

1 **Discovery of integrons in Archaea: platforms for cross-domain gene transfer**

2

3 Timothy M. Ghaly<sup>1\*</sup>, Sasha G. Tetu<sup>1,2</sup>, Anahit Penesyan<sup>1,2</sup>, Qin Qi<sup>1</sup>, Vaheesan Rajabal<sup>1,2</sup> and

4 Michael R. Gillings<sup>1,2</sup>

5

6 \*Corresponding author: [timothy.ghaly@mq.edu.au](mailto:timothy.ghaly@mq.edu.au)

7

8 <sup>1</sup>School of Natural Sciences, Macquarie University, New South Wales, 2109

9 <sup>2</sup>ARC Centre of Excellence in Synthetic Biology, Macquarie University, New South Wales,

10 2109

11

12 Running title: Integrons in Archaea

13

14 Keywords: Horizontal gene transfer; prokaryotes; metagenome-assembled genomes;

15 evolution; site-specific DNA recombination

16

17

18 **Summary**

19

20 Horizontal gene transfer between different domains of life is increasingly being recognised as  
21 an important driver of evolution, with the potential to provide the recipient with new gene  
22 functionality and assist niche adaptation<sup>1-3</sup>. However, the molecular mechanisms underlying  
23 the integration of exogenous genes from foreign domains are mostly unknown. Integrons are  
24 a family of genetic elements that facilitate this process within Bacteria via site-specific DNA  
25 recombination<sup>4-7</sup>. Integrons, however, have not been reported outside Bacteria, and thus their  
26 potential role in cross-domain gene transfer has not been investigated. Here we show that  
27 integrons are also present among diverse phyla within the domain Archaea. Further, we  
28 provide experimental evidence that integron-mediated recombination can facilitate the  
29 recruitment of archaeal genes by bacteria. Our findings establish a new mechanism that can  
30 facilitate horizontal gene transfer between the two domains of prokaryotes, which has  
31 important implications for prokaryotic evolution in both clinical and environmental contexts.

32

33 **Main**

34

35 Horizontal gene transfer between different domains of life can be a major driver in species  
36 evolution<sup>8</sup>. There are now numerous examples of genes that have been transferred between  
37 Archaea, Bacteria and Eukarya<sup>3,9-13</sup>. Among the consequences of such gene transfers are the  
38 gain of novel biochemical functions and the ability to colonise specific environmental  
39 niches<sup>1-3</sup>. However, the molecular mechanisms for most of these transfer events are unknown.

40       Integrons are genetic elements known to facilitate horizontal gene transfer within  
41 Bacteria<sup>4-7</sup>. Integrons can capture exogenous genes, known as gene cassettes, by site-specific  
42 recombination. Gene cassette capture is mediated by an integron integrase (IntI), which

43 catalyses the recombination between the recombination site of the inserting cassette (*attC*)  
44 and the endogenous integron attachment site (*attI*), immediately adjacent to the *intI* gene.  
45 Multiple gene cassettes can be inserted within a single integron, forming cassette arrays that  
46 range from 1 to 200+ sequential cassettes<sup>4,6</sup>. Integrons are mostly known for their role in  
47 driving the global antibiotic resistance crisis by disseminating diverse resistance determinants  
48 among bacterial pathogens<sup>14,15</sup>. However, it is now clear that integrons play a much broader  
49 role in bacterial evolution and niche adaptation<sup>16</sup>. The functions encoded by integron gene  
50 cassettes are extraordinarily diverse and extend far beyond those of clinical relevance<sup>7,17,18</sup>.

51 To date, integrons have only been found within bacterial genomes, where they have  
52 been detected within diverse phyla<sup>19</sup>. However, gene cassette amplicon sequencing has  
53 yielded cassette-encoded proteins that share homology with archaeal proteins<sup>20,21</sup>. Without  
54 broader genomic context, however, the taxonomic residence of such gene cassettes is  
55 unknown.

56 Here, we screened all publicly available archaeal genomes to show for the first time  
57 that integrons are not limited to Bacteria, but are also present in Archaea. Archaeal integrons  
58 exhibit the same characteristics and functional components as bacterial integrons. Further, we  
59 demonstrate experimentally that diverse archaeal gene cassettes can be successfully recruited  
60 by a bacterial host, facilitated by integron-mediated recombination. Such a mechanism can  
61 potentially facilitate a cross-domain highway of gene transfer between Archaea and Bacteria,  
62 with important implications for prokaryotic evolution.

63

#### 64 **Discovery of integrons in Archaea**

65

66 Here, we report the discovery of integrons in the domain Archaea. We screened 6,718  
67 archaeal genomes for integrons using the standard criteria applied to integron surveys in

68 Bacteria<sup>19,22,23</sup>. These include the presence of integron integrase genes and/or clusters of gene  
69 cassette *attCs* (defined as at least two *attCs* with less than 4 kb between each). We identified  
70 integrons in 75 archaeal metagenome-assembled genomes (MAGs) from 9 phyla (Fig. 1 and  
71 Supplementary Table 1). It is not surprising that integrons were detected only in MAGs,  
72 given that they constituted ~95% of all available archaeal genomes. However, to ensure that  
73 these integrons did not arise from contaminating bacterial contigs, incorrectly binned with  
74 archaeal MAGs, we applied stringent MAG refinement and quality filtering (see Methods for  
75 details). Additionally, we found that ~7% of integron-bearing MAGs had at least one  
76 archaeal phylogenetic marker gene on the same contig as an integron (Supplementary Table  
77 2), confirming these to be located on archaeal chromosomes. No integron was ever co-located  
78 with a bacterial marker gene. The markers used for this analysis consisted of a  
79 comprehensive set of 122 archaeal and 120 bacterial proteins identified as suitable for  
80 phylogenetic inference<sup>24</sup>.

81 Among the 75 archaeal genomes, we detected six IntIs and 539 *attC* sites (excluding  
82 all singleton *attCs*). We found that archaeal *attCs* and IntIs are largely restricted to one clade  
83 of Archaea (Fig. 1), with some outliers, suggesting that integron diversification, for the most  
84 part, has likely occurred within one archaeal clade, with occasional horizontal movements to  
85 other archaeal phyla. In particular, integrons were significantly enriched in the phylum  
86 Asgardarchaeota ( $\chi^2$  test,  $p < 0.00001$ ) (Fig. 1), being detected in almost 8% of available  
87 Asgard genomes. Asgardarchaeota contributed the most genomes with detectable integrons  
88 (28%) and the greatest number of gene cassettes (24.9%), despite having relatively few  
89 genomes among the dataset (comprising 4% of available archaeal genomes). We also  
90 detected integrons in 3-4% of genomes from the phyla Hadarchaeota and  
91 Hydrothermoarchaeota (Fig. 1), although these comprised few available genomes ( $n < 50$ ). A  
92 skewed phylogenetic distribution of integrons has similarly been observed among Bacteria<sup>19</sup>.

93 For example, in the phylum Proteobacteria, integrons are enriched within the class  
94 Gammaproteobacteria (20% of genomes), while being entirely absent from its sister class  
95 Alphaproteobacteria. This is intriguing given that integrons have been detected at widely  
96 varying prevalence in more distantly related bacterial phyla such as Cyanobacteria,  
97 Spirochaetota, Planctomycetota, Chloroflexota, Bacteroidota and Desulfobacterota<sup>19,22</sup>.

98

99 *Genetic structure of archaeal integrons*

100 We found that archaeal integrons exhibit the same structure and functional  
101 components as bacterial integron cassette arrays (Extended Data Fig. 1). That is, tandem  
102 arrays of short open reading frames (ORFs), generally in the same orientation, interspersed  
103 by *attC* recombination sites. Archaeal *attCs* exhibit the same single-stranded folding structure  
104 as bacterial *attCs*, which is essential for them to act as structure-specific DNA recombination  
105 sites<sup>25-31</sup>. We also note that archaeal IntIs exhibit the defining characteristics of bacterial  
106 IntIs, being tyrosine recombinases that possess a unique IntI-specific additional domain  
107 surrounding the patch III motif region necessary for integron-mediated recombination<sup>32</sup>. We  
108 found examples of ‘complete’ integrons, these being cassette arrays adjacent to a detectable  
109 *intI* gene (Extended Data Fig. 1). We also found examples of putative *attI* sites, which act as  
110 insertion points for incoming gene cassettes. These *attIs* were immediately downstream of the  
111 *intI* gene, semi-conserved across distinct archaeal phyla (Extended Data Fig. 2a,b), and  
112 exhibited the same canonical insertion point as all known bacterial *attIs* (Extended Data Fig.  
113 2c).

114 Most archaeal integrons that we identified were CALINs (clusters of *attCs* lacking  
115 integron integrases; Supplementary Table 3). This is not surprising given the fragmented  
116 nature of MAGs, and the high prevalence of CALINs also found in bacterial genomes.  
117 Indeed, among Bacteria, CALINs are more abundant than complete integrons that possess an

118 *intI* gene, and exhibit a much wider taxonomic distribution<sup>19</sup>. Two In0 elements were also  
119 detected among Archaea. These are integrons that have an *intI* gene without an adjacent *attC*  
120 site (Extended Data Fig. 1). However, both archaeal genomes with an In0 also had clusters of  
121 *attC* sites on other contigs. Among our dataset, the longest array of *attCs* on the same contig  
122 was 12, however, we found as many as 107 *attCs* (over 18 contigs) within a single MAG  
123 (Supplementary Table 1). The number of *attCs* within a single MAG ranged from 2 to 107,  
124 with an average of 7 *attCs*.

125

## 126 **Platforms for cross-domain gene transfer**

127

128 Archaeal gene cassettes with *attCs* from diverse phyla can be recognised and recruited by  
129 Bacteria (Fig. 2). We demonstrate that cassette insertion (*attC* x *attI* recombination) can  
130 occur following the conjugation of circular DNA molecules with archaeal *attCs* into an  
131 *Escherichia coli* recipient harbouring a bacterial class 1 integron (Fig. 2a). Insertion events  
132 were confirmed with Sanger sequencing of the PCR-amplified *attC/attI* recombination  
133 junctions (Fig. 2a, Extended Data Fig. 3). We found that recruitment of cassettes with  
134 archaeal *attCs* occurred at similar frequencies to that of the paradigmatic bacterial *attC* site,  
135 *attC<sub>aadA7</sub>*, which we used as a positive control (Fig. 2b, Extended Data Table 1). We observed  
136 an average recombination frequency of  $2.5 \times 10^{-1}$  between *attII* and *attC<sub>aadA7</sub>*. Comparable  
137 frequencies (ranging from  $1.9 \times 10^{-4}$  –  $3.2 \times 10^{-1}$ , with an average of  $5.1 \times 10^{-2}$ ) were observed for  
138 eight out of nine archaeal *attCs* (Kruskal-Wallis test,  $p=0.488$ ), which were selected from  
139 multiple archaeal phyla. Further, we confirmed that cassette recruitment was mediated by  
140 *IntII* activity, since no *attC* x *attI* recombination events were detected when *intII* was absent  
141 or when its expression was suppressed (Extended Data Table 1). We therefore show that  
142 integron-mediated gene transfer can occur between the two domains of prokaryotes.

143 Importantly, we find that the most clinically significant class of integrons (class 1)  
144 can recruit archaeal cassettes as efficiently as bacterial cassettes. Class 1 integrons are highly  
145 promiscuous due to their association with diverse mobile genetic elements, facilitating their  
146 spread into at least 100 bacterial species<sup>7</sup>. They collectively carry more than 130 different  
147 resistance genes<sup>14</sup>, most of which are of unknown taxonomic origin<sup>22</sup>. Our findings open the  
148 possibility that Archaea could be an unexplored source of class 1 integron gene cassettes.  
149 Regardless, our findings indicate that any bacterial strain with a class 1 integron has the  
150 capacity to incorporate exogenous genes from diverse archaeal phyla, greatly expanding the  
151 genetic pool that they have access to.

152 The cross-domain transfer of integron gene cassettes is possibly widespread. For  
153 example, we detected 23 *attCs* from six archaeal genomes that exhibited 95-100% nucleotide  
154 identity to *attCs* within sequenced bacterial integrons (Supplementary Table 4). The archaeal  
155 *attCs* were from three phyla: Nanoarchaeota, Thermoproteota and Hadarchaeota. The  
156 homologous *attCs* in Bacteria were found in 26 genomes from 5 phyla: Proteobacteria,  
157 Spirochaetota, Myxococcota, Nitrospirota and Desulfobacterota. One of these *attC* sites was  
158 associated with a class 1 integron gene cassette, encoding an NADPH-dependent  
159 oxidoreductase found on five different Enterobacteriaceae plasmids (Supplementary Table 4).  
160 In Archaea, however, this *attC* site was part of a cassette that encoded a ligand-binding  
161 protein of unknown function. Nevertheless, since strong *attC* homology is a characteristic of  
162 cassettes that share the same taxonomic origin<sup>22,33,34</sup>, it is possible that some clinically  
163 relevant gene cassettes now found on class 1 integrons might be of archaeal origin.

164

165 Diversity of archaeal integrons

166

167 *Diversity of integron integrases*

168 Archaeal IntIs are phylogenetically distinct from bacterial IntIs (Fig. 3). We detected  
169 six IntIs from four archaeal phyla (Fig. 1), however, three of these were excluded from  
170 further phylogenetic analysis based on either short sequence length (< 200 amino acids) or  
171 partial coverage of the IntI-specific domain (Extended Data Fig. 4). We found that archaeal  
172 IntIs form their own monophyletic clade separate from known bacterial IntIs<sup>22</sup>. This strongly  
173 suggests that IntI radiation has occurred within Archaea and that their distribution, at least  
174 among the archaeal genomes in our dataset, is not likely to be the result of multiple IntI  
175 acquisitions from Bacteria. Regardless, we show that IntIs from distinct archaeal phyla,  
176 isolated from different environments, are more closely related to each other than they are to  
177 any bacterial IntI.

178 The closest sister clade to the archaeal IntIs comprises two Spirochaetota IntIs (Fig.  
179 3). Intriguingly, these two IntIs are phylogenetically distinct from ‘typical’ Spirochaetota  
180 IntIs, which are generally in reverse orientation<sup>5,35</sup>. Further, the two Spirochaetota that  
181 harboured atypical IntIs were isolated from extreme environments: a brine layer within an  
182 alkaline lake and a hot spring, respectively; environments known to have a relatively high  
183 abundance of Archaea<sup>36</sup>. Thus, these atypical Spirochaetota IntIs might have been  
184 horizontally acquired from Archaea that share the same extreme environments.

185

#### 186 *Diversity of attC recombination sites*

187 Archaeal *attCs* exhibit broad sequence and structural diversity (Fig. 4a). We find that  
188 some archaeal phyla possess *attCs* with a restricted diversity (e.g., Hadarchaeota and  
189 Aenigmatarchaeota), while other phyla have extremely variable *attCs* distributed throughout  
190 the *attC* diversity space (e.g., Asgardarchaeota, Nanoarchaeota and Thermoproteota). This  
191 distribution could indicate that different taxa have different propensities for horizontal  
192 exchange of gene cassettes<sup>7,22</sup>. We show that archaeal *attCs* are significantly more similar

193 within a genome than between genomes (Fig. 4b). This characteristic is also a hallmark of  
194 chromosomal bacterial integrons<sup>19,34</sup>. We also show that *attCs* are more similar between  
195 different genomes from the same archaeal order than they are between genomes from  
196 different orders (Fig. 4c). This order-level *attC* homology is also seen within Bacteria<sup>22,33</sup>.  
197 Thus, the ecological and evolutionary forces that promote and/or constrain *attC* diversity<sup>7</sup> are  
198 likely to be similar for both Archaea and Bacteria.

199 There is a clear overlap in the sequence and structural diversity of *attCs* from Archaea  
200 and Bacteria (Fig. 4a). This provides additional evidence that the mechanistic overlap  
201 between archaeal and bacterial *attCs* is extensive, and thus, cross-domain transfer of cassettes  
202 could be common in shared environments. It also suggests that the recruitment of extra-  
203 domain gene cassettes can be facilitated by diverse classes of integrons, of which there are  
204 thousands (based on IntI amino acid homology<sup>37</sup>). The broad distribution of integrons among  
205 the two domains suggest that integron-mediated transfer plays an important role in  
206 prokaryotic evolution.

207

#### 208 *Functional diversity of gene cassettes*

209 We detected 549 cassette-encoded proteins among Archaea. Only 23.1% of these  
210 could be classified into a known COG category (Extended Data Fig. 5). In contrast, 47.4% of  
211 all proteins from the 75 integron-bearing archaeal genomes could be assigned a known COG  
212 category. This underrepresentation ( $\chi^2$  test,  $p < 0.00001$ ) of known COGs among cassette  
213 proteins has previously been reported for bacterial integrons<sup>4,5,33</sup>. To gain further insight into  
214 possible cassette functions, eggNOG 5.0<sup>38</sup> and Pfam<sup>39</sup> database searches were performed,  
215 assigning putative functions to 228 (41.5%) of the archaeal cassette-encoded proteins. Out of  
216 those with functional predictions, proteins involved in toxin-antitoxin (TA) systems (10.5%);  
217 phage resistance proteins via DNA methylation or restriction endonuclease activities (8.3%);

218 and acetyltransferases (4.4%) were particularly prevalent (Supplementary Table 5). These are  
219 the functions most commonly reported for gene cassettes in Bacteria<sup>5,7,33,34,40</sup>. TA gene  
220 cassettes are particularly common in bacterial integrons, where they can stabilise very large  
221 cassette arrays<sup>41,42</sup>. The antitoxin modules of TA cassettes can also counteract the toxins of  
222 homologous systems found on plasmids and phage, thus potentially protecting their host from  
223 invading mobile elements<sup>43,44</sup>.

224 In addition, 13.2% of archaeal cassette-encoded proteins had signal peptides, which  
225 represents a significant enrichment relative to their broader genomic contexts (6.9%,  $\chi^2$  test, p  
226 < 0.00001). Signal peptides are short amino acid tag sequences that target proteins into, or  
227 across, membranes. Again, transmembrane and secreted proteins are commonly encoded by  
228 gene cassettes in Bacteria<sup>33</sup>, and are hypothesised to help facilitate interactions with their  
229 broader environment<sup>7</sup>.

230 Indeed, we find that functions of archaeal cassettes are associated with their  
231 environment (Fig. 5). Functional families cluster according to their specific environment, and  
232 these environmental clusters, in turn, group according to their broader environmental type  
233 (Fig. 5). This environmentally explicit clustering might be the result of local ecological and  
234 evolutionary forces. That is, gene cassettes in Archaea confer niche-specific functional traits  
235 and/or horizontal transfer of cassettes occurs between archaeal phyla co-located in the same  
236 environment.

237

## 238 **Conclusion**

239

240 Here, we present the first evidence of integrons in the domain Archaea. We demonstrate that  
241 they have the same functional characteristics as bacterial integrons. We also present  
242 experimental evidence that bacteria can successfully recruit archaeal gene cassettes,

243 facilitated by integron-mediated DNA recombination. Our results thus establish a novel  
244 mechanism for cross-domain gene transfer between Archaea and Bacteria. We also find that,  
245 although archaeal IntIs are phylogenetically distinct from bacterial IntIs, their associated *attC*  
246 recombination sites are shared with Bacteria. This suggests that integron-mediated cross-  
247 domain gene transfer is widespread and plays an important role in prokaryotic evolution.

248

## 249 **Methods**

250

### 251 *Data acquisition and quality filtering*

252 All available archaeal genomes were downloaded from the NCBI Assembly Database  
253 (n=8,160; last accessed 2021-Oct-5). Of these, ~ 95% were metagenome-assembled genomes  
254 (MAGs). We applied stringent filtering criteria to remove low quality MAGs. First, to  
255 improve MAG quality, we identified and removed contaminating contigs from each MAG  
256 using MAGpurify v2.1.2<sup>45</sup> with the following modules: ‘*phylo-markers*’, which finds  
257 taxonomically discordant contigs using 100 archaeal and 88 bacterial single-copy taxonomic  
258 marker genes from the PhyEco database<sup>46</sup>; ‘*clade-markers*’, which finds contaminating  
259 contigs using a database of 855,764 clade-specific prokaryotic marker genes (MetaPhlAn2  
260 database<sup>47</sup>); ‘*tetra-freq*’, which employs principal component analysis (PCA) to identify  
261 contaminating contigs with outlier tetra-nucleotide frequency; and ‘*gc-content*’, which uses  
262 PCA to identify contaminating contigs with outlier GC content.

263 After refinement, the quality of the genomes was assessed using CheckM v1.1.3<sup>48</sup>,  
264 which uses single-copy lineage-specific marker genes to estimate genome completeness and  
265 contamination. There is strong community consensus that high quality MAGs are those that  
266 are more than 90% complete and have less than 5% contamination, while medium quality  
267 MAGs have a completeness  $\geq 50\%$  and contamination  $< 10\%$ <sup>24,45,49-52</sup>. In this context,

268 however, we were more concerned with the level of contamination than completeness, and  
269 thus removed all genomes with an estimated contamination  $\geq 5\%$ . The completeness of the  
270 remaining genomes ranged from 15% – 100%, with a median of 81%. The estimated  
271 contamination ranged from 0% – 4.98%, with a median of 0.93%.

272 Archaeal genomes were assigned taxonomic classifications based on the Genome  
273 Taxonomy Database (GTDB)<sup>49-51</sup> using GTDB-Tk v1.6.0<sup>53</sup> with release 06-RS202 of the  
274 GTDB. We employed the *classify\_wf* command with default settings. This workflow  
275 identifies and aligns 120 bacterial and 122 archaeal phylogenetic marker genes<sup>24</sup>. GTDB-Tk  
276 then classifies each genome based on its placement into domain-specific reference trees (built  
277 from 47,899 prokaryote genomes), its relative evolutionary divergence, and average  
278 nucleotide identity to reference genomes in the GTDB. Any genomes not classified within  
279 the domain Archaea were removed. This resulted in a final set of 6,718 archaeal genomes  
280 retained for further analysis.

281 To infer the phylum-level phylogeny of Archaea, the highest quality representative  
282 genome from each phylum was selected based on its genome quality score (defined by Parks  
283 et al.<sup>24</sup> as the estimated completeness of a genome minus five times its estimated  
284 contamination). From representative genomes, a concatenated multiple protein sequence  
285 alignment of the 122 archaeal phylogenetic markers was generated using GTDB-Tk v1.6.0<sup>53</sup>.  
286 A maximum-likelihood tree was generated from the alignment using IQ-TREE v1.6.12<sup>54</sup> with  
287 the best-suited protein model as determined by ModelFinder<sup>55</sup> and 1,000 bootstrap replicates  
288 [parameters: -m MFP -bb 1000].

289

290 *Integron detection*

291 Due to faster processing speeds of large datasets, we initially screened all filtered  
292 genomes for *attC* recombination sites using *attC*-screening.sh<sup>37</sup>

293 (https://github.com/timghaly/integron-filtering) with default parameters. This script uses the  
294 HattCI<sup>56</sup> + Infernal<sup>57</sup> pipeline (first described by Pereira *et al.*<sup>23</sup>) to search for the conserved  
295 sequence and structure of *attC* sites. Genomes that had at least one detectable *attC* site were  
296 additionally screened using IntegronFinder v2.0rc6<sup>19</sup> [parameters: --local-max --cpu 24 --  
297 gbk], which searches for integron integrases and gene cassette arrays. Only IntIs, *attCs* and  
298 cassette-encoded proteins identified by IntegronFinder were included in downstream  
299 analyses.

300 To ensure that these integrons were not from contaminating bacterial contigs that had  
301 been incorrectly binned with archaeal MAGs, we screened all contigs containing an integron  
302 for prokaryotic marker genes using GTDB-Tk v1.6.0<sup>53</sup>. These consisted of 122 archaeal and  
303 120 bacterial proteins identified as suitable phylogenetic markers<sup>24</sup>. We found a total of nine  
304 prokaryotic marker genes among seven integron-bearing contigs. All nine markers were  
305 confirmed to be archaeal via a BLASTP search of the NCBI nr database (Supplementary  
306 Table 2).

307

### 308 *Analysis of integron integrases, attC sites and cassette-encoded proteins*

309 IntegronFinder identifies IntIs using the overlap of two protein hidden Markov model  
310 (HMM) profiles. The first is the Pfam profile PF00589 to identify tyrosine recombinases, and  
311 the second is a protein profile built from the IntI-specific domain that separates IntIs from  
312 other tyrosine recombinases<sup>32</sup>. Identified archaeal IntIs, with matches to both protein profiles,  
313 were placed in a phylogeny alongside a set of previously identified bacterial IntIs<sup>22</sup>. IntIs  
314 shorter than 200 amino acids or those that did not span the complete IntI-specific domain  
315 were removed from phylogenetic analysis. The remaining IntIs were aligned using MAFFT  
316 v7.271<sup>58</sup> [parameters: --localpair --maxiterate 1000] and trimmed using trimAl v1.2rev59  
317 [parameters: -automated1]. A maximum-likelihood tree was generated from the alignment

318 using IQ-TREE v1.6.12<sup>54</sup> with the best-suited protein model as determined by ModelFinder<sup>55</sup>  
319 and 1,000 bootstrap replicates [parameters: -m MFP -bb 1000].

320 The sequence and structural diversity of *attCs* was assessed using RNAClust v1.3<sup>59</sup> as  
321 previously described<sup>22</sup>. RNAClust uses LocARNA<sup>60,61</sup> to generate pairwise structural  
322 alignments (based on both sequence and folding structure) of input sequences. RNAClust then  
323 calculates pairwise distances to create a hierarchical-clustering tree from a WPGMA analysis.  
324 All archaeal *attCs* along with a set of previously identified *attCs* from representative bacterial  
325 taxa<sup>22</sup> were clustered using RNAClust's default parameters.

326 Cassette-encoded proteins identified by IntegronFinder were functionally annotated  
327 using InterProScan v5.44-79.0<sup>62</sup>, with default parameters against the Pfam<sup>39</sup> database, and  
328 eggNOG-mapper v2.0.1b<sup>63,64</sup>, executed in DIAMOND<sup>65</sup> mode against the eggNOG 5.0  
329 database<sup>38</sup>. To identify cassettes that encode transmembrane and secreted proteins, we  
330 searched protein sequences for prokaryotic signal peptides using SignalP 5.0<sup>66</sup> with default  
331 parameters. The correlation analysis of cassette functions was performed as described in  
332 Penesyan et al<sup>67</sup>. Briefly, Pearson's correlations, based on co-occurrences between Pfam  
333 functions, specific environments and archaeal phyla were calculated using the Hmisc v4.5-0  
334 R package<sup>68</sup>. The network was generated from all positive correlations with p-values <0.05  
335 using the ForceAtlas2 layout algorithm<sup>69</sup> within the Gephi software<sup>70</sup>. Specific correlations  
336 and the description of Pfam functions are listed in Supplementary Table 6.

337

338 *Bacterial strains and plasmids for attC recombination assays*

339 The bacterial strains and plasmids used in this study are listed in Supplementary Table  
340 7. LB medium (Lennox) was used to grow bacterial strains supplemented with appropriate  
341 antimicrobial agents. The final concentrations of antimicrobial agents used were kanamycin  
342 (Km) = 50 µg/mL, carbenicillin (Cb) = 75 µg/mL, and chloramphenicol (Cm) = 20 µg/mL.

343 LB medium was supplemented with 0.3 mM 2,6-diaminopimelic acid (DAP) to culture the  
344 auxotrophic *E. coli* WM3064 λpir strain<sup>71</sup>.

345

346 *Construction of attC donor strains*

347 Nine archaeal *attCs*, selected from diverse archaeal phyla (Supplementary Table 8)  
348 along with one bacterial *attC* (*attC<sub>aadA7</sub>*) were used for the recombination assays. Two donor  
349 strains were constructed for each *attC*, delivering either the *attC* top or bottom strands via  
350 conjugation. Overlapping forward and reverse primers were designed to generate each *attC*  
351 sequence flanked by *Xba*I and *Bam*HI overhangs respectively (e.g. primer pair *attC-aadA7*-  
352 FW/REV for *attC<sub>aadA7</sub>*). The annealed primer dimers were then ligated into the mobilisable  
353 suicide vector pJP5603<sup>72,73</sup>. The *attC* top strand donor strains were generated by transforming  
354 the ligation product into electrocompetent cells of the DAP auxotrophic *E. coli* strain  
355 WM3064 λpir. Using the same procedures, all *attC* top strand donor plasmids and strains  
356 were constructed using the pairs of long primers listed in Supplementary Table 9.

357 To deliver *attC* bottom strands, the pJP5603rev (pJPrev) vector was generated to  
358 invert *oriT* orientation relative to that of the pJP5603 parental vector. The multiple-cloning  
359 site and vector backbone of pJP5603 were PCR amplified using the primer pairs pJP-MCS-  
360 FW/REV and pJP-Backbone-FW/REV respectively (with *Xho*I and *Mlu*I restriction sites  
361 introduced) followed by restriction digest and ligation. The same primer pairs for generating  
362 the top strand donor plasmids were used to create the bottom strand donor plasmids and  
363 strains by cloning the same *attC* sequences into the *Xba*I/*Bam*HI sites of pJPrev.

364

365 *Construction of the recipient strain*

366 We generated a recipient strain using *E. coli* UB5201<sup>74</sup> that carried the *intII* gene and the  
367 *attII* recombination site residing on the pBAD24<sup>75</sup> and pACYC184<sup>76</sup> backbones,

368 respectively. The *intII* gene of the R388 plasmid<sup>77</sup> was PCR amplified using the primer pair  
369 *intII\_EcoRI-F/intII\_HindIII-R* (Supplementary Table 9). The L-arabinose inducible  
370 pBAD::*intII* plasmid was generated by cloning *intII* into the pBAD24 expression vector. The  
371 pACYC184::*attII* recipient plasmid was created by assembling the *attII* sequence (from  
372 R388) into the pACYC184 plasmid backbone using the NEBuilder HiFi DNA Assembly  
373 Cloning Kit (New England Biolabs, United States). The PCR products required for the  
374 assembly were generated using the *attII\_fw/attII\_rev* and  
375 pACYC184\_backbone\_F/pACYC184\_backbone\_R primer pairs. *E. coli* UB5201 strain was  
376 co-transformed with pBAD::*intII* and pACYC184::*attII* to generate the *E. coli* UB5201 +  
377 pBAD::*intII* + pACYC184::*attII* recipient strain for *attC* x *attI* suicide conjugation assays. *E.*  
378 *coli* UB5201 + pBAD24 + pACYC184::*attII* was created as an *intII*-negative control strain.  
379 All plasmid constructs were confirmed by Sanger sequencing and restriction enzyme digests.  
380

### 381 *attC* x *attI* suicide conjugation assays

382 The frequencies of recombination between the archaeal *attC* sequences and the class 1  
383 integron *attII* site were quantified using previously established *attC* x *attI* suicide  
384 conjugation methods<sup>25,29,31,78,79</sup> with minor modifications. Briefly, the Cb-resistant UB5201 +  
385 pBAD::*intII* + pACYC184::*attII* recipient strain was filter-mated with Km-resistant  
386 WM3064 λpir *attC* donor strains in DAP-supplemented LB media. The expression of *intII*  
387 was either induced using L-arabinose (2 mg/mL) or suppressed with D-glucose (10 mg/mL).  
388 After 6 hours of incubation at 37°C, the recovered conjugation mix was plated on DAP-free  
389 LB agar with Km, as well as on LB agar containing Cb. This method allowed for negative  
390 selection of the donor strain, which cannot grow in the absence of DAP, and positive  
391 selection of the recombinant recipient clones, which become Km-resistant following plasmid  
392 co-integration (Fig. 2a). The recombination frequency was determined as the ratio of the

393 colony forming units (CFU) for Km-resistant recombinants to the CFU for the total number  
394 of Cb-resistant recipients after two days of incubation. All assays were performed in three  
395 biological replicates, and recombination frequencies were calculated as the mean of the three  
396 independent experiments. To confirm the co-integrates, colony PCR was performed on eight  
397 randomly chosen colonies per conjugation set for each biological replicate using the  
398 following primer pairs pACYC\_F/M13F and pACYC\_R/M13R (Extended Data Fig. 3).  
399 Sanger sequencing of PCR products was performed for four recombinant colonies per  
400 conjugation set.

401

## 402 **Data availability**

403 All genome sequences were downloaded from the NCBI Assembly Database  
404 (<https://www.ncbi.nlm.nih.gov/assembly>; last accessed 2021-Oct-5).

405

## 406 **Code availability**

407 All code and software used in this study are described within the manuscript.

408

## 409 **References**

410

- 411 1 Husnik, F. & McCutcheon, J. P. Functional horizontal gene transfer from bacteria to  
412 eukaryotes. *Nature Reviews Microbiology* **16**, 67-79, doi:10.1038/nrmicro.2017.137  
413 (2018).
- 414 2 Metcalf, J. A., Funkhouser-Jones, L. J., Brileya, K., Reysenbach, A.-L. &  
415 Bordenstein, S. R. Antibacterial gene transfer across the tree of life. *eLife* **3**, e04266  
416 (2014).
- 417 3 Schönknecht, G. *et al.* Gene transfer from Bacteria and Archaea facilitated evolution  
418 of an extremophilic eukaryote. *Science* **339**, 1207-1210,  
419 doi:doi:10.1126/science.1231707 (2013).
- 420 4 Mazel, D. Integrons: agents of bacterial evolution. *Nature Reviews Microbiology* **4**,  
421 608-620, doi:10.1038/nrmicro1462 (2006).
- 422 5 Boucher, Y., Labbate, M., Koenig, J. E. & Stokes, H. W. Integrons: mobilizable  
423 platforms that promote genetic diversity in bacteria. *Trends in Microbiology* **15**, 301-  
424 309, doi:<https://doi.org/10.1016/j.tim.2007.05.004> (2007).

425 6 Gillings, M. R. Integrons: past, present, and future. *Microbiology and Molecular*  
426 *Biology Reviews* **78**, 257-277 (2014).

427 7 Ghaly, T. M. *et al.* The natural history of integrons. *Microorganisms* **9**, 2212 (2021).

428 8 Bruto, M. *et al.* in *Evolutionary Biology: Exobiology and Evolutionary Mechanisms*  
(ed Pierre Pontarotti) 165-179 (Springer Berlin Heidelberg, 2013).

429 9 Sutherland, K. M., Ward, L. M., Colombero, C.-R. & Johnston, D. T. Inter-domain  
431 horizontal gene transfer of nickel-binding superoxide dismutase. *Geobiology* **19**, 450-  
432 459, doi:<https://doi.org/10.1111/gbi.12448> (2021).

433 10 Frigaard, N.-U., Martinez, A., Mincer, T. J. & DeLong, E. F. Proteorhodopsin lateral  
434 gene transfer between marine planktonic Bacteria and Archaea. *Nature* **439**, 847-850,  
435 doi:10.1038/nature04435 (2006).

436 11 Dunning Hotopp, J. C. Horizontal gene transfer between bacteria and animals. *Trends*  
437 in *Genetics* **27**, 157-163, doi:<https://doi.org/10.1016/j.tig.2011.01.005> (2011).

438 12 Bock, R. The give-and-take of DNA: horizontal gene transfer in plants. *Trends in*  
439 *Plant Science* **15**, 11-22, doi:<https://doi.org/10.1016/j.tplants.2009.10.001> (2010).

440 13 Nelson, K. E. *et al.* Evidence for lateral gene transfer between Archaea and Bacteria  
441 from genome sequence of *Thermotoga maritima*. *Nature* **399**, 323-329 (1999).

442 14 Partridge, S. R., Tsafnat, G., Coiera, E. & Iredell, J. R. Gene cassettes and cassette  
443 arrays in mobile resistance integrons. *FEMS Microbiology Reviews* **33**, 757-784,  
444 doi:10.1111/j.1574-6976.2009.00175.x (2009).

445 15 Zhu, Y.-G. *et al.* Continental-scale pollution of estuaries with antibiotic resistance  
446 genes. *Nature Microbiology* **2**, 16270, doi:10.1038/nmicrobiol.2016.270 (2017).

447 16 Escudero, J. A., Loot, C., Nivina, A. & Mazel, D. The integron: adaptation on  
448 demand. *Microbiology Spectrum* **3**, 3.2.10, doi:doi:10.1128/microbiolspec.MDNA3-  
449 0019-2014 (2015).

450 17 Ghaly, T. M., Geoghegan, J. L., Tetu, S. G. & Gillings, M. R. The peril and promise  
451 of integrons: beyond antibiotic resistance. *Trends in Microbiology* **28**, 455-464,  
452 doi:<https://doi.org/10.1016/j.tim.2019.12.002> (2020).

453 18 Ghaly, T. M., Geoghegan, J. L., Alroy, J. & Gillings, M. R. High diversity and rapid  
454 spatial turnover of integron gene cassettes in soil. *Environmental Microbiology* **21**,  
455 1567-1574, doi:<https://doi.org/10.1111/1462-2920.14551> (2019).

456 19 Cury, J., Jové, T., Touchon, M., Néron, B. & Rocha, E. P. Identification and analysis  
457 of integrons and cassette arrays in bacterial genomes. *Nucleic Acids Research* **44**,  
458 4539-4550, doi:10.1093/nar/gkw319 (2016).

459 20 Elsaied, H., Stokes, H. W., Yoshioka, H., Mitani, Y. & Maruyama, A. Novel  
460 integrons and gene cassettes from a Cascadian submarine gas-hydrate-bearing core.  
461 *FEMS Microbiology Ecology* **87**, 343-356, doi:10.1111/1574-6941.12227 (2014).

462 21 Koenig, J. E. *et al.* Integron gene cassettes and degradation of compounds associated  
463 with industrial waste: The case of the Sydney Tar Ponds. *PLoS One* **4**, e5276,  
464 doi:10.1371/journal.pone.0005276 (2009).

465 22 Ghaly, T. M., Tetu, S. G. & Gillings, M. R. Predicting the taxonomic and  
466 environmental sources of integron gene cassettes using structural and sequence  
467 homology of *attC* sites. *Communications Biology* **4**, 946, doi:10.1038/s42003-021-  
468 02489-0 (2021).

469 23 Pereira, M. B. *et al.* A comprehensive survey of integron-associated genes present in  
470 metagenomes. *BMC Genomics* **21**, 495, doi:10.1186/s12864-020-06830-5 (2020).

471 24 Parks, D. H. *et al.* Recovery of nearly 8,000 metagenome-assembled genomes  
472 substantially expands the tree of life. *Nature Microbiology* **2**, 1533-1542,  
473 doi:10.1038/s41564-017-0012-7 (2017).

474 25 Bouvier, M., Demarre, G. & Mazel, D. Integron cassette insertion: a recombination  
475 process involving a folded single strand substrate. *The EMBO Journal* **24**, 4356-4367,  
476 doi:<https://doi.org/10.1038/sj.emboj.7600898> (2005).

477 26 MacDonald, D., Demarre, G., Bouvier, M., Mazel, D. & Gopaul, D. N. Structural  
478 basis for broad DNA-specificity in integron recombination. *Nature* **440**, 1157-1162,  
479 doi:10.1038/nature04643 (2006).

480 27 Bouvier, M., Ducos-Galand, M., Loot, C., Bikard, D. & Mazel, D. Structural features  
481 of single-stranded integron cassette *attC* sites and their role in strand selection. *PLoS  
482 Genetics* **5**, e1000632 (2009).

483 28 Demarre, G., Frumerie, C., Gopaul, D. N. & Mazel, D. Identification of key structural  
484 determinants of the IntI1 integron integrase that influence *attC*×*attI1* recombination  
485 efficiency. *Nucleic Acids Research* **35**, 6475-6489, doi:10.1093/nar/gkm709 (2007).

486 29 Nivina, A., Escudero, J. A., Vit, C., Mazel, D. & Loot, C. Efficiency of integron  
487 cassette insertion in correct orientation is ensured by the interplay of the three  
488 unpaired features of *attC* recombination sites. *Nucleic Acids Research* **44**, 7792-7803,  
489 doi:10.1093/nar/gkw646 (2016).

490 30 Mukhortava, A. *et al.* Structural heterogeneity of *attC* integron recombination sites  
491 revealed by optical tweezers. *Nucleic Acids Research* **47**, 1861-1870,  
492 doi:10.1093/nar/gky1258 (2018).

493 31 Nivina, A. *et al.* Structure-specific DNA recombination sites: Design, validation, and  
494 machine learning-based refinement. *Science Advances* **6**, eaay2922 (2020).

495 32 Messier, N. & Roy, P. H. Integron integrases possess a unique additional domain  
496 necessary for activity. *Journal of Bacteriology* **183**, 6699-6706 (2001).

497 33 Rowe-Magnus, D. A., Guerout, A.-M., Biskri, L., Bouige, P. & Mazel, D.  
498 Comparative analysis of superintegrons: engineering extensive genetic diversity in the  
499 *Vibionaceae*. *Genome Research* **13**, 428-442 (2003).

500 34 Rowe-Magnus, D. A. *et al.* The evolutionary history of chromosomal super-integrons  
501 provides an ancestry for multiresistant integrons. *Proceedings of the National  
502 Academy of Sciences* **98**, 652-657 (2001).

503 35 Wu, Y.-W., Doak, T. G. & Ye, Y. The gain and loss of chromosomal integron  
504 systems in the *Treponema* species. *BMC Evolutionary Biology* **13**, 16,  
505 doi:10.1186/1471-2148-13-16 (2013).

506 36 Rampelotto, P. H. Extremophiles and extreme environments. *Life* **3**, 482-485 (2013).

507 37 Ghaly, T. M. *et al.* Methods for the targeted sequencing and analysis of integrons and  
508 their gene cassettes from complex microbial communities. *bioRxiv*,  
509 2021.2009.2008.459516, doi:10.1101/2021.09.08.459516 (2021).

510 38 Huerta-Cepas, J. *et al.* eggNOG 5.0: a hierarchical, functionally and phylogenetically  
511 annotated orthology resource based on 5090 organisms and 2502 viruses. *Nucleic  
512 Acids Research* **47**, D309-D314 (2019).

513 39 El-Gebali, S. *et al.* The Pfam protein families database in 2019. *Nucleic Acids  
514 Research* **47**, D427-D432 (2019).

515 40 Cambray, G., Guerout, A.-M. & Mazel, D. Integrons. *Annual Review of Genetics* **44**,  
516 141-166 (2010).

517 41 Iqbal, N., Guérout, A.-M., Krin, E., Le Roux, F. & Mazel, D. Comprehensive  
518 functional analysis of the 18 *Vibrio cholerae* N16961 toxin-antitoxin systems  
519 substantiates their role in stabilizing the superintegron. *Journal of Bacteriology* **197**,  
520 2150-2159 (2015).

521 42 Szekeres, S., Dauti, M., Wilde, C., Mazel, D. & Rowe-Magnus, D. A. Chromosomal  
522 toxin-antitoxin loci can diminish large-scale genome reductions in the absence of  
523 selection. *Molecular Microbiology* **63**, 1588-1605 (2007).

524 43 Wilbaux, M., Mine, N., Guérout, A.-M., Mazel, D. & Van Melderen, L. Functional  
525 interactions between coexisting toxin-antitoxin systems of the *ccd* family in  
526 *Escherichia coli* O157: H7. *Journal of Bacteriology* **189**, 2712-2719 (2007).

527 44 Guérout, A.-M. *et al.* Characterization of the *phd-doc* and *ccd* toxin-antitoxin  
528 cassettes from *Vibrio* superintegrons. *Journal of Bacteriology* **195**, 2270-2283 (2013).

529 45 Nayfach, S., Shi, Z. J., Seshadri, R., Pollard, K. S. & Kyrpides, N. C. New insights  
530 from uncultivated genomes of the global human gut microbiome. *Nature* **568**, 505-  
531 510, doi:10.1038/s41586-019-1058-x (2019).

532 46 Wu, D., Jospin, G. & Eisen, J. A. Systematic identification of gene families for use as  
533 “markers” for phylogenetic and phylogeny-driven ecological studies of bacteria and  
534 archaea and their major subgroups. *PLoS One* **8**, e77033 (2013).

535 47 Truong, D. T. *et al.* MetaPhlAn2 for enhanced metagenomic taxonomic profiling.  
536 *Nature Methods* **12**, 902-903 (2015).

537 48 Parks, D. H., Imelfort, M., Skennerton, C. T., Hugenholtz, P. & Tyson, G. W.  
538 CheckM: assessing the quality of microbial genomes recovered from isolates, single  
539 cells, and metagenomes. *Genome Research* **25**, 1043-1055,  
540 doi:10.1101/gr.186072.114 (2015).

541 49 Parks, D. H. *et al.* A standardized bacterial taxonomy based on genome phylogeny  
542 substantially revises the tree of life. *Nature Biotechnology* **36**, 996-1004,  
543 doi:10.1038/nbt.4229 (2018).

544 50 Parks, D. H. *et al.* A complete domain-to-species taxonomy for Bacteria and Archaea.  
545 *Nature Biotechnology* **38**, 1079-1086, doi:10.1038/s41587-020-0501-8 (2020).

546 51 Rinke, C. *et al.* A standardized archaeal taxonomy for the Genome Taxonomy  
547 Database. *Nature Microbiology* **6**, 946-959, doi:10.1038/s41564-021-00918-8 (2021).

548 52 Bowers, R. M. *et al.* Minimum information about a single amplified genome  
549 (MISAG) and a metagenome-assembled genome (MIMAG) of bacteria and archaea.  
550 *Nature Biotechnology* **35**, 725-731, doi:10.1038/nbt.3893 (2017).

551 53 Chaumeil, P.-A., Mussig, A. J., Hugenholtz, P. & Parks, D. H. GTDB-Tk: a toolkit to  
552 classify genomes with the Genome Taxonomy Database. *Bioinformatics* **36**, 1925-  
553 1927, doi:10.1093/bioinformatics/btz848 (2019).

554 54 Nguyen, L.-T., Schmidt, H. A., Von Haeseler, A. & Minh, B. Q. IQ-TREE: a fast and  
555 effective stochastic algorithm for estimating maximum-likelihood phylogenies.  
556 *Molecular Biology and Evolution* **32**, 268-274 (2015).

557 55 Kalyaanamoorthy, S., Minh, B. Q., Wong, T. K., Von Haeseler, A. & Jermiin, L. S.  
558 ModelFinder: fast model selection for accurate phylogenetic estimates. *Nature  
559 Methods* **14**, 587-589 (2017).

560 56 Pereira, M. B., Wallroth, M., Kristiansson, E. & Axelson-Fisk, M. HattCI: fast and  
561 accurate *attC* site identification using hidden Markov models. *Journal of  
562 Computational Biology* **23**, 891-902 (2016).

563 57 Nawrocki, E. P. & Eddy, S. R. Infernal 1.1: 100-fold faster RNA homology searches.  
564 *Bioinformatics* **29**, 2933-2935 (2013).

565 58 Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment software version  
566 7: improvements in performance and usability. *Molecular Biology and Evolution* **30**,  
567 772-780 (2013).

568 59 Engelhardt, J., Heyne, S., Will, S. & Reiche, K. *RNAclust Documentation*,  
569 <<http://www.bioinf.uni-leipzig.de/~kristin/Software/RNAclust/manual.pdf>> (2010).

570 60 Will, S., Joshi, T., Hofacker, I. L., Stadler, P. F. & Backofen, R. LocARNA-P:  
571 accurate boundary prediction and improved detection of structural RNAs. *RNA* **18**,  
572 900-914 (2012).

573 61 Will, S., Reiche, K., Hofacker, I. L., Stadler, P. F. & Backofen, R. Inferring  
574 noncoding RNA families and classes by means of genome-scale structure-based  
575 clustering. *PLoS Computational Biology* **3**, e65 (2007).

576 62 Jones, P. *et al.* InterProScan 5: genome-scale protein function classification.  
*Bioinformatics* **30**, 1236-1240 (2014).

578 63 Huerta-Cepas, J. *et al.* Fast genome-wide functional annotation through orthology  
579 assignment by eggNOG-mapper. *Molecular Biology and Evolution* **34**, 2115-2122  
580 (2017).

581 64 Cantalapiedra, C. P., Hernández-Plaza, A., Letunic, I., Bork, P. & Huerta-Cepas, J.  
582 eggNOG-mapper v2: functional annotation, orthology assignments, and domain  
583 prediction at the metagenomic scale. *Molecular Biology and Evolution*,  
584 doi:10.1093/molbev/msab293 (2021).

585 65 Buchfink, B., Xie, C. & Huson, D. H. Fast and sensitive protein alignment using  
586 DIAMOND. *Nature Methods* **12**, 59-60 (2015).

587 66 Almagro Armenteros, J. J. *et al.* SignalP 5.0 improves signal peptide predictions using  
588 deep neural networks. *Nature Biotechnology* **37**, 420-423, doi:10.1038/s41587-019-  
589 0036-z (2019).

590 67 Penesyan, A., Nagy, S. S., Kjelleberg, S., Gillings, M. R. & Paulsen, I. T. Rapid  
591 microevolution of biofilm cells in response to antibiotics. *npj Biofilms and*  
592 *Microbiomes* **5**, 34, doi:10.1038/s41522-019-0108-3 (2019).

593 68 Harrell, F. E. & Dupont, C. Hmisc: harrell miscellaneous. R package version 4.5-0.  
594 <https://CRAN.R-project.org/package=Hmisc>. (2021).

595 69 Jacomy, M., Venturini, T., Heymann, S. & Bastian, M. ForceAtlas2, a continuous  
596 graph layout algorithm for handy network visualization designed for the Gephi  
597 software. *PLoS One* **9**, e98679 (2014).

598 70 Bastian, M., Heymann, S. & Jacomy, M. in *Third International AAAI Conference on*  
599 *Weblogs and Social Media*.

600 71 Dehio, C. & Meyer, M. Maintenance of broad-host-range incompatibility group P and  
601 group Q plasmids and transposition of Tn5 in *Bartonella henselae* following conjugal  
602 plasmid transfer from *Escherichia coli*. *Journal of Bacteriology* **179**, 538-540,  
603 doi:doi:10.1128/jb.179.2.538-540.1997 (1997).

604 72 Penfold, R. J. & Pemberton, J. M. An improved suicide vector for construction of  
605 chromosomal insertion mutations in bacteria. *Gene* **118**, 145-146,  
606 doi:[https://doi.org/10.1016/0378-1119\(92\)90263-O](https://doi.org/10.1016/0378-1119(92)90263-O) (1992).

607 73 Riedel, T., Rohlfs, M., Buchholz, I., Wagner-Döbler, I. & Reck, M. Complete  
608 sequence of the suicide vector pJP5603. *Plasmid* **69**, 104-107,  
609 doi:10.1016/j.plasmid.2012.07.005 (2013).

610 74 Sanchez, J., Bennett, P. M. & Richmond, M. H. Expression of *elt*-B, the gene  
611 encoding the B subunit of the heat-labile enterotoxin of *Escherichia coli*, when cloned  
612 in pACYC184. *FEMS Microbiology Letters* **14**, 1-5, doi:10.1111/j.1574-  
613 6968.1982.tb08623.x (1982).

614 75 Guzman, L. M., Belin, D., Carson, M. J. & Beckwith, J. Tight regulation, modulation,  
615 and high-level expression by vectors containing the arabinose PBAD promoter.  
616 *Journal of Bacteriology* **177**, 4121-4130, doi:10.1128/jb.177.14.4121-4130.1995  
617 (1995).

618 76 Rose, R. E. The nucleotide sequence of pACYC184. *Nucleic Acids Research* **16**, 355,  
619 doi:10.1093/nar/16.1.355 (1988).

620 77 Avila, P. & de la Cruz, F. Physical and genetic map of the IncW plasmid R388.  
*Plasmid* **20**, 155-157, doi:10.1016/0147-619x(88)90019-4 (1988).

622 78 Vit, C., Loot, C., Escudero, J. A., Nivina, A. & Mazel, D. in *Horizontal Gene*  
623 *Transfer: Methods and Protocols* (ed Fernando de la Cruz) 189-208 (Springer US,  
624 2020).  
625 79 Vit, C. *et al.* Cassette recruitment in the chromosomal Integron of *Vibrio cholerae*.  
626 *Nucleic Acids Research* **49**, 5654-5670, doi:10.1093/nar/gkab412 (2021).  
627 80 Moura, A. *et al.* INTEGRALL: a database and search engine for integrons, integrases  
628 and gene cassettes. *Bioinformatics* **25**, 1096-1098, doi:10.1093/bioinformatics/btp105  
629 (2009).  
630

631

### 632 **Acknowledgements**

633 The authors would like to thank Ian Paulsen for comments on earlier versions of the  
634 manuscript. This work was funded by the Australian Research Council (Discovery Project  
635 DP200101874).

636

### 637 **Author contributions**

638 TMG contributed to the conception of the study, performed all data analyses, wrote the  
639 original draft of the paper, and contributed to the final editing of the paper. SGT contributed  
640 to the conception of the study and the final editing of the paper. AP performed the correlation  
641 analysis of cassette functions, and contributed to the final editing of the paper. QQ was  
642 involved with the design and implementation of the experimental work, and contributed to  
643 the final editing of the paper. VR was involved with the design and implementation of the  
644 experimental work, and contributed to the final editing of the paper. MRG contributed to the  
645 conception of the study and the final editing and revision of the paper. All authors  
646 contributed to the article and approved the final submitted version.

647

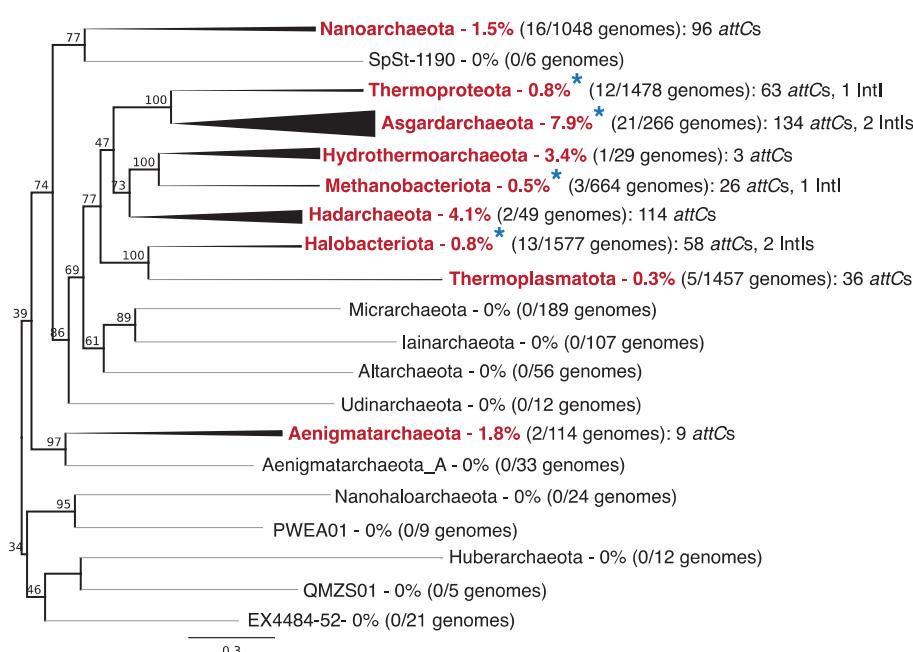
### 648 **Competing interests**

649 The authors declare no competing interests.

650

651 **Materials & Correspondence**

652 Correspondence and material requests should be addressed to TMG

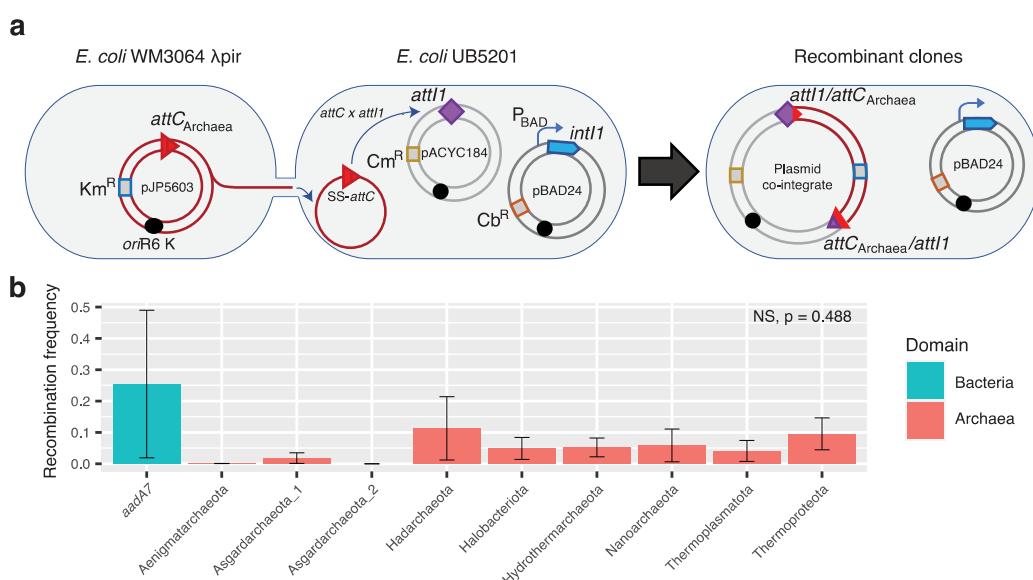

653 (timothy.ghaly@mq.edu.au).

654

655

656 **Figures**

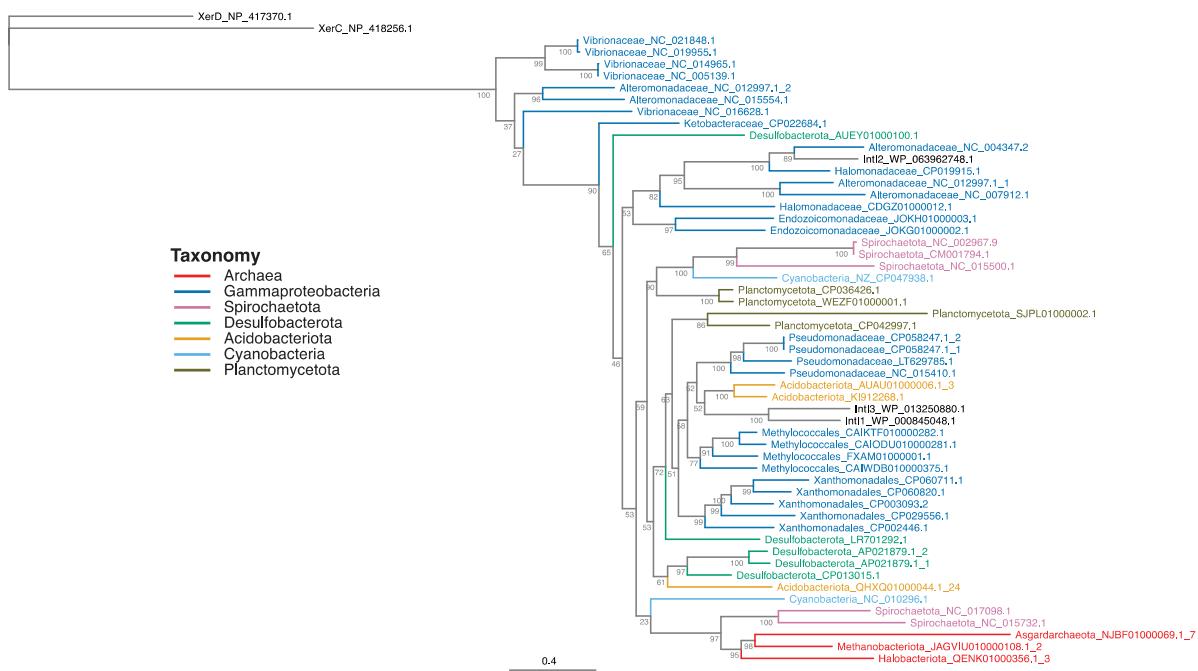
657



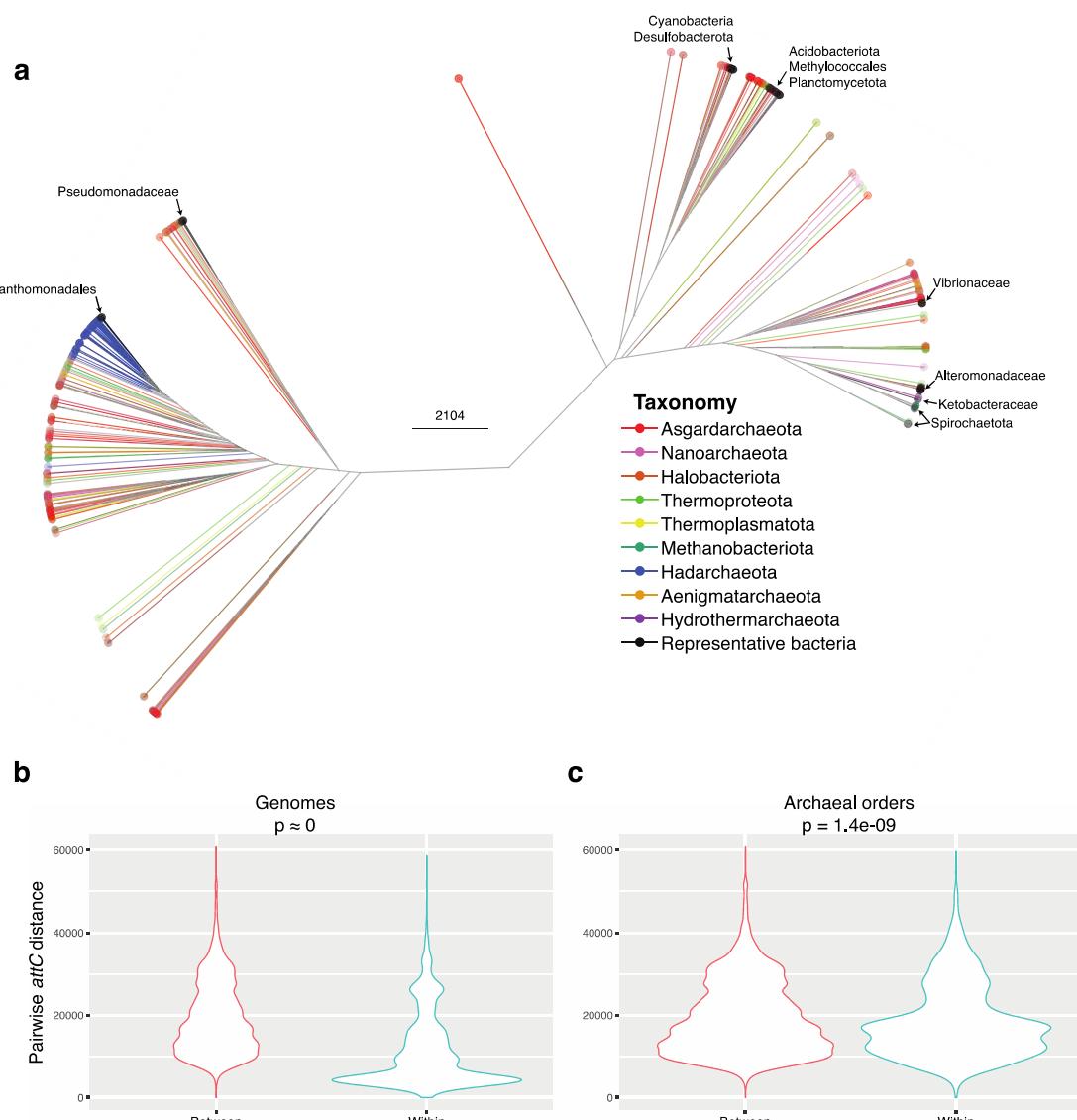

658

659 **Fig. 1: Phylogenetic distribution of integrons among Archaea.** Archaeal phyla found to  
 660 carry integrons are labelled in red, and those found to have an integron integrase gene (*intI*)  
 661 are denoted with blue asterisks. Branch thickness indicates the proportion of genomes with  
 662 integrons for each phylum.

663

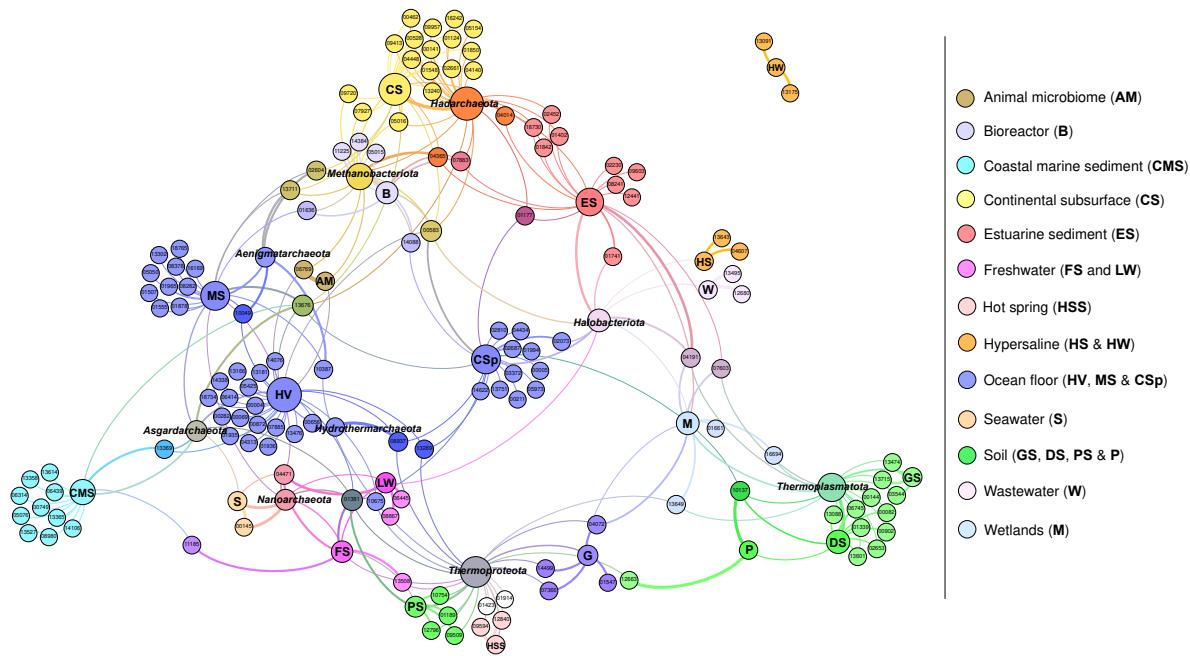

664




665

666 **Fig. 2: Cassette recruitment (*attC* x *attI* recombination) assays.** **a**, schematic outlining the  
 667 experimental setup of the cassette insertion assays. The suicide vector pJP5603 with an *attC*  
 668 site is delivered into the recipient *E. coli* UB5201 strain via conjugation. The recipient strain  
 669 carries an *intI1* gene, expressed from the inducible  $P_{BAD}$  promoter, and an *attI1* site, residing  
 670 on the pBAD24 and pACYC184 backbones, respectively. The donor suicide vector cannot  
 671 replicate within the recipient host, and thus, can only persist following *attC* x *attI*  
 672 recombination to form a plasmid co-integrate. **b**, average recombination frequencies ( $\pm 1$  S.E.)  
 673 between *attI1* and nine archaeal *attCs* (with phyla of origin labelled along the X-axis) and the

674 paradigmatic bacterial *attC* site (*attC<sub>aadA7</sub>*), used as positive control. Average frequencies  
675 were calculated following three independent cassette insertion assays (see Methods for  
676 details). No statistically significant difference in recombination frequencies were detected  
677 among the tested *attCs* (Kruskal-Wallis test, n=27, df=8, p=0.488). Recombination  
678 frequencies are shown for *attC* bottom strands only. See Extended Data Table 1 for *attC* top  
679 strand recombination frequencies.  
680  
681  
682  
683  
684




685 **Fig. 3: Phylogeny of integron integrases from Archaea and Bacteria.** To root the tree, the  
686 tyrosine recombinases XerC and XerD from *Escherichia coli* were used as outgroups.  
687 Integron integrases (IntIs) are coloured according to their taxonomy.  
688  
689  
690



691  
692 **Fig. 4: Structural and sequence diversity of archaeal *attC* recombination sites. a,**  
693 structure-based clustering of all archaeal and representative bacterial *attCs*. Branches and tips  
694 are coloured according to archaeal phylum. The taxa of bacterial *attCs* are labelled with  
695 arrows. **b**, distribution of the sequence and structural distances calculated for all pairwise  
696 comparisons of *attCs* within and between genomes. **c**, distribution of distances for all  
697 pairwise comparisons of *attCs* from different genomes that are either from the same or  
698 different archaeal orders.

699  
700  
701  
702



AM: Animal Microbiome; B: Bioreactor; CMS: Coastal Marine Sediment; CSp: Cold Seep; CS: Continental Subsurface; DS: Desert Soil; ES: Estuarine Sediment; FS: Freshwater Sediment; G: Groundwater; GS: Grassland Soil; HSS: Hot Spring Sediment; HV: Hydrothermal Vent; HS: Hypersaline Sediment; HW: Hypersaline Water; MS: Marine Sediment; LW: Lake Water; M: Mangroves; P: Peatland; PS: Permafrost Soil; S: Seawater; W: Wastewater.

703  
704 **Fig. 5: A network linking Pfam functions of archaeal integron gene cassettes with their**  
705 **taxonomic and environmental contexts.** The force-directed representation of the network is  
706 constructed based on co-occurrence patterns and correlations ( $p < 0.05$ ) between Pfam  
707 functions, taxonomic groups, and specific environments from which the organisms were  
708 sampled. Nodes that represent taxonomic groups and specific environments are labelled  
709 accordingly. All other nodes denote Pfam functions and are labelled with a Pfam number  
710 preceded by 'PF'. Specific environments are grouped into broader environment types, each of  
711 which is coloured as per the panel. Pfams directly linked to specific environment types are  
712 coloured in corresponding colours. Pfams linked to more than one environment type are  
713 coloured in overlapping colours. The size of the node is relative to the node authority based  
714 on the degree of correlations. Edges (the lines connecting the nodes) represent correlations  
715 between nodes. Edge colour denotes the overlapping colour of the two nodes it connects.  
716 Edge thickness represents the strength of correlation. The full description of all correlations  
717 and Pfam functions is presented in Supplementary Table 6.

718

719 Extended data

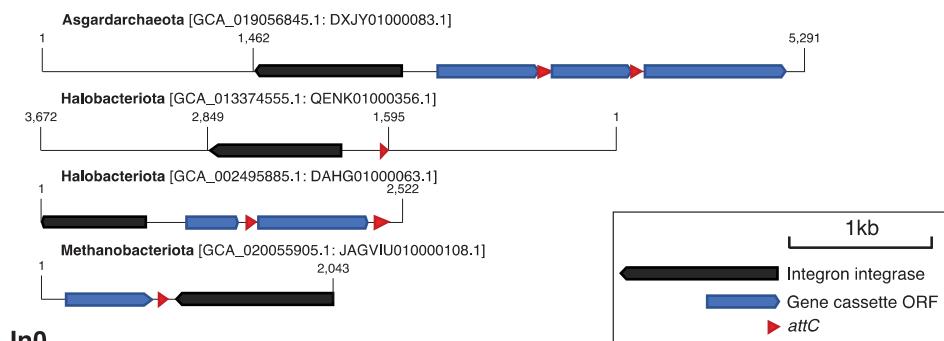
720

721 **Extended Data Table 1. Average recombination frequencies for the *attC* x *attI* suicide**  
722 **conjugation assays.**

|                                           | <i>attC</i> bottom strand<br>( <i>intII</i> induced <sup>*</sup> ) | <i>attC</i> bottom strand<br>( <i>intII</i> suppressed <sup>†</sup> ) | <i>attC</i> top strand<br>( <i>intII</i> induced) | <i>attC</i> top strand<br>( <i>intII</i> suppressed) |
|-------------------------------------------|--------------------------------------------------------------------|-----------------------------------------------------------------------|---------------------------------------------------|------------------------------------------------------|
| <i>attC<sub>aadA7</sub></i>               | 2.54x10 <sup>-1</sup>                                              | ND <sup>††</sup>                                                      | 2.48x10 <sup>-3</sup>                             | ND                                                   |
| <i>attC<sub>Aenigmataarchaeota</sub></i>  | 5.46x10 <sup>-4</sup>                                              | ND                                                                    | 8.66x10 <sup>-7</sup>                             | ND                                                   |
| <i>attC<sub>Asgardarchaeota_1</sub></i>   | 1.79x10 <sup>-2</sup>                                              | ND                                                                    | 6.74x10 <sup>-4</sup>                             | ND                                                   |
| <i>attC<sub>Asgardarchaeota_2</sub></i>   | ND                                                                 | ND                                                                    | ND                                                | ND                                                   |
| <i>attC<sub>Hadarchaeota</sub></i>        | 1.13x10 <sup>-1</sup>                                              | ND                                                                    | 1.18x10 <sup>-3</sup>                             | ND                                                   |
| <i>attC<sub>Halobacteriota</sub></i>      | 4.88x10 <sup>-2</sup>                                              | ND                                                                    | 4.33x10 <sup>-4</sup>                             | ND                                                   |
| <i>attC<sub>Hydrothermarchaeota</sub></i> | 5.21x10 <sup>-2</sup>                                              | ND                                                                    | 6.92x10 <sup>-3</sup>                             | ND                                                   |
| <i>attC<sub>Nanoarchaeota</sub></i>       | 5.84x10 <sup>-2</sup>                                              | ND                                                                    | 1.55x10 <sup>-3</sup>                             | ND                                                   |
| <i>attC<sub>Thermoplasmatota</sub></i>    | 4.08x10 <sup>-2</sup>                                              | ND                                                                    | 2.28x10 <sup>-3</sup>                             | ND                                                   |
| <i>attC<sub>Thermoproteota</sub></i>      | 9.54x10 <sup>-2</sup>                                              | ND                                                                    | 1.80x10 <sup>-3</sup>                             | ND                                                   |

\*induced using L-arabinose; †suppressed using D-glucose; ††ND = Not detected

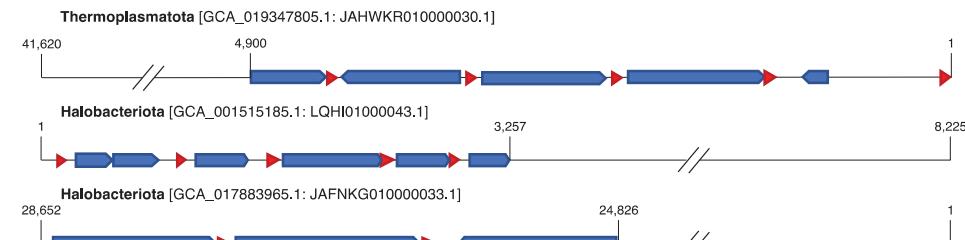
724


725

726


720

121


## Complete integrons



InO



## CALINs



729

729

730

731

732

733


734

735

736

**Extended Data Fig. 1: Example structure of archaeal integrons.** Maps of all ‘complete integrons’, which are those that comprise an integron integrase gene (*intI*) and at least one gene cassette recombination site (*attC*); all ‘In0’ elements, which are those with *intI* but no detectable *attC* site; and three examples of ‘CALINs’ (clusters of *attC*s lacking integron integrases).

737



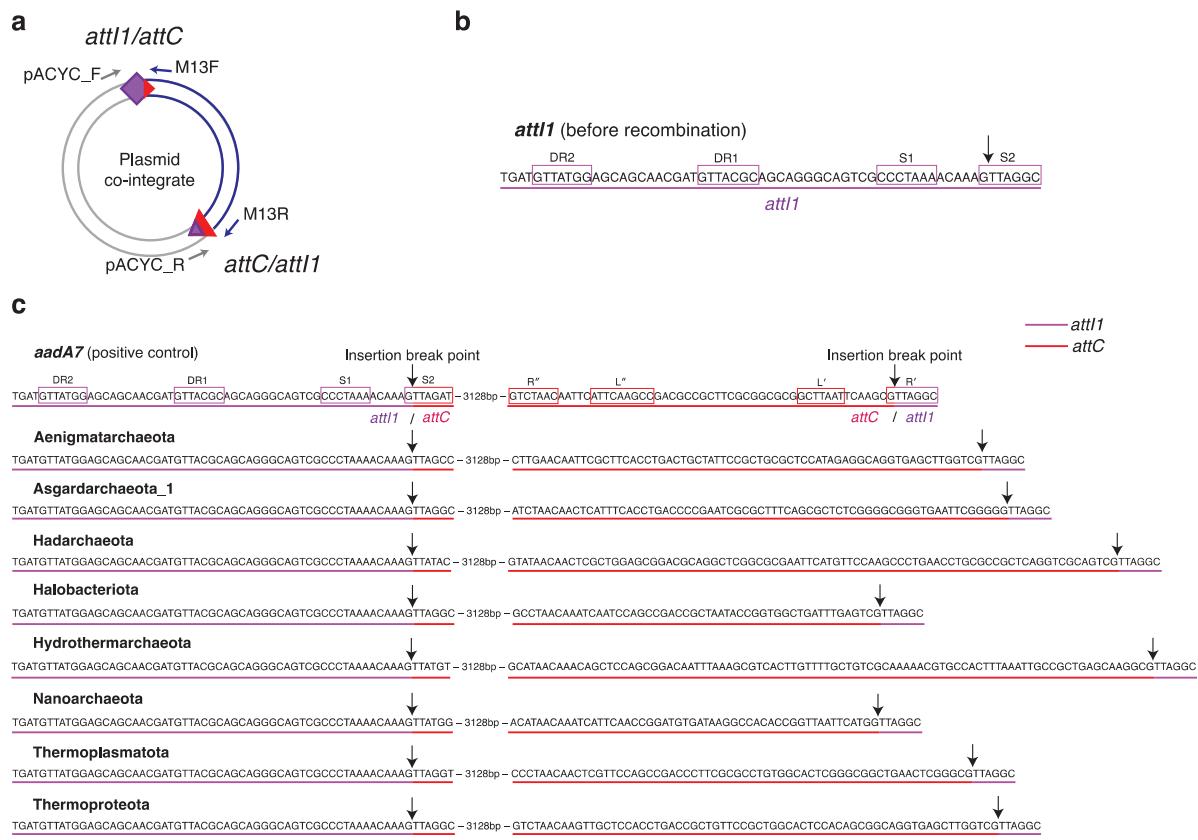
738

**Extended Data Fig. 2: Putative archaeal integron recombination sites, attIs.** **a**, maps showing the location of putative archaeal attIs. **b**, sequence alignment of the two putative archaeal attIs. **c**, multiple sequence alignment of the two archaeal attIs and all annotated bacterial attIs from the INTEGRALL database<sup>80</sup>. Nucleotides are coloured if they match with at least 50% of the sequences. Vertical arrows indicate the canonical insertion point of an inserting gene cassette.

739

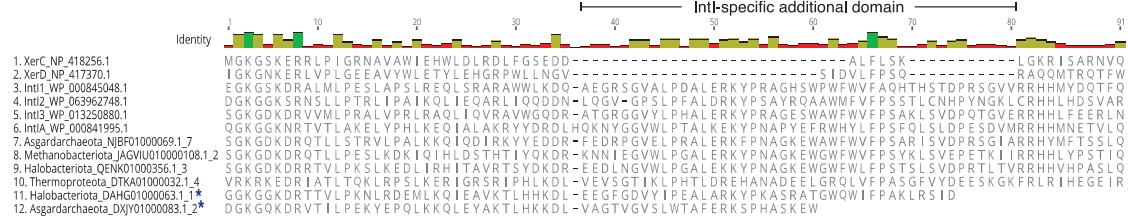
740

741


742

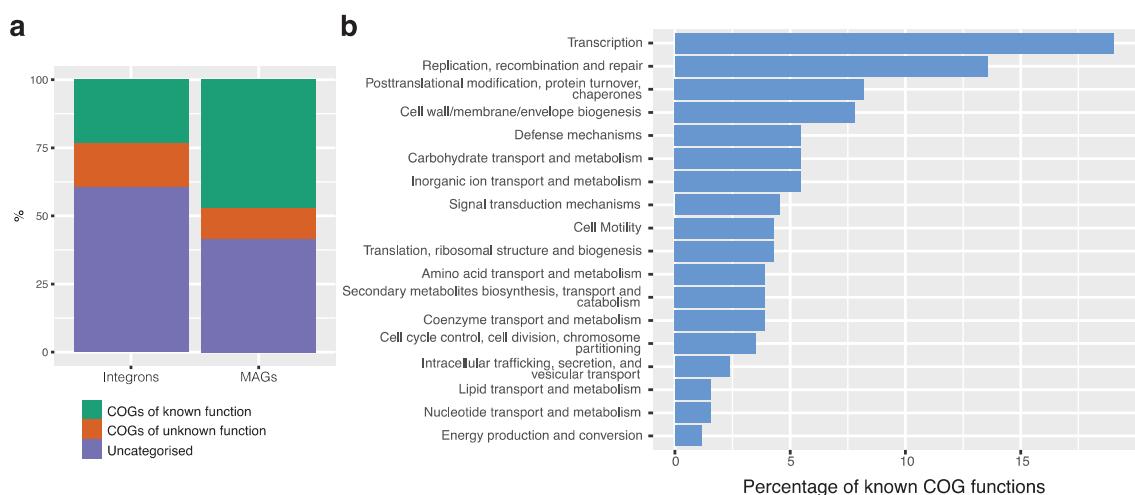
743

744


745

746




747  
748  
749  
750  
751  
752  
753  
754  
755  
756  
757  
758  
759  
760  
761  
762

**Extended Data Fig. 3: Sanger sequencing of *attI1* x *attC* recombination junctions. a,** schematic of PCR primer pairs (grey and blue arrows) that amplify the recombination junctions following cassette insertion (*attI1* x *attC* recombination). **b,** *attI1* sequence before recombination. Boxes denoted with S1 and S2 indicate the core IntI1 binding sites, and the direct repeats signified by DR1 and DR2, are additional strong and weak IntI1 binding sites, respectively. The black arrow indicates the insertion break point where cleavage takes place during recombination. **c,** Sanger sequence data of the recombinant clones following *attI1* recombination with the paradigmatic bacterial *attC* site (*attC<sub>aadA7</sub>*), used as positive control, and eight archaeal *attCs*. Black arrows indicate the insertion break points following recombination. For *attC<sub>aadA7</sub>*, the two sets of paired inverted repeats are boxed (R' to R" and L' to L").



763  
764  
765  
766  
767  
768  
769

**Extended Data Fig. 4: A multiple protein sequence alignment of the additional domain unique to integron integrases.** Sequences (1) and (2) are tyrosine recombinases XerC and XerD that lack the IntI-specific domain. Sequences (3) to (6) are bacterial IntIs, and (7) to (12) are IntIs from Archaea. Blue asterisks indicate IntIs that did not span the full additional domain and were excluded from phylogenetic analysis.



770  
771  
772  
773  
774  
775

**Extended Data Fig. 5: COG functional analysis of archaeal gene cassettes.** **a**, percentage of proteins assigned a COG category. ‘Integrons’ represent all cassette-encode proteins in Archaea, while ‘MAGs’ indicate all proteins from the 75 integron-bearing archaeal genomes. **b**, percentage of COGs with known functions assigned archaeal cassette-encoded proteins.