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Abstract 12 

Music perception engages multiple brain regions, however the neural dynamics of this 13 

core human experience remains elusive. We applied predictive models to intracranial EEG data 14 

from 29 patients listening to a Pink Floyd song. We investigated the relationship between the 15 

song spectrogram and the elicited high-frequency activity (70-150Hz), a marker of local neural 16 

activity. Encoding models characterized the spectrotemporal receptive fields (STRFs) of each 17 

electrode and decoding models estimated the population-level song representation. Both 18 

methods confirmed a crucial role of the right superior temporal gyri (STG) in music perception. A 19 

component analysis on STRF coefficients highlighted overlapping neural populations tuned to 20 

specific musical elements (vocals, lead guitar, rhythm). An ablation analysis on decoding models 21 

revealed the presence of unique musical information concentrated in the right STG and more 22 

spatially distributed in the left hemisphere. Lastly, we provided the first song reconstruction 23 

decoded from human neural activity.  24 
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Introduction 25 

Music is a universal experience across all ages and cultures and is a core part of our 26 

emotional, cognitive, and social lives1. Understanding the neural substrate supporting music 27 

perception is a central goal in auditory neuroscience, and multiple questions remain including 28 

which musical elements (e.g., melody, harmony, rhythm) are encoded in the brain and what are 29 

the neural dynamics of brain regions underlying music perception. The last decades have seen 30 

tremendous progress in understanding the neural basis of music perception2, with multiple 31 

studies assessing the neural correlates of isolated musical elements such as timbre3,4, pitch5,6, 32 

melody7,8, harmony9,10 and rhythm11,12. These studies have established that music perception 33 

relies on a broad network of subcortical and cortical regions, including primary and secondary 34 

auditory cortices, sensorimotor areas, and inferior frontal gyri13–16. Both hemispheres have been 35 

shown to be involved in music processing, with a relative preference for the right hemisphere17,18. 36 

 37 

These studies provide a foundation for understanding music perception. However, they 38 

typically focus on isolated musical elements or specific cortical areas. Further, they rely on brain 39 

imaging methods with either limited temporal or spatial resolution19 (fMRI and EEG, 40 

respectively), and on standard trial-based paradigms and analytic methods. To address these 41 

limitations, we used a naturalistic auditory stimulus listening paradigm, and applied encoding and 42 

decoding analyses to intracranial electroencephalography (iEEG) data, known for its unique 43 

spatiotemporal resolution. 44 

 45 

We used a popular rock song (Another Brick in the Wall, Part 1, by Pink Floyd) as our 46 

naturalistic auditory stimulus. Studies employing restricted or synthetic stimuli are useful to 47 

assess specific aspects of auditory processing but may miss brain regions involved in higher-order 48 

processing20,21. Due to nonlinearities in the auditory pathways, probing the brain with isolated 49 

notes elicits neural activity in the primary auditory cortex (A1), but fails to activate areas encoding 50 

higher-order musical elements such as chords (i.e., at least three notes played together), 51 

harmony (i.e., the relationship between a system of chords), or rhythm (i.e., the temporal 52 

arrangement of notes). Using a rich and complex auditory stimulus elicits a robust and distributed 53 

neural response, allowing study of the extended neural network underlying music perception. 54 

 55 

Music research participants are often asked to actively perform a task, such as detecting 56 

a target3,7,8, focusing on a particular auditory object22,23, or expressing a perceptual 57 

judgement6,10. Such tasks are necessary to study key aspects of auditory cognition, such as 58 

attention, working memory or emotions. However, the dual task nature of these approaches 59 

requiring both listening and responding distracts participants from pure music listening and 60 

confounds neural processing of music with decision processes and motor activity. To address 61 

these issues, we implemented a passive listening paradigm mimicking the everyday music-62 

listening experience. A naturalistic music listening experience provides an uninterrupted window 63 

for assessment of higher-order aspects of musical experience (e.g., sense of beat built over time, 64 
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or melodic expectations24) optimizing our chances at observing the full network underlying the 65 

perception of musical elements. 66 

 67 

We recorded intracranial EEG (iEEG) data directly from the cortical surface of 68 

neurosurgical patients (electrocorticography; ECoG). This unique window on cortical processing 69 

combines the temporal resolution of electrophysiological techniques, with the spatial resolution 70 

of fMRI25. In addition, iEEG provides direct access to High-Frequency Activity (HFA; 70-150Hz). 71 

HFA is an index of non-oscillatory neural activity, reflecting information processing linked to local 72 

single unit firing in the infragranular cortical layers and dendritic potential in supraganular 73 

layers26, and to the BOLD signal in fMRI27. Given the direct contact between electrodes and brain 74 

tissue, iEEG benefits from an excellent signal-to-noise ratio. This is especially valuable in our 75 

naturalistic approach since it provides reliable HFA at the single-trial level enabling individual 76 

subject modeling. 77 

 78 

We employed predictive modeling tools to take advantage of the complexity of our 79 

naturalistic stimulus and the richness of iEEG data. Specifically, we used encoding models to 80 

characterize the spectrotemporal receptive fields (STRF) of each electrode and decoding models 81 

to reconstruct the song stimulus from population neural activity. Encoding models predict neural 82 

activity at one electrode from a representation of the stimulus (e.g., spectrogram, 83 

spectrotemporal modulations, onset of notes). When this representation is a spectrogram, 84 

encoding models are called spectro-temporal receptive fields (STRFs), and a plot of their trained 85 

coefficients can be interpreted as the spectrogram of the ideal auditory stimulus to elicit an 86 

increase of neural activity at the observed electrode. These models have been successfully used 87 

to evidence key properties of the neural auditory system. This technique originated with action 88 

potential data recorded in animal models in response to artificial stimuli28. Recent algorithmic 89 

and machine-learning developments expanded its use to human brain imaging data and 90 

naturalistic stimuli29. Within the last decade, STRFs have been used to quantitatively characterize 91 

the spectrotemporal tuning profile of neural populations in response to speech or music. 92 

Notably, STRFs were used to evidence rapid plasticity of the human auditory cortex in speech 93 

perception30, an antero-posterior parcellation of the human superior temporal gyri31 (STG), and 94 

a partial overlap between the neural activity underlying music imagery and music perception32. 95 

By considering the full complexity of the auditory stimulus, as opposed to condition-based task 96 

design that often focuses on a single contrast dimension, and by revealing the tuning patterns of 97 

neural populations, STRFs constitute a tool of choice to investigate the neural coding supporting 98 

music perception. 99 

 100 

Decoding models predict a representation of the stimulus from the elicited neural activity, 101 

often obtained from many electrodes. Their usage has exploded in the last decade for analyzing 102 

complex datasets without sacrificing potential dimensions of interest29. In the music domain, 103 

most decoding models have been used in a classification approach, for example to identity a 104 

musical piece33 or its genre34,35 from the elicited neural activity, or to estimate music-related 105 
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aspects beyond the stimulus level, such as musical attention36 or musicianship status of the 106 

listener37. Another application of decoding models used in the speech domain is the stimulus 107 

reconstruction approach38,39, where the auditory stimulus (i.e., the sound itself) is reconstructed 108 

from the elicited neural activity. Decoding performance informs on the nature of the information 109 

represented in the recorded neural activity: if a musical element can be reconstructed, this 110 

means it was represented within the set of electrodes used as input of the decoding model. We 111 

also applied an ablation analysis, a method akin to making virtual lesions on the decoding model 112 

inputs40,41. We removed (or ablated) sets of predictors (here, electrodes) to assess their impact 113 

on decoding accuracy. Moreover, comparing the impact of ablating different sets of electrodes 114 

provides insights on how information is uniquely or redundantly encoded between these sets. 115 

 116 

On the applied side, stimulus reconstruction has seen recent successes for speech 117 

decoding42–44. Such studies have reconstructed intelligible speech from iEEG data, using 118 

nonlinear models (deep neural networks) combined with different representations of speech 119 

including speech kinematics or the movements of vocal articulators. Here we applied stimulus 120 

reconstruction in the music domain for the first time. We investigated the extent to which a song 121 

could be reconstructed from direct brain recordings, and quantified the factors impacting 122 

decoding accuracy including model type (linear vs nonlinear) and dataset dimensionality (number 123 

of electrodes, dataset duration). 124 

 125 

The dataset we analyzed has been the focus of previous studies, although not employing 126 

encoding and decoding models45–49. These studies linked several musical elements, such as sound 127 

intensity or timber, to neural activity in the posterior superior temporal gyrus (STG) or 128 

sensorimotor areas. Here, we use predictive modeling tools on iEEG data recorded from 2,668 129 

electrodes across 29 neurological patients, who passively listened to a Pink Floyd song. We used 130 

encoding models to identify responsive cortical areas and analyze their tuning patterns and 131 

decoding models both to analyze information processing through an ablation analysis and to 132 

reconstruct the song from the elicited neural activity. 133 

 134 

 135 

Results 136 

Distribution of song-responsive electrodes 137 

To identify electrodes encoding acoustical information about the song, we fitted STRFs 138 

for all 2,379 artifact-free electrodes in the dataset, assessing how well the HFA recorded at these 139 

sites could be linearly predicted from the song’s auditory spectrogram (Fig. 1). From a dense, 140 

bilateral, predominantly frontotemporal coverage (Fig. 2A), we identified 347 electrodes with a 141 

significant STRF (Fig. 2B). We found a higher proportion of song-responsive electrodes in the right 142 

hemisphere. There were 199 significant electrodes out of 1,479 total in the left hemisphere and 143 

148 out of 900 in the right one (Fig. 2B, 13.5% against 16.4%, respectively; X² (1, N=2,379) = 4.01, 144 

p = .045). 145 
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 147 

Fig 1. Protocol, data preparation and encoding model fitting. A. Top. Waveform of the entire song stimulus. Participants listened 148 
to a 190.72-second rock song (Another Brick in the Wall, Part 1, by Pink Floyd) using headphones. Bottom. Auditory spectrogram 149 
of the song. Orange lines on top represent parts of the song with vocals. B. X-ray showing electrode coverage of one 150 
representative patient. Each dot is an electrode, and the signal from the four highlighted electrodes is shown in C. C. HFA elicited 151 
by the song stimulus in four representative electrodes. D. Zoom-in on 10 seconds (black lines in A and C) of the auditory 152 
spectrogram and the elicited neural activity in a representative electrode. Each time point of the HFA (yi, red dot) is paired with 153 
a preceding 750-ms window of the song spectrogram (Xi, black rectangle) ending at this time point (right edge of the rectangle, 154 
in red). The set of all pairs (Xi, yi), with i ranging from .75 to 190.72 seconds, constitute the examples (or observations) used to 155 
train and evaluate the linear encoding models. Linear encoding models used here consist in predicting the neural activity (y) from 156 
the auditory spectrogram (X), by finding the optimal intercept (a) and coefficients (w). E. Spectro-Temporal Receptive Field (STRF) 157 
for the electrode shown in red in B, C and D. STRF coefficients are z-valued, and are represented as w in the previous equation. 158 
Note that 0 ms (timing of the observed HFA) is at the right end of the x axis, as we predict HFA from the preceding auditory 159 
stimulus. 160 

 161 

The majority of the 347 significant electrodes (87%) were concentrated in three regions: 162 

68% in bilateral superior temporal gyri (STG), 14.4% in bilateral sensori-motor cortices (SMC, on 163 

the pre- and postcentral gyri), and 4.6% in bilateral inferior frontal gyri (IFG; Fig. 2C). The 164 

proportion of song-responsive electrodes per region was 55.7% for STG (236 out of 424 165 

electrodes), 11.6% for SMC (45/389), and 7.4% for IFG (17/229). The remaining 13% of significant 166 

electrodes were distributed in the supramarginal gyri and other frontal and temporal regions. 167 

 168 

Analysis of STRF prediction accuracies (Pearson’s r) found a main effect of laterality (two-169 

way ANOVA; F(1, 346) = 7.48, p = 0.0065; Fig. 2D), with higher correlation coefficients in the right 170 

hemisphere than in the left (MR = .203, SDR = .012; ML = .17, SDL = .01). We also found a main effect 171 

of cortical regions (F(3, 346) = 25.09, p < .001), with the highest prediction accuracies in STG 172 

(Tukey-Kramer post-hoc; MSTG = .266, SDSTG = .007; MSMC = .194, SDSMC = .017, pSTGvsSMC < .001; MIFG = .154, 173 

SDIFG = .027, pSTGvsSMC < .001; Mother = .131, SDother = .016, pSTGvsSMC < .001). In addition, we found higher 174 

prediction accuracies in SMC compared to the group not including STG and IFG (MSMC = .194, SDSMC 175 

= .017; Mother = .131, SDother = .016, pSMCvsOther = .035). 176 
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 178 
Fig. 2. Anatomical location of song-responsive electrodes. A. Electrode coverage across all 29 patients shown on the MNI template 179 
(N=2,379). All presented electrodes are free of any artifactual or epileptic activity. Left hemisphere is plotted on the left. B. 180 
Location of electrodes significantly encoding the song’s acoustics (Nsig=347). Significance was determined by the STRF prediction 181 
accuracy bootstrapped over 250 resamples. Marker color indicates the anatomical label as determined using the Freesurfer atlas, 182 
and marker size indicates the STRF’s prediction accuracy (Pearson’s r between actual and predicted HFA). We use the same color 183 
code in following panels and figures. C. Number of significant electrodes per anatomical region. Darker hue indicates a right-184 
hemisphere location. D. Average STRF prediction accuracy per anatomical region. Electrodes previously labelled as 185 
supramarginal, other temporal (i.e., other than STG) and other frontal (i.e., other than SMC or IFG) are pooled together, labelled 186 
as other and represented in white/gray. Error bars indicate SEM. 187 

 188 

Encoding of musical elements 189 

We analyzed STRF coefficients for all 347 significant electrodes to understand how 190 

different musical elements were encoded in different brain regions. This revealed a variety of 191 

spectrotemporal tuning patterns (Fig. 3A). To fully characterize the relationship between the 192 

song spectrogram and the neural activity, we performed an independent component analysis 193 

(ICA) on all significant STRFs. We identified three components with distinct spectrotemporal 194 

tuning patterns, each explaining more than 5% variance (Fig. 3B). 195 

 196 
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 197 
Fig. 3. Analysis of the STRF tuning patterns. A. Representative set of 10 STRFs (out of the 347 significant ones) with their respective 198 
locations on the MNI template using matching markers. Color code is identical to the one used in Fig. 1. B. Three ICA components 199 
explaining more than 5% variance of all 347 significant STRFs. These three components show onset, sustained and late onset 200 
activity. Percentages indicate explained variance. C. ICA coefficients of these three components, plotted on the MNI template. 201 
Color code indicates coefficient amplitude, with STRFs of electrodes in red representing most the components. D. To capture 202 
tuning to the rhythm guitar pattern (16th notes at 100 bpm, i.e., 6.66 Hz), pervasive throughout the song, we computed temporal 203 
modulation spectra of all significant STRFs. Example modulation spectrum is shown for a right STG electrode. For each electrode, 204 
we extracted the maximum temporal modulation value across all spectral frequencies around a rate of 6.66 Hz (red rectangle). 205 
E. All extracted values are represented on the MNI template. Electrodes in red show tuning to the rhythm guitar pattern. 206 

 207 

The first component (28% explained variance) showed a cluster of positive coefficients (in 208 

red, in Fig. 3B, top row) spreading over a broad frequency range from about 500 Hz to 7 kHz, and 209 

over a narrow time window centered around 90 ms before the observed HFA (located at time lag 210 

= 0 ms, at the right edge of all STRFs). This temporally transient cluster revealed tuning to sound 211 

onsets. This component, referred to as the “onset component,” was found exclusively in 212 

electrodes located in bilateral posterior STG (Fig. 3C, top row, electrodes depicted in red). Fig. 213 

4C, top row showed in red the parts of the song eliciting the highest HFA increase in electrodes 214 

possessing this onset component. These parts corresponded to onsets of lead guitar or 215 

synthesizer motifs (Fig. 4A, blue and purple lines, respectively; see Fig. 4E for a zoom-in) played 216 

every two bars (green lines), and to onsets of syllable nuclei in the vocals (orange lines; see Fig. 217 

4D for a zoom-in). 218 

 219 

The second component (14.7% explained variance) showed a cluster of positive 220 

coefficients (in red, in Fig. 3B, middle row) spreading over the entire 750ms time window, and 221 
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over a narrow frequency range from about 4.8 to 7 kHz. This component, referred to as the 222 

“sustained component,” was found in electrodes located in bilateral mid- and anterior STG, and 223 

in bilateral SMC (Fig. 3C, middle row). It correlated best with parts of the song containing vocals, 224 

thus suggesting tuning to speech (Fig. 4C, middle row, in red; see Fig. 4D for a zoom-in). 225 

 226 
Fig. 4. Encoding of musical elements. A. Auditory spectrogram of the whole song. Orange lines above the spectrogram mark all 227 
parts with vocals. Blue lines mark lead guitar motifs, and purple lines mark synthesizer motifs. Green vertical lines delineate a 228 
series of eight 4/4 bars. Thicker orange and blue lines mark locations of the zoom-ins presented in D and E, respectively. B. Three 229 
STRF components as presented in Fig. 3B, namely onset (top), sustained (middle) and late onset (bottom). C. Output of the sliding 230 
correlation between the song spectrogram (A) and each of the three STRF components (B). Positive Pearson’s r values are plotted 231 
in red, marking parts of the song that elicited an increase of HFA in electrodes exhibiting the given component. Note that for the 232 
sustained plot (middle), positive correlation coefficients are specifically observed during vocals. Also, note for both the onset and 233 
late onset plots (top and bottom, respectively), positive r values in the second half of the song corresponds to lead guitar and 234 
synthesizer motifs, occurring every other 4/4 bar. D. Zoom-in on the third vocals. Lyrics are presented above the spectrogram, 235 
decomposed into syllables. Most syllables triggered an HFA increase in both onset and late onset plots (top and bottom, 236 
respectively), while a sustained increase of HFA was observed during the entire vocals (middle). E. Zoom-in on a lead guitar motif. 237 
Sheet music is presented above the spectrogram. Most notes triggered an HFA increase in both onset and late onset plots(top 238 
and bottom, respectively), while there was no HFA increase for the sustained component (middle). 239 

The third component (9.8% explained variance) showed a similar tuning pattern as the 240 

onset component, only with a longer latency of about 210 ms before the observed HFA (Fig. 3B, 241 

bottom row). This component, referred from now on as the “late onset component,” was found 242 

in bilateral posterior and anterior STG, neighboring the electrodes representing the onset 243 

component, and in bilateral SMC (Fig. 3C, bottom row). As with the onset component, this late 244 

onset component was most correlated with onsets of lead guitar and synthesizer motifs and of 245 

syllable nuclei in the vocals, only with a longer latency (Fig. 4C, bottom row; see Fig. 4D and 4E 246 

for zoom-ins). 247 

 248 

A fourth component was found by computing the temporal modulations and extracting 249 

the maximum coefficient around a rate of 6.66 Hz for all 347 STRFs (Fig. 3D, red rectangle). This 250 
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rate corresponded to the 16th notes of the rhythm guitar, pervasive throughout the song, at the 251 

song tempo of 99 bpm (beats per minute). It was translated in the STRFs as small clusters of 252 

positive coefficients spaced by 150 ms (1 / 6.66 Hz) from each other (e.g., Fig. 3A, electrode 5). 253 

This component, referred from now on as the “rhythmic component,” was found in electrodes 254 

located in bilateral mid STG (Fig. 3E). 255 

 256 

Anatomo-functional distribution of the song’s acoustic information 257 

To assess the role of these different cortical regions and functional components in 258 

representing musical features, we performed an ablation analysis using linear decoding models. 259 

We first computed linear decoding models for each of the 32 frequency bins of the song 260 

spectrogram, using the HFA of all 347 significant electrodes as predictors. This yielded an average 261 

prediction accuracy of .62 (Pearson’s r; min .27 - max .81). We then removed (or ablated) 262 

anatomically- or functionally defined sets of electrodes and computed a new series of decoding 263 

models, to assess how each ablation would impact the decoding accuracy. We used prediction 264 

accuracies of the full, 347-electrode models as baseline values (Fig. 5). We found a significant 265 

main effect of electrode sets (one-way ANOVA; F(1, 24) = 78.4, p < .001). We then ran a series of 266 

post-hoc analyses to examine the impact of each set on prediction accuracy. 267 

 268 

269 
Fig. 5. Ablation analysis on linear decoding models. We performed “virtual lesions” in the predictors of decoding models, by 270 
ablating either anatomical (A) or functional (B) sets of electrodes. Ablated sets are shown on the x axis, and their impacts on the 271 
prediction accuracy (Pearson’s r) of linear decoding models, as compared to the performance of a baseline decoding model using 272 
all 347 significant electrodes, are shown on the y axis. For each ablation, a notched box plot represents the distribution of the 273 
changes in decoding accuracy for all 32 decoding models (one model per frequency bin of the auditory spectrogram). Red asterisks 274 
indicate significant impact from ablating a given set of electrodes. 275 

Anatomical ablations (Fig. 5A). Removing all STG or all right STG electrodes impacted prediction 276 

accuracy (p < .001), with removal of all STG electrodes having the highest impact compared to all 277 

other electrode sets (p < .001). Removal of right STG electrodes had higher impact than left STG 278 

removal (p < .001), and no impact of removing left STG electrodes was found (p = .156). Together, 279 

this suggests that: 1) bilateral STG represented unique musical information compared to other 280 
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regions, 2) right STG had unique information compared to left STG, and 3) part of the musical 281 

information in left STG was redundantly encoded in right STG. Ablating SMC, IFG or all other 282 

regions did not impact prediction accuracy (p > .998). Removing either all left or all right 283 

electrodes significantly reduced the prediction accuracy (p < .001), with no significant difference 284 

between all left and all right ablations (p = 1). These results suggest that both hemispheres 285 

represent unique information and contribute to song decoding. Furthermore, the fact that 286 

removing single regions in the left hemisphere had no impact but removing all left electrodes did, 287 

suggests redundancy within the left hemisphere, with musical information being spatially 288 

distributed across left hemisphere regions. 289 

 290 

Functional ablations (Fig. 5B). Removing all onset electrodes and right onset electrodes both 291 

impacted prediction accuracy (p < .001), with a highest impact for all onset (p < .001). No impact 292 

of removing left onset electrodes was found (p = .994). This suggests that right onset electrodes 293 

had unique information compared to left onset electrodes, and that part of the musical 294 

information in left onset electrodes was redundantly encoded in right onset electrodes. A similar 295 

pattern of higher right hemisphere involvement was observed with the late onset component (p 296 

< .001). Removing all rhythmic and right rhythmic electrodes both significantly impacted the 297 

decoding accuracy (p < .001 and p = .007, respectively), while we found no impact of removing 298 

left rhythmic electrodes (p = 1). We found no difference between removing all rhythmic and right 299 

rhythmic electrodes (p = .973). This suggests that right rhythmic electrodes had unique 300 

information, none of which was redundantly encoded in left rhythmic electrodes. Despite the 301 

substantial number of sustained electrodes, no impact of removing any set was found (p > .745). 302 

Note that as opposed to anatomical sets, functional sets of electrodes partially overlapped. This 303 

impeded our ability to reach conclusions regarding the uniqueness or redundancy of information 304 

between functional sets. 305 

 306 
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 307 

Fig. 6. Song reconstruction and methodological considerations. A. Prediction accuracy as a function of the number of electrodes 308 
included as predictors in the linear decoding model. On the y axis, 100% represents the maximum decoding accuracy, obtained 309 
using all 347 significant electrodes. The black curve shows data points obtained from a 100-resample bootstrapping analysis, 310 
while the red curve shows a two-term power series fit line. B. Prediction accuracy as a function of dataset duration. C. Auditory 311 
spectrograms of the original song (top), and of the reconstructed song using either linear (middle) or nonlinear models (bottom). 312 
This 15-second song excerpt was held out during hyperparameter tuning through cross-validation and model fitting, and solely 313 
used as a test set to evaluate model performance. Corresponding audio waveforms were obtained through an iterative phase-314 
estimation algorithm, and can be listened to in Supp. Mat. Audio 2, 3 and 4, respectively. Average effective r-squared across all 315 
128 frequency bins is shown above both decoded spectrograms. 316 

 317 

Song reconstruction and methodological factors impacting decoding accuracy 318 

Finally, we tested if we could reconstruct the song from neural activity, and how 319 

methodological factors such as the number of electrodes included in the model, the dataset 320 
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duration or the model type at use impacted decoding accuracy. A bootstrap analysis revealed a 321 

logarithmic relationship between how many electrodes were used as predictors in the decoding 322 

model and the resulting prediction accuracy (Fig. 6A). For example, 80% of the best prediction 323 

accuracy (using all 347 significant electrodes) was obtained with 43 (or 12.4%) electrodes. A 324 

similar relationship was observed between dataset duration and prediction accuracy (Fig. 6B). 325 

For example, 90% of the best performance (using the whole 190.72s song) was obtained using 326 

69 seconds (or 36.1%) of data. 327 

 328 

Regarding model type, linear decoding provided an average decoding accuracy of .325 329 

(median of the 128 models’ effective r-squared; IQR .232), while nonlinear decoding using a two-330 

layer, fully connected neural network (multilayer perceptron; MLP) yielded an average decoding 331 

accuracy of .429 (IQR .222). This 32% increase in effective r-squared (+.104 from .325) was 332 

significant (paired t-test, t(127) = 17.48, p < .001). In line with this higher effective r-squared for 333 

MLPs, the decoded spectrograms revealed differences between model types, with the nonlinear 334 

reconstruction (Fig. 6C, bottom row) showing finer spectro-temporal details, relatively to the 335 

linear reconstruction (Fig. 6C, middle row). Overall, the linear reconstruction (Supplementary 336 

Material Audio 3) sounded muffled with strong rhythmic cues on the presence of foreground 337 

elements (vocals syllables and lead guitar notes); a sense of spectral structure underlying timbre 338 

and pitch of lead guitar and vocals; a sense of harmony (chord progression moving from Dm to 339 

F, C and Dm); but limited sense of the rhythm guitar pattern. The nonlinear reconstruction (Supp. 340 

Mat. Audio 4) provided a recognizable song, with richer details as compared to the linear 341 

reconstruction. Especially, perceptual quality of spectral elements such as pitch and timbre were 342 

improved, and phoneme identity was perceptible. There was also a stronger sense of harmony 343 

and an emergence of the rhythm guitar pattern. 344 

 345 

 346 

Discussion 347 

We applied predictive modeling analyses on iEEG data obtained from patients listening to 348 

a Pink Floyd song. Encoding models documented a central role of bilateral STG and a right-349 

hemisphere preference in music perception. Our results revealed partially overlapping cortical 350 

areas that encoded different musical elements. An ablation analysis on decoding models showed 351 

that both the left and right hemispheres contained unique musical information, and that part of 352 

the information between left and right STG was redundant. Moreover, in the left hemisphere, 353 

we observed that musical information was spatially distributed between regions, beyond STG. 354 

On a methodological side, we quantified the impact of the number of electrodes, dataset 355 

duration and model type (linear vs nonlinear) on decoding accuracy. Notably, we provide the first 356 

recognizable song reconstruction directly decoded from human intracranial EEG data. 357 

 358 

We observed a right hemispheric preference for music perception, with a higher 359 

proportion of electrodes with significant STRFs, higher STRF prediction accuracies, and a higher 360 

impact of ablating right electrode sets (both anatomical and functional) from the decoding 361 

models. While there was a statistical preference for the right hemisphere, left hemisphere 362 

electrodes also exhibited significant STRFs and a reduced prediction accuracy when ablated. 363 
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These results are in accord with prior research, showing that music perception relies on a bilateral 364 

network, with a relative right lateralization17,18,50. 365 

 366 

We also found that the spatial distribution of musical information differed between 367 

hemispheres, as suggested by the ablation results. Redundant musical information was 368 

distributed between STG, SMC and IFG in the left hemisphere, whereas unique musical 369 

information was concentrated in STG in the right hemisphere. Such spatial distribution is 370 

reminiscent of the dual-stream model of speech processing51. However, the absence of right SMC 371 

or IFG involvement in the ablation analysis was surprising given their reported role in music 372 

processing16,52. Still, we observed significant STRFs in bilateral SMC and IFG, with possible roles 373 

in encoding vocals-related information and speech or melodic syntaxis, respectively43,53,54. 374 

 375 

We found a critical role of bilateral STG in representing musical information, in line with 376 

prior human studies32,35,52,55. As observed in other studies, STRFs obtained from the STG had rich, 377 

complex tuning patterns. To assess the anatomo-functional organization of music perception in 378 

STG, we employed a component analysis on all STRFs, which revealed four components: onset, 379 

sustained, late onset and rhythmic. The onset and sustained components were similar to those 380 

observed for speech in prior work31,56. Specifically, the onset component was tuned to high 381 

temporal/low spectral modulations while the sustained component was tuned to low 382 

temporal/high spectral modulations. 383 

 384 

The onset component was tuned to a broad range of frequencies but to a narrow time 385 

window peaking at 90 ms. This latency is similar to the lag at which HFA tracked music intensity 386 

profile in Ding et al.18. We found that the onset component was activated by both vocals (that is, 387 

syllables) and instrumental onsets (or notes). This confirms that the onset component is not 388 

speech specific, consistent with prior work56 showing that reversed and spectrally rotated speech 389 

also elicited onset responses. 390 

 391 

In contrast to the onset component, we found that the sustained component (tuned to a 392 

narrow high-frequency band but observed in a wide time window) was only activated by vocals. 393 

As seen in prior work31,56 we observed these two components in anatomically distinct STG 394 

subregions, with the onset component in posterior STG and the sustained component in mid- 395 

and anterior STG. Interestingly, we observed single electrodes representing both the onset and 396 

the sustained components, which were mostly located in mid STG. This was not found in previous 397 

studies, likely due to the use of different data-driven approaches (clustering vs ICA). Surprisingly, 398 

in our functional ablation analysis, removing all electrodes representing the sustained 399 

component did not impact decoding accuracy, despite their substantial number (167 out of 347). 400 

This might be due to the fact that as the song is dominated by instrumentals, removing a 401 

component related to vocals had negligible impact on the decoding accuracy. 402 

 403 

In addition to the onset and sustained component, we found evidence for two other 404 

distinct components: late onset and rhythmic. The late onset component was found in electrodes 405 

neighboring the onset component in STG and had similar tuning properties as the onset 406 

component, only peaking at a later latency of 210ms. This is in line with the findings of Nourski 407 
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et al.57, who, using click trains and a speech syllable, observed a concentric spatial gradient of 408 

HFA onset latencies in STG, with shorter latencies in post-/mid-STG and longer latencies in 409 

surrounding tissue. Further studies are needed to understand better the relationship between 410 

the onset and late onset components, as their similar functional behavior despite such different 411 

latencies appears as a discrepancy. The rhythmic component, tuned to the 6.66 Hz sixteenth 412 

notes of the rhythm guitar, was observed in mid STG, especially in electrodes representing both 413 

onset and sustained components. This provides a novel link between HFA and a specific rhythmic 414 

signature in a subregion of STG, and extends prior studies that found an involvement of STG in a 415 

range of rhythmic processes, i.e., beat perception58, omissions59, periodicity60. Altogether, these 416 

four components paint a rich picture of the anatomo-functional organization of complex sound 417 

processing in the human STG. 418 

 419 

On the methodological side, we observed a logarithmic relationship between decoding 420 

accuracy and the number of electrodes (a proxy for electrode density) or dataset duration, in line 421 

with previous literature for speech stimuli39,42. We showed that 80% of the maximum observed 422 

decoding accuracy was achieved with 43 electrodes or in 37 seconds, which supports the 423 

feasibility of using predictive modeling approaches in relatively small datasets. Interestingly, 424 

ablating the 167 sustained electrodes (Fig. 5B) had no significant impact on decoding accuracy, 425 

while ablating the 43 right rhythmic electrodes did. This observation shows that electrode 426 

functional role and anatomical location were primordial factors. 427 

 428 

We reconstructed a recognizable song using nonlinear models predicting the song’s 429 

acoustics from the elicited HFA. Linear decoding provided a surprisingly good r-squared of 32.5% 430 

explained variance but nonlinear reconstruction performed better at all levels, with a higher r-431 

squared of 42.9%, a more detailed decoded spectrogram, and a recognizable song. This is likely 432 

due to the multilayer perceptron’s ability to decode nonlinearly transformed acoustic 433 

information represented in non-primary auditory areas such as STG61. Decoding the song 434 

spectrogram from electrodes in primary auditory cortices (A1, accessible with stereotactic 435 

EEG/depth electrodes) might improve the performance of linear models. While nonlinear 436 

reconstruction performed better than linear reconstruction, it lacked clarity on some musical 437 

elements, especially on the background rhythm guitar pattern. This might be due to several 438 

limiting factors: dataset duration could be too short (only slightly more than three minutes) to 439 

fully train MLPs; musical information represented in STG could be too nonlinearly transformed, 440 

with information loss irreversible even using MLPs; the rhythm guitar pattern, pervasive 441 

throughout the song and played in the background, might be perceived as less relevant than 442 

vocals or lead guitar phrases, leading to less representation in higher-order auditory areas; lastly, 443 

being of lower amplitude than vocals or lead guitar notes in the spectrogram, the rhythm guitar 444 

could contribute less to the Mean Squared Error during model fitting, leading to reduced 445 

reconstruction. 446 

 447 

An important open question is whether there exist brain regions and networks that are 448 

specific to music, or whether music-related information is processed in input agnostic auditory 449 

pathways50,62,63. While this study links musical elements to STRF components and precise 450 

anatomical locations, it is unlikely that these regions respond specifically to music. Rather our 451 
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findings suggest non-music-specific encoding of musical elements. The fact that onset and late 452 

onset components responded to syllables, lead guitar and synthesizer (Fig. 4) suggests that 453 

subparts of STG process both vocals and music. Although one could argue that the rhythmic 454 

component (Fig. 3D and E) is music specific as it is clearly related to the 6.66 Hz sixteenth notes 455 

of the rhythm guitar, this same rhythmic component shows diffuse energy between 2 and 8 Hz 456 

in the temporal modulation spectrum (Fig. 3D), compatible with syllabic rhythm64. On the other 457 

hand, a specificity for speech is suggested by the sustained component, as it is only activated by 458 

vocals (Fig. 4C, D and E). 459 

 460 

Our study had several limitations. Importantly, the encoding models we used in this study 461 

to investigate the neural dynamics of music perception estimated the linear relationship between 462 

song’s acoustics and elicited HFA. It is possible that regions not highlighted by our study respond 463 

to the song, either in other neural frequency bands, or encoding higher-order musical 464 

information. Another limitation was the short duration of the song, and its limited 465 

spectrotemporal variability. More data would enhance statistical power and enable the use of 466 

more complex nonlinear models. Finally, we lacked patient-related information about 467 

musicianship status or degree of familiarity with the song, preventing us to investigate inter-468 

individual variability. 469 

 470 

Combining a naturalistic paradigm, unique iEEG data and novel modeling-based analyses, 471 

this study extends our knowledge of the neural dynamics underlying music perception at two 472 

levels. At the brain level, we observed a right-hemisphere preference and a preponderant role of 473 

bilateral STG in representing the song’s acoustics. Within bilateral STG, we observed partially 474 

overlapping neural populations tuned to distinct musical elements. An ablation analysis revealed 475 

the presence of unique musical information in both hemispheres, spatially distributed in the left 476 

hemisphere between STG, SMC and IFG, and concentrated in STG in the right hemisphere. At a 477 

methodological level, we showed the feasibility of applying predictive modeling on a relatively 478 

short dataset and quantified the impact of different methodological factors on the prediction 479 

accuracy of decoding models. To our knowledge, we provide the first recognizable song 480 

reconstructed from direct brain recordings. Future studies could investigate different 481 

representations of the song (i.e., notes, chords, sheet music) and different neural frequency 482 

bands (e.g., theta, alpha, beta power), and will add another brick in the wall of our understanding 483 

of music processing in the human brain.484 
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Methods 485 

Participants. Twenty-nine patients with pharmacoresistant epilepsy participated in the study. All 486 

had intracranial grids or strips of electrodes (electrocorticography, ECoG) surgically implanted to 487 

localize their epileptic foci, and electrode location was solely guided by clinical concern. 488 

Recordings took place at the Albany Medical Center (Albany, NY). All patients volunteered and 489 

gave their informed consent prior to participating in the study. The experimental protocol has 490 

been approved by the Institutional Review Boards of both the Albany Medical Center and the 491 

University of California, Berkeley. All patients had self-declared normal hearing. 492 

 493 

Task. Patients passively listened to the song Another Brick in the Wall, Part 1, by Pink Floyd 494 

(released on the album The Wall, Harvest Records/Columbia Records, 1979). They were 495 

instructed to listen attentively to the music, without focusing on any special detail. Total song 496 

duration was 190.72 seconds (waveform is represented in Fig. 1A, top; listen to Supplementary 497 

Material Audio 1 for a 15-second excerpt). The auditory stimulus was digitized at 44.1 kHz and 498 

delivered through in-ear monitor headphones (bandwidth 12Hz-23.5kHz, 20dB isolation from 499 

surrounding noise) at a comfortable sound level adjusted for each patient (50 to 60 dB SL). Eight 500 

patients had more than one recording of the present task, in which cases we selected the cleanest 501 

one (i.e., containing the least epileptic activity or noisy electrodes). 502 

 503 

Intracranial recordings. Direct cortical recordings were obtained through grids or strips of 504 

platinum-iridium electrodes (Ad-Tech Medical, Oak Creek, WI), with center-to-center distances 505 

of 10 mm for 21 patients, 6 mm for four, 4 mm for three or 3 mm for one. We recruited patients 506 

in the study if their implantation map covered at least partially the superior temporal gyri (left or 507 

right). The cohort consists of 28 unilateral cases (18 left, 10 right) and one bilateral case. Total 508 

number of electrodes across all 29 patients was 2,668 (range 36-250, mean 92 electrodes). ECoG 509 

activity was recorded at a sampling rate of 1,200 Hz using g.USBamp biosignal acquisition devices 510 

(g.tec, Graz, Austria) and BCI200065. 511 

 512 

Preprocessing – Auditory stimulus. To study the relationship between the acoustics of the 513 

auditory stimulus and the ECoG-recorded neural activity, the song waveform was transformed 514 

into a magnitude-only auditory spectrogram using the NSL Matlab Toolbox66. This transformation 515 

mimics the processing steps of early stages of the auditory pathways, from the cochlea’s spectral 516 

filter bank to the midbrain’s reduced upper limit of phase-locking ability, and outputs a 517 

psychoacoustic-, neurophysiologic-based spectrotemporal representation of the song. The 518 

resulting auditory spectrogram has 128 frequency bins from 180 to 7,246 Hz, with characteristic 519 

frequencies uniformly distributed along a logarithmic frequency axis (24 channels per octave), 520 

and a sampling rate of 100 Hz. This full-resolution, 128-frequency-bin spectrogram is used in the 521 

song reconstruction analysis. For all other analyses, to decrease the computational load and the 522 

number of features, we outputted a reduced spectrogram with 32 frequency bins from 188 to 523 

6,745 Hz (Fig. 1A, bottom). 524 

 525 
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Preprocessing – ECoG data. We used the High-Frequency Activity (HFA; 70 to 150 Hz) as an 526 

estimate of local neural activity67 (Fig. 1C). For each dataset, we visually inspected raw recorded 527 

signals and removed electrodes exhibiting noisy or epileptic activity, with the help of a 528 

neurologist (RTK). We then extracted data aligned with the song stimulus, adding 10 seconds of 529 

data padding before and after the song (to prevent filtering-induced edge artifacts). We filtered 530 

out power-line noise, using a range of notch filters centered at 60 Hz and harmonics up to 300 531 

Hz (Butterworth, 4th order, 2 Hz bandwidth), and removed slow drifts with a 1 Hz high-pass filter 532 

(Butterworth, 4th order). We used a bandpass-Hilbert approach68 to extract HFA, with 20-Hz-wide 533 

sub-bands spanning from 70 to 150 Hz in 5 Hz steps (70 to 90, 75 to 95, … up to 130 to 150 Hz). 534 

We chose a 20 Hz bandwidth to enable the observation of temporal modulations up to 10 Hz69, 535 

encompassing the 6.66 Hz sixteenth-note rhythm guitar pattern, pervasive throughout the song. 536 

This constitutes a crucial methodological point, enabling the observation of the rhythmic 537 

component (Fig. 3D). For each sub-band, we first bandpass-filtered the signal (Butterworth, 4th 538 

order), then performed median-based Common Average Reference (CAR; Liu et al., 2015), and 539 

computed the Hilbert transform to obtain the envelope. We standardized each sub-band 540 

envelope using robust scaling on the whole time period (subtracting the median and dividing by 541 

the interquartile range between the 10th and 90th percentiles), and average them together to 542 

yield the HFA estimate. We performed CAR separately for electrodes plugged on different splitter 543 

boxes to optimize denoising in 14 participants. Finally, we removed the 10-second pads, down-544 

sampled data to 100 Hz to match the stimulus spectrogram’s sampling rate, and tagged outlier 545 

time samples exceeding seven standard deviations for later removal in the modeling 546 

preprocessing. We used Fieldtrip71 (version from May 11, 2021) and homemade scripts to 547 

perform all above preprocessing steps. Unless specified otherwise, all further analyses and 548 

computations were implemented in MATLAB (The MathWorks, Natick, MA, USA; version 2021a). 549 

Code is available upon request. 550 

 551 

Preprocessing – Anatomical data. We followed the anatomical data processing pipeline 552 

presented in Stolk et al.72 to localize electrodes from a pre-implantation MRI, a post-implantation 553 

CT scan and coverage information mapping electrodes to channel numbers in the functional data. 554 

After co-registration of the CT scan to the MRI, we performed brain-shift compensation with a 555 

hull obtained using scripts from the iso2mesh toolbox73,74. Cortical surfaces were extracted using 556 

the Freesurfer toolbox75. We used volume-based normalization to convert patient-space 557 

electrode coordinates into MNI coordinates for illustration purposes, and surface-based 558 

normalization using the Freesurfer’s fsaverage template to automatically obtain anatomical 559 

labels from the aparc+aseg atlas. Labels were then confirmed by a neurologist (RTK). 560 

 561 

Encoding – Data preparation. We used Spectro-Temporal Receptive Fields (STRFs) as encoding 562 

models, with the 32 frequency bins of the stimulus spectrogram as features or predictors, and 563 

the HFA of a given electrode as target to be predicted. 564 

We log-transformed the auditory spectrogram to compress all acoustic features into the same 565 

order of magnitude (e.g., low-sound-level musical background and high-sound-level lyrics). This 566 

ensured modeling would not be dominated by high-volume musical elements. 567 
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We then computed the feature lag matrix from the song’s auditory spectrogram (Fig. 1D). As HFA 568 

is elicited by the song stimulus, we aim at predicting HFA from the preceding song spectrogram. 569 

We chose a time window between 750 ms and 0 ms before HFA, to allow a sufficient temporal 570 

integration of auditory-related neural responses, while ensuring a reasonable features-to-571 

observations ratio to avoid overfitting. This resulted in 2,400 features (32 frequency bins by 75 572 

time lags at a sampling rate of 100 Hz). 573 

We obtained 18,898 observations per electrode, each one consisting of a set of one target HFA 574 

value and its preceding 750-ms auditory spectrogram excerpt (19,072 samples of the whole song, 575 

minus 74 samples at the beginning for which there is no preceding 750-ms window). 576 

At each electrode, we rejected observations for which the HFA value exceeded seven standard 577 

deviations (Z units), resulting in an average rejection rate of 1.83% (min 0% - max 15.02%, SD 578 

3.2%). 579 

 580 

Encoding – Model fitting. To obtain a fitted STRF for a given electrode, we iterated through the 581 

following steps 250 times. 582 

We first split the dataset into training, validation and test sets (60-20-20 ratio, respectively) using 583 

a custom group-stratified-shuffle-split algorithm (based on the StratifiedShuffleSplit cross-584 

validator in scikit-learn). We defined relatively long, 2-second groups of consecutive samples as 585 

indivisible blocks of data. This ensured that training and test sets would not contain neighbor, 586 

virtually identical samples (as both music and neural data are highly correlated over short periods 587 

of time), and was critical to prevent overfitting. We used stratification to enforce equal splitting 588 

ratios between the vocal (13 to 80 s) and instrumental parts of the song. This ensured stability of 589 

model performance across all 250 iterations, by avoiding that a model could be trained on the 590 

instrumentals only and tested on the vocals. We used shuffle splitting, akin to bootstrapping with 591 

replacement between iterations, which allows us to determine test set size independently from 592 

the number of iterations (as opposed to KFold cross-validation). 593 

We then standardized the features, by fitting a robust scaler to the training set only (estimates 594 

the median and the 2-98 quantile range; RobustScaler in sklearn package), and using it to 595 

transform all training, validation and test sets. This gives comparable importance to all features, 596 

i.e., every time lag and frequency of the auditory spectrogram. 597 

We employed linear regression with RMSProp optimizer for efficient model convergence, Huber 598 

loss cost function for robustness to outlier samples, and early stopping to further prevent 599 

overfitting. In early stopping, a generalization error is estimated on the validation set at each 600 

training step, and model fitting ends after this error stops diminishing for 10 consecutive steps. 601 

This model was implemented in Tensorflow 1.6 and Python 3.6. The learning rate 602 

hyperparameter of the RMSProp optimizer was manually tuned to ensure fast model 603 

convergence all by avoiding exploding gradients (overshooting of the optimization minimum). 604 

We evaluated prediction accuracy of the fitted model by computing both the correlation 605 

coefficient (Pearson’s r) and the R-squared between predicted and actual test-set target (i.e., HFA 606 
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at a given electrode). Along with these two performance metrics, we also saved the fitted model 607 

coefficients. 608 

Then, we combined these 250 split-scale-fit-evaluate iterations in a bootstrap-like approach to 609 

obtain one STRF and assess its significance (i.e., whether we can linearly predict HFA, at a given 610 

electrode, from the song spectrogram). For each STRF, we z-scored each coefficient across the 611 

250 models (Fig. 1E). For the prediction accuracy, we computed the 95% confidence interval (CI) 612 

from the 250 correlation coefficients, and deemed an electrode as significant if its 95% CI did not 613 

contain 0. As an additional criterion, we rejected significant electrodes with an average R-squared 614 

(across the 250 models) at or below 0. 615 

 616 

Encoding – Analysis of prediction accuracy. To assess how strongly each brain region encodes 617 

the song, we performed a two-way ANOVA on the correlation coefficients of all electrodes 618 

showing a significant STRF, with laterality (left or right hemisphere) and area (STG, sensorimotor, 619 

IFG or other) as factors. We then performed a multiple comparison (post hoc) test to disentangle 620 

any differences between factor levels. 621 

 622 

Encoding – Analysis of model coefficients. We analyzed the STRF tuning patterns using an 623 

independent component analysis (ICA), to highlight electrode populations tuned to distinct STRF 624 

features. Firstly, we ran an ICA with 10 components on the centered STRF coefficients, to identify 625 

components individually explaining more than 5% of variance. We computed explained variance 626 

by back-projecting each component and using the following formula: pvafi = 100 – 627 

100*mean(var(STRF - backproji))/mean(var(STRF)); with i from 1 to 10 components, pvafi being 628 

the percentage of variance accounted for by ICA component i, STRF being the centered STRF 629 

coefficients, and backproji being the back-projection of ICA component i in electrode space. We 630 

found 3 ICA components explaining more than 5% of variance. To optimize the unmixing process, 631 

we ran a new ICA asking for three components. Then, we determined each component sign by 632 

setting as positive the sign of the most salient coefficient. Lastly, for each ICA component, we 633 

defined electrodes as representing the component if their ICA coefficient was positive. 634 

To look at rhythmic tuning patterns, we computed the temporal modulations of each STRF. 635 

Indeed, due to their varying frequencies and latencies, they were not captured by the combined 636 

component analysis. We quantified temporal modulations between 1 and 16 Hz over the 32 637 

spectral frequency bins of each STRF, and extracted the maximum modulation value across all 32 638 

frequency bins between 6 and 7 Hz of temporal modulations, corresponding to the song 639 

rhythmicity of 16th notes at 99 bpm. We defined electrodes as representing the component if 640 

their maximum modulation value was above a manually defined threshold of .3. 641 

 642 

Encoding – Musical elements. To link STRF components to musical elements in the song, we ran 643 

a sliding-window correlation between each component and the song spectrogram. Positive 644 

correlation values indicate specific parts of the song or musical elements (i.e., vocals, lead 645 

guitar…) that elicit an increase of HFA. 646 
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Decoding - Ablation analysis. To assess the contribution of different brain regions and STRF 647 

components in representing the song, we performed an ablation analysis. We quantified the 648 

impact of ablating sets of electrodes on the prediction accuracy of a linear decoding model 649 

computed using all 347 significant electrodes. Firstly, we constituted sets of electrodes based on 650 

anatomical or functional criteria. We defined 12 anatomical sets by combining two factors – area 651 

(whole hemisphere, STG, SMC, IFG, or other areas) and laterality (bilateral, left or right). We 652 

defined 12 functional sets by combining two factors – STRF component identified in the STRF 653 

coefficient analyses (onset, sustained, late onset, and rhythmic) and laterality (bilateral, left or 654 

right). See Fig. 5 for the exact list of electrode sets. Secondly, we computed the decoding models 655 

using the same algorithm as for the encoding models. Decoding models aim at predicting the 656 

song spectrogram from the elicited neural activity. Here, we used HFA from a set of electrodes 657 

as input, and a given frequency bin of the song spectrogram as output. For each of the 24 ablated 658 

sets of electrodes, we obtained 32 models (one per spectrogram frequency bin), and compared 659 

each one of them to the corresponding baseline model computed using all 347 significant 660 

electrodes (repeated-measure one-way ANOVA). We then performed a multiple comparison 661 

(post hoc) test to assess differences between ablations. 662 

We based our interpretation of ablations results on the following assumptions. Collectively, as 663 

they had significant STRFs, all 347 significant electrodes represent acoustic information on the 664 

song. If ablating a set of electrodes resulted in a significant impact on decoding accuracy, we 665 

considered that this set represented unique information. Indeed, were this information shared 666 

with another set of electrodes, a compensation-like mechanism could occur and void the impact 667 

on decoding accuracy. If ablating a set of electrodes resulted in no significant impact on decoding 668 

accuracy, we considered that this set represented redundant information, shared with other 669 

electrodes (as the STRFs were significant, we ruled out the possibility that it could be because 670 

this set did not represent any acoustic information). Also, comparing the impact of a given set 671 

and one of its subsets of electrodes provided further insights on the unique or redundant nature 672 

of the represented information. 673 

 674 

Decoding – Parametric analyses. We quantified the influence of different methodological factors 675 

(number of electrodes, dataset duration, and model type) on the prediction accuracy of decoding 676 

models. In a bootstrapping approach, we randomly constituted subsets of 5, 10, 20, 40, 80, 160 677 

and 320 electrodes (sampling without replacement) to be used as inputs of linear decoding 678 

models. We processed 100 bootstrap resamples (i.e., 100 sets of 5 electrodes, 100 sets of 10 679 

electrodes…), and normalized for each of the 32 frequency bins the resulting correlation 680 

coefficients by the correlation coefficients of the full, 347-electrode decoding model. For each 681 

resample, we averaged the correlation coefficients from all 32 models (1 per frequency bin of the 682 

song spectrogram). This yielded 100 prediction accuracy estimates per number of electrodes. We 683 

then fitted a two-term power series model to these estimates, to quantify the apparent power-684 

law behavior of the obtained bootstrap curve. We adopted the same approach for dataset 685 

duration, with excerpts of 15, 30, 60, 90, 120, 150 and 180 consecutive seconds. 686 

To investigate the impact of model type on decoding accuracy and to assess the extent to which 687 

we could reconstruct a recognizable song, we trained linear and nonlinear models to decode each 688 
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of the 128 frequency bins of the full spectral resolution song spectrogram from HFA of all 347 689 

significant electrodes. We used the multilayer perceptron (MLP)—a simple, fully connected 690 

neural network, as nonlinear model (MLPRegressor in sklearn). We chose a MLP architecture of 691 

two hidden layers of 64 units each, based both on an extension of the Universal Approximation 692 

Theorem stating that a two hidden layer MLP can approximate any continuous multivariate 693 

function76 and on a previous study with a similar use case42. Since MLP layers are fully connected 694 

(i.e., each unit of a layer is connected to all units of the next layer), the number of coefficients to 695 

be fitted is drastically increased relatively to linear models (in this case, F*N + N*N + N vs F, 696 

respectively, where the total number of features F = E*L, with E representing the number of 697 

significant electrodes included as inputs of the decoding model, and L the number of time lags; 698 

and N represents the number of units per layer). Given the limited dataset duration, we reduced 699 

time lags to 500ms based on the absence of significant activity beyond this point in the STRF 700 

components, and used this L value in both linear and nonlinear models. 701 

We defined a fixed, 15-second continuous test set during which the song contained both vocals 702 

and instrumentals (Supp. Mat. Audio 1), and held it out during hyperparameter tuning and model 703 

fitting. We tuned model hyperparameters (learning rate for linear models, and L2-regularization 704 

alpha for MLPs) through 10-resample cross-validation. We performed a grid search on each 705 

resample (i.e., training/validation split), and saved for each resample the index of the 706 

hyperparameter value yielding the minimum validation mean squared error (MSE). Candidate 707 

hyperparameter values ranged between .001 and 100 for the learning rate of linear models, and 708 

between .01 and 100 for the alpha of MLPs. We then rounded the mean of the ten resulting 709 

indices to obtain the cross-validated, tuned hyperparameter. As a homogeneous presence of 710 

vocals across training, validation and test sets was crucial for proper tuning of the alpha 711 

hyperparameter of MLPs, we increased group size to 5 seconds, equivalent to about two musical 712 

bars, in the group-stratified-shuffle-split step (see Encoding models – Model Fitting for a 713 

reference), and used this value for both linear and nonlinear models. For MLPs specifically, as 714 

random initialization of coefficients could lead to convergence towards local optima, we adopted 715 

a best-of-3 strategy where we only kept the “winning” model (i.e., yielding the minimum 716 

validation MSE) amongst three models fitted on the same resample. 717 

Once we obtained the tuned hyperparameter, we computed 100 models on distinct 718 

training/validation splits, also adopting the best-of-3 strategy for the nonlinear models (this time 719 

keeping the model yielding the maximum test r-squared). We then sorted models by increasing 720 

r-squared, and evaluated the “effective” r-squared by computing the r-squared between the test 721 

set target (the actual amplitude time course of the song’s auditory spectrogram frequency bin) 722 

and averages of n models, with n varying from 100 to 1 (i.e., effective r-squared for the average 723 

of all 100 models, for the average of the 99 best, …, of the 2 best, of the best model). Lastly, we 724 

selected n based on the value giving the best effective r-squared, and obtained a predicted target 725 

along with its effective r-squared as an estimate of decoding accuracy. The steps above were 726 

performed for all 128 frequency bins of the song spectrogram, both for linear and nonlinear 727 

models, and we compared the resulting effective r-squared using a paired t-test. 728 

 729 
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Decoding – Song waveform reconstruction. To explore the extent to which we could reconstruct 730 

the song from neural activity, we collected the 128 predicted targets for both linear and MLP 731 

decoding models as computed above, therefore assembling the decoded auditory spectrograms. 732 

To denoise and improve sound quality, we rose all spectrogram samples to the power of two, 733 

thus highlighting prominent musical elements such as vocals or lead guitar chords, relatively to 734 

background noise. As both magnitude and phase information are required to reconstruct a 735 

waveform from a spectrogram, we used an iterative phase-estimation algorithm to transform the 736 

magnitude-only decoded auditory spectrogram into the song waveform (aud2wav66). To have a 737 

fair basis against which we could compare the song reconstruction of the linearly and nonlinearly 738 

decoded spectrograms, we transformed the original song excerpt corresponding to the fixed test 739 

set into an auditory spectrogram, discarded the phase information, and applied this algorithm to 740 

revert the spectrogram into a waveform (Supp. Mat. Audio 2). We performed 500 iterations of 741 

this aud2wav algorithm, enough to reach a plateau where error did not improve further. 742 
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