

1 **Encoding and decoding analysis of music perception using intracranial EEG**

2 Ludovic Bellier^{1*}, Anaïs Llorens¹, Déborah Marciano¹, Gerwin Schalk⁴, Peter Brunner^{2,3,4}, Robert
3 T. Knight^{1,5#}, Brian N. Pasley^{1#}

4 ¹Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, USA

5 ²Department of Neurosurgery, Washington University School of Medicine, St. Louis, MO, USA

6 ³Department of Neurology, Albany Medical College, Albany, NY, USA

7 ⁴National Center for Adaptive Neurotechnologies, Albany, NY, USA

8 ⁵Department of Psychology, University of California, Berkeley, Berkeley, CA, USA

9

10 *Corresponding author: ludovic.bellier@berkeley.edu

11 #Co-senior authors

12 Abstract

13 Music perception engages multiple brain regions, however the neural dynamics of this
14 core human experience remains elusive. We applied predictive models to intracranial EEG data
15 from 29 patients listening to a Pink Floyd song. We investigated the relationship between the
16 song spectrogram and the elicited high-frequency activity (70-150Hz), a marker of local neural
17 activity. Encoding models characterized the spectrotemporal receptive fields (STRFs) of each
18 electrode and decoding models estimated the population-level song representation. Both
19 methods confirmed a crucial role of the right superior temporal gyri (STG) in music perception. A
20 component analysis on STRF coefficients highlighted overlapping neural populations tuned to
21 specific musical elements (vocals, lead guitar, rhythm). An ablation analysis on decoding models
22 revealed the presence of unique musical information concentrated in the right STG and more
23 spatially distributed in the left hemisphere. Lastly, we provided the first song reconstruction
24 decoded from human neural activity.

25 Introduction

26 Music is a universal experience across all ages and cultures and is a core part of our
27 emotional, cognitive, and social lives¹. Understanding the neural substrate supporting music
28 perception is a central goal in auditory neuroscience, and multiple questions remain including
29 which musical elements (e.g., melody, harmony, rhythm) are encoded in the brain and what are
30 the neural dynamics of brain regions underlying music perception. The last decades have seen
31 tremendous progress in understanding the neural basis of music perception², with multiple
32 studies assessing the neural correlates of isolated musical elements such as timbre^{3,4}, pitch^{5,6},
33 melody^{7,8}, harmony^{9,10} and rhythm^{11,12}. These studies have established that music perception
34 relies on a broad network of subcortical and cortical regions, including primary and secondary
35 auditory cortices, sensorimotor areas, and inferior frontal gyri^{13–16}. Both hemispheres have been
36 shown to be involved in music processing, with a relative preference for the right hemisphere^{17,18}.

37

38 These studies provide a foundation for understanding music perception. However, they
39 typically focus on isolated musical elements or specific cortical areas. Further, they rely on brain
40 imaging methods with either limited temporal or spatial resolution¹⁹ (fMRI and EEG,
41 respectively), and on standard trial-based paradigms and analytic methods. To address these
42 limitations, we used a naturalistic auditory stimulus listening paradigm, and applied encoding and
43 decoding analyses to intracranial electroencephalography (iEEG) data, known for its unique
44 spatiotemporal resolution.

45

46 We used a popular rock song (*Another Brick in the Wall, Part 1*, by Pink Floyd) as our
47 naturalistic auditory stimulus. Studies employing restricted or synthetic stimuli are useful to
48 assess specific aspects of auditory processing but may miss brain regions involved in higher-order
49 processing^{20,21}. Due to nonlinearities in the auditory pathways, probing the brain with isolated
50 notes elicits neural activity in the primary auditory cortex (A1), but fails to activate areas encoding
51 higher-order musical elements such as chords (i.e., at least three notes played together),
52 harmony (i.e., the relationship between a system of chords), or rhythm (i.e., the temporal
53 arrangement of notes). Using a rich and complex auditory stimulus elicits a robust and distributed
54 neural response, allowing study of the extended neural network underlying music perception.

55

56 Music research participants are often asked to actively perform a task, such as detecting
57 a target^{3,7,8}, focusing on a particular auditory object^{22,23}, or expressing a perceptual
58 judgement^{6,10}. Such tasks are necessary to study key aspects of auditory cognition, such as
59 attention, working memory or emotions. However, the dual task nature of these approaches
60 requiring both listening and responding distracts participants from pure music listening and
61 confounds neural processing of music with decision processes and motor activity. To address
62 these issues, we implemented a passive listening paradigm mimicking the everyday music-
63 listening experience. A naturalistic music listening experience provides an uninterrupted window
64 for assessment of higher-order aspects of musical experience (e.g., sense of beat built over time,

65 or melodic expectations²⁴) optimizing our chances at observing the full network underlying the
66 perception of musical elements.

67

68 We recorded intracranial EEG (iEEG) data directly from the cortical surface of
69 neurosurgical patients (electrocorticography; ECoG). This unique window on cortical processing
70 combines the temporal resolution of electrophysiological techniques, with the spatial resolution
71 of fMRI²⁵. In addition, iEEG provides direct access to High-Frequency Activity (HFA; 70-150Hz).
72 HFA is an index of non-oscillatory neural activity, reflecting information processing linked to local
73 single unit firing in the infragranular cortical layers and dendritic potential in supragranular
74 layers²⁶, and to the BOLD signal in fMRI²⁷. Given the direct contact between electrodes and brain
75 tissue, iEEG benefits from an excellent signal-to-noise ratio. This is especially valuable in our
76 naturalistic approach since it provides reliable HFA at the single-trial level enabling individual
77 subject modeling.

78

79 We employed predictive modeling tools to take advantage of the complexity of our
80 naturalistic stimulus and the richness of iEEG data. Specifically, we used encoding models to
81 characterize the spectrotemporal receptive fields (STRF) of each electrode and decoding models
82 to reconstruct the song stimulus from population neural activity. Encoding models predict neural
83 activity at one electrode from a representation of the stimulus (e.g., spectrogram,
84 spectrotemporal modulations, onset of notes). When this representation is a spectrogram,
85 encoding models are called spectro-temporal receptive fields (STRFs), and a plot of their trained
86 coefficients can be interpreted as the spectrogram of the ideal auditory stimulus to elicit an
87 increase of neural activity at the observed electrode. These models have been successfully used
88 to evidence key properties of the neural auditory system. This technique originated with action
89 potential data recorded in animal models in response to artificial stimuli²⁸. Recent algorithmic
90 and machine-learning developments expanded its use to human brain imaging data and
91 naturalistic stimuli²⁹. Within the last decade, STRFs have been used to quantitatively characterize
92 the spectrotemporal tuning profile of neural populations in response to speech or music.
93 Notably, STRFs were used to evidence rapid plasticity of the human auditory cortex in speech
94 perception³⁰, an antero-posterior parcellation of the human superior temporal gyri³¹ (STG), and
95 a partial overlap between the neural activity underlying music imagery and music perception³².
96 By considering the full complexity of the auditory stimulus, as opposed to condition-based task
97 design that often focuses on a single contrast dimension, and by revealing the tuning patterns of
98 neural populations, STRFs constitute a tool of choice to investigate the neural coding supporting
99 music perception.

100

101 Decoding models predict a representation of the stimulus from the elicited neural activity,
102 often obtained from many electrodes. Their usage has exploded in the last decade for analyzing
103 complex datasets without sacrificing potential dimensions of interest²⁹. In the music domain,
104 most decoding models have been used in a classification approach, for example to identify a
105 musical piece³³ or its genre^{34,35} from the elicited neural activity, or to estimate music-related

106 aspects beyond the stimulus level, such as musical attention³⁶ or musicianship status of the
107 listener³⁷. Another application of decoding models used in the speech domain is the stimulus
108 reconstruction approach^{38,39}, where the auditory stimulus (i.e., the sound itself) is reconstructed
109 from the elicited neural activity. Decoding performance informs on the nature of the information
110 represented in the recorded neural activity: if a musical element can be reconstructed, this
111 means it was represented within the set of electrodes used as input of the decoding model. We
112 also applied an ablation analysis, a method akin to making virtual lesions on the decoding model
113 inputs^{40,41}. We removed (or ablated) sets of predictors (here, electrodes) to assess their impact
114 on decoding accuracy. Moreover, comparing the impact of ablating different sets of electrodes
115 provides insights on how information is uniquely or redundantly encoded between these sets.
116

117 On the applied side, stimulus reconstruction has seen recent successes for speech
118 decoding⁴²⁻⁴⁴. Such studies have reconstructed intelligible speech from iEEG data, using
119 nonlinear models (deep neural networks) combined with different representations of speech
120 including speech kinematics or the movements of vocal articulators. Here we applied stimulus
121 reconstruction in the music domain for the first time. We investigated the extent to which a song
122 could be reconstructed from direct brain recordings, and quantified the factors impacting
123 decoding accuracy including model type (linear vs nonlinear) and dataset dimensionality (number
124 of electrodes, dataset duration).
125

126 The dataset we analyzed has been the focus of previous studies, although not employing
127 encoding and decoding models⁴⁵⁻⁴⁹. These studies linked several musical elements, such as sound
128 intensity or timber, to neural activity in the posterior superior temporal gyrus (STG) or
129 sensorimotor areas. Here, we use predictive modeling tools on iEEG data recorded from 2,668
130 electrodes across 29 neurological patients, who passively listened to a Pink Floyd song. We used
131 encoding models to identify responsive cortical areas and analyze their tuning patterns and
132 decoding models both to analyze information processing through an ablation analysis and to
133 reconstruct the song from the elicited neural activity.
134

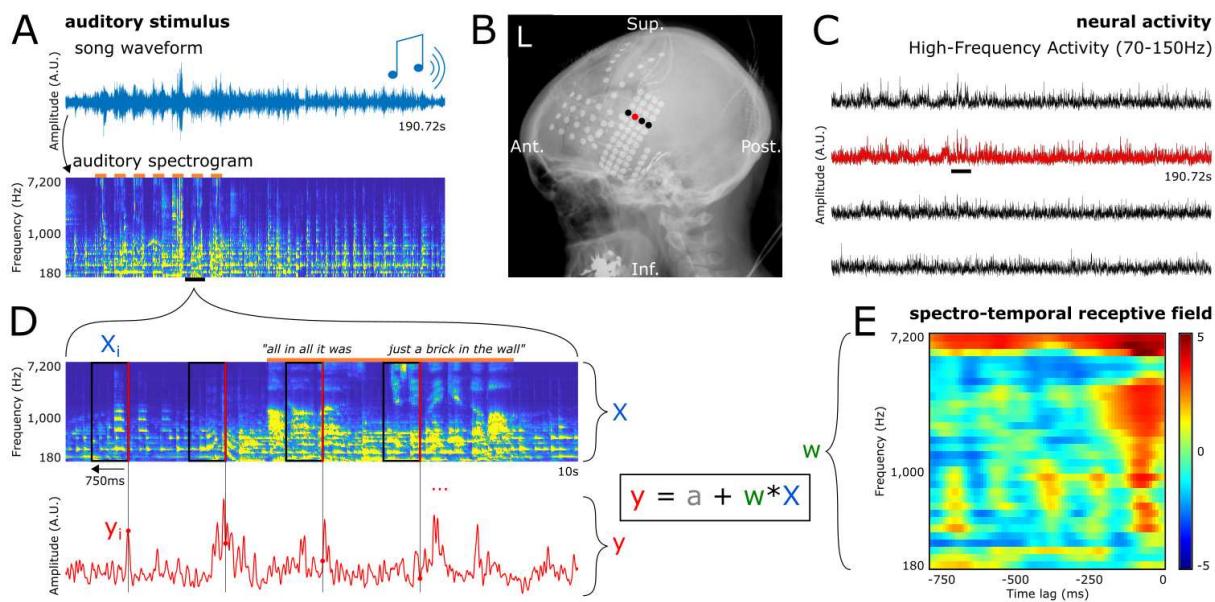
135

136 **Results**

137 **Distribution of song-responsive electrodes**

138 To identify electrodes encoding acoustical information about the song, we fitted STRFs
139 for all 2,379 artifact-free electrodes in the dataset, assessing how well the HFA recorded at these
140 sites could be linearly predicted from the song's auditory spectrogram (Fig. 1). From a dense,
141 bilateral, predominantly frontotemporal coverage (Fig. 2A), we identified 347 electrodes with a
142 significant STRF (Fig. 2B). We found a higher proportion of song-responsive electrodes in the right
143 hemisphere. There were 199 significant electrodes out of 1,479 total in the left hemisphere and
144 148 out of 900 in the right one (Fig. 2B, 13.5% against 16.4%, respectively; χ^2 (1, N=2,379) = 4.01,
145 $p = .045$).

146



147

148 **Fig 1.** Protocol, data preparation and encoding model fitting. **A.** Top. Waveform of the entire song stimulus. Participants listened
 149 to a 190.72-second rock song (*Another Brick in the Wall, Part 1*, by Pink Floyd) using headphones. Bottom. Auditory spectrogram
 150 of the song. Orange lines on top represent parts of the song with vocals. **B.** X-ray showing electrode coverage of one
 151 representative patient. Each dot is an electrode, and the signal from the four highlighted electrodes is shown in **C**. **C.** HFA elicited
 152 by the song stimulus in four representative electrodes. **D.** Zoom-in on 10 seconds (black lines in **A** and **C**) of the auditory
 153 spectrogram and the elicited neural activity in a representative electrode. Each time point of the HFA (y_i , red dot) is paired with
 154 a preceding 750-ms window of the song spectrogram (X_i , black rectangle) ending at this time point (right edge of the rectangle,
 155 in red). The set of all pairs (X_i, y_i), with i ranging from .75 to 190.72 seconds, constitute the examples (or observations) used to
 156 train and evaluate the linear encoding models. Linear encoding models used here consist in predicting the neural activity (y) from
 157 the auditory spectrogram (X), by finding the optimal intercept (a) and coefficients (w). **E.** Spectro-Temporal Receptive Field (STRF)
 158 for the electrode shown in red in **B**, **C** and **D**. STRF coefficients are z-valued, and are represented as w in the previous equation.
 159 Note that 0 ms (timing of the observed HFA) is at the right end of the x axis, as we predict HFA from the preceding auditory
 160 stimulus.

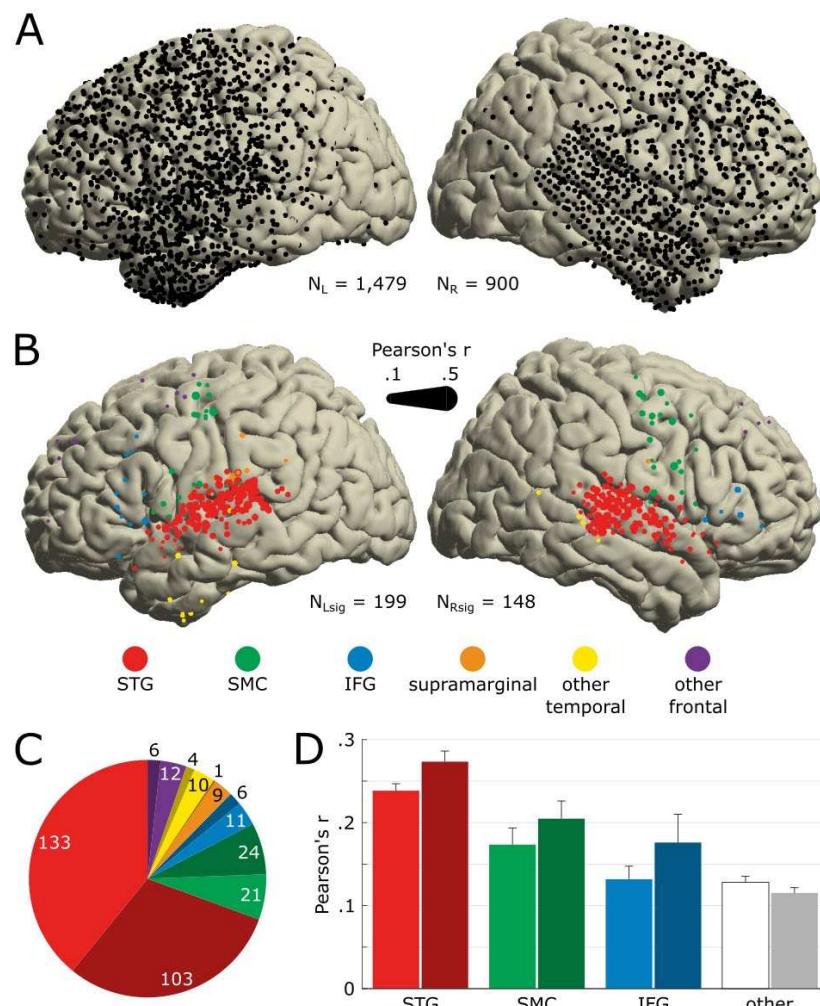
161

162 The majority of the 347 significant electrodes (87%) were concentrated in three regions:
 163 68% in bilateral superior temporal gyri (STG), 14.4% in bilateral sensori-motor cortices (SMC, on
 164 the pre- and postcentral gyri), and 4.6% in bilateral inferior frontal gyri (IFG; Fig. 2C). The
 165 proportion of song-responsive electrodes per region was 55.7% for STG (236 out of 424
 166 electrodes), 11.6% for SMC (45/389), and 7.4% for IFG (17/229). The remaining 13% of significant
 167 electrodes were distributed in the supramarginal gyri and other frontal and temporal regions.

168

169 Analysis of STRF prediction accuracies (Pearson's r) found a main effect of laterality (two-
 170 way ANOVA; $F(1, 346) = 7.48$, $p = 0.0065$; Fig. 2D), with higher correlation coefficients in the right
 171 hemisphere than in the left ($M_R = .203$, $SD_R = .012$; $M_L = .17$, $SD_L = .01$). We also found a main effect
 172 of cortical regions ($F(3, 346) = 25.09$, $p < .001$), with the highest prediction accuracies in STG
 173 (Tukey-Kramer post-hoc; $M_{STG} = .266$, $SD_{STG} = .007$; $M_{SMC} = .194$, $SD_{SMC} = .017$, $p_{STGvsSMC} < .001$; $M_{IFG} = .154$,
 174 $SD_{IFG} = .027$, $p_{STGvsIFG} < .001$; $M_{other} = .131$, $SD_{other} = .016$, $p_{STGvsOther} < .001$). In addition, we found higher
 175 prediction accuracies in SMC compared to the group not including STG and IFG ($M_{SMC} = .194$, SD_{SMC}
 176 = .017; $M_{other} = .131$, $SD_{other} = .016$, $p_{SMCvsOther} = .035$).

177



178
179
180
181
182
183
184
185
186
187

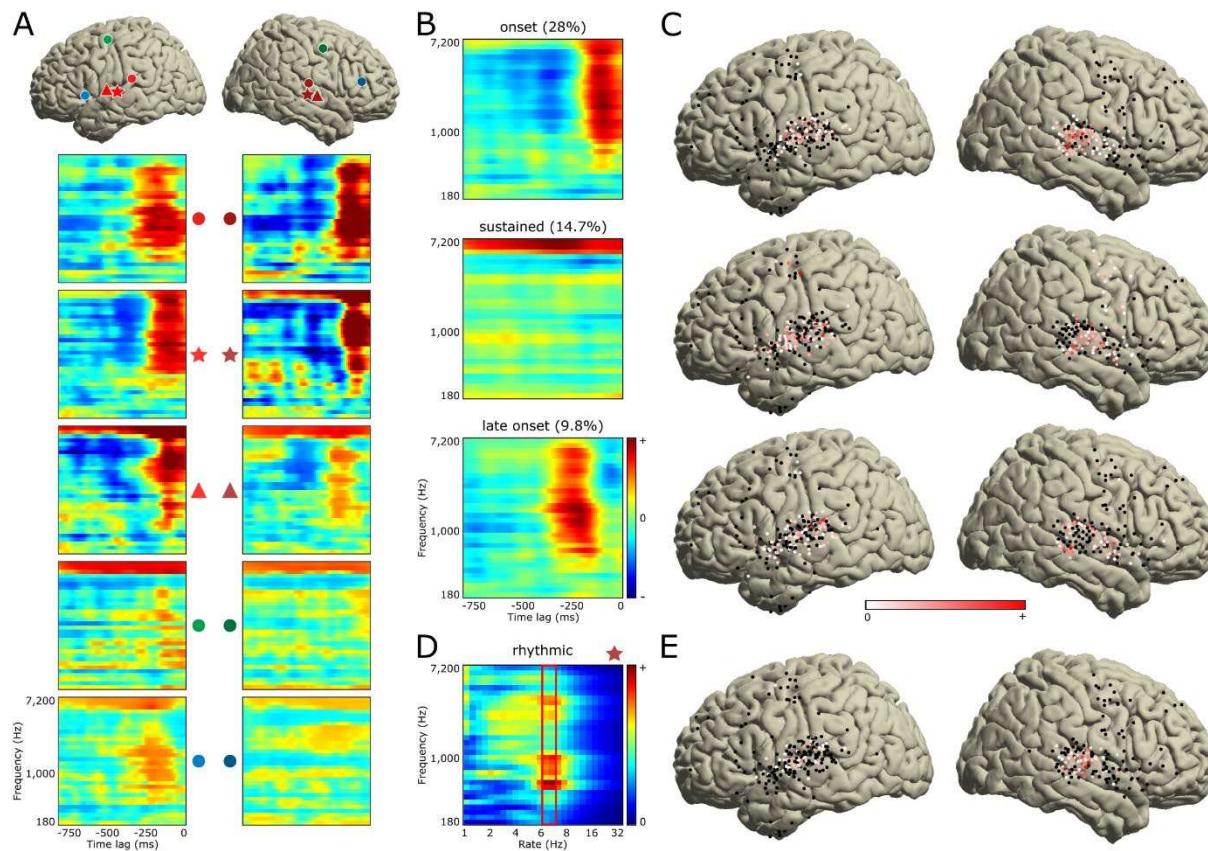
Fig. 2. Anatomical location of song-responsive electrodes. **A.** Electrode coverage across all 29 patients shown on the MNI template ($N=2,379$). All presented electrodes are free of any artifactual or epileptic activity. Left hemisphere is plotted on the left. **B.** Location of electrodes significantly encoding the song's acoustics ($N_{sig}=347$). Significance was determined by the STRF prediction accuracy bootstrapped over 250 resamples. Marker color indicates the anatomical label as determined using the Freesurfer atlas, and marker size indicates the STRF's prediction accuracy (Pearson's r between actual and predicted HFA). We use the same color code in following panels and figures. **C.** Number of significant electrodes per anatomical region. Darker hue indicates a right-hemisphere location. **D.** Average STRF prediction accuracy per anatomical region. Electrodes previously labelled as *supramarginal*, *other temporal* (i.e., other than STG) and *other frontal* (i.e., other than SMC or IFG) are pooled together, labelled as *other* and represented in white/gray. Error bars indicate SEM.

188

189 Encoding of musical elements

190 We analyzed STRF coefficients for all 347 significant electrodes to understand how
191 different musical elements were encoded in different brain regions. This revealed a variety of
192 spectrotemporal tuning patterns (Fig. 3A). To fully characterize the relationship between the
193 song spectrogram and the neural activity, we performed an independent component analysis
194 (ICA) on all significant STRFs. We identified three components with distinct spectrotemporal
195 tuning patterns, each explaining more than 5% variance (Fig. 3B).

196



197
198
199
200
201
202
203
204
205
206

Fig. 3. Analysis of the STRF tuning patterns. **A.** Representative set of 10 STRFs (out of the 347 significant ones) with their respective locations on the MNI template using matching markers. Color code is identical to the one used in Fig. 1. **B.** Three ICA components explaining more than 5% variance of all 347 significant STRFs. These three components show *onset*, *sustained* and *late onset* activity. Percentages indicate explained variance. **C.** ICA coefficients of these three components, plotted on the MNI template. Color code indicates coefficient amplitude, with STRFs of electrodes in red representing most the components. **D.** To capture tuning to the rhythm guitar pattern (16th notes at 100 bpm, i.e., 6.66 Hz), pervasive throughout the song, we computed temporal modulation spectra of all significant STRFs. Example modulation spectrum is shown for a right STG electrode. For each electrode, we extracted the maximum temporal modulation value across all spectral frequencies around a rate of 6.66 Hz (red rectangle). **E.** All extracted values are represented on the MNI template. Electrodes in red show tuning to the rhythm guitar pattern.

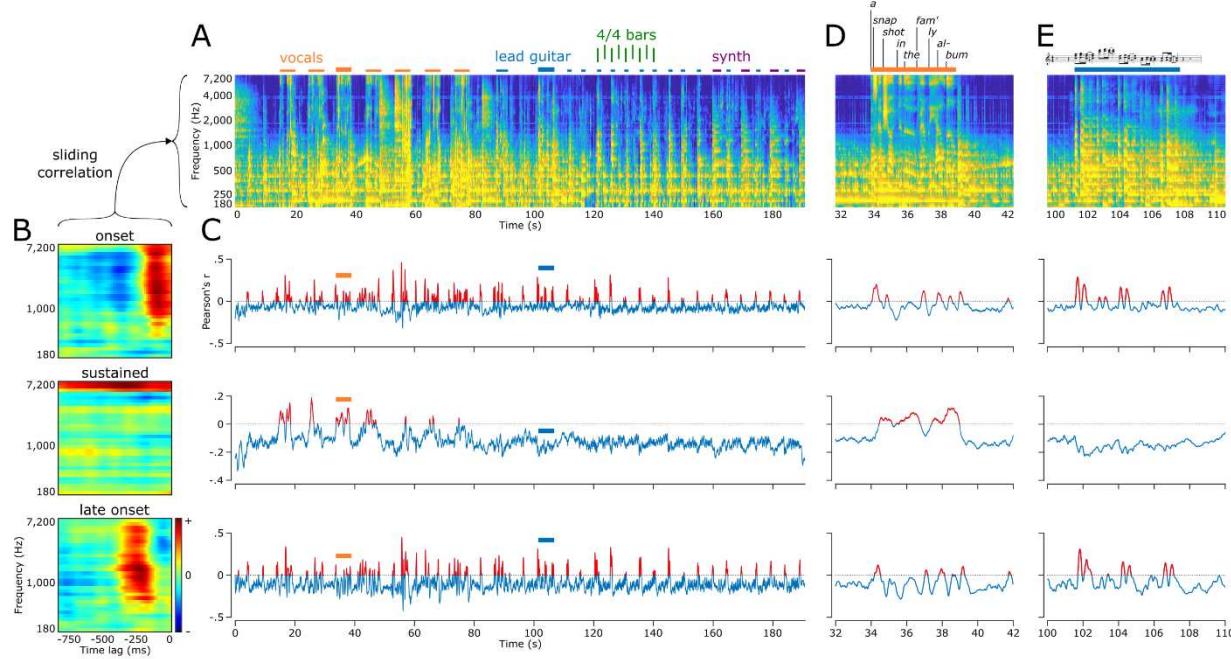
207

208 The first component (28% explained variance) showed a cluster of positive coefficients (in
209 red, in Fig. 3B, top row) spreading over a broad frequency range from about 500 Hz to 7 kHz, and
210 over a narrow time window centered around 90 ms before the observed HFA (located at time lag
211 = 0 ms, at the right edge of all STRFs). This temporally transient cluster revealed tuning to sound
212 onsets. This component, referred to as the “onset component,” was found exclusively in
213 electrodes located in bilateral posterior STG (Fig. 3C, top row, electrodes depicted in red). Fig.
214 4C, top row showed in red the parts of the song eliciting the highest HFA increase in electrodes
215 possessing this onset component. These parts corresponded to onsets of lead guitar or
216 synthesizer motifs (Fig. 4A, blue and purple lines, respectively; see Fig. 4E for a zoom-in) played
217 every two bars (green lines), and to onsets of syllable nuclei in the vocals (orange lines; see Fig.
218 4D for a zoom-in).

219

220 The second component (14.7% explained variance) showed a cluster of positive
221 coefficients (in red, in Fig. 3B, middle row) spreading over the entire 750ms time window, and

222 over a narrow frequency range from about 4.8 to 7 kHz. This component, referred to as the
223 “sustained component,” was found in electrodes located in bilateral mid- and anterior STG, and
224 in bilateral SMC (Fig. 3C, middle row). It correlated best with parts of the song containing vocals,
225 thus suggesting tuning to speech (Fig. 4C, middle row, in red; see Fig. 4D for a zoom-in).



226
227 **Fig. 4.** Encoding of musical elements. **A.** Auditory spectrogram of the whole song. Orange lines above the spectrogram mark all
228 parts with vocals. Blue lines mark lead guitar motifs, and purple lines mark synthesizer motifs. Green vertical lines delineate a
229 series of eight 4/4 bars. Thicker orange and blue lines mark locations of the zoom-ins presented in D and E, respectively. **B.** Three
230 STRF components as presented in Fig. 3B, namely onset (top), sustained (middle) and late onset (bottom). **C.** Output of the sliding
231 correlation between the song spectrogram (A) and each of the three STRF components (B). Positive Pearson's r values are plotted
232 in red, marking parts of the song that elicited an increase of HFA in electrodes exhibiting the given component. Note that for the
233 sustained plot (middle), positive correlation coefficients are specifically observed during vocals. Also, note for both the onset and
234 late onset plots (top and bottom, respectively), positive r values in the second half of the song corresponds to lead guitar and
235 synthesizer motifs, occurring every other 4/4 bar. **D.** Zoom-in on the third vocals. Lyrics are presented above the spectrogram,
236 decomposed into syllables. Most syllables triggered an HFA increase in both onset and late onset plots (top and bottom,
237 respectively), while a sustained increase of HFA was observed during the entire vocals (middle). **E.** Zoom-in on a lead guitar motif.
238 Sheet music is presented above the spectrogram. Most notes triggered an HFA increase in both onset and late onset plots (top
239 and bottom, respectively), while there was no HFA increase for the sustained component (middle).

240 The third component (9.8% explained variance) showed a similar tuning pattern as the
241 onset component, only with a longer latency of about 210 ms before the observed HFA (Fig. 3B,
242 bottom row). This component, referred from now on as the “late onset component,” was found
243 in bilateral posterior and anterior STG, neighboring the electrodes representing the onset
244 component, and in bilateral SMC (Fig. 3C, bottom row). As with the onset component, this late
245 onset component was most correlated with onsets of lead guitar and synthesizer motifs and of
246 syllable nuclei in the vocals, only with a longer latency (Fig. 4C, bottom row; see Fig. 4D and 4E
247 for zoom-ins).

248
249 A fourth component was found by computing the temporal modulations and extracting
250 the maximum coefficient around a rate of 6.66 Hz for all 347 STRFs (Fig. 3D, red rectangle). This

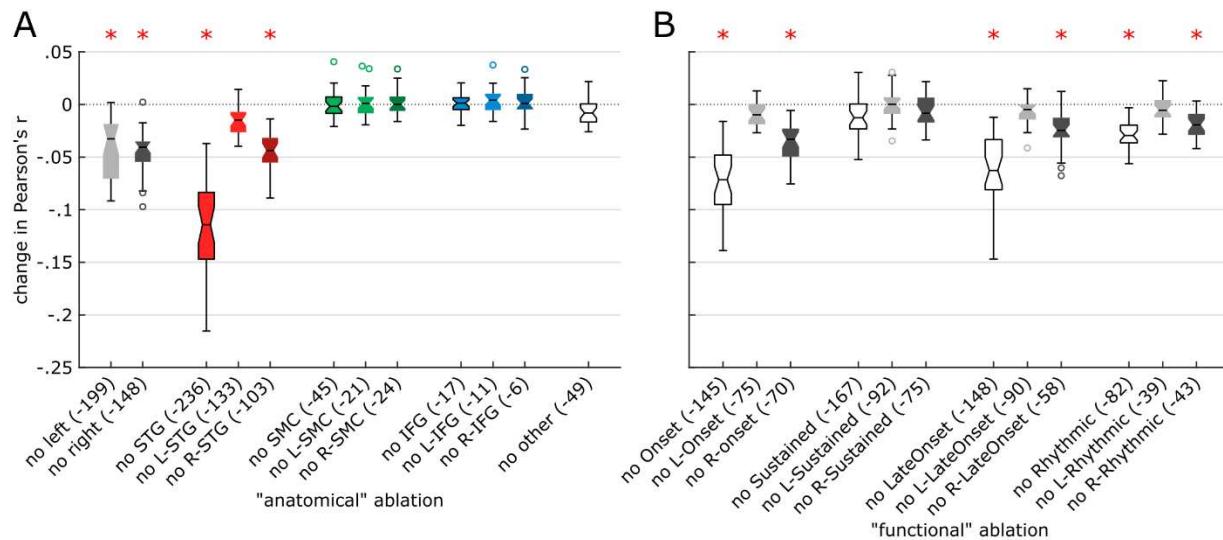
251 rate corresponded to the 16th notes of the rhythm guitar, pervasive throughout the song, at the
252 song tempo of 99 bpm (beats per minute). It was translated in the STRFs as small clusters of
253 positive coefficients spaced by 150 ms (1 / 6.66 Hz) from each other (e.g., Fig. 3A, electrode 5).
254 This component, referred from now on as the “rhythmic component,” was found in electrodes
255 located in bilateral mid STG (Fig. 3E).

256

257 **Anatomo-functional distribution of the song’s acoustic information**

258 To assess the role of these different cortical regions and functional components in
259 representing musical features, we performed an ablation analysis using linear decoding models.
260 We first computed linear decoding models for each of the 32 frequency bins of the song
261 spectrogram, using the HFA of all 347 significant electrodes as predictors. This yielded an average
262 prediction accuracy of .62 (Pearson’s r ; min .27 - max .81). We then removed (or *ablated*)
263 anatomically- or functionally defined sets of electrodes and computed a new series of decoding
264 models, to assess how each ablation would impact the decoding accuracy. We used prediction
265 accuracies of the full, 347-electrode models as baseline values (Fig. 5). We found a significant
266 main effect of electrode sets (one-way ANOVA; $F(1, 24) = 78.4$, $p < .001$). We then ran a series of
267 post-hoc analyses to examine the impact of each set on prediction accuracy.

268



269

270 **Fig. 5. Ablation analysis on linear decoding models.** We performed “virtual lesions” in the predictors of decoding models, by
271 ablating either anatomical (A) or functional (B) sets of electrodes. Ablated sets are shown on the x axis, and their impacts on the
272 prediction accuracy (Pearson’s r) of linear decoding models, as compared to the performance of a baseline decoding model using
273 all 347 significant electrodes, are shown on the y axis. For each ablation, a notched box plot represents the distribution of the
274 changes in decoding accuracy for all 32 decoding models (one model per frequency bin of the auditory spectrogram). Red asterisks
275 indicate significant impact from ablating a given set of electrodes.

276

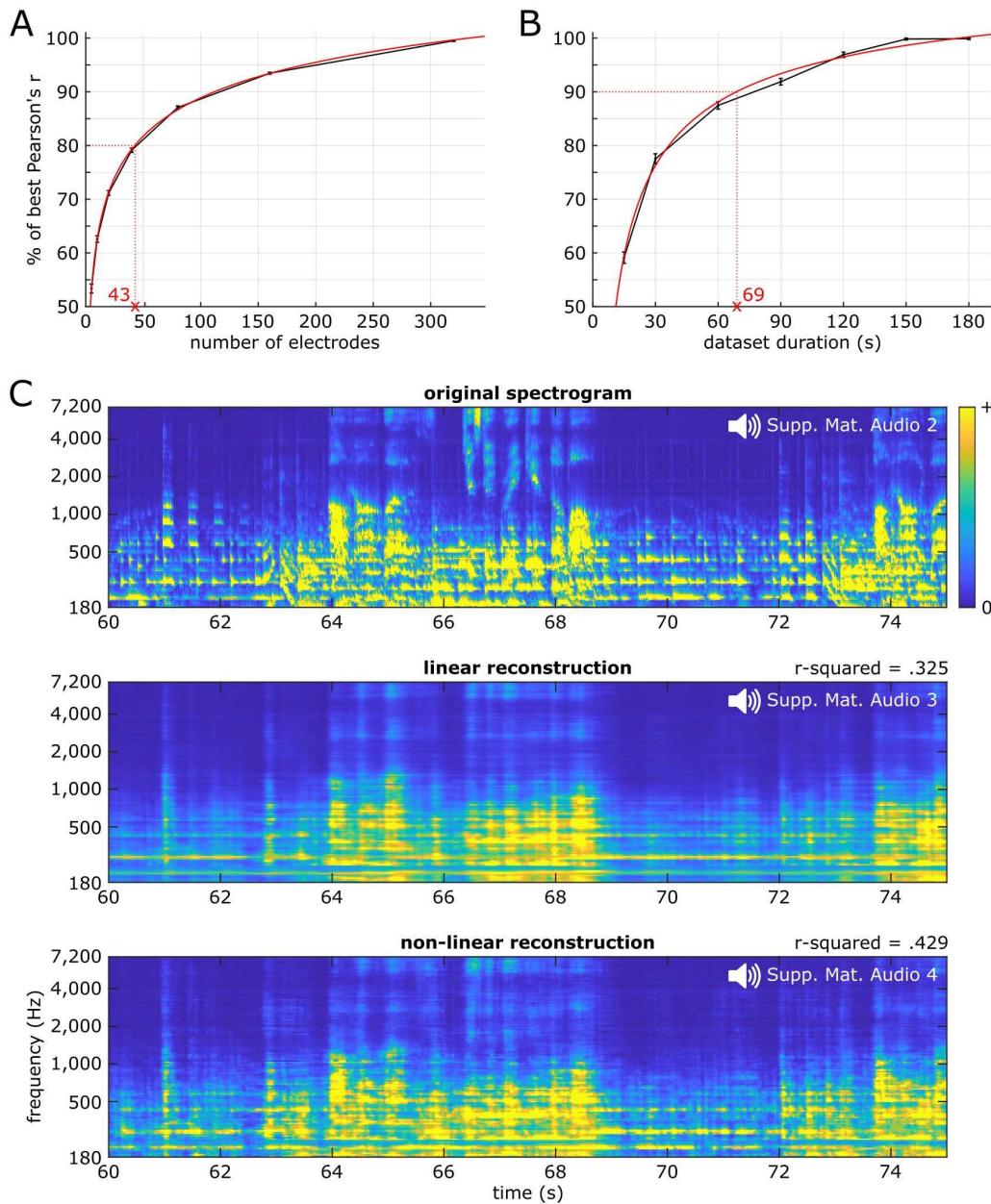
Anatomical ablations (Fig. 5A). Removing all STG or all right STG electrodes impacted prediction
277 accuracy ($p < .001$), with removal of all STG electrodes having the highest impact compared to all
278 other electrode sets ($p < .001$). Removal of right STG electrodes had higher impact than left STG
279 removal ($p < .001$), and no impact of removing left STG electrodes was found ($p = .156$). Together,
280 this suggests that: 1) bilateral STG represented unique musical information compared to other

281 regions, 2) right STG had unique information compared to left STG, and 3) part of the musical
282 information in left STG was redundantly encoded in right STG. Ablating SMC, IFG or all other
283 regions did not impact prediction accuracy ($p > .998$). Removing either all left or all right
284 electrodes significantly reduced the prediction accuracy ($p < .001$), with no significant difference
285 between all left and all right ablations ($p = 1$). These results suggest that both hemispheres
286 represent unique information and contribute to song decoding. Furthermore, the fact that
287 removing single regions in the left hemisphere had no impact but removing all left electrodes did,
288 suggests redundancy within the left hemisphere, with musical information being spatially
289 distributed across left hemisphere regions.

290

291 *Functional ablations* (Fig. 5B). Removing all onset electrodes and right onset electrodes both
292 impacted prediction accuracy ($p < .001$), with a highest impact for all onset ($p < .001$). No impact
293 of removing left onset electrodes was found ($p = .994$). This suggests that right onset electrodes
294 had unique information compared to left onset electrodes, and that part of the musical
295 information in left onset electrodes was redundantly encoded in right onset electrodes. A similar
296 pattern of higher right hemisphere involvement was observed with the late onset component (p
297 $< .001$). Removing all rhythmic and right rhythmic electrodes both significantly impacted the
298 decoding accuracy ($p < .001$ and $p = .007$, respectively), while we found no impact of removing
299 left rhythmic electrodes ($p = 1$). We found no difference between removing all rhythmic and right
300 rhythmic electrodes ($p = .973$). This suggests that right rhythmic electrodes had unique
301 information, none of which was redundantly encoded in left rhythmic electrodes. Despite the
302 substantial number of sustained electrodes, no impact of removing any set was found ($p > .745$).
303 Note that as opposed to anatomical sets, functional sets of electrodes partially overlapped. This
304 impeded our ability to reach conclusions regarding the uniqueness or redundancy of information
305 *between* functional sets.

306



307

308 **Fig. 6.** Song reconstruction and methodological considerations. **A.** Prediction accuracy as a function of the number of electrodes
309 included as predictors in the linear decoding model. On the y axis, 100% represents the maximum decoding accuracy, obtained
310 using all 347 significant electrodes. The black curve shows data points obtained from a 100-resample bootstrapping analysis,
311 while the red curve shows a two-term power series fit line. **B.** Prediction accuracy as a function of dataset duration. **C.** Auditory
312 spectrograms of the original song (top), and of the reconstructed song using either linear (middle) or nonlinear models (bottom).
313 This 15-second song excerpt was held out during hyperparameter tuning through cross-validation and model fitting, and solely
314 used as a test set to evaluate model performance. Corresponding audio waveforms were obtained through an iterative phase-
315 estimation algorithm, and can be listened to in Supp. Mat. Audio 2, 3 and 4, respectively. Average effective r^2 across all
316 128 frequency bins is shown above both decoded spectrograms.

317

318 **Song reconstruction and methodological factors impacting decoding accuracy**

319 Finally, we tested if we could reconstruct the song from neural activity, and how
320 methodological factors such as the number of electrodes included in the model, the dataset

321 duration or the model type at use impacted decoding accuracy. A bootstrap analysis revealed a
322 logarithmic relationship between how many electrodes were used as predictors in the decoding
323 model and the resulting prediction accuracy (Fig. 6A). For example, 80% of the best prediction
324 accuracy (using all 347 significant electrodes) was obtained with 43 (or 12.4%) electrodes. A
325 similar relationship was observed between dataset duration and prediction accuracy (Fig. 6B).
326 For example, 90% of the best performance (using the whole 190.72s song) was obtained using
327 69 seconds (or 36.1%) of data.

328

329 Regarding model type, linear decoding provided an average decoding accuracy of .325
330 (median of the 128 models' effective r-squared; IQR .232), while nonlinear decoding using a two-
331 layer, fully connected neural network (multilayer perceptron; MLP) yielded an average decoding
332 accuracy of .429 (IQR .222). This 32% increase in effective r-squared (+.104 from .325) was
333 significant (paired t-test, $t(127) = 17.48$, $p < .001$). In line with this higher effective r-squared for
334 MLPs, the decoded spectrograms revealed differences between model types, with the nonlinear
335 reconstruction (Fig. 6C, bottom row) showing finer spectro-temporal details, relatively to the
336 linear reconstruction (Fig. 6C, middle row). Overall, the linear reconstruction (Supplementary
337 Material Audio 3) sounded muffled with strong rhythmic cues on the presence of foreground
338 elements (vocals syllables and lead guitar notes); a sense of spectral structure underlying timbre
339 and pitch of lead guitar and vocals; a sense of harmony (chord progression moving from Dm to
340 F, C and Dm); but limited sense of the rhythm guitar pattern. The nonlinear reconstruction (Supp.
341 Mat. Audio 4) provided a recognizable song, with richer details as compared to the linear
342 reconstruction. Especially, perceptual quality of spectral elements such as pitch and timbre were
343 improved, and phoneme identity was perceptible. There was also a stronger sense of harmony
344 and an emergence of the rhythm guitar pattern.

345

346

347 **Discussion**

348 We applied predictive modeling analyses on iEEG data obtained from patients listening to
349 a Pink Floyd song. Encoding models documented a central role of bilateral STG and a right-
350 hemisphere preference in music perception. Our results revealed partially overlapping cortical
351 areas that encoded different musical elements. An ablation analysis on decoding models showed
352 that both the left and right hemispheres contained unique musical information, and that part of
353 the information between left and right STG was redundant. Moreover, in the left hemisphere,
354 we observed that musical information was spatially distributed between regions, beyond STG.
355 On a methodological side, we quantified the impact of the number of electrodes, dataset
356 duration and model type (linear vs nonlinear) on decoding accuracy. Notably, we provide the first
357 recognizable song reconstruction directly decoded from human intracranial EEG data.

358

359 We observed a right hemispheric preference for music perception, with a higher
360 proportion of electrodes with significant STRFs, higher STRF prediction accuracies, and a higher
361 impact of ablating right electrode sets (both anatomical and functional) from the decoding
362 models. While there was a statistical preference for the right hemisphere, left hemisphere
363 electrodes also exhibited significant STRFs and a reduced prediction accuracy when ablated.

364 These results are in accord with prior research, showing that music perception relies on a bilateral
365 network, with a relative right lateralization^{17,18,50}.

366

367 We also found that the spatial distribution of musical information differed between
368 hemispheres, as suggested by the ablation results. Redundant musical information was
369 distributed between STG, SMC and IFG in the left hemisphere, whereas unique musical
370 information was concentrated in STG in the right hemisphere. Such spatial distribution is
371 reminiscent of the dual-stream model of speech processing⁵¹. However, the absence of right SMC
372 or IFG involvement in the ablation analysis was surprising given their reported role in music
373 processing^{16,52}. Still, we observed significant STRFs in bilateral SMC and IFG, with possible roles
374 in encoding vocals-related information and speech or melodic syntax, respectively^{43,53,54}.

375

376 We found a critical role of bilateral STG in representing musical information, in line with
377 prior human studies^{32,35,52,55}. As observed in other studies, STRFs obtained from the STG had rich,
378 complex tuning patterns. To assess the anatomo-functional organization of music perception in
379 STG, we employed a component analysis on all STRFs, which revealed four components: onset,
380 sustained, late onset and rhythmic. The onset and sustained components were similar to those
381 observed for speech in prior work^{31,56}. Specifically, the onset component was tuned to high
382 temporal/low spectral modulations while the sustained component was tuned to low
383 temporal/high spectral modulations.

384

385 The onset component was tuned to a broad range of frequencies but to a narrow time
386 window peaking at 90 ms. This latency is similar to the lag at which HFA tracked music intensity
387 profile in Ding et al.¹⁸. We found that the onset component was activated by both vocals (that is,
388 syllables) and instrumental onsets (or notes). This confirms that the onset component is not
389 speech specific, consistent with prior work⁵⁶ showing that reversed and spectrally rotated speech
390 also elicited onset responses.

391

392 In contrast to the onset component, we found that the sustained component (tuned to a
393 narrow high-frequency band but observed in a wide time window) was only activated by vocals.
394 As seen in prior work^{31,56} we observed these two components in anatomically distinct STG
395 subregions, with the onset component in posterior STG and the sustained component in mid-
396 and anterior STG. Interestingly, we observed single electrodes representing both the onset and
397 the sustained components, which were mostly located in mid STG. This was not found in previous
398 studies, likely due to the use of different data-driven approaches (clustering vs ICA). Surprisingly,
399 in our functional ablation analysis, removing all electrodes representing the sustained
400 component did not impact decoding accuracy, despite their substantial number (167 out of 347).
401 This might be due to the fact that as the song is dominated by instrumentals, removing a
402 component related to vocals had negligible impact on the decoding accuracy.

403

404 In addition to the onset and sustained component, we found evidence for two other
405 distinct components: late onset and rhythmic. The late onset component was found in electrodes
406 neighboring the onset component in STG and had similar tuning properties as the onset
407 component, only peaking at a later latency of 210ms. This is in line with the findings of Nourski

408 et al.⁵⁷, who, using click trains and a speech syllable, observed a concentric spatial gradient of
409 HFA onset latencies in STG, with shorter latencies in post-/mid-STG and longer latencies in
410 surrounding tissue. Further studies are needed to understand better the relationship between
411 the onset and late onset components, as their similar functional behavior despite such different
412 latencies appears as a discrepancy. The rhythmic component, tuned to the 6.66 Hz sixteenth
413 notes of the rhythm guitar, was observed in mid STG, especially in electrodes representing both
414 onset and sustained components. This provides a novel link between HFA and a specific rhythmic
415 signature in a subregion of STG, and extends prior studies that found an involvement of STG in a
416 range of rhythmic processes, i.e., beat perception⁵⁸, omissions⁵⁹, periodicity⁶⁰. Altogether, these
417 four components paint a rich picture of the anatomo-functional organization of complex sound
418 processing in the human STG.

419

420 On the methodological side, we observed a logarithmic relationship between decoding
421 accuracy and the number of electrodes (a proxy for electrode density) or dataset duration, in line
422 with previous literature for speech stimuli^{39,42}. We showed that 80% of the maximum observed
423 decoding accuracy was achieved with 43 electrodes or in 37 seconds, which supports the
424 feasibility of using predictive modeling approaches in relatively small datasets. Interestingly,
425 ablating the 167 sustained electrodes (Fig. 5B) had no significant impact on decoding accuracy,
426 while ablating the 43 right rhythmic electrodes did. This observation shows that electrode
427 functional role and anatomical location were primordial factors.

428

429 We reconstructed a recognizable song using nonlinear models predicting the song's
430 acoustics from the elicited HFA. Linear decoding provided a surprisingly good r-squared of 32.5%
431 explained variance but nonlinear reconstruction performed better at all levels, with a higher r-
432 squared of 42.9%, a more detailed decoded spectrogram, and a recognizable song. This is likely
433 due to the multilayer perceptron's ability to decode nonlinearly transformed acoustic
434 information represented in non-primary auditory areas such as STG⁶¹. Decoding the song
435 spectrogram from electrodes in primary auditory cortices (A1, accessible with stereotactic
436 EEG/depth electrodes) might improve the performance of linear models. While nonlinear
437 reconstruction performed better than linear reconstruction, it lacked clarity on some musical
438 elements, especially on the background rhythm guitar pattern. This might be due to several
439 limiting factors: dataset duration could be too short (only slightly more than three minutes) to
440 fully train MLPs; musical information represented in STG could be too nonlinearly transformed,
441 with information loss irreversible even using MLPs; the rhythm guitar pattern, pervasive
442 throughout the song and played in the background, might be perceived as less relevant than
443 vocals or lead guitar phrases, leading to less representation in higher-order auditory areas; lastly,
444 being of lower amplitude than vocals or lead guitar notes in the spectrogram, the rhythm guitar
445 could contribute less to the Mean Squared Error during model fitting, leading to reduced
446 reconstruction.

447

448 An important open question is whether there exist brain regions and networks that are
449 specific to music, or whether music-related information is processed in input agnostic auditory
450 pathways^{50,62,63}. While this study links musical elements to STRF components and precise
451 anatomical locations, it is unlikely that these regions respond specifically to music. Rather our

452 findings suggest non-music-specific encoding of musical elements. The fact that onset and late
453 onset components responded to syllables, lead guitar and synthesizer (Fig. 4) suggests that
454 subparts of STG process both vocals and music. Although one could argue that the rhythmic
455 component (Fig. 3D and E) is music specific as it is clearly related to the 6.66 Hz sixteenth notes
456 of the rhythm guitar, this same rhythmic component shows diffuse energy between 2 and 8 Hz
457 in the temporal modulation spectrum (Fig. 3D), compatible with syllabic rhythm⁶⁴. On the other
458 hand, a specificity for speech is suggested by the sustained component, as it is only activated by
459 vocals (Fig. 4C, D and E).

460

461 Our study had several limitations. Importantly, the encoding models we used in this study
462 to investigate the neural dynamics of music perception estimated the linear relationship between
463 song's acoustics and elicited HFA. It is possible that regions not highlighted by our study respond
464 to the song, either in other neural frequency bands, or encoding higher-order musical
465 information. Another limitation was the short duration of the song, and its limited
466 spectrotemporal variability. More data would enhance statistical power and enable the use of
467 more complex nonlinear models. Finally, we lacked patient-related information about
468 musicianship status or degree of familiarity with the song, preventing us to investigate inter-
469 individual variability.

470

471 Combining a naturalistic paradigm, unique iEEG data and novel modeling-based analyses,
472 this study extends our knowledge of the neural dynamics underlying music perception at two
473 levels. At the brain level, we observed a right-hemisphere preference and a preponderant role of
474 bilateral STG in representing the song's acoustics. Within bilateral STG, we observed partially
475 overlapping neural populations tuned to distinct musical elements. An ablation analysis revealed
476 the presence of unique musical information in both hemispheres, spatially distributed in the left
477 hemisphere between STG, SMC and IFG, and concentrated in STG in the right hemisphere. At a
478 methodological level, we showed the feasibility of applying predictive modeling on a relatively
479 short dataset and quantified the impact of different methodological factors on the prediction
480 accuracy of decoding models. To our knowledge, we provide the first recognizable song
481 reconstructed from direct brain recordings. Future studies could investigate different
482 representations of the song (i.e., notes, chords, sheet music) and different neural frequency
483 bands (e.g., theta, alpha, beta power), and will add another brick in the wall of our understanding
484 of music processing in the human brain.

485 **Methods**

486 **Participants.** Twenty-nine patients with pharmacoresistant epilepsy participated in the study. All
487 had intracranial grids or strips of electrodes (electrocorticography, ECoG) surgically implanted to
488 localize their epileptic foci, and electrode location was solely guided by clinical concern.
489 Recordings took place at the Albany Medical Center (Albany, NY). All patients volunteered and
490 gave their informed consent prior to participating in the study. The experimental protocol has
491 been approved by the Institutional Review Boards of both the Albany Medical Center and the
492 University of California, Berkeley. All patients had self-declared normal hearing.

493

494 **Task.** Patients passively listened to the song *Another Brick in the Wall, Part 1*, by Pink Floyd
495 (released on the album The Wall, Harvest Records/Columbia Records, 1979). They were
496 instructed to listen attentively to the music, without focusing on any special detail. Total song
497 duration was 190.72 seconds (waveform is represented in Fig. 1A, top; listen to Supplementary
498 Material Audio 1 for a 15-second excerpt). The auditory stimulus was digitized at 44.1 kHz and
499 delivered through in-ear monitor headphones (bandwidth 12Hz-23.5kHz, 20dB isolation from
500 surrounding noise) at a comfortable sound level adjusted for each patient (50 to 60 dB SL). Eight
501 patients had more than one recording of the present task, in which cases we selected the cleanest
502 one (i.e., containing the least epileptic activity or noisy electrodes).

503

504 **Intracranial recordings.** Direct cortical recordings were obtained through grids or strips of
505 platinum-iridium electrodes (Ad-Tech Medical, Oak Creek, WI), with center-to-center distances
506 of 10 mm for 21 patients, 6 mm for four, 4 mm for three or 3 mm for one. We recruited patients
507 in the study if their implantation map covered at least partially the superior temporal gyri (left or
508 right). The cohort consists of 28 unilateral cases (18 left, 10 right) and one bilateral case. Total
509 number of electrodes across all 29 patients was 2,668 (range 36-250, mean 92 electrodes). ECoG
510 activity was recorded at a sampling rate of 1,200 Hz using g.USBamp biosignal acquisition devices
511 (g.tec, Graz, Austria) and BCI2000⁶⁵.

512

513 **Preprocessing – Auditory stimulus.** To study the relationship between the acoustics of the
514 auditory stimulus and the ECoG-recorded neural activity, the song waveform was transformed
515 into a magnitude-only auditory spectrogram using the NSL Matlab Toolbox⁶⁶. This transformation
516 mimics the processing steps of early stages of the auditory pathways, from the cochlea's spectral
517 filter bank to the midbrain's reduced upper limit of phase-locking ability, and outputs a
518 psychoacoustic-, neurophysiologic-based spectrotemporal representation of the song. The
519 resulting auditory spectrogram has 128 frequency bins from 180 to 7,246 Hz, with characteristic
520 frequencies uniformly distributed along a logarithmic frequency axis (24 channels per octave),
521 and a sampling rate of 100 Hz. This full-resolution, 128-frequency-bin spectrogram is used in the
522 song reconstruction analysis. For all other analyses, to decrease the computational load and the
523 number of features, we outputted a reduced spectrogram with 32 frequency bins from 188 to
524 6,745 Hz (Fig. 1A, bottom).

525

526 **Preprocessing – ECoG data.** We used the High-Frequency Activity (HFA; 70 to 150 Hz) as an
527 estimate of local neural activity⁶⁷ (Fig. 1C). For each dataset, we visually inspected raw recorded
528 signals and removed electrodes exhibiting noisy or epileptic activity, with the help of a
529 neurologist (RTK). We then extracted data aligned with the song stimulus, adding 10 seconds of
530 data padding before and after the song (to prevent filtering-induced edge artifacts). We filtered
531 out power-line noise, using a range of notch filters centered at 60 Hz and harmonics up to 300
532 Hz (Butterworth, 4th order, 2 Hz bandwidth), and removed slow drifts with a 1 Hz high-pass filter
533 (Butterworth, 4th order). We used a bandpass-Hilbert approach⁶⁸ to extract HFA, with 20-Hz-wide
534 sub-bands spanning from 70 to 150 Hz in 5 Hz steps (70 to 90, 75 to 95, ... up to 130 to 150 Hz).
535 We chose a 20 Hz bandwidth to enable the observation of temporal modulations up to 10 Hz⁶⁹,
536 encompassing the 6.66 Hz sixteenth-note rhythm guitar pattern, pervasive throughout the song.
537 This constitutes a crucial methodological point, enabling the observation of the rhythmic
538 component (Fig. 3D). For each sub-band, we first bandpass-filtered the signal (Butterworth, 4th
539 order), then performed median-based Common Average Reference (CAR; Liu et al., 2015), and
540 computed the Hilbert transform to obtain the envelope. We standardized each sub-band
541 envelope using robust scaling on the whole time period (subtracting the median and dividing by
542 the interquartile range between the 10th and 90th percentiles), and average them together to
543 yield the HFA estimate. We performed CAR separately for electrodes plugged on different splitter
544 boxes to optimize denoising in 14 participants. Finally, we removed the 10-second pads, down-
545 sampled data to 100 Hz to match the stimulus spectrogram's sampling rate, and tagged outlier
546 time samples exceeding seven standard deviations for later removal in the modeling
547 preprocessing. We used Fieldtrip⁷¹ (version from May 11, 2021) and homemade scripts to
548 perform all above preprocessing steps. Unless specified otherwise, all further analyses and
549 computations were implemented in MATLAB (The MathWorks, Natick, MA, USA; version 2021a).
550 Code is available upon request.

551
552 **Preprocessing – Anatomical data.** We followed the anatomical data processing pipeline
553 presented in Stolk et al.⁷² to localize electrodes from a pre-implantation MRI, a post-implantation
554 CT scan and coverage information mapping electrodes to channel numbers in the functional data.
555 After co-registration of the CT scan to the MRI, we performed brain-shift compensation with a
556 hull obtained using scripts from the iso2mesh toolbox^{73,74}. Cortical surfaces were extracted using
557 the Freesurfer toolbox⁷⁵. We used volume-based normalization to convert patient-space
558 electrode coordinates into MNI coordinates for illustration purposes, and surface-based
559 normalization using the Freesurfer's fsaverage template to automatically obtain anatomical
560 labels from the aparc+aseg atlas. Labels were then confirmed by a neurologist (RTK).

561
562 **Encoding – Data preparation.** We used Spectro-Temporal Receptive Fields (STRFs) as encoding
563 models, with the 32 frequency bins of the stimulus spectrogram as features or predictors, and
564 the HFA of a given electrode as target to be predicted.

565 We log-transformed the auditory spectrogram to compress all acoustic features into the same
566 order of magnitude (e.g., low-sound-level musical background and high-sound-level lyrics). This
567 ensured modeling would not be dominated by high-volume musical elements.

568 We then computed the feature lag matrix from the song's auditory spectrogram (Fig. 1D). As HFA
569 is elicited by the song stimulus, we aim at predicting HFA from the preceding song spectrogram.
570 We chose a time window between 750 ms and 0 ms before HFA, to allow a sufficient temporal
571 integration of auditory-related neural responses, while ensuring a reasonable features-to-
572 observations ratio to avoid overfitting. This resulted in 2,400 features (32 frequency bins by 75
573 time lags at a sampling rate of 100 Hz).

574 We obtained 18,898 observations per electrode, each one consisting of a set of one target HFA
575 value and its preceding 750-ms auditory spectrogram excerpt (19,072 samples of the whole song,
576 minus 74 samples at the beginning for which there is no preceding 750-ms window).

577 At each electrode, we rejected observations for which the HFA value exceeded seven standard
578 deviations (Z units), resulting in an average rejection rate of 1.83% (min 0% - max 15.02%, SD
579 3.2%).

580

581 **Encoding – Model fitting.** To obtain a fitted STRF for a given electrode, we iterated through the
582 following steps 250 times.

583 We first split the dataset into training, validation and test sets (60-20-20 ratio, respectively) using
584 a custom group-stratified-shuffle-split algorithm (based on the StratifiedShuffleSplit cross-
585 validator in scikit-learn). We defined relatively long, 2-second groups of consecutive samples as
586 indivisible blocks of data. This ensured that training and test sets would not contain neighbor,
587 virtually identical samples (as both music and neural data are highly correlated over short periods
588 of time), and was critical to prevent overfitting. We used stratification to enforce equal splitting
589 ratios between the vocal (13 to 80 s) and instrumental parts of the song. This ensured stability of
590 model performance across all 250 iterations, by avoiding that a model could be trained on the
591 instrumentals only and tested on the vocals. We used shuffle splitting, akin to bootstrapping with
592 replacement between iterations, which allows us to determine test set size independently from
593 the number of iterations (as opposed to KFold cross-validation).

594 We then standardized the features, by fitting a robust scaler to the training set only (estimates
595 the median and the 2-98 quantile range; RobustScaler in sklearn package), and using it to
596 transform all training, validation and test sets. This gives comparable importance to all features,
597 i.e., every time lag and frequency of the auditory spectrogram.

598 We employed linear regression with RMSProp optimizer for efficient model convergence, Huber
599 loss cost function for robustness to outlier samples, and early stopping to further prevent
600 overfitting. In early stopping, a generalization error is estimated on the validation set at each
601 training step, and model fitting ends after this error stops diminishing for 10 consecutive steps.
602 This model was implemented in Tensorflow 1.6 and Python 3.6. The learning rate
603 hyperparameter of the RMSProp optimizer was manually tuned to ensure fast model
604 convergence all by avoiding exploding gradients (overshooting of the optimization minimum).

605 We evaluated prediction accuracy of the fitted model by computing both the correlation
606 coefficient (Pearson's r) and the R-squared between predicted and actual test-set target (i.e., HFA

607 at a given electrode). Along with these two performance metrics, we also saved the fitted model
608 coefficients.

609 Then, we combined these 250 split-scale-fit-evaluate iterations in a bootstrap-like approach to
610 obtain one STRF and assess its significance (i.e., whether we can linearly predict HFA, at a given
611 electrode, from the song spectrogram). For each STRF, we z-scored each coefficient across the
612 250 models (Fig. 1E). For the prediction accuracy, we computed the 95% confidence interval (CI)
613 from the 250 correlation coefficients, and deemed an electrode as significant if its 95% CI did not
614 contain 0. As an additional criterion, we rejected significant electrodes with an average R-squared
615 (across the 250 models) at or below 0.

616
617 **Encoding – Analysis of prediction accuracy.** To assess how strongly each brain region encodes
618 the song, we performed a two-way ANOVA on the correlation coefficients of all electrodes
619 showing a significant STRF, with laterality (left or right hemisphere) and area (STG, sensorimotor,
620 IFG or other) as factors. We then performed a multiple comparison (post hoc) test to disentangle
621 any differences between factor levels.

622
623 **Encoding – Analysis of model coefficients.** We analyzed the STRF tuning patterns using an
624 independent component analysis (ICA), to highlight electrode populations tuned to distinct STRF
625 features. Firstly, we ran an ICA with 10 components on the centered STRF coefficients, to identify
626 components individually explaining more than 5% of variance. We computed explained variance
627 by back-projecting each component and using the following formula: $pvaf_i = 100 -$
628 $100 * \text{mean}(\text{var}(\text{STRF} - \text{backproj}_i)) / \text{mean}(\text{var}(\text{STRF}))$; with i from 1 to 10 components, $pvaf_i$ being
629 the percentage of variance accounted for by ICA component i , STRF being the centered STRF
630 coefficients, and backproj_i being the back-projection of ICA component i in electrode space. We
631 found 3 ICA components explaining more than 5% of variance. To optimize the unmixing process,
632 we ran a new ICA asking for three components. Then, we determined each component sign by
633 setting as positive the sign of the most salient coefficient. Lastly, for each ICA component, we
634 defined electrodes as representing the component if their ICA coefficient was positive.

635 To look at rhythmic tuning patterns, we computed the temporal modulations of each STRF.
636 Indeed, due to their varying frequencies and latencies, they were not captured by the combined
637 component analysis. We quantified temporal modulations between 1 and 16 Hz over the 32
638 spectral frequency bins of each STRF, and extracted the maximum modulation value across all 32
639 frequency bins between 6 and 7 Hz of temporal modulations, corresponding to the song
640 rhythmicity of 16th notes at 99 bpm. We defined electrodes as representing the component if
641 their maximum modulation value was above a manually defined threshold of .3.

642
643 **Encoding – Musical elements.** To link STRF components to musical elements in the song, we ran
644 a sliding-window correlation between each component and the song spectrogram. Positive
645 correlation values indicate specific parts of the song or musical elements (i.e., vocals, lead
646 guitar...) that elicit an increase of HFA.

647 **Decoding - Ablation analysis.** To assess the contribution of different brain regions and STRF
648 components in representing the song, we performed an ablation analysis. We quantified the
649 impact of ablating sets of electrodes on the prediction accuracy of a linear decoding model
650 computed using all 347 significant electrodes. Firstly, we constituted sets of electrodes based on
651 anatomical or functional criteria. We defined 12 anatomical sets by combining two factors – area
652 (whole hemisphere, STG, SMC, IFG, or other areas) and laterality (bilateral, left or right). We
653 defined 12 functional sets by combining two factors – STRF component identified in the STRF
654 coefficient analyses (onset, sustained, late onset, and rhythmic) and laterality (bilateral, left or
655 right). See Fig. 5 for the exact list of electrode sets. Secondly, we computed the decoding models
656 using the same algorithm as for the encoding models. Decoding models aim at predicting the
657 song spectrogram from the elicited neural activity. Here, we used HFA from a set of electrodes
658 as input, and a given frequency bin of the song spectrogram as output. For each of the 24 ablated
659 sets of electrodes, we obtained 32 models (one per spectrogram frequency bin), and compared
660 each one of them to the corresponding baseline model computed using all 347 significant
661 electrodes (repeated-measure one-way ANOVA). We then performed a multiple comparison
662 (post hoc) test to assess differences between ablations.

663 We based our interpretation of ablations results on the following assumptions. Collectively, as
664 they had significant STRFs, all 347 significant electrodes represent acoustic information on the
665 song. If ablating a set of electrodes resulted in a significant impact on decoding accuracy, we
666 considered that this set represented unique information. Indeed, were this information shared
667 with another set of electrodes, a compensation-like mechanism could occur and void the impact
668 on decoding accuracy. If ablating a set of electrodes resulted in no significant impact on decoding
669 accuracy, we considered that this set represented redundant information, shared with other
670 electrodes (as the STRFs were significant, we ruled out the possibility that it could be because
671 this set did not represent any acoustic information). Also, comparing the impact of a given set
672 and one of its subsets of electrodes provided further insights on the unique or redundant nature
673 of the represented information.

674
675 **Decoding – Parametric analyses.** We quantified the influence of different methodological factors
676 (number of electrodes, dataset duration, and model type) on the prediction accuracy of decoding
677 models. In a bootstrapping approach, we randomly constituted subsets of 5, 10, 20, 40, 80, 160
678 and 320 electrodes (sampling without replacement) to be used as inputs of linear decoding
679 models. We processed 100 bootstrap resamples (i.e., 100 sets of 5 electrodes, 100 sets of 10
680 electrodes...), and normalized for each of the 32 frequency bins the resulting correlation
681 coefficients by the correlation coefficients of the full, 347-electrode decoding model. For each
682 resample, we averaged the correlation coefficients from all 32 models (1 per frequency bin of the
683 song spectrogram). This yielded 100 prediction accuracy estimates per number of electrodes. We
684 then fitted a two-term power series model to these estimates, to quantify the apparent power-
685 law behavior of the obtained bootstrap curve. We adopted the same approach for dataset
686 duration, with excerpts of 15, 30, 60, 90, 120, 150 and 180 consecutive seconds.

687 To investigate the impact of model type on decoding accuracy and to assess the extent to which
688 we could reconstruct a recognizable song, we trained linear and nonlinear models to decode each

689 of the 128 frequency bins of the full spectral resolution song spectrogram from HFA of all 347
690 significant electrodes. We used the multilayer perceptron (MLP)—a simple, fully connected
691 neural network, as nonlinear model (MLPRegressor in sklearn). We chose a MLP architecture of
692 two hidden layers of 64 units each, based both on an extension of the *Universal Approximation*
693 *Theorem* stating that a two hidden layer MLP can approximate any continuous multivariate
694 function⁷⁶ and on a previous study with a similar use case⁴². Since MLP layers are fully connected
695 (i.e., each unit of a layer is connected to all units of the next layer), the number of coefficients to
696 be fitted is drastically increased relatively to linear models (in this case, $F^*N + N^*N + N$ vs F ,
697 respectively, where the total number of features $F = E^*L$, with E representing the number of
698 significant electrodes included as inputs of the decoding model, and L the number of time lags;
699 and N represents the number of units per layer). Given the limited dataset duration, we reduced
700 time lags to 500ms based on the absence of significant activity beyond this point in the STRF
701 components, and used this L value in both linear and nonlinear models.

702 We defined a fixed, 15-second continuous test set during which the song contained both vocals
703 and instrumentals (Supp. Mat. Audio 1), and held it out during hyperparameter tuning and model
704 fitting. We tuned model hyperparameters (learning rate for linear models, and L2-regularization
705 alpha for MLPs) through 10-resample cross-validation. We performed a grid search on each
706 resample (i.e., training/validation split), and saved for each resample the index of the
707 hyperparameter value yielding the minimum validation mean squared error (MSE). Candidate
708 hyperparameter values ranged between .001 and 100 for the learning rate of linear models, and
709 between .01 and 100 for the alpha of MLPs. We then rounded the mean of the ten resulting
710 indices to obtain the cross-validated, tuned hyperparameter. As a homogeneous presence of
711 vocals across training, validation and test sets was crucial for proper tuning of the alpha
712 hyperparameter of MLPs, we increased group size to 5 seconds, equivalent to about two musical
713 bars, in the group-stratified-shuffle-split step (see Encoding models – Model Fitting for a
714 reference), and used this value for both linear and nonlinear models. For MLPs specifically, as
715 random initialization of coefficients could lead to convergence towards local optima, we adopted
716 a best-of-3 strategy where we only kept the “winning” model (i.e., yielding the minimum
717 validation MSE) amongst three models fitted on the same resample.

718 Once we obtained the tuned hyperparameter, we computed 100 models on distinct
719 training/validation splits, also adopting the best-of-3 strategy for the nonlinear models (this time
720 keeping the model yielding the maximum test r-squared). We then sorted models by increasing
721 r-squared, and evaluated the “effective” r-squared by computing the r-squared between the test
722 set target (the actual amplitude time course of the song’s auditory spectrogram frequency bin)
723 and averages of n models, with n varying from 100 to 1 (i.e., effective r-squared for the average
724 of all 100 models, for the average of the 99 best, ..., of the 2 best, of the best model). Lastly, we
725 selected n based on the value giving the best effective r-squared, and obtained a predicted target
726 along with its effective r-squared as an estimate of decoding accuracy. The steps above were
727 performed for all 128 frequency bins of the song spectrogram, both for linear and nonlinear
728 models, and we compared the resulting effective r-squared using a paired t-test.

729

730 **Decoding – Song waveform reconstruction.** To explore the extent to which we could reconstruct
731 the song from neural activity, we collected the 128 predicted targets for both linear and MLP
732 decoding models as computed above, therefore assembling the decoded auditory spectrograms.
733 To denoise and improve sound quality, we rose all spectrogram samples to the power of two,
734 thus highlighting prominent musical elements such as vocals or lead guitar chords, relatively to
735 background noise. As both magnitude and phase information are required to reconstruct a
736 waveform from a spectrogram, we used an iterative phase-estimation algorithm to transform the
737 magnitude-only decoded auditory spectrogram into the song waveform (*aud2wav*⁶⁶). To have a
738 fair basis against which we could compare the song reconstruction of the linearly and nonlinearly
739 decoded spectrograms, we transformed the original song excerpt corresponding to the fixed test
740 set into an auditory spectrogram, discarded the phase information, and applied this algorithm to
741 revert the spectrogram into a waveform (Supp. Mat. Audio 2). We performed 500 iterations of
742 this *aud2wav* algorithm, enough to reach a plateau where error did not improve further.

743 **Acknowledgements**

744 This work has been supported by the Fondation Pour l'Audition (FPA RD-2015-2, LB), the National
745 Institutes of Health NIH/NIBIB (R01-EB026439, P41-EB018783, PB), NIH/NINDS (U24-NS109103,
746 U01-NS108916, R13-NS118932, PB; R01-NS21135, RTK), NIH/NIDCD (1R21-DC018374, BNP), and
747 the National Science Foundation (NSF 1850687, BNP). We thank Stephanie Martin, Christopher
748 R. Holdgraf, Christian Mikutta, Randolph F. Helfrich and Arjen Stolk for their helpful comments
749 on data analysis.

750

751 **Author contributions**

752 Study design and data acquisition (GS, PB), data preprocessing and analysis (LB, BNP), writing (LB,
753 AL, DM), editing (RTK, BP).

754

755 **Competing interests**

756 The authors confirm that there are no relevant financial or non-financial competing interests to
757 report.

758

759 **Reference gender statistics**

760 Across all 76 references, five had females as first and last authors, eight had a male first author
761 and a female last author, 17 had a female first author and a male last author, and 38 had males
762 as first and last authors. Eight papers had a single author, amongst which one was written by a
763 female.

764 **References**

- 765 1. Peretz, I. The nature of music from a biological perspective. *Cognition* **100**, 1–32 (2006).
- 766 2. Janata, P. Chapter 11 - Neural basis of music perception. in *Handbook of Clinical Neurology* (eds.
- 767 Aminoff, M. J., Boller, F. & Swaab, D. F.) vol. 129 187–205 (Elsevier, 2015).
- 768 3. Goydke, K. N., Altenmüller, E., Möller, J. & Münte, T. F. Changes in emotional tone and
769 instrumental timbre are reflected by the mismatch negativity. *Brain Res. Cogn. Brain Res.* **21**,
770 351–359 (2004).
- 771 4. Alluri, V. *et al.* Large-scale brain networks emerge from dynamic processing of musical timbre,
772 key and rhythm. *NeuroImage* **59**, 3677–3689 (2012).
- 773 5. Kumar, S. *et al.* Predictive coding and pitch processing in the auditory cortex. *J. Cogn. Neurosci.*
774 **23**, 3084–3094 (2011).
- 775 6. Nan, Y. & Friederici, A. D. Differential roles of right temporal cortex and Broca's area in pitch
776 processing: evidence from music and Mandarin. *Hum. Brain Mapp.* **34**, 2045–2054 (2013).
- 777 7. Trainor, L. J., McDonald, K. L. & Alain, C. Automatic and controlled processing of melodic contour
778 and interval information measured by electrical brain activity. *J. Cogn. Neurosci.* **14**, 430–442
779 (2002).
- 780 8. Baltzell, L. S., Srinivasan, R. & Richards, V. Hierarchical organization of melodic sequences is
781 encoded by cortical entrainment. *NeuroImage* **200**, 490–500 (2019).
- 782 9. Janata, P. *et al.* The cortical topography of tonal structures underlying Western music. *Science*
783 **298**, 2167–2170 (2002).
- 784 10. Brattico, E., Tervaniemi, M., Näätänen, R. & Peretz, I. Musical scale properties are automatically
785 processed in the human auditory cortex. *Brain Res.* **1117**, 162–174 (2006).

786 11. Geiser, E., Ziegler, E., Jancke, L. & Meyer, M. Early electrophysiological correlates of meter and
787 rhythm processing in music perception. *Cortex J. Devoted Study Nerv. Syst. Behav.* **45**, 93–102
788 (2009).

789 12. Harding, E. E., Sammler, D., Henry, M. J., Large, E. W. & Kotz, S. A. Cortical tracking of rhythm in
790 music and speech. *NeuroImage* **185**, 96–101 (2019).

791 13. Peretz, I. & Zatorre, R. J. Brain organization for music processing. *Annu. Rev. Psychol.* **56**, 89–114
792 (2005).

793 14. Limb, C. J. Structural and functional neural correlates of music perception. *Anat. Rec. A. Discov.*
794 *Mol. Cell. Evol. Biol.* **288A**, 435–446 (2006).

795 15. Koelsch, S. Toward a Neural Basis of Music Perception – A Review and Updated Model. *Front.*
796 *Psychol.* **2**, (2011).

797 16. Zatorre, R. J. & Salimpoor, V. N. From perception to pleasure: music and its neural substrates.
798 *Proc. Natl. Acad. Sci. U. S. A.* **110 Suppl 2**, 10430–10437 (2013).

799 17. Warren, J. How does the brain process music? *Clin. Med.* **8**, 32–36 (2008).

800 18. Ding, Y. *et al.* Neural Correlates of Music Listening and Recall in the Human Brain. *J. Neurosci.* **39**,
801 8112–8123 (2019).

802 19. Hall, E. L., Robson, S. E., Morris, P. G. & Brookes, M. J. The relationship between MEG and fMRI.
803 *NeuroImage* **102**, 80–91 (2014).

804 20. Theunissen, F. E., Sen, K. & Doupe, A. J. Spectral-temporal receptive fields of nonlinear auditory
805 neurons obtained using natural sounds. *J. Neurosci. Off. J. Soc. Neurosci.* **20**, 2315–2331 (2000).

806 21. Talebi, V. & Baker, C. L. Natural versus synthetic stimuli for estimating receptive field models: a
807 comparison of predictive robustness. *J. Neurosci. Off. J. Soc. Neurosci.* **32**, 1560–1576 (2012).

808 22. Choi, I., Rajaram, S., Varghese, L. A. & Shinn-Cunningham, B. G. Quantifying attentional
809 modulation of auditory-evoked cortical responses from single-trial electroencephalography.
810 *Front. Hum. Neurosci.* **7**, 115 (2013).

811 23. Foldal, M. D. *et al.* The brain tracks auditory rhythm predictability independent of selective
812 attention. *Sci. Rep.* **10**, 7975 (2020).

813 24. Di Liberto, G. M. *et al.* Cortical encoding of melodic expectations in human temporal cortex.
814 *eLife* **9**, e51784 (2020).

815 25. Lachaux, J. P., Rudrauf, D. & Kahane, P. Intracranial EEG and human brain mapping. *J. Physiol.*
816 *Paris* **97**, 613–628 (2003).

817 26. Leszczyński, M. *et al.* Dissociation of broadband high-frequency activity and neuronal firing in
818 the neocortex. *Sci. Adv.* **6**, eabb0977 (2020).

819 27. Conner, C. R., Ellmore, T. M., Pieters, T. A., DiSano, M. A. & Tandon, N. Variability of the
820 Relationship between Electrophysiology and BOLD-fMRI across Cortical Regions in Humans. *J.*
821 *Neurosci.* **31**, 12855–12865 (2011).

822 28. Aertsen, A. & Johannesma, P. I. M. Spectro-temporal receptive fields of auditory neurons in the
823 grassfrog - I. Characterization of tonal and natural stimuli. *Biol. Cybern.* **38**, 223–234 (1980).

824 29. Holdgraf, C. R. *et al.* Encoding and Decoding Models in Cognitive Electrophysiology. *Front. Syst.*
825 *Neurosci.* **11**, (2017).

826 30. Holdgraf, C. R. *et al.* Rapid tuning shifts in human auditory cortex enhance speech intelligibility.
827 *Nat. Commun.* **7**, 13654 (2016).

828 31. Hullett, P. W., Hamilton, L. S., Mesgarani, N., Schreiner, C. E. & Chang, E. F. Human Superior
829 Temporal Gyrus Organization of Spectrotemporal Modulation Tuning Derived from Speech
830 Stimuli. *J. Neurosci. Off. J. Soc. Neurosci.* **36**, 2014–2026 (2016).

831 32. Martin, S. *et al.* Neural Encoding of Auditory Features during Music Perception and Imagery.
832 *Cereb. Cortex N. Y. N* **1991** 1–12 (2017) doi:10.1093/cercor/bhx277.

833 33. Hoefle, S. *et al.* Identifying musical pieces from fMRI data using encoding and decoding models.
834 *Sci. Rep.* **8**, 2266 (2018).

835 34. Casey, M. A. Music of the 7Ts: Predicting and Decoding Multivoxel fMRI Responses with
836 Acoustic, Schematic, and Categorical Music Features. *Front. Psychol.* **8**, 1179 (2017).

837 35. Nakai, T., Koide-Majima, N. & Nishimoto, S. Correspondence of categorical and feature-based
838 representations of music in the human brain. *Brain Behav.* **11**, e01936 (2021).

839 36. Treder, M. S., Purwins, H., Miklody, D., Sturm, I. & Blankertz, B. Decoding auditory attention to
840 instruments in polyphonic music using single-trial EEG classification. *J. Neural Eng.* **11**, 026009
841 (2014).

842 37. Saari, P., Burunat, I., Brattico, E. & Toiviainen, P. Decoding Musical Training from Dynamic
843 Processing of Musical Features in the Brain. *Sci. Rep.* **8**, 708 (2018).

844 38. Mesgarani, N., David, S. V., Fritz, J. B. & Shamma, S. A. Influence of context and behavior on
845 stimulus reconstruction from neural activity in primary auditory cortex. *J. Neurophysiol.* **102**,
846 3329–3339 (2009).

847 39. Pasley, B. N. *et al.* Reconstructing speech from human auditory cortex. *PLoS Biol.* **10**, e1001251
848 (2012).

849 40. Meyers, R., Lu, M., Puiseau, C. W. D. & Meisen, T. Ablation Studies in Artificial Neural Networks.
850 *ArXiv* (2019).

851 41. Kohoutová, L. *et al.* Toward a unified framework for interpreting machine-learning models in
852 neuroimaging. *Nat. Protoc.* **15**, 1399–1435 (2020).

853 42. Akbari, H., Khalighinejad, B., Herrero, J. L., Mehta, A. D. & Mesgarani, N. Towards reconstructing
854 intelligible speech from the human auditory cortex. *Sci. Rep.* **9**, 874 (2019).

855 43. Anumanchipalli, G. K., Chartier, J. & Chang, E. F. Speech synthesis from neural decoding of
856 spoken sentences. *Nature* **568**, 493 (2019).

857 44. Moses, D. A. *et al.* Neuroprosthesis for Decoding Speech in a Paralyzed Person with Anarthria. *N.
858 Engl. J. Med.* **385**, 217–227 (2021).

859 45. Potes, C., Gunduz, A., Brunner, P. & Schalk, G. Dynamics of electrocorticographic (ECoG) activity
860 in human temporal and frontal cortical areas during music listening. *NeuroImage* **61**, 841–848
861 (2012).

862 46. Potes, C., Brunner, P., Gunduz, A., Knight, R. T. & Schalk, G. Spatial and temporal relationships of
863 electrocorticographic alpha and gamma activity during auditory processing. *NeuroImage* **97**,
864 188–195 (2014).

865 47. Kubanek, J., Brunner, P., Gunduz, A., Poeppel, D. & Schalk, G. The Tracking of Speech Envelope in
866 the Human Cortex. *PLOS ONE* **8**, e53398 (2013).

867 48. Gupta, D., Hill, N., Brunner, P., Gunduz, A. & Schalk, G. Simultaneous Real-Time Monitoring of
868 Multiple Cortical Systems. *J. Neural Eng.* **11**, 056001 (2014).

869 49. Sturm, I., Blankertz, B., Potes, C., Schalk, G. & Curio, G. ECoG high gamma activity reveals distinct
870 cortical representations of lyrics passages, harmonic and timbre-related changes in a rock song.
871 *Front. Hum. Neurosci.* **8**, (2014).

872 50. Albouy, P., Benjamin, L., Morillon, B. & Zatorre, R. J. Distinct sensitivity to spectrotemporal
873 modulation supports brain asymmetry for speech and melody. *Science* **367**, 1043–1047 (2020).

874 51. Hickok, G. & Poeppel, D. The cortical organization of speech processing. *Nat. Rev. Neurosci.* **8**,
875 393–402 (2007).

876 52. Albouy, P. *et al.* Impaired pitch perception and memory in congenital amusia: the deficit starts in
877 the auditory cortex. *Brain J. Neurol.* **136**, 1639–1661 (2013).

878 53. Zatorre, R. J., Chen, J. L. & Penhune, V. B. When the brain plays music: auditory-motor
879 interactions in music perception and production. *Nat. Rev. Neurosci.* **8**, 547–558 (2007).

880 54. Gordon, C. L., Cobb, P. R. & Balasubramaniam, R. Recruitment of the motor system during music
881 listening: An ALE meta-analysis of fMRI data. *PLOS ONE* **13**, e0207213 (2018).

882 55. Toivainen, P., Alluri, V., Brattico, E., Wallentin, M. & Vuust, P. Capturing the musical brain with
883 Lasso: Dynamic decoding of musical features from fMRI data. *NeuroImage* **88**, 170–180 (2014).

884 56. Hamilton, L. S., Edwards, E. & Chang, E. F. A Spatial Map of Onset and Sustained Responses to
885 Speech in the Human Superior Temporal Gyrus. *Curr. Biol.* **28**, 1860-1871.e4 (2018).

886 57. Nourski, K. V. *et al.* Functional organization of human auditory cortex: investigation of response
887 latencies through direct recordings. *NeuroImage* **101**, 598–609 (2014).

888 58. Grahn, J. A. & McAuley, J. D. Neural bases of individual differences in beat perception.
889 *NeuroImage* **47**, 1894–1903 (2009).

890 59. Vikene, K., Skeie, G. O. & Specht, K. Compensatory task-specific hypersensitivity in bilateral
891 planum temporale and right superior temporal gyrus during auditory rhythm and omission
892 processing in Parkinson’s disease. *Sci. Rep.* **9**, 1–9 (2019).

893 60. Herff, S. A. *et al.* Prefrontal High Gamma in ECoG Tags Periodicity of Musical Rhythms in
894 Perception and Imagination. *eNeuro* **7**, (2020).

895 61. de Heer, W. A., Huth, A. G., Griffiths, T. L., Gallant, J. L. & Theunissen, F. E. The Hierarchical
896 Cortical Organization of Human Speech Processing. *J. Neurosci.* **37**, 6539–6557 (2017).

897 62. Zatorre, R. J. & Gandour, J. T. Neural specializations for speech and pitch: moving beyond the
898 dichotomies. *Philos. Trans. R. Soc. Lond. B. Biol. Sci.* **363**, 1087–1104 (2008).

899 63. Norman-Haignere, S. V. *et al.* A neural population selective for song in human auditory cortex.
900 *Curr. Biol.* (2022) doi:10.1016/j.cub.2022.01.069.

901 64. Giraud, A.-L. *et al.* Endogenous cortical rhythms determine cerebral specialization for speech
902 perception and production. *Neuron* **56**, 1127–1134 (2007).

903 65. Schalk, G., McFarland, D. J., Hinterberger, T., Birbaumer, N. & Wolpaw, J. R. BCI2000: a general-
904 purpose brain-computer interface (BCI) system. *IEEE Trans. Biomed. Eng.* **51**, 1034–1043 (2004).

905 66. Chi, T., Ru, P. & Shamma, S. A. Multiresolution spectrotemporal analysis of complex sounds. *J.*
906 *Acoust. Soc. Am.* **118**, 887–906 (2005).

907 67. Rich, E. L. & Wallis, J. D. Spatiotemporal dynamics of information encoding revealed in
908 orbitofrontal high-gamma. *Nat. Commun.* **8**, 1139 (2017).

909 68. Bruns, A. Fourier-, Hilbert- and wavelet-based signal analysis: are they really different
910 approaches? *J. Neurosci. Methods* **137**, 321–332 (2004).

911 69. Dvorak, D. & Fenton, A. A. Toward a proper estimation of phase–amplitude coupling in neural
912 oscillations. *J. Neurosci. Methods* **225**, 42–56 (2014).

913 70. Liu, Y., Coon, W. G., de Pesters, A., Brunner, P. & Schalk, G. The effects of spatial filtering and
914 artifacts on electrocorticographic signals. *J. Neural Eng.* **12**, 056008 (2015).

915 71. Oostenveld, R., Fries, P., Maris, E. & Schoffelen, J.-M. FieldTrip: Open source software for
916 advanced analysis of MEG, EEG, and invasive electrophysiological data. *Comput. Intell. Neurosci.*
917 **2011**, 156869 (2011).

918 72. Stolk, A. *et al.* Integrated analysis of anatomical and electrophysiological human intracranial
919 data. *Nat. Protoc.* **13**, 1699–1723 (2018).

920 73. Fang, Q. & Boas, D. A. Tetrahedral mesh generation from volumetric binary and grayscale
921 images. in *2009 IEEE International Symposium on Biomedical Imaging: From Nano to Macro*
922 1142–1145 (2009). doi:10.1109/ISBI.2009.5193259.

923 74. Blenkmann, A. O. *et al.* iElectrodes: A Comprehensive Open-Source Toolbox for Depth and
924 Subdural Grid Electrode Localization. *Front. Neuroinformatics* **11**, 14 (2017).

925 75. Dale, A. M., Fischl, B. & Sereno, M. I. Cortical surface-based analysis. I. Segmentation and surface
926 reconstruction. *NeuroImage* **9**, 179–194 (1999).

927 76. Ismailov, V. E. On the approximation by neural networks with bounded number of neurons in
928 hidden layers. *J. Math. Anal. Appl.* **417**, 963–969 (2014).