

1 **Title**

2 Evaluation of heat inactivation of human norovirus in freshwater clams using human
3 intestinal enteroids

4

5 **Authors**

6 Tsuyoshi Hayashi ¹, Yoko Yamaoka ¹, Atsushi Ito ², Takashi Kamaishi ³, Mary K. Estes
7 ⁴, Masamichi Muramatsu ^{1,5}, Kosuke Murakami ^{1*}

8

9 **Affiliation**

10 1. Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan.
11 2. Production Engineering Division, Aquaculture Research Department, Fisheries
12 Technology Institute, Japan Fisheries Research and Education Agency, Hiroshima,
13 Japan.
14 3. Pathology Division, Aquaculture Research Department, Fisheries Technology
15 Institute, Japan Fisheries Research and Education Agency, Mie, Japan.
16 4. Departments of Molecular Virology and Microbiology and of Medicine, Baylor College
17 of Medicine, Houston, Texas, USA
18 5. Department of Infectious Disease, Institute of Biomedical Research and Innovation,
19 Hyogo, Research Foundation for Biomedical Research and Innovation at Kobe, Hyogo,
20 Japan

21

22 * Correspondence to: Kosuke Murakami (ko-mura@nih.go.jp)

23 **Keywords:** norovirus; acute gastroenteritis; intestinal enteroids; heat inactivation;
24 freshwater clam

25 **Abstract**

26 Foodborne disease attributed to consumption of shellfish contaminated with human
27 norovirus (HuNoV) is one of many global health concerns. Our study aimed to determine
28 conditions of heat-inactivation of HuNoV in freshwater clams (*Corbicula japonica*) using
29 a recently developed HuNoV cultivation system employing stem-cell derived human
30 intestinal enteroids (HIEs). We first measured the internal temperature of clam tissue in
31 a water bath during boiling at 90 °C and found that approximately 2 minutes are required
32 for the tissue to reach 90 °C. Next, GII.4 HuNoV was spiked into the center of the clam
33 tissue followed by boiling at 90 °C for 1, 2, 3, or 4 minutes. The infectivity of the HuNoV
34 in clam tissue homogenates was evaluated using HIEs. We demonstrated that HuNoV
35 in unboiled clam tissue homogenates replicated in HIEs, whereas infectivity was lost in
36 all boiled samples, indicating that heat treatment at 90 °C for 1 minute is sufficient to
37 inactivate HuNoV in freshwater clams. To our knowledge, this is the first study to
38 determine the infectivity of HuNoV tolerability in shellfish using HIEs and our results will
39 be informative to develop strategies to inactivate HuNoV in foods.

40

41 **Introduction**

42 Food borne diseases attributed to consumption of unsafe foods, which are
43 contaminated with pathogens (bacteria, viruses, or parasites) or toxic chemical
44 substances, cause 600 million people illness worldwide every year and therefore pose a
45 major public health concern (WHO, 2020; Lee and Yoon, 2021). Foodborne disease is
46 caused by several pathogens including Campylobacter, Salmonella, Listeria, hepatitis A
47 virus and human norovirus (HuNoV). Among those, HuNoV is a most frequently detected
48 pathogen in contaminated foods being consumed by ill individuals (WHO, 2015; Lee and
49 Yoon, 2021). Shellfish, especially oysters, are recognized as one of the major sources
50 for HuNoV-associated foodborne disease due to the accumulation of HuNoVs in the
51 digestive gland by filter feeding (Ludwig-Begall et al., 2021).

52 The most common inactivation method of pathogens in contaminated foods is
53 to cook them properly at high temperature. Given the varied thermal tolerability of each
54 pathogen, establishment of tailor-made strategies to inactivate respective pathogens is
55 necessary to reduce the risk of foodborne illness. Concerning HuNoV, there was no
56 robust HuNoV cultivation system developed until recently. Therefore, investigations on
57 food inactivation of HuNoV have been carried out by measuring copy numbers of HuNoV
58 genome or infectious virus titers of surrogate viruses such as murine norovirus (MNV)
59 and feline calicivirus (FCV) (Sow et al., 2011; Bozkurt et al., 2015). However, it remains
60 unclear whether these indirect measures reflect inactivation of HuNoV infectivity.

61 Recently, several HuNoV cultivation systems have been developed, including B
62 cells (Jones et al., 2014), tissue stem cell-derived human intestinal enteroids (HIEs)
63 (Ettayebi et al., 2016; Ettayebi et al., 2021), human induced pluripotent stem cell-derived
64 intestinal epithelial cells (iPSC-derived IECs) (Sato et al., 2019) and zebrafish (Van

65 Dycke et al., 2019). Studies using our HIE system as well as human iPSC-derived IECs
66 showed HuNoV inactivation by heating or disinfectants (alcohol or chlorine) (Ettayebi et
67 al., 2016; Costantini et al., 2018; Sato et al., 2020). However, to our knowledge, an
68 investigation on HuNoV's inactivation in foods such as bivalves using the HuNoV
69 cultivation system has not been performed so far.

70 In this study, we evaluated thermal inactivation conditions of freshwater clams
71 artificially contaminated with HuNoV by measuring infectious HuNoV using the HIE
72 culture system.

73

74 **Materials and methods**

75 **Measurement of temperature kinetics in freshwater clams subjected to heat 76 treatment.**

77 Live freshwater clams (*Corbicula japonica*) were purchased at a grocery store
78 and maintained overnight at room temperature in diluted seawater. A whole clam body
79 was then taken from its shell and transferred into a 1.5 mL tube. The weights of the clam
80 bodies ranged from 0.16 g to 0.41 g (mean \pm standard deviation [SD], 0.29 \pm 0.07). To
81 monitor the internal and external temperature of the samples, 2 thermometers were
82 used; a probe thermometer was inserted into a clam body (Fig. 1A) and another was
83 immersed in a water bath set at 90 °C (Fig. 1B). Both temperatures were recorded every
84 15 seconds up to 5 minutes.

85

86 **Artificial inoculation of HuNoV into freshwater clams followed by heat treatment 87 and sample processing.**

88 Six freshwater clams were used for each experiment. The clam bodies taken
89 from their shell were injected with 30 μ L of either PBS as a control or 10% stool filtrate
90 containing 1.06×10^8 genome equivalents (GEs) of GII.4 [GII.P16] HuNoV (Hayashi et
91 al., 2021) using a 50 μ L microsyringe with a fine needle. The artificial inoculated samples
92 were then left-untreated or heat-treated at 90 °C for 1, 2, 3, or 4 minutes, as described
93 above. After cooling the samples down to room temperature, 170 μ L of chilled complete
94 medium without growth factors [CMGF(-)] used for culturing HIEs was added to the each
95 sample. The clam bodies were then chopped with scissors and homogenized using a
96 hand mixer, followed by centrifugation at 9,100 x g for 3 min at 4 °C. The supernatant
97 was collected and repeated the centrifugation with the same condition to remove debris.
98 The collected supernatant was stored at -80 °C until used for determining virus infectivity
99 and viral recovery efficiency.

100

101 **Evaluation of infectivity of HuNoV in clam extracts using HIEs.**

102 HIE culture and HuNoV infection were performed as described previously
103 (Ettayebi et al., 2016; Murakami et al., 2020; Hayashi et al., 2021). Briefly, a jejunal HIE
104 (J2) culture, provided from Baylor College of Medicine under the Material Transfer
105 Agreement, was maintained and propagated as matrigel-embedded, 3-dimensional
106 (3D)-HIEs in complete medium with growth factors [CMGF(+)] or IntestiCult Organoid
107 Growth Medium (Human, STEMCELL).

108 To prepare monolayer HIE cultures for HuNoV infection, the 3D HIEs were
109 dissociated with TrypLE Express (Thermo Fisher), and seeded onto collagen IV-coated
110 96-well plates at the number of approximately $\sim 10^5$ cells/well in the CMGF(+) or
111 IntestiCult media supplemented with ROCK inhibitor Y-27632 (10 μ M, Sigma) for 2 days.

112 The medium was then replaced with IntestiCult Organoid Differentiation Medium (Human,
113 STEMCELL) and the cultures were maintained for additional 2 days. The monolayer
114 HIEs were then inoculated with the clam samples diluted 1:20 in a final volume of 100
115 μ L of CMGF(-) medium in the presence of 500 μ M GCDCA, which promotes GII.4 HuNoV
116 infection (Ettayebi et al., 2016). After 1 h incubation at 37 °C, the cells were washed twice
117 with CMGF(-) and further incubated in IntestiCult Organoid Differentiation Medium
118 containing 500 μ M GCDCA until 24 hours post infection (hpi). The cells and medium
119 were then collected and subjected to RNA extraction using the Direct-zol RNA MiniPrep
120 kit (Zymo Research) following the manufacturer's instructions. HuNoV RNA genome
121 equivalents (GEs) were determined by reverse transcription-quantitative PCR (RT-
122 qPCR) analysis using TaqMan Fast Virus 1-Step Master Mix (Thermo Fisher) and GII
123 specific primer/probe sets (Kageyama et al., 2003).

124

125 **Evaluation of viral recovery efficiency after homogenization.**

126 The RNA was extracted from 5 μ L of the inoculum containing 30 μ L of HuNoV-
127 containing stool filtrates and 170 μ L of CMGF(-) or the HuNoV-contaminated clam
128 extracts, and subjected to RT-qPCR analysis to measure HuNoV GEs. The percentage
129 of recovery efficiency was calculated as HuNoV GEs in clam samples relative to that in
130 the inoculum.

131

132 **Statistical analysis**

133 Statistical analysis was performed with ANOVA followed by Dunnett's multiple-
134 comparison test or two-tailed Student *t* test using GraphPad Prism 9 software. *P* values
135 of < 0.05 was considered statistically significant.

136

137 **Results**

138 Heat treatment experiments were carried out using a water bath at 90 °C.
139 Measurements of the internal and external temperatures during heating showed that
140 while the water temperature was stable at around 90 °C during the heating process, the
141 temperature of the clam body required 2 minutes before reaching a stable temperature
142 at 90 °C (Fig. 1C).

143 We then evaluated the effect of different times of heat inactivation on the
144 HuNoV-contaminated clams. The clam bodies were either spiked with PBS as a non-
145 infection control or HuNoV using microsyringe. The inoculated clam tissue, either left-
146 unheated or heated at 90 °C for 1, 2, 3, or 4 minutes was homogenized. We first
147 evaluated recovery efficiency of spiked HuNoV in clam homogenates (Fig. 2A).
148 Approximately 60% of the inoculated HuNoV GEs ($62.0 \pm 7.3\%$) were recovered from
149 HuNoV-spiked clam homogenates without heating, whereas the treatment at 90 °C for 1
150 minute significantly reduced the recovery efficiency ($27.7 \pm 15.9\%$) as compared to the
151 unheated samples. The longer heat treatment further reduced the efficiency (Fig. 2A).

152 Then, infectious virus was quantified by determining viral GEs at 1 or 24 hpi as
153 described in the Materials and methods section. HuNoV in clam homogenates was
154 infectious and able to replicate in HIEs showing a 42.5-fold increase in GEs at 24 hpi as
155 compared to 1 hpi, while PBS injected samples contained no infectious virus as expected
156 (Fig. 2B). Furthermore, all groups of heat treatment showed no viral replication at 24 hpi,
157 demonstrating that the 90 °C for 1 minute treatment is sufficient for inactivation of HuNoV
158 infectivity in clam tissue homogenates (Fig. 2B).

159

160 **Discussion**

161 Generally, if no cultivation system is available to grow a certain human pathogen,
162 employing cultivable surrogate virus(es) is used to study the biological characteristics
163 including tolerability against disinfectants or heating (Bozkurt et al., 2015). However, the
164 properties of the surrogate viruses are not always the same as the human pathogen.
165 Indeed, previous reports demonstrate that HuNoV is resistant to 70% alcohol (Costantini
166 et al., 2018), whereas surrogate viruses such as murine norovirus (MNV), feline
167 calicivirus (FCV) and porcine enteric calicivirus, but not Tulane virus, are sensitive to this
168 treatment (Cromeans et al., 2014). A study on heat inactivation of MNV in shellfish
169 showed that the heat treatment at 90 °C for 90 seconds resulted in an approximate 2
170 \log_{10} reduction of infectious virus measured by using plaque assays (Sow et al., 2011).
171 Whether the heat treatment at 90 °C for 1 minute is sufficient for the inactivation of MNV
172 as well as HuNoV remains to be verified.

173 Recently, a propidium monoazide (PMA)-viability RT-qPCR assay, which is
174 expected to measure only infectious virions containing intact viral RNA, but not non-
175 infectious virions containing degraded RNA, was applied to study inactivation of HuNoV
176 in clams (Fuentes et al., 2021). That study demonstrated that HuNoV spiked in clams
177 and heated at 90 °C for 10 minutes resulted in a 3.52 \log_{10} reduction of HuNoVs
178 determined by PMA-viability RT-qPCR assay (Fuentes et al., 2021). Since growth of
179 HuNoVs in HIEs is still lower than that of surrogate viruses in their cultivable cells,
180 improvement of growth efficiency is required to be utilized as general evaluation methods
181 for HuNoV inactivation. For example, conditions to cultivate HuNoV in genetically
182 modified lines and with improved medium conditions to achieve at least 3 logs of
183 replication are being sought for optimal inactivation studies (Lin et al., 2020; Ettayebi et

184 al., 2021). Meanwhile, comparisons between the PMA-viability RT-qPCR assay and our
185 evaluation method using HIEs would be beneficial to develop a general pragmatic
186 method to evaluate HuNoV inactivation.

187 In this study, we used freshwater clams to evaluate HuNoV inactivation using
188 HIEs, because the HuNoV genome is frequently detected in clams as well as oysters
189 among bivalve mollusks (Guix et al., 2019). It would be worth comparing HuNoV
190 inactivation patterns between in clams and oysters, which needs further investigation.

191 In summary, we evaluated the heat inactivation of HuNoV in freshwater clams
192 using HIEs and showed that treatment at 90 °C for 1 minute is sufficient for inactivation
193 of HuNoV in the clam bodies. We provided direct evidence regarding HuNoV inactivation
194 in a contaminated food using the HIE culture system. This information will be valuable to
195 develop guidelines to inactivate HuNoV, which will contribute to reducing the risk of
196 foodborne illness associated with HuNoV.

197

198 **Data availability statement**

199 The original contributions presented in the study are included in the article, further
200 inquiries can be directed to the corresponding author.

201

202 **Author contributions**

203 K.M. conceived and supervised the project. K.M. and T.H. designed the experiments and
204 wrote the manuscript. T.H., Y.Y. and K.M. conducted the experiments and analyzed the
205 results. A.T., T.K., M.M., and M.K.E. provided advice for the study, discussed the results,
206 and critically reviewed the manuscript. All authors approved the final version of the
207 manuscript.

208

209 **Conflict of Interest**

210 M.K.E. is named as an inventor on patents related to cloning and cultivation of the
211 Norwalk virus genome and has been a consultant to and received research funding from
212 Takeda Vaccines, Inc.

213

214 **Funding**

215 This work was supported by the Ministry of Health Labour and Welfare of Japan Grant
216 19KA0701 (to K.M.); the Japan Agency for Medical Research and Development (AMED)
217 Grants JP21fk0108121 and JP21fk0108149 (to K.M.), JP21fk0108102 and
218 JP21wm0225009 (to M.M.), and NIH Grants P30 DK056338 and PO1 AI057788 (to
219 M.K.E.).

220

221 **Acknowledgements**

222 We thank the research group of freshwater crams in Japan for kind support for cram
223 handling.

224

225 **Figure legends:**

226 **Figure 1. Kinetics of internal temperature in clams subjected to heat treatment.**

227 A probe of thermometer was inserted into a clam body in a 1.5 ml tube to measure the
228 internal temperature of the clam (A). A second thermometer probe was put in the water
229 bath to measure the temperature outside the 1.5 ml tube (B). The internal clam tissue
230 temperature and the external water bath temperature were recorded every 15 seconds

231 up to 5 minutes (C). Results were shown as mean \pm standard deviation calculated from
232 5 independent experiments (n=5).

233

234 **Figure 2. Thermal inactivation of clams artificially contaminated with HuNoV.**

235 The clam tissue was spiked with either PBS or HuNoV containing stool filtrate. The
236 spiked clam tissue was next left-untreated or heat-treated at 90 °C for 1, 2, 3, or 4
237 minutes, and then homogenized. (A) Viral GEs in the clam extracts were quantified by
238 RT-qPCR and the recovery efficiency was calculated as in Materials and methods. ** p
239 < 0.01 versus unheated HuNoV-spiked clam samples (0 min), one-way ANOVA followed
240 by Dunnett's multiple-comparison test. (B) The samples were inoculated to differentiated
241 HIEs and HuNoV GEs in the HIEs were determined as in Materials and methods. ** p <
242 0.01, two-tailed Student t test. Results were shown as mean \pm standard deviation
243 calculated from 3 independent experiments (n=3).

244

245 **References**

246 Bozkurt, H., D'Souza, D.H., and Davidson, P.M. (2015). Thermal Inactivation of
247 Foodborne Enteric Viruses and Their Viral Surrogates in Foods. *J Food Prot*
248 78(8), 1597-1617. doi: 10.4315/0362-028x.Jfp-14-487.

249 Costantini, V., Morantz, E.K., Browne, H., Ettayebi, K., Zeng, X.L., Atmar, R.L., et al.
250 (2018). Human Norovirus Replication in Human Intestinal Enteroids as Model to
251 Evaluate Virus Inactivation. *Emerg Infect Dis* 24(8), 1453-1464. doi:
252 10.3201/eid2408.180126.

253 Cromeans, T., Park, G.W., Costantini, V., Lee, D., Wang, Q., Farkas, T., et al. (2014).
254 Comprehensive comparison of cultivable norovirus surrogates in response to
255 different inactivation and disinfection treatments. *Appl Environ Microbiol* 80(18),
256 5743-5751. doi: 10.1128/aem.01532-14.

257 Ettayebi, K., Crawford, S.E., Murakami, K., Broughman, J.R., Karandikar, U., Tenge,
258 V.R., et al. (2016). Replication of human noroviruses in stem cell-derived

259 human enteroids. *Science* 353(6306), 1387-1393. doi:
260 10.1126/science.aaf5211.

261 Ettayebi, K., Tenge, V.R., Cortes-Penfield, N.W., Crawford, S.E., Neill, F.H., Zeng,
262 X.L., et al. (2021). New Insights and Enhanced Human Norovirus Cultivation in
263 Human Intestinal Enteroids. *mSphere* 6(1). doi: 10.1128/mSphere.01136-20.

264 Fuentes, C., Pérez-Rodríguez, F.J., Sabrià, A., Beguiristain, N., Pintó, R.M., Guix, S.,
265 et al. (2021). Inactivation of Hepatitis A Virus and Human Norovirus in Clams
266 Subjected to Heat Treatment. *Frontiers in Microbiology* 11(3504). doi:
267 10.3389/fmicb.2020.578328.

268 Guix, S., Pintó, R.M., and Bosch, A. (2019). Final Consumer Options to Control and
269 Prevent Foodborne Norovirus Infections. *Viruses* 11(4). doi:
270 10.3390/v11040333.

271 Hayashi, T., Murakami, K., Hirano, J., Fujii, Y., Yamaoka, Y., Ohashi, H., et al. (2021).
272 Dasabuvir Inhibits Human Norovirus Infection in Human Intestinal Enteroids.
273 *mSphere*, e0062321. doi: 10.1128/mSphere.00623-21.

274 Jones, M.K., Watanabe, M., Zhu, S., Graves, C.L., Keyes, L.R., Grau, K.R., et al.
275 (2014). Enteric bacteria promote human and mouse norovirus infection of B
276 cells. *Science* 346(6210), 755-759. doi: 10.1126/science.1257147.

277 Kageyama, T., Kojima, S., Shinohara, M., Uchida, K., Fukushi, S., Hoshino, F.B., et al.
278 (2003). Broadly reactive and highly sensitive assay for Norwalk-like viruses
279 based on real-time quantitative reverse transcription-PCR. *J Clin Microbiol*
280 41(4), 1548-1557. doi: 10.1128/jcm.41.4.1548-1557.2003.

281 Lee, H., and Yoon, Y. (2021). Etiological Agents Implicated in Foodborne Illness World
282 Wide. *Food Sci Anim Resour* 41(1), 1-7. doi: 10.5851/kosfa.2020.e75.

283 Lin, S.C., Qu, L., Ettayebi, K., Crawford, S.E., Blutt, S.E., Robertson, M.J., et al. (2020).
284 Human norovirus exhibits strain-specific sensitivity to host interferon pathways
285 in human intestinal enteroids. *Proc Natl Acad Sci U S A* 117(38), 23782-23793.
286 doi: 10.1073/pnas.2010834117.

287 Ludwig-Begall, L.F., Mauroy, A., and Thiry, E. (2021). Noroviruses-The State of the Art,
288 Nearly Fifty Years after Their Initial Discovery. *Viruses* 13(8). doi:
289 10.3390/v13081541.

290 Murakami, K., Tenge, V.R., Karandikar, U.C., Lin, S.C., Ramani, S., Ettayebi, K., et al.
291 (2020). Bile acids and ceramide overcome the entry restriction for GII.3 human
292 norovirus replication in human intestinal enteroids. *Proc Natl Acad Sci U S A*
293 117(3), 1700-1710. doi: 10.1073/pnas.1910138117.

294 Sato, S., Hisaie, K., Kurokawa, S., Suzuki, A., Sakon, N., Uchida, Y., et al. (2019).
295 Human Norovirus Propagation in Human Induced Pluripotent Stem Cell-Derived
296 Intestinal Epithelial Cells. *Cell Mol Gastroenterol Hepatol* 7(3), 686-688.e685.
297 doi: 10.1016/j.jcmgh.2018.11.001.

298 Sato, S., Matsumoto, N., Hisaie, K., and Uematsu, S. (2020). Alcohol abrogates human
299 norovirus infectivity in a pH-dependent manner. *Sci Rep* 10(1), 15878. doi:
300 10.1038/s41598-020-72609-z.

301 Sow, H., Desbiens, M., Morales-Rayas, R., Ngazoa, S.E., and Jean, J. (2011). Heat
302 inactivation of hepatitis A virus and a norovirus surrogate in soft-shell clams
303 (*Mya arenaria*). *Foodborne Pathog Dis* 8(3), 387-393. doi:
304 10.1089/fpd.2010.0681.

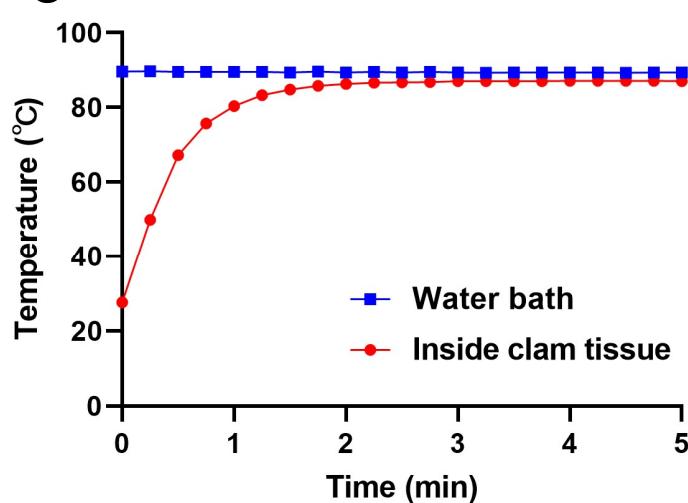
305 Van Dycke, J., Ny, A., Conceição-Neto, N., Maes, J., Hosmillo, M., Cuvry, A., et al.
306 (2019). A robust human norovirus replication model in zebrafish larvae. *PLoS
307 Pathog* 15(9), e1008009. doi: 10.1371/journal.ppat.1008009.

308 WHO (2015). WHO estimates of the global burden of foodborne diseases.
309 https://apps.who.int/iris/bitstream/handle/10665/199350/9789241565165_eng.pdf?sequence=1.

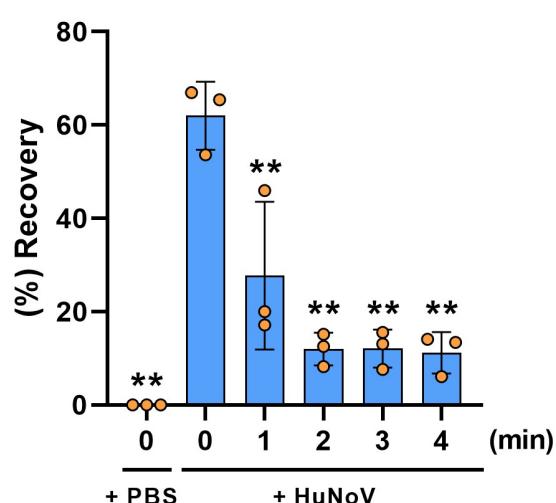
311 WHO (2020). Food safety, <https://www.who.int/NEWS-ROOM/FACT-SHEETS/DETAIL/FOOD-SAFETY>.

313

Figure 1


A

B



C

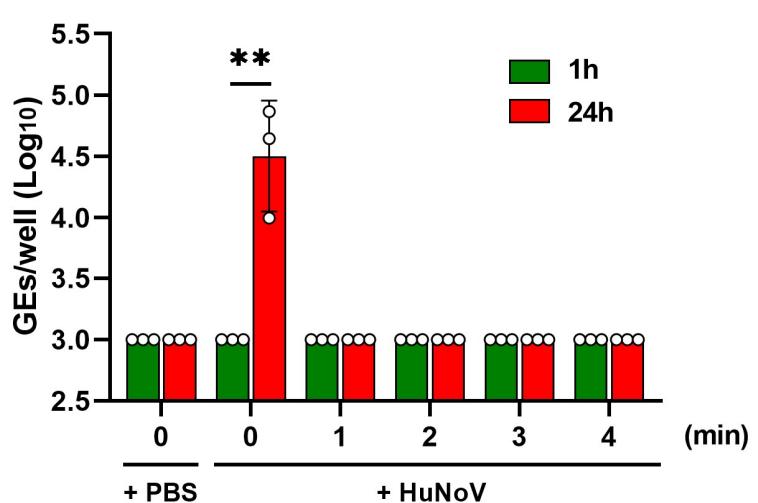


Figure 2

A

B

