

1 **Automated, Reproducible Investigation of gene set Differential Enrichment via the AUTO-go framework**

2

3 Eleonora Sperandio¹, Isabella Grassucci¹, Lorenzo D'Ambrosio² and Matteo Pallocca^{1*}

4 ¹ UOSD Biostatistics, Bioinformatics and Clinical Trial Center, IRCCS Regina Elena National Cancer Institute, Rome

5 ² UOSD Immunology and Tumor Immunotherapy, IRCCS Regina Elena National Cancer Institute, Rome

6 *matteo.pallocca@ifo.gov.it

7 Received on XXXXX; revised on XXXXX; accepted on XXXXX

8 **Abstract**

9 Reproducibility in Life Sciences is challenged in the analysis of large multi-omics datasets. One of
10 the final steps of said processes is Gene Set enrichment, where web tools represent a valuable re-
11 source but not a reliable surrogate for standardized, high-quality visualizations. The AUTO-go
12 framework proposes standardization of the Gene Functional Enrichment process along with an R
13 framework able to produce high-quality visualization in an automated manner, improving the repro-
14ducibility of the whole analytical process. We present three use cases in Cancer Transcriptomics and
15 Epigenomics datasets as a proof-of-concept to visualize Multiple Differential Expression and Single
16 Sample Gene Set Enrichment Analysis.

17 **Author Summary**

18 Bioinformatics and Data Science are routinely challenged to distill intelligible results from huge
19 amounts of data. These results, in turn, are conveyed through plots and visualizations that should be
20 easily reproducible for scientific soundness and ethical reasons. A specific area in which these anal-
21 yses are of critical importance is Genomics, where Genes functions need to be enriched when com-
22 paring pathological states or treatments. Here we present a software framework that aims at standard-
23 izing said differential analyses and visualizations when dealing with genomics data. Finally, we show
24 how it can be employed to shear light on publicly available datasets, even in small casuistry of Rare
25 Cancers.

26 **Introduction**

27 Gene Ontology (GO) and Pathway Enrichment Analysis are pivotal aspects of Life Science research
28 – but the level of standardization and reproducibility is worryingly low for such popular techniques
29 [1].

30 Additionally, most of the enrichment analyses currently published rely on web applications
31 that, on the one hand, enable non-bioinformaticians to conduct exploratory analyses; on another,
32 open concern for result reproducibility, being a *manual* step of data processing strongly contrasting
33 the rules for reproducible bioinformatics [2-3].

34 Virtualization techniques such as Docker and Singularity helped to encapsulate software ena-
35 bling total reproducibility, while additional workflow management layers such as Nextflow and
36 Snakemake [4-5] enabled to build of complex virtualized pipelines and run them in High-
37 Performance Computing Clusters. Unfortunately, what is presented on a life science paper is not
38 primary output matrices, but functional enrichments that currently do not benefit from such ad-
39 vancements.

40 Among the R packages available to the community, the *clusterProfiler* is a notable exception,
41 with a development that has focused many features on genomics coordinates enrichment and specific
42 high-throughput experiments, while our focus lies on the high-level conceptualization and visualiza-
43 tion of differential analysis [6].

44 Here we present AUTO-go, a logical and bioinformatics framework that enables (1) repro-
45 ducible GO analyses; (2) high quality automated visualizations; (3) proposes a high-level visualiza-
46 tion for complex experimental designs with multiple comparisons.

47 **Design and implementation**

Article short title

48 According to the logical framework (Fig. 1), a Differential Expression is the most frequent starting
49 input from which one or several gene lists are extracted according to fold change and statistical sig-
50 nificance filters (e.g., *strongly upregulated*, $\log_{2}FC > 1$ and $padj < 0.05$). The protocol core is an
51 atomic function that enriches a gene list over a list of selected databases, from which several visuali-
52 zations are produced (Fig 1). The gene list can derive from several Genomics applications as de-
53 scribed in the Use Cases section.

54

55 **Gene List Enrichment Visualization**

56 Every *<gene list, database>* combination produces a high-quality bar plot with the top N
57 terms enriched, with dynamic resizing to accommodate long terms naming in the final plot.

58 The current implementation of the core module relies on the Enrichr API [7], but it is engi-
59 neered to be generalized with other enrichment functions, with the only constrain of having a gene
60 list as input and a tuple matrix with *<Term, Enrichment Score>* as output.

61

62 **Multiple Comparison Visualization**

63 A classical need in -omics analysis is the representation of functional terms enriched in sever-
64 al conditions or comparisons. The HeatmapGO module is built to provide a high-level visualization
65 of multiple comparisons enrichment, with rows representing terms, such as GO components and
66 Transcription Factors, and columns being experimental comparisons.

67

68 **ssGSEA**

69 In many fields, the scarcity of sample availability does not allow classical statistical modeling. The
70 challenge in obtaining robust results is exacerbated by the employment of -omics profiling, collecting
71 thousands of features per observation. To this purpose, we expanded the AUTO-go package with the

72 single-sample implementation of the Gene Set Enrichment Analysis Algorithm [8-9], allowing re-
73 searchers to compare discrete cohorts of samples over known gene signatures.

74 For all the visualization depicting a subset of the enriched terms, a ranking choice must be
75 made to represent a human-readable number of terms and clusters. In the ssGSEA and HeatmapGO,
76 the top 20 terms are selected by ascending $-\log_{10}(p\text{-adjusted})$ score. Other developers and data scien-
77 tists would pick a different ranking employing a mixture of significance and variance among samples
78 and comparisons to show the functions having a strong modulation.

79

80 **Results**

81 To provide a proof-of-concept application of our package, we envisioned three analytical settings to
82 test it, namely 1. Large RNA-seq casuistry with multiple comparisons Differential Expression and
83 Enrichment (Tumor Cancer Genome Atlas, TCGA) 2. Discrete in-vitro enrichment of gene lists rep-
84 resenting epigenetic signals (Encyclopedia of DNA elements, ENCODE) 3. Discrete in-vivo rare tu-
85 mor samples profiled via total RNA-seq. (Fig. 2). In the first use case, the TCGA dataset of Skin Cu-
86 taneous Melanoma Adenocarcinoma (TCGA-SKCM) was partitioned according to a specific immu-
87 notherapy biomarker, the Tumor Mutational Burden (TMB). Differential expression was carried out
88 by comparing all TMB quartiles (Fig. 2,3) [10]. The KEGG 2021 Heatmap shows a stronger enrich-
89 ment in Ras signaling pathway in the higher group comparison (Q3-Q4), suggesting a switch in the
90 higher mutational load group (Fig. 2,3). This enrichment can be further investigated at the LolliGO
91 level showing that most Ras-related genes are upregulated except for FGF5, while down-regulated
92 genes are more enriched in Cortisol synthesis and secretion, less evident from the Heatmap.

93 Next, the epigenetic unit test was fetched from the ENCODE database, fetching all the RNA
94 Immunoprecipitation sequencing (RIP-seq) available in the K562 cell line. Gene lists were obtained
95 by annotating with Homer [11] the enriched peaks and extracting only the promoter-TSS records. In

Article short title

96 this scenario, the Cellular Component database coupled with the *lollyGO* modules shows stronger en-
97 richment hydrogen peroxide metabolic and catabolic process in mRNA targets of ELAVL1 in (Fig.
98 4).

99 Finally, the third unit test was carried out on the on the GSE168493 record, containing total
100 RNA-seq profiles from a small casuistry of Epithelioid hemangioendothelioma, a rare tumor with an
101 incidence of 1 out of million people [12]. In this instance, the ssGSEA package enables to shear light
102 into the pathway activation peculiarities of said tumors, with a stronger enrichment of PSMB5 target
103 genes in samples hEHE.6 and hEHE5 (Fig. 5).

104 Taken together, all these examples point out many analytical scenarios in which the Auto-GO
105 package can provide a solid foundation and a valuable engineering tool for -omics-focused
106 Bioinformaticians.

107

108 **Availability and Future Directions**

109 The package is available at <https://gitlab.com/bioinfo-ire-release/auto-go>. The repository contains a
110 step-by-step tutorial for the whole framework usage and the data input to reproduce the first use case
111 presented in the results section, along with a Dockerfile. All the generated outputs, folders, and fig-
112 ures are available in the tutorial and in Fig. S1.

113

114 **Figure Captions**

115 **Fig 1. Logical framework and implementation workflow.**

116 **Fig 2. Use case schema.** Workflow of the three use cases with different casuistry and comparison
117 sizes.

E. Sperandio et. al

118 **Fig 3. Results on DE genes enriched on the TCGA-SKCM multiple TMB comparisons.** Rows:
119 enriched terms over KEGG_2021 Enrichr library. Columns: genes regulated in multiple compari-
120 sons. Cell content: $-\log_{10}(p\text{adj} + 1)$ reported only for significant clusters.

121 **Fig 4. LolliGO plot from RIP-seq:** Ontology enrichment over a list of ELAVL targets derived from
122 RIP-seq. Color: percentage of the cluster given as input with respect to the total functional cluster.
123 Dot size: gene count for cluster.

124 **Fig 5. Single-Sample Gene Set Enrichment Analysis heatmap:** Heatmap showing ssGSEA en-
125 richment over the *Hallmark* term for the 6 RNA-seq samples (eEHE1-6). Z-score of the Enrichment
126 Score in cell content.

127 **Fig. S1. Folder tree of the AUTO-go output**

128

129

130 **Acknowledgements**

131 We thank Francesca Nardozza for editorial assistance.

132

133 **Author Contributions**

134 Conceptualization: Matteo Pallocca, Eleonora Sperandio

135 Formal analysis: Matteo Pallocca, Eleonora Sperandio

136 Methodology: Matteo Pallocca, Eleonora Sperandio, Isabella Grassucci, Lorenzo D'Ambrosio

137 Software: Eleonora Sperandio

138 Supervision: Matteo Pallocca

139 Validation: Lorenzo D'Ambrosio, Isabella Grassucci

140 Writing – original draft: Matteo Pallocca

141 Writing – review & editing: Matteo Pallocca, Isabella Grassucci

Article short title

142 **Funding**

143 This work has been supported by the Italian Ministry of Health (Ricerca Corrente 2020).

144 *Conflict of Interest:* none declared.

145 **References**

- 146 1. Ashburner, M., Ball, C. A., Blake, J. A., Botstein, D., Butler, H., Cherry, J. M., Davis, A. P.,
147 Dolinski, K., Dwight, S. S., Eppig, J. T., Harris, M. A., Hill, D. P., Issel-Tarver, L.,
148 Kasarskis, A., Lewis, S., Matese, J. C., Richardson, J. E., Ringwald, M., Rubin, G. M., &
149 Sherlock, G. (2000). Gene Ontology: tool for the unification of biology. *Nature Genetics*
150 2000 25:1, 25(1), 25–29. <https://doi.org/10.1038/75556>
- 151 2. Kulkarni, N., *et. al* (2018). Reproducible bioinformatics project: A community for reproduc-
152 ible bioinformatics analysis pipelines. *BMC Bioinformatics*, 19(10), 5–13.
- 153 3. Dolinski, K., & Botstein, D. (2013). Automating the construction of gene ontologies. *Nature*
154 *Biotechnology* 2013 31:1, 31(1), 34–35. <https://doi.org/10.1038/nbt.2476>
- 155 4. Di Tommaso, P., Chatzou, M., Floden, E. W., Barja, P. P., Palumbo, E., & Notredame, C.
156 (2017). Nextflow enables reproducible computational workflows. *Nature Biotechnology*,
157 35(4), 316–319. <https://doi.org/10.1038/NBT.3820>
- 158 5. Köster, J., & Rahmann, S. (2018). Snakemake-a scalable bioinformatics workflow engine.
159 *Bioinformatics (Oxford, England)*, 34(20), 3600.
160 <https://doi.org/10.1093/BIOINFORMATICS/BTY350>
- 161 6. Wu, T., *et. al* (2021). clusterProfiler 4.0: A universal enrichment tool for interpreting omics
162 data. *Innovation (New York, N.Y.)*, 2(3).
- 163 7. Kuleshov, M. *et. al* (2016). Enrichr: a comprehensive gene set enrichment analysis web serv-
164 er 2016 update. *Nucleic Acids Research*, 44(W1), W90–W97.

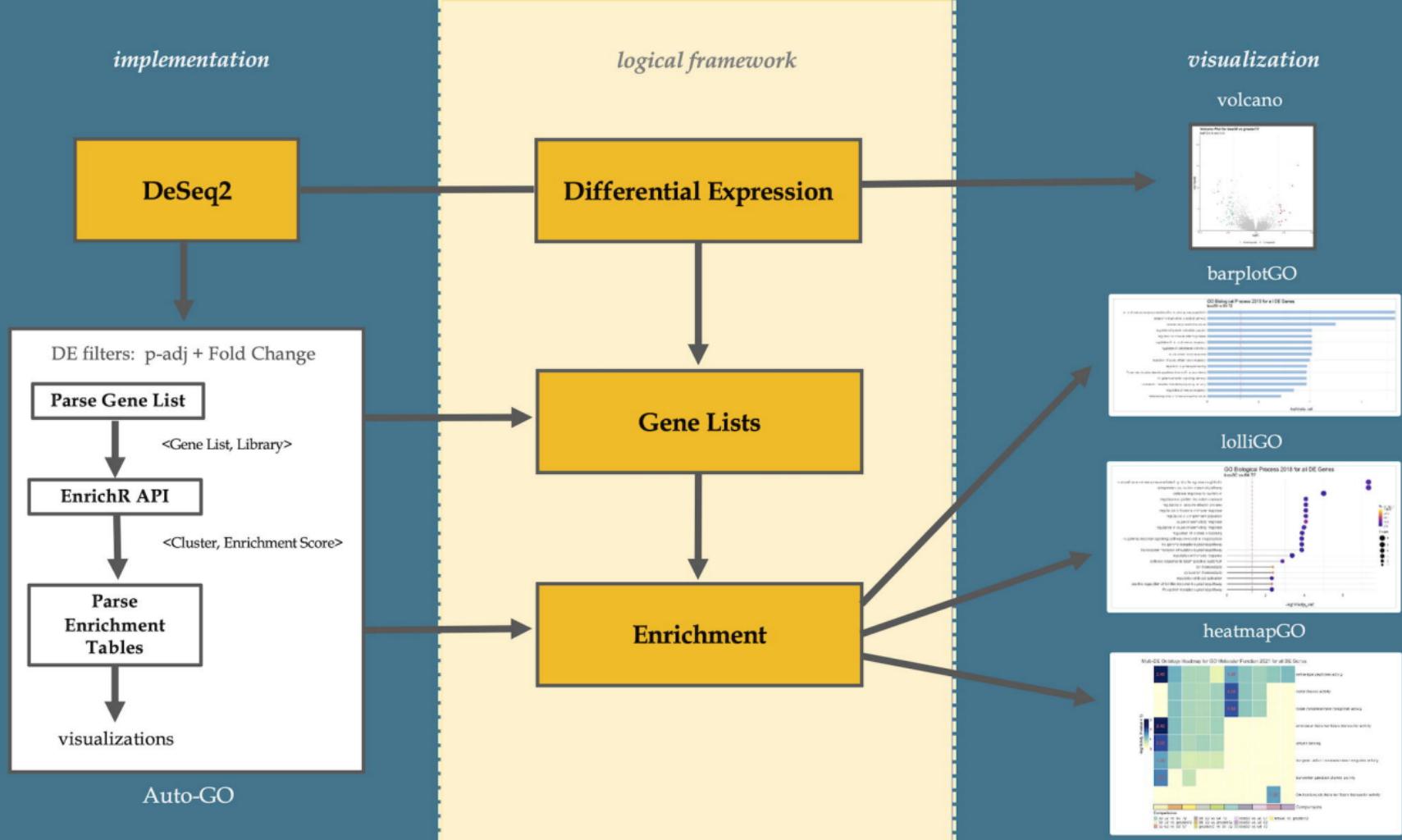
165 8. Barbie, D. A., Tamayo, P., Boehm, J. S., Kim, S. Y., Moody, S. E., Dunn, I. F., Schinzel, A.
166 C., Sandy, P., Meylan, E., Scholl, C., Fröhling, S., Chan, E. M., Sos, M. L., Michel, K.,
167 Mermel, C., Silver, S. J., Weir, B. A., Reiling, J. H., Sheng, Q., ... Hahn, W. C. (2009). Sys-
168 tematic RNA interference reveals that oncogenic KRAS-driven cancers require TBK1. *Nature*
169 2009 462:7269, 462(7269), 108–112. <https://doi.org/10.1038/nature08460>

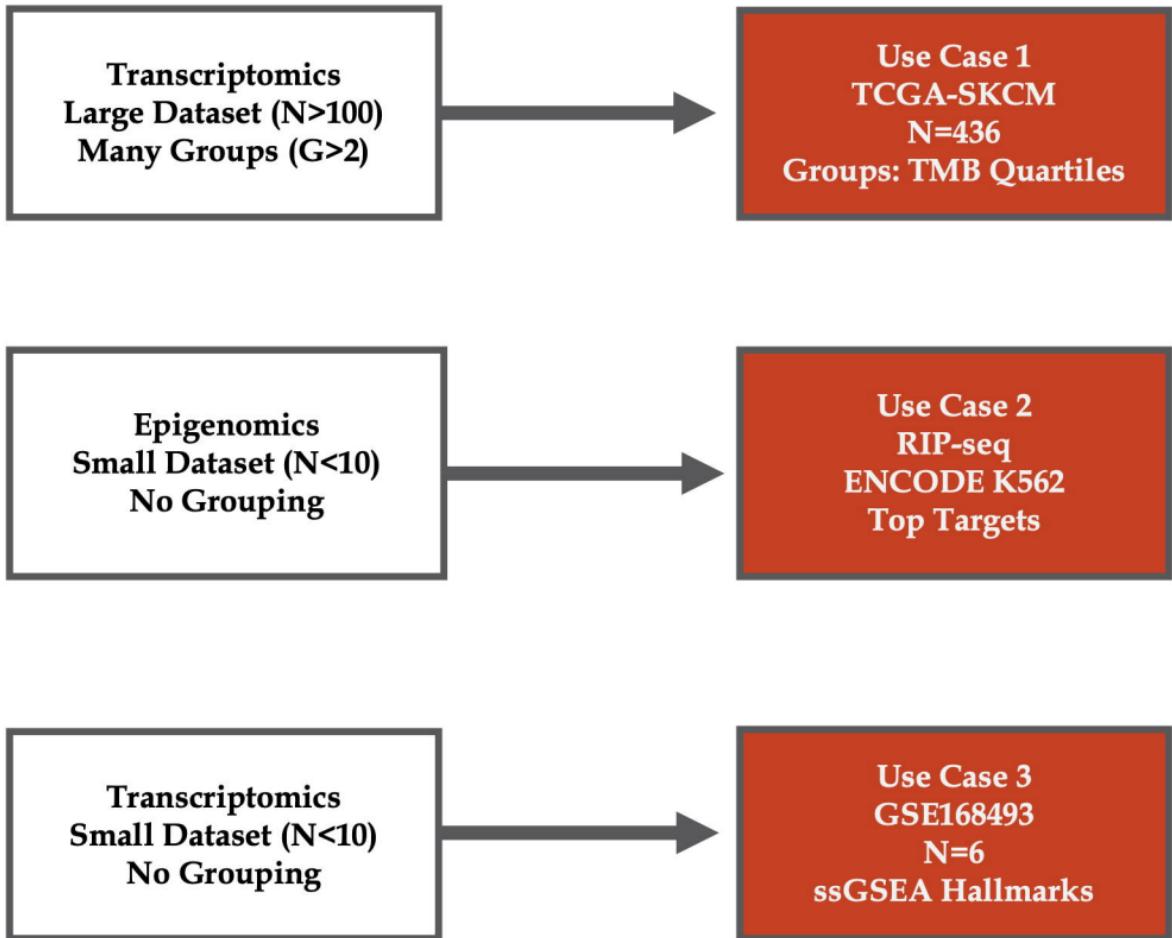
170 9. Subramanian, A., Tamayo, P., Mootha, V. K., Mukherjee, S., Ebert, B. L., Gillette, M. A.,
171 Paulovich, A., Pomeroy, S. L., Golub, T. R., Lander, E. S., & Mesirov, J. P. (2005). Gene set
172 enrichment analysis: a knowledge-based approach for interpreting genome-wide expression
173 profiles. *Proceedings of the National Academy of Sciences of the United States of America*,
174 102(43), 15545–15550. <https://doi.org/10.1073/PNAS.0506580102>

175 10. Akbani, R., Akdemir, K. C., Aksoy, B. A., Albert, M., Ally, A., Amin, S. B., Arachchi, H.,
176 Arora, A., Auman, J. T., Ayala, B., Baboud, J., Balasundaram, M., Balu, S., Barnabas, N.,
177 Bartlett, J., Bartlett, P., Bastian, B. C., Baylin, S. B., Behera, M., ... Zou, L. (2015). Genomic
178 Classification of Cutaneous Melanoma. *Cell*, 161(7), 1681.
179 <https://doi.org/10.1016/J.CELL.2015.05.044>

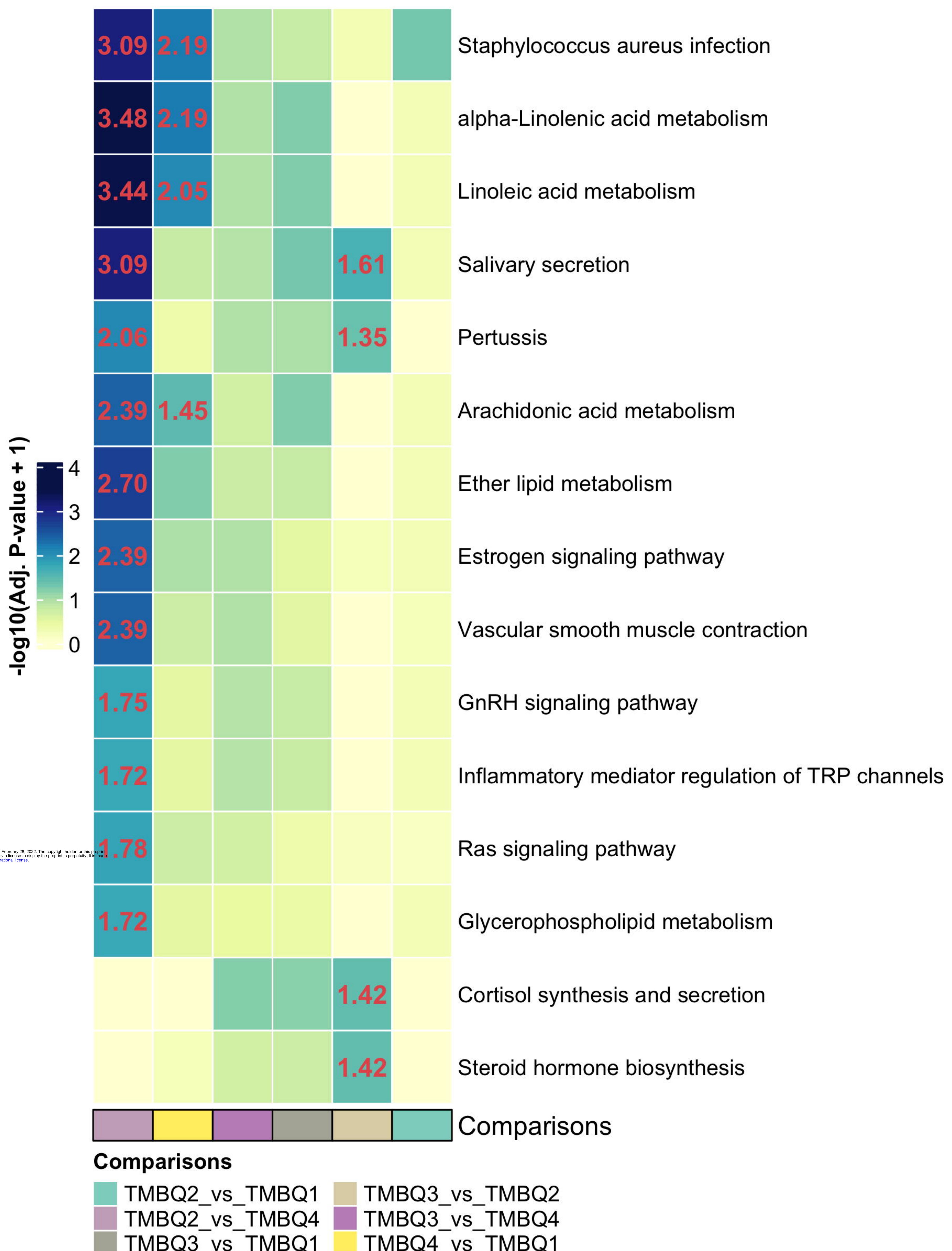
180 11. Heinz, S., Benner, C., Spann, N., Bertolino, E., Lin, Y. C., Laslo, P., Cheng, J. X., Murre, C.,
181 Singh, H., & Glass, C. K. (2010). Simple combinations of lineage-determining transcription
182 factors prime cis-regulatory elements required for macrophage and B cell identities. *Molecul-
183 lar Cell*, 38(4), 576–589. <https://doi.org/10.1016/J.MOLCEL.2010.05.004>

184 12. Seavey, C. N., Pobbati, A. v., Hallett, A., Ma, S., Reynolds, J. P., Kanai, R., Lamar, J. M., &
185 Rubin, B. P. (2021). WWTR1(TAZ)-CAMTA1 gene fusion is sufficient to dysregulate
186 YAP/TAZ signaling and drive epithelioid hemangioendothelioma tumorigenesis. *Genes and
187 Development*, 35(7), 512–527. <https://doi.org/10.1101/GAD.348220.120/-/DC1>



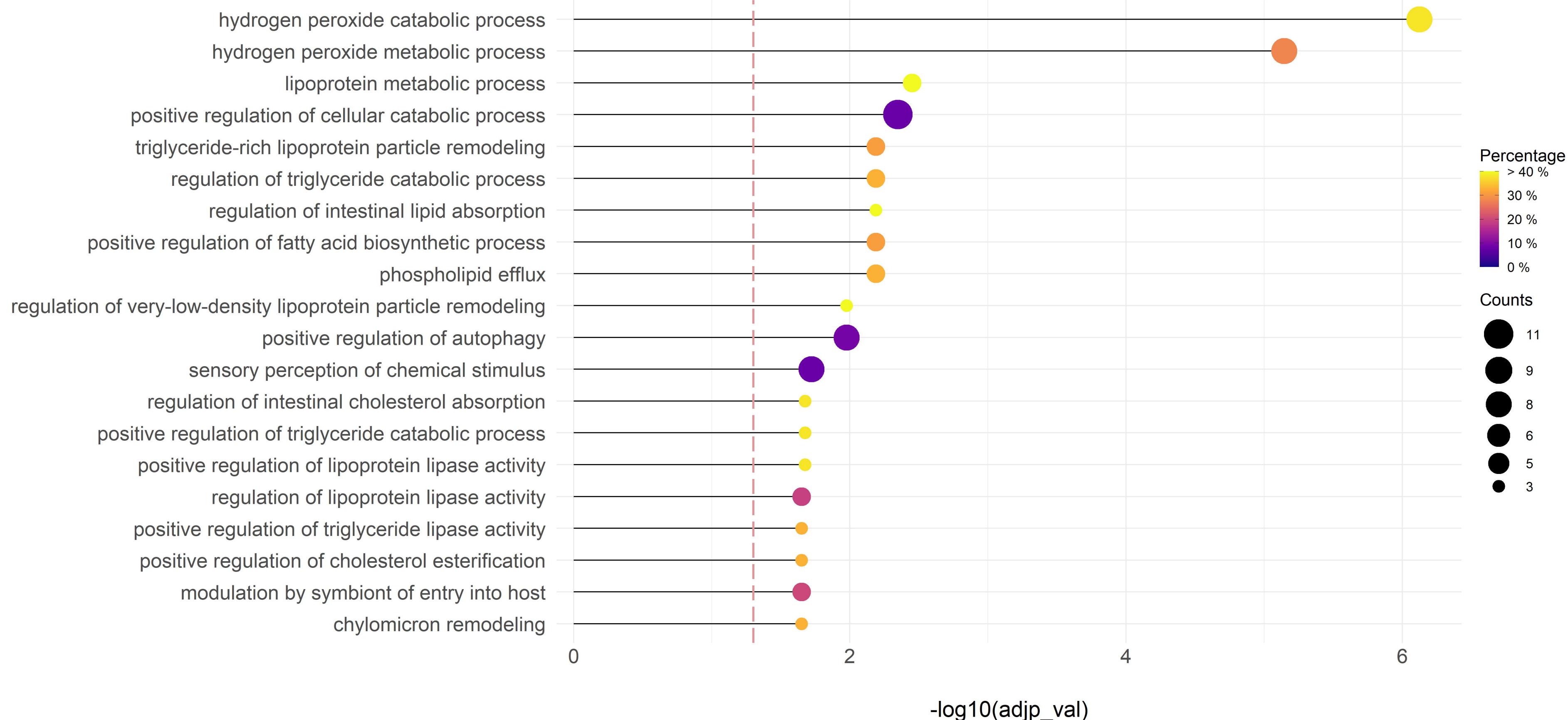


Multi-DE Ontology Heatmap for KEGG 2021 Human for all DE Genes

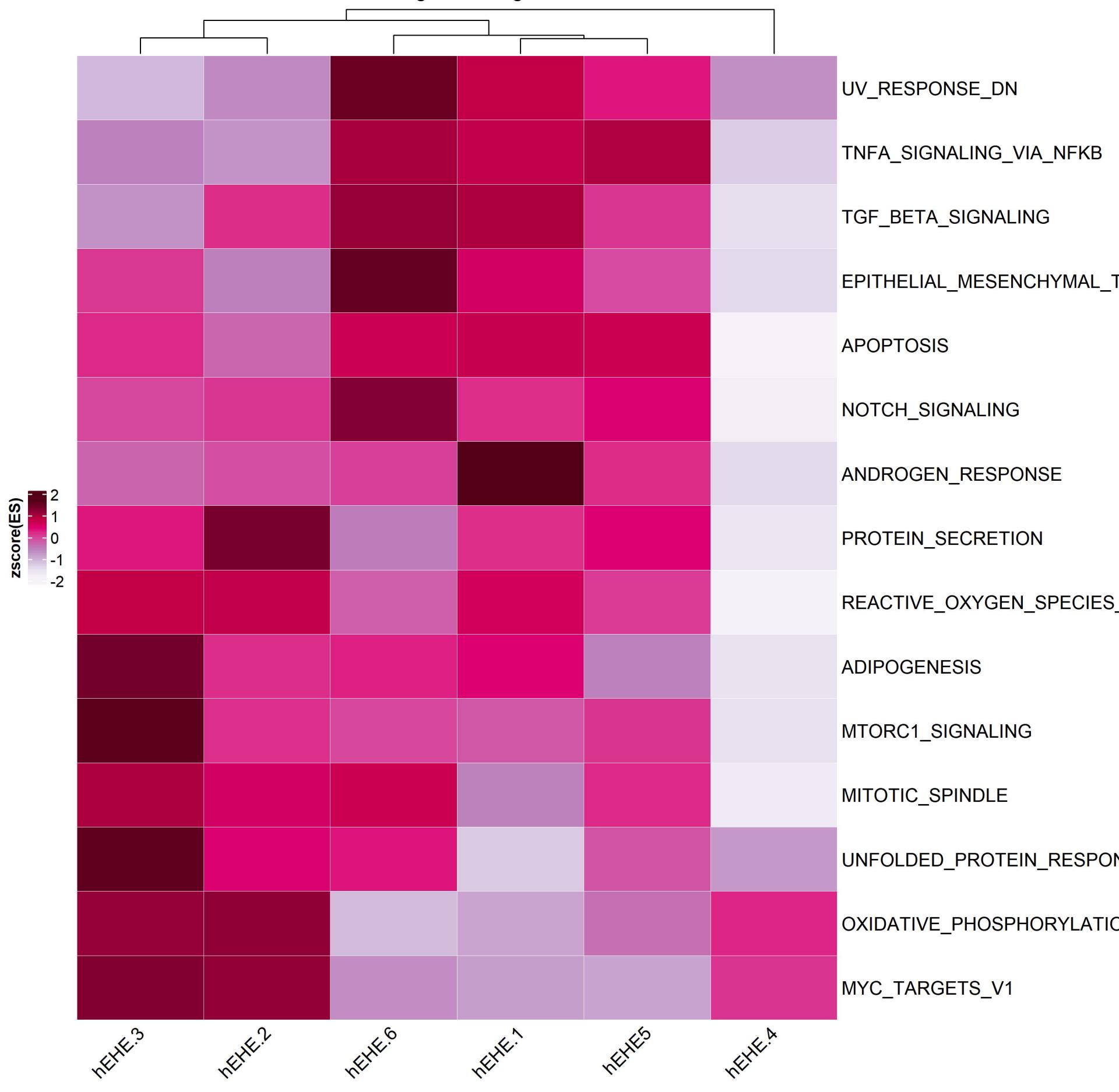


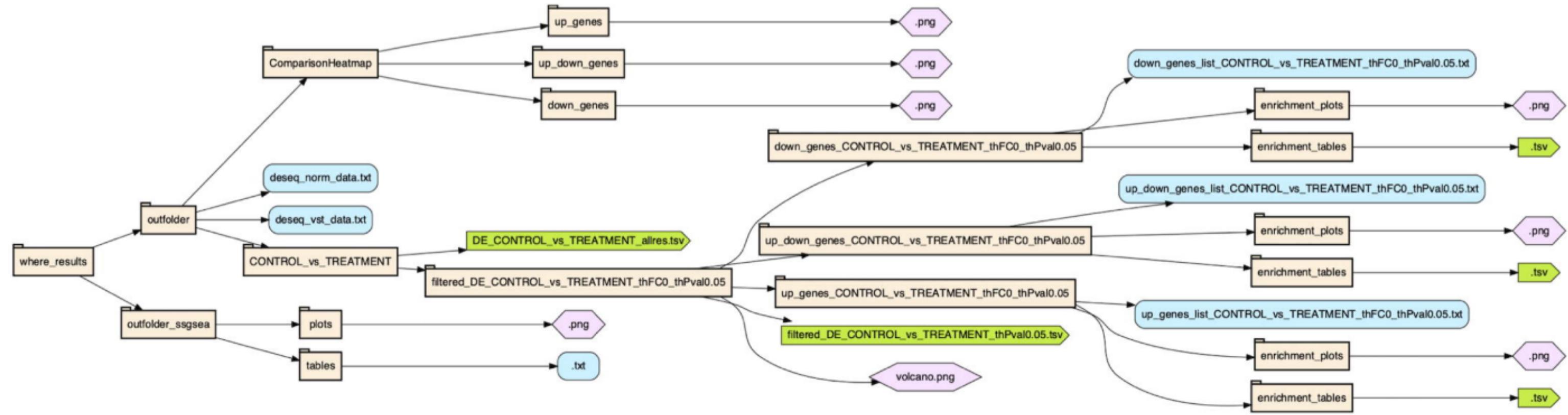
GO Biological Process 2021

ELAVL1 1 target



Distribution of significative genesets for h





A