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Abstract 8 

Reproducibility in Life Sciences is challenged in the analysis of large multi-omics datasets. One of 9 

the final steps of said processes is Gene Set enrichment, where web tools represent a valuable re-10 

source but not a reliable surrogate for standardized, high-quality visualizations. The AUTO-go 11 

framework proposes standardization of the Gene Functional Enrichment process along with an R 12 

framework able to produce high-quality visualization in an automated manner, improving the repro-13 

ducibility of the whole analytical process. We present three use cases in Cancer Transcriptomics and 14 

Epigenomics datasets as a proof-of-concept to visualize Multiple Differential Expression and Single 15 

Sample Gene Set Enrichment Analysis. 16 

Author Summary 17 

Bioinformatics and Data Science are routinely challenged to distill intelligible results from huge 18 

amounts of data. These results, in turn, are conveyed through plots and visualizations that should be 19 

easily reproducible for scientific soundness and ethical reasons. A specific area in which these anal-20 

yses are of critical importance is Genomics, where Genes functions need to be enriched when com-21 

paring pathological states or treatments. Here we present a software framework that aims at standard-22 

izing said differential analyses and visualizations when dealing with genomics data. Finally, we show 23 

how it can be employed to shear light on publicly available datasets, even in small casuistry of Rare 24 

Cancers.  25 
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Introduction 26 

Gene Ontology (GO) and Pathway Enrichment Analysis are pivotal aspects of Life Science research 27 

– but the level of standardization and reproducibility is worryingly low for such popular techniques 28 

[1].  29 

Additionally, most of the enrichment analyses currently published rely on web applications 30 

that, on the one hand, enable non-bioinformaticians to conduct exploratory analyses; on another, 31 

open concern for result reproducibility, being a manual step of data processing strongly contrasting 32 

the rules for reproducible bioinformatics [2-3]. 33 

Virtualization techniques such as Docker and Singularity helped to encapsulate software ena-34 

bling total reproducibility, while additional workflow management layers such as Nextflow and 35 

Snakemake [4-5] enabled to build of complex virtualized pipelines and run them in High-36 

Performance Computing Clusters. Unfortunately, what is presented on a life science paper is not 37 

primary output matrices, but functional enrichments that currently do not benefit from such ad-38 

vancements.  39 

Among the R packages available to the community, the clusterProfiler is a notable exception, 40 

with a development that has focused many features on genomics coordinates enrichment and specific 41 

high-throughput experiments, while our focus lies on the high-level conceptualization and visualiza-42 

tion of differential analysis [6].  43 

Here we present AUTO-go, a logical and bioinformatics framework that enables (1) repro-44 

ducible GO analyses; (2) high quality automated visualizations; (3) proposes a high-level visualiza-45 

tion for complex experimental designs with multiple comparisons.  46 

Design and implementation 47 
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According to the logical framework (Fig. 1), a Differential Expression is the most frequent starting 48 

input from which one or several gene lists are extracted according to fold change and statistical sig-49 

nificance filters (e.g., strongly upregulated, log2FC > 1 and padj < 0.05). The protocol core is an 50 

atomic function that enriches a gene list over a list of selected databases, from which several visuali-51 

zations are produced (Fig 1). The gene list can derive from several Genomics applications as de-52 

scribed in the Use Cases section.   53 

 54 

Gene List Enrichment Visualization 55 

Every <gene list, database> combination produces a high-quality bar plot with the top N 56 

terms enriched, with dynamic resizing to accommodate long terms naming in the final plot.  57 

The current implementation of the core module relies on the Enrichr API [7], but it is engi-58 

neered to be generalized with other enrichment functions, with the only constrain of having a gene 59 

list as input and a tuple matrix with <Term, Enrichment Score> as output.  60 

 61 

Multiple Comparison Visualization 62 

A classical need in -omics analysis is the representation of functional terms enriched in sever-63 

al conditions or comparisons. The HeatmapGO module is built to provide a high-level visualization 64 

of multiple comparisons enrichment, with rows representing terms, such as GO components and 65 

Transcription Factors, and columns being experimental comparisons.  66 

 67 

ssGSEA 68 

In many fields, the scarcity of sample availability does not allow classical statistical modeling. The 69 

challenge in obtaining robust results is exacerbated by the employment of -omics profiling, collecting 70 

thousands of features per observation. To this purpose, we expanded the AUTO-go package with the 71 
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single-sample implementation of the Gene Set Enrichment Analysis Algorithm [8-9], allowing re-72 

searchers to compare discrete cohorts of samples over known gene signatures.  73 

For all the visualization depicting a subset of the enriched terms, a ranking choice must be 74 

made to represent a human-readable number of terms and clusters. In the ssGSEA and HeatmapGO, 75 

the top 20 terms are selected by ascending -log10(p-adjusted) score. Other developers and data scien-76 

tists would pick a different ranking employing a mixture of significance and variance among samples 77 

and comparisons to show the functions having a strong modulation. 78 

 79 

Results 80 

To provide a proof-of-concept application of our package, we envisioned three analytical settings to 81 

test it, namely 1. Large RNA-seq casuistry with multiple comparisons Differential Expression and 82 

Enrichment (Tumor Cancer Genome Atlas, TCGA) 2. Discrete in-vitro enrichment of gene lists rep-83 

resenting epigenetic signals (Encyclopedia of DNA elements, ENCODE) 3. Discrete in-vivo rare tu-84 

mor samples profiled via total RNA-seq. (Fig. 2). In the first use case, the TCGA dataset of Skin Cu-85 

taneous Melanoma Adenocarcinoma (TCGA-SKCM) was partitioned according to a specific immu-86 

notherapy biomarker, the Tumor Mutational Burden (TMB). Differential expression was carried out 87 

by comparing all TMB quartiles (Fig. 2,3) [10]. The KEGG 2021 Heatmap shows a stronger enrich-88 

ment in Ras signaling pathway in the higher group comparison (Q3-Q4), suggesting a switch in the 89 

higher mutational load group (Fig. 2,3). This enrichment can be further investigated at the LolliGO 90 

level showing that most Ras-related genes are upregulated except for FGF5, while down-regulated 91 

genes are more enriched in Cortisol synthesis and secretion, less evident from the Heatmap.  92 

Next, the epigenetic unit test was fetched from the ENCODE database, fetching all the RNA 93 

Immunoprecipitation sequencing (RIP-seq) available in the K562 cell line. Gene lists were obtained 94 

by annotating with Homer [11] the enriched peaks and extracting only the promoter-TSS records. In 95 
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this scenario, the Cellular Component database coupled with the lolliGO modules shows stronger en-96 

richment hydrogen peroxide metabolic and catabolic process in mRNA targets of ELAVL1 in (Fig. 97 

4).  98 

Finally, the third unit test was carried out on the on the GSE168493 record, containing total 99 

RNA-seq profiles from a small casuistry of Epithelioid hemangioendothelioma, a rare tumor with an 100 

incidence of 1 out of million people [12]. In this instance, the ssGSEA package enables to shear light 101 

into the pathway activation peculiarities of said tumors, with a stronger enrichment of PSMB5 target 102 

genes in samples hEHE.6 and hEHE5 (Fig. 5).  103 

Taken together, all these examples point out many analytical scenarios in which the Auto-GO 104 

package can provide a solid foundation and a valuable engineering tool for -omics-focused 105 

Bioinformaticians. 106 

 107 

Availability and Future Directions 108 

The package is available at https://gitlab.com/bioinfo-ire-release/auto-go. The repository contains a 109 

step-by-step tutorial for the whole framework usage and the data input to reproduce the first use case 110 

presented in the results section, along with a Dockerfile. All the generated outputs, folders, and fig-111 

ures are available in the tutorial and in Fig. S1.  112 

 113 

Figure Captions 114 

Fig 1. Logical framework and implementation workflow.  115 

Fig 2. Use case schema. Workflow of the three use cases with different casuistry and comparison 116 

sizes.   117 
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Fig 3. Results on DE genes enriched on the TCGA-SKCM multiple TMB comparisons. Rows: 118 

enriched terms over KEGG_2021 Enrichr library. Columns: genes regulated in multiple compari-119 

sons. Cell content: -log10(padj + 1) reported only for significant clusters.   120 

Fig 4. LolliGO plot from RIP-seq: Ontology enrichment over a list of ELAVL targets derived from 121 

RIP-seq. Color: percentage of the cluster given as input with respect to the total functional cluster. 122 

Dot size: gene count for cluster.  123 

Fig 5. Single-Sample Gene Set Enrichment Analysis heatmap: Heatmap showing ssGSEA en-124 

richment over the Hallmark term for the 6 RNA-seq samples (eEHE1-6). Z-score of the Enrichment 125 

Score in cell content.  126 

Fig. S1. Folder tree of the AUTO-go output 127 

 128 
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