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Abstract

Reproducibility in Life Sciences is challenged in the analysis of large multi-omics datasets. One of
the final steps of said processes is Gene Set enrichment, where web tools represent a valuable re-
source but not a reliable surrogate for standardized, high-quality visualizations. The AUTO-go
framework proposes standardization of the Gene Functional Enrichment process along with an R
framework able to produce high-quality visualization in an automated manner, improving the repro-
ducibility of the whole analytical process. We present three use cases in Cancer Transcriptomics and
Epigenomics datasets as a proof-of-concept to visualize Multiple Differential Expression and Single

Sample Gene Set Enrichment Analysis.

Author Summary

Bioinformatics and Data Science are routinely challenged to distill intelligible results from huge
amounts of data. These results, in turn, are conveyed through plots and visualizations that should be
easily reproducible for scientific soundness and ethical reasons. A specific area in which these anal-
yses are of critical importance is Genomics, where Genes functions need to be enriched when com-
paring pathological states or treatments. Here we present a software framework that aims at standard-
izing said differential analyses and visualizations when dealing with genomics data. Finally, we show
how it can be employed to shear light on publicly available datasets, even in small casuistry of Rare

Cancers.
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I ntroduction

Gene Ontology (GO) and Pathway Enrichment Analysis are pivotal aspects of Life Science research
— but the level of standardization and reproducibility isworryingly low for such popular techniques
[1].

Additionally, most of the enrichment analyses currently published rely on web applications
that, on the one hand, enable non-bioinformaticians to conduct exploratory analyses; on another,
open concern for result reproducibility, being a manual step of data processing strongly contrasting
the rules for reproducible bioinformatics [2-3].

Virtualization technigques such as Docker and Singularity helped to encapsulate software ena-
bling total reproducibility, while additional workflow management layers such as Nextflow and
Snakemake [4-5] enabled to build of complex virtualized pipelines and run them in High-
Performance Computing Clusters. Unfortunately, what is presented on alife science paper is not
primary output matrices, but functional enrichmentsthat currently do not benefit from such ad-
vancements.

Among the R packages available to the community, the clusterProfiler is a notable exception,
with a development that has focused many features on genomics coordinates enrichment and specific
high-throughput experiments, while our focus lies on the high-level conceptualization and visualiza-
tion of differential analysis[6].

Here we present AUTO-go, alogical and bioinformatics framework that enables (1) repro-
ducible GO analyses; (2) high quality automated visualizations;, (3) proposes a high-leve visualiza-

tion for complex experimental designs with multiple comparisons.

Design and implementation
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According to the logical framework (Fig. 1), a Differential Expression isthe most frequent starting
input from which one or several gene lists are extracted according to fold change and statistical sig-
nificancefilters (e.g., strongly upregulated, log2FC > 1 and padj < 0.05). The protocol coreis an
atomic function that enriches agenelist over alist of selected databases, from which several visuali-
zations are produced (Fig 1). The gene list can derive from several Genomics applications as de-

scribed in the Use Cases section.

GeneList Enrichment Visualization

Every <gene list, database> combination produces a high-quality bar plot with the top N
terms enriched, with dynamic resizing to accommaodate long terms naming in the final plot.

The current implementation of the core module relies on the Enrichr API [7], but it isengi-
neered to be generalized with other enrichment functions, with the only constrain of having a gene

list asinput and atuple matrix with <Term, Enrichment Score> as output.

Multiple Comparison Visualization

A classical need in -omics analysis is the representation of functional terms enriched in sever-
al conditions or comparisons. The HeatmapGO module is built to provide a high-level visualization
of multiple comparisons enrichment, with rows representing terms, such as GO components and

Transcription Factors, and columns being experimental comparisons.

ssGSEA
In many fields, the scarcity of sample availability does not allow classical statistical modeling. The
challenge in obtaining robust results is exacerbated by the employment of -omics profiling, collecting

thousands of features per observation. To this purpose, we expanded the AUTO-go package with the
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single-sample implementation of the Gene Set Enrichment Analysis Algorithm [8-9], allowing re-
searchers to compare discrete cohorts of samples over known gene signatures.

For all the visualization depicting a subset of the enriched terms, a ranking choice must be
made to represent a human-readable number of terms and clusters. In the sSGSEA and HeatmapGO,
the top 20 terms are selected by ascending -1og10(p-adjusted) score. Other devel opers and data scien-
tists would pick a different ranking employing a mixture of significance and variance among samples

and comparisons to show the functions having a strong modulation.

Results
To provide a proof-of-concept application of our package, we envisioned three analytical settingsto
test it, namely 1. Large RNA-seq casuistry with multiple comparisons Differential Expression and
Enrichment (Tumor Cancer Genome Atlas, TCGA) 2. Discrete in-vitro enrichment of gene lists rep-
resenting epigenetic signals (Encyclopedia of DNA elements, ENCODE) 3. Discrete in-vivo rare tu-
mor samples profiled viatotal RNA-seq. (Fig. 2). In the first use case, the TCGA dataset of Skin Cu-
taneous M e anoma Adenocarcinoma (TCGA-SKCM) was partitioned according to a specific immu-
notherapy biomarker, the Tumor Mutational Burden (TMB). Differential expression was carried out
by comparing all TMB quartiles (Fig. 2,3) [10]. The KEGG 2021 Heatmap shows a stronger enrich-
ment in Ras signaling pathway in the higher group comparison (Q3-Q4), suggesting a switch in the
higher mutational load group (Fig. 2,3). This enrichment can be further investigated at the LolliGO
level showing that most Ras-related genes are upregulated except for FGF5, while down-regulated
genes are more enriched in Cortisol synthesis and secretion, less evident from the Heatmap.

Next, the epigenetic unit test was fetched from the ENCODE database, fetching all the RNA
Immunoprecipitation sequencing (RIP-seq) available in the K562 cell line. Gene lists were obtained

by annotating with Homer [11] the enriched peaks and extracting only the promoter-TSS records. In
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96 thisscenario, the Cellular Component database coupled with the lolliGO modules shows stronger en-
97  richment hydrogen peroxide metabolic and catabolic processin mRNA targets of ELAVL1 in (Fig.
98 4).

99 Finally, the third unit test was carried out on the on the GSE168493 record, containing total
100 RNA-seq profiles from a small casuistry of Epithelioid hemangioendothelioma, a rare tumor with an
101 incidenceof 1 out of million people[12]. In thisinstance, the sSSGSEA package enables to shear light
102  into the pathway activation peculiarities of said tumors, with a stronger enrichment of PSMB5 target
103  genesin samples hEHE.6 and hEHES (Fig. 5).

104 Taken together, all these examples point out many analytical scenarios in which the Auto-GO
105  package can provide a solid foundation and a valuable engineering tool for -omics-focused

106  Bioinformaticians.

107

108  Availability and Future Directions

109 The packageisavailable at https://gitlab.com/bioinfo-ire-rel ease/auto-go. The repository contains a
110  step-by-step tutoria for the whole framework usage and the data input to reproduce the first use case
111 presented in the results section, along with a Dockerfile. All the generated outputs, folders, and fig-
112  uresareavailablein thetutorial and in Fig. S1.

113

114  Figure Captions

115 Fig 1. Logical framework and implementation wor kflow.

116  Fig 2. Use case schema. Workflow of the three use cases with different casuistry and comparison

117  sSizes.
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118 Fig 3. Resultson DE genesenriched on the TCGA-SKCM multiple TMB comparisons. Rows:
119  enriched terms over KEGG 2021 Enrichr library. Columns: genes regulated in multiple compari-
120  sons. Cdl content: -log10(padj + 1) reported only for significant clusters.

121 Fig4. LolliGO plot from RIP-seq: Ontology enrichment over alist of ELAVL targets derived from
122 RIP-seq. Color: percentage of the cluster given asinput with respect to the total functional cluster.
123 Dot size: gene count for cluster.

124 Fig5. Single-Sample Gene Set Enrichment Analysis heatmap: Heatmap showing ssGSEA en-
125  richment over the Hallmark term for the 6 RNA-seq samples (eEHE1-6). Z-score of the Enrichment
126  Scorein cell content.

127  Fig. S1. Folder tree of the AUT O-go output

128
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