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Abstract 

A cortical neuron typically makes multiple synaptic contacts on the dendrites of a post-synaptic target 

neuron. The functional implications of this apparent redundancy are unclear. The dendritic location of a 

synaptic contact affects the time-course of the somatic post-synaptic potential (PSP) due to dendritic 

cable filtering. Consequently, a single pre-synaptic axonal spike results with a PSP composed of multiple 

temporal profiles. Here, we developed a "filter-and-fire" (F&F) neuron model that captures these features 

and show that the memory capacity of this neuron is threefold larger than that of a leaky integrate-and-

fire (I&F) neuron, when trained to emit precisely timed output spikes for specific input patterns. 

Furthermore, the F&F neuron can learn to recognize spatio-temporal input patterns, e.g., MNIST digits, 

where the I&F model completely fails. Multiple synaptic contacts between pairs of cortical neurons are 

therefore an important feature rather than a bug and can serve to reduce axonal wiring requirements. 
 

Keywords: Synaptic Integration; Dendritic Computation; Cable Theory; Compartmental Models; Neural Code; 

Computational Neuroscience; Biological Learning; Machine learning.  
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Introduction 

Neurons in the central nervous system (CNS) connect to each other via chemical synapses. In recent 

decades it was found that two neurons that are synaptically connected typically connect via multiple 

synaptic contacts rather than a single contact  (Holler et al. 2021; Silver et al. 2003; Feldmeyer, Lübke, 

and Sakmann 2006; Shepherd et al. 2005; Markram et al. 1997). Multiple synaptic contacts that originate 

from a single pre-synaptic axon often impinge on different parts of the dendritic tree of the post-synaptic 

neuron (Feldmeyer, Lübke, and Sakmann 2006; Silver et al. 2003; Holler et al. 2021). Furthermore, if 

contacts were just based on "Peters' rule" (Peters and Feldman 1976) (namely by axon-dendrite 

proximity), then one would expect that the distribution of the number of multiple contacts would be 

exponential, with one contact per axon being the most frequent case (Fares and Stepanyants 2009; 

Markram et al. 2015; Rees, Moradi, and Ascoli 2017) which is far from what was empirically observed. 

The deviation from the distribution predicted by Peters' rule suggests that the number of synaptic contacts 

between two connected neurons is tightly controlled and is thus likely to serve for a functional purpose.  

 

Several phenomenological models have attempted to explain how multiple synaptic contacts between the 

pre-synaptic and post-synaptic neurons are formed (Fares and Stepanyants 2009), but very few studies 

have tried to tackle the question of how might they be beneficial from a computational perspective, but 

see (Sezener et al. 2021; Camp, Mandivarapu, and Estrada 2020; Jones and Kording 2021; Zhang, Hu, 

and Liu 2020; Hiratani and Fukai 2018; Acharya et al. 2021). It is typically thought that this redundancy 

overcomes the problem of unreliable synaptic vesicle release, which results in unreliable signal 

transmission between the pre-synaptic and the post-synaptic neurons (Rudolph et al. 2015). Several 

statistically independent unreliable contacts that sum together can reduce the variance of the post synaptic 

potentials (PSP). However, the same effect using a simpler mechanism could be achieved by multiple 

vesicles release (MVR) per synaptic activation (Rudolph et al. 2015; Holler et al. 2021) and does not 

require multiple synaptic contacts. Other studies addressed additional possible advantages for having 

multiple synaptic contacts between two neurons. Hiratani and Fukai (Hiratani and Fukai 2018) 

demonstrated that multiple synaptic contacts might allow synapses to learn quicker. Note that faster 

learning, although beneficial, fundamentally does not endow the neuron with the ability to perform new 

kinds of tasks. Zhang et al. (Zhang, Hu, and Liu 2020) model multiple contacts in the context of deep 

artificial neural networks but demonstrate no tangible computational benefit. Several other studies use 

multiple synaptic contacts in the context of artificial neural networks, demonstrating some computational 
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benefits, sometimes without explicitly addressing the use of multiple synaptic contacts (Camp, 

Mandivarapu, and Estrada 2020; Jones and Kording 2021; Sezener et al. 2021). 

 

To address the question of the functional consequence of multiple contacts, we developed a simplified 

neuron model: the Filter and Fire (F&F) neuron. This model is based on the Integrate and Fire (I&F) 

neuron model but, in our model, each pre-synaptic axon makes multiple synaptic contacts. We further 

add features to the model to account for the effect of the dendritic cable filtering on time course of the 

somatic potential resulting from the different synaptic locations on the dendritic tree (Rall 1964; Rall 

1967). To analyze the memory capacity of this model, we use the formulation of Memmesheimer et al. 

(Memmesheimer et al. 2014) developed for the I&F model. We further showed how to teach the F&F 

neuron a real-world classification task and explored other aspects such as the effect of unreliable synapses 

on the memory capacity of the F&F neuron and the implication of multiple synaptic contacts for 

optimizing axonal wiring in the brain. 

 

 

Results 

Mathematical description of the filter and fire (F&F) neuron model with multiple contacts  

We propose hereby a Filter and Fire (F&F) neuron model, which is similar to the standard current-based 

Leaky Integrate and Fire (I&F) neuron model, but with two added features. The first feature approximates 

the temporal characteristics of a dendritic cable as initially demonstrated by Rall (Rall 1964; Rall 1967), 

in which inputs that connect at distal locations on the dendrite exhibit prolonged post synaptic potentials 

(PSP) at the soma (Fig 1B top traces), whereas proximal inputs generates brief PSP profiles (Fig 1B 

bottom traces). The second feature is that each input axon connects to multiple locations on the dendritic 

tree, sometimes proximal and sometimes distal (Fig. 1A,B). Formally, consider ������ the number of 

input axons (Fig 1A), denoted by index i, and their spike trains will be represented by ��(�). Each axon 

connects to the dendrite via � contacts (� = 3 is illustrated in Fig. 1). Each contact connects to the 

dendrite at a location denoted by index j and filters the incoming axon spike train with a specific synaptic 

kernel ��(�). This forms the contact's voltage contribution trace ��,�
� (�) = ��(�) ∗  ��(�) =

∑ ��(� − ��)��
. There is a total of � ∙ ������  such contact voltage contributions traces overall (Fig 1C). 

In vector notation we denote ��(�) = [��,�
� (�), ��,�

� (�), ⋯ , ��,�∙������

������ (�)]. Each synaptic contact has a 

weight, ��. In vector notation we write � = [��, ��, ⋯ , ��∙������
]. Each contact contribution trace is 

multiplied by its corresponding weight to form the somatic voltage trace ��(�) = �� ∙ ��(�) =
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∑ �� ∙ ��,�(�)�  (Fig 1D). When the spike threshold is reached, a standard reset mechanism is applied. 

Please note that the "dendrites" in this model are linear and therefore retain the analytic tractability of the 

I&F neuron models.  

Here we model the temporal ramifications of the effect of adding a passive dendritic cable; we did not 

consider here the effect of nonlinear dendrites. The kernels we use are typical double exponential PSP 

shapes of the form:  ��(�) = � ∙ ����/������,� − ���/�����,��, where A is a normalization constant such that 

each filter has a maximum value of 1, and ������,�, �����,�  are randomly sampled for each synaptic 

contact, representing randomly connected axon-dendrite locations. Note that due to mathematical 

simplicity we do not impose any restrictions on synaptic contact weights, each weight can be both 

positive or negative regardless of which axon it comes from. Indeed, the goal of the study is not to 

replicate all possible biological details, but specifically explore the computational benefit that arises due 

to two specific details - temporal filtering of synaptic potentials due to dendritic cable properties and 

multiple synaptic connections between pairs of neurons. 
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Figure 1. The Filter and Fire (F&F) neuron receives input through multiple synaptic contacts per axon and 

filters each contact with a different synaptic kernel. (A) Example for three incoming input axons each making 

several contacts onto the post-synaptic cell. (B) Various synaptic filters representing their respective locations on 

the dendritic tree of the neuron model, shown in grey. Proximal synaptic filters are brief whereas more distal 

synaptic filters have broader temporal profiles. Colors are according to the source axon. (C) Local dendritic voltage 

responses at the synaptic loci, that result from the convolution of axonal spike train with the respective synaptic 

filter. Colors according to that of the source axon. Dashed lines indicate each contact’s voltage contribution after 

learning. In this example, �� is increased, �� and �� are decreased following learning. (D) Somatic voltage is a 

weighted sum of each synaptic contact contributions with an independent weight for each contact. Standard I&F 

reset mechanism is used as the spike generation mechanism at the soma. In black is somatic trace before learning 

and in blue after learning.  
 

 

 

Increased memory capacity of the F&F neuron with multiple synaptic contacts 

We first test the memorization capacity of F&F neuron model as a function of the number of multiple 

connections. We utilize the framework proposed by Memmesheimer et al. (Memmesheimer et al. 2014) 

and measure memory capacity in an identical way, and use their proposed local perceptron learning rule 

for the task. In short, this capacity measure indicates the maximal number of precisely timed output 

spikes in response to random input stimulation during some time period. Fig. 2A shows random spiking 
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activity of 100 axons for a period of 60 seconds (top). Below the output of the post-synaptic cell is shown 

before learning (black), after learning (blue) and the desired target output spikes (red). In this example, 

we used � = 5 multiple contacts per axon. For the given set of spike trains, it is possible to find a weight 

vector to perfectly place all output spikes at their precisely desired timing. In Fig. 1B we repeat the 

simulation as in Fig. 1A, for various values of multiple contacts (M) while re-randomizing all input spike 

trains, desired output spike trains, and the synaptic filter parameters of each contact. We repeat this both 

for the I&F neuron model (i.e., a single synaptic PSP kernel for all synapses) and the F&F neuron model 

with a randomly selected synaptic kernel for each synapse (see Methods for full details of the kernel 

shapes we used). The y axis represents our success in placing all of the output spikes accurately, as 

measured by area under the receiver operating characteristic curve (ROC) (AUC) for the binary 

classification task of placing each spike in 1ms time bins. Error bars represent the variance of the AUC 

over multiple repeats (18), while re-randomizing the input, re-randomizing the synaptic kernels and re-

randomizing the desired output spike trains. The figure shows that all the curves obtained from the I&F 

neuron models cluster together, and there is no change for different values of M (multiple contacts). This 

is to be expected as this is the classic case of synaptic redundancy when using a single temporal kernel 

for all pre-synaptic axons. e.g. for a single axon and two contacts one can see that in the case of a single 

synaptic kernel (as is the case in I&F model) the somatic voltage can be written as ��(�) = �� ∙

∑ �(� − ��) + �� ∙ ∑ �(� − ��) = (�� + ��) ∙ ∑ �(� − ��) = ���� ∙ ∑ �(� − ��). i.e. the additional 

weights associated to the same input axon for the I&F neuron when using multiple contacts are equivalent 

to a single effective weight, and therefore not utilized.  

 

For the F&F in the case of � = 1 we have an I&F model just with different kernels for each synapse. 

This change on its own does not make any difference in the capacity of the model as the number of 

learnable and utilizable parameters is identical to the I&F case with � = 1, and thus this curve lies with 

the other curves of the I&F models. However, for the F&F models with multiple contacts (� =

2,3,5,10,15) the graph shows an increased accuracy, demonstrating that some of the additional weights 

are utilized. In Fig. 2C we display the maximal number of output spikes that can be precisely timed as a 

function of M (number of multiple contacts), for both I&F and F&F models. We measure the number of 

precisely timed spikes as the maximal number of spikes that is above a high accuracy threshold (AUC > 

0.99) of the plot in Fig. 2B, and we normalize by the number of axons to display the number of precisely 

timed output spikes per input axon on the y axis.  
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As expected from Fig. 1B, the capacity of the I&F model does not depend on the number of multiple 

connections. The F&F, however, displays an increase of capacity, saturating at approximately 3-fold 

larger than that of the I&F neuron model capacity. Note that the number of degrees of freedom (tunable 

parameters) scales linearly with the number of multiple contacts, so there is not an obvious explanation 

for the observed saturation. We will come back to this and explain the precise origin of this 3-fold 

increase compared to the I&F model in a later section. In Fig. 2D we vary the number of input axons and 

observe linear scaling of the number of precise spiking achieved with different slopes for different 

number of multiple connections. This indicates that increasing the number of multiple connections 

increases the effective number of parameters utilized per axon. To better illustrate these results, we show 

in Fig. S1A a simple case of how the I&F neuron can emit temporally precise output spikes by employing 

a spatial strategy. In Fig. S1B we show how an F&F neuron can employ a temporal strategy. 
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Figure 2. Increased memory capacity of precisely timed output spikes for F&F neuron compared to I&F 

neuron. (A) Learning to place precisely timed output spikes for randomly generated input. Top. Random axonal 

input raster. Bottom. Output spikes before learning (top, black), after learning (middle, blue) and the desired output 

spikes (bottom, red). (B) Binary classification accuracy at 1ms temporal resolution as measured by area under 

ROC curve (AUC) as a function of the number of required output spikes for input with 200 input axons. We see 

increased capacity for F&F models as the number of multiple contacts increases, whereas no increase for the I&F 

case as one would expect. (C) A summary plot that summarizes the capacity as a function of the number of multiple 

connections. For this plot we use the maximal number of spikes that achieves accuracy above AUC threshold of 

0.99. The vertical axis depicts the fraction of successfully timed spikes for each input axon. We see saturation in 

the capacity for high values of multiple contacts to be ~3x compared to the I&F capacity. (D) The capacity scales 

linearly as function number of axons and exhibits no saturation. 
 

 

The F&F neuron can learn spatio-temporal tasks that an I&F neuron cannot 

Next, we wish to demonstrate new capabilities of the F&F neuron model with multiple synaptic 

connections that are beyond the I&F neuron model capabilities. For this purpose, we construct a new 

spatiotemporal task derived from MNIST task. Towards this end, we converted the horizontal spatial 

image dimension (width) into a temporal dimension (Fig. 3A top) with a uniform time warping such that 

20 horizontal pixels will be mapped into T milliseconds. T will be the pattern presentation duration. The 
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vertical spatial image dimension (height) is simply replicated 5 times so that 20 vertical pixels will be 

mapped onto 100 axons. We then sample spikes for each axon according to the time varying Poisson 

instantaneous firing rate with additional background noise. An example of the resulting input spike trains 

is shown by the raster plot in Fig. 3A middle frame. Finally, we train our neuron to produce a spike at 

the end of a specific digit that was presented. We train on the full MNIST train subset of digits, and 

present results on the test set. Before learning (black), after learning (blue), and the desired output (red) 

are presented at the bottom of Fig. 3A for the case where the selected digit was 3. We then repeat this 

process for all digits for three models - I&F neuron, F&F neuron, and a spatio-temporal, temporally 

sliding, logistic regression (LR) model. We use the spatio-temporal sliding logistic regression model as 

a reference model for comparison with the F&F neuron but note that this model is not biologically 

plausible and cannot be considered as a model of a neuron in our case. Importantly, the LR model has 

������ ∙ � learnable and fully utilizable parameters (������ parameters for each 1ms time bin) which is 

much greater than ������ ∙ � parameters that are used in the F&F and I&F models (which are also not 

fully utilizable as we've seen in Fig. 2).  

The test accuracies following training for all models are depicted in Fig 3B. For this plot a successful 

true positive (hit) is achieved if at least 1 spike has occurred in the time window of 10 ms around the 

ground truth desired spike. The temporal duration of each pattern T was 40 ms and the number of multiple 

contacts M was 5, for the plot in Fig. 3B. Fig. 3B clearly shows that the I&F neuron model is at chance 

level for almost all digits, and basically is incapable of learning the task. In contrast, the F&F model with 

5 multiple connections is consistently better than chance and sometimes approaches the "aspirational" 

spatio-temporal logistic regression model. In Fig. 3C we visually display the learned weights of all 

models when attempting to learn the digit 3. The weight matrix of the logistic regression model clearly 

depicts what appears to be an average-looking digit 3, which was the digit the neuron was trained to 

recognize. The F&F neuron model depicts a temporally smoothed version of the logistic regression 

model, and the I&F model clearly cannot learn temporal patterns and therefore cannot recognize this 

digit at above chance level. For precise details of how the weights for the F&F and I&F models were 

visualized, please consult the Methods. For a more simplified pattern classification case, please see Fig. 

S1C. Fig. S1D shows how a F&F neuron can solve the task shown in Fig. S1C. Fig. S1E explains why 

this task cannot be solved by an I&F neuron.  

To test the effect of the presentation duration of each digit T, Fig. 3D displays summary statistics of test 

accuracy, averaged across all digits, for the three models as a function of T. The interval between patterns 

was 70 ms and the decay time constant for I&F model was 30 ms, to match the maximal decay time 
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constant for all synaptic kernels in the F&F model. The F&F neuron had 5 multiple contacts. Fig. 3D 

shows that there is an optimal pattern presentation duration for the F&F model that occurs at the 40-50 

ms range, which is ~1.5 times the maximal decay time constant in the model.  

Next, we seek to determine the effect of unreliable synaptic transmission and its interaction with multiple 

synaptic contacts. As explained in the Introduction, multiple synaptic contacts are often considered as a 

mechanism to overcome synaptic transmission unreliability. In Fig. 3E we display the test accuracy as a 

function of the number of multiple contacts for all 3 models for fully reliable synapses as we have 

displayed thus far, and in dashed line is the accuracy under the unreliable synapse's regime with a 

probability of release of p = 0.5 for each contact. Note the consistent drop in test accuracy that does not 

go away even with a large number of multiple contacts. In this graph the positive digit used was "7" and 

the pattern temporal duration was T = 30 ms. The number of positive training samples used in this case 

was 2048 patterns. Unreliable synaptic transmission can be considered as a mechanism for implementing 

"drop-connect", a method used in training artificial neural networks that has a known regularization effect 

(Wan et al. 2013; Srivastava et al. 2014). In Fig. 3F we test if this is also applicable to our case. We show 

the test accuracy as a function of the number of training samples and demonstrate a regularization effect 

in the case of F&F that increases test accuracy for a low number of training input patterns. Note that each 

training sample was shown to the model multiple times (15 times in this case) and for each spike and 

each contact an independent probability of release was applied, effectively resulting in 15 noisy patterns 

that were presented to the neuron during training for each original training pattern. This suggests that 

unreliable synapses can also be viewed as a "feature" rather than a "bug" for the regime of a small number 

of training data points and can help avoid overfitting. 
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Figure 3. The F&F neuron can learn to recognize spatio-temporal patterns whereas I&F neuron cannot. 

(A) A F&F neuron was trained to recognize digits in a spatio-temporal version of the MNIST task. From top to 

bottom: Original input digits, axon spike raster that represent the respective digits (with some additional 

background noise), F&F neuron (with 5 multiple contacts) output before learning (black), after learning, (blue) 

and the desired output spike train (red). The neuron was trained to detect the digit "3" in this case. The depicted 

traces are from unseen test set. (B) Full test set classification accuracy of F&F (orange), I&F (black) and a non-

biologically plausible temporally sliding spatio-temporal Logistic Regression model (gray) for the spatio-temporal 

digit classification task when each digit was used as the positive class and the rest of the digits were considered 

the negative class. The random chance baseline for each case is shown by the red horizontal lines. The I&F models 

cannot learn the task whereas F&F neurons sometimes approach the (non-biological) spatio-temporal logistic 
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regression model. The number of positive training samples used in this case was 5000. (C) Spatio-temporal 

representation of the learned weights of the three models when attempting to detect the digit "3". We can clearly 

discern the digit "3" in the logistic regression case, a faint "3" in the F&F case, and an attempt to use spatial-only 

information to detect the digit in the I&F case, which is unsuccessful in achieving above chance accuracy on the 

test set. The top three images are for a single trial with a single random axonal wiring, and Poisson sampling of 

the inputs. Bottom three images are an average of 67 trials. (D) Summary of test accuracy, averaged across all 

digits, for the three models as a function of the temporal duration of the pattern. Silence time between patterns was 

70ms. The decay time constant for I&F model is 30 ms, as is the maximal decay time constant for all synaptic 

kernels for the F&F model. F&F neuron in this case had 5 multiple contacts. (E) Test accuracy as a function of 

the number of multiple contacts for all 3 models. In dashed line is the accuracy under the unreliable synapse's 

regime with a probability of release of 50% for each contact. Note the consistent drop in accuracy. In this graph 

the positive digit used was "7" and the pattern temporal duration was T=30ms. The number of positive training 

samples used in this case was 2048 patterns. (F) Test accuracy as a function of the number of training samples. 

Each training sample was shown to the model multiple times (15 times in this case) and for each spike and each 

contact an independent probability of release was applied. Note the regularization benefit of unreliable synaptic 

release for a small number of training samples in the dataset (dashed orange line above solid orange line). This is 

simple result of drop-connect regularization that unreliable synapses implement. This suggests that unreliable 

synapses can be viewed as a "feature" rather than a "bug" for the regime of a small number of training data points. 
 

 

Maximal capacity is explained by the effective 3-dimensional subspace spanning all 

synaptic kernels 

Next, we wish to pinpoint the mathematical origin of the properties depicted in Figures 2 and 3 of the 

proposed F&F neuron models with multiple synaptic connections. We observed that all PSP kernels we 

used are of similar shapes and therefore the inputs from the same axon will generate very correlated 

inputs at the local synaptic responses vector ��(�). Any input correlation will limit the number of degrees 

of freedom available for learning by modification of the synaptic weights �. In Fig. 4A we show all the 

PSPs as heatmaps organized according to increasing values of ����� within each block and increasing 

������ between the blocks. In Fig. 4C we show all the PSPs as temporal traces overlayed on each other. 

Both Fig. 4A and 4C clearly show that the shapes of the PSP kernels, although chosen randomly and 

have some variance, are overall very similar to each other. We therefore apply singular matrix (SVD) 

decomposition on all PSP shapes (Fig. 4B) and discover that 99.93% of the variance in all PSP shapes is 

explained by the first 3 singular vectors (Fig. 4E). This means all synaptic kernels depicted in Fig. 4A 

and 4C are effectively spanned by a basis set of orthogonal 3 PSP-like shapes. For the sake of presentation 

and to avoid negative values in the trace shapes, we display the 3 independent kernels that are the result 

of non-negative matrix factorization (NMF) in Fig. 4D. It's visible that these PSP shapes basically filter 

the input signal with various time constants and various delays. These are very intuitive shapes that we 
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can easily interpret. With them, we can understand both the temporal smoothing aspect of the learned 

weights by the F&F neuron model in Fig. 3C, and the number of independent PSP shapes is a good 

candidate to explain the very specific 3-fold increase in capacity of Fig. 2C. To verify that these the basis 

sets are in fact explaining the phenomenon in Fig. 2, we repeat the same experimentation as in Fig. 2, but 

now each axon is connected to the post synaptic neuron via only 3 multiple connections, and this time 

they are the optimal PSPs shapes depicted in Fig. 4D instead of being randomly selected. These results 

are depicted in Fig. 4F. The model with three orthogonal kernels has effectively identical results to those 

of the F&F neuron, and thus helps us explain its behavior. First, to explain the capacity, when we 

randomly sample more and more connections from the set of all possible kernels (e.g., increasing M), 

we slowly approach to span the entire 3-dimensional space by each contact and therefore we have a 

saturation effect at three times the I&F baseline level. This means that we have reached the three 

independent kernels, each corresponding to an independent learnable parameter. Second, the specific 

shapes of these kernels explain the temporal smoothing effect we observe in the learned weights of the 

F&F neuron model in Fig. 3C. Note that although we used in our study somewhat artificial double 

exponential synaptic kernels, we verified that our results also hold for PSPs in a simulation of a highly 

realistic detailed cortical neuron model. This verification can be found in Fig. S2, which shows that 

despite some quantitative differences, qualitatively the results presented in our work using a reduced 

F&F neuron model are valid also for the case of a neuron with a complex dendritic tree. Namely, a basis 

set of three temporally-distinct kernels can effectively span all synaptic kernels in realistic models of 

cortical pyramidal neurons. 
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Figure 4. The dendritic filters are spanned by a 3-dimensional basis set of PSPs accounting for the 3-fold 

increase in the F&F capacity for a large number multiple contacts. (A) All possible post synaptic potentials 

(PSPs) that were used in the study shown as heatmaps. Every block has a different exponential decay time. Within 

each block the rise time grows for each row. (B) The Singular Value Decomposition of all the PSPs shown in (A) 

as heatmaps. We see a Fourier-like basis set. (C) All possible post synaptic potentials (PSPs) that were used in the 

study, shown as traces. We clearly see that there are strong correlations between the various PSPs, indicating they 

are not all equally useful (D) First 3 Basis functions of the Non-Negative Matrix Decomposition of all PSPs shown 

in (A) and (C). NMF instead of SVD was used for ease of interpretation and visualization purposes. (E) Cumulative 

variance explained by each basis component. We see that by using 3 basis functions shown in (D) we can span all 

PSPs shown in (C) and explain the phenomenon shown in Fig. 2C in which the capacity is capped by 3x the 

number of axons when the number of multiple contacts is large. (F) Direct verification that the 3 orthogonal basis 

set in (E) can be used as 3 optimal multiple contact filters and achieve the same capacity as 15 randomly selected 

multiple contacts. 
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Multiple synaptic contacts along with dendrites allow the CNS to save either in number of 

transmitting axons or decoding neurons while achieving identical computational goals 

Finally, we wish to point out that multiple synaptic contacts and the proposed F&F neuron model might 

allow the central nervous system to transmit information via axons in a more hardware efficient way by 

relying on dendritic decoding downstream. Three computationally equivalent alternatives are depicted 

in Figure 5. Fig. 5C illustrates the case in which N axons transmit information to be readout by an F&F 

neuron model with multiple synaptic contacts downstream. If we wish for a downstream I&F point 

neuron to have the ability to produce the same output as the F&F in Fig. 5C, we will need that each of 

the N axons in Fig. 5C to be replicated 3 times, each with some additional delay to account for the 

temporal integration properties of the F&F neuron model. This scenario is illustrated in Fig. 5D and 

verified in simulations in Figures 5A and 5B. Alternatively, it is also possible to utilize the same N axons 

as in Fig. 5C but have a decoding network of 3N point neurons downstream. This scenario is depicted in 

Fig. 5E. These three alternatives highlight the more general scenario in which the evolutionary pressure 

to reduce axonal wiring in an ever-increasing brain volume (Chklovskii, Schikorski, and Stevens 2002; 

Chen, Hall, and Chklovskii 2006) is solved by compressing information on a limited number of axons 

and relying on sophisticated dendritic integration to decode these signals.  In this context we have shown 

that employing multiple synaptic contacts between the axon and its post-synaptic neuron enables 

dendrites to better decode spatiotemporal patterns and save "hardware" (reduced total axon length, 

reduced number of neurons). 
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Figure 5. The F&F neuron model allows the central nervous system to reduce the number of transmitting 

axons or decoding neurons. Illustration of three computationally equivalent implementations. (A) On the top 

depicted is the input axon raster. The black axons are delayed once to produce the brown axons and delayed once 

more to produce the purple axons. Only the black axons are fed as input to the F&F neuron, whose output is shown 

in orange. The full set of axons is fed into a I&F neuron whose output is shown in black. In red the desired output 

spike train is shown. This panel demonstrates that an I&F neuron with additionally delayed input axons replicates 

the precise timing capacity of the F&F model. (B) Similar to what is depicted in (A) only this time for the 

spatiotemporal MNIST digit recognition task. Here again we see that an I&F neuron with additionally delayed 

input axons can reproduce the F&F neuron performance on the spatiotemporal MNIST digit recognition task (C) 

Illustration of N axons that feed into a single F&F neuron model with a simplified dendrite and multiple synaptic 

contacts. (D) In order for an I&F point neuron model to have identical memorization capacity as the F&F neuron 

illustrated in (C), the same information needs to be separated into 3N axons (E) In order for an I&F point neuron 

to have identical spatio-temporal patterns separation capabilities with the same original N axons as in (C), it needs 

to have a feed-forward "delay line" decoding network prior to being fed into the I&F point neuron. This alternative 

is demonstrated in both (A) and (B). 
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Discussion 

Neurons in the brain typically connect to each other via multiple synaptic contacts. The computational 

role of this redundancy is unclear. In this work we augmented the commonly used Leaky Integrate and 

Fire (I&F) neuron model with simplified dendrites that filter the incoming spike train via a set of multiple 

post synaptic potential (PSP) filters. Each filter corresponds to a particular synaptic contact, with varied 

time constants that directly relate to signal filtering by the cable properties of the dendritic tree. This is 

in contrast to a single PSP filter for all contacts in the I&F point neuron model. We term this new neuron 

model Filter and Fire (F&F). Specifically, we have demonstrated that the capacity of the F&F neuron to 

memorize precise input-output relationships is increased by a factor of ~3 compared to that of the regular 

I&F. The capacity is measured as the ratio between the number of precisely timed output spikes and the 

number of incoming input axons. This ratio is ~0.15 for the I&F case as shown by Memmesheimer et al. 

(Memmesheimer et al. 2014); and grew to ~0.45 spikes per axons for the F&F model.  

Next, we constructed a new spatiotemporal pattern discrimination task using the MNIST dataset and 

demonstrated that our neuron model can learn to detect single digits at well-above chance level 

performance on an unseen test set, whereas an I&F neuron model cannot learn the task at all, because in 

the specific way we chose to represent each digit – the task does not contain enough spatial-only 

information suitable for I&F neuron discrimination. Our specific task design was deliberately chosen to 

highlight this temporal aspect of pattern discrimination that is possible when using taking into account 

the temporal filtering due to cable properties of dendrites. We show that multiple synaptic connections 

with different PSP profiles allow the neuron to effectively parametrize the temporal profile of the PSP 

influence of each pre-synaptic axon on the somatic membrane potential. This is enabled by modifying 

the weight of the various (multiple) contacts made between the axon and the post synaptic cell. We show 

that all PSPs can be spanned by a 3 basis PSP filters, each with a different temporal profile. Taken 

together, this suggests that the F&F neuron model provides a low temporal frequency approximation to 

a spatio-temporal perceptron that assigns independent weights to each point in time. An alternative 

description that is mathematically equivalent, is that the F&F model effectively bins the membrane 

integration time into 3 non-uniform time bins and can learn to assign independent weights for each bin 

in the past.  

 

Our study demonstrates that even when considering highly simplified neuron model as used here, that 

implements the passive temporal filtering aspect of dendrites, a computational role of dendrites is 

unraveled for the seeming redundancy of multiple synaptic contacts between pairs of neurons in the brain. 
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Dendrites therefore allow us to salvage some of the redundant connectivity and put those synaptic weight 

parameters to good use. This allows for increased memorization capacity, but perhaps more importantly 

to detect specific spatiotemporal patterns in the input axons. The spatiotemporal filtering properties of 

dendritic processing are prominently featured in a recently published study describing how single 

neurons produce output spikes in response to highly complex spatiotemporal patterns (Beniaguev, Segev, 

and London 2021). It is important to note that there is an additional nonlinear amplification aspect in 

dendrites (Poirazi and Mel 2001; Poirazi, Brannon, and Mel 2003; Polsky, Mel, and Schiller 2004; 

Bicknell and Häusser 2021) that we did not consider in this study and that is likely to provide additional 

computational benefits also in the context of multiple synaptic contacts, as the previous work by 

Beniaguev et al. greatly suggests (Beniaguev, Segev, and London 2021). We have therefore added in the 

present study a new perspective on the growing literature regarding the computational function of 

individual neuron (McCulloch and Pitts 1943; Rosenblatt and F. 1958; Oja 1982; Hyvarinen and Oja 

1998; Moldwin and Segev 2018; Golkar et al. 2020; Pehlevan et al. 2020; Gütig and Sompolinsky 2006a; 

Poirazi, Brannon, and Mel 2003; Häusser and Mel 2003; Moldwin, Kalmenson, and Segev 2021; Zador, 

Claiborne, and Brown 1991; Mel 1992; Poirazi and Mel 2001) 

 

It is notable that it is typically believed that the phenomenon of multiple synaptic contacts is primarily 

attributed to noise reduction related to unreliable synaptic transmission, but our work strongly suggests 

that this is only a small part of the story from a computational standpoint. In fact, we would like to 

propose that each synapse can reduce its own noise by employing a multiple vesicle release (MVR) tactic 

if needed, as was also recently suggested by (Rudolph et al. 2015). If this is in fact the case, it is possible 

that unreliable synaptic transmission might play a computational role of its own and rather than being an 

unwanted "bug", it might turn out to be a useful "feature". More specifically, it might play a role that is 

similar to dropout (Srivastava et al. 2014) or more precisely drop-connect (Wan et al. 2013) which are 

commonly used in present day artificial neural networks paradigm. There, drop-connect is typically 

employed as a regularization technique that reduces overfitting and usually improves generalization. 

Although this was not the main focus of our work, we briefly demonstrate this effect in Figure 3F.  

 

The question of how trains of spikes represent information in the nervous system has been a long-standing 

question in neuroscience, since its inception. A major debate revolves around whether information is 

largely carried by firing rates averaged over relatively long time periods, or rather that precisely timed 

spikes carry crucial bits of information. Evidence for both alternatives has been found for both sensory 

systems and motor systems and much theoretical work on this key topic has been conducted (Meister, 
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Lagnado, and Baylor 1995; Christopher Decharms and Merzenich 1996; Wehr and Laurent 1996; 

Neuenschwander and Singer 1996; Johansson and Birznieks 2004; Hopfield 1995; Castelo-Branco et al. 

2000; Thorpe, Delorme, and Van Rullen 2001; DeWeese, Wehr, and Zador 2003; Kara, Reinagel, and 

Reid 2000; London et al. 2010; Abeles et al. 1993; Schneidman, Freedman, and Segev 1998; 

Memmesheimer et al. 2014; Florian 2012; London et al. 2002; Abeles 1982; Gütig and Sompolinsky 

2006b; Maass and Schmitt 1999). Since dendrites and multiple synaptic connections play such a crucial 

role in decoding incoming spike trains and increase the neuronal repertoire in emitting precisely times 

output spikes in response to spatiotemporal input patterns (and they might do this using a simple 

biologically plausible learning rule), we wish to suggest that dendritic hardware should be considered 

when discussing the question of the neural code and what information is transmitted via axons. In (Perez-

Nieves et al. 2021), the authors show that a diversity of time constants helps increasing the computational 

repertoire of spiking networks.  

Here we suggest that a similar thing might happen at the neuronal level and not only at the network level. 

The fact that a single neuron can decode complex spatiotemporal patterns on its own and does not require 

a highly coordinated decoding network of neurons to extract temporal information from incoming spike 

trains, not only allows for potential "hardware" savings as we illustrated in Fig. 5, but also suggest that 

information might be ubiquitously encoded by precise spike times throughout the central nervous system. 

A single neuron can emit precisely timed output spikes in response to spatiotemporal inputs, as we 

showed here and was previously shown by (Memmesheimer et al. 2014). It is therefore not required to 

have a large and highly coordinated network of neurons to encode temporally precise patterns that can 

be sent via axons. The fact that a single neuron can do this on it's own without the use of network 

mechanisms, somewhat increases the likelihood of information being encoded by precise spike timing 

as opposed to average firing rates (over relatively long periods of time) throughout the CNS.   

 

Lastly, in recent years, multiple groups around the world have started to create detailed reconstructions 

of rodent and human brains, and report neuronal connectivity maps with the help of electron microscopy 

(EM) (Kasthuri et al. 2015; Motta et al. 2019; Shapson-Coe et al. 2021). We would like to suggest that 

analyzing these EM datasets, focusing on the number of multiple contacts and their locations on the 

dendritic tree, might shed some additional light on the extent and role of multiple synaptic contacts 

between different cell types and brain regions, and hint to the possible “style” of information processing 

in the network based solely on EM data. As illustrated by our work, if two neurons form a connection on 

distal dendrites, or if they form a connection on proximal dendrites, these will result in completely 

different influences (time course) of the somatic voltage and, therefore, on the temporal coding 
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capabilities of the neuron. Indeed, simply reporting connectivity maps and even the size of post synaptic 

density (PSD) areas is not enough to determine the temporal influence of the connection on the post 

synaptic cell, as the dendritic location of the synapse is key, as was also suggested in (Liu et al. 2021). 

Also, due to the nonlinear amplification of dendrites, it will be crucial to know whether two pre-synaptic 

neurons connect to similar locations on the dendritic tree as they are much more likely to undergo 

nonlinear amplification (and might produce additional broad/slow NMDA or Calcium dependent 

temporal filters) if activated at similar times.  

 

 

Methods 

F&F neuron simulation details 

A F&F neuron receives as input ������ input axons, their spike trains will be represented by ��(�) =

∑ �(� − ��)��
 and they will be denoted by index �. Each axon connects to the dendrite via � contacts 

Each contact connects on the dendrite on a location that will be denoted by index �, and filters the 

incoming axon spike train by with a specific synaptic kernel ��(�). The kernels are typical double 

exponential PSP shapes of the form   ��(�) = � ∙ ����/������,� − ���/�����,�� where A is a normalization 

constant such that each filter has a maximum value of 1, and ������,�, �����,�  are different for each 

contact, sampled randomly and independently for each contact from the ranges ������,� ∈

[12��, 30��], �����,� ∈ [1��, 12��]. Different kernel parameters represent a randomly connected 

axon-dendrite location. 

The result of the kernel filtering of the corresponding input axons forms the contact voltage contribution 

trace ��,�
� (�) = ��(�) ∗  ��(�) = ∑ �(� − ��)��

. There are a total of � ∙ ������  such contact voltage 

contributions traces overall. In vector notation we denote ��(�) = [��,�(�), ��,�(�), ⋯ , ��,�∙������
(�)]. 

Each synaptic contact has a weight, ��. In vector notation we write � = [��, ��, ⋯ , ��∙������
]. each 

local synaptic response is multiplied by its corresponding weight to form the somatic voltage ��(�) =

�� ∙ ��(�) = ∑ �� ∙ ��,�(�)� . When threshold is reached, the voltage is reset, and a negative rectifying 

current is injected that decays to zero with time constant of 15ms. Note that due to mathematical 

simplicity we do not impose any restrictions on synaptic contact weights, each weight can be both 

positive or negative regardless of which axon it comes from.  
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I&F neuron simulation details 

The I&F simulation details are identical in all ways to the F&F neuron, except that all of it's contact 

kernels are identical  ��(�) = ��&�(�) = ��&� ∙ ����/������,�&� − ���/�����,�&��, where �����,�&� = 1�� 

and ������,�&� = 30��. 

 

Capacity calculation experimental details 

To measure capacity, we sample ������ random spike trains to serve as axons from Poisson 

instantaneous firing rate of 4Hz for a period of 120 seconds. We randomly distribute ������� output 

spikes throughout the 120 second time period to generate ���(�). For the sake of mathematical simplicity 

and not dealing with reset issues, we make sure that the minimal distance between two consecutive spikes 

is at least 120ms (= 4 ∙ ������,�&�). We bin time to 1ms time bins. We calculate ��(�) for the entire trace. 

Our task is to find a set of weights such that ���(�) = �(�� ∙ ��(�)), where �(∙) is a simple thresholding 

function. This is in essence a binary classification dataset with 120,000 timepoints (milliseconds), for 

each of those timepoints the required output of a binary classifier is either 1 (for time points that should 

emit an output spike), or 0 for all other timepoints. We have a total � ∙ ������ weights that need to fit 

the entire 120K samples dataset. We calculate the AUC on the entire 120K datapoints dataset. We declare 

that the fit was successful when AUC > 0.99. We repeat the procedure for various values of �������. The 

maximal value of ������� that we still manage to fit with AUC > 0.99 is termed �������,��� and the 

capacity measure is this number normalized by the number of axons used ��������(�) =

�������,���/������. Note that due to ������� ≪ 120,000, the capacity of the problem effectively doesn't 

depend on the length of the time period we use, but by rather the number of spikes we wish to precisely 

time. 

 

Spatio-temporal MNIST task details 

The MNIST dataset contains 60,000 training images and 10,000 test images. The images are of size 

28x28 pixels. We crop the images at the center to be 20x20 pixels, and binarize the values. We the conver 

the horizontal spatial image dimension (width) into a temporal dimension by uniformly warping the time 

such that 20 horizontal pixels will be mapped into T milliseconds. T is the pattern presentation duration. 

The vertical spatial image dimension (height) is simply replicated 5 times so that 20 vertical pixels will 

be mapped into 100 axons. The entire training set is the concatenated sequentially (in random ordering), 

with 70ms of zeros between every two patterns. We then sample spikes for every 1ms time bin according 

to each axon's instantaneous firing rate to generate the raster for the entire training set. On top of that we 
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add an additional background noise rate. The output ground truth is a single output spike 1ms after the 

pattern is presented for the positive class digit, and no spikes for negative patterns. The fitting of the 

model is identical to that described in the capacity sections. i.e., we wish to find a set of weights such 

that ���(�) = �(�� ∙ ��(�)), where �(∙) is a simple thresholding function. In this case, we allow for 

wiggle room when evaluating performance on the test set. A successful true positive (hit) is achieved if 

at least 1 spike has occurred in the time window of 10ms around the ground truth desired spike. A failed 

false positive (false alarm) is considered if a spike has occurred during the time window of 10ms around 

the end of the pattern presentation. We measure the classification accuracy under these criteria. We 

sometimes train only on a part of the training dataset and use only ��������� ������� as the positive class. 

In the regime of unreliable synaptic transmission with some synaptic release probability �, we sample 

the spikes of the input patterns once, and then present it ������� = 15 times, each time with random 

release probability samples for each pre-synaptic spike for each contact. In those cases, we perform the 

same procedure also for the test set (i.e., display the same pattern ������� = 15 times, each time with 

different synaptic release sampled for each pre-synaptic spike for each contact) 

 

Spatio-temporal Logistic Regression (LR) details 

Spatio-temporal temporally sliding logistic regression (LR) model is a non-biologically plausible that is 

specifically used to serve as an aspirational model used for comparison for our proposed F&F neuron. It 

has a 2-dimensional weight matrix ���(�, �) where � spans the spatial dimention and � spans the 

temporal dimension. Mathematically, the equation describing the relationship between the input and the 

output of the model is given by ���(�) = �(∑ ∑ ���(�, �) ∙ ��(�, � − �)
���
���

������
��� ). Note that this model 

has in total ������ ∙ ��� weights (time is discretized into 1ms time bins here as well, as throughout this 

study). 

  

F&F learned weights visualization 

In the F&F model a single input axon is filtered by multiple contact kernels ��,�
� (�) = ��(�) ∗  ��(�). In 

order to display the effective linear model weights, we can group together all kernels that relate to the 

same axon ��(�) =  ∑ ���
∙ ��(�) ∗ ���

(�) = ��(�) ∗ ∑ ���
∙ ���

(�)��
 �� . Therefore, the term ∑ ���

∙��

���
(�) is a composite kernel that filters each axon. This is a function that can be visualized for each input 

axons, and therefore related directly to the input space. 
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Code and data availability 

All code necessary to reproduce all results of this paper are available on GitHub via the link: 

https://github.com/SelfishGene/filter_and_fire_neuron 

 

All data and live scripts to reproduce all figures are available on Kaggle at the following link: 

https://www.kaggle.com/selfishgene/fiter-and-fire-paper 
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Supplementary Figures 

 

 

Figure S1. Toy illustration to highlight differences in computational capabilities between the F&F neuron 

and I&F neuron. (A) Illustration of the spatial strategy the I&F model employs. Left. Input axons x1, x2 are fed 

into a I&F model to emit an output y. Right, two output for different weight configurations that result in two 

different output patterns y. Dashed line represent spike threshold (B) Illustration of the temporal strategy the F&F 

model employs. Left. A single input axon x1 is fed into an F&F neuron with two different PSP filters to produce 

output y. Right, two output for different weight configurations that result in two different output patterns y. note 

that although the output patterns are identical to those in (A), this was achieved by receiving a single input axon. 

(C) Example of a temporal task we wish to teach the two neuron models. For the four different input patterns (x1, 

x2) we require to produce the output y on the right. (patterns are denoted as P1, P2, P3, P4). Only P2 is required 

to emit an output spike (marked with blue plus sign), the other patterns are required to emit no spikes (marked 

with red circle) (D) The solution of a F&F model with fast and slow PSP filters for each input axon. On the right 

are the somatic responses for each pattern with the weights w. Dashed line represent spike threshold. (E) The I&F 

neuron model cannot classify the output patterns as the four patterns are not linearly separable in the dendritic 

representation space (Vx,1 Vx,2) as seen in the illustration. 
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Figure S2. The dendritic filters of a reconstructed L5PC detailed biophysical model are also spanned by a 

3-dimensional basis set of PSPs as does our simplified F&F neuron throughout the paper. (A) The 

morphology of a L5PC that was biophysically modeled in detailed (Hay et al. 2011) with highlighted dendritic 

segments. (B) Normalized somatic PSPs in response to excitatory synaptic input at the highlighted dendritic 

segments in (A). Note that in some of the EPSPs there exists a small hyperpolarization that is due to nonlinear 

potassium channels at the soma (C) Normalized somatic EPSPs from all dendritic segments in the modeled L5PC. 

The traces are normalized such that minimal value in the time window is 0 and maximal value is 1 (D) First 3 

Basis functions of the Non-Negative Matrix Decomposition of all EPSPs shown in (C). NMF instead of SVD was 

used for simplicity of interpretation and visualization purposes. These filters look very similar to those shown in 

Fig. 4D. (E) Cumulative variance explained by each basis component demonstrating that the 3 basis functions 

shown in (D) can span all EPSPs shown in (C). 
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