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Abstract

Epifluorescence miniature microscopes (“miniscopes”) are widely used for in vivo
calcium imaging of neural population activity. Imaging data is usually collected while subjects
are engaged in a task and stored for later offline analysis, but emerging techniques for online
imaging offer potential for novel real-time experiments in which closed-loop interventions (such
as neurostimulation or sensory feedback) are triggered at short latencies in response to neural
population activity. Here we introduce DeCalciOn, a plug-and-play hardware device for online
population decoding of in vivo calcium signals that can trigger closed-loop feedback at
millisecond latencies, and is compatible with miniscopes that use the UCLA Data Acquisition
(DAQ) interface. In performance tests, the position of rats (n=13) on a linear track was decoded
in real time from hippocampal CA1 population activity by 24 linear classifiers. DeCalciOn
required <2.5 ms after each end-of-frame to decode up to 1,024 calcium traces and trigger TTL
control outputs. Decoding was most efficient using a ‘contour-free’ method of extracting traces
from ROls that were unaligned with neurons in the image, but ‘contour-based’ extraction from
neuronal ROls is also supported. DeCalciOn is an easy-to-use system for real-time decoding of

calcium fluorescence that enables closed-loop feedback experiments in behaving animals.
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Introduction

Miniature epifluorescence microscopes (“miniscopes”) can be worn on the head of an
unrestrained animal to perform in vivo calcium imaging of neural population activity during free
behavior'?*4° Imaging data is usually collected while subjects are engaged in a task and stored
for later offline analysis. Popular offline analysis packages such as CalmAn® and MIN1PIPE?'
employ algorithms?® for demixing crossover fluorescence between multiple sources to extract
calcium traces from single neurons, but these algorithms cannot be implemented in real time
because they rely on acausal computations. Emerging techniques for online trace
extraction®7:89101.26 offer potential for carrying out real-time imaging experiments in which
closed-loop neurostimulation or sensory feedback are triggered at short latencies in response to
neural activity decoded from calcium fluorescence'>'*?%. Such experiments could open new
avenues for investigating the neural basis of behavior, developing brain-machine interface
devices, and preclinical testing of neurofeedback-based therapies for neurological disorders™.
To advance these novel lines of research, it is necessary to develop and disseminate accessible
tools for online calcium imaging and neural population decoding.

Here we introduce DeCalciOn, a plug-and-play hardware device for Decoding Calcium
Images Online that is compatible with existing miniscope devices which utilize the UCLA
Miniscope DAQ interface board*'*'¢'". Device performance was evaluated by implementing 24
linear classifiers to decode hippocampal population activity in unrestrained rats (n=13) running
on a linear track. We show that the system requires <2.5 ms after each end-of-frame to decode
up to 1,024 calcium traces and trigger TTL outputs that can control external devices. DeCalciOn
performs real-time trace extraction by summing fluorescence in regions of interest (ROIs)
assigned to each individual trace, without any demixing of crossover fluorescence. In our

performance tests, decoding accuracy achieved with this simple trace extraction method
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matched or exceeded that obtained with offline trace extraction using constrained non-negative
matrix factorization?>?° (CNMF). Online decoding was most accurate and efficient when traces
were extracted using “contour-free” ROIs that tiled the entire image frame, and did not overlap
with individual neurons. Hence, real-time decoding of neural population activity from calcium
fluorescence was most efficient when minimal bandwidth was devoted to computations for
source extraction that failed to improve decoding accuracy.

In summary, DeCalciOn provides the research community with a low-cost, open-source,
easy-to-use hardware platform for real-time decoding of neural population activity that will permit
researchers to perform novel closed-loop experiments in behaving animals. All hardware,

software, and firmware are openly available through miniscope.org.
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Image processing pipeline

Incoming frames from the MiniLFOV were cropped to a 512x512 subregion containing
the richest area of fluorescing neurons in each rat, and stored to BRAM for real-time processing
on the Ultra96 (Fig. 2, bottom left). Online processing of each image frame was performed in
four sequential steps: 1) motion stabilization, 2) background removal, 3) calcium trace
extraction, and 4) decoding. Steps 1-3 were performed by our custom ACTEV (Accelerator for
Calcium Trace Extraction from Video) firmware running in the programmable logic fabric of the
MPSoC'’s field-programmable gate array (FPGA). Step 4 was performed by a C# program

running under the FreeRTOS operating system on the MPSoC’s embedded ARM core.
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To correct for translational movement of brain tissue (Step 1), a 128x128 pixel area with
distinct anatomical features was selected within the 512x512 cropped subregion to serve as a
motion stabilization window. ACTEV’s image stabilization algorithm? rigidly corrects for
translational movement of brain tissue by convolving the 128x128 stabilization window in each
frame with a 17x17 contrast filter kernel, and then applying a fast 2D FFT/IFFT based algorithm
to correlate the window contents with a stored reference template (derived at the beginning of
each experimental session) to obtain a 2D motion displacement vector for the current frame.
Supplementary Video 1 demonstrates online performance of ACTEV’s real-time motion

stabilization algorithm.

After motion stabilization, ACTEV removes background fluorescence (Step 2) from the
512x512 image by performing a sequence of three enhancement operations®: smoothing via
convolution with a 3x3 mean filtering kernel, estimating the frame background via erosion and
dilation with a 19x19 structuring element?, and subtracting the estimated background from the
smoothed image. These operations produce an enhanced image in which fluorescing neurons
stand out in contrast against the background (see Supplementary Video 1; “Enhanced Image” in
Fig. 2). The enhanced image then is filtered through a library of up to 1,024 binary pixel masks
(each up to 25x25 in size) that define ROIls within fluorescence is summed to extract calcium
traces (Step 3); each mask can be centered anywhere in the 512x512 window. Pixel masks can

be created using either a contour-based or a contour-free approach (see below).

Population vectors of extracted calcium trace values are stored to the DRAM, and then
decoded (Step 4) by sending them as inputs to a linear classifier running on the MPSoC’s ARM
core. The linear classifier’s output vector during each image frame is relayed to a logic mapper
which can trigger voltage changes on up to 8 TTL pinouts from the Ultra96, and thereby control
closed-loop neural or sensory feedback from external devices in response to decoded calcium

fluorescence signals. Throughout online imaging sessions, the DeCalciOn system is controlled
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Figure 3. Real-time position decoding. A) The CA1 layer of the hippocampus was imaged
while rats ran laps on a 250 cm linear track, subdivided into 24 position bins. B) Sequence
of experimental steps for a real-time imaging & decoding session. C) Latency distribution
for decoding 1,024 online calcium traces.

from a host PC running standard Miniscope DAQ software (to focus and adjust the MiniLFOV)
alongside newly developed real-time interface (RTI) software to communicate with ACTEV (see
below). Raw video data (including real-time motion correction vectors) and calcium trace values
are transmitted via ethernet from the Ultra96 to a host PC for storage, so that additional

analyses of calcium data can later be performed offline.

Real-time position decoding from CA1 place cells

Device performance was evaluated using image data collected from the hippocampal

CA1 region while Long-Evans rats (n=13) ran back and forth on a 250 cm linear track (Fig. 3A).
CA1 pyramidal neurons behave as “place cells” that fire selectively when an animal traverses
specific locations in space'®, so a rodent’s position can be reliably decoded from CA1 population
activity>>'°28_ For performance testing, we used a virtual sensor (see Methods) that was
capable of feeding stored image data to the ACTEV firmware at 22.8 fps, exactly as if raw video
data were arriving from the MiniLFOV in real time. This allowed different firmware algorithms (for

example, contour-based versus contour-free decoding; see below) to be compared and
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benchmarked on the same stored datasets. Results obtained with the virtual sensor were
verified to be identical with those obtained in real-time.

During a typical real-time session, the experimenter carries out four steps (Fig. 3B): 1)
collect an initial imaging dataset and store it to the host PC, 2) pause for an intermission to
identify cell contours if necessary (this is only required for contour-based decoding; see below)
and train a linear classifier to decode behavior from the initial dataset, 3) upload classifier
weights from the host PC to the Ultra96, and 4) perform real-time decoding with the trained
classifier. To mimic these steps using the virtual sensor in our performance tests, one session of
image data was collected and stored from each of the 13 rats, yielding ~7 min (8K-9K frames) of
sensor and position tracking data per rat. The linear classifier was then trained on data from the
first half of each session, and tested on data from the second half.

When place cell activity is analyzed or decoded offline (rather than online) from
previously stored neural and position data, it is common practice to perform speed filtering that
omits time periods when the rat is sitting still. This is done because during stiliness, the
hippocampus enters a characteristic “sharp wave” EEG state during which place cell activity is
less reliably tuned for the animal’s current location?. Here, speed filtering was not implemented
during online decoding of CA1 fluorescence because the linear classifier’s input layer received
only real-time calcium trace data, and not position tracking data (which would be needed for
speed filtering). It is possible that some speed filtering may have been implicitly learned by the
decoder if information about the animal’s speed was encoded in any of the calcium traces, but
explicit speed filtering of calcium data was not performed prior to training or testing the online
classifier. Despite this, DeCalciOn was able to achieve highly accurate decoding of the rat’s
position from calcium traces (see below).

After the decoder had been trained, real-time classifier output from each frame was used
to trigger TTL feedback outputs from the Ultra96. The latency to generate feedback from

decoded calcium traces was measured as the time elapsed between acquiring the last pixel of
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each cropped frame and the rising edge of the triggered TTL pulse. Under a worst-case
scenario of decoding the maximum number of calcium traces supported by the hardware
(N=1,024), mean decoding latency was 2,206+4 us and never exceeded 2,220 us (Fig. 3C). This
highlights one of the main advantages inherent in our FPGA-based hardware design; it would
be difficult to trigger feedback with such short latencies and low variability if online image data
were processed on a CPU or GPU running programs with multiple threads, or if real-time video
were relayed to the image processor through USB or ethernet instead of by a direct hardware

connection with the DAQ.

Contour-based versus contour-free decoding

Decoding performance was compared for two different methods of extracting online
fluorescence traces: contour-based versus contour-free. Contour-based extraction derived
calcium traces by summing fluorescence within pixel masks containing cell contours (Fig. 4A;
Supplementary Video 2) identified using constrained non-negative matrix factorization (CNMF)
by the CalmAn pipeline®®, which was applied to the training dataset during the intermission
period. After contours had been identified in this way, the training dataset was fed through a
simulator to reconstruct online calcium traces that would have been extracted in real time during
the first half of the session using the contour masks; simulated traces were then used to train
the decoder. In contrast with contour-based extraction, contour-free extraction summed
fluorescence within pixel masks obtained by partitioning the 512x512 image into a 32x32 sheet
of tiles, excluding 124 tiles bordering the frame to prevent artifacts from motion stabilization (Fig.
4B; Supplementary Video 3). The contour-free method always yielded a total of 900 calcium
traces per rat, whereas the contour-based method yielded a variable number of traces

depending upon the number of neurons detected by CalmAn.
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Figure 4. Analysis of decoding accuracy. A)

Cell contours identified by CAIMAN in one rat;
intensity of green shading shows the similarity
score, S, for traces exracted from each contour.

B) Mosaic of square pixel mask tiles used for
contour-free trace extraction in the same rat as
‘A’; intensity of purple shading indicates S value
for traces extracted from each tile. Edge tiles
(light blue border) were omitted from trace ext-
raction. C) Tuning curve heatmaps from training
and testing epochs for contour-based (left) and
contour-free (right) traces extracted from the rat
shown in ‘A’ and ‘B’; rows are sorted by location
of peak activity in the testing epoch. D) Scatter
plot shows accuracy of decoding from contour-
free or contour-based traces (with D=2) as a
function of the number of contour-based traces in
each rat. E) Mean decoding accuracy (y-axis)
over all position bins as function of D (x-axis) for
each rat (dots) and averaged over rats (lines);
contour-free and contour-based classifers were
both significantly more accurate than chance or
control classifiers trained on calcium traces mis-
aligned with position data (p<.0001 for all D). F)
Top: Scatter plot shows offline minus online acc-
uracy for contour-based traces; positive y-values
indicate more accurate decoding from offline traces.
Bottom: Offline contour-based decoding accuracy
for classifier trained on traces that were aligned or
misaligned (control) with position data. G) Mean
contour-based decoding accuracy was similar for
offline and online traces derived from the same
contours (p>.45 for all D). H) Polar plot of mean
decoding accuracy (radius) per position bin (angle)
for D=2. Asterisks in ‘E’ and ‘H’ show significance
levels for comparison between contour-based vs.
contour-free decoding; *p<.05, **p<.01, ***p<.001.

After calcium traces had been extracted from the training dataset by either method, they

were aligned with position tracking data and used to train the linear classifier during the

intermission period. ACTEV can utilize a real-time spike inference engine to convert raw calcium


https://doi.org/10.1101/2022.01.31.478424
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.01.31.478424; this version posted May 25, 2022. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

trace values into inferred spike counts prior to decoding. However, for both contour-based and
contour free trace extraction methods, the linear classifier was more accurate at learning to
decode the rat’s position from raw calcium traces than from inferred spikes (Supplementary Fig.
1). Similar results have been reported in prior studies of position decoding from place cell
calcium fluorescence®. When information is decoded from raw calcium traces, the GCamp
molecule effectively performs temporal integration of neural activity at a time constant similar to
its decay rate. Hence, the finding that decoding is more accurate from raw traces than inferred
spike counts can be interpreted to mean that when decoding position from place cell calcium
signals, the ideal time constant over which to integrate neural activity is closer to the decay
constant of the calcium indicator (several hundred ms for the GCamp7s indicator used here®)
than to the video frame acquisition interval (~44 ms for the MiniLFOV scope used here).

Training the classifier on 4K-5K frames of calcium trace data required <60 s of
computing time on the host PC during the intermission period. However, contour-based trace
extraction required an additional 30—60 min to identify cell contours and simulate online traces
before training the classifier. Faster methods for contour identification may be possible, but
contour-free trace extraction has the advantage of eliminating this delay altogether. As shown
below, this advantage came at no cost to decoding accuracy in our performance tests.

After the linear classifier had been trained, learned weights were uploaded from the host
PC to the Ultra96; image data from the second half of the experimental session was then fed
through the virtual sensor for real-time decoding. The classifier’s output vector consisted of 23
units that used an ordinal scheme (see Methods) to represent 24 binned locations (12 per
running direction) along the track (Fig. 3A, bottom). Accurate decoding requires that calcium
traces must retain stable spatial tuning across the training and testing epochs of the session; to
verify that this was the case, spatial tuning curves were derived for calcium traces during the
first (training) versus second (testing) half of each session (Fig. 4C). A similarity score ( S) was

computed for each trace (Fig. 4A,B) using the formula S = -log,, (P)*sign(R), where R is the
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correlation between the trace’s tuning curves from training versus testing, and P is the
significance level for R. Contour-based traces had higher mean S scores than contour-free
traces in every rat (paired t,,=7.02, p=1.4e”°); hence, at the level of individual traces, spatial
tuning was better for contour-based than contour-free traces (Supplementary Fig. 2). However,
the number of contour-free traces (900 per rat) was always greater than the number of
contour-based traces (which varied by rat); hence, at the population level, contour-free traces
could often convey more information about position than contour-based traces. To compare
decoding accuracy between contour-based and contour-free traces, we measured the
percentage of frames from the testing epoch during which the trained decoder’s position
prediction was within =D bins of the true position. Averaged over rats, the mean decoding
accuracy was significantly greater for contour-free than contour-based decoding at most values
of D (Fig. 4E,H). Analogous results have been reported in electrophysiology, where decoding is
sometimes more accurate from “cluster-free” multiunit activity than from single-unit spikes?'.
Decoding position from CalmAn’s offline (demixed) traces did not improve accuracy over
decoding from online traces derived from the same cell contours (Fig, 4F,G). This demonstrates
that the inferior accuracy of contour-based decoding was not rooted in any loss of fidelity
incurred by the transition from offline (demixed) to online (non-demixed) trace extraction.
Although mean decoding accuracy was higher for contour-free than contour-based
traces in almost every rat, the contour-free advantage was greatest in rats with <400
contour-based traces (Fig. 4D), indicating that the primary reason why contour-free traces
provided better decoding accuracy was because they were greater in number. CalmAn’s
sensitivity parameters can be adjusted to detect more contour-based traces in each rat, and
when this was done, the accuracy of contour-free and contour-based decoding became much
more similar (Supplementary Fig. 3). Hence, contour-free traces provided better decoding
accuracy than contour-based traces only when they were greater in number. Based on these

results, the contour-free approach is recommendable over the contour-based approach as a
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faster and more efficient method for online trace extraction, since it is just as accurate and

obviates the need to identify cell contours before training the decoder.

Discussion

Here we have introduced DeCalciOn, an easy to use open-source hardware platform for
online calcium imaging that can perform real-time decoding of neural population activity. The
system is capable of triggering TTL outputs to generate neural or sensory feedback at
millisecond latencies, and is therefore appropriate for use in a wide range of closed-loop

neuroscience applications.

Comparison with other platforms

Several online calcium fluorescence trace extraction algorithms have been proposed, but
some of these have been validated only by offline experiments (showing that they can generate
online traces that rival the quality of offline traces) without being performance tested on specific

hardware platforms during real-time imaging or decoding experiments®':%,

Liu et al.® introduced a system for real-time decoding with the UCLA miniscope that,
unlike DeCalciOn, requires no additional hardware components; the system is implemented
entirely by software running on the miniscope’s host PC. It was shown that this system can
implement a single binary SVM classifier to decode calcium traces from 10 regions of interest
(ROIs) in mouse cortex at latencies <3 ms. However, the system does not perform online motion
stabilization, which could degrade performance when large numbers of ROIls are spaced closely
together. Any system that lacks motion stabilization would also be vulnerable to artifactually
decoding behavior from brain motion (which can be correlated with behavior) rather than neural

activity. Liu et al.?® did not report how their system’s decoding latency scaled with the number of
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classifiers or the size/number of ROls, but if serial processing on the host PC scales linearly
with these variables, then decoding latencies of several seconds or more would be incurred

when implementing 24 classifiers to decode 1,204 calcium traces.

Zhang et al.™ performed 2-photon calcium imaging experiments that incorporated real
time image processing (running on a GPU) to detect neural activity and trigger closed-loop
optical feedback stimulation in mouse cortex. With online motion correction enabled, the system
achieved mean feedback latencies of 8.5+n/30 ms after the end of each frame, where n is the
number of ROIs in the image. This system would thus be expected to incur a mean decoding
latency of ~43 ms to extract traces from 1,204 ROls; the system’s variability appears to scale
with latency, so delays might be >60 ms for some frames and <20 ms for others. Zhang et al.’s™
system is well suited for experiments in which fast (<10 ms) feedback is triggered from tens of
ROls or slower feedback (40£20 ms) is triggered from hundreds of ROls. By contrast,
DeCalciOn can achieve feedback latencies of <2.5 ms with submillisecond variability even for
large ROI counts (Fig. 3C), and would thus be preferable for experiments requiring fast

closed-loop feedback triggered from large numbers of ROls.

Contour-free source extraction

In our experiments, contour-free outperformed contour-based decoding when the
number of contour-based traces was less than half the number of contour-free traces (Fig. 4D).
When the number of contour-based and contour-free traces was similar, both methods yielded
similar decoding accuracies (Supplementary Fig. 3). Decoding from offline (demixed)
contour-based traces was not more accurate than decoding from online (non-demixed)
contour-based traces (Supplementary Fig. 2), so there was no evidence that decoding accuracy
suffered at all from greater crosstalk between sources during online trace extraction. In the

process of ‘demixing’ fluorescence signals from one another, CalmAn’s CNMF algorithm does
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not in any way consider whether pixels contain information about behavior, so it may be prone
to discard pixels that contain decodable position information, especially when using
conservative parameters for contour detection. Supporting this, contour-free pixel masks with
high S scores (bright purple squares in Fig. 4B) were sometimes located in regions of the image
where CalmAn detected no cell contours at all under conservative sensitivity parameters (green
pixel masks in Fig. 4A). Based on these results, the contour-free approach is recommendable

as the efficient online trace extraction method for real-time population decoding with DeCalciOn.
Summary and Conclusions

DeCalciOn’s low cost, ease of use, and latency performance compare favorably against
other real time imaging systems proposed in the literature. By making DeCalciOn widely
available to the research community, we provide a platform for real-time decoding of neural
population activity that we hope will facilitate novel closed-loop experiments and accelerate
discovery in neuroscience and neuroengineering. All of DeCalciOn’s hardware, software, and

firmware are openly available through miniscope.org.
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Materials and Methods

Hardware

The DeCalciOn system is designed for use with UCLA Miniscope devices® and other
miniscopes'®'%'” that use the UCLA DAQ interface. The DAQ hardware requires modification by
soldering flywires to the PCB (see Fig. 1); instructions for doing this are available at

https://github.com/zhe-ch/ACTEV and pre-modified DAQ boards are available at miniscope.org.

DeCalciOn is implemented on an Avnet Ultra96 development board (available from the
manufacturer at Avnet.com), which must be mated to our custom interface board available at
miniscope.org (the interface can also be ordered from a PCB manufacturer with design files

available at https://github.com/zhe-ch/ACTEV). ACTEV firmware (for online image stabilization,

image enhancement, calcium trace extraction) and embedded software (for real-time decoding
and ethernet communication, which runs under the FreeRTOS operating system) can be
programmed onto the Ultra96 board by copying a bootable bitstream file to a MicroSD card and
then powering up the board with the card inserted. The MiniLFOV version of the bitstream file
(used for experiments reported here) is available at https://github.com/zhe-ch/ACTEV. Bitstream
files for other miniscope models, as well as Vivado™ HLS C source code for generating new

custom bitstream files, are available on request.

Software

Real-time imaging and decoding are controlled by custom RTI software (available at
https://github.com/zhe-ch/ACTEV) which runs on the host PC alongside standard DAQ software
(available at miniscope.org) for adjusting the gain and focus of the Miniscope device. The DAQ

software’s default operation mode is to receive and display raw Miniscope video data from the
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DAQ via a USB 3.0 port (and store this data if the storage option has been selected), and also
to receive and display raw behavior tracking video from a webcam through a separate USB port.
At the start of a real experimental session, data acquisition by both programs (DAQ and RTI
software) is initiated simultaneously with a single button click in the RTI user interface, so that
Miniscope video storage by the RTI software and behavior video storage by the Miniscope DAQ
software are synchronized to begin at exactly the same time. This allows behavioral data stored
by the DAQ software to be aligned with Miniscope video and calcium trace data stored by the
RTI software. During the intermission period between initial data acquisition and real-time
inference, data stored by DAQ and RTI software is used to train the linear classifier on the host

PC. Trained classifier weights are then uploaded to the Ultra96 for real-time decoding.

Contour-based pixel masks

Pixel masks for contour-based trace extraction were derived using the CalmAn? pipeline
(implemented in python) to analyze motion-corrected sensor images from the training dataset
(as noted in the main text, this took 30-60 min of computing time on the host PC). CalmAn is an
offline algorithm that uses constrained non-negative matrix factorization (CNMF) to isolate single
neurons by demixing their calcium traces. The CNMF method is acausal so it cannot be used to
extract traces in real time. But during offline trace extraction, CalmAn generates a set of spatial
contours identifying pixel regions from which each demixed trace was derived, which ACTEV
then uses as pixel masks for online extraction of contour-based traces. Once pixel masks were
identified from the training data, motion-correct miniscope video from the training period was
passed through an offline simulator that used ACTEV’s causal algorithm for extracting calcium
traces from contour pixel masks. This yielded a set of calcium traces identical to those that
would have been extracted from the training data in real time by ACTEV. These simulated

traces were then used as input vectors to train the linear classifier. Since the online traces are
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not generated by CNMF (and are thus not demixed from one another), they are susceptible to
contamination from fluorescence originating outside of contour boundaries. However, this
crosstalk fluorescence did not impair decoding since similar accuracy results were obtained by

training the linear classifier on online or offline contour-based traces (Fig. 4F,G).

Contour-free pixel masks

To implement contour-free trace extraction, we simply partitioned the 512x512 image
frame into a 32x32 sheet of tiles, each measuring a square of 16x16 pixels (Fig. 4B). No traces
were extracted from 124 tiles bordering the edge of the frame, to avoid noise artifacts that might
arise from edge effects in the motion stabilization algorithm. Hence, a total of 1,024-124=900
pixel mask tiles were used for contour-free calcium trace extraction. These traces were derived
in real time and stored to the host PC throughout the initial data acquisition period, so they were
immediately available for training the linear classifier at the start of the intermission.
Consequently, an advantage of contour-free trace extraction is that the intermission period
between training and testing is shortened to just a few minutes, because the lengthy process of
contour identification is no longer required. A disadvantage of contour-free trace extraction is
that contour tiles do not align with individual neurons in the sensor image. As reported in the
main text, this lack of alignment between neurons and pixel masks did not impair (and often
enhanced) position decoding; however, contour-free decoding does place limits upon what can

be inferred about how single neurons represent information in imaged brain regions.

Fluorescence summation

After pixel masks were created using one of the two methods (contour-based or

contour-free) and uploaded to the FPGA, calculations for extracting calcium traces from the
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masks were the same. Each mask specified a set of pixels over which grayscale intensities

were summed to obtain the fluorescence value of a single calcium trace:
P
T(f) = X p,()
i=1

where T(f) is the summed trace intensity for frame f, and p/(f) is the intensity of the " pixel in the
mask for frame f, and P is the number of pixels in the mask. Each contour-free mask was a
square tile containing 16x16=256 pixels (Fig. 4B), whereas the size of each contour-based

mask depended upon where CalmAn identified neurons in the image (Fig, 4A).
Drop filtering

The mean size of contour-based masks was 20-50 pixels (depending on the rat), which
was an order of magnitude smaller than contour-free tiles. In a few rats, a small amount of jitter
sometimes penetrated the online motion correction filter, causing the stabilized sensor image to
slip by 1-2 pixels against stationary contour masks during 1-2 frames (see Supplementary Video
1, line graph at lower right). This slippage misaligned pixels at the edges of each contour mask,
producing intermittent noise in the calcium trace that was proportional to the fraction of
misaligned pixels in the contour, which in turn was inversely proportional to the size of the
contour, so that motion jitter caused more noise in traces derived from small contour masks than
large contour masks. To filter out this occasional motion jitter noise from calcium traces, a drop
filter was applied to traces derived from contour masks that contained fewer than 50 pixels. The
drop filter exploited the fact that genetic calcium indicators have slow decay times, and
therefore, sudden drops in trace fluorescence can be reliably attributed to jitter noise. For
example, the GCamp7s indicator used here has a half decay time'® of about 0.7 s, so at the

MiniLFOV’s 22.8 Hz frame rate, a fluorescence reduction of more than 5% between frames can
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only arise from jitter artifact. The drop filter defines a maximum permissible reduction in

fluorescence between successive frames as follows:
6 = G(q,

where G is the maximum possible fluorescence intensity for any single pixel (255 for 8-bit
grayscale depth), C is the number of pixels in the contour mask for the trace, and g is a
user-specified sensitivity threshold, which was set to 0.9 for all results presented here. The

drop-filtered calcium trace value for frame f was given by:
F(f) = max[T(f), F(f — 1) — 6].

It should be noted that while drop filtering protects against artifactual decreases in trace values,
it offers no protection against artifactual increases that might masquerade as neural activity
events. However, motion jitter almost never produced artifactual increases in fluorescence for
the small contours to which drop filtering was applied, because small contours were “difficult
targets” for patches of stray fluorescence to wander into during jitter events that rarely exceeded
1-2 pixels of slippage. Larger contours were slightly more likely to experience artifactual
fluorescence increases during jitter events, but in such cases, the artifact was diluted down to
an inconsequential size because it only affected a tiny fraction of the large contour’s pixels. In
summary, jitter artifact was highly asymmetric, producing artifactual decreases but not increases

for small contours, and producing negligible artifact of any kind for large contours.

Spike inference

Once trace values have been extracted (and drop filtered if necessary), ACTEV can
apply a real-time spike inference engine to convert raw calcium trace values into inferred spike

counts for each frame. Briefly, the spike inference engine measures how much the trace value in
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the current frame has changed from the prior frame, T(f)-T(f-1), and compares this against a
threshold value, ®, which is equal to 2.5 times the standard deviation of difference values
between successive frames of the same trace in the training dataset. For the CA1 data reported
here, we found that the linear classifier was more accurate at decoding raw (unconverted)
calcium traces than inferred spike counts (Supplementary Fig. 1). Decoding from raw calcium
traces is not only more accurate but also more computationally efficient; therefore, the main text

reports results obtained by decoding raw calcium trace values.

Training the linear classifier

The linear classifier has N inputs and M outputs, where N is the number of calcium
traces. In performance tests reported here, the output layer utilized an ordinal scheme to
represent each of the 24 binned track locations: at position bin #1 the target output for all output
units was +1, at position bin #2 the target output was -1 for the first output unit and +1 for the
remaining units, at position bin #3 the target output was -1 for the first two output units and +1
for the remaining units, and so on. Under this ordinal representation scheme, the total number
of output units is equal to M=K-1, where K is the number of categories (position bins) to be
encoded. Since the linear track was subdivided into K=24 spatial bins, there were M=24-1=23
binary classifier units in the decoder’s output layer. To train the linear classifier, data stored
during the initial acquisition period by the DAQ and RTI software was analyzed during the

intermission period by custom MATLAB scripts, available at https://github.com/zhe-ch/ACTEV.
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Training data consisted of calcium trace input vectors (derived by either contour-based or
contour-free methods described above) and target position output vectors (encoding the rat’s
true position) for each Miniscope frame. These training vectors were passed to MATLAB’s
fitceoc function (from the machine learning toolbox) to compute the trained linear classifier
weights, which were then uploaded from the host PC to the Ultra96 via ethernet, so that the
real-time classifier could subsequently decode calcium traces in real time. As a control
condition, calcium traces and tracking data were circularly shifted against one another by 500,
1000, 1500, 2000, or 2500 frames before training, and the trained classifier was then tested on
correctly aligned trace inputs and target position outputs. Accuracy results from all five shift
values were averaged together to obtain the ‘misaligned’ decoding accuracies plotted in Figs.

2E,F of the main text.

Decoding calcium traces

Once classifier weights had been uploaded to the Ultra96 from the host PC, it was then
possible for the embedded ARM core in the Ultra96 MPSoC to read in calcium trace values from
the DRAM in real time as each frame of data arrived from the Miniscope, and present these
values as input to the linear classifier. The linear classifier performed calculations equivalent to
MATLAB’s predict function (from the machine learning toolbox) to generate an output vector
predicting the rat’s position on the track during each frame. This prediction was sent back to the
host PC via ethernet for storage, and was also sent to a programmable logic mapper running on
the ARM core, which converted the linear classifer’s output vector into a pattern of square
pulses generated at on of 8 TTL pinouts from the Ultra96. TLL outputs are capable of driving
closed-loop neural or sensory feedback via external devices such as lasers, electrical
stimulators, or audiovisual display equipment. For performance testing, we measured the

latency to generate TTL outputs from decoded neural activity (see Fig. 1H in the main text), but
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Supplementary Fig. 2. Spatial similarity score distributions by rat. Each plot shows
the cumulative probability density (top) and frequency distribution (bottom) of S
scores from one rat; lower right plot shows S scores pooled over all rats. In every
rat, the cumulative S distribution for contour-based traces is shifted to the right, ind-
cating that contour-based traces were generally of higher quality (had more stable
spatial tuning) than contour-free traces. But the number of contour-free traces (900
per rat) was always greater than the number of contour-based traces (shown at the
top of each plot), and this was equally true for traces with high and low S values.
Therefore, for position decoding, the lesser quality of individual contour-free traces
was compensated by the fact that were greater in number, which was beneficial for
population decoding.

we did not deliver closed loop feedback to our pilot rats. As explained in the Results, decoding
from contour-free traces was more accurate than from contour-based traces. This was because

there were more contour-free traces in every rat (Supplementary Fig. 2).
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Spatial tuning curves

To generate spatial tuning curves for fluorescence traces, each trace was first referenced
to zero by subtracting it's minimum observed fluorescence value (over all frames) from the value
in every frame: Z(f) = T(f) — min(T), where Z(f) is the zero-referenced trace value for frame f.
The 250 cm linear track was subdivided into 24 evenly spaced spatial bins (12 each in the
left-to-right and right-to-left directions; see Fig. 2A). Fluorescence activity, A, in each bin b was

averaged by
B
A(b) = ¥ Z(f)/B
i=1

where B is the number of visits to bin b and f; is the " frame during which the rat was visiting bin
b. The tuning curve vector [A4, A,, ..., Ax] was then normalized by dividing each of its elements
by the value of the maximum element. Normalized tuning curve vectors were plotted as
heatmaps in Figs. 2C and 2D. Spatial similarity scores (S) were computed as described in the

main text; S distributions for each rat are shown in Extended Data Fig. 3.
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Subjects

13 Long Evans rats (7F,6M) were acquired from Charles River at 3 months of age.
Subjects were singly-housed within a temperature and humidity controlled vivarium on a 12 hour
reverse light-cycle. Surgical procedures began after a one week acclimation period in the
vivarium, and recordings and behavioral experiments began around 5 months of age. All
experimental protocols were approved by the Chancellor’'s Animal Research Committee of the
University of California, Los Angeles, in accordance with the US National Institutes of Health

(NIH) guidelines.

Surgical procedures

Subjects were given two survival surgeries prior to behavior training in order to record
fluorescent calcium activity from hippocampal CA1 cells. During the first surgery, rats were
anesthetized with 5% isoflurane at 2.5 L/min of oxygen, then maintained at 2-2.5% isoflurane
while a craniotomy was made above the dorsal hippocampus. Next, 1.2 ulL of
AAV9-Syn-GCamp7s (AddGene) was injected at .12uL/min just below the dorsal CA1 pyramidal
layer (-3.6 AP, 2.5 ML, 2.6 DV) via a 10uL Nanofil syringe (World Precision Instruments)
mounted in a Quintessential Stereotaxic Injector (Stoelting) controlled by a Motorized Lab
Standard Stereotax (Harvard Apparatus). Left or right hemisphere was balanced across all
animals. One week later, the rat was again induced under anesthesia and 4 skull screws were
implanted to provide stable hold for the subsequent implant. The viral craniotomy was reopened
to a diameter of 1.8 mm, and cortical tissue and corpus callosal fibers above the hippocampus
were aspirated away using a 27 and 30 gauge blunt needle. Following this aspiration, and

assuring no bleeding persisted in the craniotomy, a stack of two 1.8 mm diameter Gradient
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Refractive INdex (GRIN) lenses (Edmund Optics) was implanted over the hippocampus and
cemented in place with methacrylate bone cement (Simplex-P, Stryker Orthopaedics). The
dorsal surface of the skull and bone screws were cemented with the GRIN lens to ensure
stability of the implant, while the dorsal surface of the implanted lens was left exposed.

Two to three weeks later, rats were again placed under anesthesia in order to cement a
3D printed baseplate above the lens. First a second GRIN lens was optically glued (Norland
Optical Adhesive 68, Edmund Optics) to the surface of the implanted lens and cured with UV
light. The pitch of each GRIN lens was <0.25, so implanting two stacked lenses yielded a total
pitch of <0.5. This half pitch provides translation of the image at the bottom surface of the lenses
to the top while maintaining the focal point below the lens. This relay implant enables access to
tissue deep below the skull surface. The MiniLFOV was placed securely in the baseplate and
then mounted to the stereotax to visualize the calcium fluorescence and tissue. The baseplate
was then cemented in place above the relay lenses at the proper focal plane and allowed to

cure.

Linear alternation behavior

After rats had been baseplated, they were placed on food restriction to reach a goal
weight of 85% ad lib weight and then began behavioral training. Time between the beginning of
the surgical procedures and the start of behavior training was typically 6-8 weeks. Rats earned
20 mg chocolate pellets by alternating between two rewarded ends of a linear track (250 cm)
during 15 min recordings beginning 5 days after baseplating. After receiving a reward at one

end, the next reward had to be earned at the other end by crossing the center of the track.
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Behavior tracking

A webcam mounted in the behavior room tracked a red LED located on the top of the
Miniscope and this video was saved alongside the calcium imaging via the Miniscope DAQ
software with synchronized frame timestamps. These behavior video files were initially
processed by custom python code, where all the session videos were concatenated together
into one tiff stack, downsampled to 15 frames per second, the median of the stack was
subtracted from each image, and finally they were all rescaled to the original 8-bit range to yield
the same maximum and minimum values before subtraction. Background subtracted behavior
videos were then processed in MATLAB. The rat’s position in each frame was determined using
the location of the red LED on the camera. Extracted positions were then rescaled to remove
the camera distortion and convert the pixel position to centimeters according to the maze size.
Positional information was then interpolated to the timestamps of the calcium imaging video

using a custom MATLAB script.

Histology

At the end of the experiment, rats were anesthetized with isoflurane, intraperitoneally
injected with 1 mL of pentobarbital, then transcardially perfused with 100 mL of 0.01M PBS
followed by 200 mL of 4% paraformaldehyde in 0.01M PBS to fix the brain tissue. Brains were
sectioned at 40 um thickness on a cryostat (Leica), mounted on gelatin prepared slides, then

imaged on a confocal microscope (Zeiss) to confirm GFP expression and GRIN lens placement.
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Supplementary Video Captions

Supplementary Video 1. Real-time motion correction. The left and right windows show sensor
video data before and after motion correction, respectively. The line graphs at bottom show x
(yellow) and y (green) components of the image displacement between frames before (left) and

after (right) motion correction.

Supplementary Video 2. RT/ view of contour-based calcium trace extraction. The online image
display (left window) shows the motion corrected and enhanced (i.e., background subtracted)
sensor image data as it arrives in real time from the Ultra96 board. The right window shows a
scrolling display of 63 selected calcium traces from regions outlined by colored borders in the
image display window. These traces are derived on the Ultra96 by summing fluorescence within
their respective contour regions, and the resulting trace values are transmitted (along with
sensor image data) via ethernet to the host PC for display in the RTI window. For demonstration
purposes, traces shown in the window on the right are normalized within the ranges of their own

individual minimum and maximum values.

Supplementary Video 3. Real-time decoding of contour-free calcium traces. The online image
display (left window) shows the motion corrected and enhanced mosaic of contour-free pixel
mask tiles. The right window shows a scrolling heatmap display of 103 (out of the total 900)
calcium traces with the highest tuning curve similarity scores, S (see main text). The calcium

trace rows in the heatmap are sorted by the peak activity location of each trace, so that calcium
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activity can be seen to propagate through the population as the rat runs laps on the linear track.
The line graph at the top shows the rat’s true position (blue line) together with its predicted
position (orange line) decoded in real time by the linear classifier. For demonstration purposes,
trace intensities shown in the scrolling heatmap are normalized within the ranges of their own

individual minimum and maximum values.
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