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Abstract

Machine learning has proven to be a powerful tool for the identification of distinctive
genomic signatures among viral sequences. Such signatures are motifs present in the
viral genome that differentiate species or variants. In the context of SARS-CoV-2, the
identification of such signatures can contribute to taxonomic and phylogenetic studies,
help in recognizing and defining distinct emerging variants, and focus the
characterization of functional properties of polymorphic gene products. Here, we study
KEVOLVE, an approach based on a genetic algorithm with a machine learning kernel,
to identify several genomic signatures based on minimal sets of k-mers. In a comparative
study, in which we analyzed large SARS-CoV-2 genome dataset, KEVOLVE performed
better in identifying variant-discriminative signatures than several gold-standard
reference statistical tools. Subsequently, these signatures were characterized to highlight
potential biological functions. The majority were associated with known mutations
among the different variants, with respect to functional and pathological impact based
on available literature. Notably, we found show evidence of new motifs, specifically in
the Omicron variant, some of which include silent mutations, indicating potentially
novel, variant-specific virulence determinants. The source code of the method and
additional resources are available at: https://github.com/bioinfoUQAM/KEVOLVE.

Author summary

Advances in cloning and sequencing technologies have yielded a vast repository of viral
genomic sequence data. To analyze this complex and massive data, Machine learning,
which refers to the development and application of computer algorithms that improve
with experience, has proven to be efficient. Although many methods have been
developed to classify viruses into different characteristic groups, it is often difficult to
explain the predictions of these methods. To overcome this, we are working in our
laboratory on the design of machine learning based methods for discriminative
signatures identification within viral genomic sequences. These signatures which are a
specific motifs to groups of viruses known to be pervasive in their genome, are used to
1) build accurate and explainable prediction tools for pathogens and 2) highlight
mutations potentially associated with functional changes. In this paper we present the
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potential of our latest approach KEVOLVE. We first compare it to three discriminating
motif identification tools with data sets covering several SARS-CoV-2 variant genomes.
We then focus on the identified motifs by KEVOLVE to analyze the mutations
associated with the different variants and the potential changes in biological functions
that they may involve.

Introduction 1

SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) is the etiological agent 2

of COVID-19. This highly pathogenic coronavirus was discovered in December 2019 in 3

the city of Wuhan, China. It belongs to the betacoronavirus genus, which includes 4

SARS-CoV-1 and MERS-CoV. The genome of SARS-CoV-2 consists of a 5

single-stranded RNA of 29,903 nucleotides (Fig 1 from [1]). Its sequence identity with 6

SARS-CoV and MERS-CoV is 79.5% and 50% at the nucleotide sequence level, 7

respectively [2, 3]. The SARS-CoV-2 genome contains 11 genes encoding 15 Open 8

Reading Frames (ORF), which result in between 29 and 33 viral protein products [1]. 9

SARS-CoV- 2 is associated with a very high mutation rate ranging from 5.2 to 8.1 × 10

10−3 substitutions/site/year [4, 5], higher than human immunodeficiency virus (HIV), 11

which has a mutation rate of 3 to 8 × 10−3 substitutions/site/year [6]. Many of these 12

mutations, principally in the spike gene, are associated with increased SARS-CoV-2 13

transmission rates [7], and the development of new variants associated with reduced 14

efficacity of current COVID-19 vaccines and antibody-based treatments [8]. 15

Given this rapid rate of evolution, it is important to be able to efficiently identify 16

genomic signatures that discriminate between the different variants of SARS-CoV-2 and 17

highlight potential functional changes. These signatures are defined as species or 18

variant-specific motifs that are pervasive throughout the viral genome [9]. In the 19

context of SARS-CoV-2, the identification of this type of signature can contribute to 20

taxonomic [10] and phylogenetic [11] studies to differentiate distinct groups of variants, 21

provide an explanation for their evolutionary history [9], as well as to facilitate 22

mechanistic studies to elucidate the functional basis of variant-specific differences in 23

virulence [12]. 24

Fig 1. SARS-CoV-2 genome organization

To identify discriminating motifs that constitute genomic signatures among different 25

groups of biological sequences, the traditional approach is to first compute multiple 26

sequence alignment [13] with tools as: MUSCLE [14], Clustal W/X [15] or MAFFT [16]. 27

These alignments can then be analyzed to identify the divergent genomic regions that 28

constitute the discriminating motifs. However, the use of multiple alignment approaches 29

has significant limitations, particularly when applied to viral genomes [12]. 30

First, alignment-based approaches are generally computationally- and time-intensive 31

and are therefore less well suited to dealing with very large viral sequence datasets that 32

February 5, 2022 2/17

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 7, 2022. ; https://doi.org/10.1101/2022.02.07.479343doi: bioRxiv preprint 

https://doi.org/10.1101/2022.02.07.479343
http://creativecommons.org/licenses/by/4.0/


are increasingly available [17]. Indeed, computing an accurate multi-sequence alignment 33

is an NP-hard problem with (2N)!/(N !)2 possible alignments for two sequences of 34

length N [18], which means that in some case, the alignment cannot be solved within a 35

realistic time frame [19]. Even with dynamic programming, the time requirement is on 36

the order of the product of the lengths of the input sequences [20]. 37

Second, alignment algorithms assume that homologous sequences consist of a series 38

of more or less conserved linearly arranged sequence segments. However, this 39

assumption, named collinearity, is often questionable, especially for RNA viruses [19]. 40

This is because RNA viruses show extensive genetic variation due to high mutation 41

rates, as well as high frequencies of genetic recombination, horizontal gene transfer, and 42

gene duplication, leading to the gain or the loss of genetic material [21]. 43

Finally, performing multiple alignments often requires adjusting several parameters 44

(e.g., substitution matrices, deviation penalties, thresholds for statistical parameters) 45

that are dependent on prior knowledge about the evolution of the compared 46

sequences [19]. The adjustment of these parameters is therefore sometimes arbitrary 47

and requires a trial-and-error approach. Many experiments have shown that minor 48

variations in these parameters can significantly affect the quality of alignments [22]. 49

To overcome the limitations of discriminative motif identification among different 50

groups of biological sequences using multiple sequence alignment, specialized 51

statistical-based tools have been developed. The most popular of these method is 52

MEME [23,24], which is dedicated to motif identification. MEME has a discriminative 53

mode [25] that considers two sets of sequences and identifies the enriched motifs that 54

discriminate the first set (primary) from the second (control). A suite of other MEME 55

tools has been developed, of which STREME [26] is the latest and most powerful for 56

motif discovery in sequence datasets. The STREME algorithm is based on a generalized 57

suffix tree and evaluates motifs using a statistical test of the enrichment of matches to 58

the motif in a primary set of sequences compared to a set of control sequences [26]. 59

In parallel, machine learning methods have been widely used in the field of genomics 60

over recent years and have proved to be highly effective for solving complex and massive 61

data analysis problems [27]. For viral genomic sequence classification CASTOR [28] has 62

shown the relevance of RFLP (Restriction fragment length polymorphism) signatures 63

coupled with machine learning models. These models obtained in cross-validation 64

evaluations performance in terms of F1-score > 99% for the prediction of viral genomes 65

of hepatitis B and human papillomavirus. However, these signatures showed some 66

limitations for HIV sequence prediction where the F1-score dropped below 0.90. 67

Subsequently, KAMERIS [29] addressed this problem by using k-mers (nucleotide 68

subsequences of length k) to characterize the sequences given to the learning model. To 69

tackle the problem of the number of exponential number of features (4k) associated with 70

k-mers, KAMERIS performs a dimensionality reduction using truncated singular value 71

decomposition. However, this transformation significantly affects the ability to explain 72

the predictions of the model. 73

For this reason, CASTOR-KRFE [30] is a method that focuses on the identification 74

of minimal sets genomic signatures based on minimal sets of k-mers to discriminate 75

among several groups of genomic sequences. During cross-validation evaluations 76

covering a wide range of viruses, CASTOR-KRFE successfully identified minimal sets of 77

motifs. Subsequently, these motifs, coupled with supervised learning algorithms, have 78

allowed to build prediction models resulting in average F1-score > 0.96 [30]. However, 79

this study is limited to identifying an optimal set of motifs, instead of exploring the 80

suboptimal sets of the feature space. This may have major consequences when dealing 81

with in sets of viral sequences with high genomic diversity or when attempting to infer 82

biological functions based on the identified motifs. To overcome the lack of flexibility of 83

CASTOR-KRFE, KEVOLVE [31] a new method based on a genetic algorithm including 84
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a machine learning kernel was designed to identify multiple minimal subsets of 85

discriminative motifs. A preliminary comparative study of HIV nucleotide sequences 86

showed that KEVOLVE-identified motifs allowed the construction of models that 87

out-performed specialized HIV prediction tools. 88

Here, we evaluate the KEVOLVE, whose search function has been improved in order 89

to identify smaller sets of motifs while trying to respect the same discriminative 90

performance criteria. We compared several reference tools (MEME, STREME and 91

CASTOR-KRFE) to identify discriminating motifs among SARS-CoV-2 genome 92

sequences. The motifs were first identified in a restricted set of nucleotide sequences 93

associated with different variants of SARS-CoV-2. Second, the motifs were used to 94

build prediction models that were assessed through the classification of a large set of 95

SARS-CoV-2 sequences. Third, the motifs identified by KEVOLVE were analyzed in 96

order to highlight the potential biological functions of the sequences/motifs in questions. 97

Finally, a specific analysis was dedicated to the new variant of concern, Omicron, that 98

was recognized on 24 November 2021 in South Africa 99

(https://www.who.int/news/item/26-11-2021-classification-of-omicron-(b. 100

1.1.529)-sars-cov-2-variant-of-concern). 101

Materials and methods 102

To assess the relative accuracy of KEVOLVE to identify discriminating motifs, we 103

performed a comparative study with specialized tools. This involved for each tool to 104

identify a subset of discriminating motifs in a set of training sequences of SARS-CoV-2 105

variants. These sets of motifs were designed to provide genomic signatures specific to 106

each SARS-CoV-2 variant. In a second step these signatures combined with a 107

supervised learning algorithm and the training sequences to fit a prediction model. 108

Then, the quality of the signatures was assessed through the prediction of trained 109

models on a large test set of unknown sequences. Finally, we analyzed in line with the 110

literature, the variant-discrimination motifs identified by KEVOLVE according to their 111

location in the genome, to assess the potential functional impact of these mutations. 112

Discriminative motif identification tools 113

The first tool that was evaluated was KEVOLVE [31]. KEVOLVE, is a new method 114

based on a genetic algorithm including a machine learning kernel. KEVOLVE 115

implementation is based on two main units: 1) an identification unit that provides 116

subsets of features that are minimal and likely to provide the best performance metrics; 117

and 2) a prediction unit that applies an ensemble classifier using the subsets of features. 118

The second tool that was evaluated was CASTOR-KRFE [30]. It is an alignment-free 119

machine learning approach for identifying a set of genomic signatures based on k-mers 120

to discriminate between groups of nucleic acid sequences. The core of CASTOR-KRFE 121

is based on feature elimination using SVM (SVM-RFE). CASTOR-KRFE identifies an 122

optimal length of k to maximize classification performance and minimize the number of 123

features. This method also provides a solution to the problem of identifying the optimal 124

length of k-mers for genomic sequence classification [32]. 125

The third tool that was evaluated was MEME (discriminative mode) [25], a tool 126

from the MEME suite [24] specialized in motif identification. MEME inputs two sets of 127

sequences and identifies enriched motifs that discriminate the primary set from the 128

control set. In discriminative mode, the algorithm first calculates a position-specific 129

prior from the two sets of sequences. It then searches the first set of sequences for 130

motifs using the position-specific prior to inform the search based on the discriminative 131

prior D [33]. In addition, MEME considers as a parameter a potential motif distribution 132
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type to be identified to improve the sensitivity and quality of the motif search. In 133

discriminative mode, the two available options are: 1) zero or one occurrence per 134

sequence (zoops), where MEME assumes that each sequence may contain at most one 135

occurrence of each motif; and 2) one occurrence per sequence (oops), where MEME 136

assumes that each sequence in the dataset contains exactly one occurrence of each motif. 137

The last tool evaluated was STREME [26], which during a recent comparative study 138

of motif identification was found to be more accurate, sensitive and thorough than 139

several widely used algorithms [26]. STREME algorithm makes use of a data structure 140

called a generalized suffix tree and evaluates motifs using a one-sided statistical test of 141

the enrichment of matches to the motif in a primary set of sequences compared to a set 142

of control sequences STREME assumes that each primary sequence may contain zoops 143

but the motif discovery will not be negatively affected if a primary sequence contains 144

more than one occurrence of a motif. 145

Dataset 146

To set up the most comprehensive evaluation framework possible, we built a dataset of 147

226,532 complete SARS-CoV-2 genomes. The sequences of this initial dataset covering 148

variants Alpha (B.1.1.7), Beta (B.1.351), Gamma (P.1), Delta (B.1.617.2), Epsilon 149

(B.1.427/9), Zeta (P.2), Eta (B.1.525), Iota (B.1.526) and Kappa (B.1.617.1) were 150

downloaded on August 1, 2021 from the GISAID database [34]. In addition, in the 151

context of the emergence of the new Omicron variant (B.1.1.529) and its interest for 152

global public health, 72 sequences of this variant were also included for our studies on 153

December 15, 2021. Due to small sample size of Omicron during the study, the 154

sequences were not included in our comparative study. However, a specific analysis 155

section was dedicated to it. We specify that only complete genomes with high coverage 156

were included in our data set (Table 1) and the list of accession ids of the sequences 157

used in our different dataset is available on our GitHub repository. 158

Table 1. Genomic sequence dataset of SARS-CoV-2 variants.

WHO label SARS-CoV-2 lineage Country of origin Number of sequences

Alpha B.1.1.7 United Kingdom 50000
Beta B.1.351 South Africa 17126

Gamma P.1 Brazil 36929
Delta B.1.617.2 India 50000
Epsilon B.1.427/9 USA (California) 34118
Eta B.1.525 United Kingdom / Nigeria 2334
Iota B.1.526 USA (New York) 28572
Zeta P.2 Brazil 3745
Kappa B.1.617.1 India 3708
Omicron B.1.1.529 South Africa 72

Total number of sequences 226604

Subsequently, this initial dataset was partitioned into two independent subsets. The 159

first (training subset) was composed of 2,250 randomly selected sequences (250 160

sequences for the 9 types of variants). The second (testing subset) was composed of the 161

remaining sequences (224,282 sequences). 162

Setting the length of k 163

A preliminary step of this comparative study consists in setting the parameter k for the 164

length of the motifs to be discovered for the respective identification tools. For this 165
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purpose, we used CASTOR-KRFE, giving it as input the training sequence set. For the 166

associated parameters, we set the performance threshold to be maintained by reducing 167

the number of features to T = 0.99 and the minimum/maximum length of k-mers to be 168

explored to k-min = 1 and k-max = 20 respectively. As output, CASTOR-KRFE 169

identified the following subset which is composed of 9 motifs of length k = 8: 170

[AACTAAAA, ATATCTGG, AATTTCTC, ATAGAATG, CCGGTATA, CATAGCGC, 171

TAGTGAAT, TCTTGCAT, CAAAGTAG]. During the CASTOR-KRFE identification 172

process, this subset of motifs, coupled with a supervised prediction model based on a 173

linear SVM, was evaluated by 5-fold cross-validation on the training set and obtained a 174

weighted F1-score > 0.99. In addition, the length of k-mers that was identified was 175

consistent with other studies using k-mers for viral sequence classification [9, 30, 32]. 176

Benchmarking 177

To assess the relevance of the discriminating motifs identified by each tool, we were 178

inspired by the evaluation conducted in [30]. For CASTOR-KRFE, the previously 179

identified subset of motifs coupled with the set of training sequences and an SVM were 180

used to fit a prediction model. From this model the testing sequence set was predicted. 181

Regarding KEVOLVE, the identification unit was used using as input the training set of 182

sequences as well as the following parameters: n iterations = 1000, n solutions = 100, 183

n chromosomes = 2500, n genes = 1, objective score = 0.99, crossover rate = 0.2, 184

mutation rate = 0.1 and variance threshold = 0.01. Initially, KEVOLVE was designed 185

to identify multiple discriminating subsets to build a single ensemble prediction model. 186

However, in this evaluation, for each identified subset, a model was trained and 187

evaluated by predicting the test set. 188

Table 2. Summary of the evaluated motif identification tools and their
associated parameters.

Tools Number of motifs Motifs width Site distribution Discovery mode Performance threshold

STREME
1

8 None None Number of motifs2
3

MEME

1

8

Zero or One Occurrence Per Sequence
(zoops)

Discriminative Number of motifs

2
3
1

One Occurrence Per Sequence
(oops)

2
3

CASTOR KRFE Auto 8 None None 0.99

KEVOLVE Auto 8 None None 0.99

The Tools column provides information about the different tools evaluated in this study. The column Number of
motifs indicates the number of discriminating motifs that have been asked to identify for each tool. For
CASTOR-KRFE and KEVOLVE no parameter is filled in because these tools automatically try to minimize the
number of motifs. The column Motifs width corresponds to the length of the discriminating motifs to be identified.
The column Site distribution refers for MEME to how the discriminating motifs are supposed to be present in the
sequences to improve the sensitivity and quality of the search. The column Discovery mode also indicates for MEME
the type of search to perform. In this context we have selected the mode for identifying motifs that discriminates
between groups of sequences given as input. The Performance Threshold column refers to a quality criterion that the
identified motif must satisfy. For MEME and STREME the n best motifs in terms of p-value are selected where n
corresponds to the number in the Number of motifs column. For CASTOR-KRFE and KEVOLVE, the algorithms will
search until they obtain a set of motifs that satisfy an F1-score > 0.99 during their internal evaluation.

To evaluate MEME, considering its limitation to take as input a binary set (primary 189
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set and control set), we set up the following process: for each variant v present in the 190

training set V , we select all sequences belonging to v to form the primary set. All other 191

sequences in V were used to form the control set. Then, we applied MEME to discover 192

the motifs that discriminated the primary set from the control set. This process was 193

repeated for each v belonging to V in order to build a set of motifs that can 194

discriminate each variant from the others. Then, this set was used to train a model and 195

predict the testing set in the same configuration as CASTOR-KRFE and KEVOLVE. 196

For the associated distribution site parameters, both zoops and oops options were 197

evaluated. In addition, for the motifs to be identified, we ran the experiments to 198

discover 1, 2 and 3 motifs of width 8 for each variant. This involved for MEME the 199

training and evaluation of six prediction models. 200

Finally, for STREME, we applied the same iterative process to identify the motifs as 201

for MEME. As mentioned before, for the motif distribution type, STREME does not 202

require an input parameter and handles this automatically. Finally, as for MEME, we 203

have identified and evaluated subsets of motifs of variable size (1 motif per variant, 2 204

motifs per variant and 3 motifs per variant). The tools and their overall configuration 205

are summarized and compared in the (Table 2). 206

Results and Discussion 207

Number of identified motifs 208

First, we focused on the number of motifs identified by each tool, For KEVOLVE, its 209

identification unit gave as output a total of 21 subsets composed of 8 motifs of length k 210

= 8. This was the smallest subsets of motifs capable of discriminating between the 9 211

groups of SARS-CoV-2 variants among all tools. Even though each subset of 212

KEVOLVE was composed of unique motifs, some motifs overlapped between subsets. 213

CASTOR-KRFE identified a set composed of 9 discriminating motifs, which is slightly 214

better than KEVOLVE. To describe the results of MEME and STREME we use the 215

name of the tool followed by the distribution type and the number of motifs to identify. 216

If this is not specified we discuss the overall tool. With the option of 1 motif per 217

variant, MEME zoops, MEME oops and STREME were each able to constitute a subset 218

of 9 discriminative motifs, which is similar to CASTOR-KRFE. For the 2 motifs per 219

variant option, MEME zoops, MEME oops and STREME identified 14, 17 and 18 220

discriminative motifs respectively. Finally for the 3 motif per variant configuration, the 221

identified subsets reached the size of 18, 24 and 26 respectively for MEME zoops, 222

MEME oops and STREME. These results show that by increasing the number of motifs 223

to be discovered, MEME zoops tends to identify more motifs that are redundant unlike 224

MEME oops, STREME, CASTOR-KRFE and KEVOLVE. 225

Prediction performances 226

Regarding the predictive results associated with the model based on the motifs 227

identified by each tool, Table 3, 4 and 5 illustrate respectively the predictive 228

performance of the testing set according to each variant in terms of precision, recall and 229

F1-score. Specifically, for KEVOLVE the scores shown represent the average results 230

followed by the standard deviation obtained by 21 predictive models trained from the 231

sets identified by the algorithm. 232

The best results of this comparative study are obtained by CASTOR-KRFE and 233

KEVOLVE. For all the variants, they have scores > 0.9 in terms of Precision, Recall 234

and F1-score. Their average score for all performance metrics is above 0.97. We note 235

that the performance of CASTOR-KRFE is slightly better, however, KEVOLVE 236
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Table 3. Precision of the models associated with each tool for the prediction
of the testing set.

Alpha
(B.1.1.7)

Beta
(B.1.351)

Delta
(B.1.617.2)

Epsilon
(B.1.427/9)

Eta
(B.1.525)

Gamma
(P.1)

Iota
(B.1.526)

Kappa
(1.617.1)

Zeta
(P.2)

Mean

MEME ZOOPS 3 0.999 0.710 0.442 0.361 0.997 1.000 0.999 0.993 0.980 0.831
MEME ZOOPS 2 0.999 0.695 0.538 0.723 0.998 1.000 0.999 0.993 0.980 0.881
MEME ZOOPS 1 0.998 0.716 0.500 0.351 0.000 1.000 0.999 0.993 0.979 0.726
MEME OOPS 3 0.999 0.615 0.329 0.276 0.997 1.000 0.341 0.878 0.976 0.712
MEME OOPS 2 0.999 0.599 0.225 0.277 0.997 1.000 0.209 0.877 0.976 0.684
MEME OOPS 1 0.998 0.652 0.425 0.271 0.000 0.999 0.000 0.876 0.975 0.577

STREME 3 0.999 0.140 0.998 0.981 0.851 1.000 0.606 0.896 0.998 0.830
STREME 2 0.909 0.070 0.998 0.981 0.851 1.000 0.293 0.896 0.994 0.776
STREME 1 0.914 0.000 0.999 0.980 0.851 1.000 0.290 0.991 0.994 0.780

CASTOR KRFE 0.997 0.991 0.999 0.997 0.992 1.000 0.943 0.969 0.978 0.985
KEVOLVE 0.999 ± 0.001 0.994 ± 0.003 0.998 ± 0.003 0.996 ± 0.003 0.983 ± 0.011 0.997 ± 0.006 0.986 ± 0.006 0.905 ± 0.092 0.909 ± 0.068 0.974 ± 0.038

Table 4. Recall of the models associated with each tool for the prediction of
the testing set.

Alpha
(B.1.1.7)

Beta
(B.1.351)

Delta
(B.1.617.2)

Epsilon
(B.1.427/9)

Eta
(B.1.525)

Gamma
(P.1)

Iota
(B.1.526)

Kappa
(1.617.1)

Zeta
(P.2)

Mean

MEME ZOOPS 3 0.999 0.496 0.004 0.951 0.984 0.999 0.993 0.779 0.962 0.796
MEME ZOOPS 2 0.999 0.498 0.964 0.020 0.984 0.984 0.993 0.779 0.961 0.798
MEME ZOOPS 1 0.999 0.492 0.001 0.962 0 0.974 0.993 0.784 0.960 0.685
MEME OOPS 3 0.999 0.534 0.002 0.914 0.984 0.999 0.027 0.783 0.961 0.689
MEME OOPS 2 0.999 0.513 0.001 0.937 0.984 0.984 0.005 0.783 0.961 0.685
MEME OOPS 1 0.999 0.474 0.001 0.961 0 0.974 0 0.790 0.960 0.573

STREME 3 0.993 0.001 0.998 0.981 0.991 0.980 0.978 0.982 0.910 0.868
STREME 2 0.008 0.001 0.998 0.981 0.991 0.980 0.979 0.982 0.912 0.759
STREME 1 0.008 0 0.986 0.983 0.991 0.983 0.983 0.936 0.912 0.753

CASTOR KRFE 0.985 0.983 0.998 0.988 0.996 0.985 0.994 0.983 0.996 0.990
KEVOLVE 0.989 ± 0.007 0.987 ± 0.005 0.996 ± 0.003 0.991 ± 0.003 0.990 ± 0.005 0.996 ± 0.003 0.994 ± 0.002 0.987 ± 0.071 0.991 ± 0.004 0.991 ± 0.003

Table 5. F1-score of the models associated with each tool for the prediction
of the testing set.

Alpha
(B.1.1.7)

Beta
(B.1.351)

Delta
(B.1.617.2)

Epsilon
(B.1.427/9)

Eta
(B.1.525)

Gamma
(P.1)

Iota
(B.1.526)

Kappa
(1.617.1)

Zeta
(P.2)

Mean

MEME ZOOPS 3 0.999 0.496 0.004 0.951 0.984 0.999 0.993 0.779 0.962 0.796
MEME ZOOPS 2 0.999 0.498 0.964 0.020 0.984 0.984 0.993 0.779 0.961 0.798
MEME ZOOPS 1 0.999 0.492 0.001 0.962 0 0.974 0.993 0.784 0.960 0.685
MEME OOPS 3 0.999 0.534 0.002 0.914 0.984 0.999 0.027 0.783 0.961 0.689
MEME OOPS 2 0.999 0.513 0.001 0.937 0.984 0.984 0.005 0.783 0.961 0.685
MEME OOPS 1 0.999 0.474 0.001 0.961 0 0.974 0 0.790 0.960 0.573

STREME 3 0.993 0.001 0.998 0.981 0.991 0.980 0.978 0.982 0.910 0.868
STREME 2 0.008 0.001 0.998 0.981 0.991 0.980 0.979 0.982 0.912 0.759
STREME 1 0.008 0 0.986 0.983 0.991 0.983 0.983 0.936 0.912 0.753

CASTOR KRFE 0.985 0.983 0.998 0.988 0.996 0.985 0.994 0.983 0.996 0.990
KEVOLVE 0.989 ± 0.007 0.987 ± 0.005 0.996 ± 0.003 0.991 ± 0.003 0.990 ± 0.005 0.996 ± 0.003 0.994 ± 0.002 0.987 ± 0.071 0.991 ± 0.004 0.991 ± 0.003

identified 21 subsets of discriminating motifs of size 8 while CASTOR identified only 237

one subset of size 9. 238

The next best performer is STREME with STREME 3 obtaining average scores 239

between 0.83 and 0.86 for Presicion, Recall and F1-Score. The drop in performance 240

compared to CASTOR-KRFE and KEVOLVE is because it was not able to identify 241

motifs that could characterize the Beta variant and showed scores close to 0. The 242

performance of STREME 1 and 2 then drops to average scores between 0.75 and 0.78 243

for the different performance metrics. These results are explained because the majority 244

of the Alpha sequences were predicted as Iota variants. 245

Then MEME ZOOPS performed worse than STREME. MEME ZOOPS 2 and 3 246

achieved scores between 0.79 and 0.86 for Precision, Recall and F1-score. Like 247

STREME, MEME ZOOPS had difficulties in predicting the Beta variant. For both 248

models many Kappa sequences were incorrectly predicted as Beta or Epsilon. In 249

addition, MEME ZOOPS 3 for Delta and MEME ZOOPS 2 for Epsilon, respectively 250

obtained an F1-score close to 0. For MEME ZOOPS 3, many Beta and Epsilon 251

sequences were predicted Delta, and for MEME ZOOPS 3 the majority of Epsilon 252

sequences were assigned to other types of variants. Finally, MEME ZOOP 1 presents 253

the same errors as MEME ZOOP 3. Moreover, it was not able to identify any 254

discriminative motifs related to Eta leading to scores of 0 for this variant. 255
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Finally, the least performing models are those based on the motifs identified by 256

MEME OOPS. MEME OOPS 3 and 2 obtained average scores between 0.68 and 0.72 257

for Precision, Recall and F1-score. These models have had similar problems as MEME 258

ZOOPS in predicting the sequences of Beta, Delta and Kappa. In addition, MEME 259

OOPS was not able to identify discriminative motifs associated with the Iota variant 260

involving performance metric scores close to 0 for Iota sequence prediction. Finally, 261

MEME OOPS 1 also encountered the same difficulties as MEME ZOOP 1 for the 262

prediction of the Eta variant, which dropped its average scores to about 0.58 for 263

Precision, Recall and F1-score. 264

Analysis of identified motifs by KEVOLVE 265

KEVOLVE was able to identify 74 unique motifs that discriminated between different 266

sequences of SARS-CoV-2 variants.Fig 2 is a cluster map of 34 motifs that allows to 267

visualize the discriminating potential by their percentage of presence/absence according 268

to the different families of variants. The selected motifs are those that allow to 269

discriminate one or several groups of variants by their presence or absence at more than 270

97%. Note that these motifs were identified by KEVOLVE during the comparative 271

study from the training set of 2,250 SARS-CoV-2 genomes (250 sequences for the 9 272

types of variants). However, the results shown in Fig 2 are based on the 226,532 variant 273

sequences (training and testing sets). 274

In the figure we can see motifs that allow to discriminate the different variants from 275

the others. For the Alpha variant the ACTACAGA motif for example is absent from 276

their genome while it is present in all the other variants. For the Beta variant, the 277

AAAGTGGA motif is absent in about 97% of the cases in contrast to the other variants. 278

Considering the Delta variant, we observe that the GACCTTAA and CGGTTCAC 279

motifs are absent from their genome while they are present in the other variants. 280

Focusing on the Epsilon variant, several motifs such as ATAGCGCT, CCTGTATA and 281

TTACCTTA by their absence and presence can be used to discriminate it from other 282

variants. The CCGCAATG motif, which is present only in Eta genomes, provides a 283

genomic signature for this variant. The absence of the AAATATCT and GGGAATTT 284

motifs in Gamma’s genome allow discrimination from other variants where they are 285

present. For Iota and Kappa it is for example the presence of the ATAACTGT and 286

TATCTTAA motifs respectively that allow them to be distinguished from other 287

variants. Finally, the Zeta variant can be characterized by the absence of the 288

TGTATCAA motif, which is in contrast present in the genome of all other variants. 289

In summary, KEVOLVE identified from a small portion of the dataset multiple 290

motifs that can discriminate by their absence or presence between different groups of 291

SARS-CoV-2 variants. The discriminative potential of these motifs can be generalized 292

to larger data sets as well as to constitute genomic signatures associated with 293

SARS-CoV-2 variants. 294

Biological interests of the identified motifs 295

We analyzed the variant-discrimination motifs identified by KEVOLVE according to 296

their location in the genome, to assess their potential functional impact of these 297

mutations. 298

Preliminary sequence analyses 299

To study the motifs, we first used UGENE bioinformatics software [35] to perform 300

multiple alignment by selecting 50 genomes per variant family from our training 301

sequence set. In addition, 50 Omicron variant genomes were included to form a set of 302
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Fig 2. Cluster map representing the percentage of presence of motifs
identified by KEVOLVE according to the groups of variants of SARS-CoV-2.

500 sequences that were aligned by MUSCLE algorithm [14] in large alignment mode. 303

From this alignment, we calculated the dissimilarity matrix based on Hamming 304

distances. Finally, the matrix representing the dissimilarity percentages of nucleotide 305

between the different groups of SARS-CoV-2 variants as well as a phylogenetic tree 306

(Fig 3) based on the neighbour-joining method [36] was computed. 307

From this matrix we can observe that the divergence between the genomes of the 308

several clusters of SARS-CoV-2 variants is less than 1% and the mean divergence 309

between all the sequences is 0.29%. Focusing on the phylogentic tree on the right of 310

Fig 3 we observe that this divergence is sufficient to cluster the variant families. 311

Considering the columns related to Omicron as well as the phylogenetic tree, we observe 312

that Omicron is the most divergent. It diverges by 0.44% compared to the other 313

variants and shows an intra-variant divergence of 0.30%. Lastly, the Alpha, Zeta and 314

Iota variants are the least divergent (0.26%, 0.24% and 0.26% respectively compared to 315

the other variants) and (0.05%, 0.007% and 0.14% intra variant divergence). 316
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Fig 3. Nucleotide rate dissimilarity matrix and phylogenetic tree of
SARS-CoV-2 variant families.

Mutations and potential impact associated with motifs 317

The motif analyses were supported by the computed multiple alignment and the 318

SnapGene software (from Insightful Science; available at snapgene.com) using the 319

sequence of references NC 045512 (Severe acute respiratory syndrome coronavirus 2 320

isolate Wuhan-Hu-1, complete genome). In addition, we analyzed all 72 Omicron 321

genomes with KEVOLVE to identify motifs that discriminate this variant from others 322

present in the training set. From this analysis, we highlighted in Table 6, the different 323

mutations contained in the identified motifs, where they are located and the associated 324

variants. 325

Concerning the Alpha variant, the identified motifs highlighted the D1118H 326

mutation located in the Spike glycoprotein, the SGF3675-3677 deletions located in 327

ORF1ab (NSP6), which is also present in the Beta, Gamma, Eta and Iota variants, and 328

the substitutions R203K / G204R, which are shared with the Zeta and Omicron 329

variants. A recent study [37] showed that the 203K/204R mutation located in ORF9 330

(Protein N) is associated with increased COVID-19 infectivity. Thus, this mutation is 331

potentially a major contributor to the high contagiousness of Omicron. 332

For the Beta variant, the motifs pointed out the K1655N mutation in ORF1ab 333

(NSP3), the Q57H mutation located in ORF3a, which is present in Epsilon and Iota, as 334

well as the T205I mutation shared with Epsilon and Eta and which is located in ORF9 335

(Protein N). Regarding the Gamma variant, KEVOLVE identified motifs that contain 336

three characteristic substitutions of this variant [38] which are: K1795Q in ORF1ab 337

(NSP3), R190S and L18F in ORF2 (Spike Protein S1). 338

For Delta variant-associated motifs, they highlighted D63G (ORF9 (Protein N)), 339

G5063S (ORF1b (NSP12)), D950N (ORF2 (Protein Spike S2)), 156del / 157del (ORF2 340

(Protein Spike S1)), and T19R (ORF2 (Protein Spike S1)) mutations that are specific to 341

Delta [39, 40]. 342

In the motifs, we also identified the I82T mutation located in ORF5 (membrane 343

protein), which has been proposed to increase replication fitness through alteration of 344

cellular glucose uptake during viral replication [41]. Our analysis also confirms the 345

presence of this mutation in the Eta variant [42]. The L452R mutation located in the 346

spike protein, which increases fusogenicity and promotes viral replication and 347
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Table 6. Mutational landscape associated to the motifs identified by
KEVOLVE of the different emerging variants.

Variant name Motifs Mutation Mutation position Amino acid change

Alpha (B.1.1.7) ACTACAGA ⇒ ACTACACA D1118H ORF2 (Protein Spike S2) Asp1118 ⇒ His

Alpha (B.1.1.7)
Beta (B.1.351)
Gamma (P.1)
Eta (B.1.525)
Iota (B.1.526)

TAGTTTGTCTGGTTTTA
⇒

TAGTTTG———A
Del SGF3675-3677 ORF1ab (NSP6) Deletion mutation

Alpha (B.1.1.7)
Zeta (P.2)

Omicron (B.1.1.529)
CAGTAGGG ⇒ CAGTAAAC R203K / G204R ORF9 (Protein N) Arg203 ⇒ Lys / Gly204 ⇒ Arg

Beta (B.1.351) AAAGTGGA ⇒ AAATTGGA K1655N ORF1ab (NSP3) Lys1655 ⇒ Asn

Beta (B.1.351)
Epsilon (B.1.427/9)

Iota (B.1.526)
TTCAGAGC ⇒ TTCATAGC Q57H ORF3a Gln57 ⇒ His

Beta (B.1.351)
Epsilon (B.1.427/9)

Eta (B.1.525)
AACTTCTC ⇒ AATTTCTC T205I ORF9 (Protein N) Thr205 ⇒ Ile

Gamma (P.1)

AAATATCT ⇒ CAATATCT K1795Q ORF1ab (NSP3) Lys1795 ⇒ Gln

GGGAATTT ⇒ GTGAATTT R190S ORF2 (Protein Spike S1) Arg190 ⇒ Ser

AATCTTAC ⇒ AATTTTAC L18F ORF2 (Protein Spike S1) Leu18 ⇒ Phe

GCAGTAGG ⇒ GCTCTAAA Silent Mutation ORF2 (Protein Spike S2) N/A

Delta (B.1.617.2)

GACCTTAA ⇒ GGCCTTAA D63G ORF9 (Protein N) Asp63 ⇒ Gly

CGGTTCAC ⇒ CAGTTCAC G5063S ORF1b (NSP12) Gly5063 ⇒ Ser

CAAGATGT ⇒ CAAAATGT D950N ORF2 (Protein Spike S2) Asp950 ⇒ Asn

GTGAGTTC ⇒ GTG—– 156del / 157del ORF2 (Protein Spike S1) Deletion mutation

AATCTTAC ⇒ AATCTTAG T19R ORF2 (Protein Spike S1) Thr19 ⇒ Arg

Delta (B.1.617.2)
Eta (B.1.525)

ATCGCAAT ⇒ ACCGCAAT I82T ORF5 (Protein membranaire) Ile82 ⇒ Thr

Delta (B.1.617.2)
Epsilon (B.1.427/9)
Kappa (1.617.1)

CCTGTATA ⇒ CCGGTATA L452R ORF2 (Protein Spike S1) Leu452 ⇒ Arg

Delta (B.1.617.2)
Kappa (1.617.1)

GCAGTAGG ⇒ GCAGTATG R203M ORF9 (Protein N) Arg203 ⇒ Met

GTCCGTGT ⇒ GTCCGTTT N/A 5’ UTR N/A

Eta (B.1.525) CTTGCATG ⇒ TTTGCATG Silent Mutation ORF2 (Protein Spike S2) Phe1062 ⇒ Phe

Iota (B.1.526) ACAACTGT ⇒ ATAACTGT T11I ORF8 Thr11 ⇒ Ile

Kappa (B.1.617.1) TTACCTTA ⇒ TTATCTTA Silent Mutation ORF1ab (NSP3) Tyr1064 ⇒ Tyr

Zeta (P.2) TGTATCAA ⇒ TGTATTAA Silent Mutation ORF1ab (NSP6) Ile3053 ⇒ Ile

Omicron (B.1.1.529)

GCTGCTAA ⇒ GCGGCTAA Silent Mutation ORF1ab (NSP3) Ala1707 ⇒ Ala

AGAGGTAT ⇒ AGAGGTGT I3758V ORF1ab (NSP6) Ile3758 ⇒ Val

ACTAATTC ⇒ ACTAAGTC N679K ORF2 (Protein Spike) Asn679 ⇒ Lys

TTAAAGAT ⇒ TTAAATAT D796Y ORF2 (Protein Spike) Asp796 ⇒ Tyr

AATTAGAC ⇒ AATTAGAT Silent Mutation ORF2 (Protein Spike) Asp1146 ⇒ Asp

CATAACCC ⇒ CATAACTC Silent Mutation ORF3a Thr64 ⇒ Thr

TATTATGA ⇒ TATTATGC Silent Mutation ORF6 Arg20 ⇒ Arg
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infectivity [43], was also found in motifs within the Delta, Epsilon and Kappa genomes. 348

Finally, three substitutions constituting unique features of Omicron were highlighted, 349

by KEVOLVE: I3758V in ORF1ab (NSP6) and N679K and D796Y in ORF2 (Spike 350

protein) [44]. The functional implications of these Omicron variant mutations are 351

unknown, leaving many questions about how they may affect viral fitness and 352

vulnerability to natural and vaccine-mediated immunity [45]. However, the combination 353

of N679K with H655Y and P681H, due to their proximity to the furin cleavage site, 354

could increase the cleavage of spike, enhancing fusion and viral transmission [46]. 355

Conclusion 356

In this study, we compared the ability of machine learning-based tools to classify 357

SARS-CoV-2 variants compared to statistical tools specialized in discriminative motif 358

identification. We found that the identification of motifs in SARS-CoV-2 genome 359

sequences readily discriminates different groups of variants. However, the machine 360

learning-based approaches, CASTOR-KRFE and KEVOLVE, were generally more 361

efficient. The predictive models based on the motifs (8 for KEVOLVE and 9 for 362

CASTOR-KRFE) identified by these two approaches predict a large set of SARS-CoV-2 363

variant sequences with an average F1 score greater than 0.98. Furthermore, these two 364

approaches predicted a large set of SARS-CoV-2 variant sequences (over 225,000) with 365

an average F1-score greater than 0.98. In contrast, the model involving the most motifs 366

(26), using STREME, which was the best performing approach after KEVOLVE and 367

CASTOR-KRFE, only obtained an average F1-score of 0.836. In addition, unlike the 368

statistical approaches, KEVOLVE and CASTOR-KRFE, can deal with multi-class sets 369

and are not limited to binary sets. In addition, KEVOLVE is distinguished by its ability 370

to identify multiple discriminative sets unlike other tools that are limited to a single 371

optimal set. 372

Subsequently, we analyzed the motifs identified by KEVOLVE with respect to their 373

recognized or potential functional importance from the existing literature. Not 374

surprisingly, we found that the majority of SARS-CoV-2 motifs identified by KEVOLVE 375

were associated with known mutations among the different viral variants. However, of 376

interest, several motifs derived from CASTOR-KRFE and KEVOLVE did not 377

correspond to recognized variant-specific mutations. With respect to Omicron, 4 motifs 378

contained what appear to be silent mutations, indicating potentially novel 379

variant-specific virulence determinants [47]. Interestingly, although Omicron displays 380

increased transmissibility and evades vaccine-induced and natural-acquired neutralizing 381

antibodies through its numerous spike mutations, it may also cause less severe disease, 382

perhaps due to altered tissue tropism [48,49]. As the genetic basis of SARS-CoV-2 383

virulence remain incompletely understood, variant-discriminating mutations represent 384

valuable targets for understanding differences in viral phenotypes and clinical outcomes. 385

These results suggest that KEVOLVE is a robust tool for the rapid and accurate 386

determination of SARS-CoV-2 variants. The identified motifs provide genomic 387

signatures that can be used to build peptide or oligonucleotide libraries for rapid and 388

accurate pathogen detection using tools such as VirScan [50]. The identification of 389

motifs by KEVOLVE is automatic and independent of multiple sequence alignments, in 390

contrast to traditional methods by which mutations are associated with 391

variant-discriminating motifs. Indeed, such analyses require manual verification based 392

on annotated reference sequences and multiple sequence alignment, making them 393

impractical for variant discrimination of diverse viruses with large and complex genome 394

structures, such as cytomegalovirus [51]. KEVOLVE and CASTOR-KRFE can also be 395

adapted to allow the automatic analysis of previously-identified motifs, further 396

increasing its efficiency. 397
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In summary, we have shown that machine learning-based tools has numerous 398

advantages over statistical tools and conventional alignment-based methods for 399

efficiently discriminating among SARS-CoV-2 variants. This new approach is 400

independent of multiple sequence alignment and allows users to capture mutations 401

associated with motifs of interest in different groups of viral pathogens. Moreover, these 402

machine learning-based approaches may rapidly identify novel motifs that point toward 403

otherwise unrecognized mutations of functional importance, in new variants such as 404

Omicron. Thus, ML-based/KEVOLVE is a useful adjunct to conventional genomic 405

analyses to classify and understand viral variants. 406
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