong. Algorithm as 136: A k-means cluster-
ing algorithm. Journal of the Royal Statistical Society. Series C (Applied
Statistics), 28(1):100–108, 1979.

[23] Abhinav Jangda, Bobby Powers, Emery D. Berger, and Arjun Guha. Not so
fast: Analyzing the performance of WebAssembly vs. native code. In 2019
USENIX Annual Technical Conference (USENIX ATC 19), pages 107–120,
Renton, WA, July 2019. USENIX Association.

[24] Mark Keller, Chuck McCallum, Ilan Gold, Trevor Manz, Tos Chan, Sehi
Lyi, Jennifer Marx, Peter Kharchenko, and Nils Gehlenborg. Vitessce,
2022. http://vitessce.io.

[25] Peter Kerpedjiev, Nezar Abdennur, Fritz Lekschas, Chuck McCallum,
Kasper Dinkla, Hendrik Strobelt, Jacob M Luber, Scott B Ouellette, Alaleh
Azhir, Nikhil Kumar, et al. Higlass: web-based visual exploration and anal-
ysis of genome interaction maps. Genome biology, 19(1):1–12, 2018.

[26] Jesse H. Krijthe. Rtsne: T-Distributed Stochastic Neighbor Embedding us-
ing Barnes-Hut Implementation, 2015. R package version 0.16.

[27] S. Lloyd. Least squares quantization in pcm. IEEE Transactions on Infor-
mation Theory, 28(2):129–137, 1982.

[28] A. T. L. Lun. BiocNeighbors: Nearest Neighbor Detection for Bioconductor
Packages, 2021. R package version 1.12.0.

[29] A. T. L. Lun. C++ library for IRLBA, 2021. https://github.com/LTLA/
CppIrlba.

[30] A. T. L. Lun. C++ library for k-means, 2021. https://github.com/LTLA/
CppKmeans.

14

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 4, 2022. ; https://doi.org/10.1101/2022.03.02.482701doi: bioRxiv preprint 

https://cirrocumulus.readthedocs.io/en/latest/
https://cirrocumulus.readthedocs.io/en/latest/
http://vitessce.io
https://github.com/LTLA/CppIrlba
https://github.com/LTLA/CppIrlba
https://github.com/LTLA/CppKmeans
https://github.com/LTLA/CppKmeans
https://doi.org/10.1101/2022.03.02.482701
http://creativecommons.org/licenses/by/4.0/


[31] A. T. L. Lun. A C++ library for single-cell data analysis, 2021. https:

//github.com/LTLA/libscran.

[32] A. T. L. Lun. C++ library for t-SNE, 2021. https://github.com/LTLA/
qdtsne.

[33] A. T. L. Lun. A C++ library for UMAP, 2021. https://github.com/

LTLA/umappp.

[34] A. T. L. Lun. Collection of KNN algorithms, 2021. https://github.com/
LTLA/knncolle.

[35] A. T. L. Lun. Weighted LOWESS for C++, 2021. https://github.com/
LTLA/CppWeightedLowess.

[36] A. T. L. Lun, R. A. Amezquita, R. Gottardo, and S. C. Hicks. Orchestrating
single-cell analysis with Bioconductor, 2020. https://bioconductor.org/
books/release/OSCA/.

[37] A. T. L. Lun, H. Pagès, and M. L. Smith. beachmat: A Bioconductor
C++ API for accessing high-throughput biological data from a variety of
R matrix types. PLoS Comput Biol, 14(5):e1006135, 05 2018.

[38] Aaron Lun. A C++ API for all sorts of matrices, 2021. https://github.
com/LTLA/tatami.

[39] Aaron Lun. CLI for single-cell analyses, 2021. https://github.com/LTLA/
scran-cli.

[40] Aaron Lun. A slimmed-down version of scran, 2021. https://github.

com/LTLA/scran.chan.

[41] Aaron Lun and Jayaram Kancherla. Single cell RNA-seq analysis in
Javascript, 2021. https://github.com/jkanche/scran.js.

[42] Aaron T. L. Lun, Davis J. McCarthy, and John C. Marioni. A step-by-step
workflow for low-level analysis of single-cell rna-seq data with bioconductor.
F1000Res., 5:2122, 2016.

[43] Davis J. McCarthy, Kieran R. Campbell, Aaron T. L. Lun, and Quin F.
Willis. Scater: pre-processing, quality control, normalisation and visual-
isation of single-cell RNA-seq data in R. Bioinformatics, 33:1179–1186,
2017.

[44] Leland McInnes, John Healy, Nathaniel Saul, and Lukas Grossberger.
UMAP: Uniform manifold approximation and projection. The Journal of
Open Source Software, 3(29):861, 2018.

15

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 4, 2022. ; https://doi.org/10.1101/2022.03.02.482701doi: bioRxiv preprint 

https://github.com/LTLA/libscran
https://github.com/LTLA/libscran
https://github.com/LTLA/qdtsne
https://github.com/LTLA/qdtsne
https://github.com/LTLA/umappp
https://github.com/LTLA/umappp
https://github.com/LTLA/knncolle
https://github.com/LTLA/knncolle
https://github.com/LTLA/CppWeightedLowess
https://github.com/LTLA/CppWeightedLowess
https://bioconductor.org/books/release/OSCA/
https://bioconductor.org/books/release/OSCA/
https://github.com/LTLA/tatami
https://github.com/LTLA/tatami
https://github.com/LTLA/scran-cli
https://github.com/LTLA/scran-cli
https://github.com/LTLA/scran.chan
https://github.com/LTLA/scran.chan
https://github.com/jkanche/scran.js
https://doi.org/10.1101/2022.03.02.482701
http://creativecommons.org/licenses/by/4.0/


[45] Colin Megill, Bruce Martin, Charlotte Weaver, Sidney Bell, Lia Prins, Seve
Badajoz, Brian McCandless, Angela Oliveira Pisco, Marcus Kinsella, Fiona
Griffin, Justin Kiggins, Genevieve Haliburton, Arathi Mani, Matthew Wei-
den, Madison Dunitz, Maximilian Lombardo, Timmy Huang, Trent Smith,
Signe Chambers, Jeremy Freeman, Jonah Cool, and Ambrose Carr. cel-
lxgene: a performant, scalable exploration platform for high dimensional
sparse matrices. bioRxiv, 2021.

[46] James Melville. uwot: The Uniform Manifold Approximation and Projec-
tion (UMAP) Method for Dimensionality Reduction. R package version
0.1.10.9000.
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