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Abstract

A cortical neuron typically makes multiple synaptic contacts on the dendrites of a post-synaptic target
neuron. The functional implications of this apparent redundancy are unclear. The dendritic location of a
synaptic contact affects the time-course of the somatic post-synaptic potential (PSP) due to dendritic
cable filtering. Consequently, a single pre-synaptic axonal spike results with a PSP composed of multiple
temporal profiles. Here, we developed a "filter-and-fire" (F&F) neuron model that captures these features
and show that the memory capacity of this neuron is threefold larger than that of a leaky integrate-and-
fire (I&F) neuron, when trained to emit precisely timed output spikes for specific input patterns.
Furthermore, the F&F neuron can learn to recognize spatio-temporal input patterns, e.g., MNIST digits,
where the I&F model completely fails. Multiple synaptic contacts between pairs of cortical neurons are
therefore an important feature rather than a bug and can serve to reduce axonal wiring requirements.

Keywords: Synaptic Integration; Dendritic Computation; Cable Theory; Compartmental Models; Neural Code;

Computational Neuroscience; Biological Learning; Machine learning.


https://doi.org/10.1101/2022.01.28.478132
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.01.28.478132; this version posted January 28, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Introduction

Neurons in the central nervous system (CNS) connect to each other via chemical synapses. In recent
decades it was found that two neurons that are synaptically connected typically connect via multiple
synaptic contacts rather than a single contact (Holler et al. 2021; Silver et al. 2003; Feldmeyer, Liibke,
and Sakmann 2006; Shepherd et al. 2005; Markram et al. 1997). Multiple synaptic contacts that originate
from a single pre-synaptic axon often impinge on different parts of the dendritic tree of the post-synaptic
neuron (Feldmeyer, Liibke, and Sakmann 2006; Silver et al. 2003; Holler et al. 2021). Furthermore, if
contacts were just based on "Peters' rule" (Peters and Feldman 1976) (namely by axon-dendrite
proximity), then one would expect that the distribution of the number of multiple contacts would be
exponential, with one contact per axon being the most frequent case (Fares and Stepanyants 2009;
Markram et al. 2015; Rees, Moradi, and Ascoli 2017) which is far from what was empirically observed.
The deviation from the distribution predicted by Peters' rule suggests that the number of synaptic contacts

between two connected neurons is tightly controlled and is thus likely to serve for a functional purpose.

Several phenomenological models have attempted to explain how multiple synaptic contacts between the
pre-synaptic and post-synaptic neurons are formed (Fares and Stepanyants 2009), but very few studies
have tried to tackle the question of how might they be beneficial from a computational perspective, but
see (Sezener et al. 2021; Camp, Mandivarapu, and Estrada 2020; Jones and Kording 2021; Zhang, Hu,
and Liu 2020; Hiratani and Fukai 2018; Acharya et al. 2021). It is typically thought that this redundancy
overcomes the problem of unreliable synaptic vesicle release, which results in unreliable signal
transmission between the pre-synaptic and the post-synaptic neurons (Rudolph et al. 2015). Several
statistically independent unreliable contacts that sum together can reduce the variance of the post synaptic
potentials (PSP). However, the same effect using a simpler mechanism could be achieved by multiple
vesicles release (MVR) per synaptic activation (Rudolph et al. 2015; Holler et al. 2021) and does not
require multiple synaptic contacts. Other studies addressed additional possible advantages for having
multiple synaptic contacts between two neurons. Hiratani and Fukai (Hiratani and Fukai 2018)
demonstrated that multiple synaptic contacts might allow synapses to learn quicker. Note that faster
learning, although beneficial, fundamentally does not endow the neuron with the ability to perform new
kinds of tasks. Zhang et al. (Zhang, Hu, and Liu 2020) model multiple contacts in the context of deep
artificial neural networks but demonstrate no tangible computational benefit. Several other studies use

multiple synaptic contacts in the context of artificial neural networks, demonstrating some computational
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benefits, sometimes without explicitly addressing the use of multiple synaptic contacts (Camp,

Mandivarapu, and Estrada 2020; Jones and Kording 2021; Sezener et al. 2021).

To address the question of the functional consequence of multiple contacts, we developed a simplified
neuron model: the Filter and Fire (F&F) neuron. This model is based on the Integrate and Fire (I&F)
neuron model but, in our model, each pre-synaptic axon makes multiple synaptic contacts. We further
add features to the model to account for the effect of the dendritic cable filtering on time course of the
somatic potential resulting from the different synaptic locations on the dendritic tree (Rall 1964; Rall
1967). To analyze the memory capacity of this model, we use the formulation of Memmesheimer et al.
(Memmesheimer et al. 2014) developed for the I&F model. We further showed how to teach the F&F
neuron a real-world classification task and explored other aspects such as the effect of unreliable synapses
on the memory capacity of the F&F neuron and the implication of multiple synaptic contacts for

optimizing axonal wiring in the brain.

Results

Mathematical description of the filter and fire (F&F) neuron model with multiple contacts
We propose hereby a Filter and Fire (F&F) neuron model, which is similar to the standard current-based
Leaky Integrate and Fire (I&F) neuron model, but with two added features. The first feature approximates
the temporal characteristics of a dendritic cable as initially demonstrated by Rall (Rall 1964; Rall 1967),
in which inputs that connect at distal locations on the dendrite exhibit prolonged post synaptic potentials
(PSP) at the soma (Fig 1B top traces), whereas proximal inputs generates brief PSP profiles (Fig 1B
bottom traces). The second feature is that each input axon connects to multiple locations on the dendritic
tree, sometimes proximal and sometimes distal (Fig. 1A,B). Formally, consider N,,,,s the number of
input axons (Fig 1A), denoted by index i, and their spike trains will be represented by X;(t). Each axon
connects to the dendrite via M contacts (M = 3 is illustrated in Fig. 1). Each contact connects to the
dendrite at a location denoted by index j and filters the incoming axon spike train with a specific synaptic

kernel K;(t). This forms the contact's voltage contribution trace Vci,j(t) =X;(t) * K;(t) =

2t Kj(t — t;). There is a total of M - Ngyons such contact voltage contributions traces overall (Fig 1C).
. _ 1 2 N, .

In vector notation we denote V. (t) = [V (t), V5, (1), ---,I/C,ﬁ_’j\‘,’:jons(t)]. Each synaptic contact has a

weight, w;. In vector notation we write w = [wy, Wy, -, Wy, ]. Each contact contribution trace is

multiplied by its corresponding weight to form the somatic voltage trace V,(t) = wT -V (t) =
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Xjw;j -V ;(t) (Fig 1D). When the spike threshold is reached, a standard reset mechanism is applied.
Please note that the "dendrites" in this model are linear and therefore retain the analytic tractability of the
I&F neuron models.

Here we model the temporal ramifications of the effect of adding a passive dendritic cable; we did not
consider here the effect of nonlinear dendrites. The kernels we use are typical double exponential PSP
shapes of the form: K;(t) = A - (e_t/ Tdecayj — gt/ T”'SQJ'), where A is a normalization constant such that
each filter has a maximum value of 1, and Tgecqy,j> Trise,; are randomly sampled for each synaptic
contact, representing randomly connected axon-dendrite locations. Note that due to mathematical
simplicity we do not impose any restrictions on synaptic contact weights, each weight can be both
positive or negative regardless of which axon it comes from. Indeed, the goal of the study is not to
replicate all possible biological details, but specifically explore the computational benefit that arises due
to two specific details - temporal filtering of synaptic potentials due to dendritic cable properties and

multiple synaptic connections between pairs of neurons.
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Figure 1. The Filter and Fire (F&F) neuron receives input through multiple synaptic contacts per axon and
filters each contact with a different synaptic kernel. (A) Example for three incoming input axons each making
several contacts onto the post-synaptic cell. (B) Various synaptic filters representing their respective locations on
the dendritic tree of the neuron model, shown in grey. Proximal synaptic filters are brief whereas more distal
synaptic filters have broader temporal profiles. Colors are according to the source axon. (C) Local dendritic voltage
responses at the synaptic loci, that result from the convolution of axonal spike train with the respective synaptic
filter. Colors according to that of the source axon. Dashed lines indicate each contact’s voltage contribution after
learning. In this example, w, is increased, ws and wg are decreased following learning. (D) Somatic voltage is a
weighted sum of each synaptic contact contributions with an independent weight for each contact. Standard I&F
reset mechanism is used as the spike generation mechanism at the soma. In black is somatic trace before learning
and in blue after learning.

Increased memory capacity of the F&F neuron with multiple synaptic contacts

We first test the memorization capacity of F&F neuron model as a function of the number of multiple
connections. We utilize the framework proposed by Memmesheimer et al. (Memmesheimer et al. 2014)
and measure memory capacity in an identical way, and use their proposed local perceptron learning rule
for the task. In short, this capacity measure indicates the maximal number of precisely timed output

spikes in response to random input stimulation during some time period. Fig. 2A shows random spiking
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activity of 100 axons for a period of 60 seconds (top). Below the output of the post-synaptic cell is shown
before learning (black), after learning (blue) and the desired target output spikes (red). In this example,
we used M = 5 multiple contacts per axon. For the given set of spike trains, it is possible to find a weight
vector to perfectly place all output spikes at their precisely desired timing. In Fig. 1B we repeat the
simulation as in Fig. 1A, for various values of multiple contacts (M) while re-randomizing all input spike
trains, desired output spike trains, and the synaptic filter parameters of each contact. We repeat this both
for the I&F neuron model (i.e., a single synaptic PSP kernel for all synapses) and the F&F neuron model
with a randomly selected synaptic kernel for each synapse (see Methods for full details of the kernel
shapes we used). The y axis represents our success in placing all of the output spikes accurately, as
measured by area under the receiver operating characteristic curve (ROC) (AUC) for the binary
classification task of placing each spike in 1ms time bins. Error bars represent the variance of the AUC
over multiple repeats (18), while re-randomizing the input, re-randomizing the synaptic kernels and re-
randomizing the desired output spike trains. The figure shows that all the curves obtained from the I&F
neuron models cluster together, and there is no change for different values of M (multiple contacts). This
is to be expected as this is the classic case of synaptic redundancy when using a single temporal kernel
for all pre-synaptic axons. e.g. for a single axon and two contacts one can see that in the case of a single
synaptic kernel (as is the case in I&F model) the somatic voltage can be written as V,(t) = wy -
YKt —t)+twy XKt —t) =W +wp) XK({t—1t;) = werr-XK(t—1t;). ie. the additional
weights associated to the same input axon for the I&F neuron when using multiple contacts are equivalent

to a single effective weight, and therefore not utilized.

For the F&F in the case of M = 1 we have an I&F model just with different kernels for each synapse.
This change on its own does not make any difference in the capacity of the model as the number of
learnable and utilizable parameters is identical to the I&F case with M = 1, and thus this curve lies with
the other curves of the I&F models. However, for the F&F models with multiple contacts (M =
2,3,5,10,15) the graph shows an increased accuracy, demonstrating that some of the additional weights
are utilized. In Fig. 2C we display the maximal number of output spikes that can be precisely timed as a
function of M (number of multiple contacts), for both I&F and F&F models. We measure the number of
precisely timed spikes as the maximal number of spikes that is above a high accuracy threshold (AUC >
0.99) of the plot in Fig. 2B, and we normalize by the number of axons to display the number of precisely

timed output spikes per input axon on the y axis.
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As expected from Fig. 1B, the capacity of the I&F model does not depend on the number of multiple
connections. The F&F, however, displays an increase of capacity, saturating at approximately 3-fold
larger than that of the I&F neuron model capacity. Note that the number of degrees of freedom (tunable
parameters) scales linearly with the number of multiple contacts, so there is not an obvious explanation
for the observed saturation. We will come back to this and explain the precise origin of this 3-fold
increase compared to the I&F model in a later section. In Fig. 2D we vary the number of input axons and
observe linear scaling of the number of precise spiking achieved with different slopes for different
number of multiple connections. This indicates that increasing the number of multiple connections
increases the effective number of parameters utilized per axon. To better illustrate these results, we show
in Fig. S1A a simple case of how the I&F neuron can emit temporally precise output spikes by employing

a spatial strategy. In Fig. S1B we show how an F&F neuron can employ a temporal strategy.
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Figure 2. Increased memory capacity of precisely timed output spikes for F&F neuron compared to I&F
neuron. (A) Learning to place precisely timed output spikes for randomly generated input. Top. Random axonal
input raster. Bottom. Output spikes before learning (top, black), after learning (middle, blue) and the desired output
spikes (bottom, red). (B) Binary classification accuracy at Ims temporal resolution as measured by area under
ROC curve (AUC) as a function of the number of required output spikes for input with 200 input axons. We see
increased capacity for F&F models as the number of multiple contacts increases, whereas no increase for the I&F
case as one would expect. (C) A summary plot that summarizes the capacity as a function of the number of multiple
connections. For this plot we use the maximal number of spikes that achieves accuracy above AUC threshold of
0.99. The vertical axis depicts the fraction of successfully timed spikes for each input axon. We see saturation in
the capacity for high values of multiple contacts to be ~3x compared to the I&F capacity. (D) The capacity scales
linearly as function number of axons and exhibits no saturation.

The F&F neuron can learn spatio-temporal tasks that an I&F neuron cannot

Next, we wish to demonstrate new capabilities of the F&F neuron model with multiple synaptic
connections that are beyond the I&F neuron model capabilities. For this purpose, we construct a new
spatiotemporal task derived from MNIST task. Towards this end, we converted the horizontal spatial
image dimension (width) into a temporal dimension (Fig. 3A top) with a uniform time warping such that

20 horizontal pixels will be mapped into T milliseconds. T will be the pattern presentation duration. The
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vertical spatial image dimension (height) is simply replicated 5 times so that 20 vertical pixels will be
mapped onto 100 axons. We then sample spikes for each axon according to the time varying Poisson
instantaneous firing rate with additional background noise. An example of the resulting input spike trains
is shown by the raster plot in Fig. 3A middle frame. Finally, we train our neuron to produce a spike at
the end of a specific digit that was presented. We train on the full MNIST train subset of digits, and
present results on the test set. Before learning (black), after learning (blue), and the desired output (red)
are presented at the bottom of Fig. 3A for the case where the selected digit was 3. We then repeat this
process for all digits for three models - I&F neuron, F&F neuron, and a spatio-temporal, temporally
sliding, logistic regression (LR) model. We use the spatio-temporal sliding logistic regression model as
a reference model for comparison with the F&F neuron but note that this model is not biologically
plausible and cannot be considered as a model of a neuron in our case. Importantly, the LR model has
Ngxons * T learnable and fully utilizable parameters (N, ons parameters for each Ims time bin) which is
much greater than N, - M parameters that are used in the F&F and I&F models (which are also not

fully utilizable as we've seen in Fig. 2).

The test accuracies following training for all models are depicted in Fig 3B. For this plot a successful
true positive (hit) is achieved if at least 1 spike has occurred in the time window of 10 ms around the
ground truth desired spike. The temporal duration of each pattern T was 40 ms and the number of multiple
contacts M was 5, for the plot in Fig. 3B. Fig. 3B clearly shows that the I&F neuron model is at chance
level for almost all digits, and basically is incapable of learning the task. In contrast, the F&F model with
5 multiple connections is consistently better than chance and sometimes approaches the "aspirational”
spatio-temporal logistic regression model. In Fig. 3C we visually display the learned weights of all
models when attempting to learn the digit 3. The weight matrix of the logistic regression model clearly
depicts what appears to be an average-looking digit 3, which was the digit the neuron was trained to
recognize. The F&F neuron model depicts a temporally smoothed version of the logistic regression
model, and the I&F model clearly cannot learn temporal patterns and therefore cannot recognize this
digit at above chance level. For precise details of how the weights for the F&F and I&F models were
visualized, please consult the Methods. For a more simplified pattern classification case, please see Fig.
S1C. Fig. SID shows how a F&F neuron can solve the task shown in Fig. SIC. Fig. S1E explains why

this task cannot be solved by an I&F neuron.

To test the effect of the presentation duration of each digit T, Fig. 3D displays summary statistics of test
accuracy, averaged across all digits, for the three models as a function of T. The interval between patterns

was 70 ms and the decay time constant for I&F model was 30 ms, to match the maximal decay time
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constant for all synaptic kernels in the F&F model. The F&F neuron had 5 multiple contacts. Fig. 3D
shows that there is an optimal pattern presentation duration for the F&F model that occurs at the 40-50

ms range, which is ~1.5 times the maximal decay time constant in the model.

Next, we seek to determine the effect of unreliable synaptic transmission and its interaction with multiple
synaptic contacts. As explained in the Introduction, multiple synaptic contacts are often considered as a
mechanism to overcome synaptic transmission unreliability. In Fig. 3E we display the test accuracy as a
function of the number of multiple contacts for all 3 models for fully reliable synapses as we have
displayed thus far, and in dashed line is the accuracy under the unreliable synapse's regime with a
probability of release of p = 0.5 for each contact. Note the consistent drop in test accuracy that does not
go away even with a large number of multiple contacts. In this graph the positive digit used was "7" and
the pattern temporal duration was T = 30 ms. The number of positive training samples used in this case
was 2048 patterns. Unreliable synaptic transmission can be considered as a mechanism for implementing
"drop-connect", a method used in training artificial neural networks that has a known regularization effect
(Wan et al. 2013; Srivastava et al. 2014). In Fig. 3F we test if this is also applicable to our case. We show
the test accuracy as a function of the number of training samples and demonstrate a regularization effect
in the case of F&F that increases test accuracy for a low number of training input patterns. Note that each
training sample was shown to the model multiple times (15 times in this case) and for each spike and
each contact an independent probability of release was applied, effectively resulting in 15 noisy patterns
that were presented to the neuron during training for each original training pattern. This suggests that
unreliable synapses can also be viewed as a "feature" rather than a "bug" for the regime of a small number

of training data points and can help avoid overfitting.
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Figure 3. The F&F neuron can learn to recognize spatio-temporal patterns whereas I&F neuron cannot.
(A) A F&F neuron was trained to recognize digits in a spatio-temporal version of the MNIST task. From top to
bottom: Original input digits, axon spike raster that represent the respective digits (with some additional
background noise), F&F neuron (with 5 multiple contacts) output before learning (black), after learning, (blue)
and the desired output spike train (red). The neuron was trained to detect the digit "3" in this case. The depicted
traces are from unseen test set. (B) Full test set classification accuracy of F&F (orange), I&F (black) and a non-
biologically plausible temporally sliding spatio-temporal Logistic Regression model (gray) for the spatio-temporal
digit classification task when each digit was used as the positive class and the rest of the digits were considered
the negative class. The random chance baseline for each case is shown by the red horizontal lines. The I&F models
cannot learn the task whereas F&F neurons sometimes approach the (non-biological) spatio-temporal logistic
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regression model. The number of positive training samples used in this case was 5000. (C) Spatio-temporal
representation of the learned weights of the three models when attempting to detect the digit "3". We can clearly
discern the digit "3" in the logistic regression case, a faint "3" in the F&F case, and an attempt to use spatial-only
information to detect the digit in the I&F case, which is unsuccessful in achieving above chance accuracy on the
test set. The top three images are for a single trial with a single random axonal wiring, and Poisson sampling of
the inputs. Bottom three images are an average of 67 trials. (D) Summary of test accuracy, averaged across all
digits, for the three models as a function of the temporal duration of the pattern. Silence time between patterns was
70ms. The decay time constant for I&F model is 30 ms, as is the maximal decay time constant for all synaptic
kernels for the F&F model. F&F neuron in this case had 5 multiple contacts. (E) Test accuracy as a function of
the number of multiple contacts for all 3 models. In dashed line is the accuracy under the unreliable synapse's
regime with a probability of release of 50% for each contact. Note the consistent drop in accuracy. In this graph
the positive digit used was "7" and the pattern temporal duration was T=30ms. The number of positive training
samples used in this case was 2048 patterns. (F) Test accuracy as a function of the number of training samples.
Each training sample was shown to the model multiple times (15 times in this case) and for each spike and each
contact an independent probability of release was applied. Note the regularization benefit of unreliable synaptic
release for a small number of training samples in the dataset (dashed orange line above solid orange line). This is
simple result of drop-connect regularization that unreliable synapses implement. This suggests that unreliable
synapses can be viewed as a "feature" rather than a "bug" for the regime of a small number of training data points.

Maximal capacity is explained by the effective 3-dimensional subspace spanning all

synaptic kernels

Next, we wish to pinpoint the mathematical origin of the properties depicted in Figures 2 and 3 of the
proposed F&F neuron models with multiple synaptic connections. We observed that all PSP kernels we
used are of similar shapes and therefore the inputs from the same axon will generate very correlated
inputs at the local synaptic responses vector V.(t). Any input correlation will limit the number of degrees
of freedom available for learning by modification of the synaptic weights w. In Fig. 4A we show all the
PSPs as heatmaps organized according to increasing values of 7,5, Within each block and increasing
Tgecay between the blocks. In Fig. 4C we show all the PSPs as temporal traces overlayed on each other.
Both Fig. 4A and 4C clearly show that the shapes of the PSP kernels, although chosen randomly and
have some variance, are overall very similar to each other. We therefore apply singular matrix (SVD)
decomposition on all PSP shapes (Fig. 4B) and discover that 99.93% of the variance in all PSP shapes is
explained by the first 3 singular vectors (Fig. 4E). This means all synaptic kernels depicted in Fig. 4A
and 4C are effectively spanned by a basis set of orthogonal 3 PSP-like shapes. For the sake of presentation
and to avoid negative values in the trace shapes, we display the 3 independent kernels that are the result
of non-negative matrix factorization (NMF) in Fig. 4D. It's visible that these PSP shapes basically filter

the input signal with various time constants and various delays. These are very intuitive shapes that we
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can easily interpret. With them, we can understand both the temporal smoothing aspect of the learned
weights by the F&F neuron model in Fig. 3C, and the number of independent PSP shapes is a good
candidate to explain the very specific 3-fold increase in capacity of Fig. 2C. To verify that these the basis
sets are in fact explaining the phenomenon in Fig. 2, we repeat the same experimentation as in Fig. 2, but
now each axon is connected to the post synaptic neuron via only 3 multiple connections, and this time
they are the optimal PSPs shapes depicted in Fig. 4D instead of being randomly selected. These results
are depicted in Fig. 4F. The model with three orthogonal kernels has effectively identical results to those
of the F&F neuron, and thus helps us explain its behavior. First, to explain the capacity, when we
randomly sample more and more connections from the set of all possible kernels (e.g., increasing M),
we slowly approach to span the entire 3-dimensional space by each contact and therefore we have a
saturation effect at three times the I&F baseline level. This means that we have reached the three
independent kernels, each corresponding to an independent learnable parameter. Second, the specific
shapes of these kernels explain the temporal smoothing effect we observe in the learned weights of the
F&F neuron model in Fig. 3C. Note that although we used in our study somewhat artificial double
exponential synaptic kernels, we verified that our results also hold for PSPs in a simulation of a highly
realistic detailed cortical neuron model. This verification can be found in Fig. S2, which shows that
despite some quantitative differences, qualitatively the results presented in our work using a reduced
F&F neuron model are valid also for the case of a neuron with a complex dendritic tree. Namely, a basis
set of three temporally-distinct kernels can effectively span all synaptic kernels in realistic models of

cortical pyramidal neurons.
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Figure 4. The dendritic filters are spanned by a 3-dimensional basis set of PSPs accounting for the 3-fold
increase in the F&F capacity for a large number multiple contacts. (A) All possible post synaptic potentials
(PSPs) that were used in the study shown as heatmaps. Every block has a different exponential decay time. Within
each block the rise time grows for each row. (B) The Singular Value Decomposition of all the PSPs shown in (A)
as heatmaps. We see a Fourier-like basis set. (C) All possible post synaptic potentials (PSPs) that were used in the
study, shown as traces. We clearly see that there are strong correlations between the various PSPs, indicating they
are not all equally useful (D) First 3 Basis functions of the Non-Negative Matrix Decomposition of all PSPs shown
in (A) and (C). NMF instead of SVD was used for ease of interpretation and visualization purposes. (E) Cumulative
variance explained by each basis component. We see that by using 3 basis functions shown in (D) we can span all
PSPs shown in (C) and explain the phenomenon shown in Fig. 2C in which the capacity is capped by 3x the
number of axons when the number of multiple contacts is large. (F) Direct verification that the 3 orthogonal basis
set in (E) can be used as 3 optimal multiple contact filters and achieve the same capacity as 15 randomly selected
multiple contacts.
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Multiple synaptic contacts along with dendrites allow the CNS to save either in number of
transmitting axons or decoding neurons while achieving identical computational goals

Finally, we wish to point out that multiple synaptic contacts and the proposed F&F neuron model might
allow the central nervous system to transmit information via axons in a more hardware efficient way by
relying on dendritic decoding downstream. Three computationally equivalent alternatives are depicted
in Figure 5. Fig. 5C illustrates the case in which N axons transmit information to be readout by an F&F
neuron model with multiple synaptic contacts downstream. If we wish for a downstream I&F point
neuron to have the ability to produce the same output as the F&F in Fig. 5C, we will need that each of
the N axons in Fig. 5C to be replicated 3 times, each with some additional delay to account for the
temporal integration properties of the F&F neuron model. This scenario is illustrated in Fig. 5D and
verified in simulations in Figures SA and 5B. Alternatively, it is also possible to utilize the same N axons
as in Fig. 5C but have a decoding network of 3N point neurons downstream. This scenario is depicted in
Fig. SE. These three alternatives highlight the more general scenario in which the evolutionary pressure
to reduce axonal wiring in an ever-increasing brain volume (Chklovskii, Schikorski, and Stevens 2002;
Chen, Hall, and Chklovskii 2006) is solved by compressing information on a limited number of axons
and relying on sophisticated dendritic integration to decode these signals. In this context we have shown
that employing multiple synaptic contacts between the axon and its post-synaptic neuron enables
dendrites to better decode spatiotemporal patterns and save "hardware" (reduced total axon length,

reduced number of neurons).


https://doi.org/10.1101/2022.01.28.478132
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.01.28.478132; this version posted January 28, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

C
N .
3
o
D
I&F (Orig Axons + 2 delayed)
100 (
Desired Output (num spikes = 40)

N4
¢

Desired Output

% . O/ B L S
R IR TR IS

(R O By N EL ET A
— 1

Figure 5. The F&F neuron model allows the central nervous system to reduce the number of transmitting
axons or decoding neurons. Illustration of three computationally equivalent implementations. (A) On the top
depicted is the input axon raster. The black axons are delayed once to produce the brown axons and delayed once
more to produce the purple axons. Only the black axons are fed as input to the F&F neuron, whose output is shown
in orange. The full set of axons is fed into a I&F neuron whose output is shown in black. In red the desired output
spike train is shown. This panel demonstrates that an I&F neuron with additionally delayed input axons replicates
the precise timing capacity of the F&F model. (B) Similar to what is depicted in (A) only this time for the
spatiotemporal MNIST digit recognition task. Here again we see that an I&F neuron with additionally delayed
input axons can reproduce the F&F neuron performance on the spatiotemporal MNIST digit recognition task (C)
[lustration of N axons that feed into a single F&F neuron model with a simplified dendrite and multiple synaptic
contacts. (D) In order for an I&F point neuron model to have identical memorization capacity as the F&F neuron
illustrated in (C), the same information needs to be separated into 3N axons (E) In order for an I&F point neuron
to have identical spatio-temporal patterns separation capabilities with the same original N axons as in (C), it needs
to have a feed-forward "delay line" decoding network prior to being fed into the I&F point neuron. This alternative
is demonstrated in both (A) and (B).
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Discussion

Neurons in the brain typically connect to each other via multiple synaptic contacts. The computational
role of this redundancy is unclear. In this work we augmented the commonly used Leaky Integrate and
Fire (I&F) neuron model with simplified dendrites that filter the incoming spike train via a set of multiple
post synaptic potential (PSP) filters. Each filter corresponds to a particular synaptic contact, with varied
time constants that directly relate to signal filtering by the cable properties of the dendritic tree. This is
in contrast to a single PSP filter for all contacts in the I&F point neuron model. We term this new neuron
model Filter and Fire (F&F). Specifically, we have demonstrated that the capacity of the F&F neuron to
memorize precise input-output relationships is increased by a factor of ~3 compared to that of the regular
I&F. The capacity is measured as the ratio between the number of precisely timed output spikes and the
number of incoming input axons. This ratio is ~0.15 for the I&F case as shown by Memmesheimer et al.
(Memmesheimer et al. 2014); and grew to ~0.45 spikes per axons for the F&F model.

Next, we constructed a new spatiotemporal pattern discrimination task using the MNIST dataset and
demonstrated that our neuron model can learn to detect single digits at well-above chance level
performance on an unseen test set, whereas an I&F neuron model cannot learn the task at all, because in
the specific way we chose to represent each digit — the task does not contain enough spatial-only
information suitable for I&F neuron discrimination. Our specific task design was deliberately chosen to
highlight this temporal aspect of pattern discrimination that is possible when using taking into account
the temporal filtering due to cable properties of dendrites. We show that multiple synaptic connections
with different PSP profiles allow the neuron to effectively parametrize the temporal profile of the PSP
influence of each pre-synaptic axon on the somatic membrane potential. This is enabled by modifying
the weight of the various (multiple) contacts made between the axon and the post synaptic cell. We show
that all PSPs can be spanned by a 3 basis PSP filters, each with a different temporal profile. Taken
together, this suggests that the F&F neuron model provides a low temporal frequency approximation to
a spatio-temporal perceptron that assigns independent weights to each point in time. An alternative
description that is mathematically equivalent, is that the F&F model effectively bins the membrane
integration time into 3 non-uniform time bins and can learn to assign independent weights for each bin

in the past.

Our study demonstrates that even when considering highly simplified neuron model as used here, that
implements the passive temporal filtering aspect of dendrites, a computational role of dendrites is

unraveled for the seeming redundancy of multiple synaptic contacts between pairs of neurons in the brain.
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Dendrites therefore allow us to salvage some of the redundant connectivity and put those synaptic weight
parameters to good use. This allows for increased memorization capacity, but perhaps more importantly
to detect specific spatiotemporal patterns in the input axons. The spatiotemporal filtering properties of
dendritic processing are prominently featured in a recently published study describing how single
neurons produce output spikes in response to highly complex spatiotemporal patterns (Beniaguev, Segev,
and London 2021). It is important to note that there is an additional nonlinear amplification aspect in
dendrites (Poirazi and Mel 2001; Poirazi, Brannon, and Mel 2003; Polsky, Mel, and Schiller 2004;
Bicknell and Hausser 2021) that we did not consider in this study and that is likely to provide additional
computational benefits also in the context of multiple synaptic contacts, as the previous work by
Beniaguev et al. greatly suggests (Beniaguev, Segev, and London 2021). We have therefore added in the
present study a new perspective on the growing literature regarding the computational function of
individual neuron (McCulloch and Pitts 1943; Rosenblatt and F. 1958; Oja 1982; Hyvarinen and Oja
1998; Moldwin and Segev 2018; Golkar et al. 2020; Pehlevan et al. 2020; Giitig and Sompolinsky 2006a;
Poirazi, Brannon, and Mel 2003; Hausser and Mel 2003; Moldwin, Kalmenson, and Segev 2021; Zador,
Claiborne, and Brown 1991; Mel 1992; Poirazi and Mel 2001)

It is notable that it is typically believed that the phenomenon of multiple synaptic contacts is primarily
attributed to noise reduction related to unreliable synaptic transmission, but our work strongly suggests
that this is only a small part of the story from a computational standpoint. In fact, we would like to
propose that each synapse can reduce its own noise by employing a multiple vesicle release (MVR) tactic
if needed, as was also recently suggested by (Rudolph et al. 2015). If this is in fact the case, it is possible
that unreliable synaptic transmission might play a computational role of its own and rather than being an
unwanted "bug", it might turn out to be a useful "feature". More specifically, it might play a role that is
similar to dropout (Srivastava et al. 2014) or more precisely drop-connect (Wan et al. 2013) which are
commonly used in present day artificial neural networks paradigm. There, drop-connect is typically
employed as a regularization technique that reduces overfitting and usually improves generalization.

Although this was not the main focus of our work, we briefly demonstrate this effect in Figure 3F.

The question of how trains of spikes represent information in the nervous system has been a long-standing
question in neuroscience, since its inception. A major debate revolves around whether information is
largely carried by firing rates averaged over relatively long time periods, or rather that precisely timed
spikes carry crucial bits of information. Evidence for both alternatives has been found for both sensory

systems and motor systems and much theoretical work on this key topic has been conducted (Meister,
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Lagnado, and Baylor 1995; Christopher Decharms and Merzenich 1996; Wehr and Laurent 1996;
Neuenschwander and Singer 1996; Johansson and Birznieks 2004; Hopfield 1995; Castelo-Branco et al.
2000; Thorpe, Delorme, and Van Rullen 2001; DeWeese, Wehr, and Zador 2003; Kara, Reinagel, and
Reid 2000; London et al. 2010; Abeles et al. 1993; Schneidman, Freedman, and Segev 1998;
Memmesheimer et al. 2014; Florian 2012; London et al. 2002; Abeles 1982; Giitig and Sompolinsky
2006b; Maass and Schmitt 1999). Since dendrites and multiple synaptic connections play such a crucial
role in decoding incoming spike trains and increase the neuronal repertoire in emitting precisely times
output spikes in response to spatiotemporal input patterns (and they might do this using a simple
biologically plausible learning rule), we wish to suggest that dendritic hardware should be considered
when discussing the question of the neural code and what information is transmitted via axons. In (Perez-
Nieves et al. 2021), the authors show that a diversity of time constants helps increasing the computational
repertoire of spiking networks.

Here we suggest that a similar thing might happen at the neuronal level and not only at the network level.
The fact that a single neuron can decode complex spatiotemporal patterns on its own and does not require
a highly coordinated decoding network of neurons to extract temporal information from incoming spike
trains, not only allows for potential "hardware" savings as we illustrated in Fig. 5, but also suggest that
information might be ubiquitously encoded by precise spike times throughout the central nervous system.
A single neuron can emit precisely timed output spikes in response to spatiotemporal inputs, as we
showed here and was previously shown by (Memmesheimer et al. 2014). It is therefore not required to
have a large and highly coordinated network of neurons to encode temporally precise patterns that can
be sent via axons. The fact that a single neuron can do this on it's own without the use of network
mechanisms, somewhat increases the likelihood of information being encoded by precise spike timing

as opposed to average firing rates (over relatively long periods of time) throughout the CNS.

Lastly, in recent years, multiple groups around the world have started to create detailed reconstructions
of rodent and human brains, and report neuronal connectivity maps with the help of electron microscopy
(EM) (Kasthuri et al. 2015; Motta et al. 2019; Shapson-Coe et al. 2021). We would like to suggest that
analyzing these EM datasets, focusing on the number of multiple contacts and their locations on the
dendritic tree, might shed some additional light on the extent and role of multiple synaptic contacts
between different cell types and brain regions, and hint to the possible “style” of information processing
in the network based solely on EM data. As illustrated by our work, if two neurons form a connection on
distal dendrites, or if they form a connection on proximal dendrites, these will result in completely

different influences (time course) of the somatic voltage and, therefore, on the temporal coding
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capabilities of the neuron. Indeed, simply reporting connectivity maps and even the size of post synaptic
density (PSD) areas is not enough to determine the temporal influence of the connection on the post
synaptic cell, as the dendritic location of the synapse is key, as was also suggested in (Liu et al. 2021).
Also, due to the nonlinear amplification of dendrites, it will be crucial to know whether two pre-synaptic
neurons connect to similar locations on the dendritic tree as they are much more likely to undergo
nonlinear amplification (and might produce additional broad/slow NMDA or Calcium dependent

temporal filters) if activated at similar times.

Methods

F&F neuron simulation details

A F&F neuron receives as input N,,,ns input axons, their spike trains will be represented by X;(t) =
2, 0(t — t;) and they will be denoted by index i. Each axon connects to the dendrite via M contacts
Each contact connects on the dendrite on a location that will be denoted by index j, and filters the
incoming axon spike train by with a specific synaptic kernel K]-(t). The kernels are typical double
exponential PSP shapes of the form K;(t) = A- (e_t/ Tdecayj — g~ t/Trise ) where A is a normalization
constant such that each filter has a maximum value of 1, and Tgecqy,j» Trise,j are different for each
contact, sampled randomly and independently for each contact from the ranges Tgecqy,; €
[12ms, 30ms], Tyise,; € [1ms, 12ms]. Different kernel parameters represent a randomly connected
axon-dendrite location.

The result of the kernel filtering of the corresponding input axons forms the contact voltage contribution
trace Vci,]-(t) = X;(t) * K;(t) = X¢, K(t — t;). There are a total of M - Ngyons such contact voltage
contributions traces overall. In vector notation we denote V (t) = [V, 1(t), Ve 2(t), **, Ve m-nypons (E)]-
Each synaptic contact has a weight, w;. In vector notation we write W = [wy, Wy, ***, Wpy,,, . ]- €ach
local synaptic response is multiplied by its corresponding weight to form the somatic voltage V;(t) =
wh-V.() =Y jwj V. j(t). When threshold is reached, the voltage is reset, and a negative rectifying
current is injected that decays to zero with time constant of 15ms. Note that due to mathematical

simplicity we do not impose any restrictions on synaptic contact weights, each weight can be both

positive or negative regardless of which axon it comes from.
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I&F neuron simulation details
The I&F simulation details are identical in all ways to the F&F neuron, except that all of it's contact
kernels are identical K;(t) = Kjgr(t) = Ajgp - (e7/Tdecayisr — g=t/Triselsr ) where Tpise r = 1ms

and Tgecqy 187 = 30ms.

Capacity calculation experimental details

To measure capacity, we sample N,,,ns random spike trains to serve as axons from Poisson
instantaneous firing rate of 4Hz for a period of 120 seconds. We randomly distribute Ngp;xes output
spikes throughout the 120 second time period to generate y;r(t). For the sake of mathematical simplicity
and not dealing with reset issues, we make sure that the minimal distance between two consecutive spikes

is at least 120ms (= 4 * Tgecay,18r)- We bin time to 1ms time bins. We calculate V. (¢) for the entire trace.

Our task is to find a set of weights such that yr(t) = @ (W' - V(t)), where ¢(*) is a simple thresholding
function. This is in essence a binary classification dataset with 120,000 timepoints (milliseconds), for
each of those timepoints the required output of a binary classifier is either 1 (for time points that should
emit an output spike), or O for all other timepoints. We have a total M - N,,,,s weights that need to fit
the entire 120K samples dataset. We calculate the AUC on the entire 120K datapoints dataset. We declare
that the fit was successful when AUC > 0.99. We repeat the procedure for various values of Ngpikes- The

maximal value of Ng;x.s that we still manage to fit with AUC > 0.99 is termed Npikesmax and the
capacity measure is this number normalized by the number of axons used Capacity(M) =
Nspikes,max/ Naxons- Note that due to Ngpixes << 120,000, the capacity of the problem effectively doesn't
depend on the length of the time period we use, but by rather the number of spikes we wish to precisely

time.

Spatio-temporal MNIST task details

The MNIST dataset contains 60,000 training images and 10,000 test images. The images are of size
28x28 pixels. We crop the images at the center to be 20x20 pixels, and binarize the values. We the conver
the horizontal spatial image dimension (width) into a temporal dimension by uniformly warping the time
such that 20 horizontal pixels will be mapped into T milliseconds. T is the pattern presentation duration.
The vertical spatial image dimension (height) is simply replicated 5 times so that 20 vertical pixels will
be mapped into 100 axons. The entire training set is the concatenated sequentially (in random ordering),
with 70ms of zeros between every two patterns. We then sample spikes for every 1ms time bin according

to each axon's instantaneous firing rate to generate the raster for the entire training set. On top of that we
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add an additional background noise rate. The output ground truth is a single output spike 1ms after the
pattern is presented for the positive class digit, and no spikes for negative patterns. The fitting of the
model is identical to that described in the capacity sections. i.e., we wish to find a set of weights such
that ygr(t) = @(WT - V(t)), where ¢(*) is a simple thresholding function. In this case, we allow for
wiggle room when evaluating performance on the test set. A successful true positive (hit) is achieved if
at least 1 spike has occurred in the time window of 10ms around the ground truth desired spike. A failed
false positive (false alarm) is considered if a spike has occurred during the time window of 10ms around
the end of the pattern presentation. We measure the classification accuracy under these criteria. We
sometimes train only on a part of the training dataset and use only Nyitive samples @S the positive class.
In the regime of unreliable synaptic transmission with some synaptic release probability p, we sample
the spikes of the input patterns once, and then present it Nepocps = 15 times, each time with random
release probability samples for each pre-synaptic spike for each contact. In those cases, we perform the
same procedure also for the test set (i.e., display the same pattern Ngyocns = 15 times, each time with

different synaptic release sampled for each pre-synaptic spike for each contact)

Spatio-temporal Logistic Regression (LR) details

Spatio-temporal temporally sliding logistic regression (LR) model is a non-biologically plausible that is
specifically used to serve as an aspirational model used for comparison for our proposed F&F neuron. It
has a 2-dimensional weight matrix W, z(s,t) where s spans the spatial dimention and t spans the
temporal dimension. Mathematically, the equation describing the relationship between the input and the
output of the model is given by y; z(t) = (p(leng"”s Zi’f) Wir(s,T) - Xs(s, t — 7)). Note that this model
has in total Ny, ons * Trr Weights (time is discretized into 1ms time bins here as well, as throughout this

study).

F&F learned weights visualization

In the F&F model a single input axon is filtered by multiple contact kernels Vci, (O =X;(®) = K;(t). In
order to display the effective linear model weights, we can group together all kernels that relate to the
same axon Vi(t) = X, Wi, Xi(0) * K;, (£) = X;(t) = Xj, wj, - K, (t) . Therefore, the term X; wj, -
K; (t) is a composite kernel that filters each axon. This is a function that can be visualized for each input

axons, and therefore related directly to the input space.
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Code and data availability

All code necessary to reproduce all results of this paper are available on GitHub via the link:
https://github.com/SelfishGene/filter_and fire neuron

All data and live scripts to reproduce all figures are available on Kaggle at the following link:
https://www.kaggle.com/selfishgene/fiter-and-fire-paper
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Supplementary Figures
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Figure S1. Toy illustration to highlight differences in computational capabilities between the F&F neuron
and I&F neuron. (A) Illustration of the spatial strategy the I&F model employs. Left. Input axons x1, x2 are fed
into a I&F model to emit an output y. Right, two output for different weight configurations that result in two
different output patterns y. Dashed line represent spike threshold (B) Illustration of the temporal strategy the F&F
model employs. Left. A single input axon x1 is fed into an F&F neuron with two different PSP filters to produce
output y. Right, two output for different weight configurations that result in two different output patterns y. note
that although the output patterns are identical to those in (A), this was achieved by receiving a single input axon.
(C) Example of a temporal task we wish to teach the two neuron models. For the four different input patterns (x1,
x2) we require to produce the output y on the right. (patterns are denoted as P1, P2, P3, P4). Only P2 is required
to emit an output spike (marked with blue plus sign), the other patterns are required to emit no spikes (marked
with red circle) (D) The solution of a F&F model with fast and slow PSP filters for each input axon. On the right
are the somatic responses for each pattern with the weights w. Dashed line represent spike threshold. (E) The I&F
neuron model cannot classify the output patterns as the four patterns are not linearly separable in the dendritic
representation space (Vx,1 Vx,2) as seen in the illustration.
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Figure S2. The dendritic filters of a reconstructed L5PC detailed biophysical model are also spanned by a
3-dimensional basis set of PSPs as does our simplified F&F neuron throughout the paper. (A) The
morphology of a L5PC that was biophysically modeled in detailed (Hay et al. 2011) with highlighted dendritic
segments. (B) Normalized somatic PSPs in response to excitatory synaptic input at the highlighted dendritic
segments in (A). Note that in some of the EPSPs there exists a small hyperpolarization that is due to nonlinear
potassium channels at the soma (C) Normalized somatic EPSPs from all dendritic segments in the modeled L5PC.
The traces are normalized such that minimal value in the time window is 0 and maximal value is 1 (D) First 3
Basis functions of the Non-Negative Matrix Decomposition of all EPSPs shown in (C). NMF instead of SVD was
used for simplicity of interpretation and visualization purposes. These filters look very similar to those shown in
Fig. 4D. (E) Cumulative variance explained by each basis component demonstrating that the 3 basis functions
shown in (D) can span all EPSPs shown in (C).
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