
Proteomic network analysis of bronchoalveolar lavage fluid in ex-smokers to discover 1 

implicated protein targets and novel drug treatments for chronic obstructive pulmonary 2 

disease 3 

Manoj J. Mammen1, 6, Chengjian Tu2,3, Matthew C. Morris5, Spencer Richman5, William 4 

Mangione6, Zackary Falls6, Jun Qu2,3, Gordon Broderick5, Sanjay Sethi1,4, Ram Samudrala6 5 

 6 

1Department of Medicine, Jacobs School of Medicine and Biological Sciences, State University 7 

of New York at Buffalo, Buffalo, NY 14214 USA; 2Department of Pharmaceutical Sciences, 8 

State University of New York at Buffalo, Buffalo, NY 14260 USA; 3 New York State Center of 9 

Excellence in Bioinformatics and Life Sciences, 701 Ellicott Street, Buffalo, NY 14203 USA; 10 

4WNY VA Healthcare System, Buffalo, NY 14215 USA; 5Center for Clinical Systems Biology, 11 

Rochester General Hospital, Rochester, NY 14621 USA; Department of Biomedical Informatics, 12 

Jacobs School of Medicine and Biological Sciences, State University of New York, Buffalo, NY 13 

14214 USA; 6Department of Biomedical Informatics, Jacobs School of Medicine and Biological 14 

Sciences, State University of New York, Buffalo, NY 14214 USA 15 

 16 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 16, 2022. ; https://doi.org/10.1101/2022.02.14.480388doi: bioRxiv preprint 

https://doi.org/10.1101/2022.02.14.480388
http://creativecommons.org/licenses/by-nc/4.0/


*Corresponding Authors: 17 

Manoj J. Mammen, MD, MS 18 

100 High Street, B-8 19 

Buffalo, NY 14203 20 

Phone: (716) 859-2271  21 

Email: mammen@buffalo.edu  22 

Ram Samudrala, PhD 23 

77 Goodell St. 24 

Buffalo, NY 14203 25 

Phone: (206) 251-8852 26 

Email: rams@buffalo.edu 27 

Authors and Contributors: MJM, CT, JQ, MCM, WM, ZF, SR, GB, SS, RS 28 

Funding Sources: Dr. Mammen was supported by a research grant from the University at 29 

Buffalo. A National Heart, Lung and Blood Institute grant to Dr. Sethi supported the collection 30 

of Bronchoalveolar lavage specimens. This work is also supported, in part, by National Institute 31 

Health (NIH) awards U54HD071594 (JQ) and by American Heart Association (AHA) award 32 

12SDG9450036 (JQ). Rochester Regional Health also supported this work in conjunction with 33 

the US Department of Defense Congressionally Directed Medical Research Programs (CDMRP) 34 

under the Peer Reviewed Medical Research Program (PRMRP) award W81XWH1910804 35 

(Broderick - PI; Sethi - Partnering PI, JQ-CoI), as well as by Elsevier AB (Amsterdam).  The 36 

development of the CANDO platform was supported in part by a NIH Director’s Pioneer Award 37 

(DP1OD006779), NIH Clinical and Translational Sciences Award (UL1TR001412), NIH 38 

Buffalo Research Innovation in Genomic and Healthcare Technology Education Award 39 

(T15LM012495), NIH NCATS ASPIRE Design Challenge Award,  NIH NCATS ASPIRE 40 

Reduction-to-Practice Award, and startup funds from the Department of Biomedical Informatics 41 

at the University at Buffalo. 42 
 43 

MANDATORY DISCLAIMER 44 

The opinions and assertions contained herein are the private views of the authors and are not to 45 

be construed as official or as reflecting the views of the Department of Defense. 46 

 47 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 16, 2022. ; https://doi.org/10.1101/2022.02.14.480388doi: bioRxiv preprint 

mailto:mammen@buffalo.edu
https://doi.org/10.1101/2022.02.14.480388
http://creativecommons.org/licenses/by-nc/4.0/


To obtain the raw proteomic data on a DVD media, please contact Dr. Jun Qu, junqu@buffalo.edu. 48 
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Abstract 63 

Rationale: Bronchoalveolar lavage of the epithelial lining fluid can sample the profound 64 

changes in the airway lumen milieu prevalent in  Chronic Obstructive Pulmonary Disease 65 

(COPD). Characterizing the proteins in bronchoalveolar lavage fluid in COPD with advanced 66 

proteomic methods will identify disease-related changes, provide insight into pathogenetic 67 

mechanisms and potential therapeutics that will aid in the discovery of more effective 68 

therapeutics for COPD. 69 

 70 

Objectives: We compared  epithelial lining fluid proteome of ex-smokers with moderate COPD 71 

who are  not in exacerbation status COPD, to non-smoking healthy control subjects using 72 

advanced proteomics methods and applied proteome-scale translational bioinformatics 73 

approaches to identify potential therapeutic protein targets and drugs that modulate these proteins 74 

towards the treatment of COPD. 75 

 76 

Methods: Proteomic profiles of bronchalveolar lavage fluid were obtained from 1) never-smoker 77 

control subjects with normal lung function (n=10) or 2) individuals with stable moderate (GOLD 78 

stage 2, FEV1 50% – 80% predicted) COPD who were ex-smokers for at least one year (n=10). 79 

NIH’s Database for Annotation, Visualization and Integrated Discovery (DAVID) and 80 

Ingenuity’s Ingenuity Pathway Analysis (IPA) were the two bioinformatics tools employed for 81 

network analysis on the differentially expressed proteins to identify potential crucial hub 82 

proteins. The drug-proteome interaction signature comparison and ranking approach 83 

implemented in the Computational Analysis of Novel Drug Opportunities (CANDO) platform 84 

for multiscale therapeutic discovery was utilized to identify potential repurposable drugs for the 85 
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treatment of COPD based on the BALF proteome. Subsequently, a literature-based knowledge 86 

graph was utilized to rank combinations of drugs that would most likely ameloriate inflammatory 87 

processes  by inhibition or activation of their functions. 88 

 89 

Results: Proteomic network analysis demonstrated that 233 of the >1800 proteins identified in 90 

the BALF were differentially expressed in COPD versus control, including proteins associated 91 

with inflammation, structural elements, and energy metabolism. Functional annotation of the 92 

differentially expressed proteins by their implicated biological processes, cellular localization, 93 

and transcription factor interactions was accomplished via DAVID. Canonical pathways 94 

containing the differential expressed proteins were detailed via the Ingenuity Pathway Analysis 95 

application. Topological network analysis demonstrated that four proteins act as central node 96 

proteins in the inflammatory pathways in COPD. The CANDO multiscale drug discovery 97 

platform was used to analyze the behavioral similarity between the interaction signatures of all 98 

FDA-approved drugs and the identified BALF proteins. The drugs with the signatures most 99 

similar interaction signatures to approved COPD drugs were extracted with the CANDO 100 

platform.  The analysis revealed 189  drugs that putatively target the proteins implicated in 101 

COPD. The putative COPD drugs that were identified using CANDO were subsequently 102 

analyzed using a knowledge based technique to identify an optimal two drug combination that 103 

had the most appropriate effect on the central node proteins. 104 

 105 

Conclusion: Analysis of the BALF proteome revealed novel differentially expressed proteins in 106 

the epithelial lining fluid that elucidate COPD pathogenesis. Network analyses identified critical 107 

targets that have critical roles in modulating COPD pathogenesis, for which we identified several 108 
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drugs that could be repurposed to treat COPD using a multiscale shotgun drug discovery 109 

approach. 110 

 111 

 112 
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Introduction 113 

Chronic obstructive pulmonary disease (COPD) is a leading cause of mortality and morbidity in 114 

the US.1-5 Additionally, COPD results in millions of hospitalizations in the developing world.1,6-115 

11 The prevalence of cigarette smoking continues to rise in most developing countries around the 116 

world.12-14 However, only 25-50% of tobacco smokers develop COPD, suggesting only a subset 117 

develops an exaggerated inflammatory process that leads to lung destruction.12,13,15 118 

Bronchoalveolar lavage fluid (BALF) and bronchial samples from ex-smokers reveal active 119 

inflammation long after smoking cessation.16   120 

 121 

Although structural changes in the airways, parenchyma, and pulmonary vessels are typical in 122 

patients with COPD, the lower airways and the alveoli are the initial sites of the inflammatory 123 

process.17,18 The inflammatory process initiated by smoking persists after cessation and is likely 124 

exaggerated by autoimmunity and infection.19,20 Accurate and precise measurement of the 125 

molecular mediators in the airways should aid in rigorous analysis of their role in disease. 126 

 127 

There has been a keen interest in understanding the genetic determinants of COPD, as the 128 

interaction between genes and environment leads to protein expression, ultimately resulting in 129 

either healthy or disease states. However, genomic data alone does not predict protein abundance 130 

or activity; proteins are the ultimate participants in integrated biological processes that lead to 131 

healthy physiological function or pathology.  Proteome-based analysis of bronchoalveolar lavage 132 
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fluid (BALF) in COPD can identify tissue-specific markers of inflammation that can lead to 133 

understanding the mechanisms of COPD progression. 134 

 135 

We sought to determine an unbiased proteome-based analysis of BALF in COPD under stable 136 

conditions (not in exacerbation status) to identify a broad series of molecules involved in COPD 137 

pathogenesis. A label-free proteomics mass spectroscopy method was utilized. The differentially 138 

expressed proteins were analyzed using multiple bioinformatics tools  to critical pathways that 139 

were altered in these ex-smoker patients with COPD compared to healthy, never smoker 140 

controls, proteins implicated in COPD etiology, and to identify putative drug candidates that can 141 

be repurposed to treat COPD. 142 

 143 

The raw proteomic data used in this manuscript was initially detailed in a previously published 144 

methodology manuscript using strict criteria (2 peptide identification criteria for a protein, ≥1.5 145 

fold change, and p-value<0.05) to identify 423 individual proteins with 76 proteins expressed 146 

differently between COPD and controls.21 In this analysis, we adopted a pragmatic approach to 147 

the same raw proteomic data (1 peptide identification criterion, ≥1.5 fold change, and p-148 

value<0.05) that identified 1831 individual proteins and 233 differentially expressed proteins 149 

between the two groups.  The latter, more practical, approach provides important additional 150 

information for biomarker and therapeutic target discovery that may be utilized in future research 151 

to discover useful interventions.152 
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Methods 153 

  154 

We analyzed the protein quantifications derived from the BALF of subjects with COPD and 155 

healthy ex-smoker control subjects via liquid chromatography and mass spectroscopy.  We then 156 

used pathway analysis tools to identify relevant cellular pathways associated with differentially 157 

expressed proteins quantified from the BALF analysis.  We subsequently employed  the 158 

Computational Analysis of Novel Drug Opportunities (CANDO) platform to identify FDA 159 

approved drugs that could be repurposed to COPD, based on their putative interaction with the 160 

differentially expressed proteins. Using topological network analysis, we identified putative hub 161 

proteins that modulate the cellular pathways associated with COPD. Using the medical literature 162 

to predict the repurposed drugs effects on the most important hub protein, we created a refined 163 

list of drugs predicted to modulate the cellular pathway in order to impede COPD pathogenesis.  164 

to generate proteomic interaction signatures for the compounds 165 

 166 

Recruitment of subjects   167 

BALF was obtained in a NHLBI funded study of innate lung defense in COPD.22 All procedures 168 

received approval from the Institutional Review Board (IRB), Veterans Affairs Western New 169 

York Healthcare System (WNY-VA), and strictly adhered to institutional guidelines.  170 

 171 

Ethics statement 172 

 173 

This study is a sub-study of a larger group of patients with COPD and healthy controls to 174 

understand biological determinants of exacerbation frequency and was approved by the 175 

Institutional Review Boards of the Veterans Affairs Western New York Healthcare System and 176 
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University at Buffalo. The participants gave written consent to the study via an IRB-approved 177 

consent form. 178 

 179 

Inclusion/exclusion criteria 180 

 181 

The inclusion criteria and procedures for this study have been described previously and are 182 

provided in the supplementary material. 22 After informed consent, 116 volunteers were divided 183 

into three groups: 1) healthy nonsmokers, 2) ex-smokers with COPD, and 3) active smokers with 184 

COPD and underwent bronchoscopy and bronchoalveolar lavage. The methodology for 185 

bronchoscopy, lavage, and sample processing is included in the supplementary material.  186 

 187 

For this study, we selected BALF obtained from ten ex-smokers with moderate COPD and ten 188 

healthy non-smoking controls for proteomic analysis, respectively.  To minimize variability due 189 

to effects of acute smoking and disease severity, we confined this analysis to ex-smokers and 190 

moderate  stage 2 disease per the Global Obstructive Lung Disease (GOLD)23 criteria of the 191 
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forced expiratory volume in 1 second (FEV1) 50-80% predicted.  All ex-smokers had ceased 192 

smoking for at least one year.  193 

 194 

Bronchoscopy and BALF sample preparation  195 

The research bronchoscopy and BALF sample preparation were performed as described 196 

previously.24  197 

 198 

Protein identification/quantification.  199 

To investigate the soluble molecules in the epithelial lining fluid that may participate in COPD 200 

pathogenesis, unbiased proteomic analysis of BALF commenced without protein depletion or 201 

fractionation. Details of the methodology have been published25 and are also provided in the 202 

supplementary material.  203 

  204 

Long gradient nano-RPLC/mass spectrometry 205 

Complete separation of the complex peptide mixture utilized a nano-LC/nanospray setup;26 the 206 

ion-current long gradient approach with mass spectrometry and subsequent protein identification 207 

was performed as described in Tu, et al. 25-27 All proteins identified with one or more peptide 208 

hits,  fold change of ≥1.5, and p-value <0.05 are included as part of the differentially expressed 209 

BALF proteome. 210 

 211 
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Bioinformatics analyses  212 

Manually curated pathway analysis   213 

Gene ontology, transcription factors, and expression locations were determined by uploading the 214 

protein expression dataset onto a web-based tool, the NIH’s Database for Annotation, 215 

Visualization and Integrated Discovery (DAVID) v6.7 (http://david.abcc.ncifcrf.gov/). 28,29 216 

Biological networks were generated with Ingenuity Pathway Analysis (IPA, Ingenuity Systems), 217 

a web-based relational database and network generator. Proteins overrepresented in the uploaded 218 

datasets in biological networks, canonical pathways, and biological processes were identified.  219 

 220 

Literature informed protein-protein and protein-drug interaction network   221 

In addition to annotating differentially expressed proteins with the manually curated pathways 222 

cataloged in IPA, a network of protein-protein interactions was created using known regulatory 223 

relationships extracted from published scientific literature using the MedScan text-mining 224 

engine30 as well as protein-drug interactions cataloged in the Reaxsys medicinal chemistry 225 

database (Elsevier, Amsterdam).  These are embedded in the broader Elsevier Knowledge Graph 226 

database 31 and were accessed via the Pathway Studio interface (Elsevier, Amsterdam).32  227 

 228 

Shotgun multiscale drug discovery platform 229 

We used the Computational Analysis of Novel Drug Opportunities (CANDO) platform33-40 to 230 

predict drugs that can be repurposed for the treatment of stable COPD.  In CANDO, a 231 

compound/drug is considered to be potentially repurposable for an indication when it is found to 232 
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have similar binding interactions with a specific proteome or library of proteins as a drug with 233 

known approval for the indication of interest.  234 

 235 

In this study, we calculated the interaction scores between 2,450 United States Federal Drug 236 

Administration (FDA) approved drugs from the CANDO version 2.3 compound library and a 237 

curated human library of 8,385 proteins, including 5,316 solved X-ray crystallography structures 238 

and 3,069 computed protein structures modeled by I-TASSER41,42.  The interaction scores were 239 

calculated using the bioanalytic docking (BANDOCK) protocol in the CANDO  which utilizes 240 

predicted binding site information and chemical similarity to determine an interaction score that 241 

is a surrogate for the likelihood of interaction between a compound and protein.33 Binding sites 242 

were predicted for all human proteins using COACH 43, which uses the consensus of three 243 

complementary methods utilizing structure and sequence information to find similarity to solved 244 

structures in the Protein Data Bank (PDB).44,45 For each binding site predicted by COACH, a 245 

confidence score (PScore) and an associated co-crystallized ligand are output. The ligand is then 246 

compared to the query compound/drug using chemical fingerprinting methods, which 247 

enumerates the presence or absence of molecular substructures on the compound/drug.  The 248 

Sorensen-Dice coefficient46 between the protein-ligand and compound/drug fingerprints 249 

(CScore) is also computed. The BANDOCK interaction score outputted for each compound-250 

protein pair  is the product of the Pscore and the Cscore. 251 

 252 

For this analysis, we focused on the differentially expressed proteins in the BALF proteome (as 253 

described), and drugs used to treat COPD ("MESH:D029424")  (Table S1). We selected proteins 254 

in the CANDO human protein library that were also represented in the differentially expressed 255 
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BALF proteome. We then used the CANDO platform to  predict the top drug candidates that 256 

could be repurposed to treat COPD based on compound-proteome interaction signature 257 

similiarity to drugs currently approved/used to treat stable COPD. The protocol iterates through  258 

34 known drugs used to treat stable COPD, counting the number of times drugs not associated 259 

with COPD show up in the top30 most similar compounds to the known treatments, then outputs 260 

the consensus  predictions ranked by the number of times each compound appeared across all 261 

top30 lists. The similarity between a given drug and all other drugs in the library is determined 262 

by comparing their proteomic interaction signatures using the cosine similarity metric, where 263 

compounds with greater similarity scores rank stronger than those with low similarity. Thereby 264 

drugs that were most similar (in terms of interaction signatures) to multiple drugs used to treat 265 

COPD will be ranked highest.   266 

 267 

Network topological analysis 268 

Although not a complete descriptor, the topological location, and aspects of the connectivity 269 

linking a node to a broader biological network can inform the node’s function in mediating 270 

network behavior. Among the measures of a node’s importance or centrality, betweenness 271 

centrality has been used to describe how a node might serve as an important mediator of 272 

information flow in a regulatory network.  In this work, ÿÿ(�) for each node n of a network was 273 

calculated using the Brandes algorithm.47 The betweenness centrality of a node n reflects the 274 
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amount of control that this node exerts over the interaction between communities of neighboring 275 

nodes in the network48 and can be computed as follows: 276 

                                    ÿÿ(�) = ∑ (�ý,þ(�) �ý,þ⁄ )ý≠þ≠�      (1) 277 

Where s and t are the source and target nodes in the network different from n, �ý,þ denotes the 278 

number of shortest paths from all s to all t, and �ý,þ(�) is the number of shortest paths from s to t 279 

that must pass through node n. Here, unweighted betweenness centralities were calculated for 280 

each node in the literature-informed protein-protein network. The betweenness centrality scores 281 

for all nodes were expressed as fractions of the maximum betweenness centrality present in the 282 

network. All calculations were conducted in R version 4.0.2.49 283 

 284 

Literature based drug enrichment analysis 285 

Using putative drugs ranked by CANDO and further analyzed via the Elsevier Knowledge 286 

Graph,31  a drug enrichment analysis was performed to predict which drugs can most closely mimic 287 

an idealized intervention against the hub proteins identified in the network topological analysis. 288 

Drugs are represented as vectors with a length equal to the empirically derived number protein 289 

entities in the network model.  Each index value is listed as 0 if there is no interaction between the 290 

drug and the corresponding model entity, a 1 if the drug promotes that entity, or a –1 if the drug 291 

inhibits that entity. Next, the cosine similarity, Sc, between each drug vector and the idealized 292 

intervention vector is calculated.50 Cosine similarity is calculated as: 293 

�Ā(Ā,�) = Ā ∙ �‖Ā‖‖�‖ 294 

Where D is the drug vector and M is the idealized intervention. Higher Sc indicates a closer match 295 

between the drug vector and the idealized vector. A Sc of 1 means the two vectors are identical, 296 
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and -1 indicates that the two are exactly opposed. For multidrug combinations, the net-effect of 297 

the individual drug vectors is calculated as: 298 

Ā�� (∑��⃗⃗  ⃗Ā��
�=1 ) 299 

Where n is the total number of drugs in the combination,  Di is the vector corresponding to the ith 300 

drug, and sgn is the sign function. The cosine similarity of the net-effect vector and idealized vector 301 

is then calculated. 302 

The statistical significance of these enrichment scores is determined empirically from an 303 

estimated null distribution of cosine similarities. This null distribution uses a set of model-relevant 304 
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background drugs for which each interacts with at least one entity in the network. All CANDO 305 

drugs of interest were included in the background. Empirical p-values are estimated as  306 

�̂ = (ÿ + 1)(� + 1) 307 

Where r is the number of null Sc values greater than the observed Sc and n is the total number of 308 

null Sc values.  309 

 310 

Statistical analysis 311 

 Statistical analysis was performed with SPSS/19. Demographic values were depicted as mean  ± 312 

SEM.  313 

 314 

Results 315 

Study population characteristics 316 

Characteristics for subjects included in the BALF study are shown in Table 1, with the only 317 

significant differences between the two groups in tobacco smoke exposure and lung function. 318 

 319 

BALF proteome characteristics 320 

A total of 1831 unique proteins were identified in the BALF proteome.  A total of 233 proteins 321 

(>1.5-fold absolute change, p-value <0.05) had a significant differential expression in BALF 322 

samples from patients with COPD versus healthy ex-smokers, 138 proteins were decreased in 323 

COPD while 95 proteins were increased (Table S2 and Table S3). 324 

 325 

Manually curated pathway analysis 326 

Functional annotation of differential expressed proteins and transcription factor interactions 327 
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The 233 differentially quantified proteins were characterized by their biological processes, 328 

transcription factor interactions, and cellular localization by employing NIH’s DAVID.28,29 The 329 

proteins involved in several biological processes implicated in COPD pathogenesis (total number 330 

of proteins, number upregulated, number downregulated) such as proteolysis51 (20,4,16), 331 

extracellular matrix52 (13,6,7), cell adhesion53 (11,2,9), cytoskeleton54 (32,14,18), defense 332 

response55 (16, 7,9), cell migration56 (12,4,8), and oxidation-reduction21 (11,2,9) were altered in 333 

COPD. As expected with examining the lung lining fluid, the largest single group of 334 

differentially expressed proteins was associated with the extracellular space (49, 30, 19).  335 

 336 

Transcription factors (Table S4) associated with the differentially expressed proteins (total 337 

number of proteins associated with the transcription factor) included serum response factor-SRF 338 

(148), transcription factor 8-AREB6 (166), signal transducer and activator of transcription factor 339 

1-STAT1 (69), zinc finger protein-GFI1 (97), signal transducer and activator of transcription 340 

factor 3-STAT3 (101), nuclear factor kappa-light-chain-enhancer of activated B cells-NF-κB 341 

(79), CCAAT/enhancer-binding protein β-CEBPB(109), paired box gene 2-PAX2(113), and 342 

activating transcription factor 2-CREBP1(95).  343 

 344 

Bioinformatic pathway analysis of BALF proteomic data 345 

The protein expression datasets were imported into IPA (Ingenuity Systems) and projected onto 346 

the relevant biological pathways; processes linked to the differentially expressed proteins were 347 

analyzed with IPA’s manually curated knowledge database.  Of the 233 differentially expressed 348 

proteins, 217 matched to the IPA curated database and were analyzed. Sixteen pathways were 349 

noted to have several proteins associated with the differentially expressed BALF dataset (Table 350 
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S5), including proteins implicated in cellular movement, cellular death and survival, cell 351 

morphology, immune cell trafficking, and cell cycle. Appendix Figures S1 to S4 depict IPA 352 

networks of selected pathways with the highest number of differentially expressed proteins.  353 

 354 

Computational drug prediction  355 

130 out of 233 BALF differentially expressed proteins were identified in the CANDO human 356 

protein library. This subset of proteins within the CANDO platform was used to predict 189 357 

putative drug candidates that have the most similar protein interaction signatures to the set of 358 

known drugs used to treat COPD ( Figure 1 and Table S6). Many of the drugs were 359 

corticosteroids; however other putative drugs included tezacaftor57, a recently developed drug to 360 

potentiate sodium channel activity in the treatment of cystic fibrosis; two additional drugs 361 

predicted to treat COPD, gemfibrozil58, and pioglitazone59, are drugs currently used to treat 362 

hyperlipidemia and diabetes, respectively.  363 

  364 

Candidate key mediators of COPD pathology based on literature derived drug enrichment 365 

Literature informed protein-protein and protein-drug interaction network 366 

A total of 233 proteins were identified as differentially expressed between COPD patients and 367 

healthy controls by mass spectrometry. Of these, 214 were represented in the Elsevier 368 

Knowledge Graph31, with the remainder comprising specific immunoglobulin chain proteins. A 369 

query of the Knowledge Graph for documented regulatory interactions between these protein 370 

entities yielded 206 regulatory edges supported by 807 references (with a median of 1 reference 371 

per edge). 112 of the 214 identified proteins could not be connected to the broader network 372 

circuit by a documented interaction. The protein entities in this network were then assessed in 373 
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terms of their importance as mediators of signal transfer based on their betweenness centrality. 374 

(Figure 2).   375 

 376 

Network topological analysis 377 

Four nodes representing proteins in the network stood out based on the normalized betweenness 378 

centrality values representing a greater than linear increase from the next lower ranking node: 379 

fibronectin, vimentin, intercellular adhesion molecule 1 (ICAM1), and galectin-3. These 380 

potentially key signaling mediators had a betweenness centrality of at least 25% of the 381 

maximum.  382 

 383 

Analysis of the initial data reveals fibronectin and ICAM1 are reduced in COPD patients relative 384 

to healthy controls; thus, any candidate therapeutic should target an increase in their activity. The 385 

reverse is true for vimentin and galectin-3. We, therefore, sought drugs or combinations of drugs 386 

predicted to accomplish the appropriate activation or inhibition of the four most central nodes, 387 

specifically drugs that will lead to the promotion of central node proteins that were 388 

downregulated in the COPD cohort and inhibition of central node proteins that were 389 

overabundant in COPD. The idealized drug vector, therefore, constitutes interactions leading to 390 

desirable modulation of the central hub protein.   CANDO identified 189 distinct drugs (Figure 391 

1, Table S7S6) with relevance for COPD; 39 of these represented in the Elsevier Knowledge 392 

Graph 31 were analyzed for their enrichment for the desired agonist and antagonist effects on the 393 

most central entities in the protein regulatory network. Highly enriched drugs or drug pairs were 394 

are predicted to be more likely than randomly selected drugs to exert appropriate inhibition or 395 

promotion of the most central proteins. Two single drugs (fluocinolone acetonide and 396 
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dexrazoxane) and 57 two-drug combinations were significantly enriched. Fluocinolone acetonide 397 

and dexrazoxane appeared in 54% and 46% of all significantly enriched 2-drug combinations, 398 

respectively, far greater than the other drugs appearing in these combinations (Figure 3). The 399 

combination of fluocinolone acetonide and dexrazoxane is the most enriched two-drug 400 

combination leading to an idealized drug vector. 401 

 402 

We additionally conducted a targeted query to assess the predicted effects of drugs commonly 403 

applied in pulmonary disease treatment on the most central proteins of this regulatory network 404 

(Figure 4 and Table S7).  While some of these have been documented to have the desired effect 405 

on two of the central proteins, fibronectin or vimentin, all have been documented to have the 406 

opposite effect on at least one of the most central proteins. Therefore, they were not significantly 407 

enriched out of the set of all possible candidate drugs. 408 
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 409 

Discussion 410 

Our investigation of the COPD BALF proteome utilizing novel bioinformatic techniques 411 

revealed significant differences in proteins involved in multiple biological processes, including 412 

lung-specific mechanisms, protease/anti-protease homeostasis, immunoregulation, and the 413 

extracellular matrix. Proteomic profiling of the complex pathways implicated in COPD provides 414 

broader physiological exploration not provided by studying one entity at a time.  We identified 415 

several differentially expressed proteins in COPD versus controls that, based on a review of 416 

published literature, have not been previously implicated in COPD etiology. This preliminary 417 

analysis illustrates how our BALF proteomic analysis represents a powerful approach to 418 

elucidate COPD pathogenesis and identify novel biomarkers. 419 

 420 

Employing the bioinformatics tool DAVID and IPA, putative pathway networks were 421 

constructed based on the differentially expressed proteins in the BALF proteome that implicated 422 

multiple transcription factor pathways and disparate biological processes, such as extracellular 423 

space, proteolysis, extracellular matrix, cell adhesion, cytoskeleton, defense response, cell 424 

migration, and oxidation-reduction.  425 

 426 

The CANDO platform identified 189 drug candidates that had similar protein interaction 427 

signatures based on the BALF proteome when compared to known drugs that are used to treat 428 

COPD. However, while most putative drug and protein interactions are likely inhibitors, the 429 
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induction or inhibition of a target protein is indeterminable with solely the binding potential 430 

between drug and protein pairs. 431 

 432 

Topological analysis of the interaction network connecting 233 proteins differentially expressed 433 

in COPD through regulatory interactions documented in the literature suggested that ICAM160 434 

and galectin-361 are important central mediators of inflammation while both fibronectin62,63 and 435 

vimentin64  are central mediators of inflammation and fibrogenesis. This corroborates the results 436 

of the pathway enrichment analysis described above, and points to fibrosis and innate 437 

inflammation as important processes governing the pathogenesis and progression of COPD. A 438 

literature knowledge-based query (Elsevier Knowledge Graph) of drugs with desired drug-target 439 

interactions (generated using CANDO) identified putative drugs, such as anti-neoplastic, anti-440 

fibrotic drugs, and regulators of inflammation, that would restore key central proteins to the 441 

levels characteristic of healthy controls. Our results also suggest currently utilized medications 442 

for COPD have disparate effects on the identified central node proteins that are key putative 443 

mediators of COPD pathogenesis and progression.  In contrast,  the corticosteroid fluocinolone 444 

acetonide65 and the cardioprotective agent dexrazoxane66 were highly enriched for the desired 445 

effects on central network entities, both individually and in combination. Fluocinolone acetonide 446 

is a stronger potentiator than other corticosteroids of the TGF-β pathway67 which is noted to be 447 

dysregulated in COPD68, and fluocinolone acetonide may be more effective than comparable 448 

corticosteroids in improved homeostasis in that pathway. Dexrazoxane66 is used to reduce 449 

cardiac toxicity associated with anthracycline-based chemotherapy agents by binding to iron and 450 
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reducing reactive oxygen species; with oxidative stress as a significant factor in COPD 451 

pathogenesis69, antioxidative therapy may be beneficial. 452 

 453 

The documented actions of these immunomodulators were predicted here to substantially 454 

counteract the observed dysregulation of centrally-connected proteins in COPD patients. The 455 

relatively high representation of immunomodulators among the candidate agents and the 456 

increased centrality of fibrosis-related proteins is consistent with the paradigm of airway 457 

remodeling as central to COPD pathology.70 With additional data, this regulatory circuit could be 458 

used as a testbed for computational evaluation of these and other candidate drug effects using  459 

network topological methods. 71  460 

 461 

Limitations and strengths 462 

Our approach does has some limitations.  The variability in how much BALF is recovered from 463 

each aliquot of saline infused in to the lower airway in COPD vs. control subjects are inherent in 464 

most BALF proteomic analyses. However, the BALF proteins were normalized to albumin 465 

BALF concentrations to account for the variability. The examination of protein levels without 466 

accounting for post-translational modifications, such as phosphorylation, may neglect important 467 

differences in protein interactions and activity, despite no significant differences in protein 468 

levels. Also, the BALF samples were from subjects in the COPD group who were ex-smokers. 469 

This exclusion limits the generalizability of our findings particularly current smokers, since the 470 

acute effects of tobacco smoke were excluded in our study design.   471 

 472 

 473 
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However, we confined our analysis to ex-smokers with moderate COPD to obtain some 474 

uniformity of the COPD phenotype and to avoid the acute inflammatory effects of current 475 

smoking.  Future work on proteomic profiles will inform us of the difference between such 476 

profiles in current smokers and different stages of COPD.  477 

 478 

Comparison to previously published studies 479 

A sputum proteomics study endeavored to identify COPD severity biomarkers by employing 2D 480 

gel electrophoresis and revealed 15 proteins that were significantly differentially expressed 481 

between healthy smoker controls and subjects with GOLD stage II; subsequently, 9 of the 15 482 

candidate proteins were validated with Western Blot. Of the nine candidate proteins validated 483 

with Western Blot, seven were statistically significantly different between groups, specifically 484 

albumin, alpha-2-HS glycoprotein, transthyretin, PSP94, apolipoprotein A1, lipocalin-1, and 485 

PLUNC. 72  Employing quantitative ELISA data normalized for protein content, the investigators 486 

identified apolipoprotein A1 and lipocalin-1 as statistically differentially expressed in COPD. 487 

Although apolipoprotein A1 and lipocalin-1 were identified in our study of the BALF proteome, 488 

the proteins were not significantly differentially expressed, likely due to the differences in 489 

expression in the different biocompartments of sputum vs. bronchoalveolar lumen.  490 

A 2D differential gel electrophoresis study and subsequent mass spectroscopy were performed 491 

by Ohlmeier et al., which compared healthy smokers, non-smokers, and smokers with GOLD 492 

stage II COPD and revealed a different set of 15 proteins that were differentially expressed 493 

between the groups.73 Of these proteins, polymeric immunoglobulin receptor levels in lung tissue 494 

and blood between the three groups were correlated with airflow obstruction.  495 
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 496 

In Lee et al., tumor-free lung tissue harvested from patients with lung cancer resection, when 497 

examined via 2D gel electrophoresis/MALDI-TOF-MS, revealed eight proteins that were 498 

upregulated in subjects with COPD compared to nonsmokers and ten significantly differentially 499 

expressed proteins between subjects with COPD and smoking subjects without COPD.74 Two of 500 

the identified proteins, matrix metalloprotease 13 (MMP13) and thioredoxin-like 2, were 501 

confirmed to be increased in COPD subjects with Western Blot and immunohistochemical 502 

staining, with MMP13 localized to the alveolar macrophage and type II pneumocytes and 503 

thioredoxin-like 2 found in the bronchial epithelium. Thioredoxin-like 2, which contains 504 

thioredoxin, was found in the BALF proteome but not significantly differentially expressed. 505 

However, MMP13 was not identified in our BALF study, likely due to differences in study 506 

populations and variable biocompartments. 507 

 508 

Conclusion 509 

In summary, our work provides a valuable pipepline for identifying many proteins associated 510 

with COPD pathogenesis that illustrate the complexity of the development of this disease, as 511 

well as identifying putative therapeutic treatment options using cutting-edge bioinformatics 512 

approaches.  Identifying differentially expressed proteins will form the basis for future 513 

mechanistic studies of critical pathways and novel treatment discovery. Validation of our 514 

proposed therapeutic approach in animal models and pilot human studies are important next 515 

steps.   516 

517 
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Figure/ Figure Legends. 

 

 
Figure 1 Putative drug candidates for treating COPD generated using the 

CANDO platform.  A subset of 130 proteins from the CANDO human protein library were 

identified from 233 differentially expressed proteins in the BALF. These 130 proteins were utilized to 

generate BALF-specific interaction signatures for 2,450 FDA-approved drugs via our in-house 

docking protocol BANDOCK (see methods). These drug-proteome interaction signatures were 

compared to those of 34 known drugs used to treat COPD to predict 189 most similar putative 

drug candidates. The 189 drugs are represented by colored circles, with the diameter of the 

circles decreasing with descending overall rank. Drug name labels are depicted for a selection of 

the 189 drugs shown by the colored circles.  The horizontal axis plots the consensus score count 

or the number of times the particular drug is listed within the top30 most similar drugs to those 

known to treat COPD based on interaction signature similarity. The vertical axis plots the 

average of the cumulative ranks of the consensus scores for the putative drug.  The overall rank 
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of a putative drug is determined by initially sorting the drug by the consensus score, as noted 

above, and then additional sorting by the average rank. Many of the drug candidates were 

corticosteroids not used to treat COPD; however other putative drugs included tezacaftor, a drug 

to potentiate sodium channel activity in the treatment of cystic fibrosis; two additional drugs 

predicted to treat COPD, gemfibrozil, and pioglitazone, are drugs currently used to treat 

hyperlipidemia and diabetes, respectively.  This analysis indicates that the CANDO platform 

applied to the BALF proteome is able to generate putative drug candidates for COPD treatment.  

BANDOCK= bioanalytical docking 

CANDO=computational analysis of novel drug opportunities 

COPD=chronic obstructive pulmonary disease.  
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Figure 2 BALF network centrality nodes ranked by betweenness centrality.  

Betweenness centrality quantitatively describes how a node (in this case, a differentially 

expressed protein in the BALF proteome) mediates the interaction between communities of 

neighboring nodes in the network.  Shown are 44 network entities with betweenness centrality 

>0.01, normalized to the maximum betweenness centrality present in the network. The 

betweenness centrality scores for all nodes were expressed as fractions of the maximum 
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betweenness centrality present in the network. The (red and blue) colors indicate the needed 

effect (inhibition/induction) to restore these entities from COPD levels to the normal levels in 

healthy control subjects. The four nodes with ≥25% of the maximum betweenness centrality 

(fibronectin) with normalized betweenness centrality values representing a greater than the linear 

increase from the next lower ranking node are fibronectin, vimentin, intercellular adhesion 

molecule1 (ICAM1), and galectin-3. These potential key signaling mediators had a betweenness 

centrality of at least 25% of the maximum. Topological analysis of the interaction network 

regulatory interactions documented in the literature suggests that these proteins were central 

mediators of COPD.57-61 

 

Colors indicate the needed effect to restore these entities to the normal levels in healthy control 

subjects. 

CANDO=computational analysis of novel drug opportunities 

COPD=chronic obstructive pulmonary disease 
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Figure 3. Drug frequency amongst idealized drug combinations predicted to 

modulate central proteins in COPD. The combinations of drugs initially identified by 

CANDO, which were predicted to activate or inhibit the four central nodes with the highest 

maximum betweenness centrality are listed (Figure 2). Drugs that lead to the promotion of 

central node proteins that were downregulated in the COPD cohort and inhibition of central node 

proteins (identified by network topological graph) that were overabundant in COPD. The 
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idealized drug vector constitutes interactions leading to desirable modulation of the central hub 

protein. Representation of individual drug frequency among the 57 significantly enriched two-

drug combinations (idealized drug vectors) out of the 39 proteins represented in the Elsevier 

Knowledge Graph are listed in descending order. Fluocinolone acetonide and dexrazoxane 

appeared in 54% and 46% of all significantly enriched two-drug combinations respectively, far 

greater than other drugs appearing in these combinations. The combination of fluocinolone 

acetonide and dexrazoxane is the most enriched two-drug combination leading to an idealized 

drug vector that most likely reverses the protein levels of the four central nodes to levels found in 

healthy control subjects.  

CANDO=computational analysis of novel drug opportunities 

COPD=chronic obstructive pulmonary disease 
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Figure 4: Commonly used pulmonary drugs and their putative effects on four central node 

proteins in COPD.  A Sankey diagram categorizing the likely effects of putative drugs on four 

central node proteins in COPD is depicted.  There are nine drugs on the left of the diagram used 

to treat different pulmonary diseases, with the corresponding drug classes displayed on the right 

side of the diagram. The effects of these drugs on four nodes (fibronectin, vimentin, intercellular 

adhesion molecule1 (ICAM1), and cd44) are detailed in the middle of the diagram, with broad 

lines connecting the proteins in the right to the putative effect (desired, unknown, undesired.  

While some of these have been documented to have the desired effect on fibronectin (promotion) 

or vimentin (inhibition), all have been reported to have the opposite effect on at least one of the 

most central proteins. This suggests using drugs commonly used to treat pulmonary disease, if 

repurposed for COPD, may have contrary effects on the mediators of the pathways involved in 

COPD, reinforcing the need to have a more nuanced approach to drug repurposing. 

 

CANDO=computational analysis of novel drug opportunities 

COPD=Chronic obstructive pulmonary disease  
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TABLES: 

 

Table 1:   

Clinical parameters of never-smoking healthy subjects and ex-smokers with stable COPD 

in BALF study 

 
Control subjects 

n=10 

COPD subjects 

(GOLD stage 2) 

n=10 

P-value 

Age (years) 63.4 ± 11.7 67.8 ± 8.5 0.15 

Sex   0.31 

Male 6 7  

Female 4 3  

Race   0.083 

Caucasian 8 10  

African-American 2 0  

BMI (kg/m2) 28.5±4.2 32±9.7 0.32 

Years patient quit 

smoking 
NA 12.9 ± 4.4 

 

Tobacco smoking, 

Pack years 

NA 56.6 ± 17.2 <0.001 

FEV1 (% predicted) 96.3 ± 14.8 65.9 ± 8.1 <0.001 

FVC (% predicted) 95.6 ± 13.4 87.6± 13.1 0.19 

FEV1/FVC 77.6± 3.8 57.8 ± 8.6 <0.001 

Table 1:  

Clinical parameters of never-smoking healthy subjects and ex-smokers with stable COPD 

in BALF study 

 

 

FEV1: forced expiratory volume in 1 second.  FVC: forced vital capacity. Years quit:  Years 

subjects quit tobacco smoking. Pack-Years: The average number of packs of cigarettes smoked 

per week multiplied by the years the subject smoked cigarettes. 
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