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Regulatory strategies to schedule threshold crossing of protein levels at
a prescribed time

César Nieto!, Khem Raj Ghusinga?, and Abhyudai Singh!

Abstract— The timing of diverse cellular processes is based
on the instant when the concentration of regulatory proteins
crosses a critical threshold level. Hence, noise mechanisms
inherent to these protein synthesis pathways drive statistical
fluctuations in such events’ timing. How to express proteins
ensuring both the threshold crossing at a prescribed time and
minimal timing fluctuations? To find this optimal strategy, we
formulate a model where protein molecules are synthesized in
random bursts of gene activity. The burst frequency depends on
the protein level creating a feedback loop, and cellular growth
dilutes protein concentration between consecutive bursts. Coun-
terintuitively, our analysis shows that positive feedback in pro-
tein production is best for minimizing variability in threshold-
crossing times. We analytically predict the optimal feedback
strength in terms of the dilution rate. As a corollary to our
result, a no-feedback strategy emerges as the optimal strategy
in the absence of dilution. We further consider other noise
sources, such as randomness in either the initial condition or
the threshold level, and find that in many cases, we need either
strongly negative or positive feedback for precise scheduling for
events.

I. INTRODUCTION

Proper timing of molecular and cellular events is critical
for a wide range of cellular processes in development,
decision-making, signal transduction, coordination of re-
sponses, etc. [1]-[8]. In many cases, transcriptional response
drives the timing of important events whereby the event
occurs upon accumulation of a regulatory protein up to a
critical threshold level [2], [9]-[22]. The inherent stochastic
nature of gene-expression causes cell-to-cell variability in the
time evolution of the protein levels — and consequently in
the timing of cellular events — even for cells with identical
genetic content and the same environmental conditions [23]—
[28]. A fundamental question of interest is to understand how
cells control temporal dynamics of the underlying regulatory
protein to ensure precision in event timing.

Recent works have studied precise scheduling of events
for gene-expression models of varying complexity, where
the timing of an event is formulated as the first-passage
time (FPT) for the protein level [29]-[41]. Assuming dif-
ferent empirical forms for the regulation of gene-expression
(e.g., feedback auto-regulation, activation/repression by an
upstream component, etc.), these works search for the best
model parameters that minimize the noise in timing [34]—
[36], [38], [39], [42], [43]. In the limiting case where protein
does not degrade (or dilute), any form of feedback gives
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higher noise in event timing around a fixed mean time [35].
This result is robust to extrinsic disturbances [44] and several
physiologically relevant variations in model parameters [35],
[45], except for the case when the initial protein amount is
drawn from a distribution [46]. For a protein that degrades,
positive feedback from the protein level to the transcription
rate suppresses noise in event timing around a fixed mean
by counterpoising the effect of degradation [35], [42], [43].
These two findings suggest a relationship between the degra-
dation rate of the protein and the strength of the positive
feedback to schedule events with precision. However, the
exact nature of this relationship remains to be explored.

In this work, we consider a model of gene expression
based on stochastic hybrid system formalism. Protein pro-
duction is assumed to occur in bursts and is modeled as
a stochastic event, whereas dilution due to cell growth is
modeled using a deterministic ODE [38], [47], [48]. We
provide analytical results on FPT moments and compute
the optimal feedback strategy that minimizes noise in FPT
around a given fixed mean under different modeling as-
sumptions. In particular, we consider a linear form of the
feedback and analyze scenarios where we draw either the
initial condition or the event threshold from some positive-
valued distributions, representing static extrinsic noise.

II. PRELIMINARIES

In this section, we formulate a model of gene-expression
and describe the corresponding FPT problem. We then sum-
marize the previous results that quantify the noise in FPT
and provide optimal feedback strategies that minimize the
noise.

A. Model description

Let 2(t) be the concentration of the protein of interest at
time ¢. We assume that the event of interest occurs when z(t)
crosses the threshold level X for the first time (Fig. 1). The
FPT T when the event = reaches a threshold X is defined
formally as

T:=inf{t >0:z(t) > X|z(0) =20 < X}, (1)

where x( is protein level at ¢ = 0.

We model the dynamics of x(¢) using a stochastic hybrid
system (SHS) formalism comprising both discrete jumps and
continuous dilution. In particular, we assume that x(t) is
produced in bursts as

z(t) — z(t) + B, (2a)
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where the burst size, B, follows a positive-valued distribu-
tion. More precisely, the probability, IP, of arrival of a burst
in an infinitesimal time interval (¢,¢ 4 dt) is given by

P{z(t+ dt) = i+ Blz(t) =i} = @dt.
(B)
Here, we assume that the protein production rate is a function
of the protein level as k(z). This is motivated by inves-
tigating how different feedback mechanisms might affect
the noise in event timing. In this framework, an open-loop
production (no feedback) implies a constant rate k(x) = k,
a negative feedback means that k(x) decreases with z,
and positive feedback signifies that k(z) increases with z.
We have used the mean burst size (B) as a normalization
constant. Wherever needed for analytical tractability, we will
assume a linear form of the feedback as k(z) = kg + koz.
Here kg is the basal rate of protein production, ki is the
strength of the feedback, and (B) is the mean burst size
used as a normalizing factor convenience.
In between successive bursts, the protein concentration is
diluted by cell growth as

(2b)

dx = —vyxdt. (2¢)
Here v denotes the dilution rate. Finally, we assume that
both the initial protein level x(0) = xo and the threshold
for the event X are drawn from arbitrary positive-valued
distributions.

We base this model formulation on the following key
assumptions. First, the protein does not degrade but only
dilutes due to cell growth. This assumption itself requires
that the cell volume grows exponentially over time and that
the production rate in terms of protein numbers scales with
the cell volume [49]-[52]. Second, both the timescale of
the promoter switching and the mRNA half-life are much
smaller than the turnover rate of the protein. This allows us
to approximate the randomness in the dynamics of promoter
and mRNA in a burst parameter. Often, the burst size follows
a geometric distribution [53], but other distributions are also
possible [45], [54]-[56].

The statistics of the first-passage time (FPT) defined in
Eq. (1) are analytically intractable in general. However, in
a limiting case where dilution is ignored, the FPT moments
were computed in previous work [35]. Next, we reproduce
these results and the computation of optimal feedback strat-
egy to minimize the noise in timing from them.

B. FPT statistics in absence of dilution

Let P(x(t) = i) = pi(¢), then in absence of dilution, i.e.,
~v = 0, the time evolution of p; for Eq. (2b) is governed by
the chemical master equation [57], [58]

1

= B2 OO (B =i i

3)

To compute the statistics of the first-passage time, 7', as
defined in Eq. (1), we note that [35]

X—1,,.
k
<(Z>)IP’(B > X —i)pi(t)dt, 4)
i=0

resulting in the following probability density function (pdf)
of FPT

P(T € (t,t+dt)) =

T P (B =X —i)pi(t). (5)

Intuitively, the process x(t) crosses the threshold X for the

first time at time ¢ + dt if the protein count was equal 7 at

time ¢ and a burst of size greater than or equal to X — ¢

occurred in the next infinitesimal time interval (¢,¢ + dt).
A compact form of the FPT pdf above is

f-(t)=UTP(t), (6a)

where
P(t) = [po(t) pi(t) px—1 ()] ", (6b)
U= {%P(E > X) MXSUP (B > 1)} . (60)

The time evolution of P(¢) can be obtained from Eq. (3) as
the dynamical system

P = AP, (7a)
whose solution is given by
P(t) = exp(At)P(0). (7b)
Here the triangular matrix A consists of the elements
0, j=i+1,
a; =S xP(B>1), =i (7c)
U xP(B=i-1), j<i

and P(0) is the vector of consisting of probabilities of
the initial protein count, xy. Using (7b) in (6a) yields
the following for the first-passage time probability density
function

fr(t) = UT exp(At)P(0). ®)

We can use Eq. (8) to compute the moments of FPT as
follows

(T™) = / h t"™U " exp(At)P(0)dt (9a)
0

=U' (/Ooo tm exp(At)) P(0)dt,  (9b)

where (.) denotes expectation of its argument and m is the
order of the moment. The above integral may be written as

m—+1

(T™) =m!(-1)"HUT (AT P0).  (10)

provided A is Hurwitz stable. This indeed the case, as each
diagonal element of A is negative and is greater in magnitude
than sum of all other elements of that column [35]. The first
two moments of FPT for the special case of deterministic
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Fig. 1. Model schematic and illustration of first-passage time. (A) Gene produces protein z(t) in bursts. The burst frequency depends upon the protein
level as k(x), creating a feedback loop. The protein degrades/dilutes through a first-order kinetics with rate constant . (B) A stochastic hybrid system
representation of the gene-expression model, whereby the protein level increases upon burst arrival at a rate that depends upon the protein level. Protein
dilution is modeled using an ordinary differential equation. (C) First-passage time for the protein level to reach a threshold. Sample trajectories represent
different realizations of the protein evolution obtained using Monte Carlo simulations. The initial protein level is drawn from a distribution.

initial condition o = 0, deterministic threshold X, and
geometrically distributed burst size are given by:

X-1

1 (B)
Ty =S —— 4L (11a)
; k(i) ~ k(0)
2 0 1 = (B)
T) = 2o ) =2 iy
T <B>2 k(0) i =0 ki 3 ki ' =i kj
(11b)

One can use conditioning argument to compute these mo-
ments when the initial condition zy # 0 and is instead drawn
from a distribution [46]. Likewise, the event threshold may
also be drawn from any positive-valued distribution. These
scenarios are studied in section IV (Figs. 4 and 5).

C. Optimal feedback strategy

The problem of finding an optimal feedback strategy that
minimizes the noise in timing (quantified by the coefficient of
variation squared = variance/mean?), given a fixed mean (7T'),
is a constrained optimization problem. It yields the following
analytical solution via the method of Lagrange multiplier

[35]:
1+(B) 2(B)+ X

k<0):1+2<3> Ty
k(m)zW,Vm:{l,z...,X—l}. (12)

In the limit of a small burst size, the above solution is
essentially a no feedback strategy. Even for a geometrically
distributed burst size, all the production rates are equal except
for the first one; thus, the optimal strategy is approximately
a no feedback.

III. OPTIMAL FEEDBACK STRATEGY FOR BURSTY GENE
EXPRESSION

We next focus our attention on the case v # 0 and
particularly restrict ourselves to the class of linear feedback,
where the burst frequency takes the form (ko + k12(t))/(B).
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Fig. 2. FPT fluctuations for different feedback strategies with trajec-

tories modelled using a birth death process. The feedback strategies are
classified depending on the ratio between the decay rate « and the feedback
strength k1. (A) k1 < v B) k1 = v (C) k1 > -y Top: FPT histogram.
Bottom: Some illustrative trajectories. (D) Noise in FPT measured by the
squared coefficient on variation C’VQ% vs the feedback strength k1. Results
of simulations using Gillespie algorithm (region width representing 95%
confidence interval calculated with ten thousand simulation replicas) are
compared to the analytical expression (19). (y = 1, (T) =~ 1, z(0) = 0,
X =100, and (B) = 1 with probability one). [59].

As a consequence of this linearity, the time evolution of the
statistical moment of x(t) can be obtained exactly via

d(z™) <k0 + kz

o B ((x+B)m—xm)—7mxm> (13)

for m € {1,2,...} [61]-[63]. Setting m = 1 and assuming
2(0) = 0 with probability one, yields the mean concentration
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Fig. 3. FPT fluctuations for different feedback strategies with trajec-
tories modelled using a stochastic differential equation. The feedback
strategies are classified depending on the ratio between the decay rate ~y
and the feedback strength k1. (A) k1 < v (B) k1 =~ (C) k1 > ~ Top:
FPT histogram. Bottom: Some illustrative trajectories. (D) Noise in FPT
measured by the squared coefficient on variation CV% vs the feedback
strength k1. Results of simulations using Euler-Maruyama algorithm [60]
(region width representing 95% confidence interval over ten thousand
simulation replicas) are compared to the analytical expression (25). (y = 1,
(T) ~ 1, z(0) = 0, X = 100, o = 5).

dynamics
% = ko + k1{z) — v{x) (14a)
_ p(=rtk)t
— (2(t)) = ko(1 — 7). (14b)

v — k1

If the feedback strength k1 < ~ then lim;,oo(z(t)) =
ko/(y — k1), and we assume that the critical concentration
threshold X < ko/(7y— k1) needed for event timing is below
this steady-state mean level. In contrast, if k; > ~ then the
mean concentration grows unboundedly lim;_,..{(x(t)) =
oo over time. Considering small concentration fluctuations
around the mean trajectory, the mean first passage time

k
In [ko—q—(klo—'y)X}

T) ~
(T) po—

15)
can be obtained by solving (x(t)) = X. Recall that we would
like to obtain the optimal feedback strategy (i.e., the value
of k1) that minimizes the noise in T for a given fixed mean
FPT (T'). Having an approximate analytical formula for (T')
is quite useful in that regard as it provides the corresponding
value of kg

kO _ (kl _V)X

= @ 1 (16)

that is needed to ensure a fixed (T") as we vary ky to explore
different feedbacks.
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Fig. 4. FPT fluctuations for different feedback strategies considering
both random initial concentration xy and deterministic trajectories.
(A) k1 < v B) k1 = v (C) k1 > ~ Top: FPT histogram. Bottom:
Some illustrative trajectories. (D) Noise in FPT measured by the squared
coefficient on variation CV% vs the feedback strength ki relative to
the decay rate 7. Results of simulations (region width representing 95%
confidence interval for ten thousand simulation replicas) are compared to
the analytical expression (34). (y = 1, (T') =~ 0.5, X = 100, z¢ is Gamma-
distributed with parameters: (zo) = 20, C’ngo =0.1).

Having set up the mean concentration dynamics we now
investigate its variance by taking m = 2 in (13)
d(z®) _ (B?) 2 2
=-——"(kot+k 2k 2k -2 .
o <B>(0+ 1(x)) + 2ko(x) + 2k1(27) — 29(z7)
a7

A geometric approach of connecting the variance in protein
concentrations to the variance of threshold-crossing times
was suggested in [64]. In particular, the variance in T is
approximated as

(18)

2~ lim A
or tal?il’) ( <$>)2
dt

and is inversely proportional to the slope of the mean tra-
jectory at t = (T") with a “flatter” approach to the threshold
amplifying noise in threshold-hitting times. Substituting the
solutions of (14a) and (17) in (18) results in the following
analytical expression for the noise in 7' as quantified by its
coefficient of variation

2 2
2. 0p (B YT) L ha{T) (o
CVi = GGERE) X (fye +e (v 2k:1)) X

e~ (1+20)(T) (1(T) _ ek1<T>)2

2T (y — k)X

19)

In the limit of no dilution and no feedback (y — 0 and
k1 — 0), the formulas (15) and (19) become exact and reduce
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Fig. 5. FPT fluctuations for different feedback strategies considering

both random threshold concentration X and deterministic trajectories.
(A) k1 < v B) k1 = v (C) k1 > ~ Top: FPT histogram. Bottom:
Some illustrative trajectories. (D) Noise in FPT measured by the squared
coefficient on variation CV% vs the feedback strength kp relative to
the decay rate . Results of simulations (region width representing 95%
confidence interval for ten thousand simulation replicas) are compared to
the analytical expression (35). (v = 1, (T') =~ 0.5, o = 0, X is uniformly
distributed U (45, 55) such as (X) = 50 and CVZ = 1/300).

to
X (B?%)
T)="—, CVi=-—=t.
Fig. 2 illustrates the shape of CV?2 as a function of the
feedback strength k;, while correspondingly changing kg as
per (16) to ensure a fixed (T"). Two distinct observations can
be made from this plot:

(20)

e The noise in T as predicted by (19) matches well with
corresponding FPT noise levels obtained from stochastic
simulation runs of the system (2). As expected, the
match is perfect at low noise levels and begins to deviate
with increasing C'Vr.

o CVp first decreases with increasing k; to reach a
minimum, and then increases with increasing k.

By solving the equation
dCV2
dky
our analysis predicts the following optimal feedback strength

=0, 1)

ki~ (1 + 22)

)
2+ 3(T)
that minimizes the fluctuations in the threshold-crossing
times around (7). Notice this optimal solution corresponds to
a positive feedback k; > 0 and depends on the dimensionless
factor v(T'). If v is the exponential growth in cell volume
within a cell cycle, then v(T") can be interpreted as mean FPT
normalised by the cell-cycle duration. In the limit, v — 0 a

no feedback strategy emerges optimal. Moreover, the optimal
feedback strength k1 =~ 5v/2 for v(T) = 0 (i.e., the mean
FPT is much shorter compared to the cell-cycle duration),
ky =~ 8y/3 for v(T) =1 and ky ~ ~ for v(T') > 1.

Does this optimal feedback strategy depend on how noise
is incorporated into the model? To address these questions,
we consider a simple stochastic differential equation (SDE)
formulation

dx(t) = ko + kiz(t) — vz (t) + odw(t) (23)

where w(t) denotes a Wiener process. Note that the mean
dynamics (x(t)) in (23) is identical to that of the previous
model and given by (14a), but now the variance evolves as

d(z?)
dt
Performing the exact same analysis as before by substituting
(x(t)) and the solution of (24) in (18) yields
o 0% (Sh[2(T)(y — k)] - 2SIh[(T) (7 — ku])

v 720, — 1P X2 |
(25)

for the SDE model. While the qualitative trend of C'Vp
varying non-monotonically with respect to k; is also seen
here (Fig. 3), in contrast to the earlier results, the noise in
FPT is always minimized at k; =  in the SDE model. Thus,
while positive feedback provides precision in event timing in
both formulations, the optimal feedback strength depends on
the noise structure.

= 02 + 2ko(z) + 2k1 (x?) — 2y(x?).  (24)

IV. OPTIMAL FEEDBACK STRATEGY FOR NOISY INITIAL
CONDITIONS AND THRESHOLD

Our analysis in the previous section considers the synthesis
of a gene product in random bursts as the predominant source
of noise driving fluctuations in threshold-crossing times. We
now extend this analysis to scenarios where the protein
concentrations start from a non-zero initial condition xy and
build over time to the threshold X, where both xy and X are
random variables that are drawn from arbitrary distributions
before each simulation run. Based on an analysis similar to
(15), the mean FPT conditioned on xg and X is given by
ko+(ki—v)zo }

In —
(a0 1) L]
Y=k

(26)
In the case of no feedback and no decay (y — 0 and k1 — 0
), this reduces to
X —
<T|:L’0, X > - T%’
0
where the initial condition gets absorbed (subtracted) in the
threshold. Assuming small variations in zy and X around
their respective means, (z) and (X) results in the mean
FPT

27)

ko+(k1—v)(zo)
ko+(k1—7)(X)

v — k1 %)

) ~ ln[
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Solving this equation for kg

(k1 — ) ((X) — (mo)eltkr=1(D)
elki—y)(T) _ 1

ko = (29)
provides the corresponding changes in ko needed to ensure
a given mean FPT as we alter feedback strategies.

Our assumption of small fluctuations in g and X allows
us to Taylor expand (26) around their respective means

(Tloo, X) = (T) o (X = (X)) | o (w0 — (w0))
T TR TRy TR gy
(30)
where
r (X))
% =11y (%) GD

are the dimensionless log-sensitivities of (T') with respect to
(x0) and (X), respectively. Squaring both sides and taking
the expectation with respect to z¢ and X yields the following
noise in the FPTs

CVE = (S5 CvE+ (ST) cv2 (33)
2 (e(k177)<T> _ 1)2 <x0>2

- 34

() = o = wrae @Y
(=k (T _ 1\? (X2

(S};)Q _ (e v 1) (X) 35)

(v = F1)?((X) = (20))X(T)?
with CV,, and CVx being the coefficient of variation of
the initial condition and threshold. Both sensitivities look
similar in form but they do differ from each other in the
sign of v — k; in the numerator that makes a qualitative
difference — while (S%)” is a decreasing function of k; with
(S;?)Q —0as k — oo, (Sfo)2 is an increasing function of
k1 and (Sgﬂ)2 — 0 as k; — —oo. An important conclusion
from this is that in the presence of noisy initial conditions,
choosing k; to be as negative as possible (strong negative
feedback) is the optimal strategy to minimize C'V2 around
a given (T'). In contrast, for a noisy threshold choosing k1
to be as positive as possible (strong positive feedback) is
the optimal strategy. We illustrate these results in Fig. 4
(a fixed threshold and a noisy initial condition) and Fig.
5 (a zero initial condition and a noisy threshold), where
analytically predicted C'V# match well with those obtained
from simulations confirming our predictions for different
forms of feedback.

V. CONCLUSION

Uncovering mechanisms regulating the precise temporal
triggering of events is vital for diverse cellular processes
from development to cell-cycle regulation [1]-[8]. This con-
tribution has explored feedback strategies that buffer fluctu-
ations in the first-passage time around a given mean event
time. To provide some biological context to this problem,
consider E. coli cells infected by the virus bacteriophage
lambda, where lysis of individual cells is the result of

expression and accumulation of a single viral protein (holin)
in the bacterial cell membrane up to a critical threshold [11],
[12], [31], [35]. Since there is an optimal time to lyse the
cells [65]-[67], the holin accumulation needs to occur to
reach the threshold at the optimal lysis time. Indeed, recent
experiments show that faster or slower lysis than this optimal
time can result in significant fitness defects for the virus.

Using a geometric approach that connects the variance
in protein concentrations to the variance in the threshold-
crossing times, we derived analytical expressions for the
noise in FPT’s assuming linear feedback regulation of gene
expression. Our results show good agreement with Monte
Carlo simulations (Figs. 2 and 3) and determined the optimal
positive feedback strength needed for precision in timing.
This feedback strength decreases with decreasing dilution
rate and converges to a no-feedback strategy in the case of no
protein decay. An SDE formulation of the problem with iden-
tical dynamics for the mean protein concentration resulted
in a different positive feedback strength suggesting that this
value is dependent on how noise is formulated in the model.
Finally, we also considered cell-to-cell variation in FPT
arising from noise in initial conditions and timing threshold
in which case a strong negative or positive feedback is
needed, respectively, to minimize the FPT fluctuations

As part of future work, we will consider other known
sources of stochasticity, such as noise arising in the partition-
ing of molecules during cell division [68], [69], and extrinsic
fluctuations in the growth of cell size that would be reflected
in the dilution rate [70], [71]. While this work restricts
the analysis to linear feedback, we will also consider Hill
function type nonlinear feedback in the future, where we can
explore optimal strategies by employing a combination of
approximate closure schemes [62], [72], [73] and stochastic
simulations.
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