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Abstract 24 

As viral genomic imprints in host genomes, endogenous viral elements (EVEs) shed light on 25 

the deep evolutionary history of viruses, ancestral host ranges, and ancient viral-host 26 

interactions. In addition, they may provide crucial information for calibrating viral 27 

evolutionary timescales. In this study, we conducted a comprehensive in silico screening of a 28 

large dataset of available mammalian genomes for EVEs deriving from members of the viral 29 

family Flaviviridae, an important group of viruses including well-known human pathogens. 30 

We identified two novel pestivirus-like EVEs in the reference genome of the Indochinese 31 

shrew (Crocidura indochinensis). Homologs of these novel EVEs were subsequently detected 32 

in vivo by molecular detection and sequencing in 27 shrew species, including 26 species 33 

representing a wide distribution within the Crocidurinae subfamily and one in the Soricinae 34 

subfamily. Based on this wide distribution, we estimate that the integration event occurred 35 

before the last common ancestor of the subfamily, about 10.8 million years ago, attesting to an 36 

ancient origin of pestiviruses and Flaviviridae in general. Moreover, we provide the first 37 

description of Flaviviridae-derived EVEs in mammals even though the family encompasses 38 

numerous mammal-infecting members, including major human pathogens such as Zika, 39 

dengue, or hepatitis C viruses. This also suggests that shrews were past and perhaps also current 40 

natural reservoirs of pestiviruses. Taken together, our results expand the current known 41 

Pestivirus host range and provide novel insight into the ancient evolutionary history of 42 

pestiviruses and the Flaviviridae family in general.  43 
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1 3 Introduction 44 

Endogenous viral elements (EVEs) are integrations of partial or full-length viral genomic 45 

material into the host genome (Katzourakis and Gifford, 2010a). In addition to retroviruses, 46 

which incorporate their genomic sequences into their host genome as an essential part of their 47 

replication cycle, many eukaryotic viruses have been found endogenized in various hosts 48 

(Feschotte and Gilbert, 2012). These non-retroviruses can derive from dsDNA (Aswad and 49 

Katzourakis, 2014; Li and Li, 2015; Liu et al., 2020), ssDNA (Belyi et al., 2010a; Katzourakis 50 

and Gifford, 2010a; Kobayashi et al., 2019), dsRNA (Horie et al., 2010; Katzourakis and 51 

Gifford, 2010b; Liu et al., 2012), and even ssRNA viruses (Crochu et al., 2004; Flynn and 52 

Moreau, 2019; Horie et al., 2010; Lequime and Lambrechts, 2017). Non-retroviral RNA virus-53 

derived EVEs arise from a conjunction of relatively rare events: i) production of DNA genomic 54 

material, using retrotransposon encoded reverse transcriptase (Horie, 2019; Horie et al., 2010), 55 

ii) integration in the host chromosome of germ-line cells, and iii) overcoming genetic drift 56 

and/or natural selection at the population until fixation (Aiewsakun and Katzourakis, 2015a; 57 

Holmes, 2011). EVEs thus reflect long-term and intimate interactions of viruses with their 58 

hosts, and their identification can reveal insights into past and present host distributions of viral 59 

genera and families. The detection of endogenous bornavirus-like elements in invertebrate 60 

genomes (Horie et al., 2013), for example, suggested a broader host range for bornaviruses 61 

than previously thought. The study of filovirus-like EVEs in some small mammals offer 62 

predictive value for further identifying filovirus reservoirs (Taylor et al., 2010). Similarly, the 63 

discovery of flavivirus-derived EVEs in Anopheles mosquito genomes supported the idea that 64 

Anopheles mosquitoes could also be the natural hosts of flaviviruses (Lequime and Lambrechts, 65 

2017), as confirmed by other studies (Colmant et al., 2017; Öncü et al., 2018).  66 

 67 

Aside from qualitative insights into host ranges of viruses, EVEs can also shed light on deep 68 

evolutionary histories of viruses. EVEs are significant traces of past virus-host interactions; 69 

unlike animals or plants, viruses do not leave physical fossil records, limiting our ability to 70 

study their deep evolutionary histories. EVEs could thus be considered as <genomic fossil 71 

records= that can help to unravel long-term evolutionary dynamics between hosts and viral 72 

families. The presence of EVE homologs in different host species hints at an integration event 73 

before speciation, here the time to the most recent common ancestor. It thus provides a 74 

minimum age estimate for the integration event, and therefore a minimum age for the existence 75 

of a specific viral taxonomic group (Aiewsakun and Katzourakis, 2015b). For example, EVEs 76 

derived from adeno-associated viruses appear to be orthologous in African and Asian elephants, 77 
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indicating an integration event more than 6 million years ago (Kobayashi et al., 2019). 78 

Similarly, the discovery of abundant bornavirus-like EVEs across vertebrates reveals that 79 

ancient bornaviral infections occurred over a timeframe of about 100 million years before 80 

present (Kawasaki et al., 2021). These studies can also provide genetic fossil calibration points 81 

for further gauging ancient viral timescales using phylogenetics (Feschotte and Gilbert, 2012). 82 

 83 

Members of the Flaviviridae family are linear, positive-sense, single-stranded RNA viruses 84 

currently classified in four recognized genera (Flavivirus, Hepacivirus, Pestivirus, and 85 

Pegivirus). They encompass many significant pathogens, such as dengue, Zika, hepatitis C, or 86 

bovine viral diarrhea virus. In addition to human and livestock infections, Flaviviridae viruses 87 

have been detected in a broad range of hosts, e.g. non-human primates (Mares-Guia et al., 88 

2020), rodents (Bletsa et al., 2021), bats (Wu et al., 2018), birds (Strand et al., 2018), arthropods 89 

(Shi et al., 2016), and fish (Hartlage, 2016; Soto et al., 2020). Divergence date estimates on a 90 

genus-wide scale are relatively rare, with the oldest, for the Flavivirus genus, being estimated 91 

at 200,000 years ago (Pettersson and Fiz-Palacios, 2014). Although Flaviviridae viruses have 92 

been detected in various hosts, especially in small mammals (Bletsa et al., 2021; de Lamballerie 93 

et al., 2002; Wu et al., 2020, 2018), current published studies have only identified Flaviviridae-94 

derived EVEs in arthropods, including mosquitos (Crochu et al., 2004; Lequime and 95 

Lambrechts, 2017; Roiz et al., 2009), ticks (Maruyama et al., 2014), and crustaceans (Parry 96 

and Asgari, 2019), and these are all related to the Flavivirus genus. A recent study also 97 

identified Flaviviridae-derived EVEs in a wide variety of hosts, including various invertebrates 98 

and fish (Bamford et al., 2021). Currently, however, convincing evidence for Flaviviridae-99 

derived EVEs in vertebrates remains lacking. Interestingly, potential integration has been 100 

suggested in medaka fish (Belyi et al., 2010b) as well as in rabbit and hare genomes (Silva et 101 

al., 2015, 2012). While this raises the hypothesis that Flaviviridae viruses have integrated in 102 

vertebrate hosts, the origin of these specific genomic sequences remains inconclusive due to 103 

their short size and low sequence similarity to the Flaviviridae (Flavivirus and Hepacivirus 104 

respectively). 105 

 106 

In this study, we explored in silico the presence of Flaviviridae-derived EVEs in a 107 

comprehensive set of mammalian genomes, and we discovered two novel pesti-like EVEs in 108 

the genome of the Indochinese shrew Crocidura indochinensis. We subsequently identified 109 

and characterized homologs of these EVEs in vivo in 26 species of the Crocidurinae subfamily 110 

and one member of the Soricinae subfamily, establishing the integration event at least 10.8 111 
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million years ago. Our results provide the first evidence for an ancient origin of pestiviruses 112 

and also contribute to a better understanding of the evolutionary history of the Flaviviridae 113 

family in general. 114 

 115 

2 3 Material and Methods 116 

2.1 3 In silico survey 117 

2.1.1 3 Data collection 118 

To screen for Flaviviridae-like EVEs, 689 mammalian genomes (57 bats, 9 insectivores, 177 119 

rodents, 101 nonhuman primates, 207 even-toed ungulates, 15 odd-toed ungulates, 108 120 

carnivores, and 15 marsupials), were retrieved from the National Center for Biotechnology 121 

Information (NCBI) Whole Genome Shotgun (WGS) database (last accessed in November 122 

2020). A detailed list of all the surveyed mammalian genomes is provided in Supplementary 123 

Table S1. A representative group of 306 Flaviviridae or Flaviviridae-like polyprotein 124 

sequences was compiled from the NCBI non-redundant protein database (accessed in February 125 

2019). We provide a list of the nucleotide/protein accession numbers in Supplementary Table 126 

S2. 127 

 128 

2.1.2 3 Genome screening  129 

Flaviviridae polyprotein sequences were used as queries in tBLASTn (BLAST+ v2.6.0) 130 

(Camacho et al., 2009) searches with mammalian genomes as targets. To avoid potential 131 

artifacts, only hits with E-value < 10-4 and length >= 250 nt were extracted from mammalian 132 

genomes based on the reported position by BLAST in the host contig. These putative EVEs 133 

were then used as query in a reciprocal tBLASTx (BLAST+ v2.6.0) (Camacho et al., 2009) 134 

against a local NCBI nucleotide (nt) database (accessed in October 2018) and BLASTx 135 

(BLAST+ v2.6.0) (Camacho et al., 2009) against a non-redundant protein (nr) database 136 

(accessed in October 2018). EVEs were confirmed if the best hits contained Flaviviridae family 137 

members with an E-value < 10-4 and length >= 250 nt. The presence of conserved viral genetic 138 

features within the hits was assessed using the NCBI Conserved Domain Database (Marchler-139 

Bauer et al., 2015). 140 

 141 

2.1.3 3 EVE characterization 142 

Upon identification of the EVEs, they were translated and aligned with corresponding 143 

polyprotein sequences from several representative Flaviviridae species using MAFFT v7.453 144 

(Katoh et al., 2002). All alignments were trimmed in BMGE v1.12 (Criscuolo and Gribaldo, 145 
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2010) in order to select for phylogenetic informative regions. The best substitution models 146 

were PMB+G4 for the EVE1 alignment, LG+F+G4 for the EVE2 alignment, and LG+F+I+G4 147 

for the concatenated EVEs alignment according to the BIC criterion and were used to construct 148 

phylogenetic ML trees with IQ-TREE v1.6.12 (Nguyen et al., 2015). 149 

 150 

2.1.4 3 Flanking region analysis 151 

To characterize the EVEs loci and identify potential transposable elements or other genetic 152 

features, flanking regions of the identified EVEs were extracted from the host contigs and used 153 

as BLAST queries to screen against the NCBI nucleotide (nt) and non-redundant protein (nr) 154 

databases (both accessed in October 2018). 155 

 156 

2.1.5 3 Metagenomic screening 157 

According to the WGS screening results above, some Flaviviridae-related hits were detected 158 

in a shrew (Crocidura indochinensis) genome. However, apart from the Crocidura 159 

indochinensis and Sorex araneus complete genomes, only a limited number of shrew genomes 160 

are currently available in the NCBI WGS database. Therefore, 73 DNA experimental genomic 161 

data sets and 6 RNA-Seq transcriptome data sets (Supplementary Table S3) from the Soricidae 162 

family were retrieved from NCBI Sequence Read Archive (SRA) database using SRA Toolkit 163 

v2.10.8 (Leinonen et al., 2011). Reads were mapped to the identified EVEs nucleotide 164 

references using Bowtie2 v2.3.5.1 (Langmead and Salzberg, 2012). Alignment files were 165 

processed with SAMtools v1.10 (Li et al., 2009) and coverage was determined using bedtools 166 

v2.27.1 (Quinlan and Hall, 2010) and visualized in RStudio v1.1.463. 167 

 168 

2.2 3 In vivo validation 169 

2.2.1 3 Sample collection 170 

Based on the screening results, to further verify the presence of Flaviviridae-related EVEs in 171 

vivo, a total of 65 tissue and DNA samples from species belonging to the Crocidura genus and 172 

6 other related genera of the Soricidae family, namely Paracrocidura, Scutisorex, Suncus, 173 

Sylvisorex (subfamily Crocidurinae), Neomys, and Sorex (subfamily Soricinae), were screened 174 

for the presence of the identified EVEs. These samples were previously collected in China, 175 

Vietnam, Africa, and the Eastern Mediterranean (Supplementary Table S4) as part of other 176 

studies (Bannikova et al., 2011; de Perre et al., 2019; Jenkins et al., 2013; van de Perre et al., 177 

2018) 178 

 179 
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2.2.2 3 Target EVEs and cytochrome b (Cytb) amplification 180 

DNA was extracted from tissue samples using the DNeasy Blood & Tissue Kit (Qiagen) 181 

following the manufacturer9s instructions.  182 

To screen for the presence of EVEs in vivo, we designed 18 PCR primers (Supplementary 183 

Table S5) spanning the 2 EVEs region and a section of the intermediate flanking region from 184 

the host genome. Amplicons were generated with DreamTaq DNA Polymerase (ThermoFisher 185 

Scientific) using the following cycling conditions: (i) 3 min of denaturation at 95°C, (ii) 35 186 

cycles of 95°C for 30s, 56°C for 30s, 72°C extension for 1min/kb, and (iii) 10 min final 187 

extension at 72°C. 188 

To confirm the host species, and to complement available specimen information, the 189 

mitochondrial Cytb gene was amplified using general primers (Supplementary Table S5) of the 190 

Crocidurinae subfamily. PCR reactions were conducted using the DreamTaq DNA Polymerase 191 

(ThermoFisher Scientific) with the following thermal cycling conditions: (i) 3 min of 192 

denaturation at 95°C, (ii) 35 cycles of 95°C for 30s, 56°C for 30s, 72°C extension for 1min/kb, 193 

and (iii) 10 min final extension at 72°C.  194 

All PCR products were purified using the ExoSAP-IT PCR Product Cleanup (ThermoFisher 195 

Scientific) or Zymoclean Gel DNA Recovery Kits (ZYMO Research) to remove primer dimers 196 

and unspecific products, following the manufacturer9s instructions. 197 

 198 

2.2.3 3 Sanger sequencing 199 

The generated PCR products were sequenced by Macrogen Europe. The amplicons were 200 

mapped to the whole EVEs region (2,235nt) from the WGS Crocidura indochinensis contig, 201 

and concatenated based on consensus sequence to get the complete EVEs in Geneious Prime® 202 

v2020.2.4. Cytb amplicons (~1,140nt) were forward and reverse sequenced and a consensus 203 

sequence was generated using Geneious Prime® v2020.2.4. 204 

 205 

2.2.4 3 MinION sequencing  206 

For 12 samples with relatively low-quality Sanger sequencing chromatograms (additional 207 

information provided in Supplementary Table S6), MinION sequencing was performed to 208 

obtain the complete EVEs region (~2,235nt) together with the Cytb gene (~1,140nt). The 209 

Oxford Nanopore Technologies (ONT) 1D Native barcoding genomic DNA protocol was used 210 

without the DNA fragmentation step and the barcoded amplicons were loaded onto the 211 

MinION device. We used the MinKNOW software v19.13.5 on the MinIT companion for data 212 
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acquisition and basecalling. Qcat v1.1.0 (ONT, https://github.com/nanoporetech/qcat) was 213 

used to demultiplex reads under the epi2me algorithm and to trim bad quality reads and 214 

adapters with min score of 90. The EVE regions extracted from the WGS Crocidura 215 

indochinensis contig were used as references to map the reads with Minimap2 v.2.22 (Li, 2018) 216 

using -ax map-ont parameters. Alignments were converted and indexed using SAMtools v1.10 217 

(Li et al., 2009) and consensus sequences were generated using a custom Python script 218 

(Kafetzopoulou, 2019).  219 

 220 

2.3 3 Phylogenetic analysis and visualization  221 

All generated EVEs sequences were translated and aligned with homologous polyproteins from 222 

available Pestivirus species using MAFFT v7.453 (Katoh et al., 2002). Sequences of dengue-223 

2 and Zika virus (Flavivirus genus) were used as an outgroup. The alignment was trimmed 224 

using BMGE v1.12 (Criscuolo and Gribaldo, 2010) and the filtered regions were used to 225 

construct maximum-likelihood (ML) phylogenetic trees using IQ-TREE v1.6.12 (Nguyen et 226 

al., 2015) under the best-fitting models (according to the Bayesian information criterion): 227 

WAG+G4 (for EVE1), LG+F+I+G4 (for EVE2), and LG+G4 (for complete concatenated 228 

EVEs). Phylogenies were visualized and annotated using FigTree v1.4.4 (A. Rambaut; 229 

http://tree.bio.ed.ac.uk/software/figtree/). Percent identity matrices were generated using 230 

Clustal Omega (Sievers et al., 2011) via EMBL-EBI web services (Madeira et al., 2019).  231 

Cytb sequences of EVEs-positive specimens (n=48) were aligned using MAFFT v7.453 (Katoh 232 

et al., 2002) together with a dataset of n=393 Soricidae nucleotide sequences downloaded from 233 

NCBI. The generated alignment was trimmed in BMGE v1.12 (Criscuolo and Gribaldo, 2010) 234 

and an ML phylogeny was reconstructed using IQ-TREE v1.6.12 (Nguyen et al., 2015) with 235 

the best-fitting model (TIM2+F+I+G4). 236 

To highlight the evolutionary relationships of our newly discovered EVEs and their hosts, 237 

EVEs and Cytb phylogenies were annotated in ggtree v1.14.6 (Yu et al., 2017) and treeio v1.6.2 238 

(Wang et al., 2020) R packages, followed by the estimation of a co-phylogenetic plot 239 

(tanglegram) using the ape v5.0 (Paradis and Schliep, 2019) and dendextend v1.14.0 (Galili, 240 

2015) R packages. 241 

 242 

2.4 3 Characterization of selective pressure  243 

We only characterized the selective pressure acting on the EVE 1 locus, as the EVE 2 locus 244 

exhibits widespread stop codons and translation frame shifts. We aligned the open reading 245 

frame of the complete EVE1 region (318 nt) using MEGA v11.0.9 (Tamura et al., 2021). An 246 
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ML tree was build based on this alignment in IQ-TREE v1.6.12 (Nguyen et al., 2015) under 247 

the best-fitting model (HKY+F). We then conducted two site-specific selection analyses to 248 

characterize the selective pressure on each site using estimates of the ratio of non-249 

synonymous/synonymous substitution rate (w = dN/dS): 1) fixed effects likelihood (FEL) 250 

analyses (Kosakovsky Pond and Frost, 2005) using MG94xREV model available in HyPhy 251 

software v2.5.3 (Kosakovsky Pond et al., 2005), and 2) the Bayesian renaissance counting 252 

method (Lemey et al., 2012) implemented in BEAST v1.10.5 (Suchard et al., 2018). The value 253 

of w quantifies the selective pressure, with w > 1 suggesting positive selection, w = 1 neutral 254 

evolution and w < 1 negative or purifying selection. 255 

 256 

3 3 Results 257 

3.1 3 False positive Flaviviridae-like hits from mammalian genome screening  258 

Our initial screening of 689 available mammalian genomes using Flaviviridae and 259 

Flaviviridae-like polyproteins yielded 66 positive hits from 49 species, including rodents, non-260 

human primates, marsupials, insectivores, carnivores, and bats. Detailed information about our 261 

in silico screening results can be found in Supplementary Table S7. All hits were similar to 262 

three pestiviruses, namely border disease virus, bovine viral diarrhea virus 1, and bovine viral 263 

diarrhea virus 2. With the exception of one shrew species (see section below), the position of 264 

all hits in the corresponding viral genomic sequence was in the ubiquitin-homolog domain 265 

between the nonstructural proteins NS2 and NS3, while some of the hits slightly expanded the 266 

alignment to the NS3 region (shown in Supplementary Fig. 1). The ubiquitin domain in bovine 267 

viral diarrhea virus is however predicted to originate from cellular derived insertions 268 

in cytopathogenic pestivirus (Agapov et al., 2004; Becher and Tautz, 2011). The similarity 269 

between this viral genomic region and ubiquitin poses a considerable risk for false positives 270 

when searching for pestivirus-derived EVEs, and these hits were therefore not further 271 

considered. 272 

 273 

3.2 3 In silico identification of Crocidura indochinensis pesti-like EVEs 274 

Besides the ubiquitin-related false positive results, our in silico screening identified a series of 275 

five Flaviviridae-related EVEs fragments in a single contig of the Crocidura indochinensis 276 

reference genome PVKC01 (Table 1). The first EVE (EVE1) is 318 nt long, with its closest 277 

BLAST hit being the Linda virus (Pestivirus) envelope glycoprotein E2 region (tBLASTx, 25.5% 278 

identity, e-value 3.31E-35), without any stop codon (Fig. 1). The remaining four EVEs 279 
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fragments are 1,053 nt, 84 nt, 114 nt and 87 nt long respectively, with their closest BLAST hits 280 

being a classical swine fever virus and a rodent pestivirus (with minimum amino-acid identity 281 

24.9%, maximum 62.1%). These four fragments are separated by very short gaps, with lengths 282 

of 16, 1 and 4 nucleotides, respectively. The two central fragments of EVE2, fragments 3 (84 283 

nt) and fragment 4 (114 nt), are in a different translation frame than the two others, but in the 284 

same orientation. Their arrangement in the host contig reflects their relative position in the 285 

pestiviral genome, which partially spans the non-structural NS2 and NS3 genes (Fig 1). For 286 

these reasons, in our further analyses, we considered these four fragments as the result of a 287 

single pestiviral integration event, and thus a unique EVE (EVE2). Phylogenetic 288 

reconstructions of the identified Crocidura indochinensis EVE1, EVE2 and entire 289 

concatenated sequence with exogenous Flaviviridae viruses supports the pestivirus-origin of 290 

the EVEs (Supplementary Fig. 2).  291 

In addition, a fragment prior to EVE1 in the contig shows a strong similarity (tBLASTx, 45.2% 292 

identity, e-value 5.51E-19, supplementary Table 7) with the pestivirus ribonuclease T2 gene. 293 

However, considering that this enzyme exists in a wide range of organisms (Luhtala and Parker, 294 

2010), the virus-derived origin of this sequence in Crocidura indochinensis is not guaranteed. 295 

The position of all pestivirus-like hits, including the ribonuclease T2 gene, in the host contig 296 

corresponds to their relative organization in the pestivirus genome. No additional features were 297 

detected after a tBLASTx search of the whole contig encompassing the two identified EVEs 298 

(Supplementary Table S7). In addition, we did not detect the EVE sequences in reads of 299 

publicly available experimental genomic and transcriptomic data from Soricidae species. 300 

 301 

contig 

accession no. 

contig 

length 

(nt) 

EVE  
GenBank 

accession no. 

EVEs 

fragments 

EVE 

length 

(nt) 

position in host 

contig 
translation 

frame 
Closest BLAST hit  Conserved-domain search 

start end 

PVKC010097735.1 6104 

EVE1 

BK014483 

 

No. 1 318 2329 2646 1 Linda virus 
Pestivirus envelope 

glycoprotein E2 

EVE2 

No. 2 1053 3205 4257 1 
Classical swine fever 

virus 

Peptidase_C74: 

Pestivirus NS2 peptidase 

No. 3 84 4274 4357 2 Rodent pestivirus 

Peptidase_S31: Pestivirus 

NS3 polyprotein peptidase 

S31 

No. 4 114 4359 4472 2 Rodent pestivirus 

Peptidase_S31: Pestivirus 

NS3 polyprotein peptidase 

S31 

No. 5 87 4477 4563 1 Rodent pestivirus 

Peptidase_S31: Pestivirus 

NS3 polyprotein peptidase 

S31 

Table 1. Newly detected EVEs in Crocidura indochinensis genome 302 
 303 
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 304 
Fig. 1. The positions of the newly detected Crocidura indochinensis EVEs are shown relative to an archetypal Pestivirus genome 305 

(classical swine fever virus, NC_002657). Npro, N-terminal protease; C, nucleocapsid core protein; Erns, envelope glycoprotein Erns; 306 
E1, envelope glycoprotein E1; E2, envelope glycoprotein E2; p7, nonstructural protein p7; NS2, nonstructural protein NS2; NS3, 307 
nonstructural protein NS3; NS4A, nonstructural protein NS4A; NS4B, nonstructural protein NS4B; NS5A, nonstructural protein 308 

NS5A; NS5B, nonstructural protein NS5B.  309 

 310 

3.3 3 Identification and distribution of pesti-like EVEs in other Soricidae species 311 

To expand our screening and evaluate the distribution of these newly identified EVEs in 312 

additional species that are phylogenetically close to Crocidura indochinensis, we undertook a 313 

PCR-based screening of 65 samples from 29 species of the Soricidae family (Supplementary 314 

Table S4). These samples belonged to 7 different genera (Crocidura, Paracrocidura, 315 

Scutisorex, Suncus, Sylvisorex, Neomys, and Sorex), encompassing two subfamilies, 316 

Crocidurinae and Soricinae. Cytb genomic sequences were also generated to confirm the 317 

species identification (Supplementary Table S6 & Supplementary Fig. 3).  318 

In total, 58 samples derived from 27 species contained the newly identified pesti-like EVEs, 319 

and 48 samples yielded complete or nearly complete EVEs sequences, representing 22 species 320 

in the Crocidurinae subfamily and one species (Neomys anomalus) in the Soricinae subfamily 321 

(Fig. 2). All novel EVEs sequences were highly similar to the Crocidura indochinensis EVEs 322 

sequences, with a mean identity of 90.38% on amino acid level, and 95.12% on nucleotide 323 

level, respectively (Supplementary Table S8). Phylogenetic reconstruction indicated that all 324 

Crocidurinae pesti-like EVEs clustered together as a sister-lineage of currently recognized 325 

Pestivirus species (Fig. 3, Supplementary Fig. 4).  326 

Though collected in different locations, nearly all species tested in the Crocidurinae subfamily 327 

harbored the pesti-like EVEs sequences. For some species however, such as Crocidura cf. 328 

zimmermanni, C. leucodon, C. suaveolens and Suncus etruscus, we could not always detect or 329 

sequence the EVEs in all samples. The failed detection could be explained by the genomic 330 

template being of poor quality due to storage conditions associated with the museum specimens. 331 

Interestingly, the pesti-like EVEs were also detected in one Neomys anomalus sample, while 332 

the remaining Soricinae specimens yielded negative results. The widespread nature of these 333 

homolog EVEs in the Crocidurinae species suggests a single endogenization event before their 334 

common ancestor about 10.8 million years ago (Dubey et al., 2007). Since we did not manage 335 

to sequence the pesti-like EVEs found in Neomys anomalus, their phylogenetic relationship to 336 

Npro C E1 E2 p7 NS2 NS3 NS4A NS4B NS5A NS5BErns
5’ 3’

C. indochinensis   EVE1 EVE2
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the Crocidurinae pesti-like EVEs is unclear and may not necessarily derive from the same 337 

endogenization event. To compare the evolutionary history between the EVEs and the Cytb 338 

gene, we constructed a tanglegram based on their respective phylogenies, which illustrates 339 

specific phylogenetic discordances that may also be expected between mitochondrial and 340 

nuclear genes (Fig 4). 341 

 342 

3.4 3 Selective pressure on pesti-like EVE1 locus  343 

For testing the indication of function of the EVEs region, we further processed selective 344 

pressure analysis. We only characterized the selective pressure acting on the EVE1 locus, as 345 

the EVE2 locus exhibits widespread stop codons and translation frame shifts. We measured 346 

the selective pressure acting on EVE1 by estimating the ratio (w) of non-synonymous 347 

substitution rate (dN) and synonymous substitutions rate (dS) in protein-coding sequences using 348 

two methods: 1) fixed effects likelihood (FEL) (Kosakovsky Pond and Frost, 2005), and 2) 349 

Bayesian renaissance counting (Lemey et al., 2012). It is expected that non-functional region 350 

should conform to neutral evolution while functional region would appear to be under purifying 351 

selection. Based on the 48 pesti-like EVE1 potentially coding sequences the FEL method 352 

indicates an overall neutral evolution with w = 0.94. Likewise, the Bayesian renaissance 353 

counting model yields a ratio at 1.098 [95% credible interval: 0.658, 1.624], reflecting neutral 354 

evolution. 355 
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 356 
Fig. 2. Maximum likelihood phylogeny of the Soricidae (shrews) family based on the Cytb gene and the available samples9 species 357 
distribution in this study, highlighted in pink: (A) The phylogeny of Crocidurinae subfamily and sample distribution; (B) Subfamilies 358 
relationships within the Soricidae family; (C) The phylogeny of Soricinae subfamily and sample distribution.  359 
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 360 
Fig. 3. Phylogenetic relationships of pesti-like EVEs with representative Pestivirus species and with Dengue and Zika virus 361 
(Flavivirus) as outgroup. Clades are colored based on viral species. Node labels indicate Shimodaira-Hasegawa (SH)-like branch 362 
support (%, only values > 80% are shown). Scale bars indicate the number of amino acid substitutions per site. 363 
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 365 
Fig. 4 Tanglegram of the cytochrome b phylogeny (A) and the corresponding EVEs phylogeny (B). The cytochrome b tree was inferred 366 
for gene sequences from 22 shrew species, and the EVEs tree (right) was inferred using the newly generated EVEs sequences. The 367 
clade nodes with SH-like branch support < 50% were collapsed as polytomies. The black circles indicate the SH-like branch support > 368 
80%. Lines connect corresponding tips in the two phylogenies. Scale bars indicate the number of nucleotide substitutions per site.  369 

 370 

4 3 Discussion  371 

Non-retroviral endogenous viral elements (EVEs) are rare traces of the ancient evolutionary 372 

history of viruses. These genomic fossils offer valuable insights into host range, ancestral 373 

genetic diversity and can provide invaluable information for dating viral evolutionary history 374 

(Aiewsakun and Katzourakis, 2015a; Feschotte and Gilbert, 2012). In our study we screened a 375 

comprehensive set of mammalian genomes to discover such Flaviviridae-derived EVEs. We 376 

uncovered two Flaviviridae-derived EVEs sequences in the genome of the Indochinese shrew 377 

and confirmed their presence in a broad range of shrew species belonging to the Crocidurinae 378 

subfamily.  379 

 380 

The EVEs we identified are related to extant viruses within the Pestivirus genus. Viruses 381 

belonging to this genus were initially detected in a variety of artiodactylous hosts, such as 382 

ruminants and swine, in which they cause subclinical or clinical infections including 383 

hemorrhagic syndrome, abortion, acute fatal mucosal disease. Recent metagenomic studies 384 

extended the host range towards rodents (Wu et al., 2020, 2018), bats (Wu et al., 2018), fish 385 
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(Shi et al., 2018), and ticks (Sameroff et al., 2019), but to some extent, the restricted sampling 386 

beyond agriculturally important animals limits our understanding of the real host range. Shrews, 387 

for example, have been recently identified as host of hepaciviruses, another genus in the 388 

Flaviviridae family (Guo et al., 2019; Wu et al., 2020), but to date not of pestiviruses. The 389 

broad detection of pestivirus-derived EVEs reported in our study strongly supports that 390 

ancestors of the Crocidurinae shrew subfamily have been hosts of pestiviruses and suggests 391 

that their descendants might still be. Indeed, considering the extremely low probability of a 392 

non-retroviral endogenization event to occur in the germline, EVEs are strong indicators of 393 

frequent interactions between the original exogenous viruses and their hosts (Aiewsakun and 394 

Katzourakis, 2015a; Feschotte and Gilbert, 2012). Although direct detection and 395 

characterization of pestiviruses from shrews are still required to formally demonstrate that they 396 

are natural hosts of pestiviruses, our study provides indirect support for a wider and more 397 

diverse host range of pestiviruses. 398 

 399 

Given the low probability of endogenization events of non-retroviral RNA viruses and the 400 

contiguous nature of the two EVEs on the host and viral genome, our results suggest a single 401 

endogenization event followed by genetic drift. One or several insertion events separated the 402 

original EVE in two fragments, EVE1 and EVE2. EVE1 shows a short but intact open reading 403 

frame to be evolving under neutral evolution while EVE2 exhibits multiple stop codons and 404 

frame-shifts due to additional insertions. Many studies have identified the important roles that 405 

EVEs can play in host antiviral immunity, both in vertebrates and invertebrates (Blair et al., 406 

2020; Ophinni et al., 2019; Skirmuntt et al., 2020). Flavivirus-like EVEs in Aedes mosquitoes, 407 

for example, can produce P-element-induced wimpy testis (PIWI)-interacting RNAs (piRNAs) 408 

which limit the cognate virus replication (Suzuki et al., 2020). It is highly unlikely that the 409 

pesti-like sequences we discovered have a function in shrews because of the absence of 410 

negative selection and the disruption of the original viral coding region. 411 

 412 

The evolutionary history of the EVEs sequences after integration remains unclear. Interestingly, 413 

they do not show any appreciable patterns of phylogenetic consistency with the host Cytb gene 414 

sequences. The EVE sequences might not be a reliable genetic marker to discriminate species 415 

(Tobe et al., 2010), as highlighted by the low amount of genetic diversity compared to Cytb 416 

sequences (Fig 4). Additionally, the discrepancy might be explained by differences in the 417 

genetic inheritance of the Cytb gene and EVEs: the Cytb gene is a mitochondrial gene whereas 418 

EVEs are integrated in the nuclear genome. This can lead to different observed evolutionary 419 
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patterns, especially in the case of weak reproductive isolation within species or species 420 

complex, allowing hybridization, as has been suggested for some Crocidura species (Dubey et 421 

al., 2008, 2006; Vogel et al., 2004). 422 

 423 

Dating the ancient evolutionary history of ssRNA viruses such as pestiviruses and Flaviviridae 424 

in general is challenging. The most commonly used method for inferring viral divergence time 425 

is based on the estimation of evolutionary rates derived from sequence data and their collection 426 

dates. However, the applicability of this method is often limited by heterogeneous substitution 427 

rates though time (Aiewsakun and Katzourakis, 2016) and among viral lineages (Duffy et al., 428 

2008; Sanjuán, 2012). Not accounting for the former leads to recent estimates for the origins 429 

of ssRNA viruses that are often in conflict with other phylogenetic evidence (Holmes, 2003). 430 

Using suitable molecular clock models, the powerful combination of both tip and node 431 

calibrations may help to recover more accurate evolutionary timescales (O9Reilly et al., 2015). 432 

Node calibration is however challenging for viruses as no fossil evidence can be found. It thus 433 

often relies on known phylogeographic events and other indirect calibrations point, such as 434 

ecological events or assumptions of co-divergence as alternative (Bamford et al., 2021; 435 

Moureau et al., 2015; Pettersson and Fiz-Palacios, 2014). The discovery of ssRNA virus-436 

related EVEs thus enable a direct estimation for a robust long-term timeline of virus evolution 437 

history by co-phyletic analysis of EVE9s orthologs in different host (Gilbert and Feschotte, 438 

2010). 439 

 440 

The pesti-like EVE sequences characterized in our study are widespread in Crocidurinae 441 

species, are monophyletic and exhibit high sequence similarity. Considering the low 442 

probability of endogenization events of non-retroviral RNA viruses, this suggests that the pesti-443 

like EVE got integrated before the most-recent common ancestor of the subfamily, which is 444 

estimated to be over 10.8 million years ago (Dubey et al., 2007). There are only a handful of 445 

molecular dating estimates for pestiviruses and they mostly focus on viral species or clades 446 

that are associated with economic losses. Diversification of bovine viral diarrhea virus 1 447 

(Pestivirus A) subtypes was estimated to have started about 363 years ago (Weber et al., 2021), 448 

and the divergence of HoBi-like pestivirus (Pestivirus H) was dated back to the 16th century 449 

(Silveira et al., 2020). Our results provide the first robust ancient time node for pestiviruses 450 

based on the estimated EVEs integration date and suggest that pestiviruses were already 451 

circulating in mammals more than 10.8 million years ago. 452 
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In conclusion, we discovered and characterized the first Flaviviridae-related EVEs records 453 

from mammalian reference genomes, which derived from pestiviruses. The wide EVEs 454 

distribution in shrew Crocidurinae subfamily indicates they are a historical host group of 455 

pestiviruses and further suggests a robust ancient origin time of the Pestivirus genus. Our 456 

results show the key role of EVEs not only in expanding our knowledge about ancient viral-457 

host interactions, but also their importance in reconstructing the viral evolutionary history, 458 

which contributes to our understanding of viral evolutionary dynamics from ancient times to 459 

the present. 460 
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