

1 **A two-gene strategy increases the iron and zinc concentration of wheat flour and improves
2 mineral bioaccessibility for human nutrition.**

3 **Authors:** Sophie A Harrington¹, James M Connerton^{1,4}, Natasha I M Nyangoma², Rose McNelly^{1,4},
4 Yvie M L Morgan^{1,4}, Mohamad F Aslam³, Paul A Sharp³, Alexander A T Johnson², Cristobal Uauy¹,
5 Janneke Balk^{1,4}

6 ¹ John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK

7 ² School of BioSciences, The University of Melbourne, Victoria 3010, Australia

8 ³ Department of Nutritional Sciences, King's College London, London SE1 9NH, UK

9 ⁴ School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, UK

10

11 Correspondence: Janneke Balk, janneke.balk@jic.ac.uk

12

13 Author contributions: J.M.C., A.A.T.J., C.U and J.B. conceived the study and the overall research plans.
14 S.A.H., J.M.C., N.I.M.N., R.M., Y.M.L.M. and M.F.A. designed and performed the experiments. All
15 authors analysed the data. S.A.H. and J.B. wrote the article with contributions of all authors.

16

17 **Abstract**

18 Dietary deficiencies of iron and zinc cause human malnutrition globally, which can be mitigated by
19 biofortified staple crops. Conventional breeding approaches to increase grain mineral concentrations
20 in wheat (*Triticum aestivum* L.) have had only limited success so far due to relatively low genetic
21 variation. Here we demonstrate that a transgenic approach combining endosperm-specific expression
22 of the wheat vacuolar iron transporter gene *TaVIT2-D* with constitutive expression of the rice
23 nicotianamine synthase gene *OsNAS2* has the potential to dramatically improve mineral micronutrient
24 intake from wheat products. In two distinct bread wheat cultivars, we show that the VIT-NAS construct
25 led to a two-fold increase in zinc to ~50 µg g⁻¹ in wholemeal flour and a two-fold increase in both zinc
26 and iron in hand-milled white flour. In highly pure, roller-milled white flour, the concentration of iron
27 was enhanced three-fold to ~25 µg g⁻¹. A greater than three-fold increase in the level of the natural
28 plant metal chelator nicotianamine in the grain of VIT-NAS lines was associated with improved iron
29 and zinc bioaccessibility in white flour. The growth of VIT-NAS plants in the greenhouse was
30 indistinguishable from untransformed controls. We conclude that the effects of each gene cassette
31 are additive in altering the total concentration and distribution of iron and zinc in wheat grains. This
32 demonstrates the potential of a transgenic approach to enhance the nutritional quality of wheat well
33 beyond what is possible by breeding approaches in order to alleviate dietary mineral deficiencies.

34

35 **INTRODUCTION**

36 Low dietary intake of the essential mineral micronutrients iron and zinc from staple crops contributes
37 to the global burden of malnutrition. Iron deficiency is the leading cause of anaemia worldwide,
38 particularly affecting young children and adult females (1). In children, iron deficiency can lead to
39 stunted development, while in adults it can severely hinder economic productivity and greatly
40 enhances the risk of maternal death in childbirth (2). Zinc deficiency affects all age groups and genders,
41 manifested in stunting and reduced immunity to infectious diseases (3). In some South Asian and sub-
42 Saharan countries with cereal-dominated diets, over half of the population is predicted to be zinc-
43 deficient (4).

44 Bread wheat (*Triticum aestivum* L.) is a global staple which provides between 20 and 25% of calories
45 worldwide (5). Yet a combination of uneven nutrient distribution and associated anti-nutrient factors
46 within the grain make wheat a suboptimal source of iron and zinc in human diets (6). Iron and zinc are
47 predominantly located in the aleurone tissue and embryo (7-10). These parts of the grain are removed
48 during industrial-scale roller milling of white flour, leading to the loss of 65-75% of the iron and zinc
49 present in the whole grain (6, 11). Additionally, the bran fractions enriched in aleurone, pericarp, and
50 embryo tissues contain high amounts of phytate (myoinositol-1,2,3,4,5,6-hexakisphosphate), an anti-
51 nutrient which inhibits iron and zinc bioavailability (12, 13). Efforts to improve iron and zinc
52 concentrations in wheat, therefore, must deal with the complementary issues of low levels of mineral
53 micronutrient in the starchy endosperm, and low bioavailability in the outer cell layers comprising the
54 bran.

55 Attempts have been made to leverage natural variation in wheat germplasm to increase grain iron
56 and zinc concentrations by conventional breeding. A recent analysis of mineral micronutrients in the
57 Watkins panel of wheat landraces identified variation of 24 to 49 $\mu\text{g g}^{-1}$ zinc in the wholemeal flour,
58 and 8 to 15 $\mu\text{g g}^{-1}$ zinc in white flour (14). Similar levels of variation in zinc have been found in panels
59 of Indian-adapted wheat varieties and CIMMYT germplasm (15-17). Variation in iron concentrations is
60 also seen within wheat germplasm, particularly landraces and wild relatives; a panel of 170 elite,
61 landrace, and wild relative varieties had wholemeal iron concentrations ranging from 25 to 56 $\mu\text{g g}^{-1}$
62 iron (18). This existing genetic variation has been used to improve wholegrain micronutrient levels in
63 elite wheat varieties. For example, introgression of the transcription factor *NAM-B1* from *T. turgidum*
64 ssp. *dicoccoides* into bread wheat led to an increase in iron and zinc content of 18 and 12%,
65 respectively (19, 20). However, while genetic variation in the wholegrain iron concentration exists
66 within germplasm stocks, to our knowledge no significant natural variation has been observed for iron
67 in white flour, nor for increased iron bioavailability (21). As a result, research effort has turned towards
68 implementing transgenic and cisgenic approaches to improve iron and zinc levels and their
69 bioavailability (6, 22).

70 Early work towards enhancing micronutrient levels was carried out in rice, exploiting genes involved
71 in iron uptake, transport and storage. *NICOTIANAMINE SYNTHASE* (*NAS*), encoding the enzyme that
72 synthesizes the metal chelator nicotianamine (NA), plays a key role in iron uptake and mobility of
73 divalent metal ions in plants (23). Overexpression of either of the three individual *NAS* genes in rice
74 not only led to increased concentrations of NA, iron, and zinc in rice grains, but also improved iron
75 bioavailability (24-27). An alternative approach to improving grain micronutrient content focussed on
76 the iron storage protein ferritin. Endosperm-specific expression of the soybean *FERRITIN* gene in rice
77 led to an increase in grain iron concentration by two-to-three fold (28).

78 Initial efforts to biofortify wheat flour with iron and zinc built on the findings in rice, targeting similar
79 candidate genes. Endosperm-specific expression of a *FERRITIN* gene from wheat or bean in bread
80 wheat led to a ~60% increase in total grain iron (29, 30), however X-Ray Fluorescence imaging showed
81 that iron accumulated in the crease of the grain, not in the endosperm (31). High expression of the
82 rice *OsNAS2* gene in wheat under a constitutive promoter led to 40 – 100% more iron and 60 – 250%
83 more zinc in whole grains (30). Field trials of wheat lines generated in a different study but with a
84 similar *OsNAS2* gene cassette showed increases of up to 30% more iron and up to 50% more zinc in
85 whole grain and white flour. Whereas improvements in the mineral micronutrient concentrations
86 varied from year to year and in different field sites, the lines showed a robust >200% increase in NA,
87 as well as improved iron bioavailability (32). Another strategy to modify grain iron was demonstrated
88 in wheat by overexpressing the wheat *VACUOLAR IRON TRANSPORTER 2* gene (*TaVIT2-D*) under the
89 wheat endosperm-specific *HIGH MOLECULAR WEIGHT GLUTENIN-D1* promoter (33, 34). This resulted

90 in redistribution of iron to the endosperm region adjacent to the embryo, with a consistent ~200%
91 increase in iron in hand-milled white flour and ≥250% increase in highly pure, roller-milled white flour
92 fractions, from 8 to 20 $\mu\text{g g}^{-1}$ (6, 33).

93 Here we report on the results of combining endosperm expression of the *TaVIT2-D* gene with
94 constitutive expression of the *OsNAS2* gene in hexaploid bread wheat. Transformation with the so
95 called VIT-NAS construct in two genetically distinct wheat cultivars led to significant increases in both
96 iron and zinc concentrations in white and wholemeal flour, with additive effects of each gene cassette
97 and minimal impacts on plant growth. NA levels were up to ten-fold higher in the VIT-NAS lines
98 compared to control, correlating with increased iron and zinc bioaccessibility.

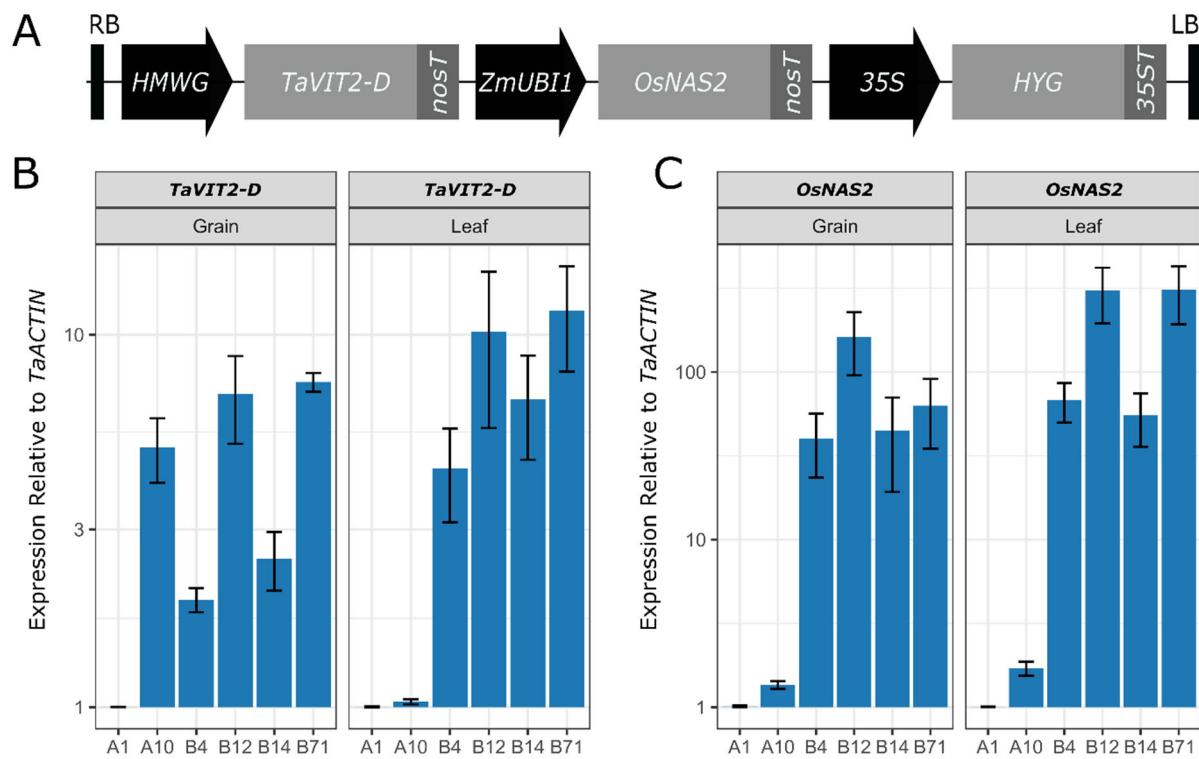
99

100 RESULTS

101 The VIT-NAS construct drives high levels of *TaVIT2* and *OsNAS2* expression in grain and leaf tissue.

102 To increase the total amount of iron and zinc in the wheat grain, while maximizing the concentration
103 in the endosperm, we generated a construct, referred to as VIT-NAS, combining the *HMWG::TaVIT2-D*
104 cassette (33) with the *ZmUBI1::OsNAS2* cassette (35) in a binary T-DNA vector with the hygromycin
105 resistance marker (Figure 1A). Transformation of the VIT-NAS construct was independently carried out
106 in both the cultivar Fielder, nowadays only used for research, and the cultivar Gladius, a drought-
107 resistant variety grown in Australia. Following selection for hygromycin resistance, a total of thirteen
108 independent transformants were obtained in cv. Fielder, with copy numbers ranging from one (in two
109 transformants) to more than twelve. Iron staining of grains was used to select five independent
110 transformants alongside a null transformant for further characterisation in homozygous lines of the
111 T_3 generation (Table 1). In cv. Gladius, 37 independent transformation events were obtained of which
112 three independent lines with a single insert of the T-DNA—BD1-T, BD4-T, and BD7-T, alongside their
113 null-segregant siblings (NS)—were selected for analysis in the T_1 generation.

114 **Table 1: VIT-NAS independent transformants in cv. Fielder and controls**

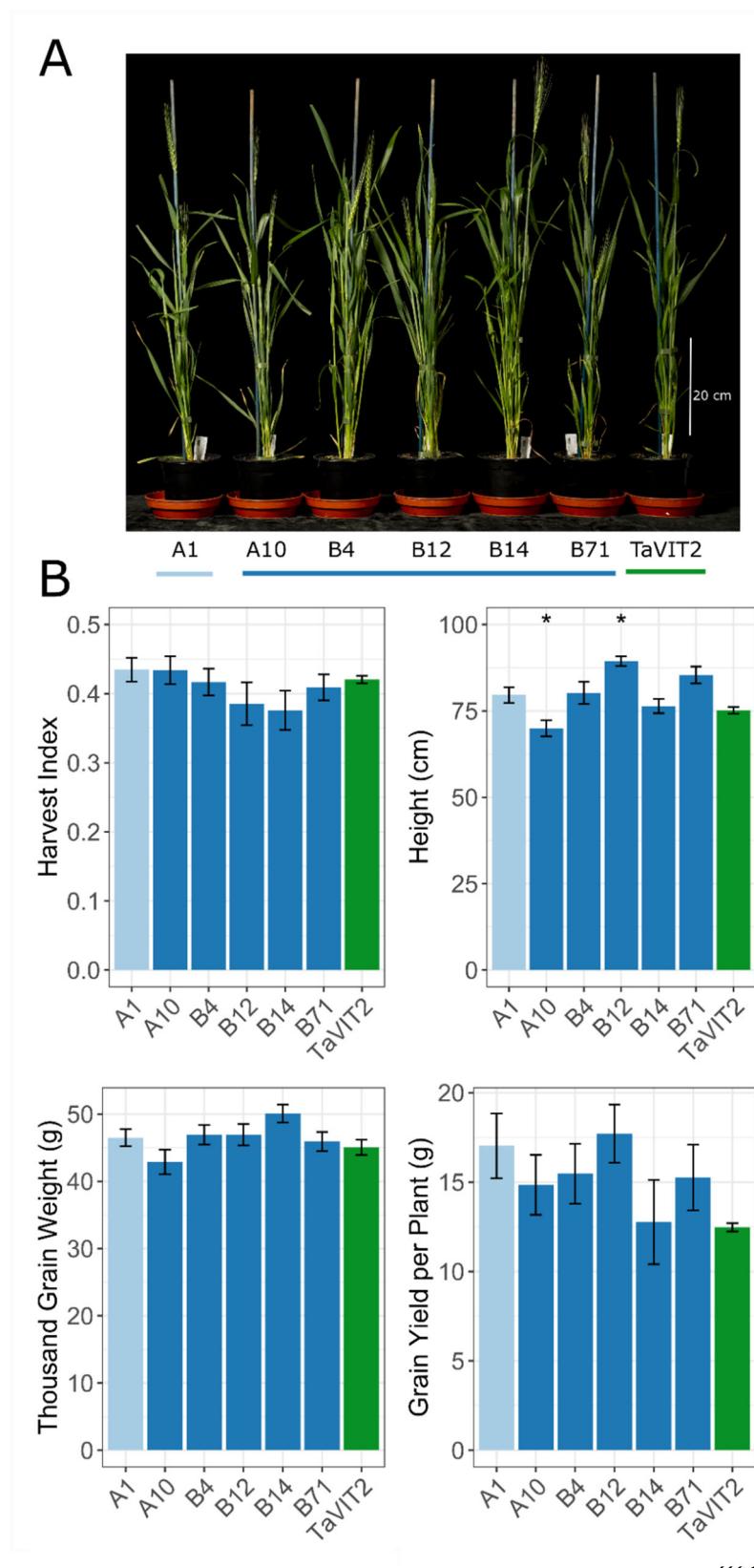

Line	Copy Number (2n)
A1	0
A10	2
B4	4
B12	~12 ^a
B14	6
B71	>20 ^a
TaVIT2 ^b	8
22-15 ^b	0

115 ^a Quantification accuracy declines at high copy numbers.

116 ^b TaVIT2 is line 22-19 as described in (33) and 22-15 is a null transformant from the same study.

117 Expression analysis by RT-qPCR confirmed high levels of *TaVIT2-D* and *OsNAS2* expression in the cv.
118 Fielder VIT-NAS lines compared to the null line A1 (Figure 1B, C). One transformant line, A10, had very
119 low expression of *OsNAS2* in both the grain and leaf tissue compared to the other VIT-NAS lines,
120 indicating that the gene is not properly transcribed in this line. The expression of the *TaVIT2-D*
121 transgene in A10 is high in the grain and low in leaves, as expected from the endosperm-specific
122 *HMWG* promoter. Unexpectedly, the other VIT-NAS lines had elevated expression levels of the
123 introduced *TaVIT2-D* gene in leaf tissue. We speculate this may be due to insertion of several copies

124 of the T-DNA in tandem, allowing the *ZmUBI1* or 35S promoters to influence *TaVIT2-D* expression (see
125 Discussion).


126
127 **Figure 1: Expression of *TaVIT2-D* and *OsNAS2* in the VIT-NAS lines.** A, Diagram of the transfer DNA construct
128 (not to scale): RB, right border; HMWG, HIGH-MOLECULAR-WEIGHT GLUTENIN-D1-1 promoter; *TaVIT2-D*, wheat
129 (*Triticum aestivum*) VACUOLAR IRON TRANSPORTER2-D gene; *nosT*, (bacterial) nopaline synthase terminator;
130 *ZmUBI1*, maize (*Zea mays*) UBIQUITIN promoter; *OsNAS2*, rice (*Oryza sativa*) NICOTIANAMINE SYNTHASE 2 gene;
131 35S, Cauliflower Mosaic Virus 35S promoter; HYG, hygromycin resistance gene; 35ST, Cauliflower Mosaic Virus
132 35S terminator; LB, left border. B-C, RT-qPCR expression of (B) *TaVIT2-D* using primers specific for the transgene
133 and (C) *OsNAS2* in grain (left) and flag leaf (right) tissue at 21 days post-anthesis. Expression levels calculated
134 relative to *TaACTIN* for null transformant (A1) and transgenic (A10, B4, B12, B14, B71) lines. Error bars represent
135 the standard error of three biological replicates for each line.

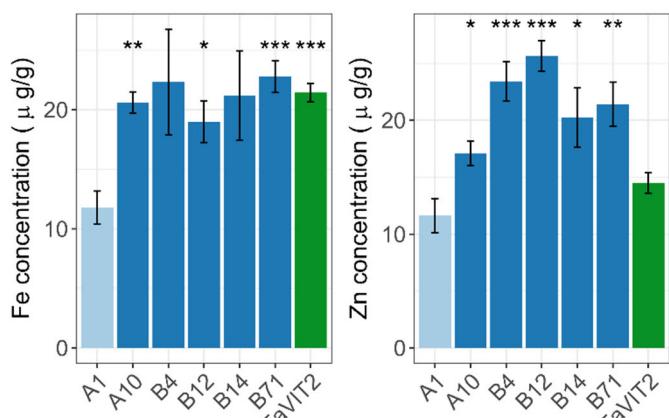
136 **Combined overexpression of *TaVIT2* and *OsNAS2* does not affect plant growth.**

137 To investigate whether expression of the VIT-NAS construct affects plant growth, we measured
138 multiple plant growth and yield parameters for both the cv. Fielder (Fig. 2, Supp. Fig. 1) and cv. Gladius
139 transformants (Supp. Fig. 2). In general, no significant differences were seen between the null
140 transformant A1 and the VIT-NAS lines (Fig. 2B, Supp. Fig. 1 and 2). Some individual lines had a small
141 but significant difference in plant height, with cv. Fielder line A10 shorter than the null segregant,
142 while line B12 was significantly taller ($p < 0.05$, Dunnett Test against A1; Fig. 2). A single transformant
143 from cv. Gladius, BD1-T, had lower tiller number than the corresponding null sibling line ($p < 0.001$;
144 Supp. Fig. 2). The average grain area and length was significantly increased in B14 ($p < 0.01$ and 0.001 ,
145 respectively; Dunnett Test against A1; Supp. Fig. 1). The remaining lines and traits, including harvest
146 index, grain yield per plant, and thousand grain weight, showed no significant difference against the
147 controls (Fig. 2B, Supp. Fig. 1 and 2).

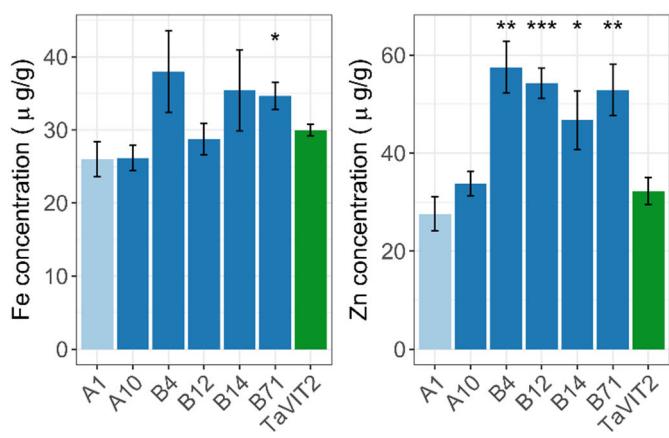
148

149

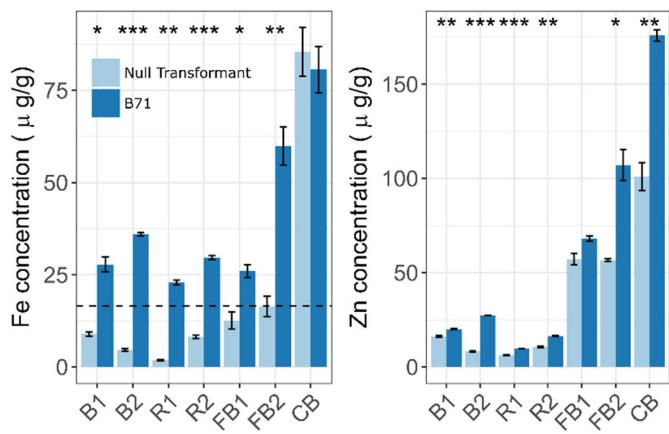
Figure 2: The VIT-NAS construct does not affect plant growth. A, Representative individual wheat plants of the VIT-NAS T_3 generation at five days after anthesis. B, Plant growth parameters including harvest index, height, thousand grain weight, and grain yield per plant in the null transformant (A1; light blue), VIT-NAS (A10, B4, B12, B14, B71; dark blue), and TaVIT2 (green) lines (* $p < 0.05$, Dunnett Test against A1). Error bars are the standard error of five biological replicates.


185 **The VIT-NAS lines have increased concentrations of iron and zinc in white and wholemeal flours.**

186 To quantify the levels of iron and zinc in the VIT-NAS grains, grains were hand-milled to obtain
187 wholemeal flour, which was sieved to obtain a crude white flour fraction. Concentrations of key
188 micronutrients were measured using Inductively Coupled Plasma-Optical Emission Spectroscopy (ICP-
189 OES). All VIT-NAS lines, in both cv. Fielder and cv. Gladius had approximately 2-fold higher
190 concentrations of iron in the white flour compared with the controls, which was statistically significant
191 in all Gladius lines and in three of the five Fielder lines ($p < 0.05$, Student's t-test; Fig. 3A and Supp. Fig.
192 3). The two-fold increase in iron in white flour is similar to that seen in lines transformed with
193 *HMWG::TaVIT2* only (Fig. 3A and Ref. 23). In contrast to the TaVIT2 line, all cv. Fielder VIT-NAS lines
194 had significantly higher concentrations of zinc in the white flour fraction compared to the control lines
195 ($p < 0.05$, Student's t-test; Fig. 3A). Similarly, two of the three cv. Gladius VIT-NAS lines had significantly
196 higher white flour zinc concentrations ($p < 0.05$, Student's t-test; Supp. Fig. S3). Therefore, the increase
197 in zinc can be attributed to overexpression of the *OsNAS2* gene in the whole plant.

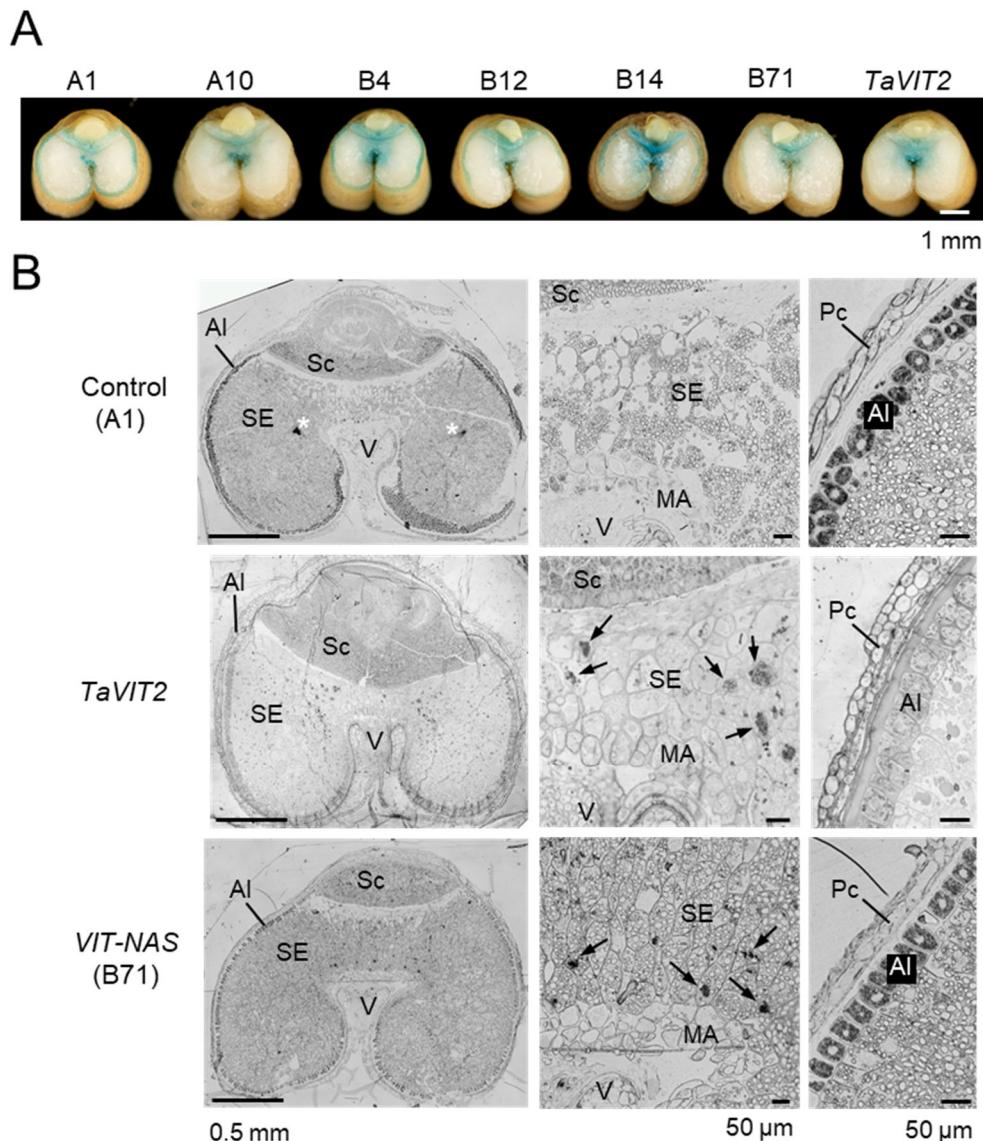

198 In wholemeal flour, only one VIT-NAS line, B71, had significantly more iron than the control ($p < 0.05$,
199 Student's t-test; Fig. 3B). Wholemeal zinc concentrations were increased approximately two-fold in all
200 VIT-NAS lines except A10 ($p < 0.05$, Student's t-test; Fig. 3B). As noted before, the expression level of
201 *OsNAS2* in the A10 line is low (Fig. 1B) and thus the A10 line is equivalent to the TaVIT2 line.
202 Correspondingly, wholemeal zinc levels in both A10 and TaVIT2 are not significantly higher than in the
203 control line. This further demonstrates the specific effect of *OsNAS2* overexpression on increasing the
204 grain zinc concentration.

205 To obtain cleaner white flour fractions, grains from several plants of the VIT-NAS line B71 and a null
206 transformant were milled using a laboratory-scale roller mill. Iron and zinc concentrations are
207 normally between $5 - 10 \mu\text{g g}^{-1}$ in Break (B) and Reduction (R) white-flour fractions in industrially milled
208 grain (6), similar to the concentrations we measured in the corresponding white-flour fractions of the
209 null transformant (Fig. 3C). In the VIT-NAS lines, the iron concentration was significantly increased by
210 three to seven-fold, to $23 - 35 \mu\text{g g}^{-1}$, and was also significantly increased in the two Fine Bran (FB)
211 fractions ($p < 0.05$, Student's t-test; Fig. 3C). A less dramatic but significant increase in the zinc
212 concentration was found in the white-flour fractions as well as a two-fold increase in zinc in FB2 and
213 coarse bran (CB). The increased zinc levels in VIT-NAS flour contrast with previous analysis of the
214 TaVIT2 line, which did not have significantly increased zinc in the roller-milled white-flour fractions
215 (12). This emphasizes both the substrate specificity of the iron TaVIT2 transporter (23) and the key
216 role of *OsNAS2* expression in increasing zinc in wheat flours.


A White Flour

B Wholemeal Flour

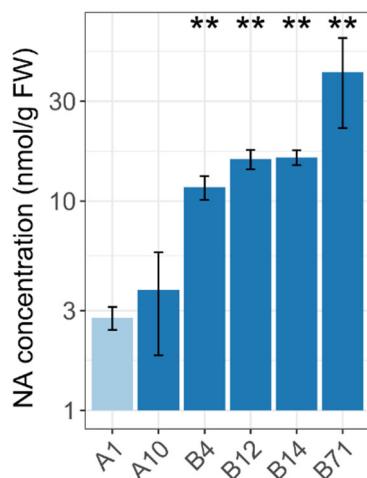
C Roller-Milled Flour Fractions


Figure 3: The VIT-NAS lines have increased iron and zinc concentrations. A and B, Iron and zinc concentrations measured by ICP-OES in white flour (A) and wholemeal flour (B) of the null transformant (A1, light blue), VIT-NAS (A10, B4, B12, B14, B71; dark blue), and TaVIT2 (green) lines in the homozygous T_3 generation. Error bars represent the standard error of five biological replicates. Student's t-test against the null (A1); *, p < 0.05, **, p < 0.01, ***, p < 0.001. C, Iron and zinc concentrations in roller-milled fractions of grain from a null transformant (light blue) and VIT-NAS (B71, dark blue). B1, first break; B2, second break; R1, first reduction; R2, second reduction; FB1, first fine bran; FB2, second fine bran; CB, coarse bran. Dashed line represents the minimum requirement for iron fortification in white flour in the UK ($16.5 \mu\text{g g}^{-1}$). Error bars represent the standard error of three technical replicates. Student's t-test between null and B71 for each fraction; *, p < 0.05, **, p < 0.01, *** p < 0.001.

251 **The distribution of iron and zinc within the grain is altered by both the *TaVIT2* and *OsNAS2* 252 transgenes.**

253 Analysis of hand-milled and roller-milled flour indicated that the VIT-NAS grains accumulate more iron 254 in the tissue which comprises the white flour (endosperm). To further investigate the spatial 255 distribution of iron within the grain, we carried out Perls' staining on cross sections of mature grains. 256 Similar to the TaVIT2 line (34), grains from VIT-NAS lines accumulated iron in the central region of the 257 endosperm, between the maternal vascular bundle and the embryo (Fig. 4A, B). Iron accumulation in 258 the endosperm of TaVIT2 lines is correlated with a decrease in the iron concentration in the aleurone 259 (34), which can be seen by Perls' staining in whole grain cross sections as a lack of a blue outline

260 (compare A1 and TaVIT2 in Fig. 4A). By contrast, in the VIT-NAS grains from line B4, B12, B14 and B71,
261 iron is retained in the aleurone tissue, although variation of staining intensity suggests the iron
262 concentration may be less than in control grains.


263 We also carried out Perls' staining enhanced with diaminobenzidine on thin sections of immature
264 grains from line B71, alongside the TaVIT2 line and the null control. Iron accumulation in globoid
265 clusters was visible in central starchy endosperm cells in both the VIT-NAS and TaVIT2 lines, but not in
266 the control line. Moreover, iron was visibly retained in the aleurone tissue in the B71 line, compared
267 to a strong depletion in the TaVIT2 line (Fig. 4B).

268
269 **Figure 4: TaVIT2 and OsNAS2 affect the distribution of iron in the grain.** A, Cross sections of mature grains
270 stained for iron (blue) using the Perls' method. B, Thin sections (1 μm) of immature grains 21 days after anthesis
271 stained for iron (black in monochrome images) using the Perls'-diaminobenzidine method. Left, cross section
272 through the grain; middle, detail at higher magnification of the starchy endosperm between the vascular bundle
273 and embryo; right, detail including the aleurone tissue. The images are representative of two grains taken from
274 two different plants from the indicated wheat lines. The TaVIT2 line was previously described (34). AI, aleurone;
275 MA, modified aleurone; Pc, pericarp; Sc, scutellum of the embryo; SE, starchy endosperm; V, vascular bundle
276 (maternal tissue). White asterisk indicates a non-specific dye precipitate; black arrows point at iron accumulation
277 in the vacuoles of starchy endosperm cells. Scale bars as indicated.

278 **The VIT-NAS lines have increased iron and zinc bioaccessibility.**

279 To measure the extent to which overexpression of *OsNAS2* increases the concentration of
280 nicotianamine, we carried out HPLC-MS on wholemeal flour samples (36). We saw significant increases
281 in nicotianamine between three and ten-fold above the control ($p < 0.01$, Mann-Whitney test; Fig. 5A).
282 The wheat line without significantly increased nicotianamine levels, A10, was also the line which had
283 failed to induce *OsNAS2* expression (Fig. 1B). The fold increase in NA is similar to that found in grain
284 of lines overexpressing *OsNAS2* alone, which were single copy insertion lines (32, 35). Lines with two
285 or more T-DNA inserts, and thus more copies of *OsNAS2*, displayed only a weak trend for higher grain
286 NA concentrations. The concentration of deoxymugineic acid (DMA), a downstream metabolite of NA
287 also associated with mineral bioavailability, was not measured, however DMA is expected to be
288 approximately 70% of the NA levels, as shown in extensive analysis in the *OsNAS2* wheat lines (32).
289

Figure 5: The VIT-NAS lines contain higher levels of nicotianamine.
Nicotianamine concentration in grain of the control (A1, light blue) and VIT-NAS (A10, B4, B12, B14, B71, dark blue) lines. Error bars represent the standard error of three biological replicates. **, $p < 0.01$; Mann-Whitney test compared to the control line.

300
301 We also measured the amount of phytate, an anti-nutrient which inhibits iron and zinc bioavailability,
302 in white and wholemeal flour. We observed no significant differences in phytate concentrations in the
303 VIT-NAS lines compared to the control. This resulted in a two-fold increase in the iron-to-phytate
304 molar ratio in white flour for three of the five lines tested, similar to the TaVIT2 line (Supp. Fig. 4; $p <$
305 0.05, Student's t-test).

306 We then investigated the bioaccessibility of the iron and zinc levels in white flour from the VIT-NAS
307 lines. Bioaccessibility is the quantity of soluble mineral released during simulated in vitro or in vivo
308 digestion, relative to the total mineral in the food (37). By application of INFOGEST – a consensus,
309 widely-accepted simulated digestion protocol (38) – we found that white flour fractions of the VIT-
310 NAS line B71 released significantly more iron and zinc during the gastric and duodenal digestion
311 phases relative to control flour from a null transformant line (Table 1A). In the duodenal digestion
312 phase, iron and zinc from control white flour was largely precipitated, but more than double the
313 amount of each mineral remains soluble in the digestate of VIT-NAS white flour (Table 1A). A similar
314 improvement of mineral bioaccessibility was observed using a simulated gastro-intestinal digestion
315 procedure developed for iron uptake studies in Caco-2 cells (39). Roller-milled white flour from the
316 B71 line released 3-fold more iron and 1.3-fold more zinc compared to flour from a null transformant
317 (Table 1B). Taken together, we see that the dramatically increased levels of nicotianamine in the VIT-
318 NAS lines correlate with enhanced iron and zinc bioaccessibility.

319

320 **Table 1:** Iron and zinc concentrations in gastro-intestinal digests.

321
322 **A.** Amount of mineral in the soluble (supernatant) and insoluble (pellet) fractions at the end point of
323 simulated digests using the INFOGEST method (38). Values are the average of 3 replicates \pm SD.

324

Sample	Total (μ g)	Gastric digest end phase			Duodenum digest end phase		
		Soluble, reagent- derived	Supernatant	Pellet	Soluble, reagent- derived	Supernatant	Pellet
Fe	Control (A1)	1.64	0.03	0.43 \pm 0.02	1.26 \pm 0.09	0.63	0.57 \pm 0.11
	NAS-VIT (B71)	3.01		0.52 \pm 0.03	2.49 \pm 0.20		1.09 \pm 0.10
Zn	Control (A1)	2.19	0.10	2.07 \pm 0.10	0.28 \pm 0.08	3.06	1.63 \pm 0.14
	NAS-VIT (B71)	4.13		3.78 \pm 0.08	0.47 \pm 0.56		4.45 \pm 0.25

325

326 **B.** Concentration of mineral released during simulated gastro-intestinal digestion following the
327 method in (39). Values are the average of 3 replicates \pm SD.

328

		Total (μ M)	Released (μ M)
Fe	Control (22-15)	6.30	6.22 \pm 0.70
	NAS-VIT (B71)	31.53	20.50 \pm 0.87
Zn	Control (22-15)	10.80	5.01 \pm 0.47
	NAS-VIT (B71)	15.96	8.03 \pm 0.25

329

330

331 DISCUSSION

332 Efforts to biofortify wheat must address two concerns- not only the levels of micronutrients, but also
333 their bioavailability in human digestion. Here we show that by combining constitutive expression of
334 the rice *OsNAS2* gene with endosperm-specific expression of the wheat *VIT2-D* gene, we can
335 significantly increase both the quantity of iron and zinc in wheat flours and the solubility of these two
336 mineral micronutrients in simulated gastro-intestinal digests of raw white flour. Greater solubility is
337 likely to enhance the bioavailability of iron and zinc, although this remains to be tested in cell culture
338 and human studies using baking products such as white and wholemeal bread.

339 Expression analysis of the transgenes by RT-qPCR confirmed high levels of *OsNAS2* in both leaf tissue
340 and grain (Fig. 1C), but unexpectedly showed that the *TaVIT2-D* transgene was expressed in leaf tissue
341 in all but one of the VIT-NAS lines (Fig. 1B). The *HMWG* promoter upstream of *TaVIT2-D* is well
342 characterized as an endosperm-specific promoter (40), and indeed the A10 line, with a single-copy
343 insertion of the T-DNA, showed the desired expression pattern. We hypothesise that in multi-copy
344 insertion lines the 35S promoter of the HYG resistance marker acts as an enhancer for *TaVIT2-D*
345 expression as noted previously in *Arabidopsis* studies ((41) and references therein). Leaves normally
346 have 3.5x higher expression of the *TaVIT2* homeologs compared to grain (33), and from our
347 phenotypic analysis there are no detrimental effects on plant growth parameters (Fig. 2, Supp. Fig. 1).

348 The results show that the desired effects of each expression cassette, *HMWG::TaVIT2* and
349 *ZmUBI1::OsNAS2*, are additive. In some of the high-purity white flour fractions, we see more than five-
350 fold improvement in the iron concentration, while the zinc concentration increased two-to-three fold
351 (Fig. 3C). Earlier research which combined introduction of gene cassettes for endosperm-specific
352 expression of ferritin and *UBI1::OsNAS2*, a strategy that was successful in rice, did not show additive

353 effects on the mineral micronutrient content of flour and whole grain in wheat, but increases that
354 were similar to ferritin alone (30). Possibly, entrapment of iron in the groove as a result of
355 overexpressed ferritin (31) could have inhibitory effects on translocation of zinc into the grain
356 mediated by NA. Another possibility is that ferritin protein in starchy endosperm cells captures only a
357 small amount of the iron that is in transit to the embryo and aleurone cells, because the iron would
358 need to be transported first into the plastids, across a double membrane, prior to storage in the ferritin
359 cavity. By contrast, *TaVIT2* directly transports iron from the cytosol into vacuoles for storage.

360 The altered distribution of iron in grain tissues of the VIT-NAS lines, caused by the unique combination
361 of *TaVIT2* and *OsNAS2* expression, gives additional insights into the process of iron translocation
362 during grain development, which is still poorly understood. Like the *TaVIT2* line, the VIT-NAS lines
363 accumulated iron in vacuolar globules within cells of the starchy endosperm that are located between
364 the vascular bundle and embryo (Fig. 4B). However, unlike the *TaVIT2* line, the VIT-NAS line also
365 retained iron within the aleurone layer, similar to that observed in the null control (Fig. 4B). Isotope
366 labelling studies combined with NanoSIMS showed that iron is trapped into the endosperm vacuoles
367 during the nutrient-filling stage of grain development in *TaVIT2* lines (34). We speculate that the
368 retention of iron within the endosperm prevents iron from completing its movement to the outer
369 aleurone layer. In contrast, the overexpression of *OsNAS2* in the VIT-NAS lines seems to maintain the
370 mobilisation of iron into the aleurone layer despite the overexpression of *TaVIT2* (Fig. 4B). Perhaps
371 the distinct expression profiles of the constitutive *ZmUBI1* and the endosperm-specific *HMWG*
372 promoters for *OsNAS2* and *TaVIT2-D*, respectively, drive this difference. The *HMWG* promoter
373 sequence used here is strongly activated around 14 days post-anthesis as shown by promoter:GUS
374 studies (40). We hypothesize that expression of *OsNAS2* in the early stages of grain development
375 promotes movement of iron (and other micronutrients such as zinc) into the grain, during which time
376 they are transported to the outer grain layers including the aleurone cells and the embryo. Later, once
377 the *HMWG* promoter is induced, expression of *TaVIT2* within the endosperm tissue leads to the
378 sequestration of iron in the vacuoles of endosperm cells, as in the *TaVIT2* transgenic line. The VIT-NAS
379 line A10 supports this hypothesis, as we see iron accumulation only in the endosperm of the grain (Fig.
380 4A). As this line failed to overexpress the *OsNAS2* gene (Fig. 1B), it emphasizes the importance of that
381 gene in driving the accumulation of iron in the outer layers of the grain.

382 Crucially, the absolute levels of zinc of at least 45 $\mu\text{g g}^{-1}$ in the VIT-NAS lines are above the
383 biofortification target of 38 $\mu\text{g g}^{-1}$ (dry weight) set for whole wheat flour by HarvestPlus (42). The target
384 for iron is 59 $\mu\text{g g}^{-1}$, but this number assumes only 5% bioavailability in wholemeal flour. Depending
385 on the cultural preference for consuming white or wholemeal flour, and the expected improvement
386 in iron bioavailability, the iron concentrations of 25 $\mu\text{g g}^{-1}$ and 30 $\mu\text{g g}^{-1}$ in white and wholemeal flour,
387 respectively, may be sufficient to achieve 30% of the estimated average requirement (EAR) of iron in
388 the diet.

389 INFOGEST is fast emerging as the model digestion protocol to assess the bioaccessibility of multiple
390 micronutrients including iron. The Glahn protocol (39) is currently used as a standard in the iron
391 nutrition community for assessing iron release and subsequent absorption by ferritin production in
392 Caco-2 cell culture, which has a strong positive correlation with results from human trials (37). While
393 the Glahn protocol is facile, INFOGEST provides a robust framework for controlling many parameters
394 including enzyme activity. In this study, improved iron release associated with the VIT-NAS flour was
395 reflected in both digestion protocols. Phytate concentration was not significantly different between
396 control and VIT-NAS flours (Supp. Fig. 4). For this reason, we argue that the enhanced mineral
397 bioaccessibility seen in VIT-NAS white flour digests is a consequence of iron or zinc bound to

398 nicotianamine which may exert preferential cation chelation compared with phytic acid. This
399 hypothesis will be investigated by HPLC-ICP-MS in the near future.

400 The ultimate aim is for biofortified wheat to be grown by farmers in different parts of the world and
401 for it to be incorporated into human diets. We found no evidence of detrimental growth effects caused
402 by the introduction of the VIT-NAS construct (Fig. 2, Supp. Fig. 1 and 2). This will need to be further
403 studied in field trials, but the initial data suggests that the VIT-NAS construct does not affect key
404 agronomic traits and may thus be acceptable to farmers. It will also be important to confirm that the
405 increased nutrient levels and bioaccessibility identified in these glasshouse trials can be replicated in
406 the field. Promisingly, field-trials previously carried out with *OsNAS2* wheat constitutive expression
407 lines showed increased nutrient levels and bioavailability across multiple field sites and years (32).
408 Importantly, we show the effect of the VIT-NAS construct in two distinct wheat cultivars, Fielder and
409 Gladius. In particular, cv. Gladius is widely grown by farmers in Australia and is known for its useful
410 agronomic traits such as drought tolerance. The success of the VIT-NAS construct in cv. Gladius,
411 improving micronutrient levels with no observed impact on measured plant growth traits, indicates
412 that it could be effectively incorporated into other elite wheat varieties. A further consideration when
413 taking a genetic-modification approach for biofortification is the regulatory landscape governing the
414 use of such lines. It may be beneficial to develop a version of the VIT-NAS construct which uses only
415 wheat-derived genetic sequence within the T-DNA. Research into the most appropriate wheat *NAS*
416 gene would be required, as would replacement of the bacterial reporter genes with alternatives.

417 In conclusion, the stacking of *HMWG::TaVITD-2* and *UBI1::OsNAS2* results in much higher grain iron
418 and zinc concentrations in cultivated wheat varieties than those observed in natural variety panels of
419 wheat. Moreover, the increased NA levels are likely to compete with phytic acid to improve
420 bioavailability of the mineral micronutrients. Future field trials are needed to confirm the results and
421 to bulk up material for making wheat products for nutritional studies.

422

423 MATERIALS AND METHODS

424 Vector construction and wheat transformation

425 The VIT-NAS construct was generated by inserting the *HMWG::TaVIT2-D* cassette (33) between the T-
426 DNA right border (RB) and *ZmUBI1::OsNAS2* cassette (35) in a modified pMDC32 vector backbone (43),
427 see Fig. 1A. The *HMWG::TaVIT2-D* sequence was inserted by In-Fusion cloning (Takara Bio) in the
428 HindIII restriction site upstream of *ZmUBI1::OsNAS2*, using primers JC172 and JC173 (Suppl. Table 1).
429 Thus, the *TaVIT2-D* gene (*TraesCS5B02G202100*) is under the control of the *High Molecular Weight*
430 *Glutenin-D1* (*HMWG*) promoter (40), resulting in ectopic expression of *TaVIT2-D* in the grain
431 endosperm (33). The *OsNAS2* gene (*Os03g0307200*) is under transcriptional control of the maize
432 ubiquitin promoter *ZmUBI1* for constitutive expression (44). The T-DNA also contains the plant-specific
433 hygromycin resistance marker (43). The *TaVIT2* and *OsNAS2* genes were terminated by the nopaline
434 synthase terminator (*nosT*), while the hygromycin resistance gene was terminated by the CaMV 3'
435 untranslated region. See Supp. Fig. 5 for a detailed map of the vector construct.

436 The transformation of wheat cultivar Fielder was carried out at the John Innes Centre, following the
437 protocol detailed in (26). A zero-copy null transformant, referred to here as A1, was used as a control.
438 At each generation, copy number analysis was carried out by iDNA Genetics (Norwich, UK) using a
439 Taqman probe against the hygromycin resistance gene (45). Grain from the homozygous T₃ generation
440 was used for the micronutrient content and nicotianamine analyses reported here. The TaVIT2 line
441 used as a control has been described in (33, 34).

442 The transformation of wheat cultivar Gladius was carried out at the University of Adelaide following
443 the protocol details in (46). Copy number analysis was carried out on the T₀ plants by quantitative real-
444 time PCR (qPCR) using primers specific to the VIT-NAS construct (Supplemental Table 1). Individual T₀
445 plants which contained single copy inserts (denoted with a “-T” ending) were selected for further
446 characterisation in the T₂ generation, alongside sibling null segregant lines (denoted with the “-N”
447 ending).

448 **Plant growth**

449 For all cv. Fielder experiments, seeds were pre-germinated for 48 hours at 4°C on moist filter paper.
450 They were then sown into P96 trays containing peat-based soil (85% fine peat, 15% horticultural grit).
451 At 21 days, the plants were transplanted into 1-liter individual pots containing Petersfield Cereal Mix
452 (Petersfield, Leicester, UK). The plants were arranged in a randomised block design and grown in
453 standard glasshouse conditions with 16:8 hour light:dark cycles.

454 For all cv. Gladius experiments, seeds were pre-germinated for 48 hours at 4 °C, after which they were
455 germinated in P56 plug trays containing soil supplemented by 4.5 g l⁻¹ Osmocote (Scotts Australia).
456 After two weeks, plants were transplanted into 1-liter pots containing the same soil. The plants were
457 grown in a randomised block design, initially at a constant temperature of 24°C during the day, and
458 18°C at night. After transplanting to individual pots, the plants were moved to an accelerated “speed
459 breeding” growth condition (47).

460 **Plant phenotyping**

461 Plant phenotyping data from the cv. Fielder plants was obtained at harvest. Plant height was measured
462 from the soil to the tip of the highest spike, excluding awns. The entire above-ground plant was
463 harvested and dried at 35°C for one week to obtain the total above-ground dry weight. Harvest index
464 was calculated as the ratio of the total plant grain yield (g) to the total above-ground dry weight (g).
465 After threshing, grain yield per plant was calculated and the thousand grain weight and grain area,
466 width, and length were obtained using the MARVIN seed analyser (GTA Sensorik GmbH). Plant
467 phenotyping data from the cv. Gladius plants was obtained in the same manner, with the exception
468 that plant material was dried at 45°C for 72h to obtain the total above-ground dry weight.

469 **RT-qPCR**

470 Leaf and grain tissues were sampled from individual T₃ VIT-NAS plants (cv. Fielder) at 21 days post-
471 anthesis and snap frozen in liquid N₂. The snap-frozen tissue was then ground in liquid N₂ to a fine
472 powder and RNAs were extracted using TRIzol® Reagent (ThermoFisher). RNA concentration and
473 purity was checked using a Nanodrop instrument (Thermo Scientific). DNase treatment was carried
474 out using RQ1 RNase-Free DNase (Promega) before cDNAs were synthesized using the Invitrogen M-
475 MLV reverse transcriptase.

476 Primers specific to the gene sequences introduced within the VIT-NAS construct were used, while
477 previously published primers were used for the internal control *TaACTIN* (Supp. Table 2) (19). Primer
478 efficiencies were calculated using pooled grain cDNA from lines B4, B14, B12, and B71 (Supp. Table 3).
479 RT-qPCR reactions were performed using the LightCycler® 480 SYBR Green I Master Mix with a
480 LightCycler 480 instrument (Roche Applied Science, UK) under the following conditions: 5 min at 95°C;
481 45 cycles of 10 s at 95°C, 15 s at 60°C, 30 s at 72°C; followed by a dissociation curve from 60°C to 95°C
482 to determine primer specificity. In all cases, three technical replicates were carried out per sample
483 and the construct-specific expression of *TaVIT2-D* and *OsNAS2* was recorded relative to *TaACTIN*.

484

485 **Flour production**

486 For cv. Fielder, grains were hydrated to approximately 12% moisture content and milled with an IKA
487 Tube Mill 100 for 2 minutes at 25000 RPM. The resulting wholemeal flour was passed through a 150
488 µm Nylon mesh to separate a crude white flour fraction from the bran. The wholemeal flour and the
489 white flour fraction were retained for downstream analysis.

490 For cv. Gladius, grains were washed in a 0.1% Tween 20 solution, rinsed in distilled water, and dried
491 at 60°C for 48 hours before milling using an IKA Tube Mill for 30 seconds at 20000 RPM. The wholemeal
492 flour was then passed through a 200 µm Nylon mesh to obtain the white flour fraction.

493 For roller milled flour fractions, grain was hydrated to approximately 15% moisture content and milled
494 using a Chopin CD1 laboratory mill. The pooled white flour for bioaccessibility assays consisted of 9.5
495 g of Break 1, 11.5 g of Reduction 1, 1.5 g of Break 2 and 2 g of Reduction 2 for the control flour of the
496 22-15 null transformant line; 9.8 g of Break 1, 11.5 g of Reduction 1, 1.5 g of Break 2 and 2 g of
497 Reduction 2 for the B71 line.

498 **Elemental analysis**

499 For cv. Fielder samples, flour was dried overnight at 65°C. Flour samples (0.1 g) were digested in 55%
500 (v/v) nitric acid and 6% (v/v) hydrogen peroxide at 95°C for 17 hours. The acid-digested samples were
501 5 x diluted with ultra-pure analytical grade water. The samples were analysed using inductively
502 coupled plasma-optical emission spectroscopy (ICP-OES, PlasmaQuant PQ 9000 Elite, Jena Analytik,
503 Germany). Calibration was performed using 0, 0.125, 0.25, 0.5, 1, 2, 3, 4 and 5 µg g⁻¹ standards of P
504 and Mg and 0, 0.025, 0.05, 0.1, 0.2, 0.4, 0.6, 0.8 and 1 µg g⁻¹ standards of Mn, Fe and Zn. Rhodium
505 (Rh), to a final concentration of 0.1 µg g⁻¹, was used as an internal standard. Hard red spring wheat
506 reference material (National Research Council Canada) was treated in the same manner as the
507 experimental samples and included in every run of 50 samples.

508 For cv. Gladius samples, the white flour fraction was analysed using ICP-OES following standard
509 procedures at the Trace Analysis for Chemical, Earth, and Environmental Sciences (TrACEES) platform
510 (Parkville, University of Melbourne). 1567b wheat flour was used as the standard reference material
511 (National Institutes of Standards and Technology, MD, USA).

512 **Nicotianamine quantification**

513 The concentration of nicotianamine was measured in water-based extracts using liquid
514 chromatography-mass spectrometry (LC-MS), following the method in (36) with minor modifications.
515 Approximately 0.5 g of wholemeal flour was mixed with 282 µl of milliQ water and 18 µl of 1 mM N^ε-
516 nicotinoyl-L-lysine (see below) which was added as internal standard. The mixture was ground for 5
517 min at 1000 rpm and centrifuged at 4°C at 15000 x g for 15 min to recover the supernatant. The pellet
518 was extracted another 4 times with 300 µl water and the 5 supernatants pooled, then filtered through
519 3 kDa filters (Amicon® Ultra) at 4°C at 15000 x g for 60 min. The extracts and 1 µM, 10 µM, 100 µM
520 and 200 µM standard solutions of nicotianamine (US Biological Life Sciences) each containing 83 mM
521 N^ε-nicotinoyl-L-lysine were lyophilized overnight. The residues were dissolved in 20 µl of milliQ water,
522 10 µl 50 mM EDTA and 30 µl of mobile phase A (1:10 ratio of 10 mM ammonium acetate to acetonitrile,
523 pH 7.1) before being filtered through 0.45 µm polyvinylidene fluoride (PVDF) ultrafree-MC centrifugal
524 filters (Durapore, Merck) for 10 min at 12000 x g. The samples were then analysed by LC-MS (Xevo
525 TQ-S, Waters). The separation was performed using a Waters Acquity Ultra Performance LC system
526 and a µLC column (SeQuant® ZIC®-HILIC, 150 x 1 mm internal diameter, 5 µm, 200 Å) equipped with a
527 guard column. The flow rate of the mobile phases was set to 0.15 ml min⁻¹. The gradient program was
528 set to 100% mobile phase A for 3 min; a linear gradient to 30% A and 70% B (8:2 ratio of 30 mM
529 ammonium acetate to acetonitrile, pH 7.3) over 7 min; 30% A and 70% B for 7 min; a gradient to 100%

530 A for 8 min; 100% A for 10 min. The total run time for each sample was 35 min, the injection volume
531 was 5 μ l and the auto sampler temperature was 6°C, whilst the column was at room temperature. The
532 liquid chromatography system was coupled to a time of flight-mass spectrometer (ToF-MS) with a
533 negative electrospray source. The spray chamber conditions were set to a spray voltage of 1.5 kV, a
534 desolvation temperature of 500°C, flow rates were 900 h^{-1} and 150 h^{-1} for the desolvation and cone
535 gas, respectively, and the nebuliser pressure was set to 7.0 bar. The TargetLynx V4.1 (Waters Inc)
536 software was used for quantification. The 302 to 186 *m/z* daughter transition was used to quantify
537 nicotianamine and the 250 to 78 *m/z* daughter transition was used to quantify *N*^ε-nicotinoyl-L-lysine.

538 **Bioaccessibility assays**

539 Simulated digestion following the INFOGEST method was performed as described in (48) with minor
540 modifications. Hand-milled white flour (0.2 g) was mixed with 600 μ l of water to obtain a homogenous
541 bolus. For the oral phase, 640 μ l of simulated salivary fluid was added to the bolus, 1.5 mM $\text{CaCl}_2(\text{H}_2\text{O})_2$
542 and 156 μ l of water. Human salivary amylase was omitted as oral starch digestion was not of interest.
543 The mixture was incubated for 2 min at 37°C. For the gastric phase, the pH was adjusted to 3.0 using
544 0.5 M HCl, and 1.36 ml of simulated gastric fluid (as defined in Ref 46), 0.15 mM $\text{CaCl}_2(\text{H}_2\text{O})_2$, and 96
545 μ l of water was added. Pepsin (Merck P7012, pepsin from porcine gastric mucosa) was added to a final
546 concentration of 2,000 U/ml. Lipases were omitted owing to the low lipid content of the flours.
547 Samples were incubated for 1 h at 37°C. For the duodenal phase, 1.68 ml of simulated intestinal fluid
548 (46) was added to the gastric mixture, adjusting the pH to 7.0. To this was added 10 mM bovine bile
549 salts (Merck B3883), 0.6 mM $\text{CaCl}_2(\text{H}_2\text{O})_2$, 100 U/ml porcine trypsin (Merck T4799), 25 U/ml bovine
550 chymotrypsin (Merck C4129) and 200 U/ml porcine pancreatic α -amylase (A3176), was added.
551 Pancreatic lipase and colipase were omitted. The intestinal phase was incubated at 37°C for 2 h.
552

553 At the end of each digestion phase, samples were centrifuged at 1000 $\times g$ for 5 min. Supernatants
554 were decanted for analysis of soluble minerals; pellets were resuspended in 1 ml of analytical grade
555 water and also analysed to obtain total values of iron and zinc for each sample. Gastric endpoint
556 samples (2.5 ml supernatant) were acid mineralised in 16% (w/v) HNO_3 and 1.7% (w/v) 0.2 ml H_2O_2
557 at 95°C for 16 h, then made up to 4 ml with ultrapure water. Duodenal endpoint samples (6.4 ml
558 supernatant) were frozen in liquid nitrogen and lyophilized prior to elemental analysis as described
559 for flour.

560 Simulated gastrointestinal digestion following the Glahn protocol was performed as described in (39).
561 Pooled, roller-milled white flour (1 g) samples were mixed with 10 ml of saline solution (140 mM NaCl
562 and 5 mM KCl, pH 2.0) and adjusted to pH 2.0 with 1 M HCl. To this, 0.5 ml of pepsin (Sigma-P7000;
563 16 mg ml^{-1}) was added. Samples were incubated at 37°C on a rocking platform (150 rpm) for 90 min.
564 The pH of the samples was then adjusted to pH 5.5 using 1 M NaHCO_3 . Bile extract (Sigma-B8631; 8.5
565 mg ml^{-1}) and pancreatin (Sigma-P1750; 1.4 mg l^{-1}) was added at 2.5 ml, and the pH was adjusted again
566 to pH 7.0. The solution was made up to 16 ml with saline solution (140 mM NaCl and 5 mM KCl, pH
567 7.0), and the samples were incubated at 37°C for 90 min. Samples were centrifuged at 1000 $\times g$ for 5
568 mins to separate the soluble mineral fraction and insoluble food pellet. For mineral quantification,
569 250 μ l of supernatant was added to 14.75 ml HNO_3 (17.5%) containing 1 mg l^{-1} Yttrium (Merck
570 Millipore) as an internal standard. Mineral content in the samples were analysed using ICP-OES
571 (Thermo Fisher iCAP 6300).

572 **Iron staining**

573 Whole, mature wheat grains were cut with a platinum-coated razor blade and immersed in 2% (w/v)
574 potassium ferrocyanide and 2% (v/v) HCl for 45 min, then washed with water and photographed. Grain

575 cross sections (1 μ m) were prepared as previously described, mounted on glass slides and stained for
576 iron using the Perls' method enhanced with diaminobenzidine (34). In brief, the slides were immersed
577 in 2% (w/v) potassium ferrocyanide and 2% (v/v) HCl for 45 min. After washing with distilled water,
578 samples were incubated in methanol containing 0.01 M NaN₃, and 0.3% (w/v) H₂O₂ for 60 min. The
579 slides were washed with 0.1 M phosphate buffer (pH 7.4) and incubated for 30 minutes with 1.8%
580 (w/v) CoCl₂.6H₂O and 0.025% (w/v) diaminobenzidine in phosphate buffer. The slides were washed
581 once with distilled water and left to air dry overnight and mounted with DPX mountant (Merck). The
582 slides were imaged using a Leica DM6000 at 10x magnification.

583 **Acknowledgements**

584 We would like to thank Sadiye Hayta, Mark Smedley and Wendy Harwood (John Innes Centre, JIC) for
585 wheat transformation; Julien P. Bonneau for growth of Gladius transformants; JIC Horticulture staff
586 for plant growth; Alison Lovegrove (Rothamsted Research) for roller milling; Marina Franceschetti (JIC)
587 for ICP-OES; Martin Rejzek (JIC Chemistry Platform) for synthesis of nicotinoyl-L-lysine; Ana Álvarez-
588 Fernández (Spanish National Research Council, CSIC) for advice on nicotianamine quantification;
589 Lionel Hill (JIC Metabolomics Platform) for assistance with LC-MS; Kirstie Halsey (Rothamsted
590 Research) for sample preparation for microscopy; Shailender Verma for iron staining of TaVIT2
591 sections; Eva Wegel (JIC Bio-imaging Platform) for microscopy training and assistance.

592 **Funding**

593 This work was supported by the Biotechnology and Biological Sciences Research Council, grant awards
594 BB/P019072/1 to J.M.C., M.F.A., P.A.S., C.U. and J.B. and BB/T004363/1 to S.A.H., C.U. and J.B.; funding
595 from HarvestPlus to N.I.M.N and A.A.T.J.; a studentship from the John Innes Foundation to R.M. and
596 a Wellcome Trust studentship to Y.M.L.M.

597 **References**

- 598 1. WHO. Worldwide prevalence of anaemia 1993–2005 : WHO global database on anaemia. Geneva: World
599 Health Organisation; 2020.
- 600 2. WHO. The global prevalence of anaemia in 2011. Geneva: World Health Organisation; 2015.
- 601 3. Ritchie H, Roser M. Micronutrient deficiency: Our World in Data; 2017 [Available from:
602 <https://ourworldindata.org/micronutrient-deficiency>].
- 603 4. Kumssa DB, Joy EJM, Ander EL, Watts MJ, Young SD, Walker S, et al. Dietary calcium and zinc deficiency
604 risks are decreasing but remain prevalent. *Sci Rep.* 2015;5(1):10974.
- 605 5. FAO. FAOSTAT Data 2021 [Available from: <http://www.fao.org/faostat/en/#data>].
- 606 6. Balk J, Connerton JM, Wan Y, Lovegrove A, Moore KL, Uauy C, et al. Improving wheat as a source of iron
607 and zinc for global nutrition. *Nutr Bull.* 2019;44(1):53-9.
- 608 7. O'Dell BL, De Boland AR, Koirtyohann SR. Distribution of phytate and nutritionally important elements
609 among the morphological components of cereal grains. *J Agric Food Chem.* 1972;20(3):718-23.
- 610 8. Ozturk L, Yazici MA, Yucel C, Torun A, Cekic C, Bagci A, et al. Concentration and localization of zinc during
611 seed development and germination in wheat. *Physiol Plant.* 2006;128(1):144-52.
- 612 9. Cakmak I, Kalayci M, Kaya Y, Torun AA, Aydin N, Wang Y, et al. Biofortification and localization of zinc in
613 wheat grain. *J Agric Food Chem.* 2010;58(16):9092-102.
- 614 10. Moore KL, Zhao F-J, Gritsch CS, Tosi P, Hawkesford MJ, McGrath SP, et al. Localisation of iron in wheat grain
615 using high resolution secondary ion mass spectrometry. *J Cereal Sci.* 2012;55(2):183-7.
- 616 11. Tang J, Zou C, He Z, Shi R, Ortiz-Monasterio I, Qu Y, et al. Mineral element distributions in milling fractions
617 of Chinese wheats. *J Cereal Sci.* 2008;48(3):821-8.
- 618 12. Hurrell R, Egli I. Iron bioavailability and dietary reference values. *Am J Clin Nutr.* 2010;91(5):1461s-7s.
- 619 13. Gibson RS, Raboy V, King JC. Implications of phytate in plant-based foods for iron and zinc bioavailability,
620 setting dietary requirements, and formulating programs and policies. *Nutr Rev.* 2018;76(11):793-804.
- 621 14. Khokhar JS, King J, King IP, Young SD, Foulkes MJ, De Silva J, et al. Novel sources of variation in grain Zinc
622 (Zn) concentration in bread wheat germplasm derived from Watkins landraces. *PLoS One.*
623 2020;15(2):e0229107.

624 15. Velu G, Ortiz-Monasterio I, Cakmak I, Hao Y, Singh RP. Biofortification strategies to increase grain zinc and
625 iron concentrations in wheat. *J Cereal Sci.* 2014;59(3):365-72.

626 16. Velu G, Singh RP, Crespo-Herrera L, Juliana P, Dreisigacker S, Valluru R, et al. Genetic dissection of grain zinc
627 concentration in spring wheat for mainstreaming biofortification in CIMMYT wheat breeding. *Sci Rep.*
628 2018;8(1):13526.

629 17. Khokhar JS, Sareen S, Tyagi BS, Singh G, Wilson L, King IP, et al. Variation in grain Zn concentration, and the
630 grain ionome, in field-grown Indian wheat. *PLoS One.* 2018;13(1):e0192026.

631 18. Monasterio I, Graham RD. Breeding for trace minerals in wheat. *Food Nutr Bull.* 2000;21(4):392-6.

632 19. Uauy C, Distelfeld A, Fahima T, Blechl A, Dubcovsky J. A NAC Gene regulating senescence improves grain
633 protein, zinc, and iron content in wheat. *Science.* 2006;314(5803):1298-301.

634 20. Distelfeld A, Cakmak I, Peleg Z, Ozturk L, Yazici AM, Budak H, et al. Multiple QTL-effects of wheat *Gpc-B1*
635 locus on grain protein and micronutrient concentrations. *Physiol Plantarum.* 2007;129(3):635-43.

636 21. Zhao FJ, Su YH, Dunham SJ, Rakszegi M, Bedo Z, McGrath SP, et al. Variation in mineral micronutrient
637 concentrations in grain of wheat lines of diverse origin. *J Cereal Sci.* 2009;49(2):290-5.

638 22. Borrill P, Connerton J, Balk J, Miller T, Sanders D, Uauy C. Biofortification of wheat grain with iron and zinc:
639 integrating novel genomic resources and knowledge from model crops. *Front Plant Sci.* 2014;5(53).

640 23. Connerton JM, Balk J, Rodríguez-Celma J. Iron homeostasis in plants - a brief overview. *Metallomics.*
641 2017;9(7):813-23.

642 24. Johnson AA, Kyriacou B, Callahan DL, Carruthers L, Stangoulis J, Lombi E, et al. Constitutive overexpression
643 of the *OsNAS* gene family reveals single-gene strategies for effective iron- and zinc-biofortification of rice
644 endosperm. *PLoS One.* 2011;6(9):e24476.

645 25. Lee S, Jeon US, Lee SJ, Kim YK, Persson DP, Husted S, et al. Iron fortification of rice seeds through activation
646 of the *nicotianamine synthase* gene. *Proc Natl Acad Sci.* 2009;106(51):22014-9.

647 26. Lee S, Persson DP, Hansen TH, Husted S, Schjoerring JK, Kim YS, et al. Bio-available zinc in rice seeds is
648 increased by activation tagging of *nicotianamine synthase*. *Plant Biotechnol J.* 2011;9(8):865-73.

649 27. Usuda K, Wada Y, Ishimaru Y, Kobayashi T, Takahashi M, Nakanishi H, et al. Genetically engineered rice
650 containing larger amounts of nicotianamine to enhance the antihypertensive effect. *Plant Biotechnol J.*
651 2009;7(1):87-95.

652 28. Goto F, Yoshihara T, Shigemoto N, Toki S, Takaiwa F. Iron fortification of rice seed by the soybean ferritin
653 gene. *Nat Biotechnol.* 1999;17(3):282-6.

654 29. Søren B. Wheat ferritins: Improving the iron content of the wheat grain. *J Cereal Sci.* 2012;v. 56(no. 2):pp.
655 204-13-2012 v.56 no.2.

656 30. Singh SP, Keller B, Gruisse W, Bhullar NK. Rice *NICOTIANAMINE SYNTHASE 2* expression improves dietary
657 iron and zinc levels in wheat. *Theor Appl Genet.* 2017;130(2):283-92.

658 31. Neal AL, Geraki K, Borg S, Quinn P, Mosselmans JF, Brinch-Pedersen H, et al. Iron and zinc complexation in
659 wild-type and ferritin-expressing wheat grain: implications for mineral transport into developing grain. *J
660 Biol Inorg Chem.* 2013;18(5):557-70.

661 32. Beasley JT, Bonneau JP, Moreno-Moyano LT, Callahan DL, Howell KS, Tako E, et al. Multi-year field
662 evaluation of nicotianamine biofortified bread wheat. *Plant J.* 2021.

663 33. Connerton JM, Jones ER, Rodríguez-Ramiro I, Fairweather-Tait S, Uauy C, Balk J. Wheat vacuolar iron
664 transporter *TaVIT2* transports Fe and Mn and is effective for biofortification. *Plant Physiol.*
665 2017;174(4):2434-44.

666 34. Sheraz S, Wan Y, Venter E, Verma SK, Xiong Q, Waites J, et al. Subcellular dynamics studies of iron reveal
667 how tissue-specific distribution patterns are established in developing wheat grains. *New Phytol.*
668 2021;231(4):1644-57.

669 35. Beasley JT, Bonneau JP, Sanchez-Palacios JT, Moreno-Moyano LT, Callahan DL, Tako E, et al. Metabolic
670 engineering of bread wheat improves grain iron concentration and bioavailability. *Plant Biotechnol J.*
671 2019;17(8):1514-26.

672 36. Banakar R, Alvarez Fernández Á, Abadía J, Capell T, Christou P. The expression of heterologous Fe (III)
673 phytosiderophore transporter *HvYS1* in rice increases Fe uptake, translocation and seed loading and
674 excludes heavy metals by selective Fe transport. *Plant Biotechnol J.* 2017;15(4):423-32.

675 37. Fairweather-Tait S, Phillips I, Wortley G, Harvey L, Glahn R. The use of solubility, dialyzability, and Caco-2
676 cell methods to predict iron bioavailability. *Int J Vitam Nutr Res.* 2007;77(3):158-65.

677 38. Brodkorb A, Egger L, Alminger M, Alvito P, Assunção R, Ballance S, et al. INFOGEST static in vitro simulation
678 of gastrointestinal food digestion. *Nat Protocols.* 2019;14(4):991-1014.

679 39. Glahn RP, Lee OA, Yeung A, Goldman MI, Miller DD. Caco-2 Cell Ferritin Formation Predicts
680 Nonradiolabeled Food Iron Availability in an In Vitro Digestion/Caco-2 Cell Culture Model. *J Nutr.*
681 1998;128(9):1555-61.

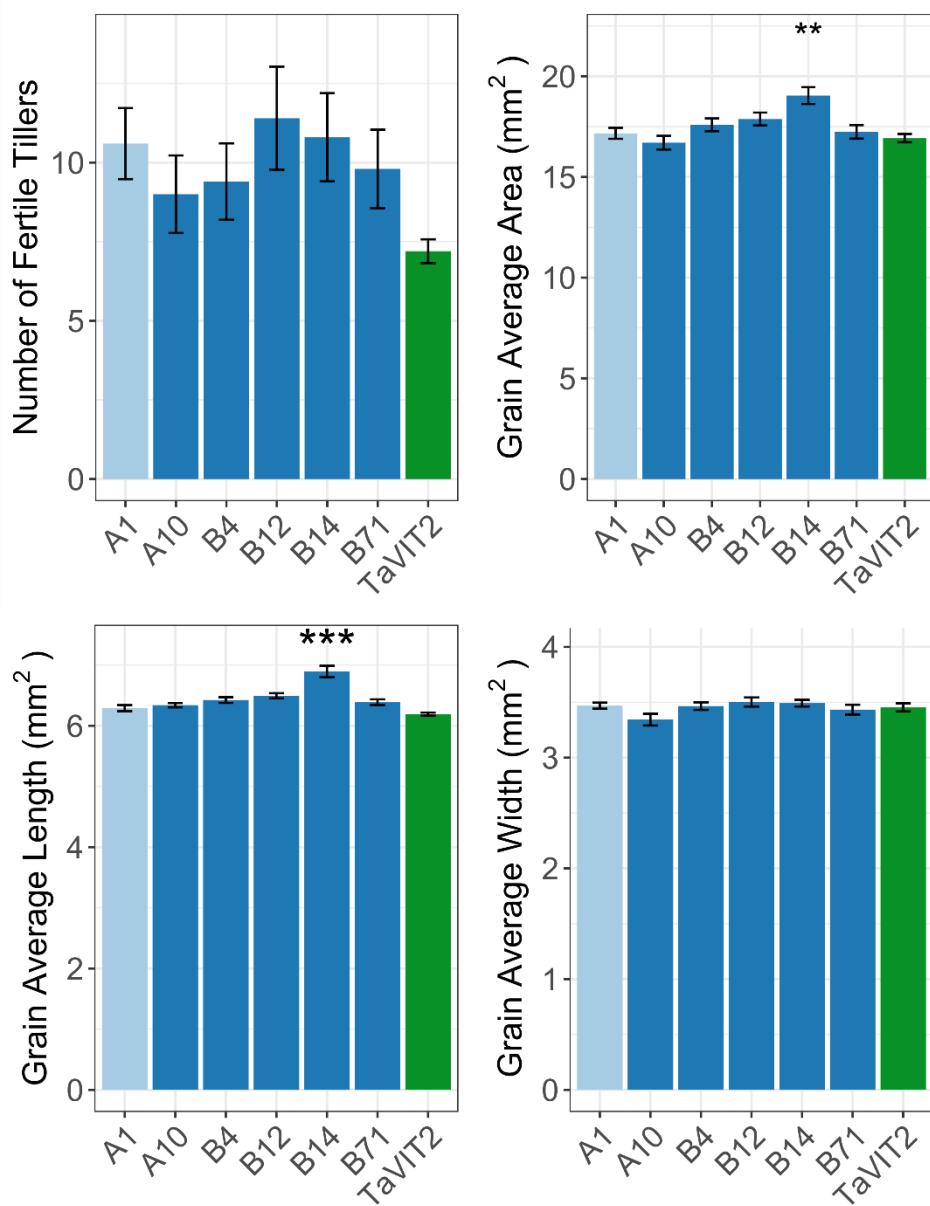
682 40. Lamacchia C, Shewry PR, Di Fonzo N, Forsyth JL, Harris N, Lazzeri PA, et al. Endosperm-specific activity of a
683 storage protein gene promoter in transgenic wheat seed. *J Exp Bot.* 2001;52(355):243-50.

684 41. Yoo SY, Bomblies K, Yoo SK, Yang JW, Choi MS, Lee JS, et al. The 35S promoter used in a selectable marker
685 gene of a plant transformation vector affects the expression of the transgene. *Planta.* 2005;221(4):523-30.

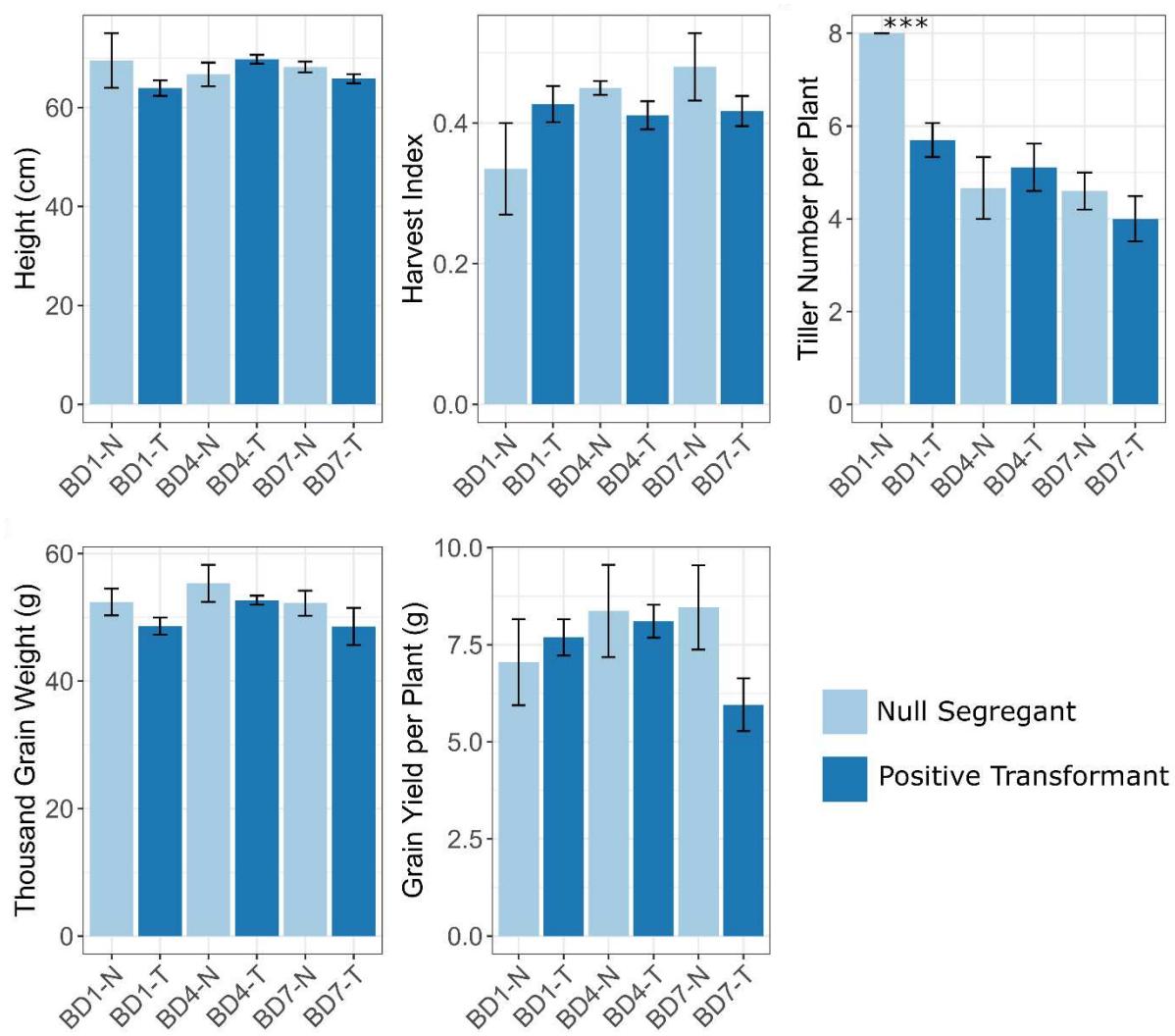
686 42. Bouis HE, Hotz C, McClafferty B, Meenakshi JV, Pfeiffer WH. Biofortification: a new tool to reduce
687 micronutrient malnutrition. *Food Nutr Bull.* 2011;32(1 Suppl):S31-40.

688 43. Curtis MD, Grossniklaus U. A gateway cloning vector set for high-throughput functional analysis of genes *in*
689 *planta*. *Plant Physiol.* 2003;133(2):462-9.

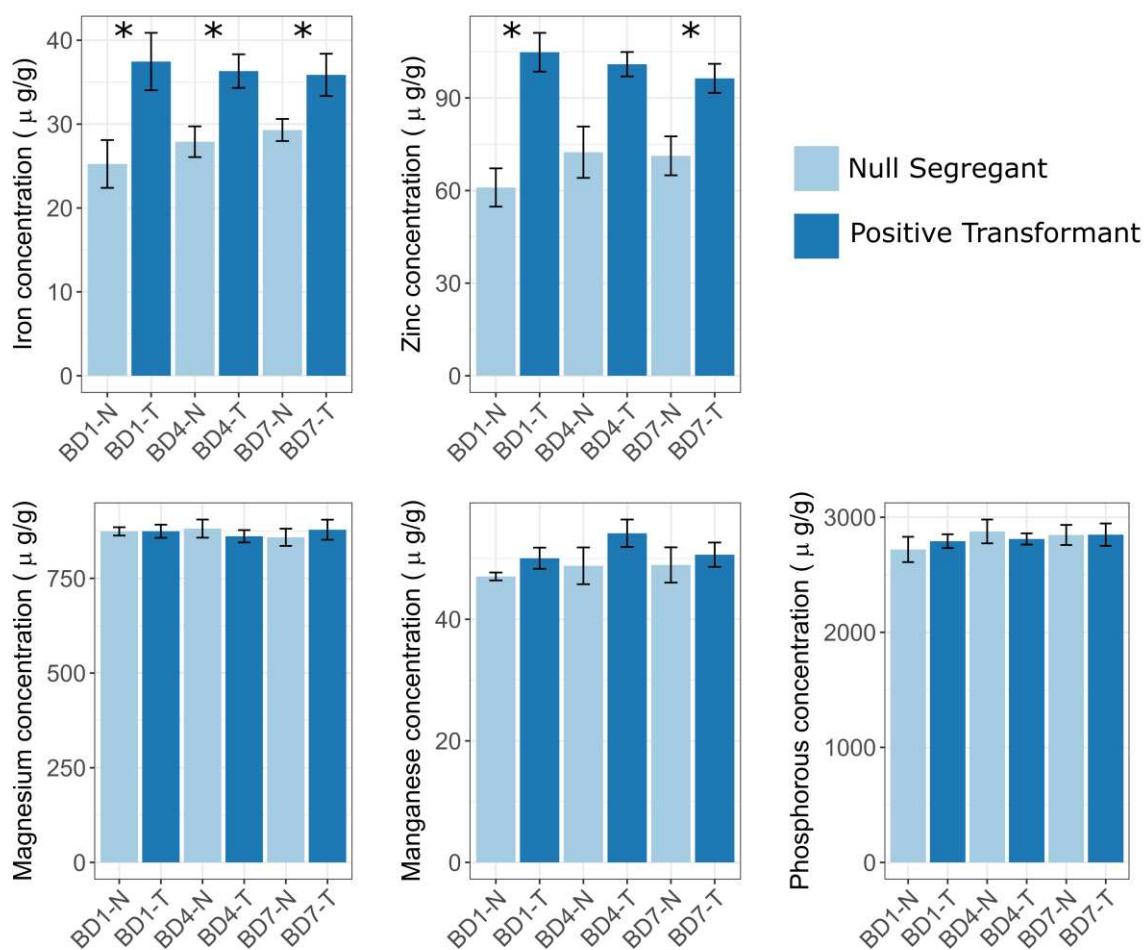
690 44. Christensen AH, Quail PH. Ubiquitin promoter-based vectors for high-level expression of selectable and/or
691 screenable marker genes in monocotyledonous plants. *Transgenic Res.* 1996;5(3):213-8.

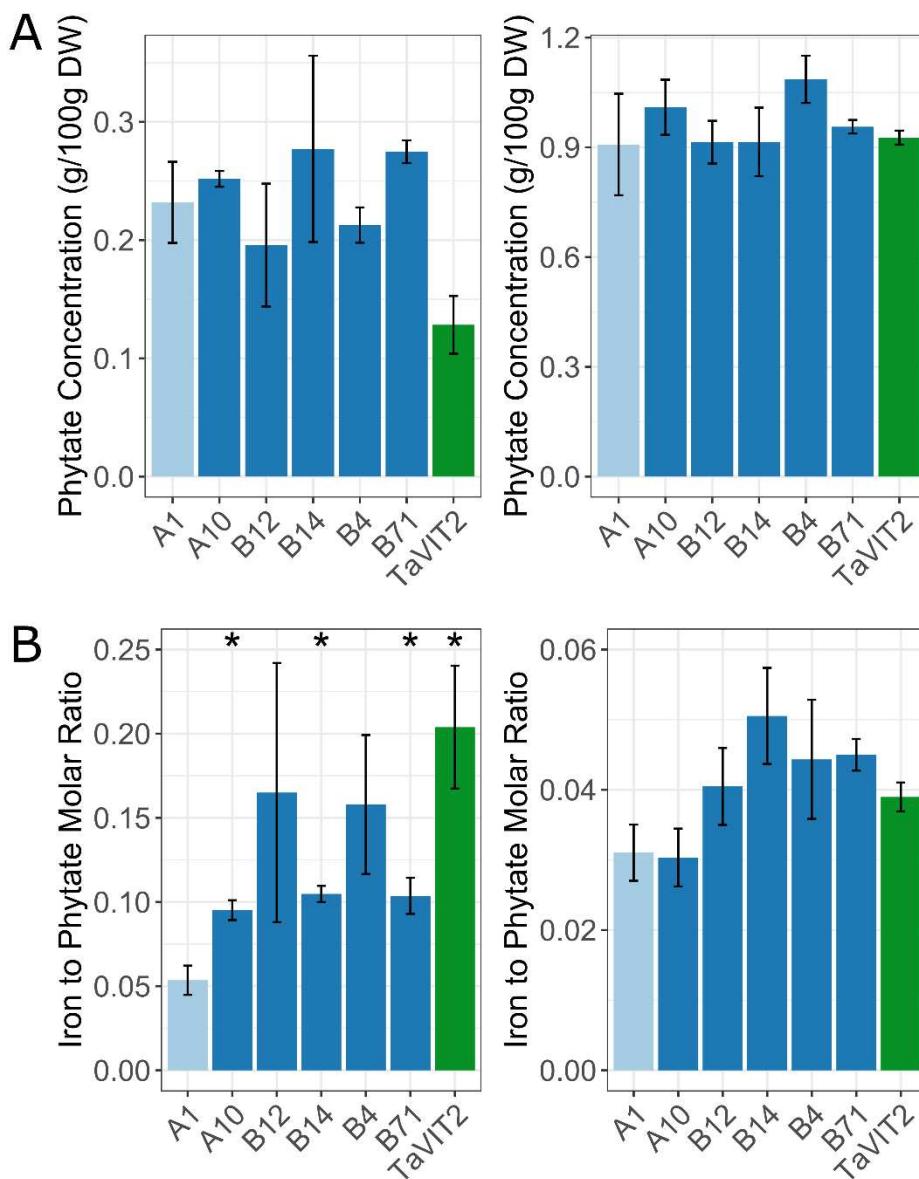

692 45. Hayta S, Smedley MA, Demir SU, Blundell R, Hinchliffe A, Atkinson N, et al. An efficient and reproducible
693 *Agrobacterium*-mediated transformation method for hexaploid wheat (*Triticum aestivum* L.). *Plant*
694 *Methods.* 2019;15(1):121.

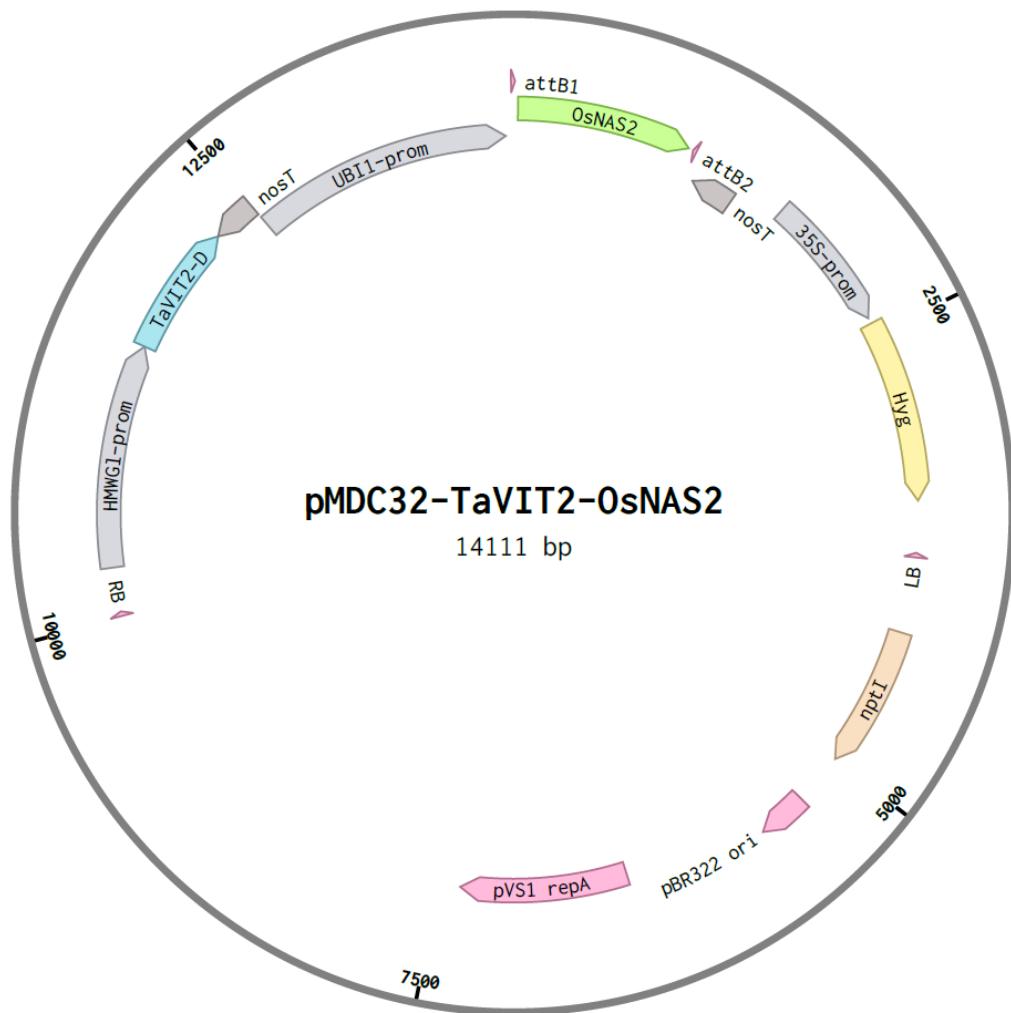
695 46. Ishida Y, Tsunashima M, Hiei Y, Komari T. Wheat (*Triticum aestivum* L.) transformation using immature
696 embryos. *Methods Mol Biol.* 2015;1223:189-98.


697 47. Watson A, Ghosh S, Williams MJ, Cuddy WS, Simmonds J, Rey M-D, et al. Speed breeding is a powerful tool
698 to accelerate crop research and breeding. *Nat Plants.* 2018;4(1):23-9.

699 48. Minekus M, Alminger M, Alvito P, Ballance S, Bohn T, Bourlieu C, et al. A standardised static in vitro
700 digestion method suitable for food - an international consensus. *Food Funct.* 2014;5(6):1113-24.


701


Supplemental Figure 1: The VIT-NAS construct does not affect plant growth in cv. Fielder. Fertile tiller number and grain size parameters (area, length, and width) in the null transformant (A1; light blue), VIT-NAS (A10, B4, B12, B14, B71; dark blue), and TaVIT2 (green) lines (** p < 0.01, *** p < 0.001, Dunnett Test against A1). Error bars are the standard error of five biological replicates.


Supplemental Figure 2: The VIT-NAS construct does not affect plant growth in cv. Gladius. Plant growth parameters including height, harvest index, tiller number, thousand grain weight, and grain yield per plant in three pairs of single-copy lines (dark blue, “-T”) and their respective null segregant sibling (light blue, “-N”). *** $p < 0.001$, Student’s t-test. Error bars are the standard error of the biological replicates; $n = 2$ for BD1-N, 12 for BD1-T, 3 for BD4-N, 7 for BD4-T, 5 for BD7-N, and 7 for BD7-T.

Supplemental Figure 3: The VIT-NAS lines in cv. Gladius have increased grain iron and zinc. Micronutrient levels in white flour for the cv. Gladius VIT-NAS lines, in three pairs of single-copy lines (dark blue, “-T”) and their respective null segregant sibling (light blue, “-N”). Error bars are the standard error of the biological replicates; n = 2 for BD1-N, 12 for BD1-T, 3 for BD4-N, 7 for BD4-T, 5 for BD7-N, and 7 for BD7-T. Student’s t-test was carried out for each pair against the null segregant; *, p < 0.05, **, p < 0.01, ***, p < 0.001.

Supplemental Figure 4: Phytate levels in the cv. Fielder VIT-NAS lines are not increased. A, Phytate levels were measured in the white (left) and wholemeal (right) flour from the null transformant (A1; light blue), VIT-NAS (A10, B4, B12, B14, B71; dark blue), and TaVIT2 (green) lines. B, The ratio of iron to phytate in the white (left) and wholemeal (right) flour for the null transformant (A1; light blue), VIT-NAS (A10, B4, B12, B14, B71; dark blue), and TaVIT2 (green) lines. Error bars are the standard error of 3 biological replicates. *, p < 0.05, **, p < 0.01, ***, p < 0.001; Student's t-test against the null (A1).

Supplemental Figure 5: T-DNA plasmid used for wheat transformation.

RB, Right Border of T-DNA; *HMWG1-prom*, promoter sequence of the High Molecular Weight *GLUTENIN-D1* gene; *TaVIT2-D*, open reading frame of the *VACUOLAR IRON TRANSPORTER 2*, D homoeologue (TraesCS5B02G202100) from wheat; *nosT*, nopaline synthase terminator; *UBI-prom*, promoter sequence of the maize *UBIQUITIN1* gene; attB1 and attB2, sequence elements (25 nt) for Gateway cloning; *OsNAS2*, open reading frame of the *NICOTIANAMINE SYNTHASE 2* gene (Os03g0307200) from rice; 35S-prom, promoter sequence of the Cauliflower Mosaic Virus; *Hyg*, open reading frame of the plant selectable marker hygromycin phosphotransferase; LB, Left Border of T-DNA; *nptI*, open reading frame of the bacterial selectable marker neomycin phosphotransferase; pBR322 ori, origin of replication for plasmids in *Escherichia coli*; *pVS1 repA*, one of the genes for replication and stability of the plasmid in *Agrobacterium tumefaciens* (not all genes of the replicon are depicted).

Supplemental Table 1: Primers used in this study.

The JC172 / JC173 primer pair was used to PCR-amplify the *HMWG::TaVIT2* cassette and then insert this into the HindIII site upstream of *ZmUBI1::OsNAS2* using In-Fusion cloning, see diagram in Fig. 1A. The OsNAS, TaVIT, and TaACTIN primer pairs were used to determine the expression levels in Fig. 1B. The Gladius primer pair was used for genotyping of the VIT-NAS cv. Gladius lines.

Primer Name	Sequence	Efficiency	Source
JC172	GGCCAGTGCCAAGCTCGAAATATGCAACA TAATTTC	NA	This paper
JC173	GCAGGCATGCAAGCTCAGTAACATAGATG ACACCG	NA	This paper
OsNAS_F	GTTCCAGAAGGCGGAAGAGT		
OsNAS_R	AACGATCGGGAAATTG	113%	This paper
TaVIT_F	AGCGCCATGATGACCTCC		
TaVIT_R	CGGCAACAGGATTCAATCTTAAG	110%	This paper
TaACTIN_F	ACTTCAGTTGCCAGCAAT		
TaACTIN_R	CAGAGTCGAGCACAATACCAAGTTG	99%	Uauy et al. 2006
Gladius_F	TTTCTCGGCTACGTCAAGG		
Gladius_R	AAGACCGGCAACAGGATT	NA	This paper