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Abstract— The timing of diverse cellular processes is based
on the instant when the concentration of regulatory proteins
crosses a critical threshold level. Hence, noise mechanisms
inherent to these protein synthesis pathways drive statistical
fluctuations in such events’ timing. How to express proteins
ensuring both the threshold crossing at a prescribed time and
minimal timing fluctuations? To find this optimal strategy, we
formulate a model where protein molecules are synthesized in
random bursts of gene activity. The burst frequency depends on
the protein level creating a feedback loop, and cellular growth
dilutes protein concentration between consecutive bursts. Coun-
terintuitively, our analysis shows that positive feedback in pro-
tein production is best for minimizing variability in threshold-
crossing times. We analytically predict the optimal feedback
strength in terms of the dilution rate. As a corollary to our
result, a no-feedback strategy emerges as the optimal strategy
in the absence of dilution. We further consider other noise
sources, such as randomness in either the initial condition or
the threshold level, and find that in many cases, we need either
strongly negative or positive feedback for precise scheduling for
events.

I. INTRODUCTION

Proper timing of molecular and cellular events is critical

for a wide range of cellular processes in development,

decision-making, signal transduction, coordination of re-

sponses, etc. [1]–[8]. In many cases, transcriptional response

drives the timing of important events whereby the event

occurs upon accumulation of a regulatory protein up to a

critical threshold level [2], [9]–[22]. The inherent stochastic

nature of gene-expression causes cell-to-cell variability in the

time evolution of the protein levels — and consequently in

the timing of cellular events — even for cells with identical

genetic content and the same environmental conditions [23]–

[28]. A fundamental question of interest is to understand how

cells control temporal dynamics of the underlying regulatory

protein to ensure precision in event timing.

Recent works have studied precise scheduling of events

for gene-expression models of varying complexity, where

the timing of an event is formulated as the first-passage

time (FPT) for the protein level [29]–[41]. Assuming dif-

ferent empirical forms for the regulation of gene-expression

(e.g., feedback auto-regulation, activation/repression by an

upstream component, etc.), these works search for the best

model parameters that minimize the noise in timing [34]–

[36], [38], [39], [42], [43]. In the limiting case where protein

does not degrade (or dilute), any form of feedback gives
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higher noise in event timing around a fixed mean time [35].

This result is robust to extrinsic disturbances [44] and several

physiologically relevant variations in model parameters [35],

[45], except for the case when the initial protein amount is

drawn from a distribution [46]. For a protein that degrades,

positive feedback from the protein level to the transcription

rate suppresses noise in event timing around a fixed mean

by counterpoising the effect of degradation [35], [42], [43].

These two findings suggest a relationship between the degra-

dation rate of the protein and the strength of the positive

feedback to schedule events with precision. However, the

exact nature of this relationship remains to be explored.

In this work, we consider a model of gene expression

based on stochastic hybrid system formalism. Protein pro-

duction is assumed to occur in bursts and is modeled as

a stochastic event, whereas dilution due to cell growth is

modeled using a deterministic ODE [38], [47], [48]. We

provide analytical results on FPT moments and compute

the optimal feedback strategy that minimizes noise in FPT

around a given fixed mean under different modeling as-

sumptions. In particular, we consider a linear form of the

feedback and analyze scenarios where we draw either the

initial condition or the event threshold from some positive-

valued distributions, representing static extrinsic noise.

II. PRELIMINARIES

In this section, we formulate a model of gene-expression

and describe the corresponding FPT problem. We then sum-

marize the previous results that quantify the noise in FPT

and provide optimal feedback strategies that minimize the

noise.

A. Model description

Let x(t) be the concentration of the protein of interest at

time t. We assume that the event of interest occurs when x(t)
crosses the threshold level X for the first time (Fig. 1). The

FPT T when the event x reaches a threshold X is defined

formally as

T := inf{t g 0 : x(t) g X|x(0) = x0 < X}, (1)

where x0 is protein level at t = 0.

We model the dynamics of x(t) using a stochastic hybrid

system (SHS) formalism comprising both discrete jumps and

continuous dilution. In particular, we assume that x(t) is

produced in bursts as

x(t) 7→ x(t) +B, (2a)
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where the burst size, B, follows a positive-valued distribu-

tion. More precisely, the probability, P, of arrival of a burst

in an infinitesimal time interval (t, t+ dt) is given by

P{x(t+ dt) = i+B|x(t) = i} =
k(i)

ïBð
dt. (2b)

Here, we assume that the protein production rate is a function

of the protein level as k(x). This is motivated by inves-

tigating how different feedback mechanisms might affect

the noise in event timing. In this framework, an open-loop

production (no feedback) implies a constant rate k(x) = k,

a negative feedback means that k(x) decreases with x,

and positive feedback signifies that k(x) increases with x.

We have used the mean burst size ïBð as a normalization

constant. Wherever needed for analytical tractability, we will

assume a linear form of the feedback as k(x) = k0 + k0x.

Here k0 is the basal rate of protein production, k1 is the

strength of the feedback, and ïBð is the mean burst size

used as a normalizing factor convenience.

In between successive bursts, the protein concentration is

diluted by cell growth as

dx = −γ x dt. (2c)

Here γ denotes the dilution rate. Finally, we assume that

both the initial protein level x(0) = x0 and the threshold

for the event X are drawn from arbitrary positive-valued

distributions.

We base this model formulation on the following key

assumptions. First, the protein does not degrade but only

dilutes due to cell growth. This assumption itself requires

that the cell volume grows exponentially over time and that

the production rate in terms of protein numbers scales with

the cell volume [49]–[52]. Second, both the timescale of

the promoter switching and the mRNA half-life are much

smaller than the turnover rate of the protein. This allows us

to approximate the randomness in the dynamics of promoter

and mRNA in a burst parameter. Often, the burst size follows

a geometric distribution [53], but other distributions are also

possible [45], [54]–[56].

The statistics of the first-passage time (FPT) defined in

Eq. (1) are analytically intractable in general. However, in

a limiting case where dilution is ignored, the FPT moments

were computed in previous work [35]. Next, we reproduce

these results and the computation of optimal feedback strat-

egy to minimize the noise in timing from them.

B. FPT statistics in absence of dilution

Let P(x(t) = i) = pi(t), then in absence of dilution, i.e.,

γ = 0, the time evolution of pi for Eq. (2b) is governed by

the chemical master equation [57], [58]

dpi
dt

= −
k(i)

ïBð
P (B g 1) pi(t)+

i−1
∑

j=0

k(j)

ïBð
P (B = i− j) pj(t).

(3)

To compute the statistics of the first-passage time, T , as

defined in Eq. (1), we note that [35]

P (T ∈ (t, t+ dt)) =
X−1
∑

i=0

k(i)

ïBð
P (B g X − i) pi(t)dt, (4)

resulting in the following probability density function (pdf)

of FPT

fT (t) =
X−1
∑

i=0

k(i)

ïBð
P (B g X − i) pi(t). (5)

Intuitively, the process x(t) crosses the threshold X for the

first time at time t + dt if the protein count was equal i at

time t and a burst of size greater than or equal to X − i
occurred in the next infinitesimal time interval (t, t+ dt).

A compact form of the FPT pdf above is

fτ (t) = U
¦
P(t), (6a)

where

P(t) =
[

p0(t) p1(t) . . . pX−1(t)
]¦

, (6b)

U =
[

k(0)
ïBð P (B g X) . . . k(X−1)

ïBð P (B g 1)
]

. (6c)

The time evolution of P(t) can be obtained from Eq. (3) as

the dynamical system

Ṗ = AP, (7a)

whose solution is given by

P(t) = exp(At)P(0). (7b)

Here the triangular matrix A consists of the elements

ai,j =











0, j g i+ 1,

−k(i−1)
ïBð × P (B g 1) , j = i,

k(j−1)
ïBð × P (B = i− 1) , j < i,

(7c)

and P(0) is the vector of consisting of probabilities of

the initial protein count, x0. Using (7b) in (6a) yields

the following for the first-passage time probability density

function

fT (t) = U
¦ exp(At)P(0). (8)

We can use Eq. (8) to compute the moments of FPT as

follows

ïTmð =

∫ ∞

0

tmU
¦ exp(At)P(0)dt (9a)

= U
¦

(
∫ ∞

0

tm exp(At)

)

P(0)dt, (9b)

where ï.ð denotes expectation of its argument and m is the

order of the moment. The above integral may be written as

ïTmð = m!(−1)m+1
U

¦
(

A
−1
)m+1

P(0). (10)

provided A is Hurwitz stable. This indeed the case, as each

diagonal element of A is negative and is greater in magnitude

than sum of all other elements of that column [35]. The first

two moments of FPT for the special case of deterministic
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Fig. 1. Model schematic and illustration of first-passage time. (A) Gene produces protein x(t) in bursts. The burst frequency depends upon the protein
level as k(x), creating a feedback loop. The protein degrades/dilutes through a first-order kinetics with rate constant γ. (B) A stochastic hybrid system
representation of the gene-expression model, whereby the protein level increases upon burst arrival at a rate that depends upon the protein level. Protein
dilution is modeled using an ordinary differential equation. (C) First-passage time for the protein level to reach a threshold. Sample trajectories represent
different realizations of the protein evolution obtained using Monte Carlo simulations. The initial protein level is drawn from a distribution.

initial condition x0 = 0, deterministic threshold X , and

geometrically distributed burst size are given by:

ïT ð =
X−1
∑

i=0

1

k(i)
+

ïBð

k(0)
(11a)

ïT ð =
2

ïBð
2

(

τ0
k(0)

+

X−1
∑

i=0

τi
ki

)

, τi :=
1

ki
+

X−1
∑

j=i

ïBð

kj
.

(11b)

One can use conditioning argument to compute these mo-

ments when the initial condition x0 ̸= 0 and is instead drawn

from a distribution [46]. Likewise, the event threshold may

also be drawn from any positive-valued distribution. These

scenarios are studied in section IV (Figs. 4 and 5).

C. Optimal feedback strategy

The problem of finding an optimal feedback strategy that

minimizes the noise in timing (quantified by the coefficient of

variation squared = variance/mean2), given a fixed mean ïT ð,
is a constrained optimization problem. It yields the following

analytical solution via the method of Lagrange multiplier

[35]:

k(0) =
1 + ïBð

1 + 2 ïBð

2 ïBð+X

ïT ð
,

k(x) =
2 ïBð+X

ïT ð
, ∀x = {1, 2, . . . , X − 1}. (12)

In the limit of a small burst size, the above solution is

essentially a no feedback strategy. Even for a geometrically

distributed burst size, all the production rates are equal except

for the first one; thus, the optimal strategy is approximately

a no feedback.

III. OPTIMAL FEEDBACK STRATEGY FOR BURSTY GENE

EXPRESSION

We next focus our attention on the case γ ̸= 0 and

particularly restrict ourselves to the class of linear feedback,

where the burst frequency takes the form (k0+k1x(t))/ïBð.
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Fig. 2. FPT fluctuations for different feedback strategies with trajec-

tories modelled using a birth death process. The feedback strategies are
classified depending on the ratio between the decay rate γ and the feedback
strength k1. (A) k1 < γ (B) k1 = γ (C) k1 > γ Top: FPT histogram.
Bottom: Some illustrative trajectories. (D) Noise in FPT measured by the
squared coefficient on variation CV 2

T
vs the feedback strength k1. Results

of simulations using Gillespie algorithm (region width representing 95%
confidence interval calculated with ten thousand simulation replicas) are
compared to the analytical expression (19). (γ = 1, ïT ð ≈ 1, x(0) = 0,
X = 100, and ïBð = 1 with probability one). [59].

As a consequence of this linearity, the time evolution of the

statistical moment of x(t) can be obtained exactly via

dïxmð

dt
=

〈

k0 + k1x

ïBð
((x+B)m − xm)− γmxm

〉

(13)

for m ∈ {1, 2, . . .} [61]–[63]. Setting m = 1 and assuming

x(0) = 0 with probability one, yields the mean concentration
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Fig. 3. FPT fluctuations for different feedback strategies with trajec-

tories modelled using a stochastic differential equation. The feedback
strategies are classified depending on the ratio between the decay rate γ
and the feedback strength k1. (A) k1 < γ (B) k1 = γ (C) k1 > γ Top:
FPT histogram. Bottom: Some illustrative trajectories. (D) Noise in FPT
measured by the squared coefficient on variation CV 2

T
vs the feedback

strength k1. Results of simulations using Euler-Maruyama algorithm [60]
(region width representing 95% confidence interval over ten thousand
simulation replicas) are compared to the analytical expression (25). (γ = 1,
ïT ð ≈ 1, x(0) = 0, X = 100, σ = 5).

dynamics

dïxð

dt
= k0 + k1ïxð − γïxð (14a)

=⇒ ïx(t)ð =
k0(1− e(−γ+k1)t)

γ − k1
. (14b)

If the feedback strength k1 < γ then limt→∞ïx(t)ð =
k0/(γ − k1), and we assume that the critical concentration

threshold X < k0/(γ−k1) needed for event timing is below

this steady-state mean level. In contrast, if k1 g γ then the

mean concentration grows unboundedly limt→∞ïx(t)ð =
∞ over time. Considering small concentration fluctuations

around the mean trajectory, the mean first passage time

ïT ð ≈
ln
[

k0

k0+(k1−γ)X

]

γ − k1
(15)

can be obtained by solving ïx(t)ð = X . Recall that we would

like to obtain the optimal feedback strategy (i.e., the value

of k1) that minimizes the noise in T for a given fixed mean

FPT ïT ð. Having an approximate analytical formula for ïT ð
is quite useful in that regard as it provides the corresponding

value of k0

k0 =
(k1 − γ)X

e(k1−γ)ïT ð − 1
(16)

that is needed to ensure a fixed ïT ð as we vary k1 to explore

different feedbacks.
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Fig. 4. FPT fluctuations for different feedback strategies considering

both random initial concentration x0 and deterministic trajectories.
(A) k1 < γ (B) k1 = γ (C) k1 > γ Top: FPT histogram. Bottom:
Some illustrative trajectories. (D) Noise in FPT measured by the squared
coefficient on variation CV 2

T
vs the feedback strength k1 relative to

the decay rate γ. Results of simulations (region width representing 95%
confidence interval for ten thousand simulation replicas) are compared to
the analytical expression (34). (γ = 1, ïT ð ≈ 0.5, X = 100, x0 is Gamma-
distributed with parameters: ïx0ð = 20, CV 2

x0
= 0.1).

Having set up the mean concentration dynamics we now

investigate its variance by taking m = 2 in (13)

dïx2ð

dt
=

ïB2ð

ïBð
(k0 + k1ïxð) + 2k0ïxð+ 2k1ïx

2ð − 2γïx2ð.

(17)

A geometric approach of connecting the variance in protein

concentrations to the variance of threshold-crossing times

was suggested in [64]. In particular, the variance in T is

approximated as

σ2
T ≈ lim

t→ïT ð

ïx2ð − ïxð2
(

dïxð
dt

)2 (18)

and is inversely proportional to the slope of the mean tra-

jectory at t = ïT ð with a “flatter” approach to the threshold

amplifying noise in threshold-hitting times. Substituting the

solutions of (14a) and (17) in (18) results in the following

analytical expression for the noise in T as quantified by its

coefficient of variation

CV 2
T :=

σ2
T

ïT ð2
≈

ïB2ð

ïBð
×
(

γeγïT ð + ek1ïT ð(γ − 2k1)
)

×

e−(γ+2k1)ïT ð
(

eγïT ð − ek1ïT ð
)2

2ïT ð2(γ − k1)3X
. (19)

In the limit of no dilution and no feedback (γ → 0 and

k1 → 0), the formulas (15) and (19) become exact and reduce
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Fig. 5. FPT fluctuations for different feedback strategies considering

both random threshold concentration X and deterministic trajectories.
(A) k1 < γ (B) k1 = γ (C) k1 > γ Top: FPT histogram. Bottom:
Some illustrative trajectories. (D) Noise in FPT measured by the squared
coefficient on variation CV 2

T
vs the feedback strength k1 relative to

the decay rate γ. Results of simulations (region width representing 95%
confidence interval for ten thousand simulation replicas) are compared to
the analytical expression (35). (γ = 1, ïT ð ≈ 0.5, x0 = 0, X is uniformly
distributed U(45, 55) such as ïXð = 50 and CV 2

X
= 1/300).

to

ïT ð =
X

k0
, CV 2

T =
ïB2ð

ïBðX
. (20)

Fig. 2 illustrates the shape of CV 2
T as a function of the

feedback strength k1, while correspondingly changing k0 as

per (16) to ensure a fixed ïT ð. Two distinct observations can

be made from this plot:

• The noise in T as predicted by (19) matches well with

corresponding FPT noise levels obtained from stochastic

simulation runs of the system (2). As expected, the

match is perfect at low noise levels and begins to deviate

with increasing CVT .

• CVT first decreases with increasing k1 to reach a

minimum, and then increases with increasing k1.

By solving the equation

dCV 2
T

dk1
= 0, (21)

our analysis predicts the following optimal feedback strength

k1 ≈ γ

(

1 +
3

2 + 3γïT ð

)

(22)

that minimizes the fluctuations in the threshold-crossing

times around ïT ð. Notice this optimal solution corresponds to

a positive feedback k1 > 0 and depends on the dimensionless

factor γïT ð. If γ is the exponential growth in cell volume

within a cell cycle, then γïT ð can be interpreted as mean FPT

normalised by the cell-cycle duration. In the limit, γ → 0 a

no feedback strategy emerges optimal. Moreover, the optimal

feedback strength k1 ≈ 5γ/2 for γïT ð ≈ 0 (i.e., the mean

FPT is much shorter compared to the cell-cycle duration),

k1 ≈ 8γ/3 for γïT ð = 1 and k1 ≈ γ for γïT ð k 1.

Does this optimal feedback strategy depend on how noise

is incorporated into the model? To address these questions,

we consider a simple stochastic differential equation (SDE)

formulation

dx(t) = k0 + k1x(t)− γx(t) + σdw(t) (23)

where w(t) denotes a Wiener process. Note that the mean

dynamics ïx(t)ð in (23) is identical to that of the previous

model and given by (14a), but now the variance evolves as

dïx2ð

dt
= σ2 + 2k0ïxð+ 2k1ïx

2ð − 2γïx2ð. (24)

Performing the exact same analysis as before by substituting

ïx(t)ð and the solution of (24) in (18) yields

CV 2
T :=

σ2 (Sinh[2ïT ð(γ − k1)]− 2Sinh[ïT ð(γ − k1])

ïT ð2(γ − k1)3X2
.

(25)

for the SDE model. While the qualitative trend of CVT

varying non-monotonically with respect to k1 is also seen

here (Fig. 3), in contrast to the earlier results, the noise in

FPT is always minimized at k1 = γ in the SDE model. Thus,

while positive feedback provides precision in event timing in

both formulations, the optimal feedback strength depends on

the noise structure.

IV. OPTIMAL FEEDBACK STRATEGY FOR NOISY INITIAL

CONDITIONS AND THRESHOLD

Our analysis in the previous section considers the synthesis

of a gene product in random bursts as the predominant source

of noise driving fluctuations in threshold-crossing times. We

now extend this analysis to scenarios where the protein

concentrations start from a non-zero initial condition x0 and

build over time to the threshold X , where both x0 and X are

random variables that are drawn from arbitrary distributions

before each simulation run. Based on an analysis similar to

(15), the mean FPT conditioned on x0 and X is given by

ïT |x0, Xð ≈
ln
[

k0+(k1−γ)x0

k0+(k1−γ)X

]

γ − k1
. (26)

In the case of no feedback and no decay (γ → 0 and k1 → 0
), this reduces to

ïT |x0, Xð =
X − x0

k0
, (27)

where the initial condition gets absorbed (subtracted) in the

threshold. Assuming small variations in x0 and X around

their respective means, ïx0ð and ïXð results in the mean

FPT

ïT ð ≈
ln
[

k0+(k1−γ)ïx0ð
k0+(k1−γ)ïXð

]

γ − k1
. (28)
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Solving this equation for k0

k0 =
(k1 − γ)

(

ïXð − ïx0ðe
(k1−γ)ïT ð

)

e(k1−γ)ïT ð − 1
(29)

provides the corresponding changes in k0 needed to ensure

a given mean FPT as we alter feedback strategies.

Our assumption of small fluctuations in x0 and X allows

us to Taylor expand (26) around their respective means

ïT |x0, Xð − ïT ð

ïT ð
≈ 1 + ST

X

(X − ïXð)

ïXð
+ ST

x0

(x0 − ïx0ð)

ïx0ð
(30)

where

ST
X =

ïXð

ïT ð

∂ïT ð

∂ïXð
(31)

ST
x0

=
ïx0ð

ïT ð

∂ïT ð

∂ïx0ð
(32)

are the dimensionless log-sensitivities of ïT ð with respect to

ïx0ð and ïXð, respectively. Squaring both sides and taking

the expectation with respect to x0 and X yields the following

noise in the FPTs

CV 2
T =

(

ST
X

)2
CV 2

X +
(

ST
x0

)2
CV 2

x0
(33)

(

ST
x0

)2
=

(

e(k1−γ)ïT ð − 1
)2

ïx0ð
2

(γ − k1)2(ïXð − ïx0ð)2ïT ð2
(34)

(

ST
X

)2
=

(

e(γ−k1)ïT ð − 1
)2

ïXð2

(γ − k1)2(ïXð − ïx0ð)2ïT ð2
(35)

with CVx0
and CVX being the coefficient of variation of

the initial condition and threshold. Both sensitivities look

similar in form but they do differ from each other in the

sign of γ − k1 in the numerator that makes a qualitative

difference – while
(

ST
X

)2
is a decreasing function of k1 with

(

ST
X

)2
→ 0 as k1 → ∞,

(

ST
x0

)2
is an increasing function of

k1 and
(

ST
x0

)2
→ 0 as k1 → −∞. An important conclusion

from this is that in the presence of noisy initial conditions,

choosing k1 to be as negative as possible (strong negative

feedback) is the optimal strategy to minimize CV 2
T around

a given ïT ð. In contrast, for a noisy threshold choosing k1
to be as positive as possible (strong positive feedback) is

the optimal strategy. We illustrate these results in Fig. 4

(a fixed threshold and a noisy initial condition) and Fig.

5 (a zero initial condition and a noisy threshold), where

analytically predicted CV 2
T match well with those obtained

from simulations confirming our predictions for different

forms of feedback.

V. CONCLUSION

Uncovering mechanisms regulating the precise temporal

triggering of events is vital for diverse cellular processes

from development to cell-cycle regulation [1]–[8]. This con-

tribution has explored feedback strategies that buffer fluctu-

ations in the first-passage time around a given mean event

time. To provide some biological context to this problem,

consider E. coli cells infected by the virus bacteriophage

lambda, where lysis of individual cells is the result of

expression and accumulation of a single viral protein (holin)

in the bacterial cell membrane up to a critical threshold [11],

[12], [31], [35]. Since there is an optimal time to lyse the

cells [65]–[67], the holin accumulation needs to occur to

reach the threshold at the optimal lysis time. Indeed, recent

experiments show that faster or slower lysis than this optimal

time can result in significant fitness defects for the virus.

Using a geometric approach that connects the variance

in protein concentrations to the variance in the threshold-

crossing times, we derived analytical expressions for the

noise in FPT’s assuming linear feedback regulation of gene

expression. Our results show good agreement with Monte

Carlo simulations (Figs. 2 and 3) and determined the optimal

positive feedback strength needed for precision in timing.

This feedback strength decreases with decreasing dilution

rate and converges to a no-feedback strategy in the case of no

protein decay. An SDE formulation of the problem with iden-

tical dynamics for the mean protein concentration resulted

in a different positive feedback strength suggesting that this

value is dependent on how noise is formulated in the model.

Finally, we also considered cell-to-cell variation in FPT

arising from noise in initial conditions and timing threshold

in which case a strong negative or positive feedback is

needed, respectively, to minimize the FPT fluctuations

As part of future work, we will consider other known

sources of stochasticity, such as noise arising in the partition-

ing of molecules during cell division [68], [69], and extrinsic

fluctuations in the growth of cell size that would be reflected

in the dilution rate [70], [71]. While this work restricts

the analysis to linear feedback, we will also consider Hill

function type nonlinear feedback in the future, where we can

explore optimal strategies by employing a combination of

approximate closure schemes [62], [72], [73] and stochastic

simulations.
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