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Abstract 

Mutational signatures are characteristic patterns of mutations caused by 

endogenous or exogenous mutational processes. These signatures can be discovered by 

analyzing mutations in large sets of samples – usually somatic mutations in tumor samples. 

Most programs for discovering mutational signatures are based on non-negative matrix 

factorization (NMF). Alternatively, signatures can be discovered using hierarchical Dirichlet 

process (HDP) mixture models, an approach that has been explored less. These models 

assign mutations to clusters and view each cluster as being generated from the signature of 

a particular mutational process. Here we describe mSigHdp, an improved approach to using 

HDP mixture models to discover mutational signatures. We benchmarked mSigHdp and 

state-of-the-art NMF-based approaches on 4 realistic synthetic data sets. These data sets 

encompassed 18 cancer types. In total they contained 3.5×107 single-base-substitution 

mutations representing 32 signatures and 6.1×106 small-insertion-and-deletion mutations 

representing 13 signatures. For 3 of the 4 data sets, mSigHdp had the best positive 

predictive value for discovering mutational signatures, and for all 4 data sets, it had the best 

true positive rate. Its CPU usage was similar to that of the NMF-based approaches. Thus, 

mSigHdp is an important and practical addition to the set of tools available for discovering 

mutational signatures. 

 

Data and code availability: mSigHdp is available at public repositories 

https://github.com/steverozen/mSigHdp and https://github.com/steverozen/hdpx. The 

synthetic data, code for generating the synthetic data, code for running the mutational-

signature discovery programs, the main outputs of the programs, and code for analyzing 

their results and for generating the data figures in this paper are available at 

https://github.com/Rozen-Lab/mSigHdp_sup_files. A singularity container with mSigHdp 

can be downloaded from cloud.sylabs.io with the shell command =singularity pull 
library://rozen-lab/msighdp/msighdp:2.1.2=. A toy-example Rscript for using this container 

is at https://github.com/steverozen/mSigHdp/blob/master/data-

raw/container_scripts/test_mSigHdp.R. 

 

Supplementary material: One excel file of supplementary tables and one PDF file of 

supplementary figures have been submitted along with this manuscript. 
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Introduction 

Mutational signature are patterns of mutations that are caused by, and characteristic of, 

mutational processes or factors (1). Their origins can be endogenous, for example the 

signatures due to the deamination of 5-methylcytosine or due to activated APOBECs, or 

exogenous, for example the signatures caused by tobacco smoking or by ultraviolet 

radiation. The concept of mutational signatures can be applied to various types and 

classifications of mutations. Single base mutations (single base substitutions, SBSs) are most 

often classified in the context of the preceding and following bases while considering the 

mutation to have occurred from a pyrimidine (C or T) (Figure 1A). The mutation classes are, 

for example, ACA → AAA, ACA → AGA, & CCA → CAA, &, TTT → TGT. Small insertion and 

deletion mutations (indels) are classified first by their length. Indels of 1 base pair are 

classified according to the inserted or deleted base and the length of the polynucleotide 

repeat (if any) in which the indel occurred. Indels of length > 1 base pair are classified 

according to (i) their length, (ii) whether the indel is in a repeat and the length of the repeat, 

and, (iii) for deletions, if there is microhomology between the ends of the deleted sequence 

and the immediately surrounding sequence (Figure 1B). The classification of indels involves 

several subtleties, detailed at https://www.synapse.org/#!Synapse:syn11801742. For a 

given biological sample, the counts of mutations in each of the mutational classes constitute 

the mutational spectrum of that sample. Since the samples are usually tumors, for simplicity 

of exposition, we will refer to biological samples as tumors, understanding that we can 

discover mutational signatures in other types of biological samples as well. 

For our purposes, a mutational signature consists of the expected proportions of 

mutations in each of the mutation classes, as generated by a particular mutational process. 

We treat a mutational signature as a multinomial probability vector that maps mutation 

classes to their probabilities. We sometimes also call these <mutational signature profiles= 
when we want to emphasize that they are multinomial probability vectors. In our model, 

the mutational spectrum of 1 tumor is the mutation-class-wise sum of mutations caused by 

several mutational processes (Figure 2). In this model, a mutational process generates 

individual mutations by sampling from the multinomial distribution parameterized by the 

process’s signature, and the spectrum consists of the sum of mutations in each mutational 

class generated by all the mutational processes operating in the tumor. The task of 

mutational signature discovery is to infer a set of signatures that can reasonably reconstruct 

the spectra of a set of tumors. To be useful, the signatures should approximately correspond 

to underlying biological processes. 

Early work on discovering mutational signatures relied on approaches based on non-

negative matrix factorization (NMF) (2,3) and many subsequent efforts also used NMF-

based approaches. To discover mutational signatures, NMF views the tumor spectra as 

constituting a matrix, with rows being the mutation classes (e.g., for SBSs, CCA → CAA), with 

the columns being tumors, and with each cell containing the number of mutations of one 

mutation class for one tumor. NMF then derives an approximate factorization in which the 

matrix of observed mutation counts is the product of two matrices. The first is a matrix of ÿ 

signatures in which each signature is a column. The second is a matrix in which each 
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element is the number of mutations due to a particular signature in a particular tumor, 

which we call the exposure of that signature in that tumor. Alexandrov and colleagues 

developed a series of implementations of this concept (1-6). The most recent incarnation of 

this concept is SigProfilerExtractor, which was assessed along with 13 other approaches in a 

benchmarking study on synthetic SBS data (6). Signatures discovered using the version in (1) 

are the basis for the widely used reference set of mutational signatures on the COSMIC 

website (https://cancer.sanger.ac.uk/signatures/).  

As is common in unsupervised learning, a key challenge in mutational signature 

discovery is determining the number of items, in this case, signatures, that might be present 

in a set of tumors. NMF-based approaches to mutational signature discovery have deployed 

several automated or semi-automated approaches to this challenge. SigProfilerExtractor 

carries out NMF on multiple bootstrapped replicates of the input matrix over a pre-defined 

range of ÿ (the number of signatures to discover). By default, it selects ÿ based on a 

combination of (i) a silhouette analysis of the clustering of signatures discovered across the 

bootstrap replicates and (ii) the reconstruction errors – how well discovered signatures can 

reconstruct the input spectra. 

In addition to NMF-based approaches, a few approaches to mutational signature 

discovery have been inspired by probabilistic topic modeling in document classification (7-

9). Probabilistic topic modeling is isomorphic to mutational signature discovery: documents 

correspond to tumors, topics correspond to mutational signatures, and occurrences of 

individual words in a text correspond to individual mutations in a tumor. In these abstract 

generative models, topics generate words in characteristic proportions just as mutational 

signatures generate mutations of different classes in characteristic proportions. Several 

approaches to probabilistic topic modeling require specification of the number of topics to 

infer, but hierarchical Dirichlet process (HDP) mixture models estimate the number of topics 

(or mutational signatures) automatically. Teh et al. (10) showed how to use HDP models for 

Bayesian estimation of topics and their associated words, and they implemented this 

approach in C and MATLAB. Roberts (7) showed how to apply this approach to mutational 

signature discovery, re-implemented the MATLAB portion in R (11), and then applied this 

implementation to several mutational-signature-discovery tasks (12,13).  

Unlike mutational signature discovery by NMF, signature discovery by HDP mixture 

models focuses on individual mutations. Mutations are assigned to clusters, and a cluster 

contains a set of mutations that were generated by one mutational process. The classes of 

the generated mutations in the cluster depend on multinomial draws from the mutational 

signature of the process. In Teh and colleagues’ implementation, Gibbs sampling is used to 

estimate the posterior distributions of (i) the number of mutation clusters and (ii) the 

assignment of observed mutations to the clusters. Clusters of mutations arising from a 

single mutational process occur in multiple Gibbs samples in a sampling chain. In addition, a 

single Gibbs sample can contain > 1 cluster of mutations stemming from a single mutational 

process. 

We used the C code from Teh et al. (10) and built upon the R code from Roberts 

(7),(11) by (i) reducing extremely high R memory usage in the representation of one of the 
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prior distributions, (ii) correcting a problem with the timing of R garbage collection in the R / 

C interface, and (iii) providing built-in parallelization. Beyond these technical improvements, 

we made the following conceptual improvements: 

1. We reduced the number of false positives by adjusting some of the prior distributions, 

as described below. 

2. We added a facility for downsampling mutation counts in more highly mutated spectra, 

which we show below markedly reduces false positives in the analysis of SBS data and 

therefore improves positive predictive values. 

3. We implemented a new approach to grouping mutation clusters with similar signature 

profiles across and within Gibbs samples. This approach avoids grouping mutation 

clusters with dissimilar signature profiles. This approach stemmed from a more explicit 

conceptualization of the Gibbs samples as capturing the posterior distribution of the 

number of mutational processes (i.e., the number of mutational signatures) in addition 

to capturing the distribution of the proportions of mutations in each mutation class in 

the process’s signature profile. 

Here we describe this implementation of HDP mixture models for mutational 

signature discovery, termed mSigHdp, and describe the results of benchmarking mSigHdp 

and 4 additional programs: the original hdp implementation by Roberts and Teh (11), 

SigProfilerExtractor, SignatureAnalyzer, and signeR, on synthetic SBS and indel mutation 

data (6,14-17). The additional programs other than the original hdp were those with the 

best F1 scores in Islam et al. (6). 

Materials and Methods 

Synthetic data generation 

We generated 2 sets of synthetic SBS and 2 sets of synthetic indel mutation data, denoted 

SBS_set1, SBS_set2, indel_set1, and indel_set2. We based these data on (i) the signature 

profiles from COSMIC (v3.2, https://cog.sanger.ac.uk/cosmic-signatures-

production/documents/COSMIC_v3.2_SBS_GRCh37.txt, https://cog.sanger.ac.uk/cosmic-

signatures-production/documents/COSMIC_v3.2_ID_GRCh37.txt) and (ii) the numbers of 

mutations due to each signature in each tumor (the exposure matrix) as estimated by 

Alexandrov et al. (1). The rows of an exposure matrix are signatures, and the columns are 

tumors. Each cell contains the number of mutations caused by a particular signature in a 

particular tumor.  

For each cancer type, we took parameters for the synthetic data from the 

corresponding exposure matrix in Alexandrov et al. (1) as follows: 

Let āý be the probability of occurrence of a signature, Ā, in a tumor of that cancer type. We 

estimate this from the proportion of tumors of that type in the exposure matrix that have 

the signature (i.e. have mutation counts > 0 for Ā in the tumor). 

Let �ý be the expected mean of the number of mutations due to Ā in the exposure matrix 

for those tumors of the given cancer type that have exposure to Ā. 
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Let Ā��þý be the negative-binomial dispersion parameter of the number of mutations due to Ā, estimated from the dispersion of the number of mutations due to Ā in the exposure 

matrix for those tumors of the given cancer type that have exposure to Ā. 

We used the R package fitdistrplus (18) to get maximum likelihood estimates of parameters �ý and Ā��þý in the data in Alexandrov et al. (1). 

To generate a synthetic spectrum for one tumor type, we decide whether Ā is 

present by a random draw from �þÿÿĀĂýý�(āý). If Ā is present, we draw the number of 

mutations þý due to Ā from ��(�ý , Ā��þý) where �� denotes a negative-binomial 

distribution. For each signature, Ā, present in the tumor, we multiplied þý by the signature 

profile vector to get the numbers of mutations in each mutation class, þý,þ  , where ā is a 

mutation class (e.g., CCA → CAA). To incorporate realistic resampling noise, for each 

mutation class, ā, and signature, Ā, we drew þý,þ,�, the number of mutations of class ā due 

to Ā, from ��(þý,þ , ý), where ý is the negative binomial dispersion parameter. We selected 

d = 30 for SBSs and d = 10 for indels by selecting values that resulted in spectrum-

reconstruction accuracies similar to those seen in real data (Supplementary Figures S1, S2). 

Then, to construct the full synthetic spectrum, we set the number of mutations for each ā as ∑ þý,þ,�ý  and rounded it to an integer. 

The synthetic data sets and the code to generate the synthetic data sets are at 

https://github.com/Rozen-Lab/mSigHdp_sup_files. Supplementary Tables S1 and S2 

summarize the signatures and cancer types represented in the synthetic data. 

Running programs for signature discovery 

Code to run the signature discovery programs and analyze their output is at 

https://github.com/Rozen-Lab/mSigHdp_sup_files. Supplementary Table S3 lists the 

program versions and arguments used. Supplementary Table S4 summarizes signature 

discovery results for each run. Supplementary Table S5 summarizes CPU usage for each run 

for which we report CPU times. 

mSigHdp implementation notes 

The package hdpx (https://github.com/steverozen/hdpx/) contains the original C code from 

Teh et al. (10) and much of the R code from Roberts (7). However, in hdpx, the algorithm for 

finding sets of mutation clusters with similar signature profiles is completely new. We also 

added diagnostic plots to help assess the reliability of each discovered signature. The first is 

a scatterplot of the proportion of mutations due to a particular signature versus the count 

of mutations due to the signature for each input spectrum (Supplementary Figure S3A). The 

second is a plot of the signature plus 5 input spectra that have the highest proportions of 

mutations due to that signature (Supplementary Figure S3B). We describe the other plots 

below. The package mSigHdp (https://github.com/steverozen/mSigHdp/) provides functions 

for parallelizing and checkpointing the burnin and Gibbs sampling. Checkpointing allows one 

to extend the burnin if chains have not reached equilibrium distributions. mSigHdp uses the 

core R function parallel::mclapply for parallelizing over multiple threads, and because 
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mclapply can only use 1 thread on Microsoft Windows, it is not practical to run mSigHdp on 

Windows. 

Assessing discovered signatures 

We assessed how well the discovered signatures reflected the ground truth signatures in 

the synthetic mutation data as follows. We first matched all the discovered signatures to the 

ground truth signatures using the function TP_FP_FN_avg_sim in R package mSigTools 

(https://github.com/Rozen-Lab/mSigTools). This function first computes cosine distances (1 

– cosine similarity) and sets cosine distances > 0.1 to a large value, Ā. It then uses the 

<Hungarian algorithm= (19) to find a matching between discovered and ground truth 

signatures that minimizes the total cosine distance. Matches with cosine distance Ā are then 

discarded. After this, discovered signatures that match a ground truth signature are 

considered true positive matches, any remaining discovered signatures are considered false 

positives, and any ground truth signatures with no matching discovered signature are 

considered false negatives. 

Results 

Improvements to discovering mutational signatures with HDP mixture models compared 

to previous implementations 

Hierarchical Dirichlet process (HDP) mixture modeling and its application to mutational 

signature discovery are described in (7,10). Figure 3 shows an HDP mixture model of 

mutations generated from mutational signatures. In this conceptualization, signatures 

model real-world mutational processes. To generate a mutation in, for example, tumor 1 

(lower left), one first selects a mutational signature (representing a mutational process) 

from tumor 1’s Dirichlet process, DP*. This mutational signature is probably one already 

known to DP*, but it might be a new signature drawn from DP*’s base distribution, DP1. 

Dirichlet-process concentration parameters (not shown in Figure 3) partly govern whether 

an existing signature is selected or whether a new signature is drawn from the base 

distribution. If the signature is drawn from DP1, then the signature is also probably already 

known to DP1, but if not, it is drawn from DP1’s base distribution, DP0. If the signature is 

drawn from DP0, it is once again probably already known to DP0, but if not, it is drawn from 

DP0’s base distribution, �. � is a uniform distribution of an infinite number of possible 

signatures. More formally, for the case of SBS mutations in trinucleotide context, in which 

there are 96 mutation classes, � is uniform in a 95-simplex, as specified by a symmetric 

Dirichlet distribution (not a Dirichlet process) with all concentration parameters = 1 (7,10). 

Once the signature of the mutation is known, the mutation’s class is selected by a 

multinomial draw from the mutational signature profile. (Recall that a signature profile is a 

multinomial probability vector.) The number of possible mutational signatures in � is 

unbounded, but depending on the Dirichlet-process concentration parameters, brand new 

signatures are rarely drawn from �. 

Teh et al. (10) represented a hierarchical Dirichlet process as a <Chinese restaurant 

franchise=. The purpose of this representation was to support the implementation of a 

Bayesian scheme whereby Gibbs sampling could estimate the posterior distribution of the 
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assignments of mutations to clusters generated by a single signature. The Gibbs sampling 

scheme estimates the posterior distribution of the assignment of customers to tables (which 

also defines the assignment of mutations to signatures, since each table has a single 

signature). From the signature, one can also estimate the distribution of the classes of the 

individual mutations (e.g., CCA → CAA). Each Gibbs sample contains the number of 

mutations of each mutation class associated with each signature across all tables in all 

restaurants; here we will call these <mutation clusters=. Teh et al. (10) called these <clusters 

of category counts=, where <category= corresponds to <mutation class=. In the software, 

these are represented as matrices in which rows are mutation classes and columns 

represent different mutation clusters due to different signatures. 

An important issue is that across the many Gibbs samples of the posterior 

distribution, each Gibbs sample represents a signature by its realization as one or more 

mutation clusters, and across the Gibbs samples, these clusters differ somewhat in their 

proportions of mutations in each mutation class (Figure 4A). These realizations must be 

combined to derive point estimates of the signature profiles while noting which signature 

profiles are common across the Gibbs samples and therefore well supported. The 

implementation described in Roberts (7) appeared to have high false discovery rates on real 

data, with a PPV of ~0.5 as estimated from Robert’s Figures 4.13 and D.17. We hypothesized 

that these high false discovery rates were due to the techniques for combining mutation 

clusters in (7,11), possibly exacerbated by the use of 1 as the beta parameter of the gamma-

distribution prior for the Dirichlet-process concentration parameters. Our subsequent 

benchmarking confirmed that the previous technique for combining mutation cluster was 

the major contributor to high false discovery rate, while the use of 1 as the beta parameter 

of the gamma-distribution prior for the Dirichlet-process concentration parameters was a 

minor contributor (Figure 5). 

After experimenting with several alternative clustering approaches, we selected 

divisive hierarchical clustering (20)(function diana in R package cluster, https://cran.r-

project.org/package=cluster) to group mutation clusters with similar signature profiles 

across all Gibbs samples in all chains (dashed-line rectangle in Figure 4B). After this grouping 

(Figure 4C), we take the signature profile of the mutation-class-wise sums of mutations in all 

mutation clusters in each group in Figure 4B as the estimate of the underlying mutational 

signature (Figure 4D,E, Supplementary Figure S4). 

In Figure 4C, the <blue= and <orange= signatures are derived from mutation clusters 

found in all 6 posterior samples in Figure 4A. Because these are samples from the posterior 

distribution of mutation clusters generated by a mutational process, this indicates strong 

evidence for the existence of the process generating the <blue= and <orange= mutational 

signatures. The notion that there is strong evidence for signatures that appear in most 

posterior samples stems from the theory of Gibbs sampling, in which the Gibbs samples are 

samples of the posterior distribution of signatures as realized by mutation clusters. 

Therefore, signatures that appear in most of the posterior samples have strong support, 

while the others do not. Thus, the <green= and <pink= mutational signatures in panel 4C, 

which derived from mutation clusters present in only 1 posterior sample, would have 
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negligible support. The <purple= mutational signature in panel 4C , found in only half of the 
posterior samples, would also have little support. mSigHdp takes an argument that specifies 

the proportion of posterior samples in which a signature should be found to be considered 

well supported. This argument defaults to 0.9. Examination of plots that show the Gibbs 

samples contributing to each signature (Supplementary Figure S5) suggests that false 

positives would not be further reduced by increasing this argument. 

The prior distributions of the Dirichlet-process concentration parameters influence 

the number of signatures discovered and therefore the false discovery rate (21). The prior 

distributions are gamma distributions, which have two (hyper)parameters: shape and beta. 

The location of the gamma distribution decreases as beta increases. The mean of a gamma 

distribution with shape 1 and beta 1 is nearly 1, and for shape 1 and beta 20 the mean is 

~0.05. So compared to a beta of 1, a beta of 20 would encourage smaller concentration 

parameters, which would make the generation of new signatures from the base distribution 

less likely. This in turn would shift the posterior distribution of the number of signatures to 

lower values i.e., fewer signatures. Based on previous analysis (21), for the SBS signature 

discovery results here, we used beta = 20. For signature discovery in the indel data, we 

tested several values of beta on the synthetic indel data used here and selected beta = 50 

(Supplementary Figure S6). All Dirichlet processes within the mSigHdp models used the 

same prior for their concentration parameters. 

Prompted by the suggestion of a reviewer of a previous version of this manuscript, 

we tested downsampling as a means to reduce mSigHdp’s computational demands. We 

found that, for the discovery of SBS mutational signatures, downsampling not only 

substantially reduced computational requirements, but also substantially improved the false 

positive rate (i.e. increased the positive predictive value, Figure 5, Table 1, Supplementary 

Figures S7, function downsample_spectra in package mSigHdp). 

Overall testing strategy 

The overall testing strategy was to generate realistic synthetic mutation spectra based on 

known mutational signatures and then assess the signature discovery approaches on how 

well they could discover the signatures on which the spectra were based. We generated the 

synthetic spectra by simulating the operation of known mutational processes, which 

generated mutations according to their known signature profiles. We call these known 

signature profiles the <ground-truth signatures=. Within the synthetic data for each cancer 

type, we modeled the prevalences of the mutational processes on their prevalences in real 

data and also modeled the numbers of mutations generated by signatures on the 

distributions of those numbers in real data. 

We aimed to include cancer types encompassing as many mutational signatures as 

reasonably possible, and we included 18 cancer types that were well represented in 

Alexandrov et al. (1) (Supplementary Tables S1 and S2). Altogether the synthetic spectra 

contained 32 SBS and 13 indel signatures. The synthetic spectra included both rare and 

common signatures, with prevalences across all tumor types together that ranged from 

0.0019 to 0.97 (SBS_set2) and from 0.012 to 0.95 (indel_set2). There were a total of 1,620 
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SBS spectra and 3.5x107 SBS mutations. There were 3,138 indel spectra and 6.1x106 indel 

mutations. 

We evaluated approaches to mutational signature discovery based on (i) the 

proportion of the ground truth signatures that they discovered, (ii) the proportion of 

discovered signatures that were not present in the ground truth, and (iii) the similarity 

between the signature profiles of the discovered and ground truth signatures. In more 

detail, let �� be the number of true-positive signatures, i.e. ground truth signatures that 

were discovered, let �� be the number of false-positive discovered signatures (signatures 

that were discovered but that were not among the ground truth signatures), and let �� be 

the number of false negatives, i.e. ground truth signatures that were not discovered. We 

then assessed the performance of a mutational-signature-discovery approach by three 

measures: 

1. Positive predictive value, ��� ≝ ����+�� 

2. True positive rate, ��� ≝ ����+�� 

3. The mean of the cosine similarities of true positive signatures to their matching 

ground truth signatures. 

As a summary assessment, we defined the Composite Measure as the sum of PPV, TPR, and 

the mean cosine similarity.  

mSigHdp accuracy in discovering SBS signatures 

We assessed how well mSigHdp with and without downsampling and 4 other programs 

discovered SBS mutational signatures on two synthetic data sets (Figure 5, Table 1). Because 

all the programs that we tested depend on random sampling, their results often vary 

depending on the initial random seed. Therefore, we ran each program on 5 different seeds, 

and all programs indeed often generated different results with different starting random 

seeds. 

The Composite Measures of mSigHdp with a downsampling threshold of 3,000 was 

significantly higher than those of mSigHdp without downsampling and of 

SigProfilerExtractor (means across all seeds and both synthetic data sets of 2.77 versus 2.57 

and 2.42, ā < 4.4 × 1025 and ā < 3.3 × 1024, respectively, 2-sided Wilcoxon rank-sum 

tests, significant at a Bonferroni corrected alpha of 0.025). The Composite Measures of the 

other approaches were still lower. Details of their results are available in Supplementary 

Table S4. The mean cosine similarities across true positives were similar across all 4 

programs and therefore did not strongly influence the Composite Measures. 

Of note, some mSigHdp false positives consisted of essentially a single mutation class 

(e.g. only TCG → TTG, Supplementary Figure S8). This was also true for mSigHdp without 

downsampling and for the hdp approach in Roberts and Teh (11). Thus, one should be 

skeptical of single-mutational-class signatures generated by these approaches from SBS 

data.  
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mSigHdp with downsampling had higher TPRs than SigProfilerExtractor. In some 

cases, SigProfilerExtractor false positive signatures could be decomposed as merges of 2 or 

3 false negatives, and considering these as discoveries would increase the assessment of 

true positives and decrease false negatives (Supplementary Figure S9). However, many false 

negatives could not be accounted for as members of merged false positives, and this was 

especially true of most of the false negatives in SBS_set2 (Supplementary Table S4). 

Discovery of merged signatures is common in mutational-signature analysis. To help address 

this, SigProfilerExtractor can assess whether discovered signatures are merges of known 

signatures. While this does not help when discovered signatures are merges of unknown 

and known signatures, it is useful when discovered signatures are merges of known 

signatures. Although mSigHdp does not carry out this analysis automatically, it can be done 

by function find_best_reconstruction_QP in package mSigTools (https://github.com/Rozen-

Lab/mSigTools). 

Both mSigHdp and SigProfilerExtractor tended to miss less prevalent signatures, but 

mSigHdp was better able to detect rare signatures (ā < 2 × 1024 by robust linear 

regression; see Supplementary Table S7). To investigate this further, we <spiked in= 
signature SBS35 (which was not discovered by either approach in either SBS data set) at 

varying concentrations. mSigHdp was able to detect it at lower concentrations than 

SigProfilerExtractor (ā < 7 × 1023 by robust linear regression; Supplementary Figure S10).  

We also investigated whether SigProfilerExtractor’s true positive rates could be 

improved by selecting larger values of ÿ (the number of signatures extracted, which by 

default, SigProfilerExtractor selects automatically). At 2 plus the ÿ that SigProfilerExtractor 

had automatically selected (2 + ÿ signatures total), it added an average of 1.2 true positives 

and 0.8 false positives (Supplementary Table S6). At the value of ÿ selected by mSigHdp 

(ÿ = 21), SigProfilerExtractor added an average of 2.2 true positives and an average of 1.8 

false positives. Thus, SigProfilerExtractor’s true positive rates could indeed be improved by 

selecting larger values of ÿ, albeit at the cost of some increase in the number of false 

positives. The Composite Measures increased slightly but not significantly at larger values ÿ 

(Supplementary Table S6). 

We also studied the extent to which the results of mSigHdp and the other 

approaches depended on the overall level of resampling noise used in generating the 

synthetic data (Supplementary Figure S11). For the synthetic data with reduced or no noise, 

all programs produced better results than when tested on realistic noise. However, the 

ranking of the programs was substantially unchanged with one exception. This was 

SignatureAnalyzer, which generated markedly better results for data without resampling 

noise. Thus, our earlier assessment of SignatureAnalyzer on data without noise (1) was not 

predictive of its performance on more realistic data. 

Finally, as noted above, Figure 5 indicates that the algorithm for grouping raw 

mutation clusters in the Gibbs samples in (7,11) was the main contributor to a high false 

discovery rate on real SBS data. This implementation had markedly worse PPVs (~0.5) than 

mSigHdp with downsampling (0.99) and SigProfilerExtractor (0.91). The use of 1 rather than 

20 as the beta parameter of the gamma-distribution prior for the Dirichlet-process 
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concentration parameters corresponded to a decrease in PPV from 0.53 to 0.45, and so was 

a minor contributor. 

mSigHdp accuracy in discovering indel signatures 

We assessed how well mSigHdp and the other programs discovered indel mutational 

signatures in two synthetic data sets (Figure 6, Table 2). Downsampling indel data degraded 

mSigHdp’s accuracy, and we did not investigate this further (Supplementary Figure S12). 

mSigHdp had the highest Composite Measure (mean 2.89), and the hdp implementation 

from Roberts and Teh (11) and Roberts (7) also did well (means 2.80 and 2.78 for two 

different choices of the prior distribution of the HDP concentration parameter). mSigHdp 

was significantly better than SigProfilerExtractor (mean Composite Measure 2.89 versus 

2.67, ā < 1.1 × 1025, two-sided Wilcoxon rank-sum test over the results for all random 

seeds and both synthetic data sets). The other two programs had substantially lower 

Composite Measures (Table 2, Supplementary Table S4). As with the SBS data, the PPV and 

TPR were the main contributors to differences in the Composite Measure across the 4 

programs. 

mSigHdp and SigProfilerExtractor had similar positive predictive values (0.90 and 

0.89). As was the case for SBS data, the HDP implementation from Roberts and Teh (11) had 

lower positive predictive values for both values of the beta parameter of the gamma-

distribution prior of the Dirichlet process hyperparameters (0.82 and 0.79). The main reason 

again appears to have been the method for combing raw clusters of mutations within and 

across Gibbs samples.  

mSigHdp had a mean of 1.4 false positives across the indel data sets and 

SigProfilerExtractor had mean of 1.3. mSigHdp discovered a total of 4 different false 

positives (Supplementary Figure 13), and SigProfilerExtractor discovered a total of 2 

different false positives (Supplementary Figure S14). The most common of these was a 

variant of ID5 in which there were no deletions from TT → T. The other was a singleton that 

did not resemble any ground-truth signature and that could not be reconstructed from false 

negatives. 

mSigHdp had no false negatives in either indel data set, while other programs had 

substantial numbers of false negatives. SigProfilerExtractor did not discover ID5 in either 

indel data set. As noted above, SigProfilerExtractor instead extracted a version of ID lacking 

TT → T deletions. This was a false positive, as its cosine similarity to ID5 was ~0.8 

(Supplementary Figure S14). SigProfilerExtractor also often missed relatively rare signatures 

ID11 and ID13 in indel_set1 and ID10 and ID12 in indel_set2. 

Unlike the SBS signatures, the indel signatures discovered by SigProfilerExtractor at 2 + the selected ÿ included no additional true positives but 2 additional false positives 

(Supplementary Table S6). At ÿ as selected by mSigHdp (ÿ = 11), there were 0 additional 

true positives and an average of 1.4 additional false positives. Composite Measures were 
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significantly lower (Supplementary Table S6). Thus, it does not seem that the indel false 

negatives mainly stemmed from incorrect estimates of ÿ. 

As we did for SBS data, we investigated the extent to which the results depended on 

the overall level of resampling noise used in generating the synthetic data (Supplementary 

Figure S15). Again, the ranking of the programs was substantially unchanged, except for 

SignatureAnalyzer, which had markedly better results when analyzing data with moderate 

or no resampling noise. 

CPU usage 

For SBS data, mSigHdp with a downsampling threshold parameter of 3,000 required 1.5 

times as many CPU resources as SigProfilerExtractor and 9.8 times less than mSigHdp 

without downsampling (Figure 7, Table 3). CPU usage by mSigHdp with downsampling is 

dramatically reduced because mSigHdp’s running time is proportional to the number of 
mutations being analyzed. This in turn is because the time needed for each iteration of the 

Gibbs sampler depends partly on the number of mutations in the input data set. While 

mSigHdp required 4.4 times as many CPU resources as SigProfilerExtractor for analyzing the 

indel data, the overall CPU usage was low, at ~4.7 CPU days over 20 threads, amounting to 

< 6 CPU hours per thread. 

Discussion 

Here, we have described mSigHdp, software that uses hierarchical Dirichlet process mixture 

models to discover mutational signatures. We assessed the ability of mSigHdp with and 

without downsampling to discover mutational signatures in synthetic SBS and indel 

mutation data, and we compared this to the abilities of 4 other programs. While there has 

been some systematic benchmarking of mutational signature discovery methods on SBS 

data (1,6,22-24) we are unaware of previous benchmarking efforts on indel data. Based on 

an analysis of the reconstruction of mutational spectra in real tumors using known 

signatures, we believe that the amount of resampling noise in the synthetic SBS and indel 

mutation data sets used here more closely resembles variability in real data than some 

previously used benchmarking data (Supplementary Figures S1, S2). Thus, the synthetic 

mutation data sets here, and notably the indel data set, are resources for developers of 

mutational-signature discovery methods. 

In addition to discovering mutational signatures in sets of mutational spectra, which 

is the task that mSigHdp and the other approaches tested here carry out, there are other 

tasks of interest in mutational signature analysis. However, we do not believe mSigHdp or 

NMF-based mutational signature discovery approaches can be adapted for these other 

tasks. One of these tasks is the estimation of which already-known mutational signatures 

have contributed to a given spectrum or (small) set of spectra. This is a hard problem for 

several reasons. One of these is that if one considers all the many known signatures, there 

are multiple possible ways to reconstruct the given spectrum, all generating reconstructions 

that are indistinguishably good. Limiting the set of signatures to those previously observed 

in a particular tumor type helps but is not sufficient. Multiple programs attempt this task 

(25-33), but, to our knowledge, there has been no systematic assessment or comparison of 
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their performance. Another task of interest in mutational signature analysis is determining 

whether a particular signature is present in a tumor. This question has been explored much 

less, with HRDetect for predicting BRCA1 and BRCA2 deficiency based on mutational 

signatures being the most prominent example (34). In addition, Ng et al. (35) proposed a 

generic statistical <signature presence test= (https://github.com/steverozen/mSigAct) and 

applied it to a question in cancer epidemiology. 

The results presented here point to practical suggestions for mutational-signature 

discovery, especially now that many mutational signatures are well established 

(1)(https://cancer.sanger.ac.uk/signatures/). A common application of mSigHdp and the 

other programs benchmarked here would be de novo analysis of ≥ 100 mutational spectra 

to understand what signatures are present and discover possible new signatures. As a 

practical matter, it seems unlikely that any mutational discovery approach, can discover 

more than 50 signatures from a single extraction. Currently there are 79 SBS signatures in 

COSMIC (https://cancer.sanger.ac.uk/signatures/, v3.3, including 19 likely experimental or 

analytical artifacts). However, these 79 signatures were not discovered in a single analysis of 

a single large set of 23,000 mutational spectra. Instead, they were discovered by analyses 

over multiple subsets of 23,000 spectra, including subsets consisting of single cancer types 

or of tumors heavily exposed to particular mutagens. This is described in detail in 

Supplementary Note 2 of Alexandrov et al. (1).  

Signature discovery is not a lightweight or purely algorithmic endeavor. Indeed, in 

practice, signature discovery has depended on analyses by multiple programs run on a 

variety of subsets of the input data and on human judgment drawing on many sources (1). 

Discovering signatures using different mutation classifications, such as SBSs segregated by 

translational strand and single-base mutations in the context of the 2 preceding and 2 

following bases is also useful, and mSigHdp can do these analyses. Clearly, it would be wise 

to do several independent analyses, since all methods studied here discovered slightly 

different sets of signatures when run with different starting random seeds (Figures 5, 6). In 

any case, one must consider the totality of the evidence, including known signatures, to 

decide which potentially novel discovered signatures are true positives. Supplementary 

Note 2 of Alexandrov et al. (1) presents a more extensive discussion of the criteria that are 

useful for this decision.  

In summary, we evaluated the ability of mSigHdp with and without downsampling 

and of 4 other programs to discover mutational signatures in synthetic SBS and indel 

mutation data. In the SBS mutation data, mSigHdp with a downsampling threshold of 3,000 

was substantially better able to discover signatures than the other programs, and in the 

indel data, mSigHdp without downsampling was substantially better able to discover 

signatures (Figures 5, 6, Tables 1, 2). mSigHdp was better able to discover rare SBS 

signatures, which may be an advantage since most common signatures have probably 

already been discovered (Supplementary Table S7, Supplementary Figure S10). The results 

of benchmarking on realistic data here indicate that mSigHdp is an advance for discovering 

SBS and indel mutational signatures, and especially for discovering rare signatures. 
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Tables and Figure Legends 

Data 

set 
Approach 

Composite 

measure Mean 

PPV 

Mean 

TPR 

Mean 

cosine 

similarity Mean SD 
S

B
S

_
se

t1
 

mSigHdp_ds_3k 2.87 0.04 0.99 0.89 0.99 

mSigHdp 2.63 0.03 0.78 0.87 0.99 

SigProfilerExtractor 2.59 0.13 0.93 0.69 0.97 

NR_hdp_gb_20 2.45 0.04 0.54 0.93 0.98 

NR_hdp_gb_1 2.39 0.07 0.45 0.96 0.99 

signeR 2.31 0.09 0.58 0.76 0.98 

SignatureAnalyzer 1.84 0.06 0.29 0.58 0.96 

S
B

S
_

se
t2

 

mSigHdp_ds_3k 2.67 0.02 0.90 0.78 0.99 

mSigHdp 2.52 0.03 0.73 0.80 0.99 

SigProfilerExtractor 2.25 0.12 0.90 0.39 0.96 

NR_hdp_gb_20 2.37 0.05 0.53 0.85 0.99 

NR_hdp_gb_1 2.20 0.08 0.32 0.89 0.98 

signeR 2.07 0.08 0.58 0.51 0.98 

SignatureAnalyzer 1.54 0.03 0.19 0.38 0.97 

 

Table 1 Results on synthetic SBS data. Means and standard deviations (SD) are over the 5 

different random seeds. PPV, positive predictive value; TPR, true positive rate. 

mSigHdp_ds_3k denotes mSigHdp with a downsampling threshold of 3,000. NR_hdp_gb_20 

denotes the implementation in (11) Roberts and Teh (11), with the beta parameter of the 

gamma-distribution prior for the Dirichlet-process concentration parameters set to 20; 

NR_hdp_gb_1 is analogous with the beta parameter set to 1.   
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Data 

set 
Approach 

Composite 

measure Mean 

PPV 

Mean 

TPR 

Mean 

cosine 

similarity Mean SD 

in
d

e
l_

se
t1

 

mSigHdp 2.91 0.05 0.92 1.00 0.993 

NR_hdp_gb_50 2.79 0.04 0.82 0.98 0.993 

NR_hdp_gb_1 2.79 0.05 0.80 1.00 0.988 

SigProfilerExtractor 2.75 0.05 0.94 0.82 0.988 

SignatureAnalyzer 2.29 0.09 0.56 0.75 0.988 

signeR 2.25 0.15 0.59 0.67 0.989 

in
d

e
l_

se
t2

 

mSigHdp 2.87 0.03 0.88 1.00 0.991 

NR_hdp_gb_50 2.80 0.04 0.81 1.00 0.991 

NR_hdp_gb_1 2.77 0.07 0.78 1.00 0.989 

SigProfilerExtractor 2.59 0.00 0.83 0.77 0.989 

SignatureAnalyzer 2.21 0.13 0.57 0.66 0.985 

signeR 2.00 0.08 0.56 0.45 0.988 

 

Table 2 Results on synthetic indel data. Means and standard deviations (SD) are over the 5 

different random seeds. PPV, positive predictive value; TPR, true positive rate. 

NR_hdp_gb_50 is the implementation in Roberts and Teh (11), with the beta parameter of 

the gamma-distribution prior for the Dirichlet-process concentration parameters set to 50; 

NR_hdp_gb_1 is analogous with the beta parameter set to 1. 
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Approach SBS_set1 SBS_set2 
Average 

SBS 
  indel_set1 indel_set2 

Average 

indel 

mSigHdp_ds_3k 15 35 25  NT NT NT 

mSigHdp 206 286 246  3.2 6.2 4.7 

SigProfilerExtractor 9 24 17  0.7 1.5 1.1 

signeR 27 18 22  2.1 3.3 2.7 

SignatureAnalyzer 29 69 49   0.5 1.6 1.0 

 

Table 3 Mean CPU hours needed for 5 approaches to mutational signature discovery. 

Shown are means over all 5 random seeds. NT: not tested, because mSigHdp with 

downsampling is not recommended for indel data. mSigHdp_ds_3k denotes mSigHdp with a 

downsampling threshold of 3,000. Please see Supplementary Table S5 and Figure 7 for more 

information. We have checked that for signeR the higher CPU usage for SBS_set1 than for 

SBS_set2 is correct. Measurements were on AMD EPYC 7763 CPUs with a base clock of 2.45 

GHz, except for the analysis of SBS data by mSigHdp without downsampling. Because of 

resource limits on the machines running EPYC 7763 CPUs, for this we used AMD EPYC 7742 

CPUs with a base clock of 2.25 GHz. 
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Figure 1 Examples of (A) SBS and (B) indel mutational spectra in a breast cancer.  

The height of each vertical bar indicates the number of mutations of a particular mutation 

class, for example, in panel A, 617 mutations from TCT to TGT and in panel B, 34 mutations 

from DCD to DD (deletion of one C in the middle of two non-C nucleotides, denoted D). This 

is Breast−AdenoCA::SP116341 from Alexandrov et al. (1) and ICGC/TCGA Pan-Cancer 

Analysis of Whole Genomes Consortium (36). 

Figure 2 Mutational spectra can be explained as a linear combination of mutations 

generated by mutational signatures. 

(A) Example of an SBS spectrum that can be reconstructed with a cosine similarity of 0.988 

from 5 signatures. The bar at the left shows that mutational signature SBS3 contributed the 

most mutations to this spectrum. This signature is due to defective homologous-

recombination-based DNA repair. The contributions of signatures SBS2 and SBS13 (both due 

to the activity of endogenous APOBEC cytidine deaminases) are visible in the original and 

reconstructed spectra. (B) The indel spectrum from the same tumor can be reconstructed 

with a cosine similarity of 0.982 from 4 signatures. The bar at the left shows that mutational 

signature ID6 contributes the most mutations to this spectrum. Like the SBS signature SBS3, 

this indel signature is also due to defective homologous-recombination-based DNA repair. 

Spectra from Breast−AdenoCA::SP116341 (1,36), plotting code in https://github.com/Rozen-

Lab/mSigHdp_sup_files. 

Figure 3 Schematic of a 3-layer HDP mixture model for mutational signature discovery. 

Please see the text for a full description. Each large circle represents a distribution over 

signatures in a Dirichlet process. � is the base distribution of Dirichlet process ��0, ��0 is 

the base distribution of ��1, and ��1 is the base distribution of ��∗. The small orange 

diamonds inside each circle represent individual signatures, with darker shades of color 

indicating a higher probability of that signature in the distribution. Two SBS signatures, SBS1 

and SBS22, are shown at DP0 as examples. Example observed spectra are shown at the 

bottom. mSigHdp also supports 2-layer HDP mixture models, in which all tumors have the 

same parent Dirichlet process, which has � as its base distribution. 

Figure 4 Combining and interpreting mutation clusters collected by Gibbs sampling.  

(A) Gibbs samples from 2 posterior chains in a highly simplified schematic. Each rectangle 

represents a mutation cluster, and mutation clusters with similar profiles (similar 

proportions of counts of mutations in each mutation class) have the same color. A typical 

configuration would be 20 posterior chains in parallel, with 200 Gibbs samples per chain and 

with 100 iterations between every 2 Gibbs samples. (B) Each row (dashed rectangle) is a 

group of mutation clusters with similar signature profiles (proportions of mutations in each 

mutation class) as grouped by divisive hierarchical clustering across all Gibbs samples from 

all sampling chains. We interpret these groups as containing mutation clusters from one 

signature. (C) To infer signatures, in each group of mutation clusters (dashed rectangles in 

panel B), the counts of mutations of each class are summed, and then these counts are 

divided by the total number of mutations to yield mutation signatures. (D, E) One row of B 

and C (e.g. the row of blue rectangles) in detail. Each blue rectangle in B is a mutation 

cluster that is represented by its mutational spectrum in D. The height of each bar in the 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted October 25, 2022. ; https://doi.org/10.1101/2022.01.31.478587doi: bioRxiv preprint 

https://github.com/Rozen-Lab/mSigHdp_sup_files
https://github.com/Rozen-Lab/mSigHdp_sup_files
https://doi.org/10.1101/2022.01.31.478587
http://creativecommons.org/licenses/by/4.0/


23 

 

spectrum indicates the number of mutations of a particular class. Panel E shows the results 

of summing the mutations of each mutation class over the mutational spectra in D. Dividing 

by the total number of mutations (not shown) yields the signature profile, corresponding to 

the blue rectangle in C. In panel C, we have high confidence in signatures that are 

represented by mutation clusters in all or most of the Gibbs samples, i.e., that are common 

in the posterior distribution. We suggest a cutoff of ≥ 0.9 of the Gibbs samples as indicating 

high confidence. 

Figure 5 Results on synthetic SBS data.  

Composite Measure is the sum of PPV (positive predictive value), TPR (true positive rate), 

and mean cosine similarity. Each circle or triangle represents one measure for one program 

for one random seed. mSigHdp_ds_3k denotes mSigHdp with a downsampling threshold of 

3,000. NR_hdp_gb_20 denotes the implementation in Roberts and Teh (11), with the beta 

parameter of the gamma-distribution prior for the Dirichlet-process concentration 

parameters set to 20; NR_hdp_gb_1 is analogous, but with the beta parameter set to 1. 

Figure 6 Results on synthetic indel data.  

Composite Measure is the sum of PPV (positive predictive value), TPR (true positive rate), 

and mean cosine similarity. Each circle or triangle represents one measure for one program 

for one random seed. NR_hdp_gb_50 denotes the implementation in Roberts and Teh (11), 

with the beta parameter of the gamma-distribution prior for the Dirichlet-process 

concentration parameters set to 50; NR_hdp_gb_1 is analogous, but with the beta 

parameter set to 1. 

Figure 7 CPU usage for 5 approaches to mutational signature discovery. 

mSigHdp_ds_3k denotes mSigHdp with a downsampling threshold of 3,000. The y-axis 

indicates total CPU days used over all subprocesses, including both user and system times. 

So, for example, for mSigHdp, for which we ran 20 simultaneous Gibbs sampling chains for 

each run, the <elapsed= CPU days would be approximately 1/20th of the total CPU days. 

Times were measured by the R system.time function or the Python times function. Except as 

noted in Table 3, measurements were on AMD EPYC 7763 CPUs with a base clock of 2.45 

GHz.  
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