

1 Short title: Auxin maize root atlas

2 **Temporal and spatial auxin responsive networks in maize primary roots**

3

4 Maxwell R. McReynolds¹, Linkan Dash², Christian Montes¹, Melissa A. Draves², Michelle G.

5 Lang^{2,3}, Justin W. Walley^{*1}, Dior R. Kelley^{2*}

6

7 ¹Department of Plant Pathology and Microbiology, Iowa State University, Ames, Iowa 50011

8 ²Department of Genetics, Development and Cell Biology, Iowa State University, Ames, Iowa

9 50011

10 ³Current address: Corteva, Johnston, Iowa 50131

11 *Corresponding authors: Dior R. Kelley, dkelley@iastate.edu & Justin W. Walley,

12 jwalley@iastate.edu

13

14 ORCID IDs:

15 Maxwell McReynolds: 0000-0001-7984-9397

16 Linkan Dash: 0000-0003-4843-8653

17 Christian Montes: 0000-0003-1249-2308

18 Melissa A. Draves: 0000-0002-1668-2822

19 Michelle G. Lang: 0000-0002-4405-5092

20 Dior R. Kelley: 0000-0001-9186-4186

21 Justin W. Walley: 0000-0001-7553-2237

22

23 **CRediT author statement**

24 **Maxwell McReynolds:** Formal analysis, Investigation, Data Curation, and Writing – Review &

25 **Linkan Dash:** Formal analysis. **Christian Montes:** Software. **Melissa Draves:**

26 **Resources. Michelle Lang:** Resources. **Dior Kelley:** Conceptualization, Writing – Original

27 **Draft, Review & Editing, Visualization, and Supervision. Justin Walley:** Supervision, Writing –

28 **Review & Editing, Funding acquisition, and Project administration.**

29

30 **Keywords:** auxin, roots, maize, networks, gene regulation, co-expression

31

32 **Abstract**

33 Auxin is a key regulator of root morphogenesis across angiosperms. To better understand
34 auxin regulated networks underlying maize root development we have characterized auxin
35 responsive transcription across two time points (30 and 120 minutes) and four regions of the
36 primary root: the meristematic zone, elongation zone, cortex, and stele. Hundreds of auxin-
37 regulated genes involved in diverse biological processes were quantified in these different root
38 regions. In general, most auxin regulated genes are region unique and are predominantly
39 observed in differentiated tissues compared to the root meristem. Auxin gene regulatory
40 networks (GRNs) were reconstructed with these data to identify key transcription factors that
41 may underlie auxin responses in maize roots. Additionally, Auxin Response Factor (ARF)
42 subnetworks were generated to identify target genes which exhibit tissue or temporal specificity
43 in response to auxin. These networks describe novel molecular connections underlying maize
44 root development and provide a foundation for functional genomic studies in a key crop.

45 **Introduction**

46 Auxin is a central regulator of root development, playing critical roles in processes such as
47 meristem maintenance and lateral root formation (reviewed in (Atkinson et al., 2014). Root
48 architecture varies among angiosperms and can be influenced by both nutrient and hormone
49 signaling. While maize roots differ considerably in their anatomy and architecture from
50 *Arabidopsis* roots, there are a couple of maize root developmental mutants that have been linked
51 to auxin either directly or indirectly. For example, *rootless undetectable meristem 1* (*rum1*)
52 encodes an AUXIN/INDOLE ACETIC ACID (Aux/IAA) protein that is required for embryonic
53 and postembryonic root formation (von Behrens et al., 2011). In addition, the *rootless concerning*
54 *crown and seminal roots* (*rtcs*) mutant encodes a LATERAL ORGAN BOUNDARY (LOB)
55 transcription factor which is linked to auxin regulated gene expression (Taramino et al., 2007; Xu
56 et al., 2015). Given that many key auxin signaling components have not been well studied in maize
57 and differential root anatomy may reflect unique regulatory networks, there is a considerable need
58 to increase our knowledge in this area.

59 The current models for auxin perception and signaling encompass decades of studies
60 (Powers & Strader, 2020). Auxin perception occurs via a co-receptor complex comprised of F-box
61 TRANSPORT INHIBITOR RESPONSE1/AUXIN SIGNALING F-BOX (TIR1/AFB) and
62 Aux/IAA proteins (Calderón Villalobos et al., 2012; Dharmasiri et al., 2005; Kepinski & Leyser,
63 2004). Because TIR1/AFB proteins encode E3 ubiquitin ligase enzymes, this interaction leads to
64 ubiquitination and degradation of Aux/IAA proteins (Kelley, 2018). Additionally, Aux/IAA
65 proteins (29 family members in *Arabidopsis* and 31 in maize) are transcriptional repressors that
66 actively repress AUXIN RESPONSE FACTOR (ARF) transcription factors in cooperation with
67 TOPLLESS co-repressor family of proteins (Szemenyei et al., 2008; Gallavotti et al., 2010). Thus,
68 in the absence of Aux/IAA proteins ARF transcription factors are able to transcriptionally regulate
69 gene expression very rapidly. The ARF protein family (23 members in *Arabidopsis* and 31-36
70 members in maize) has been recently divided into three classes based on their structure and ability
71 to either activate or repress gene expression (termed “activators” or “repressors”) (Galli et al.,
72 2018). A study by Galli and colleagues uncovered hundreds of auxin responsive genes in maize
73 seedlings that are regulated by particular ARFs. In addition, a recent quantitative genetics study of
74 two maize inbred lines revealed that auxin signaling is a key aspect of maize primary root growth
75 (Wang et al., 2021). Given that auxin responses are known to be influenced by cellular context

76 (Bargmann et al., 2013; Brunoud et al., 2012; Novák et al., 2012; Truskina et al., 2021), an
77 increased resolution of auxin mediated transcription in maize would be beneficial.

78 Biological networks can describe molecular connections underlying cellular processes and
79 provide insight towards complex phenomena. With respect to auxin signaling, several aspects of
80 auxin action are well-suited to network analyses. For instance, the direct influence of auxin on
81 transcription can be modeled through construction of gene regulatory networks (GRNs). Thus, in
82 this study we performed transcriptome analysis of four regions of the primary root (meristematic
83 zone, elongation zone, cortex, and stele) following 30 and 120 minutes of exogenous indole-3-
84 acetic acid treatment to quantify auxin responsive gene expression with spatial resolution. These
85 data were used to generate novel auxin driven predictive GRNs that underly maize root
86 morphogenesis.

87

88 **Methods**

89

90 **Plant material**

91 Maize seedlings were grown via the rolled towel method as follows. *Zea mays* inbred
92 B73 kernels were surface sterilized in 5% bleach for 15 minutes and rinsed three times with
93 sterile deionized water. For every 10 kernels, three pieces of seed germination paper (Anchor
94 Paper Company, 10x15 L 38# regular weight seed germination paper) were soaked in a solution
95 of freshly prepared Captan fungicide (2.5 g/L). Ten kernels were placed ~ 5 cm from the top of
96 the paper in the middle sheet, covered with the top sheet and rolled into a cylinder lengthwise
97 using the so-called “cigar roll” method. Twelve paper rolls were placed in a 4L Nalgene beaker
98 containing 400 mL of 0.5X Linsmaier and Skoog (LS) pH buffered basal salts (Caisson Labs).
99 The rolled towels were placed in a Percival growth chamber set to 22°C, long day (16 hours
100 light, 8 hours dark) white light at $160 \mu\text{mol}\cdot\text{m}^{-2}\cdot\text{s}^{-1}$ light intensity. After two days the rolls were
101 opened and the seeds were scored for germination. Any ungerminated kernels were removed and
102 this was designated day 1. After two days of growth the liquid media was poured off and
103 replaced with fresh 400 mL of 0.5X LS. Five days after germination (5 DAG) the seedlings were
104 removed from the towels prior to mock or auxin treatments followed by dissection. Seedlings
105 were placed in 0.5X LS supplemented with 10 μM indole-3-acetic acid (IAA) dissolved in 95%
106 ethanol (“auxin” treatment) or an equivalent volume of 95% ethanol (“mock” control) and

107 incubated at room temperature for 30 and 120 minutes. For each biological replicate, 30-80
108 primary roots (approximately 2-4 cm in length) were hand dissected into meristematic zone
109 (“MZ”), elongation zone (“EZ”), cortical parenchyma and epidermis (“C”) and stele (“S”)
110 according to previous methods (Saleem et al., 2010; Marcon et al., 2015; Walley et al., 2016) to
111 yield at least 100 mg of tissue per sample and replicate. Total tissue weights per tissue replicate
112 varied from 100 – 600 mg. In total, three biological replicates were collected for each tissue and
113 time point for the transcriptome analysis. Tissues were immediately flash frozen in liquid
114 nitrogen and stored at -80 until all replicates were harvested.

115

116 **RNA extraction and transcriptome sequencing**

117 Root tissues were ground to fine powder in liquid nitrogen using a pre-chilled mortar and
118 pestle. RNA was extracted using a modified Trizol/RNeasy hybrid protocol (Walley et al., 2010)
119 with Trizol reagent (Invitrogen) and a Zymo Direct-zol RNA miniprep kit (Zymo). RNA
120 concentrations and quality were initially checked using a Nanodrop and Qubit. RNA was then
121 submitted to the Iowa State University (ISU) DNA facility. Submitted RNA samples were
122 quality checked at the ISU DNA facility via Bioanalyzer and then used to generate QuantSeq
123 3'mRNA libraries using a Lexogen 3' mRNA-Seq FWD kit and 48 unique indices (Moll et al.,
124 2014). Libraries were run on an Illumina HiSeq 3000 to generate 100 bp single-end (SE) reads.
125 Raw data files obtained from the ISU DNA facility were stored on the Large Scale Storage (LSS)
126 at ISU.

127

128 **RNA-seq analysis**

129 Raw sequence files were deposited at the NCBI Sequence Read Archive (BioProject
130 accession number PRJNA791716). Files were checked via FASTQC to obtain sequence quality
131 information. The fastq files were then ran through the following bioinformatic mapping pipeline
132 as suggested by Lexogen. First, adapters and low-quality tails were removed in *bbduk* from the
133 BBTools suite (sourceforge.net/projects/bbmap/). Alignment to the B73 v4 genome (Jiao et al.,
134 2017) was performed using STAR (Dobin et al., 2013). Indexing was performed using
135 SAMTools (H. Li et al., 2009). HTSeq (Anders et al., 2015) was used to generate count files
136 which were then analyzed via PoissonSeq (J. Li et al., 2012). Differentially expressed genes were
137 identified using a false discovery rate (FDR; adjusted p-value) of q-value <0.1.

138

139 **Gene regulatory network analysis**

140 Transcription factor (TF)-centered gene regulatory networks (GRNs) were generated
141 using SC-ION version 2.1 (Clark et al., 2021) and annotated maize TFs from Grassius (Yilmaz et
142 al., 2009). We first clustered the transcript data by root region (MZ, EZ, C, or S) using
143 Independent Component Analysis (ICA) (Nascimento et al., 2017) implemented in SC-ION. We
144 then input the TMM-normalized counts matrix from our RNA-seq analysis, coupled with
145 “regulator” (DE TFs only) and “target” (all DE genes) lists. Those input files were then used to
146 analyze each ICA cluster by the SC-ION adapted version of the GENIE3 (Huynh-Thu et al.,
147 2010) network inference algorithm, which output a table with the predicted regulator-target
148 interactions as well as a numeric “weight” value for each pair indicating the confidence of their
149 connection. The SC-ION generated GRNs were imported into Cytoscape (Shannon et al., 2003)
150 for visualization.

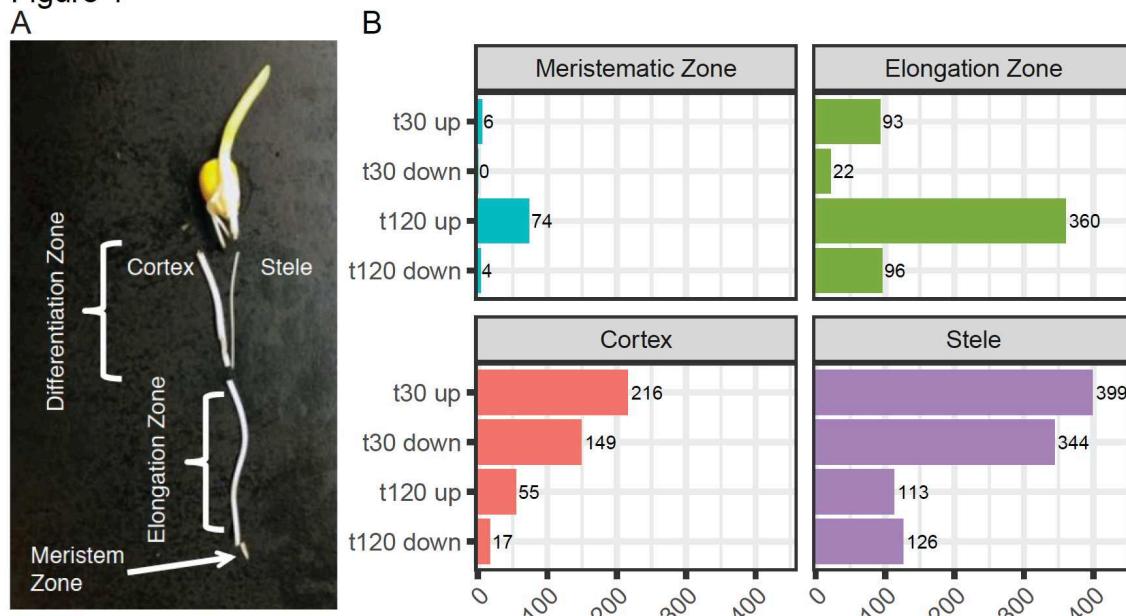
151

152 **Other software**

153 UpSet plots were generated using the UpSetR package in RStudio and ordered by
154 frequency. Additional code was written to extract gene identifiers among shared lists of
155 differentially expressed genes within an UpSet plot; data processing scripts are available from a
156 github repository: <https://github.com/mmcreyno92/AuxinRootAtlas>. Gene ontology (GO)
157 enrichment analysis was performed in PANTHER using the Zea mays B73 reference genome
158 with a Fisher’s Exact test type and a false discovery rate correction. Enriched GO terms were
159 plotted in R using GO R code (Bonnot et al., 2019).

160

161 **Results and Discussion**


162

163 **Auxin responsive transcriptome profiles in primary maize roots across space and time**

164 The overall goal of this study was to characterize the auxin responsive transcriptome
165 within maize primary roots across four key cellular regions: the meristematic zone (MZ),
166 elongation zone (EZ), and the cortex (C) and stele (S) within the differentiation zone (Marcon et
167 al., 2015; Paschold et al., 2014; Walley et al., 2016). Five-day-old B73 maize primary roots were
168 treated with 10 μ M indole-3-acetic acid (IAA), hereafter referred to as “auxin” or an equivalent

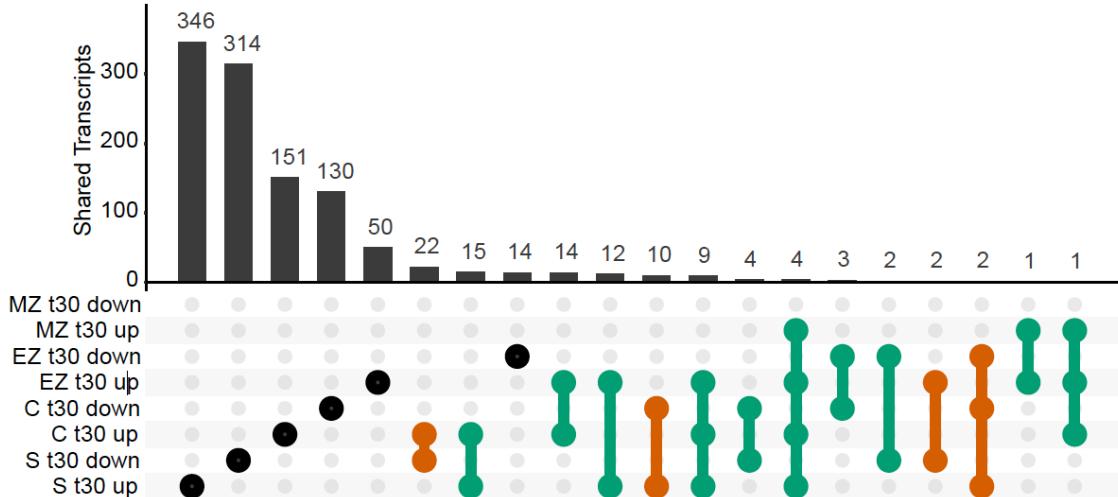
169 volume of 95% ethanol “mock” control for 30 and 120 min and then dissected into four regions
170 (Figure 1A). Transcriptome profiling was performed on these tissues using the 3' QuantSeq
171 method (Moll et al., 2014) with three biological replicates for each tissue/treatment/time. From
172 this analysis we identified 32,832 transcripts in total across all tissues. Within the meristematic
173 zone, relatively few auxin responsive genes were observed (Figure 1B). In contrast, hundreds of
174 genes were induced or repressed following auxin treatment within the elongation zone, cortex,
175 and stele. This result suggests that meristematic zone cells may be less sensitive to exogenous
176 auxin effects and/or have altered cellular states which buffer transcriptional responses. For
177 example, meristematic zone cells could contain a larger proportion of heterochromatin compared
178 to neighboring differentiated cells within the root.

Figure 1

Fig. 1. Identification of auxin responsive genes across four key regions of the primary maize root. (A) Light micrograph of maize primary dissected root regions profiled in this study. Five-day-old primary maize roots were dissected into the four regions indicated. The distal 2 mm of the root tip corresponds to the meristematic zone (MZ). The elongation zone (EZ) is the proximal zone adjacent to the MZ root tip up to where the root hairs emerge. The differentiation zone, starting with the root hair zone, was mechanically separated into cortex (C) and stele (S) by snapping the root from the kernel and pulling the stele out from the cortex. (B) Differentially expressed genes within each root region at 30 min (t30) and 120 min (t120) were identified by comparing auxin treated samples to mock treated samples at $q < 0.1$.

179 Within the cortex and stele more auxin regulated genes are observed at 30 min compared
180 to 120 min. In contrast, within the elongation zone, we observed more up-regulated genes at 120
181 min compared to 30 min. These patterns may reflect the altered chromatin state or transcription

182 factor properties associated with cellular state as cortex and stele cells are further differentiated
183 compared to elongation zone cells.


184

185 Auxin regulated gene expression in maize primary roots is region specific

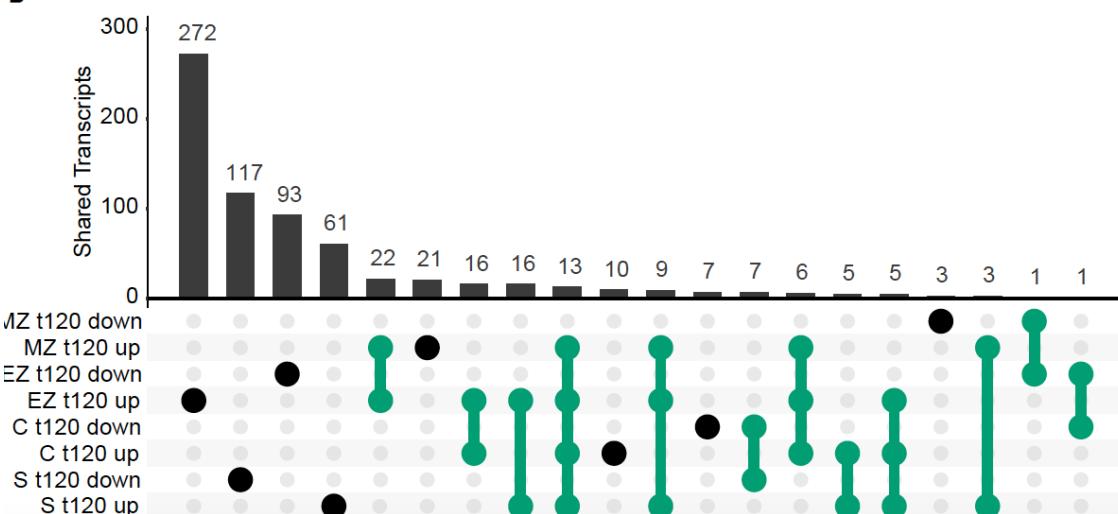

186 Auxin mediated gene expression is context dependent. To examine shared and uniquely
187 regulated transcripts across the four sampled root regions we generated UpSet plots comparing
188 auxin responsive transcripts within each time point (Figure 2) as well as differentially expressed

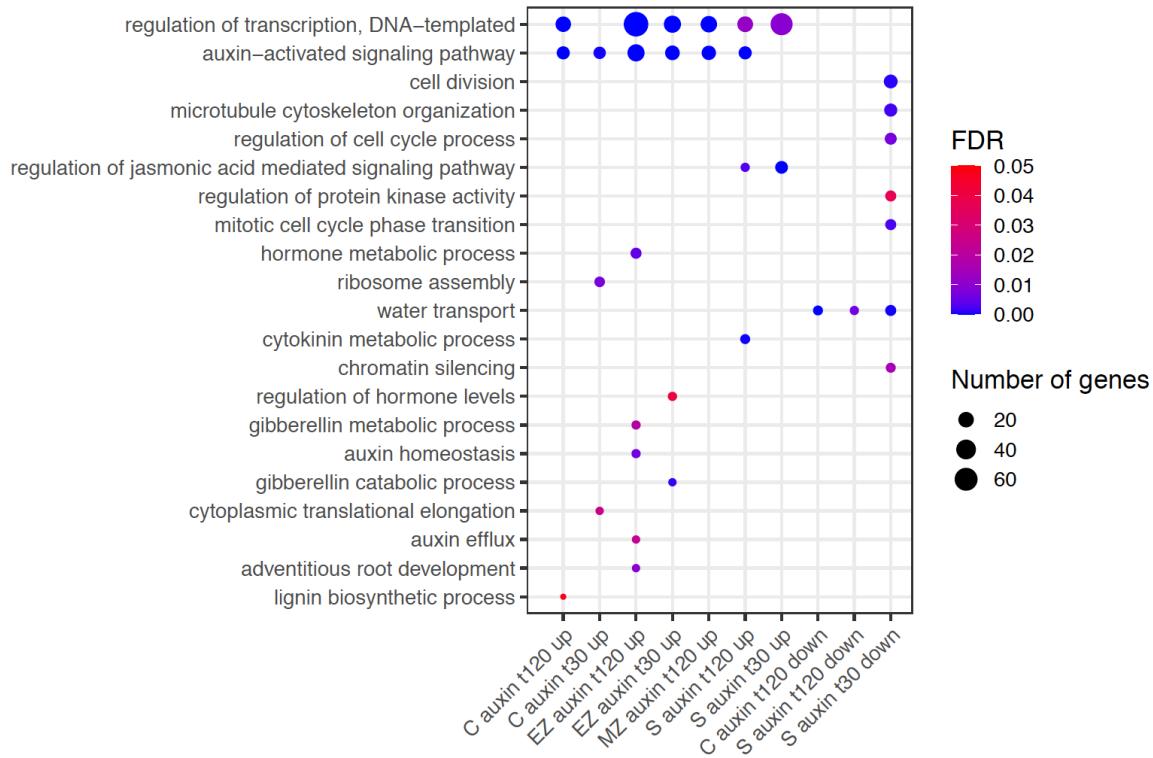
Figure 2

A

B

Fig. 2. A comparison of differentially expressed genes in maize roots across four regions at two different timepoints in response to auxin. (A) UpSet plot of differentially expressed transcripts at 30 min (t30). (B) UpSet plot of auxin-responsive DE transcripts at 120 min (t120). Concordant and discordant comparisons are indicated in green and vermillion, respectively. Abbreviations used: MZ = meristematic zone, EZ = elongation zone, C = cortex, S = stele, auxin = indole-3-acetic acid treatment compared to mock treatment.

189 (DE) between tissues (Supplemental Figure 1). Given that there are numerous possible
190 comparisons with four regions and two categories of DE (up or down) we selected the top 20
191 comparisons for visualization. At both 30 and 120 minutes after auxin treatment, relative to
192 mock treatment, the majority of the observed DE genes are region specific. At 30 minutes after
193 treatment auxin up- and down-regulated genes across regions include both concordant and
194 discordant properties. In contrast, at 120 minutes after treatment the observed DE genes in
195 common between tissues are only concordant. For example, at 30 min there are 22 transcripts
196 which are up-regulated in the cortex but repressed (down) in the stele. This result suggests that
197 early auxin-mediated transcriptional changes may include both repression and activation at the
198 same genes in a tissue specific manner, while later effects (i.e. 2 hours) of auxin may uniformly
199 influence suites of genes irrespective of cellular context.


200 These comparisons provide the opportunity to identify robust auxin responsive transcripts
201 which are up-regulated irrespective of tissue or time point. For example, there are four transcripts
202 which are auxin induced in the meristematic zone, elongation zone, cortex, and stele at 30 min
203 and 13 such transcripts at 120 min. These transcripts include *AUX/IAA-transcription factor 22*
204 (*IAA22/Zm00001d013707*), *Aux/IAA24 (Zm00001d018414)*, *DIOXYGENASE FOR AUXIN*
205 *OXIDATION 1 (DAO1/Zm00001d003311)* and *AUXIN AMIDO SYNTHETASE2*
206 (*AAS2/Zm00001d006753*). Notably, these are all encoded by genes with annotated functions in
207 auxin response and auxin metabolism and thus may reflect pathway feedback. From this analysis
208 a set of auxin responsive marker genes have now been identified which can facilitate future
209 studies on auxin signaling in maize roots.

210

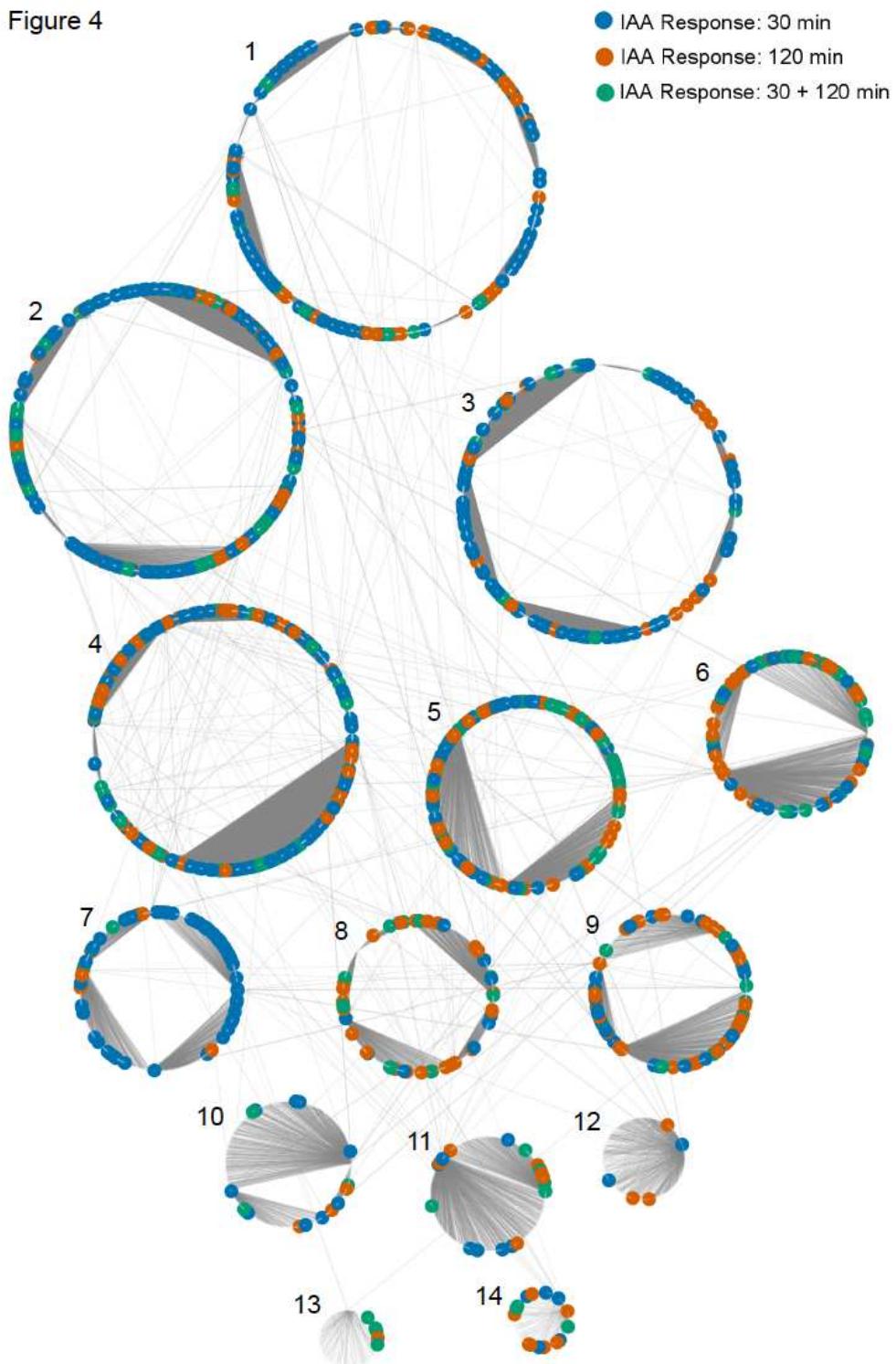
211 **Distinct biological processes are enriched among auxin regulated genes across root regions**

212 To determine if particular biological processes are auxin-regulated in root regions we
213 performed a gene ontology (GO) enrichment analysis. Many of the observed enriched GO terms
214 are congruent with a previous study that examined the transcriptome profile of these root zones
215 in the absence of treatment (Paschold et al., 2014), but we also identified a number of novel GO
216 terms associated with hormone signaling, cell cycle, and gene regulation (Figure 3, Supplemental
217 Figure 2, Supplemental Table 2). In general, auxin induced genes are associated with
218 transcription, auxin-activated signaling pathway, and gibberellin metabolism. In contrast, auxin
219 repressed genes are associated with cell cycle, cell division, and chromatin silencing.

Figure 3

Fig. 3. Auxin responsive genes between root regions are enriched in several gene ontology (GO) terms related to biological processes. Significant GO terms of interest in auxin down-regulated genes (“down”) and auxin up-regulated genes (“up”) are indicated on the y-axis. False discovery rate (FDR) is color-coded from blue (0.00) to red (0.05). Size of the dot indicates the number of enriched genes within each GO term. Abbreviations used: MZ = meristematic zone, EZ = elongation zone, C = cortex, S = stele, t30 = 30 min, t120 = 120 min.

220 In addition, we examined GO term enrichment between root regions to uncover tissue-
221 specific processes that may underlie root structure (Supplemental Figure 2). In general, most GO
222 terms appear to be tissue specific and many of the observed enriched GO terms are congruent
223 with the previous study (Paschold et al., 2014). A couple enriched GO terms standout among the
224 many observed. First, transcripts involved in protein phosphorylation are more abundant in the
225 stele compared to the meristem or the neighboring cortex. Another GO term observed across
226 several tissue comparisons is ‘microtubule-based movement’, which is to be expected for cells
227 undergoing cell elongation and/or differentiation. Secondary cell wall biogenesis is more
228 prevalent in elongation zone expressed genes compared to meristem zone transcripts, which fits
229 with our current understanding of cell wall composition across the primary root. Altogether these
230 results support the notion that root tissues exhibit unique cellular processes that may be linked to
231 function.


232

233 **Identification of spatially distinct auxin gene regulatory networks within primary roots**

234 In order to infer regulatory relationships between auxin responsive root transcription
235 factors (TFs) and their targets we generated a gene regulatory network (GRN). To reconstruct the
236 predictive GRN we implemented our network inference pipeline, SC-ION, which is an extension
237 of RTP-STAR and has been shown previously to successfully identify novel TF roles in response
238 to hormone treatment (Clark et al., 2019; Broeck et al., 2021; Clark et al., 2021). The resulting
239 GRN consisted of 15,856 nodes (genes) with a total of 86,461 directed edges (Figure 4 and
240 Supplemental Table 3). A circular layout visualization of the complete GRN illustrates the
241 presence of several distinct groups (circles) based on their underlying tissue enrichment, either
242 within a singular root region (MZ, EZ, C, or S) or between multiple combinatorial root zones
243 (e.g. MZ+EZ, MZ+EZ+C, etc.) based on the SC-ION generated independent component analysis
244 (ICA) (Nascimento et al., 2017) clustering assignments (Supplemental Table 3).

245

Figure 4

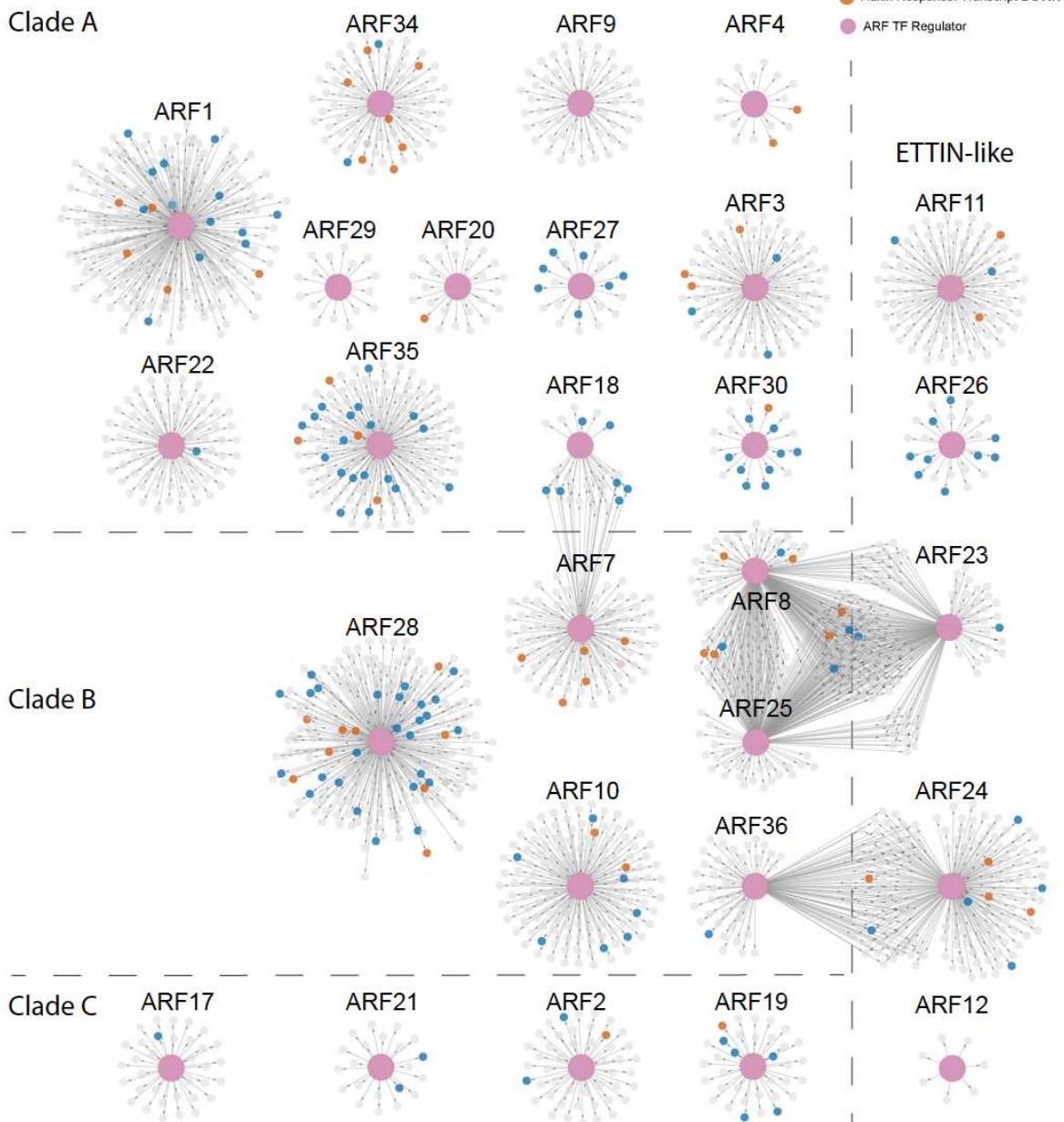


Fig. 4. A spatiotemporal auxin responsive gene regulatory network in maize primary roots. The nodes (genes) are arranged in numbered circles represent groupings of nodes (genes) that clustered together and were enriched within the same tissues. Colored nodes represent genes that are differentially expressed following auxin treatment. The temporal response to auxin is indicated by node color: blue = auxin responsive at 30 min, vermillion = auxin responsive at 120 min, and green = auxin responsive at both time points sampled. Each circular node represents a distinct cluster based on tissue: 1 = C + S, 2 = C, 3 = MZ, 4 = S, 5 = EZ, 6 = EZ + S, 7 = MZ + S, 8 = MZ + EZ, 9 = EZ + C, 10 = MZ + C, 11 = EZ + C + S, 12 = MZ + C + S, 13 = MZ + EZ + S, 14 = MZ + EZ + C.

246 The nodes contained within our GRN fell into 1 of 14 tissue enrichment groups with
247 content sizes ranging from 2,862 nodes enriched in the C+S (group 1) down to 98 nodes in the
248 MZ+EZ+C (group 14). The tissue enrichment groupings also featured varying numbers of auxin
249 responsive genes and a high degree interconnectedness as evidenced by the number of edges
250 linking nodes within a grouping. Using predicted regulator data from the GRN, we investigated
251 the regulatory relationships of genes known to be involved in auxin signaling and maize root
252 architecture (Figure 4 and Supplemental Table 3). One such transcription factor of interest,
253 RTCS1 (Zm00001d027679), was predicted in the GRN to regulate 57 target genes including the
254 auxin responsive gene AUX/IAA32 (Zm00001d018973). Additional root development
255 associated transcription factors represented in the data include other LBD-transcription factor
256 family members along with multiple members of the maize SHI/STY (SRS) family (Gomariz-
257 Fernández et al., 2017), including a known transcriptional activator *lateral root primordia 1*
258 (Zm00001d011843) that is required for maize root morphogenesis (Zhang et al., 2015).

259 ARF transcription factors represent a critical regulatory component of the auxin response,
260 thus we set out to inspect their target gene relationships within the GRN at a deeper level. First,
261 we identified all of the annotated ARFs present in the GRN and observed that 27 of the 33
262 expressed maize ARF family members were present in the GRN. For these 27 ARFs and their
263 first node neighbor targets, we generated subnetworks that were visualized in preuse force
264 directed layout in Cytoscape (Figure 5 and Supplemental Table 4). Notably, representative ARFs
265 from each of the four distinct evolutionary ARF clades (Galli et al., 2018) were found to be
266 present in the GRN, including 12 clade A ARFs, 6 clade B ARFs, 4 clade C ARFs, and 5
267 ETTIN-like ARFs (visualized as pink nodes in Figure 5). In general, most ARFs had target nodes
268 that were DE in response to auxin (coded blue and orange in Figure 5) and exhibit unique targets
269 compared to one another. In three instances there are several ARFs that have shared target genes
270 with one another, including ARF18 and ARF7; ARF8, ARF23 and ARF25; and ARF24 and
271 ARF36. Notably, the ARFs with shared targets span phylogenetic clades, suggesting that
272 properties of ARFs cannot be predicted based on sequence evolution alone. In addition, we
273 examined the ARF target genes and found that they include auxin-related genes belonging to the
274 *ARF* (5), *Aux/IAA* (8), *SAUR* (3), and *GRETCHEN HAGEN* (*GH3*) (1) families. Such targets are

Figure 5

Fig. 5. Auxin Response Factor (ARF) transcription factor gene regulatory subnetworks associated with primary maize roots. The networks are arranged by clade classification: Clade A, Clade B, Clade C, or ETTIN-Like. The central enlarged pink nodes within each network represent the ARF of interest labelled above the network and the connected small nodes represent that ARFs target genes. Target genes are colored according to the directionality of their transcript expression in response to auxin: grey = no significant transcript change, vermilion = decreased transcript level, blue = increased transcript level.

275 well-known types of auxin responsive genes (Bargmann et al., 2013; Galli et al., 2018; Lewis et
 276 al., 2013; Nemhauser et al., 2006) and indicate that ARF proteins are engaged in feedback loops.
 277

278 In this work we utilized a combinatorial approach of transcriptome analysis and gene
279 network inference to identify temporally auxin responsive genes across root tissue types. By
280 elucidating the complex inner workings of auxin-mediated gene expression during primary
281 maize root development we can begin to answer questions surrounding root architecture in this
282 key crop. A molecular understanding the dynamics of root growth can aid in informing strategies
283 to create next-generation crops with more efficient water and nutrient uptake capabilities.

284

285 **Acknowledgements**

286 We wish to thank Diana Burkart for her assistance with Lexogen QuantSeq data analysis
287 and Natalie Clark for her assistance with SCION. This work was supported by USDA NIFA
288 AFRI Predoctoral Fellowship to MRM (Award No. 2021-67034-35188), USDA NIFA AFRI
289 grant to DRK and JWW (Award No. 2020-67013-30914), start-up funds to DRK from Iowa
290 State University (ISU), funding from the ISU Plant Science Institute to JWW, and Hatch Act and
291 State of Iowa funds to DRK (Project No. IOW03649) and JWW (Project No. IOW04108).

292

293 **References**

294 Anders, S., Pyl, P. T., & Huber, W. (2015). HTSeq—A Python framework to work with high-
295 throughput sequencing data. *Bioinformatics*, 31(2), 166–169.
296 <https://doi.org/10.1093/bioinformatics/btu638>

297 Atkinson, J. A., Rasmussen, A., Traini, R., Voss, U., Sturrock, C., Mooney, S. J., Wells, D. M.,
298 & Bennett, M. J. (2014). Branching Out in Roots: Uncovering Form, Function, and
299 Regulation. *Plant Physiology*, 166(2), 538–550. <https://doi.org/10.1104/pp.114.245423>

300 Bargmann, B. O. R., Vanneste, S., Krouk, G., Nawy, T., Efroni, I., Shani, E., Choe, G., Friml, J.,
301 Bergmann, D. C., Estelle, M., & Birnbaum, K. D. (2013). A map of cell type-specific
302 auxin responses. *Molecular Systems Biology*, 9(1), 688.
303 <https://doi.org/10.1038/msb.2013.40>

304 Bonnot, T., Gillard, M., & Nagel, D. (2019). A Simple Protocol for Informative Visualization of
305 Enriched Gene Ontology Terms. *BIO-PROTOCOL*, 9(22).

306 <https://doi.org/10.21769/BioProtoc.3429>

307 Broeck, L. V. den, Spurney, R. J., Fisher, A. P., Schwartz, M., Clark, N. M., Nguyen, T. T.,
308 Madison, I., Gobble, M., Long, T., & Sozzani, R. (2021). A hybrid model connecting
309 regulatory interactions with stem cell divisions in the root. *Quantitative Plant Biology*, 2.
310 <https://doi.org/10.1017/qpb.2021.1>

311 Brunoud, G., Wells, D. M., Oliva, M., Larrieu, A., Mirabet, V., Burrow, A. H., Beeckman, T.,
312 Kepinski, S., Traas, J., Bennett, M. J., & Vernoux, T. (2012). A novel sensor to map
313 auxin response and distribution at high spatio-temporal resolution. *Nature*, 482(7383),
314 103–106. <https://doi.org/10.1038/nature10791>

315 Calderón Villalobos, L. I. A., Lee, S., De Oliveira, C., Ivetac, A., Brandt, W., Armitage, L.,
316 Sheard, L. B., Tan, X., Parry, G., Mao, H., Zheng, N., Napier, R., Kepinski, S., & Estelle,
317 M. (2012). A combinatorial TIR1/AFB–Aux/IAA co-receptor system for differential
318 sensing of auxin. *Nature Chemical Biology*, 8(5), 477–485.
319 <https://doi.org/10.1038/nchembio.926>

320 Clark, N. M., Buckner, E., Fisher, A. P., Nelson, E. C., Nguyen, T. T., Simmons, A. R., de Luis
321 Balaguer, M. A., Butler-Smith, T., Sheldon, P. J., Bergmann, D. C., Williams, C. M., &
322 Sozzani, R. (2019). Stem-cell-ubiquitous genes spatiotemporally coordinate division
323 through regulation of stem-cell-specific gene networks. *Nature Communications*, 10(1),
324 5574. <https://doi.org/10.1038/s41467-019-13132-2>

325 Clark, N. M., Nolan, T. M., Wang, P., Song, G., Montes, C., Valentine, C. T., Guo, H., Sozzani,
326 R., Yin, Y., & Walley, J. W. (2021). Integrated omics networks reveal the temporal

327 signaling events of brassinosteroid response in *Arabidopsis*. *Nature Communications*,
328 12(1), 5858. <https://doi.org/10.1038/s41467-021-26165-3>

329 Dharmasiri, N., Dharmasiri, S., & Estelle, M. (2005). The F-box protein TIR1 is an auxin
330 receptor. *Nature*, 435(7041), 441–445. <https://doi.org/10.1038/nature03543>

331 Dobin, A., Davis, C. A., Schlesinger, F., Drenkow, J., Zaleski, C., Jha, S., Batut, P., Chaisson,
332 M., & Gingeras, T. R. (2013). STAR: Ultrafast universal RNA-seq aligner.
333 *Bioinformatics*, 29(1), 15–21. <https://doi.org/10.1093/bioinformatics/bts635>

334 Gallavotti, A., Long, J. A., Stanfield, S., Yang, X., Jackson, D., Vollbrecht, E., & Schmidt, R. J.
335 (2010). The control of axillary meristem fate in the maize ramosa pathway. *Development*
336 (*Cambridge, England*), 137(17), 2849–2856. <https://doi.org/10.1242/dev.051748>

337 Galli, M., Khakhar, A., Lu, Z., Chen, Z., Sen, S., Joshi, T., Nemhauser, J. L., Schmitz, R. J., &
338 Gallavotti, A. (2018). The DNA binding landscape of the maize AUXIN RESPONSE
339 FACTOR family. *Nature Communications*, 9(1), 4526. <https://doi.org/10.1038/s41467-018-06977-6>

340 Gomariz-Fernández, A., Sánchez-Gerschon, V., Fourquin, C., & Ferrández, C. (2017). The Role
341 of SHI/STY/SRS Genes in Organ Growth and Carpel Development Is Conserved in the
342 Distant Eudicot Species *Arabidopsis thaliana* and *Nicotiana benthamiana*. *Frontiers in*
343 *Plant Science*, 8, 814. <https://doi.org/10.3389/fpls.2017.00814>

344 Huynh-Thu, V. A., Irrthum, A., Wehenkel, L., & Geurts, P. (2010). Inferring Regulatory
345 Networks from Expression Data Using Tree-Based Methods. *PLoS ONE*, 5(9), e12776.
346 <https://doi.org/10.1371/journal.pone.0012776>

347 Jiao, Y., Peluso, P., Shi, J., Liang, T., Stitzer, M. C., Wang, B., Campbell, M. S., Stein, J. C.,
348 Wei, X., Chin, C.-S., Guill, K., Regulski, M., Kumari, S., Olson, A., Gent, J., Schneider,

349

350 K. L., Wolfgruber, T. K., May, M. R., Springer, N. M., ... Ware, D. (2017). Improved
351 maize reference genome with single-molecule technologies. *Nature*, 546(7659), 524–527.
352 <https://doi.org/10.1038/nature22971>

353 Kelley, D. R. (2018). E3 Ubiquitin Ligases: Key Regulators of Hormone Signaling in Plants.
354 *Molecular and Cellular Proteomics*, 17(6), 1047–1054.
355 <https://doi.org/10.1074/mcp.MR117.000476>

356 Kepinski, S., & Leyser, O. (2004). Auxin-induced SCFTIR1-Aux/IAA interaction involves
357 stable modification of the SCFTIR1 complex. *Proceedings of the National Academy of
358 Sciences*, 101(33), 12381–12386. <https://doi.org/10.1073/pnas.0402868101>

359 Lewis, D. R., Olex, A. L., Lundy, S. R., Turkett, W. H., Fetrow, J. S., & Muday, G. K. (2013). A
360 Kinetic Analysis of the Auxin Transcriptome Reveals Cell Wall Remodeling Proteins
361 That Modulate Lateral Root Development in *Arabidopsis*. *The Plant Cell*, 25(9), 3329–
362 3346. <https://doi.org/10.1105/tpc.113.114868>

363 Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., Marth, G., Abecasis, G.,
364 Durbin, R., & 1000 Genome Project Data Processing Subgroup. (2009). The Sequence
365 Alignment/Map format and SAMtools. *Bioinformatics*, 25(16), 2078–2079.
366 <https://doi.org/10.1093/bioinformatics/btp352>

367 Li, J., Witten, D. M., Johnstone, I. M., & Tibshirani, R. (2012). Normalization, testing, and false
368 discovery rate estimation for RNA-sequencing data. *Biostatistics*, 13(3), 523–538.
369 <https://doi.org/10.1093/biostatistics/kxr031>

370 Marcon, C., Malik, W. A., Walley, J. W., Shen, Z., Paschold, A., Smith, L. G., Piepho, H.-P.,
371 Briggs, S. P., & Hochholdinger, F. (2015). A High-Resolution Tissue-Specific Proteome

372 and Phosphoproteome Atlas of Maize Primary Roots Reveals Functional Gradients along
373 the Root Axes. *Plant Physiology*, 168(1), 233–246. <https://doi.org/10.1104/pp.15.00138>

374 Moll, P., Ante, M., Seitz, A., & Reda, T. (2014). QuantSeq 3' mRNA sequencing for RNA
375 quantification. *Nat Meth*, 11(12). <http://dx.doi.org/10.1038/nmeth.f.376>

376 Nascimento, M., Silva, F. F. e, Sáfadi, T., Nascimento, A. C. C., Ferreira, T. E. M., Barroso, L.
377 M. A., Ferreira Azevedo, C., Guimarães, S. E. F., & Serão, N. V. L. (2017). Independent
378 Component Analysis (ICA) based-clustering of temporal RNA-seq data. *PLOS ONE*,
379 12(7), e0181195. <https://doi.org/10.1371/journal.pone.0181195>

380 Nemhauser, J. L., Hong, F., & Chory, J. (2006). Different Plant Hormones Regulate Similar
381 Processes through Largely Nonoverlapping Transcriptional Responses. *Cell*, 126(3),
382 467–475. <https://doi.org/10.1016/j.cell.2006.05.050>

383 Novák, O., Hényková, E., Sairanen, I., Kowalczyk, M., Pospíšil, T., & Ljung, K. (2012). Tissue-
384 specific profiling of the *Arabidopsis thaliana* auxin metabolome: *Auxin metabolite*
385 *profiling in Arabidopsis*. *The Plant Journal*, 72(3), 523–536.
386 <https://doi.org/10.1111/j.1365-313X.2012.05085.x>

387 Paschold, A., Larson, N. B., Marcon, C., Schnable, J. C., Yeh, C.-T., Lanz, C., Nettleton, D.,
388 Piepho, H.-P., Schnable, P. S., & Hochholdinger, F. (2014). Nonsyntenic Genes Drive
389 Highly Dynamic Complementation of Gene Expression in Maize Hybrids. *The Plant
390 Cell*, 26(10), 3939–3948. <https://doi.org/10.1105/tpc.114.130948>

391 Powers, S. K., & Strader, L. C. (2020). Regulation of auxin transcriptional responses.
392 *Developmental Dynamics*, 249(4), 483–495. <https://doi.org/10.1002/dvdy.139>

393 Saleem, M., Lamkemeyer, T., Schutzenmeister, A., Madlung, J., Sakai, H., Piepho, H.-P.,
394 Nordheim, A., & Hochholdinger, F. (2010). Specification of Cortical Parenchyma and

395 Stele of Maize Primary Roots by Asymmetric Levels of Auxin, Cytokinin, and
396 Cytokinin-Regulated Proteins. *Plant Physiology*, 152(1), 4–18.
397 <https://doi.org/10.1104/pp.109.150425>

398 Shannon, P., Markiel, A., Ozier, O., Baliga, N. S., Wang, J. T., Ramage, D., Amin, N.,
399 Schwikowski, B., & Ideker, T. (2003). Cytoscape: A Software Environment for
400 Integrated Models of Biomolecular Interaction Networks. *Genome Research*, 13(11),
401 2498–2504. <https://doi.org/10.1101/gr.123930>

402 Szemenyei, H., Hannon, M., & Long, J. A. (2008). TOPLESS Mediates Auxin-Dependent
403 Transcriptional Repression During Arabidopsis Embryogenesis. *Science*, 319(5868),
404 1384–1386. <https://doi.org/10.1126/science.1151461>

405 Taramino, G., Sauer, M., Stauffer Jr, J. L., Multani, D., Niu, X., Sakai, H., & Hochholdinger, F.
406 (2007). The maize (*Zea mays* L.) RTCS gene encodes a LOB domain protein that is a key
407 regulator of embryonic seminal and post-embryonic shoot-borne root initiation. *The Plant
408 Journal*, 50(4), 649–659. <https://doi.org/10.1111/j.1365-313X.2007.03075.x>

409 Truskina, J., Han, J., Chrysanthou, E., Galvan-Ampudia, C. S., Lainé, S., Brunoud, G., Macé, J.,
410 Bellows, S., Legrand, J., Bågman, A.-M., Smit, M. E., Smetana, O., Stigliani, A., Porco,
411 S., Bennett, M. J., Mähönen, A. P., Parcy, F., Farcot, E., Roudier, F., ... Vernoux, T.
412 (2021). A network of transcriptional repressors modulates auxin responses. *Nature*,
413 589(7840), 116–119. <https://doi.org/10.1038/s41586-020-2940-2>

414 von Behrens, I., Komatsu, M., Zhang, Y., Berendzen, K. W., Niu, X., Sakai, H., Taramino, G., &
415 Hochholdinger, F. (2011). Rootless with undetectable meristem 1 encodes a monocot-
416 specific AUX/IAA protein that controls embryonic seminal and post-embryonic lateral

417 root initiation in maize: AUX/IAA regulation of maize root development. *The Plant*
418 *Journal*, 66(2), 341–353. <https://doi.org/10.1111/j.1365-313X.2011.04495.x>

419 Walley, J. W., Kelley, D. R., Nestorova, G., Hirschberg, D. L., & Dehesh, K. (2010).
420 Arabidopsis Deadenylases AtCAF1a and AtCAF1b Play Overlapping and Distinct Roles
421 in Mediating Environmental Stress Responses. *Plant Physiology*, 152(2), 866–875.
422 <https://doi.org/10.1104/pp.109.149005>

423 Walley, J. W., Sartor, R. C., Shen, Z., Schmitz, R. J., Wu, K. J., Urich, M. A., Nery, J. R., Smith,
424 L. G., Schnable, J. C., Ecker, J. R., Briggs, S. P., Krouk, G., Lingeman, J., Colon, A. M.,
425 Coruzzi, G., Shasha, D., Gardner, T. S., Faith, J. J., Bar-Joseph, Z., ... Stitt, M. (2016).
426 Integration of omic networks in a developmental atlas of maize. *Science (New York,*
427 *N.Y.*), 353(6301), 814–818. <https://doi.org/10.1126/science.aag1125>

428 Wang, Y., Sun, H., Wang, H., Yang, X., Xu, Y., Yang, Z., Xu, C., & Li, P. (2021). Integrating
429 transcriptome, co-expression and QTL-seq analysis reveals that primary root growth in
430 maize is regulated via flavonoid biosynthesis and auxin signal transduction. *Journal of*
431 *Experimental Botany*, 72(13), 4773–4795. <https://doi.org/10.1093/jxb/erab177>

432 Xu, C., Tai, H., Saleem, M., Ludwig, Y., Majer, C., Berendzen, K. W., Nagel, K. A.,
433 Wojciechowski, T., Meeley, R. B., Taramino, G., & Hochholdinger, F. (2015).
434 Cooperative action of the paralogous maize lateral organ boundaries (LOB) domain
435 proteins RTCS and RTCL in shoot-borne root formation. *New Phytologist*, 207(4), 1123–
436 1133. <https://doi.org/10.1111/nph.13420>

437 Yilmaz, A., Nishiyama, M. Y., Fuentes, B. G., Souza, G. M., Janies, D., Gray, J., & Grotewold,
438 E. (2009). GRASSIUS: A Platform for Comparative Regulatory Genomics across the
439 Grasses. *Plant Physiology*, 149(1), 171–180. <https://doi.org/10.1104/pp.108.128579>

440 Zhang, Y., Behrens, I. von, Zimmermann, R., Ludwig, Y., Hey, S., & Hochholdinger, F. (2015).
441 LATERAL ROOT PRIMORDIA 1 of maize acts as a transcriptional activator in auxin
442 signalling downstream of the Aux/IAA gene rootless with undetectable meristem 1.
443 *Journal of Experimental Botany*, 66(13), 3855–3863. <https://doi.org/10.1093/jxb/erv187>

444 **Figure Legends**

445

446 **Figure 1.** Identification of auxin responsive genes across four key regions of the primary maize
447 root. (A) Light micrograph of maize primary dissected root regions profiled in this study. Five-
448 day-old primary maize roots were dissected into the four regions indicated. The distal 2 mm of
449 the root tip corresponds to the meristematic zone (MZ). The elongation zone (EZ) is the proximal
450 zone adjacent to the MZ root tip up to where the root hairs emerge. The differentiation zone,
451 starting with the root hair zone, was mechanically separated into cortex (C) and stele (S) by
452 snapping the root from the kernel and pulling the stele out from the cortex. (B) Differentially
453 expressed genes within each root region at 30 min (t30) and 120 min (t120) were identified by
454 comparing auxin treated samples to mock treated samples at $q < 0.1$.

455

456 **Figure 2.** A comparison of differentially expressed genes in maize roots across four regions at
457 two different timepoints in response to auxin. (A) UpSet plot of differentially expressed
458 transcripts at 30 min (t30). (B) UpSet plot of auxin-responsive DE transcripts at 120 min (t120).
459 Concordant and discordant comparisons are indicated in green and vermillion, respectively.
460 Abbreviations used: MZ = meristematic zone, EZ = elongation zone, C = cortex, S = stele, auxin
461 = indole-3-acetic acid treatment compared to mock treatment.

462

463 **Figure 3.** Auxin responsive genes between root regions are enriched in several gene ontology
464 (GO) terms related to biological processes. Significant GO terms of interest in auxin down-
465 regulated genes (“down”) and auxin up-regulated genes (“up”) are indicated on the y-axis. False
466 discovery rate (FDR) is color-coded from blue (0.00) to red (0.05). Size of the dot indicates the
467 number of enriched genes within each GO term. Abbreviations used: MZ = meristematic zone,
468 EZ = elongation zone, C = cortex, S = stele, t30 = 30 min, t120 = 120 min.

470 **Figure 4.** A spatiotemporal auxin responsive gene regulatory network in maize primary roots.
471 The nodes (genes) are arranged in numbered circles represent groupings of nodes (genes) that
472 clustered together and were enriched within the same tissues. Colored nodes represent genes that
473 are differentially expressed following auxin treatment. The temporal response to auxin is
474 indicated by node color: blue = auxin responsive at 30 min, vermillion = auxin responsive at 120
475 min, and green = auxin responsive at both time points sampled. Each circular node represents a
476 distinct cluster based on tissue: 1 = C + S, 2 = C, 3 = MZ, 4 = S, 5 = EZ, 6 = EZ + S, 7 = MZ +
477 S, 8 = MZ + EZ, 9 = EZ + C, 10 = MZ + C, 11 = EZ + C + S, 12 = MZ + C + S, 13 = MZ + EZ +
478 S, 14 = MZ + EZ + C.

479

480 **Figure 5.** Auxin Response Factor (ARF) transcription factor gene regulatory subnetworks
481 associated with primary maize roots. The networks are arranged by clade classification: Clade A,
482 Clade B, Clade C, or ETTIN-Like. The central enlarged pink nodes within each network
483 represent the ARF of interest labelled above the network and the connected small nodes
484 represent that ARFs target genes. Target genes are colored according to the directionality of
485 their transcript expression in response to auxin: grey = no significant transcript change,
486 vermillion = decreased transcript level, blue = increased transcript level.

487

488 **Supplementary material**

489

490 **Supplemental Figure 1.** UpSet plot comparing differentially expressed genes across maize root
491 regions in “mock” treated samples. Abbreviations used: C = cortex, S = stele, EZ = elongation
492 zone, MZ = meristem zone, up = up-regulated genes, down = down-regulated genes. Concordant
493 gene expression differences are indicated in bluish green while discordant gene expression
494 differences are in vermillion.

495

496 **Supplemental Figure 2.** Gene ontology (GO) terms enriched in differentially expressed genes
497 between root regions profiled. Comparisons are indicated such that control condition is first and
498 the control is second. For example, “S/C up” means that transcripts up in the stele (S) relative to
499 the cortex (C) are enriched for the indicated GO terms. Abbreviations used: FDR = false
500 discovery rate, C = cortex, S = stele, EZ = elongation zone, MZ = meristem zone, up = up-

501 regulated genes in both tissues, down = down-regulated genes in both tissues. FDR values are
502 colored according to the heatmap shown, going from blue to red.

503

504 **Supplemental Table 1.** Differential expression analysis data from QuantSeq 3' mRNA-Seq.
505 Workbook contains TMM-normalized expression values for all samples analysed with each
506 additional sheet containing statistical analysis values for each pairwise comparison generated by
507 PoissonSeq.

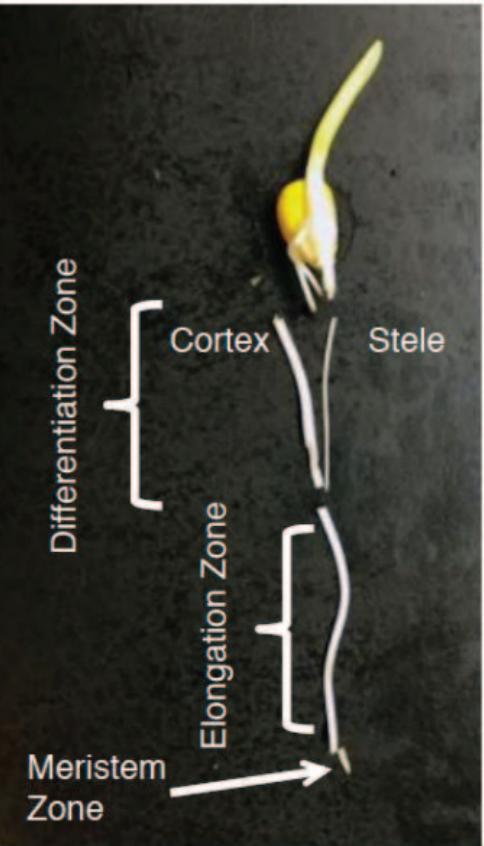
508

509 **Supplemental Table 2.** Gene Ontology (GO) enrichment analysis data of comparisons within
510 tissue mock +IAA treated samples as well as between tissue samples.

511

512 **Supplemental Table 3.** Full gene regulatory network construction data. Independent Component
513 Analysis (ICA) clustering assignments, SC-ION adapted GENIE3 output table, assigned tissue
514 enrichment by cluster, and Cytoscape node table export data.

515


516 **Supplemental Table 4.** Auxin Response Factor (ARF) subnetwork data. SC-ION adapted
517 GENIE3 output table and Cytoscape node table export data.

518

519

Figure 1

A

B

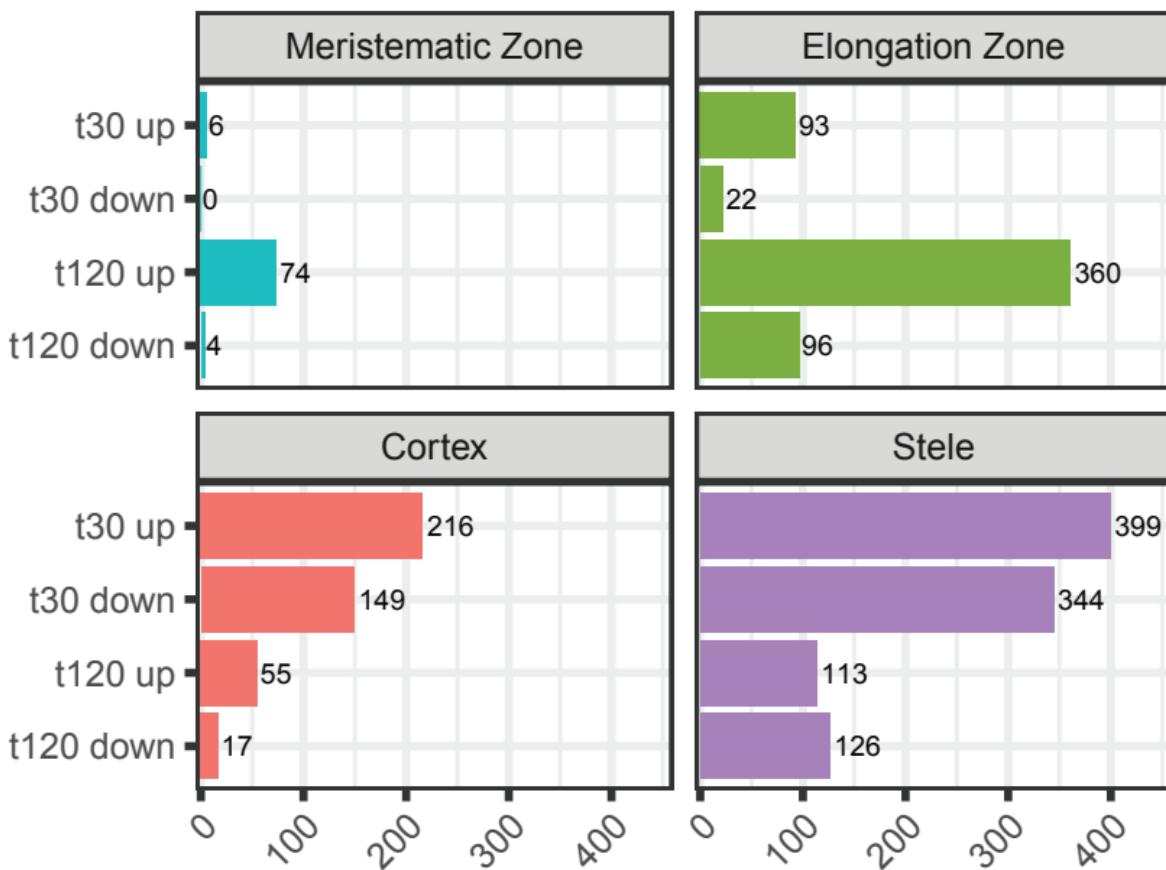


Figure 2

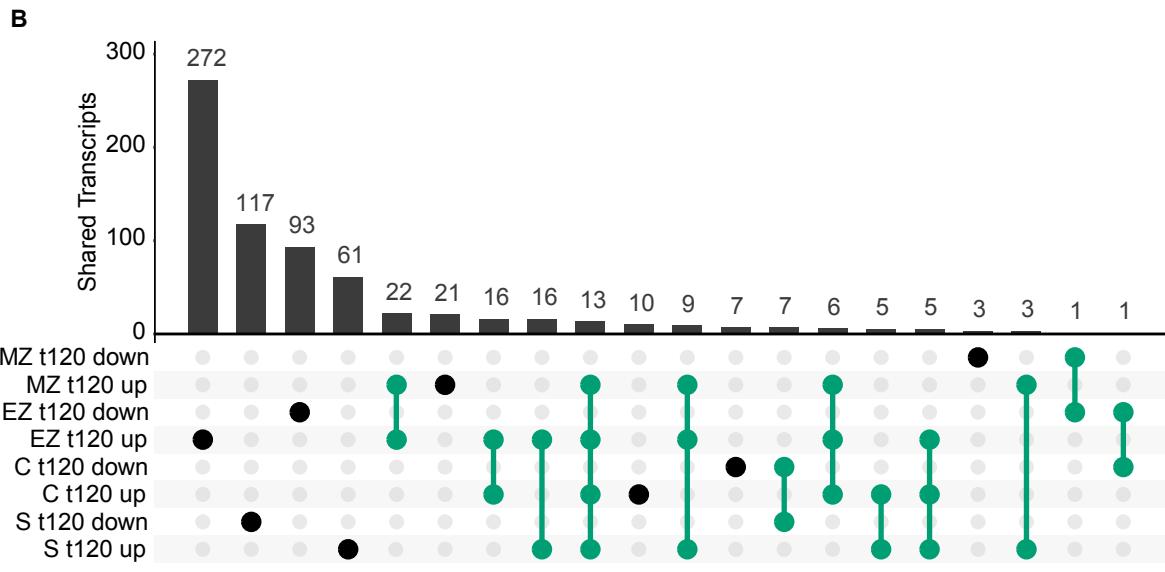
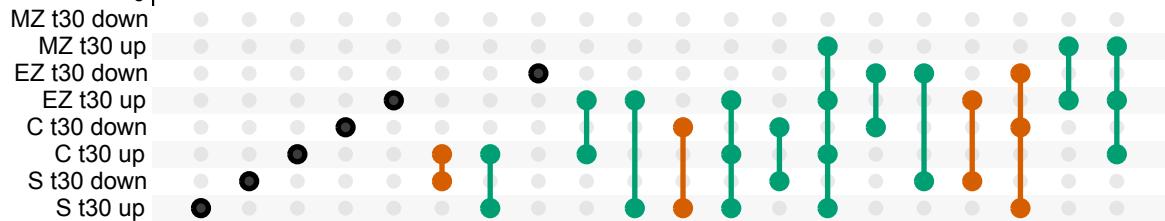
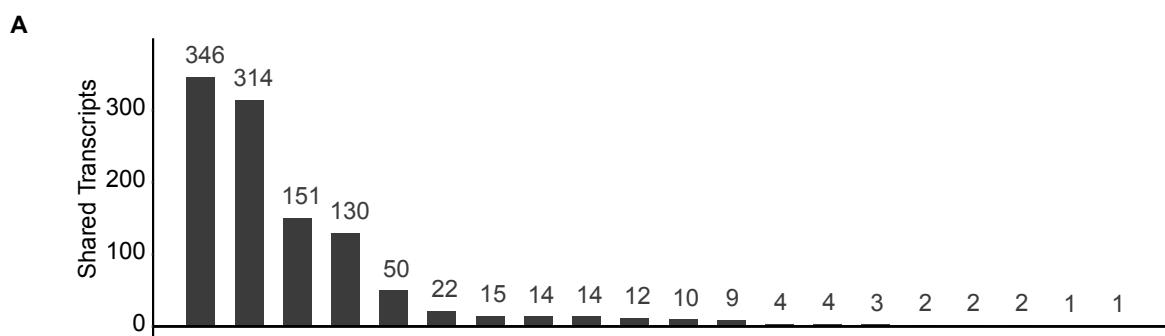




Figure 3

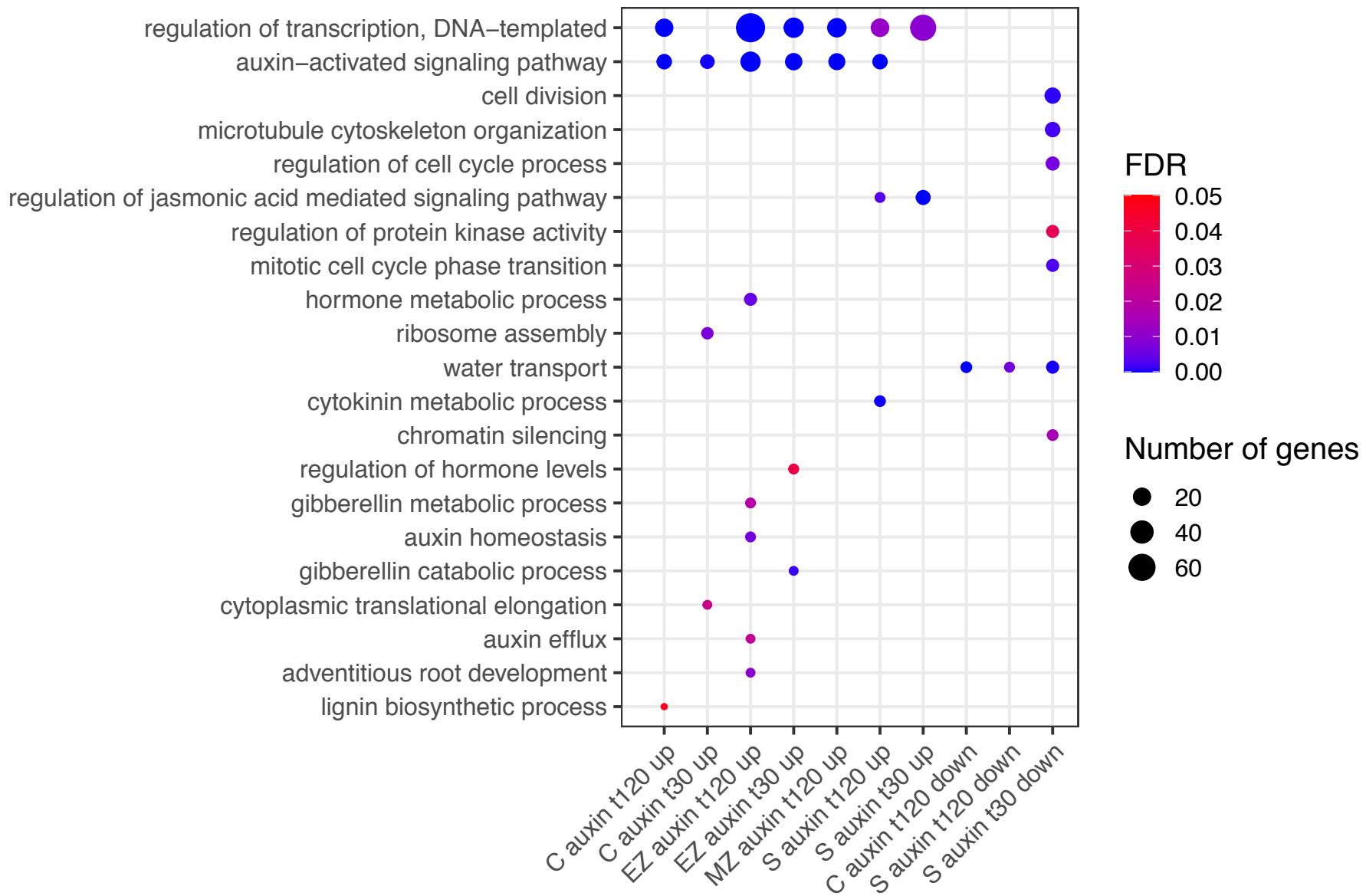


Figure 4

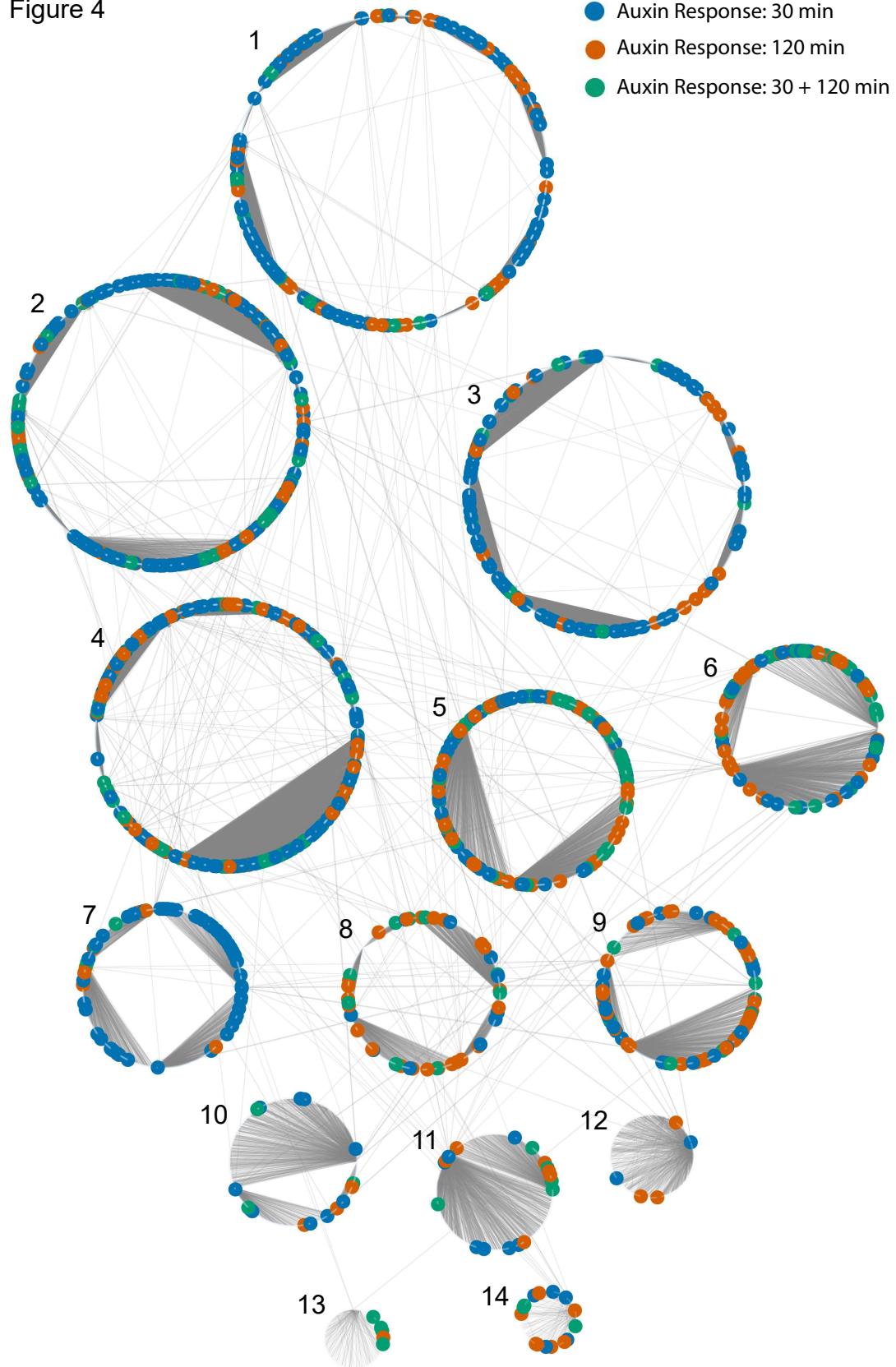
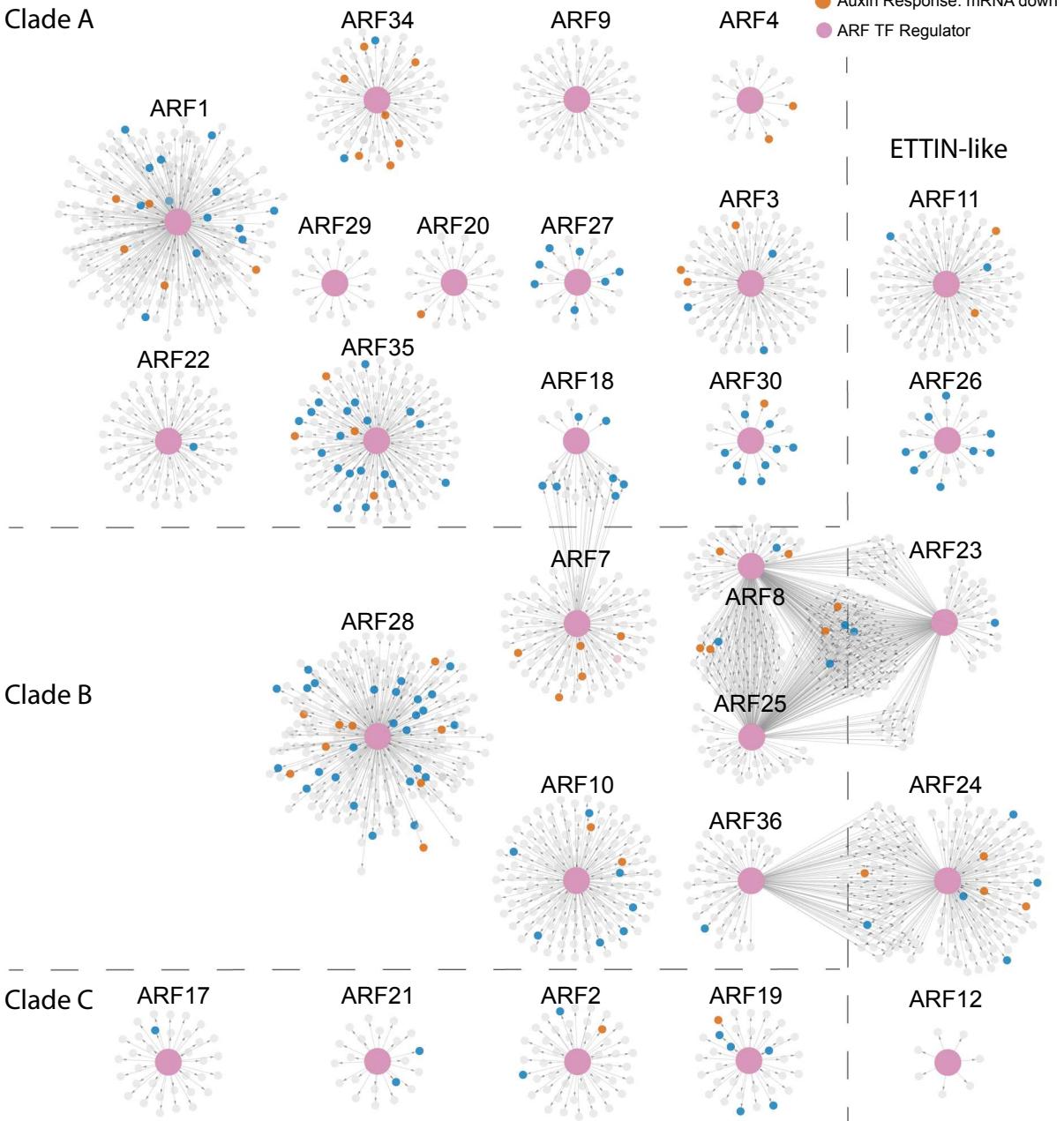



Figure 5

