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Abstract

Machine learning has proven to be a powerful tool for the identification of distinctive
genomic signatures among viral sequences. Such signatures are motifs present in the
viral genome that differentiate species or variants. In the context of SARS-CoV-2, the
identification of such signatures can contribute to taxonomic and phylogenetic studies,
help in recognizing and defining distinct emerging variants, and focus the
characterization of functional properties of polymorphic gene products. Here, we study
KEVOLVE, an approach based on a genetic algorithm with a machine learning kernel,
to identify several genomic signatures based on minimal sets of k-mers. In a comparative
study, in which we analyzed large SARS-CoV-2 genome dataset, KEVOLVE performed
better in identifying variant-discriminative signatures than several gold-standard
reference statistical tools. Subsequently, these signatures were characterized to highlight
potential biological functions. The majority were associated with known mutations
among the different variants, with respect to functional and pathological impact based
on available literature. Notably, we found show evidence of new motifs, specifically in
the Omicron variant, some of which include silent mutations, indicating potentially
novel, variant-specific virulence determinants. The source code of the method and
additional resources are available at: https://github.com/bioinfoUQAM/KEVOLVE.

Author summary

Advances in cloning and sequencing technologies have yielded a vast repository of viral
genomic sequence data. To analyze this complex and massive data, Machine learning,
which refers to the development and application of computer algorithms that improve
with experience, has proven to be efficient. Although many methods have been
developed to classify viruses into different characteristic groups, it is often difficult to
explain the predictions of these methods. To overcome this, we are working in our
laboratory on the design of machine learning based methods for discriminative
signatures identification within viral genomic sequences. These signatures which are a
specific motifs to groups of viruses known to be pervasive in their genome, are used to
1) build accurate and explainable prediction tools for pathogens and 2) highlight
mutations potentially associated with functional changes. In this paper we present the
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potential of our latest approach KEVOLVE. We first compare it to three discriminating
motif identification tools with data sets covering several SARS-CoV-2 variant genomes.
We then focus on the identified motifs by KEVOLVE to analyze the mutations
associated with the different variants and the potential changes in biological functions
that they may involve.

Introduction

SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) is the etiological agent
of COVID-19. This highly pathogenic coronavirus was discovered in December 2019 in
the city of Wuhan, China. It belongs to the betacoronavirus genus, which includes
SARS-CoV-1 and MERS-CoV. The genome of SARS-CoV-2 consists of a
single-stranded RNA of 29,903 nucleotides (Fig 1 from [1]). Its sequence identity with
SARS-CoV and MERS-CoV is 79.5% and 50% at the nucleotide sequence level,
respectively [2,3]. The SARS-CoV-2 genome contains 11 genes encoding 15 Open
Reading Frames (ORF), which result in between 29 and 33 viral protein products [1].
SARS-CoV- 2 is associated with a very high mutation rate ranging from 5.2 to 8.1 x
1073 substitutions/site/year [4,5], higher than human immunodeficiency virus (HIV),
which has a mutation rate of 3 to 8 x 10~3 substitutions/site/year [6]. Many of these
mutations, principally in the spike gene, are associated with increased SARS-CoV-2
transmission rates [7], and the development of new variants associated with reduced
efficacity of current COVID-19 vaccines and antibody-based treatments [8].

Given this rapid rate of evolution, it is important to be able to efficiently identify
genomic signatures that discriminate between the different variants of SARS-CoV-2 and
highlight potential functional changes. These signatures are defined as species or
variant-specific motifs that are pervasive throughout the viral genome [9]. In the
context of SARS-CoV-2, the identification of this type of signature can contribute to
taxonomic [10] and phylogenetic [11] studies to differentiate distinct groups of variants,
provide an explanation for their evolutionary history [9], as well as to facilitate
mechanistic studies to elucidate the functional basis of variant-specific differences in
virulence [12].

SARS-CoV-2 Genome
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Fig 1. SARS-CoV-2 genome organization

To identify discriminating motifs that constitute genomic signatures among different
groups of biological sequences, the traditional approach is to first compute multiple
sequence alignment [13] with tools as: MUSCLE [14], Clustal W/X [15] or MAFFT [16].
These alignments can then be analyzed to identify the divergent genomic regions that
constitute the discriminating motifs. However, the use of multiple alignment approaches
has significant limitations, particularly when applied to viral genomes [12].

First, alignment-based approaches are generally computationally- and time-intensive
and are therefore less well suited to dealing with very large viral sequence datasets that
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are increasingly available [17]. Indeed, computing an accurate multi-sequence alignment
is an NP-hard problem with (2V)!/(N!)? possible alignments for two sequences of
length N [18], which means that in some case, the alignment cannot be solved within a
realistic time frame [19]. Even with dynamic programming, the time requirement is on
the order of the product of the lengths of the input sequences [20].

Second, alignment algorithms assume that homologous sequences consist of a series
of more or less conserved linearly arranged sequence segments. However, this
assumption, named collinearity, is often questionable, especially for RNA viruses [19].
This is because RNA viruses show extensive genetic variation due to high mutation
rates, as well as high frequencies of genetic recombination, horizontal gene transfer, and
gene duplication, leading to the gain or the loss of genetic material [21].

Finally, performing multiple alignments often requires adjusting several parameters
(e.g., substitution matrices, deviation penalties, thresholds for statistical parameters)
that are dependent on prior knowledge about the evolution of the compared
sequences [19]. The adjustment of these parameters is therefore sometimes arbitrary
and requires a trial-and-error approach. Many experiments have shown that minor
variations in these parameters can significantly affect the quality of alignments [22].

To overcome the limitations of discriminative motif identification among different
groups of biological sequences using multiple sequence alignment, specialized
statistical-based tools have been developed. The most popular of these method is
MEME [23,24], which is dedicated to motif identification. MEME has a discriminative
mode [25] that considers two sets of sequences and identifies the enriched motifs that
discriminate the first set (primary) from the second (control). A suite of other MEME
tools has been developed, of which STREME [26] is the latest and most powerful for
motif discovery in sequence datasets. The STREME algorithm is based on a generalized
suffix tree and evaluates motifs using a statistical test of the enrichment of matches to
the motif in a primary set of sequences compared to a set of control sequences [26].

In parallel, machine learning methods have been widely used in the field of genomics
over recent years and have proved to be highly effective for solving complex and massive
data analysis problems [27]. For viral genomic sequence classification CASTOR [28] has
shown the relevance of RFLP (Restriction fragment length polymorphism) signatures
coupled with machine learning models. These models obtained in cross-validation
evaluations performance in terms of Fl-score > 99% for the prediction of viral genomes
of hepatitis B and human papillomavirus. However, these signatures showed some
limitations for HIV sequence prediction where the F1-score dropped below 0.90.
Subsequently, KAMERIS [29] addressed this problem by using k-mers (nucleotide
subsequences of length k) to characterize the sequences given to the learning model. To
tackle the problem of the number of exponential number of features (4*) associated with
k-mers, KAMERIS performs a dimensionality reduction using truncated singular value
decomposition. However, this transformation significantly affects the ability to explain
the predictions of the model.

For this reason, CASTOR-KRFE [30] is a method that focuses on the identification
of minimal sets genomic signatures based on minimal sets of k-mers to discriminate
among several groups of genomic sequences. During cross-validation evaluations
covering a wide range of viruses, CASTOR-KRFE successfully identified minimal sets of
motifs. Subsequently, these motifs, coupled with supervised learning algorithms, have
allowed to build prediction models resulting in average Fl-score > 0.96 [30]. However,
this study is limited to identifying an optimal set of motifs, instead of exploring the
suboptimal sets of the feature space. This may have major consequences when dealing
with in sets of viral sequences with high genomic diversity or when attempting to infer
biological functions based on the identified motifs. To overcome the lack of flexibility of
CASTOR-KRFE, KEVOLVE [31] a new method based on a genetic algorithm including
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a machine learning kernel was designed to identify multiple minimal subsets of
discriminative motifs. A preliminary comparative study of HIV nucleotide sequences
showed that KEVOLVE-identified motifs allowed the construction of models that
out-performed specialized HIV prediction tools.

Here, we evaluate the KEVOLVE, whose search function has been improved in order
to identify smaller sets of motifs while trying to respect the same discriminative
performance criteria. We compared several reference tools (MEME, STREME and
CASTOR-KRFE) to identify discriminating motifs among SARS-CoV-2 genome
sequences. The motifs were first identified in a restricted set of nucleotide sequences
associated with different variants of SARS-CoV-2. Second, the motifs were used to
build prediction models that were assessed through the classification of a large set of
SARS-CoV-2 sequences. Third, the motifs identified by KEVOLVE were analyzed in

order to highlight the potential biological functions of the sequences/motifs in questions.

Finally, a specific analysis was dedicated to the new variant of concern, Omicron, that
was recognized on 24 November 2021 in South Africa
(https://www.who.int/news/item/26-11-2021-classification-of-omicron- (b.
1.1.529)-sars-cov-2-variant-of-concern).

Materials and methods

To assess the relative accuracy of KEVOLVE to identify discriminating motifs, we
performed a comparative study with specialized tools. This involved for each tool to
identify a subset of discriminating motifs in a set of training sequences of SARS-CoV-2
variants. These sets of motifs were designed to provide genomic signatures specific to
each SARS-CoV-2 variant. In a second step these signatures combined with a
supervised learning algorithm and the training sequences to fit a prediction model.
Then, the quality of the signatures was assessed through the prediction of trained
models on a large test set of unknown sequences. Finally, we analyzed in line with the
literature, the variant-discrimination motifs identified by KEVOLVE according to their
location in the genome, to assess the potential functional impact of these mutations.

Discriminative motif identification tools

The first tool that was evaluated was KEVOLVE [31]. KEVOLVE, is a new method
based on a genetic algorithm including a machine learning kernel. KEVOLVE
implementation is based on two main units: 1) an identification unit that provides
subsets of features that are minimal and likely to provide the best performance metrics;

and 2) a prediction unit that applies an ensemble classifier using the subsets of features.

The second tool that was evaluated was CASTOR-KRFE [30]. It is an alignment-free
machine learning approach for identifying a set of genomic signatures based on k-mers
to discriminate between groups of nucleic acid sequences. The core of CASTOR-KRFE
is based on feature elimination using SVM (SVM-RFE). CASTOR-KRFE identifies an
optimal length of k£ to maximize classification performance and minimize the number of
features. This method also provides a solution to the problem of identifying the optimal
length of k-mers for genomic sequence classification [32].

The third tool that was evaluated was MEME (discriminative mode) [25], a tool
from the MEME suite [24] specialized in motif identification. MEME inputs two sets of
sequences and identifies enriched motifs that discriminate the primary set from the
control set. In discriminative mode, the algorithm first calculates a position-specific
prior from the two sets of sequences. It then searches the first set of sequences for
motifs using the position-specific prior to inform the search based on the discriminative
prior D [33]. In addition, MEME considers as a parameter a potential motif distribution
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type to be identified to improve the sensitivity and quality of the motif search. In
discriminative mode, the two available options are: 1) zero or one occurrence per
sequence (zoops), where MEME assumes that each sequence may contain at most one
occurrence of each motif; and 2) one occurrence per sequence (oops), where MEME

assumes that each sequence in the dataset contains exactly one occurrence of each motif.

The last tool evaluated was STREME [26], which during a recent comparative study
of motif identification was found to be more accurate, sensitive and thorough than
several widely used algorithms [26]. STREME algorithm makes use of a data structure
called a generalized suffix tree and evaluates motifs using a one-sided statistical test of
the enrichment of matches to the motif in a primary set of sequences compared to a set
of control sequences STREME assumes that each primary sequence may contain zoops
but the motif discovery will not be negatively affected if a primary sequence contains
more than one occurrence of a motif.

Dataset

To set up the most comprehensive evaluation framework possible, we built a dataset of
226,532 complete SARS-CoV-2 genomes. The sequences of this initial dataset covering
variants Alpha (B.1.1.7), Beta (B.1.351), Gamma (P.1), Delta (B.1.617.2), Epsilon
(B.1.427/9), Zeta (P.2), Eta (B.1.525), Iota (B.1.526) and Kappa (B.1.617.1) were
downloaded on August 1, 2021 from the GISAID database [34]. In addition, in the
context of the emergence of the new Omicron variant (B.1.1.529) and its interest for
global public health, 72 sequences of this variant were also included for our studies on
December 15, 2021. Due to small sample size of Omicron during the study, the
sequences were not included in our comparative study. However, a specific analysis
section was dedicated to it. We specify that only complete genomes with high coverage
were included in our data set (Table 1) and the list of accession ids of the sequences
used in our different dataset is available on our GitHub repository.

Table 1. Genomic sequence dataset of SARS-CoV-2 variants.

WHO label SARS-CoV-2 lineage Country of origin Number of sequences
Alpha B.1.1.7 United Kingdom 50000
Beta B.1.351 South Africa 17126

Gamma P.1 Brazil 36929
Delta B.1.617.2 India 50000
Epsilon B.1.427/9 USA (California) 34118
Eta B.1.525 United Kingdom / Nigeria 2334
Iota B.1.526 USA (New York) 28572
Zeta P.2 Brazil 3745
Kappa B.1.617.1 India 3708
Omicron B.1.1.529 South Africa 72
Total number of sequences 226604

Subsequently, this initial dataset was partitioned into two independent subsets. The
first (training subset) was composed of 2,250 randomly selected sequences (250
sequences for the 9 types of variants). The second (testing subset) was composed of the
remaining sequences (224,282 sequences).

Setting the length of &

A preliminary step of this comparative study consists in setting the parameter k for the
length of the motifs to be discovered for the respective identification tools. For this
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purpose, we used CASTOR-KRFE, giving it as input the training sequence set. For the
associated parameters, we set the performance threshold to be maintained by reducing
the number of features to 7' = 0.99 and the minimum/maximum length of k-mers to be
explored to k-min = 1 and k-max = 20 respectively. As output, CASTOR-KRFE
identified the following subset which is composed of 9 motifs of length k£ = 8:
[AACTAAAA, ATATCTGG, AATTTCTC, ATAGAATG, CCGGTATA, CATAGCGC,
TAGTGAAT, TCTTGCAT, CAAAGTAG]. During the CASTOR-KRFE identification
process, this subset of motifs, coupled with a supervised prediction model based on a
linear SVM, was evaluated by 5-fold cross-validation on the training set and obtained a
weighted Fl-score > 0.99. In addition, the length of k-mers that was identified was
consistent with other studies using k-mers for viral sequence classification [9,30,32].

Benchmarking

To assess the relevance of the discriminating motifs identified by each tool, we were
inspired by the evaluation conducted in [30]. For CASTOR-KRFE, the previously
identified subset of motifs coupled with the set of training sequences and an SVM were
used to fit a prediction model. From this model the testing sequence set was predicted.
Regarding KEVOLVE, the identification unit was used using as input the training set of
sequences as well as the following parameters: n_iterations = 1000, n_solutions = 100,
n_chromosomes = 2500, n_genes = 1, objective_score = 0.99, crossover_rate = 0.2,
mutation_rate = 0.1 and variance_threshold = 0.01. Initially, KEVOLVE was designed
to identify multiple discriminating subsets to build a single ensemble prediction model.
However, in this evaluation, for each identified subset, a model was trained and
evaluated by predicting the test set.

Table 2. Summary of the evaluated motif identification tools and their
associated parameters.

Tools Number of motifs Motifs width Site distribution Discovery mode  Performance threshold
1
STREME 2 8 None None Number of motifs
3
; Zero or One Occurrence Per Sequence
3 (zoops)
MEME 1 8 Discriminative Number of motifs
9 One Occurrence Per Sequence
3 (oops)
CASTOR KRFE Auto 8 None None 0.99
KEVOLVE Auto 8 None None 0.99

The Tools column provides information about the different tools evaluated in this study. The column Number of
motifs indicates the number of discriminating motifs that have been asked to identify for each tool. For
CASTOR-KRFE and KEVOLVE no parameter is filled in because these tools automatically try to minimize the
number of motifs. The column Motifs width corresponds to the length of the discriminating motifs to be identified.
The column Site distribution refers for MEME to how the discriminating motifs are supposed to be present in the
sequences to improve the sensitivity and quality of the search. The column Discovery mode also indicates for MEME
the type of search to perform. In this context we have selected the mode for identifying motifs that discriminates
between groups of sequences given as input. The Performance Threshold column refers to a quality criterion that the
identified motif must satisfy. For MEME and STREME the n best motifs in terms of p-value are selected where n
corresponds to the number in the Number of motifs column. For CASTOR-KRFE and KEVOLVE, the algorithms will
search until they obtain a set of motifs that satisfy an Fl-score > 0.99 during their internal evaluation.

To evaluate MEME, considering its limitation to take as input a binary set (primary

February 5, 2022 6/17

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189


https://doi.org/10.1101/2022.02.07.479343
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.02.07.479343,; this version posted February 7, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY 4.0 International license.

set and control set), we set up the following process: for each variant v present in the
training set V', we select all sequences belonging to v to form the primary set. All other
sequences in V' were used to form the control set. Then, we applied MEME to discover
the motifs that discriminated the primary set from the control set. This process was
repeated for each v belonging to V' in order to build a set of motifs that can
discriminate each variant from the others. Then, this set was used to train a model and
predict the testing set in the same configuration as CASTOR-KRFE and KEVOLVE.
For the associated distribution site parameters, both zoops and oops options were
evaluated. In addition, for the motifs to be identified, we ran the experiments to
discover 1, 2 and 3 motifs of width 8 for each variant. This involved for MEME the
training and evaluation of six prediction models.

Finally, for STREME, we applied the same iterative process to identify the motifs as
for MEME. As mentioned before, for the motif distribution type, STREME does not
require an input parameter and handles this automatically. Finally, as for MEME, we
have identified and evaluated subsets of motifs of variable size (1 motif per variant, 2
motifs per variant and 3 motifs per variant). The tools and their overall configuration
are summarized and compared in the (Table 2).

Results and Discussion

Number of identified motifs

First, we focused on the number of motifs identified by each tool, For KEVOLVE; its
identification unit gave as output a total of 21 subsets composed of 8 motifs of length &
= 8. This was the smallest subsets of motifs capable of discriminating between the 9
groups of SARS-CoV-2 variants among all tools. Even though each subset of
KEVOLVE was composed of unique motifs, some motifs overlapped between subsets.
CASTOR-KRFE identified a set composed of 9 discriminating motifs, which is slightly
better than KEVOLVE. To describe the results of MEME and STREME we use the

name of the tool followed by the distribution type and the number of motifs to identify.

If this is not specified we discuss the overall tool. With the option of 1 motif per
variant, MEME zoops, MEME oops and STREME were each able to constitute a subset
of 9 discriminative motifs, which is similar to CASTOR-KRFE. For the 2 motifs per
variant option, MEME zoops, MEME oops and STREME identified 14, 17 and 18
discriminative motifs respectively. Finally for the 3 motif per variant configuration, the
identified subsets reached the size of 18, 24 and 26 respectively for MEME zoops,
MEME oops and STREME. These results show that by increasing the number of motifs
to be discovered, MEME zoops tends to identify more motifs that are redundant unlike
MEME oops, STREME, CASTOR-KRFE and KEVOLVE.

Prediction performances

Regarding the predictive results associated with the model based on the motifs
identified by each tool, Table 3, 4 and 5 illustrate respectively the predictive
performance of the testing set according to each variant in terms of precision, recall and
Fl-score. Specifically, for KEVOLVE the scores shown represent the average results
followed by the standard deviation obtained by 21 predictive models trained from the
sets identified by the algorithm.

The best results of this comparative study are obtained by CASTOR-KRFE and
KEVOLVE. For all the variants, they have scores > 0.9 in terms of Precision, Recall
and F1-score. Their average score for all performance metrics is above 0.97. We note
that the performance of CASTOR-KRFE is slightly better, however, KEVOLVE
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Table 3. Precision of the models associated with each tool for the prediction
of the testing set.

Alpha Beta Delta Epsilon Eta Gamma Tota Kappa Zeta Mean
(B.1.1.7) (B.1.351)  (B.1.617.2)  (B.1.427/9)  (B.1.525) (P.1) (B.1.526) (1.617.1) (P.2)
MEME_ZOOPS_3 0.999 0.710 0.442 0.361 0.997 1.000 0.999 0.993 0.980 0.831
MEME_ZOOPS_2 0.999 0.695 0.538 0.723 0.998 1.000 0.999 0.993 0.980 0.881
MEME_ZOOPS_1 0.998 0.716 0.500 0.351 0.000 1.000 0.999 0.993 0.979 0.726
MEME_OOPS_3 0.999 0.615 0.329 0.276 0.997 1.000 0.341 0.878 0.976 0.712
MEME_OOPS_2 0.999 0.599 0.225 0.277 0.997 1.000 0.209 0.877 0.976 0.684
MEME_OOPS_1 0.998 0.652 0.425 0.271 0.000 0.999 0.000 0.876 0.975 0.577
STREME_3 0.999 0.140 0.998 0.981 0.851 1.000 0.606 0.896 0.998 0.830
STREME_2 0.909 0.070 0.998 0.981 0.851 1.000 0.293 0.896 0.994 0.776
STREME_1 0.914 0.000 0.999 0.980 0.851 1.000 0.290 0.991 0.994 0.780
CASTOR_KRFE 0.997 0.991 0.999 0.997 0.992 1.000 0.943 0.969 0.978 0.985
KEVOLVE 0.999 + 0.001  0.994 + 0.003 0.998 + 0.003 0.996 + 0.003 0.983 + 0.011 0.997 £ 0.006 0.986 + 0.006 0.905 £ 0.092 0.909 £ 0.068 0.974 £ 0.038

Table 4. Recall of the models associated with each tool for the prediction of
the testing set.

Alpha Beta Delta Epsilon Eta Gamma Tota Kappa Zeta Moean
(B.1.1.7) (B.1.351)  (B.1.617.2)  (B.1.427/9)  (B.1.525) (P.1) (B.1.526) (1.617.1) (P.2)
MEME_ZOOPS_3 0.999 0.496 0.004 0.951 0.984 0.999 0.993 0.779 0.962 0.796
MEME_ZOOPS_2 0.999 0.498 0.964 0.020 0.984 0.984 0.993 0.779 0.961 0.798
MEME_ZOOPS_1 0.999 0.492 0.001 0.962 0 0.974 0.993 0.784 0.960 0.685
MEME_OOPS_3 0.999 0.534 0.002 0.914 0.984 0.999 0.027 0.783 0.961 0.689
MEME_OOPS_2 0.999 0.513 0.001 0.937 0.984 0.984 0.005 0.783 0.961 0.685
MEME_OOPS_1 0.999 0.474 0.001 0.961 0 0.974 0 0.790 0.960 0.573
STREME_3 0.993 0.001 0.998 0.981 0.991 0.980 0.978 0.982 0.910 0.868
STREME_2 0.008 0.001 0.998 0.981 0.991 0.980 0.979 0.982 0.912 0.759
STREME_1 0.008 0 0.986 0.983 0.991 0.983 0.983 0.936 0.912 0.753
CASTOR_KRFE 0.985 0.983 0.998 0.988 0.996 0.985 0.994 0.983 0.996 0.990
KEVOLVE 0.989 = 0.007 0.987 &+ 0.005 0.996 = 0.003 0.991 + 0.003 0.990 £ 0.005 0.996 + 0.003 0.994 + 0.002 0.987 £ 0.071 0.991 £ 0.004 0.991 £ 0.003

Table 5. Fl-score of the models associated with each tool for the prediction
of the testing set.

Alpha Beta Delta Epsilon Eta Gamma Tota Kappa Zeta

(B.1.1.7) (B.1.351) (B.1.617.2)  (B.1.427/9)  (B.1.525) (P.1) (B.1.526) (1.617.1) (P.2) Mean
MEME_ZOOPS 3 0.999 0.496 0.004 0.951 0.984 0.999 0.993 0.779 0.962 0.796
MEME_ZOOPS 2 0.999 0.498 0.964 0.020 0.984 0.984 0.993 0.779 0.961 0.798
MEME_ZOOPS _1 0.999 0.492 0.001 0.962 0 0.974 0.993 0.784 0.960 0.685
MEME_OOPS 3 0.999 0.534 0.002 0.914 0.984 0.999 0.027 0.783 0.961 0.689
MEME.OOPS .2 0.999 0.513 0.001 0.937 0.984 0.984 0.005 0.783 0.961 0.685
MEME.OOPS_1 0.999 0.474 0.001 0.961 0 0.974 0 0.790 0.960 0.573
STREME-3 0.993 0.001 0.998 0.981 0.991 0.980 0.978 0.982 0.910 0.868
STREME 2 0.008 0.001 0.998 0.981 0.991 0.980 0.979 0.982 0.912 0.759
STREME._1 0.008 0 0.986 0.983 0.991 0.983 0.983 0.936 0.912 0.753
CASTOR_KRFE 0.985 0.983 0.998 0.988 0.996 0.985 0.994 0.983 0.996 0.990
KEVOLVE 0.989 + 0.007 0.987 + 0.005 0.996 =+ 0.003 0.991 £ 0.003 0.990 + 0.005 0.996 + 0.003 0.994 + 0.002 0.987 + 0.071 0.991 + 0.004 0.991 = 0.003

identified 21 subsets of discriminating motifs of size 8 while CASTOR identified only
one subset of size 9.

The next best performer is STREME with STREME 3 obtaining average scores
between 0.83 and 0.86 for Presicion, Recall and F1-Score. The drop in performance
compared to CASTOR-KRFE and KEVOLVE is because it was not able to identify
motifs that could characterize the Beta variant and showed scores close to 0. The
performance of STREME 1 and 2 then drops to average scores between 0.75 and 0.78
for the different performance metrics. These results are explained because the majority
of the Alpha sequences were predicted as lota variants.

Then MEME ZOOPS performed worse than STREME. MEME ZOOPS 2 and 3
achieved scores between 0.79 and 0.86 for Precision, Recall and F1-score. Like
STREME, MEME ZOOPS had difficulties in predicting the Beta variant. For both
models many Kappa sequences were incorrectly predicted as Beta or Epsilon. In
addition, MEME ZOOPS 3 for Delta and MEME ZOOPS 2 for Epsilon, respectively
obtained an F1l-score close to 0. For MEME ZOOPS 3, many Beta and Epsilon
sequences were predicted Delta, and for MEME ZOOPS 3 the majority of Epsilon
sequences were assigned to other types of variants. Finally, MEME ZOOP 1 presents
the same errors as MEME ZOOP 3. Moreover, it was not able to identify any
discriminative motifs related to Eta leading to scores of 0 for this variant.
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Finally, the least performing models are those based on the motifs identified by
MEME OOPS. MEME OOPS 3 and 2 obtained average scores between 0.68 and 0.72
for Precision, Recall and F1l-score. These models have had similar problems as MEME
ZOOPS in predicting the sequences of Beta, Delta and Kappa. In addition, MEME
OOPS was not able to identify discriminative motifs associated with the Iota variant
involving performance metric scores close to 0 for Iota sequence prediction. Finally,
MEME OOPS 1 also encountered the same difficulties as MEME ZOOP 1 for the
prediction of the Eta variant, which dropped its average scores to about 0.58 for
Precision, Recall and F1-score.

Analysis of identified motifs by KEVOLVE

KEVOLVE was able to identify 74 unique motifs that discriminated between different
sequences of SARS-CoV-2 variants.Fig 2 is a cluster map of 34 motifs that allows to
visualize the discriminating potential by their percentage of presence/absence according
to the different families of variants. The selected motifs are those that allow to
discriminate one or several groups of variants by their presence or absence at more than
97%. Note that these motifs were identified by KEVOLVE during the comparative
study from the training set of 2,250 SARS-CoV-2 genomes (250 sequences for the 9
types of variants). However, the results shown in Fig 2 are based on the 226,532 variant
sequences (training and testing sets).

In the figure we can see motifs that allow to discriminate the different variants from
the others. For the Alpha variant the ACTACAGA motif for example is absent from
their genome while it is present in all the other variants. For the Beta variant, the

AAAGTGGA motif is absent in about 97% of the cases in contrast to the other variants.

Considering the Delta variant, we observe that the GACCTTAA and CGGTTCAC
motifs are absent from their genome while they are present in the other variants.
Focusing on the Epsilon variant, several motifs such as ATAGCGCT, CCTGTATA and
TTACCTTA by their absence and presence can be used to discriminate it from other
variants. The CCGCAATG motif, which is present only in Eta genomes, provides a
genomic signature for this variant. The absence of the AAATATCT and GGGAATTT
motifs in Gamma’s genome allow discrimination from other variants where they are
present. For Iota and Kappa it is for example the presence of the ATAACTGT and
TATCTTAA motifs respectively that allow them to be distinguished from other
variants. Finally, the Zeta variant can be characterized by the absence of the
TGTATCAA motif, which is in contrast present in the genome of all other variants.

In summary, KEVOLVE identified from a small portion of the dataset multiple
motifs that can discriminate by their absence or presence between different groups of
SARS-CoV-2 variants. The discriminative potential of these motifs can be generalized
to larger data sets as well as to constitute genomic signatures associated with
SARS-CoV-2 variants.

Biological interests of the identified motifs

We analyzed the variant-discrimination motifs identified by KEVOLVE according to
their location in the genome, to assess their potential functional impact of these
mutations.

Preliminary sequence analyses

To study the motifs, we first used UGENE bioinformatics software [35] to perform
multiple alignment by selecting 50 genomes per variant family from our training
sequence set. In addition, 50 Omicron variant genomes were included to form a set of
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Fig 2. Cluster map representing the percentage of presence of motifs
identified by KEVOLVE according to the groups of variants of SARS-CoV-2.
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500 sequences that were aligned by MUSCLE algorithm [14] in large alignment mode.
From this alignment, we calculated the dissimilarity matrix based on Hamming
distances. Finally, the matrix representing the dissimilarity percentages of nucleotide
between the different groups of SARS-CoV-2 variants as well as a phylogenetic tree
(Fig 3) based on the neighbour-joining method [36] was computed.
From this matrix we can observe that the divergence between the genomes of the
several clusters of SARS-CoV-2 variants is less than 1% and the mean divergence
between all the sequences is 0.29%. Focusing on the phylogentic tree on the right of
Fig 3 we observe that this divergence is sufficient to cluster the variant families.
Considering the columns related to Omicron as well as the phylogenetic tree, we observe
that Omicron is the most divergent. It diverges by 0.44% compared to the other
variants and shows an intra-variant divergence of 0.30%. Lastly, the Alpha, Zeta and
Tota variants are the least divergent (0.26%, 0.24% and 0.26% respectively compared to

the other variants) and (0.05%, 0.007% and 0.14% intra variant divergence).
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Fig 3. Nucleotide rate dissimilarity matrix and phylogenetic tree of
SARS-CoV-2 variant families.

Mutations and potential impact associated with motifs

The motif analyses were supported by the computed multiple alignment and the
SnapGene software (from Insightful Science; available at snapgene.com) using the
sequence of references NC_045512 (Severe acute respiratory syndrome coronavirus 2
isolate Wuhan-Hu-1, complete genome). In addition, we analyzed all 72 Omicron
genomes with KEVOLVE to identify motifs that discriminate this variant from others
present in the training set. From this analysis, we highlighted in Table 6, the different
mutations contained in the identified motifs, where they are located and the associated
variants.

Concerning the Alpha variant, the identified motifs highlighted the D1118H
mutation located in the Spike glycoprotein, the SGF3675-3677 deletions located in
ORF1lab (NSP6), which is also present in the Beta, Gamma, Eta and Iota variants, and
the substitutions R203K / G204R, which are shared with the Zeta and Omicron
variants. A recent study [37] showed that the 203K/204R mutation located in ORF9
(Protein N) is associated with increased COVID-19 infectivity. Thus, this mutation is
potentially a major contributor to the high contagiousness of Omicron.

For the Beta variant, the motifs pointed out the K1655N mutation in ORF1lab
(NSP3), the Q57H mutation located in ORF3a, which is present in Epsilon and ITota, as
well as the T2051 mutation shared with Epsilon and Eta and which is located in ORF9
(Protein N). Regarding the Gamma variant, KEVOLVE identified motifs that contain
three characteristic substitutions of this variant [38] which are: K1795Q in ORF1lab
(NSP3), R190S and L18F in ORF2 (Spike Protein S1).

For Delta variant-associated motifs, they highlighted D63G (ORF9 (Protein N)),
G5063S (ORF1b (NSP12)), D950N (ORF2 (Protein Spike S2)), 156del / 157del (ORF2
(Protein Spike S1)), and T19R (ORF2 (Protein Spike S1)) mutations that are specific to
Delta [39,40].

In the motifs, we also identified the I82T mutation located in ORF5 (membrane
protein), which has been proposed to increase replication fitness through alteration of
cellular glucose uptake during viral replication [41]. Our analysis also confirms the
presence of this mutation in the Eta variant [42]. The L452R mutation located in the
spike protein, which increases fusogenicity and promotes viral replication and
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Table 6. Mutational landscape associated to the motifs identified by
KEVOLVE of the different emerging variants.

Variant name

Motifs

Mutation

Mutation position

Amino acid change

Alpha (B.1.1.7)

ACTACAGA = ACTACACA

D1118H

ORF2 (Protein Spike S2)

Aspl118 = His

Alpha (B.1.1.7)
Beta (B.1.351)

Gamma (P.1)
Eta (B.1.525)
Tota (B.1.526)

TAGTTTGTCTGGTTTTA
=
TAGTTTG A

Del SGF3675-3677

ORFlab (NSP6)

Deletion mutation

Alpha (B.1.1.7)

Zeta (P.2)

Omicron (B.1.1.529)

CAGTAGGG = CAGTAAAC

R203K / G204R

ORF9 (Protein N)

Arg203 = Lys / Gly204 = Arg

Beta (B.1.351) AAAGTGGA = AAATTGGA K1655N ORF1lab (NSP3) Lys1655 = Asn
Beta (B.1.351)
Epsilon (B.1.427/9) TTCAGAGC = TTCATAGC Q57TH ORF3a GIn57 = His
Tota (B.1.526)
Beta (B.1.351)
Epsilon (B.1.427/9) AACTTCTC = AATTTCTC T2051 ORF9 (Protein N) Thr205 = Ile
Eta (B.1.525)
AAATATCT = CAATATCT K1795Q ORFlab (NSP3) Lys1795 = Gln
Gamma (P.1) GGGAATTT = GTGAATTT R190S ORF2 (Protein Spike S1) Argl90 = Ser
AATCTTAC = AATTTTAC L18F ORF2 (Protein Spike S1) Leul8 = Phe
GCAGTAGG = GCTCTAAA Silent Mutation ORF2 (Protein Spike S2) N/A
GACCTTAA = GGCCTTAA D63G ORF9 (Protein N) Asp63 = Gly
CGGTTCAC = CAGTTCAC G5063S ORF1b (NSP12) Gly5063 = Ser
Delta (B.1.617.2)
CAAGATGT = CAAAATGT D950N ORF2 (Protein Spike S2) Asp950 = Asn
GTGAGTTC = GTG— 156del / 157del ORF2 (Protein Spike S1) Deletion mutation
AATCTTAC = AATCTTAG TI19R ORF2 (Protein Spike S1) Thrl9 = Arg
Delta (B.1.617.2) ATCGCAAT = ACCGCAAT 182T ORF5 (Protein membranaire) I1le82 = Thr
Eta (B.1.525)
Delta (B.1.617.2)
Epsilon (B.1.427/9) CCTGTATA = CCGGTATA L452R ORF2 (Protein Spike S1) Leud52 = Arg
Kappa (1.617.1)
Delta (B.1.617.2) GCAGTAGG = GCAGTATG R203M ORFY (Protein N) Arg203 = Met
Kappa (1.617.1)  GTCCGTAT = GTCCGTTT N/A 5 UTR N/A
Eta (B.1.525) CTTGCATG = TTTGCATG Silent Mutation ORF2 (Protein Spike S2) Phel062 = Phe
Tota (B.1.526) ACAACTGT = ATAACTGT T11I ORF8 Thrll = Ile

Kappa (B.1.617.1)

TTACCTTA = TTATCTTA

Silent Mutation

ORFlab (NSP3

Tyr1064 = Tyr

Zeta (P.2)

TGTATCAA = TGTATTAA

Silent Mutation

11e3053 = Ile

Omicron (B.1.1.529)

GCTGCTAA = GCGGCTAA

Silent Mutation

)
ORFlab (NSP6)
ORFlab (NSP3)

Alal707 = Ala

AGAGGTAT = AGAGGTGT 13758V ORF1lab (NSPG6) 1e3758 = Val
ACTAATTC = ACTAAGTC N679K ORF2 (Protein Spike) Asn679 = Lys
TTAAAGAT = TTAAATAT D796Y ORF2 (Protein Spike) Asp796 = Tyr

AATTAGAC = AATTACGAT

Silent Mutation

ORF2 (Protein Spike)

Aspl146 = Asp

CATAACCC = CATAACTC

Silent Mutation

ORF3a

Thr64 = Thr

TATTATGA = TATTATGC

Silent Mutation

ORF6

Arg20 = Arg
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infectivity [43], was also found in motifs within the Delta, Epsilon and Kappa genomes.
Finally, three substitutions constituting unique features of Omicron were highlighted,
by KEVOLVE: 13758V in ORFlab (NSP6) and N679K and D796Y in ORF2 (Spike
protein) [44]. The functional implications of these Omicron variant mutations are
unknown, leaving many questions about how they may affect viral fitness and
vulnerability to natural and vaccine-mediated immunity [45]. However, the combination
of N679K with H655Y and P681H, due to their proximity to the furin cleavage site,
could increase the cleavage of spike, enhancing fusion and viral transmission [46].

Conclusion

In this study, we compared the ability of machine learning-based tools to classify
SARS-CoV-2 variants compared to statistical tools specialized in discriminative motif
identification. We found that the identification of motifs in SARS-CoV-2 genome
sequences readily discriminates different groups of variants. However, the machine
learning-based approaches, CASTOR-KRFE and KEVOLVE, were generally more
efficient. The predictive models based on the motifs (8 for KEVOLVE and 9 for
CASTOR-KRFE) identified by these two approaches predict a large set of SARS-CoV-2
variant sequences with an average F1 score greater than 0.98. Furthermore, these two
approaches predicted a large set of SARS-CoV-2 variant sequences (over 225,000) with
an average Fl-score greater than 0.98. In contrast, the model involving the most motifs
(26), using STREME, which was the best performing approach after KEVOLVE and
CASTOR-KRFE, only obtained an average F1-score of 0.836. In addition, unlike the
statistical approaches, KEVOLVE and CASTOR-KRFE, can deal with multi-class sets
and are not limited to binary sets. In addition, KEVOLVE is distinguished by its ability
to identify multiple discriminative sets unlike other tools that are limited to a single
optimal set.

Subsequently, we analyzed the motifs identified by KEVOLVE with respect to their
recognized or potential functional importance from the existing literature. Not
surprisingly, we found that the majority of SARS-CoV-2 motifs identified by KEVOLVE
were associated with known mutations among the different viral variants. However, of
interest, several motifs derived from CASTOR-KRFE and KEVOLVE did not
correspond to recognized variant-specific mutations. With respect to Omicron, 4 motifs
contained what appear to be silent mutations, indicating potentially novel
variant-specific virulence determinants [47]. Interestingly, although Omicron displays
increased transmissibility and evades vaccine-induced and natural-acquired neutralizing
antibodies through its numerous spike mutations, it may also cause less severe disease,
perhaps due to altered tissue tropism [48,49]. As the genetic basis of SARS-CoV-2
virulence remain incompletely understood, variant-discriminating mutations represent
valuable targets for understanding differences in viral phenotypes and clinical outcomes.

These results suggest that KEVOLVE is a robust tool for the rapid and accurate
determination of SARS-CoV-2 variants. The identified motifs provide genomic
signatures that can be used to build peptide or oligonucleotide libraries for rapid and
accurate pathogen detection using tools such as VirScan [50]. The identification of
motifs by KEVOLVE is automatic and independent of multiple sequence alignments, in
contrast to traditional methods by which mutations are associated with
variant-discriminating motifs. Indeed, such analyses require manual verification based
on annotated reference sequences and multiple sequence alignment, making them
impractical for variant discrimination of diverse viruses with large and complex genome
structures, such as cytomegalovirus [51]. KEVOLVE and CASTOR-KRFE can also be
adapted to allow the automatic analysis of previously-identified motifs, further
increasing its efficiency.
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In summary, we have shown that machine learning-based tools has numerous
advantages over statistical tools and conventional alignment-based methods for
efficiently discriminating among SARS-CoV-2 variants. This new approach is
independent of multiple sequence alignment and allows users to capture mutations
associated with motifs of interest in different groups of viral pathogens. Moreover, these
machine learning-based approaches may rapidly identify novel motifs that point toward
otherwise unrecognized mutations of functional importance, in new variants such as
Omicron. Thus, ML-based/KEVOLVE is a useful adjunct to conventional genomic
analyses to classify and understand viral variants.
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