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Abstract

Great progress has been made in understanding gut microbiome’s products and their effects on
health and disease. Less attention, however, has been given to the inputs that gut bacteria consume.
Here we quantitatively examine inputs and outputs of the mouse gut microbiome, using isotope
tracing. The main input to microbial carbohydrate fermentation is dietary fiber, and to branched-
chain fatty acids and aromatic metabolites is dietary protein. In addition, circulating host lactate,
3-hydroxybutyrate and urea (but not glucose or amino acids) feed the gut microbiome. To
determine nutrient preferences across bacteria, we traced into genus-specific bacterial protein
sequences. We find systematic differences in nutrient use: Most genera in the phylum Firmicutes
prefer dietary protein, Bacteroides dietary fiber, and Akkermansia circulating host lactate. Such
preferences correlate with microbiome composition changes in response to dietary modifications.
Thus, diet shapes the microbiome by promoting the growth of bacteria that preferentially use the
ingested nutrients.
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INTRODUCTION

The gut microbiome possesses an enormous diversity of enzymes, exceeding the number in
mammals’ genomes by more than 100-fold (Qin et al., 2010). This enzymatic capacity enables the
processing of incoming dietary nutrients into a broad spectrum of microbial metabolites. Some of
these reach the host circulation at substantial concentrations (Lai et al., 2021; Quinn et al., 2020).
Microbial metabolites can play important roles in host pathophysiology. For example, short-chain
fatty acids (SCFAs; acetate, propionate, butyrate) (Dalile et al., 2019; Koh et al., 2016),
trimethylamine N-oxide (Tang et al., 2013), secondary bile acids (Arab et al., 2017; Funabashi et
al., 2020), indole-3-propionate (Wikoff et al., 2009), and imidazole propionate (Koh et al., 2018)
affect immune maturation (Campbell et al., 2020; Hang et al., 2019), insulin sensitivity (Koh et
al., 2018), cancer growth (Garrett, 2015; Yoshimoto et al., 2013), and cardiovascular disease
(Nemet et al., 2020; Wang et al., 2011).

Both to replicate themselves and to release metabolic products, gut bacteria require nutrient inputs.
These come in forms including ingested food, host-synthesized gut mucus (Desai et al., 2016;
Sicard et al., 2017), and host circulating metabolites (Scheiman et al., 2019). The availability of
dietary nutrients to gut microbiota depends on the extent of host absorption: nutrients that are
absorbed in the small intestine, like starch, are not available to the colonic microbiome. In contrast,
nutrients that are poorly digested in the upper gastrointestinal tract, like fiber, can be key
microbiome feedstocks (Lund et al., 2021; Wong and Jenkins, 2007).

Isotope tracing enables the measurement of the inputs to metabolites and biomass in a quantitative
manner. Such studies, employing radioactive tracers, defined the basics of mammalian metabolism
(Wolfe, 1984). Recent work has increasingly relied on stable isotope tracers coupled to mass
spectrometry detection, which enables the measurement of labeling in specific downstream
products (Ferndandez-Garcia et al., 2020; McCabe and Previs, 2004). This approach has revealed
fundamental features of host metabolism, such as circulating lactate being a major TCA fuel
(Faubert et al., 2017; Hui et al., 2017). In addition, it has provided important insights into host-
microbiome metabolic interplay. For example, it revealed that dietary fructose is processed by the
microbiome into acetate, which fuels hepatic lipogenesis (Jang et al., 2018; Zhao et al., 2020).

In principle, stable isotope tracing coupled to mass spectrometry can also be applied to determine
the metabolic inputs to specific microbes, based on measuring labeling in bacteria-specific peptide
sequences (Berry et al., 2015; Holmes et al., 2017; Oberbach et al., 2017; Reese et al., 2018; Zhang
et al., 2016a, 2016b). By infusing nitrogen-labeled threonine to label host mucus, investigators
were able to compare the contribution of dietary versus mucus protein to the gut microbiome and
observed a shift towards more mucus contribution in a low-protein diet condition (Holmes et al.,
2017).
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72 Here, we perform the first large-scale, quantitative assessment of the metabolic inputs to the gut
73 microbiome and its products. We examine the contributions from dietary starch, fiber, and protein,
74 host mucus, and most major circulating host nutrients, finding that lactate, 3-hydroxybutyrate, and
75 urea stand out for passing from the host to the gut microbiome. Moreover, based on the
76  measurement of bacteria-specific peptide sequences, we assess the nutrient preferences of different
77  bacterial genera and show that these preferences align with microbiome composition changes in
78  response to altered diet.

79 RESULTS
80 Microbiome consumes less digestible dietary components

81 A major mechanism by which the microbiome may impact host physiology is via secreted
82  metabolic products. As the intestine and colon drain into the portal circulation, metabolites
83  produced by the gut microbiome should be enriched in the portal relative to systemic blood. We
84  measured, in the portal, systemic circulation and the cecal contents, the absolute concentrations of
85  more than 50 metabolites characterized in the literature as microbiome-derived (Campbell et al.,
86  2020; De Vadder et al., 2014; Han et al., 2021; Hang et al., 2019; Koh et al., 2018; Mager et al.,
87  2020; Ridlon et al., 2014; Wikoff et al., 2009) (Figure 1A, S1A, Table 1, S1-2). Most microbiome
88 metabolites were elevated in the portal circulation relative to systemic blood, and all but two
89  (inosine and N-acetyl-tryptophan, which are apparently mainly host derived) were depleted by
90 antibiotics treatment.

91  The dominant excreted products on a molar basis (0.4 — 2 mM in the portal blood) are SCFAs.
92  Other relatively abundant microbiome products (10 - 30 uM) are aromatic amino acid fermentation
93  products (phenol, indoxyl sulfate, and 3-phenylpropionate) and branched-chain fatty acids
94  (valerate, isovalerate, 4-methylvalerate, isobutyrate, 2-methylbutyrate). While primary bile acids
95  were also present in the portal circulation at up to ~ 10 uM concentration, these are produced by
96 the host and accordingly were not included in Table 1. Secondary bile acids, which are produced
97 from primary bile acids by the microbiome, were lower in absolute concentration, the most
98  abundant being tauroursodeoxycholic acid (3 uM in portal vein).

99  To probe the dietary inputs to gut microbial products, we began by feeding mice, by oral gavage,
100  starch (readily digestible glucose polymer) and inulin (slowly digestible fructose polymer, i.e.,
101 soluble fiber) (Figure 1B). Following !*C-starch gavage, labeled glucose, lactate, and alanine
102  quickly appeared in the portal circulation (Figure 1C, S1B). In contrast, after *C-inulin gavage,
103  substantial labeled fructose, glucose, lactate, and alanine were not observed, and instead labeled
104  portal metabolites slowly appeared in the form of SCFAs (Figure 1C, S1C). Quantitative analysis
105  based on the portal-systemic differences in serum metabolite labeling (Jang et al., 2018) revealed
106  that most starch carbons (~75%) become circulating glucose, lactate, and alanine, with no
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107  discernible labeling of SCFAs. In contrast, ~ 40% of inulin carbons become SCFAs (Figure S1C),
108  with the remainder being undigested and excreted in the feces (Figure S1D). Measurement of
109  cecal content revealed that dietary inulin, but not starch, extensively labeled glycolytic and TCA
110  intermediates and amino acids in the cecal content (Figure 1D).

111 We next carried out similar experiments, comparing the gavage of a free amino acid mixture to
112 algal protein, both uniformly '3C-labeled (Figure 1B). The free amino acid feeding resulted in the
113 rapid appearance of labeled amino acids in portal circulation, while the algal protein did not
114  (Figure 1E). Instead, the algal protein, but not free amino acids, substantially labeled amino acids
115  within the cecal contents (Figure 1F). Moreover, the algal protein copiously labeled microbiome-
116  derived portal vein metabolites: SCFAs, branched-chain fatty acids, and aromatics (indole, indole-
117  3-propionate, 3-phenylpropionate) (Figure S1E-F). Thus, poorly digestible carbohydrates and
118  protein feed the microbiome directly, and the host indirectly via microbiome-derived products.

119  Few circulating metabolites reach the microbiome

120  Next, we examined the possibility that nutrients in host circulation feed the gut microbiota. We
121  infused deuterated water and eighteen major circulating nutrients (*C-labeled) into the systemic
122 circulation of pre-catheterized mice (Figure 2A). The infusion rates were selected to achieve
123 modest but readily measurable labeling without substantially perturbing circulating concentrations.
124  Circulating labeling reached a steady-state by 2.5 h, at which time we collected serum and feces
125 to quantitate the carbon contributions of each circulating nutrient to the corresponding fecal
126  metabolites. Upon intravenous infusion of '*C-lactate, fecal lactate labeled rapidly (Figure 2B).
127  Most infused circulating nutrients, however, did not penetrate the feces (Figure 2C-D). Indeed,
128  while water fully exchanged with the feces, among abundant circulating carbon carriers, only
129  lactate and 3-hydroxybutyrate penetrated. Glucose, amino acids, TCA intermediates and fatty
130  acids did not. Both lactate and 3-hydroxybutyrate are substrates of monocarboxylate transporters
131 (MCTs), which are highly expressed in the colonic epithelium (Halestrap and Price, 1999, p. 1).
132 Thus, in contrast to most host circulating metabolites, which do not reach the colonic microbiome,
133 monocarboxylic transporters render circulating lactate and 3-hydroxybutyrate accessible to gut
134  microbes.

135  Circulating urea is a microbiome nitrogen source

136  In addition to carbon, nitrogen is a fundamental constituent of all living cells. To assess nitrogen
137  sources of the gut microbiome, we infused twelve abundant circulating nutrients in I>N-labeled
138  form. Nitrogen from circulating urea and ammonia, but not amino acids, penetrates the feces and
139  contributes to microbiome amino acids (Figure 2E, S2A-B).


https://doi.org/10.1101/2022.01.25.477736
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.01.25.477736; this version posted January 26, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

140  The liver converts ammonia into urea. Accordingly, we were curious if ammonia contributes to
141 the microbiome directly, or only indirectly after being converted by the host into circulating urea
142  (Bartman et al., 2021). Ammonia’s contribution is quantitatively explained by the product of its
143 contribution to circulating urea and urea’s microbiome contribution (Figure S2C-D). Thus, urea
144  is the main circulating host metabolite that provides nitrogen to the gut microbiome.

145  Microbiota synthesize amino acids from fiber and urea

146  To determine the physiological sources of microbiome metabolites, we measured their labeling
147  after ad libitum feeding of isotopically enriched food. To this end, we fed mice standard chow with
148  aportion of the fiber, fat, or protein *C-labeled. To account for circulating nutrient inputs, we also
149  infused *C-lactate or 3-hydroxybutyrate (Figure 3A, S3A). These studies identified a majority of
150 the carbon feeding into most microbiome central metabolites, with glycolytic and pentose
151  phosphate metabolites labeling almost exclusively coming from dietary fiber (inulin), while
152  pyruvate and TCA metabolites are also labeled from dietary algal protein and circulating lactate
153  (Figure 3B).

154  We next examined inputs to microbiome amino acids, tracing also with ’N-labeled dietary protein
155  and infused urea. Unlike mammals, most gut bacteria have the biosynthetic capacity to make all
156 20 proteogenic amino acids. Nevertheless, we observed that “essential amino acids,” which cannot
157  be made by mammals and require the expression of extensive biosynthetic pathways in bacteria,
158  are derived mainly from dietary proteins. In contrast, “non-essential amino acids” are primarily
159  synthesized within the gut microbiome, using dietary inulin and circulating lactate as carbon
160  sources (Figure 3C). Dietary protein was the main nitrogen source for both essential and non-
161  essential amino acids, with host urea also contributing substantially to the non-essential amino
162  acids (Figure 3D). Importantly, the amino acids synthesized by the microbiome, stay in the
163  microbiome: We do not observe discernible labeling of these amino acids in the host (Figure S3B).
164  Consistent with the gut microbiome synthesizing amino acids from fiber carbon and urea nitrogen,
165  across amino acids, urea’s nitrogen contribution correlated with inulin’s carbon contribution
166  (Figure 3E). Thus, the microbiome obtains amino acids from a blend of dietary protein catabolism
167  and de novo synthesis fed by dietary fiber and urea.

168  Diverse microbiome products come from dietary protein

169  We next examined, using isotope tracing, the carbon inputs to the microbiome products, especially
170  the ones excreted into the portal circulation (Table 1). SCFAs, the most abundant microbial
171  metabolites, come mainly from dietary fiber with minor contributions from dietary protein and
172 host circulating lactate. Many less abundant ones, however, are almost exclusively derived from
173  dietary protein (Table 1).
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174  In addition to classical microbiome products, we also observed metabolites that are made in a
175  collaborative manner, with the host carrying out the final synthesis using microbiome-derived
176  inputs. For example, a wide range of microbiome-derived carboxylic acids are conjugated to
177  glycine in the liver and the kidneys to make different acyl-glycines (Figure S4A-D) (Wikoff et al.,
178 2009).

179  We also examined the host clearance mechanisms of microbiome metabolites, based on arterial-
180  venous gradients across the liver and kidney and levels in the urine. SCFAs and branched-chain
181  fatty acids were avidly consumed by the liver, consistent with their much greater abundance in the
182  portal than systemic circulation. Most microbiome-derived metabolites were excreted by the
183  kidney into the urine, with the notable exception of SCFAs, which are actively reabsorbed (Table
184  S1). Thus, we establish dietary protein as a major precursor to many microbiome metabolites and
185  identify host-microbiome interplay in the metabolism of SCFAs, including their renal reabsorption
186  and use by liver and kidney for the synthesis of acyl-glycines.

187  Gut bacterial growth is synchronized with host feeding

188  Thus far, we have reported inputs and outputs of the gut microbiome as a whole. We now shift to
189  examining the growth and metabolism of specific bacterial genera. To this end, we deployed
190 proteomics to measure gut microbial peptides and their labeling, focusing on peptide sequences
191  specific to a single bacterial genus (Figure 4A).

192  To quantify protein synthesis in different gut microbial genera, we used D20 tracing (Holmes et
193  al., 2015; O’Brien et al., 2020). To achieve steady-state labeling of body water, we gave mice D2O
194 by bolus injection followed by mixing it into drinking water. Peptide labeling in the cecal contents
195  was then measured by proteomics (Figure 4B).

196 A key technical challenge in using proteomics to read out metabolic activity is the complexity,
197  arising from natural isotope abundances, of peptide mass spectra. We used liquid chromatography-
198  high resolution mass spectrometry to obtain the full scan (MS1) mass isotope distribution for each
199  peptide of interest, with MS/MS analysis of the unlabeled form used to determine the peptide’s
200 identity. We then calculated, based on the mass isotope distribution, the fraction of peptide that
201  was newly synthesized (8). To this end, first, we calculated the mass isotope distribution of
202  unlabeled peptides based on natural isotope abundances (“old”). Second, we calculated the
203  expected mass isotope distribution of a newly-synthesized peptide generated from cecal free amino
204  acids, whose labeling we experimentally measured by metabolomics. Then, we determined the
205  fraction of newly synthesized (8) by linear interpolation between the “old” and “newly synthesized”
206  spectra (Figure 4C).
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207  For each bacterial genus, we measured the newly synthesized fraction (6) for a minimum of 5
208  peptides, with abundant gut bacteria yielding 6 for over 100 characteristic peptides. Irrespective
209  of their intracellular location, different peptides from the same bacterial genus tended to label at a
210  similar rate, suggesting that the peptide labeling rate largely reflects bacterial growth rate (Figure
211 4D, S5A). Labeling rate varied across bacterial genera, with a half doubling time ranging from 2.5
212 hfor Akkermansia to 8 h for Lactobacillus, which still markedly exceeded the labeling rate of host
213 intestinal proteins (> 24 h half doubling time) (Figure 4E-F, Figure S5B).

214 Our prior analyses revealed that the microbiome is fed substantially by dietary components.
215  Accordingly, we hypothesized that microbial growth synchronizes with physiological feeding,
216  which in mice occurs mainly during the nighttime. To assess the diurnal rhythm of gut bacterial
217  protein synthesis, mice were given D20 for 6 h intervals throughout the diurnal cycle, followed by
218  proteomic analysis of their cecal contents. Every measured bacterial genus showed greater protein
219  synthesis during nighttime than daytime (Figure 4G). Thus, gut bacteria synthesize protein in sync
220  with the physiological feeding patterns of the host.

221 Preferred carbon sources differ across gut bacteria

222 Next, we quantitated the carbon feedstocks of different microbes, by combining '*C-nutrient
223 labeling and proteomics. Each '’C-labeled nutrient (dietary inulin, dietary algal protein, or
224  circulating lactate) was provided for 24 hours, which is sufficient to achieve steady-state labeling
225 in the gut bacteria. Our analysis strategy involved two steps: first, we calculated, based on each
226  genus-specific peptide’s observed mass isotope distribution, its relative '*C-enrichment (y)
227  compared to that of cecal free amino acids (Figure SA). Mathematically, this calculation is
228  identical to the calculation of 6 in the D>O case, except here, the tracer is a particular 13C-labeled
229  nutrient, which unlike D>O is used preferentially by certain bacterial genera. The observed
230  peptide’s relative *C-enrichment multiplied by the average contribution of that '*C-tracer to the
231 gut microbial amino acids pool (Lag gvgenutrient) gIVES a quantitative measure of the tracer’s
232 contribution to the observed genus-specific peptide. Averaging across such peptides gives a
233 fractional contribution of the '*C-labeled nutrient to protein synthesis in a bacterial genus.

234 Using this method, we measured feedstocks of the bacterial genera that were detected in every
235  proteomics experiment. We observed marked differences in nutrient preferences across members
236  of the microbiota. For example, Bacteroides and Clostridium use over four-fold more inulin than
237  Akkermansia, Muribaculum, or Alistipes (Figure 5B). Overall, bacteria from the phylum
238  Firmicutes, used more dietary protein than did Bacteroidetes (Firmicutes 0.237 + 0.052;
239  Bacteroidetes 0.175 + 0.031, p = 0.02).
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240  Akkermansia, which is generally considered a health-promoting gut microbe, used among the least
241 dietary inulin and protein (Figure SB-C). In contrast, it used by far the most circulating lactate
242 from the host (Figure 5D).

243  We were curious whether these bacterial nutrient preferences predict microbiome composition
244 changes upon dietary changes. To explore this possibility, we fed mice an inulin-enriched or algal
245  protein-enriched diet for two days and measured microbiome composition by 16S rRNA
246  sequencing. Major bacteria genera with a relative abundance > 0.5% in 16S rRNA sequencing
247  were examined. Bacteroides, the top consumer of '*C-inulin, increased by 4-fold after high inulin
248  diet (Figure SE-G). Clostridium, another high inulin consumer, also increased by 2-fold. Other
249  genera that use less inulin carbon were either unchanged or slightly decreased. Similar consistency
250  between microbes’ nutrient preference and relative abundance changes was observed in mice fed
251  the algal protein-enriched diet (Figure SH-J). Carbon-source preference measured by proteomics
252 (fyenuscnutrient) correlates with abundance change following a diet shift measured by 16S
253  sequencing, for both the inulin and algal protein conditions (Figure SG, J). Thus, the nutrient
254  preferences of different gut bacteria help explain microbiome compositional changes following
255  dietary manipulations (David et al., 2014).

256  Firmicutes consume dietary protein while Bacteroidetes consume secreted host protein

257  Lastly, we turned to the nitrogen source preferences of different gut bacteria, comparing '°N-
258 labeled dietary protein feeding to '*N-urea infusion. The analytical approach was identical to that
259  employed above for carbon source preferences. Bacterial genera that highly use carbon from
260 dietary protein also highly use nitrogen from dietary protein, consistent with amino acids from
261  dietary protein being assimilated intact in bacterial proteomes (Figure 6A, S6A).

262  Conversely, among members of the phylum Firmicutes, genera preferring urea nitrogen tended to
263  be avid inulin users, i.e. to synthesize their own amino acids using inulin and urea (Figure 6B,
264  S6B). Finally, again among Firmicutes, we also saw the expected trade-off where some genera
265  prefer nitrogen from dietary protein, and others from circulating urea (Figure S6C). The most
266  intriguing observation, however, was that bacteria from the phylum Firmicutes used more nitrogen
267  both from dietary proteins and from circulating urea than did Bacteroidetes (Dietary proteins:
268  Firmicutes 0.263 + 0.044; Bacteriodetes 0.135 £ 0.006, p = 7.7 X 107>; Urea: Firmicutes
269  0.076 £ 0.019, Bacteriodetes 0.033 £+ 0.012, p =0.0001) (Figure 6A-B).

270  The low use of both dietary protein and circulating urea nitrogen by Bacteroidetes raised a key
271  question: How do Bacteroidetes get nitrogen? It has been shown that some members of gut
272  microbiome (e.g. Bacteroides and Akkermansia) are capable of digesting host secreted proteins
273 such as mucins (Berry et al., 2013; Reese et al., 2018). We hypothesized that host secreted proteins
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274 are a key source of Bacteroidetes nitrogen. To probe this possibility, we performed long-term (36
275  h) "*N-labeled lysine and arginine infusions to label host proteins in the colon (Figure 6C and
276  Figure S7A-D). Lysine and arginine do not directly feed the microbiome (Figure 1E) but did
277  make a discernible contribution after the long-term infusion, consistent with the labeling occurring
278  via host proteins. Such labeling occurred preferentially in Bacteriodetes peptides (Figure 6D).
279  Akkermansia, consistent with its mucin degrading capability, is another user of host secreted
280  proteins. The nitrogen contributions from dietary and secreted host proteins were anti-correlated,
281  consistent with some gut bacteria preferentially consuming dietary protein, and others host protein
282  (Figure 6E). Interestingly, bacterial genera with a higher preference for dietary protein, which is
283  dependent on host feeding, tend to grow more differently between daytime and nightime, while
284  genera that prefer host secreted proteins, grow at a similar rate throughout a day. (Figure S6D-E).
285  Thus, dietary proteins and circulating urea are the major nitrogen feedstock of Firmicutes, while
286  secreted host proteins provide nitrogen to Bacteroidetes.

287 Discussion

288  As for most microbial communities, the composition of the gut microbiome is shaped by nutrient
289 availability. Here we developed quantitative isotope tracing approaches to measure the nutrient
290 preferences of gut bacteria. In addition to dietary fiber and secreted host proteins, we establish
291  dietary protein and circulating host lactate, 3-hydroxybutyrate, and urea as important nutrients
292  feeding gut bacteria. Importantly, we rule out direct contributions from other circulating host
293  nutrients, like glucose and amino acids, to the colonic microbiome.

294 A key technical achievement is enabling tracing from different carbon and nitrogen sources into
295  Dbacteria-specific peptides, thereby revealing the nutrient preferences of different bacteria within
296  the complex and competitive gut lumen environment. We find that Firmicutes and Bacteroidetes
297  differ systematically in their utilization of host secreted protein versus dietary protein: Firmicutes
298  tend to acquire amino acids from dietary protein, while Bacteroidetes rely more on secreted host
299  protein (Figure 6F). This may relate to different localization of bacteria within the colon, either in
300 terms of central versus peripheral (closer to host mucus) or distal versus proximal (closer to
301 incoming food remnants) (Albenberg et al., 2014; Li et al., 2015; Yasuda et al., 2015).

302  Within these two major families of gut bacteria, we found marked disparities in the use of dietary
303 fiber as a carbon source. The most abundant Bacteroidetes’ genus is Bacteroides, and it was the
304 most avid assimilator of fiber (inulin). In contrast, other types of bacteria in the same phylum
305 hardly consumed inulin. Likewise, some Firmicutes like Clostridium avidly used fiber, while
306 others did not. Strikingly, feeding a fiber-enriched diet led to an increased abundance of
307  Bacteroides and Clostridium, the precise genera that most actively assimilate fiber based on
308 isotope tracing.
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309 A similar trend was observed in the case of dietary supplementation with algal protein: Firmicutes,
310  which actively use such protein, tended to increase in abundance. Algal protein (the only type
311  commercially available in bulk in '*C-labeled form) may be particularly hard for mammals to
312 digest. This is reflected in the limited appearance of '3C-labeled amino acids from algal protein in
313  the portal circulation, and instead extensive passage from the intestine into the colon. This influx
314  of dietary protein to the microbiome was a major contributor to secreted microbiome metabolites:
315  dietary algal protein provided a portion of the carbon in the most abundant microbiome products
316  (e.g., SCFAs) and was the main source of most other microbiome-derived metabolites. An
317 important future question is whether the nature of dietary protein (e.g. plant or animal-based)
318 impacts passage through the small intestine to the colonic microbiome and thereby shapes
319 microbiome composition or metabolite secretion (Madsen et al., 2017; Wali et al., 2021).

320 Host circulating metabolite levels may also impact microbiome nutrient access and ultimately
321  composition. Here we show such effects are likely limited to the few host metabolites that
322  meaningfully penetrate the microbiome: urea, 3-hydroxybutyrate, and lactate. Among them,
323  lactate was recently shown to feed the gut microbiome in human marathon runners (Scheiman et
324  al, 2019). Among gut bacteria, Akkermansia most avidly use circulating lactate. Akkermansia are
325  mucin degraders, and their proximity to the gut epithelial wall may augment their access to lactate
326  from the host circulation. Akkermansia are more abundant in athletes, and exercise increases their
327  levels in mice and human (Liu et al., 2017; Munukka et al., 2018). A possible mechanism involves
328 increased circulating lactate levels following exercise directly feeding Akkermansia. Whether
329 lactate-induced Akkermansia growth in part mediates beneficial effects of exercise is an important
330 open question.

331  Ultimately, manipulating the microbiome requires understanding which nutrients different bacteria
332  consume, and how such consumption impacts microbiome composition and product secretion.
333  Through isotope tracing, including proteomic measurements that offer bacterial genus specificity,
334  we provide foundational knowledge about which nutrients feed the gut microbiome, and which
335  bacteria prefer which nutrients. Currently, our measurements are limited to young mice, fed typical
336  chow with or without fiber or algal protein supplementation. Furthermore, they are limited to the
337  genus level and to genera that we detect by proteomics and/or sequencing. Nevertheless, we cover
338  many important gut microbiome genera. Moreoever, the methodologies developed here are poised
339  for broader application, to eventually contribute to the holistic and quantitative understanding of
340 the diet-microbiome-health connection.

341 Methods

342 Mouse gavage and labeled nutrient feeding. Mouse studies followed protocols approved by the
343  Princeton University Animal Care and Use Committee. Unless otherwise indicated, mice were
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344  group-housed on a normal light-dark cycle (8:00-20:00) with free access to water and chow. For
345  the C-nutrient gavage experiments, 7-9-week-old male C57BL/6NCrl mice (strain 027; Charles
346  River Laboratories) were fasted at 9 am and received a 1:2:4 mixture of inulin, protein/amino acids,
347  and starch (0.5 g kg’ inulin, 1 g kg! protein/amino acids 2g kg™! starch dissolved in water) at 3
348 pm via oral gavage with a plastic feeding tube (Instech Laboratories). Food was given back at 8
349  pm.

350 For the experiments involving labeled nutrient feeding, the labeled diet was prepared by adding
351 13C/"N-nutrients to a diet mixture premix (modified from normal diet with reduced protein, inulin,
352  and starch content, Research diets Inc, D20030303). The final enrichment for each labeled dietary
353  nutrient was 10% - 25% (with observed labeling corrected by dividing by the fraction dietary
354  nutrient labeled). The contribution of each dietary nutrient to metabolites is calculated by the
355  metabolite labeling enrichement normalized to the final enrichment of each labeled dietary nutrient.
356  All diets shared the same final macronutrient composition (40% starch, 20% protein or amino acids,
357  7.5% inulin and 2.5% cellulose). Male C57BL/6NCrl mice (7-9-week-old, strain 027, Charles
358  River Laboratories) were first adapted to a non-labeled diet (of identical composition to the
359  subsequent labeled diet) for 10 days, and then fed labeled diet for 24 h prior to sacrifice.

360 For the deuterium water drinking experiment, mice were administered a bolus intraperitoneal
361 injected of D2O (1.26 % w/w relative to body weight), followed by having ad lib access to 3%
362  D»O drinking water.

363  Intravenous infusions. To quantify contribution of circulating nutrients to microbiota metabolism,
364  9-11-week-old C57BL/6 mice were catheterized in house in the right jugular vein. The mice were
365 infused with carbon or nitrogen-labeled tracer starting at 3:30 pm without any fasting. Infusion
366  rate was 0.1 ul/min/g. Infusion solutions are described in Table S3. Overnight (24 h) infusions
367  both started and finished around 9 am. The contribution of circulating nutrient to each metabolite
368 is calculated by the metabolite labeling enrichment normalized to the average tracer serum
369  enrichment throughout 24 hr.

370  Antibiotics treatment. To deplete the mouse resident microbiome, an antibiotic drinking water
371  protocol was used. In brief, mice were treated with a cocktail of antibiotics (1 g/L ampicillin, 1
372 g/L neomycin, 1 g/LL metronidazole, and 1 g/L. vancomycin) in both their drinking water 14 days.
373 To make the drinking water more palatable, 5% aspartame was added The effectiveness of
374  antibiotics treatments were verified by observing much lower SCFAs in the feces by LC-MS.

375  Sample collection. Systemic blood samples (~6 ul) were collected by tail bleeding. For sampling
376  from tissue-specific draining veins, a mouse was put under anesthesia and different tissue veins
377  were exposed, and blood samples were pulled with an insulin syringe (BD insulin syringes, #
378  SY8290328291) insertion into the vein. Successful isolation of portal vein was confirmed by much
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379  higher (> 10x) concentrations of SCFAs and secondary bile acids (deoxycholic acid and lithocholic
380 acid) than systemic vein; hepatic vein was confirmed by much lower secondary bile acids, SCFAs
381  and higher glucose, 3-hydroxybutyrate levels compared to portal vein. Mouse urine was collected
382 from the urinary bladder using a syringe. All serum samples were placed on ice without
383  anticoagulant for 15 min, and centrifuged at 16,000 x g for 15 min at 4 C.

384  Tissues were harvested by quick dissection and snap freezing (<5 sec) in liquid nitrogen with a
385  pre-cooled Wollenberger clamp; intestinal contents were removed before clamping. For cecal
386  content sampling, the mouse cecum was first removed and cut on the surface, then the cecal content
387  was sequeezed out using a tweezer followed by freeze clamping. Whole liver, intestine, and
388 intestinal contents were collected and grounded to homogenous powder. To sample fresh feces,
389  the mouse belly was gently massaged to induce defecation and fresh feces were freeze clamped.
390  For long-term feces collection, a mouse was transferred to a new cage and mouse fecal pellets on
391 the bedding were collected every 1~2 h and freeze clamped. Serum, tissue, and feces samples were
392 kept at -80 °C until further analysis.

393  16S rRNA gene amplicon sequencing and analysis. Extraction of Bacterial DNA from cecal or
394  fecal samples was performedusing the Power Soil DNA Isolation kit (QIAGEN). A section of the
395 16S rRNA gene (~250 bp, V4 region) was amplified, and Illumina sequencing libraries were
396  prepared from these amplicons according to a previously published protocol and primers
397  (Caporaso et al., 2012). Libraries were further pooled together at equal molar ratios and sequenced
398  on an [llumina HiSeq 2500 Rapid Flowcell or MiSeq as paired-end reads. These reads were 2x150
399  bp with an average depth of ~20,000 reads. Also included were 8 bp index reads, following the
400  manufacturer’s protocol (Illumina, USA). Pass-Filter reads were generated from raw sequencing
401  reads using [llumina HiSeq Control Software. Samples were de-multiplexed using the index reads.
402  The DADAZ2 plugin within QIIME2 version 2018.6 was used to inferred Amplicon sequencing
403  variants (ASVs) from the unmerged paired-end sequences (Bolyen et al., 2019; Callahan et al.,
404  2016). The forward reads were trimmed at 150 bp and the reverse reads trimmed at 140 bp, with
405  all other DADA?2 as default. Taxonomy was assigned to the resulting ASVs with a naive Bayes
406  classifier trained on the Greengenes database version 13.8, with only the target region of the 16S
407  rRNA gene used to train the classifier (Bokulich et al., 2018; McDonald et al., 2012). Downstream
408  analyses were performed MATLAB (Hunter, 2007; McKinney, 2010).

409  Metabolite extraction. For serum samples, 3 ul serum was added to 90 ul methanol and incubated
410  onice for 10 min, followed by centrifugation at 17,000 x g for 10 min at 4°C. The supernatant was
411  transferred to an MS vial until further analysis. For tissues and feces samples, frozen samples were
412 first ground at liquid nitrogen temperature with a cryomill (Restch, Newtown, PA). The resulting
413  tissue powder was extracted with 40:40:20 methanol: acetonitrile: water (40 ul extraction solvent
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414  per 1 mg tissue) for 10 min on ice, followed by centrifugation at 17,000 x g for 10 min, the
415  supernatant was transferred to a MS vial until further analysis.

416  Measurements of metabolites, protein, and polysaccharides. To measure metabolites in serum,
417  tissue and feces samples, a quadrupole orbitrap mass spectrometer (Q Exactive; Thermo Fisher
418  Scientific) was coupled to a Vanquish UHPLC system (Thermo Fisher Scientific) with
419  electrospray ionization and scan range m/z from 60 to 1000 at 1 Hz, with a 140,000 resolution. LC
420  separation was performed on an XBridge BEH Amide column (2.1x150 mm, 2.5 um particle size,
421 130 A pore size; Waters Corporation) using a gradient of solvent A (95:5 water: acetonitrile with
422 20 mM of ammonium acetate and 20 mM of ammonium hydroxide, pH 9.45) and solvent B
423  (acetonitrile). Flow rate was 150 pl/min. The LC gradient was: 0 min, 85% B; 2 min, 85% B; 3
424  min, 80% B; 5 min, 80% B; 6 min, 75% B; 7 min, 75% B; 8 min, 70% B; 9 min, 70% B; 10 min,
425  50% B; 12 min, 50% B; 13 min, 25% B; 16 min, 25% B; 18 min, 0% B; 23 min, 0% B; 24 min,
426  85% B; and 30 min, 85% B. Injection volume was 5-10 pl and autosampler temperature was set at
427  4°C. For cysteine measurement, samples were derivatized before measurement as follows: Serum,
428  cecal content or feces samples were extracted and centrifuged. To the supernatant, 2 mM N-
429  ethylmaleimide was added and incubated at room temperature for 20 min. The resulting mixture
430  was transferred to a MS vial. Derivatized cysteine has a m/z at 245.06015 in negative mode.

431  To quantify the metabolite concentration in serum and tissue samples, either isotope spike-in or
432  standard spike-in was performed. For isotope spike-in, known concentrations of isotope-labeled
433  standard were added to the serum or tissues extraction solution, then the concentration was
434  calculated by the ratio of labeled and unlabeled metabolites. When isotope standard is not available,
435  a serially diluted non-labeled standard was added, and a linear fitting between measured total ion
436  count and added concentration of standard was generated. Then, the concentration of endogenous
437  metabolite was determined by the x intercept of the fitting line.

438  Starch and inulin were measured by acid hydrolysis and LC-MS. In brief, 5-10 mg sample was
439  mixed with 10 ul 2 M hydrochloric acid, and samples were incubated at 80°C for 2 h. After cooling
440  down, the resulting mixture was neutralized with 12 pl saturated sodium bicarbonate, followed
441  with 88 pl 1:1 acetonitrile: methanol solution. After centrifugation at 17,000 x g for 10 min at 4°C,
442  the supernatant was transferred to a MS vial. Inulin and starch concentration in samples was
443  inferred from total ion count of fructose and glucose, respectively.

444  SCFAs and BCFAs were derivatized and measured by LC-MS. Serum (5 pl) or tissue samples
445  (~10 mg) were added to 100 pl derivatizing reagents containing 12 mM 1-Ethyl-3-(3-
446  dimethylaminopropyl) carbodiimide, 15 mM 3-Nitrophenylhydrazine hydrochloride acid and
447  pyridine (2% v/v) in methanol. The reaction was incubated at 4°C for 1 h. Then, the reaction
448  mixture was centrifuged at 17,000 g for 10 min. 20 pl supernatant was quenched with 200 pl 0.5
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449  mM beta-mercaptoethanol in 0.1% formic acid water. After centrifugation at 17,000 g for 10 min,
450  the supernatant was transferred to MS vials until further analysis. The measurement of SCFAs and
451  BCFAs are performed using the same Q Exactive PLUS hybrid quadrupole-orbitrap mass
452  spectrometer with different column and LC setup. LC separation was on Acquity UPLC BEH C18
453  column (2.1 mm x 100 mm, 1.7 5 um particle size, 130 A’ pore size, Waters, Milford, MA) using
454  a gradient of solvent A (water) and solvent B (methanol). Flow rate was 200 pL/min. The LC
455  gradient was : 0 min, 10% B; 1 min, 10% B; 5 min, 30% B; 11 min 100% B; 14 min, 100% B;
456  14.5 min 10% B; 22 min 10 % B. Autosampler temperature was 5 °C, column temperature was
457 60 °C and injection volume was 10 pl. Ion masses for derivatized acetate, propionate, butyrate,
458  iso-butyrate, valeric acid, isovaleric acid, 2-methylbutyrate, 4-methylvaleric acid were 194.0571,
459  208.0728, 222.0884, 222.0884, 236.1041, 236.1041, 236.1041, 250.1197 in negative mode,
460  respectively.

461  Proteomics sample preparation. Proteomics samples were prepared mostly as previously
462  described (Gupta et al., 2018; Wiihr et al., 2014). Mouse cecal samples (10 mg each) were
463  dissolved in 400 ul lysis buffer (6M guanidium chloride, 2% cetrimonium bromide, 5 mM
464  dithiothreitol, 50 mM (4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid) (HEPES), pH 7.2).
465  Then the sample mixture was put on ice and sonicated for 10 cycles (30 s on and 30 s off cycle,
466  amplitude 50%) by a sonicator (Qsonica), followed by centrifugation at 20,000 x g for 20 min at
467 4 °C. The supernatant was taken and alkylated with 20 mM N-ethylmaleimide for 20 min at room
468  temperature, S mM dithiothreitol was added to quench the excessive alkylating reagents. Proteins
469  were purified by methanol-chloroform precipitation. The dried protein pellet was resuspended in
470 10 mM EPPS (N-(2-Hydroxyethyl) piperazine-N’-(3-propanesulfonic acid)) at pH 8.5 with 6 M
471  guanidine hydrochloride. Samples were heated at 60°C for 15 min and protein concentration was
472  determined by BCA assay (Pierce BCA Protein Assay Kit, Thermo Scientific). The protein mixture
473 (30~50 pg) was diluted with 10 mM EPPS pH 8.5 to 2 M GuaCl and digested with 10 ng/uL LysC
474  (Wako) at room temperature overnight. Samples were further diluted to 0.5 M GuaCl with 10 M
475  EPPS pH 8.5 and digested with an additional 10 ng/uL LysC and 20 ng/uL sequencing grade
476  Trypsin (Promega) at 37°C for 16 h. Samples were desalted using a SepPak cartridges (Waters)
477  and then vacuum-dried and resuspended in 1% formic acid before mass spectrometry analysis.

478  Proteomics peptide measurement. Samples were analyzed on an EASY-nLC 1200 (Thermo
479  Fisher Scientific) HPLC coupled to an Orbitrap Fusion Lumos mass spectrometer (Thermo Fisher
480  Scientific) with Tune version 3.3. Peptides were separated on an Aurora Series emitter column (25
481 cm x 75 um ID, 1.6 um C18) (Ionopticks, Australia) and held at 60°C during separation using an
482  in-house built column oven over 180 min, applying nonlinear acetonitrile gradients at a constant
483  flow rate of 350 nL/min. The Fusion Lumos was operated in data dependent mode. The survey
484  scan was performed at a resolution setting of 120k in orbitrap, followed by MS2 duty cycle of 1.5
485  s. The normalized collision energy for CID MS2 experiments was set to 30%.
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486  Solvent A consisted of 2% DMSO (LC-MS-grade, Life Technologies), 0.125% formic acid (98%+,
487  TCI America) in water (LC-MS-grade, OmniSolv, VWR), solvent B of 80% acetonitrile (LC-MS-
488  grade, OmniSolv, Millipore Sigma), 2% DMSO and 0.125% formic acid in water. The following
489 120 min-gradient with percentage of solvent B were applied at a constant flow rate of 350 nL/min
490  after thorough equilibration of the column to 0% B: 0% — 6% in 5 min; 6 — 25% in 160 min; 25%
491  —100% in 10 min; 100% for 5 min. For electrospray ionization, 2.6 kV were applied between
492  minutes 1 and 113 (or minutes 1 and 83 for fractionated samples) of the gradient through the
493  column. To avoid carry-over of peptides, 2,2,2-trifluoroethanol (>99% Reagent plus, Millipore
494  Sigma) was injected in a 30 min wash between each sample.

495  Proteomics data analysis. The data was analyzed using GFY software licensed from Harvard
496  (Nusinow et al., 2020). Thermo Fisher Scientific. raw files were converted to mzXML using
497 ReAdW.exe. MS2 spectra assignment was performed using the SEQUEST algorithm v.28 (rev.

498  12) by searching the data against the combined reference proteomes for Mus Musculus, Bos Taurus,
499 and all the abundant bacterial families detected in 16S rRNA sequencing (Bacteroidaceae,

500  Porphyromonadaceae, Prevotellaceae, Rikenellaceae, Muribaculaceae, Lachnospiraceae,

501  Ruminococcaceae, Erysipelotrichaceae, Oscillospiraceae, Clostridiaceae, Eubacteriaceae,

502  Lactobacillaceae and Verrucomicrobiaceae) acquired from Uniprot on Jan 2021 (SwissProt +
503 Trembl) along with common contaminants such as human keratins and trypsin. The target-decoy
504  strategy was used to construct a second database of reverse sequences that were used to estimate

505 the peptide false discovery rate (Elias and Gygi, 2007). A 20 ppm precursor ion tolerance with the
506 requirement that both N- and C- terminal peptide ends are consistent with the protease specificities
507 of LysC and Trypsin was used for SEQUEST searches, two missed cleavage was allowed. NEM

508 was set as a static modification of cysteine residues (+125.047679 Da). An MS2 spectral
509 assignment false discovery rate of 0.5% was achieved by applying the target decoy database search
510 strategy. Linear Discriminant analysis was used for filtering with the following features:

511  SEQUEST parameters XCorr and unique AXCorr, absolute peptide ion mass accuracy, peptide

512  length and charge state. Forward peptides within three standard deviations of the theoretical m/z
513  of the precursor were used as positive training set. All reverse peptides were used as negative
514  training set. Linear Discriminant scores were used to sort peptides with at least seven residues and
515 to filter with the desired cutoff. Furthermore, we performed a filtering step on the protein level by
516 the “picked” protein FDR approach (Savitski et al., 2015). Protein redundancy was removed by
517  assigning peptides to the minimal number of proteins which can explain all observed peptide, with
518 above-described filtering criteria.

519  To quantify the intensities of all the isotopic peaks of the peptides, we used raw intensity. Missed
520 cleavage peptides (more than one K or R in the peptide) and low signal to FT-noise peptides (Mo
521  S/N < 20) were removed. Peptide phylogenetic assignment was performed using Unipept (Gurdeep
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522 Singh et al., 2019), ‘Equate I and L’ and ‘Advanced missed cleavage handling” were not selected.
523  Only peptides that are specific at a genus level were used for further analysis.

524  Quantification of newly-synthesized fraction of peptide. To determine the newly synthesized
525 fraction of a bacterial peptide in D>O drinking water experiment, we first measured the cecal
526  content free amino acids deuterium labeling pattern using metabolomics. Then, for each peptide,
527  we simulated the expected isotope envelope pattern if the peptide were old, i.e., unlabeled with
528  deuterium (I,;4), versus if it were newly synthesized by taking up free amino acids from the cecal
529  content (I,,py). 114 Was calculated based on the peptide’s molecular formula and '°C, °N, 2H, 70O,
530 30, %S, *3S and S natural abundance. I,,,, was calculated based on the peptide’s sequence and
531  experimentally observed labeling of the corresponding cecal free amino acids (after natural isotope
532  correction), and the natural isotope abundance of the unlabeled atoms in the peptide’s formula.
533 The simulation of expected peptide isotope distribution and fitting was performed using a
534 MATLAB code: https://github.com/xxing9703/pepMID_simul. Exact mass isotopic peaks with
535 appreciable abundances were bundled by nominal mass into fraction M+0, M+1, ..M+n,

536  constituting the final simulated spectrum. A least square fit was used to find the scalar 8 that best
537  fit the measured peptide isotopic distribution (I;eqsureq) t0 @ linear combination of 1,;4 and I,

538 Lneasured = loia X (1 — 0) + Iney, X 6

539  The root mean square error was determined for each peptide fitting, and any fitting with a root
540 mean square error > 1% was removed. For genus-level turnover quantification, only genera with
541  more than two measurements were kept in the analysis, with the median value across peptides
542  reported.

543  Quantification of contribution of labeled nutrient to peptide. To determine the contribution of
544 a '3C- or '"N-labeled nutrient to a bacterial peptide, similar to the above approach, we first
545 measured the cecal content free amino acids '*C- or ’N-labeling using metabolomics. Then, for
546  each peptide, we simulated the expected isotope envelope pattern if the peptide were unlabeled
547  (Iyniabetea) versus if it were synthesized from free cecal amino acids (Iryee). A scalar y (analogous
548  to O above) can then be determined by fitting the measured peptide isotope distribution (Ipeqsured)
549  to a linear combination of I igpereq and Ifree. Note that y will exceed 1 when a bacterial genus
550 uses a particular nutrient in excess of that nutrient contribution’s to cecal free amino acids. Because
551  the '3C- and °N-labeling patterns are simpler than the D,O labeling patterns, in lieu of carrying
552  out this fitting, we instead determined y (with the same conceptual and mathematical meaning)
553  using simple algebraic equations.

554  Specifically, we measured y for each peptide as follows:
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_ Pmeasured — Punlabeled

555 Y=

Pfree — Punlabeled

556  where (with the exception of '*C-protein feeding data, discussed immediately below) ¢ is the
557  average number of extra neutrons in a given peptide (or simulated peptide), relative to the M+0
558 form. This was calculated based on the experimentally observed (or simulated, as above) fraction
559  of M+0, M+1, M+2, and M+3, which account for > 90% of the isotopes for each peptide (with
560 more heavily labeled forms too low abundance and noisy to contribute productively to the
561  measurements):

562 = —"310 i ;VIMi

i=0 M
563 For the 'C-protein feeding experiments, the most readily detected labeled forms involve
564  incorporation of a single midsized U-'*C-amino acid, which manifests as M+5 or M+6 peptide
565 labeling. Other isotopic forms were sufficiently noisier, as to render their inclusion unhelpful.
566  Accordingly, we calculated y based on ¢':

Mg+ M
"~ My + Ms + Mg

567 Q'

568 The above equations give nearly identical values for y as fitting (as done to determine 6).

569  For genus-level measurements of feedstock contributions, only genera with more than 3 peptides
570 measured per mousewas kept in the analysis, with the median value across peptides reported as
571 Ygenus- Only genera that were consistently detected in proteomics, and the family of that genera

572 detected (>0.5%) in 16S rRNA sequencing were analyzed. The product of ygenys and the
573  contribution of each nutrient to cecal free amino acids (Lsg_gvgenutrient) Was used to determine

574  the contribution of each nutrient to bacterial genus (fyenuscnutrient):

575 fgenus«—nutrl’ent = ygenus X LAA_avg«—nutrient

576  where the contribution of each nutrient to bacterial protein pool (Laa qvgNutrient) Was calculated
577  as the average labeling across amino acids, weighted based on their abundance in that genus’
578  protein and corrected for fraction of the nutrient interest labeled (T'):

. 0, .
579 L . _ Z fCecal_AAenutrlent Xw /OAA,bacterla/
AA_avg<nutrient — T
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580  with W% 4 pacteriq taken from literature (Purser and Buechler, 1966).

581  Statistical analysis. A two-tailed, unpaired student’s t-test was used to calculate P values, with
582  P<0.05 used to determine statistical significance.

583  Author contributions and information. X.Z., and J.D.R came up with general approach and X.Z.
584  performed most of the experiments and data analysis. C.J. worked intensively with X.Z. to develop
585 the experimental strategy. M.W. designed and enabled the proteomic measurements. X.X. wrote
586 the MATLAB code. M.G., F.C.K., and M.D.N. contributed to proteomics method development.
587 J.G.L. and M.S.D. provided microbiome expertise and performed 16S rRNA sequencing. A.R.
588  assisted with isotope tracing. W.L. performed ammonia measurement. X.Z., C.J., and J.D.R. wrote
589 the paper. All of the authors discussed the results and commented on the paper.
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Figure 1. Microbiome consumes dietary fiber and protein (legend on next page)
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Figure 1. Microbiome consumes dietary fiber and protein.

(A) Composition of the measured portal microbial metabolome. The pie charts show the relative
molar abundance of different gut microbiota-associated metabolites in mice (N = 6 mice).

(B) Experimental scheme. Mice received an oral gavage of 4:2:1 starch: protein (or free amino acids):
inulin by weight. In each dietary condition, one component was *C-labeled. After gavage of the
labeled diet, tissue and serum metabolite labeling were measured over time by LC-MS.

(C) Dietary starch feeds the host, while dietary inulin feeds the microbiome. The data shows
concentrations of labeled carbons in hexose and acetate in portal circulation (mean + s.e., N = 3
mice).

(D) Inulin is a major microbiome feedstock. Heatmap shows the percentage of labeled carbon atoms
in the indicated metabolites in cecal content. Each data point is median of N = 3 mice.

(E) Dietary amino acids feed the host while dietary algal protein feeds the microbiome. The data
shows concentrations of labeled carbons in valine and acetate in portal circulation (mean + s.e., N
= 3 mice).

rotein but not free amino acids are a major microbiome feedstock. Heatmap shows the

F) Protein but not fi d J b feedstock. Heatmap sh th
percentage of labeled carbon atoms in the indicated metabolites in cecal content. Each data point
is median of N = 3 mice.
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. Systemic Portal/Systemic Abx/Conv Dietary Dietary  Circulating Source
Metabolite 5 Source . N
Concentration(pM) (Log 2) (Log 2) Fiber Protein lactate ! Fiber
Acetate 210.0 3.1 1.9 Bl 41% 8% 7% )
Phenol 23.0 0.1 43 C] 0% 41% 0% [] Protein
Indoxyl sulfate 22.0 02 <50 1 o% 68% 0% [ Bile acids
Serotonin 12.0 -0.5 1.4 ] o% 15% 0% B Host circulation
Propionate 9.9 >5.0 <50 Il 28% 4% 6%
4-Methylvaleric acid 7.3 0.5 0.1 6% 43% 2%
Indole-3-acetic acid 72 03 0.9 0 o% 66% 0%
Phenyl sulfate 6.6 05 <50 R 0% 42% 0%
Acetylglycine 5.4 0.2 02 B 29% 22% 0%
4-Ethylphenol 5.2 0.2 0.9 1 o% 23% 0%
Indole-3-propionate 46 0.0 <50 ] o% 39% 0%
Hippuric acid 42 0.3 4.4 T o% 33% 0%
4-Cresol 42 0.6 04 ] 0% 26% 0%
Indole-3-acetylaldehyde 4.1 0.3 02 1 o% 13% 0%
Trimethylamine-N-oxide 3.8 0.3 38 Others 0% 0% 0%
Butyrate 3.6 >5.0 <50 El  54% 13% 7%
Isobutyrate 238 2.8 41 W 5% 35% 1%
2-Methylbutyrate 238 14 3.0 Tl 5% 54% 1%
Catechol 2.8 0.0 <-5.0 Others 0% 0% 0%
5-Aminovaleric acid 2.0 0.4 03 ] 0% 14% 0%
Indole-3-lactic acid 1.9 0.8 07 0 o% 27% 0%
3-Hydroxycinnamic acid 16 0.1 06 T o% 64% 0%
3-Phenylpropionate 15 24 5.0 o 22% 0%
Isovaleric acid 1.2 2.9 37 O 1% 45% 1%
Benzoic acid 12 0.3 <50 ] 0% 32% 0%
Valerate 1.1 4.9 38 Cl 6% 37% 5%
Cinnamoylglycine 11 07 1.1 0 o% 39% 0%
Inosine 1.1 33 0.4 B 2% 1% 0%
Phenylacetic acid 0.79 0.6 2.8 T o% 50% 0%
4-Hydroxyphenylpropionate ~ 0.76 0.2 20 1 o% 72% 0%
Propionylglycine 0.75 12 0.1 21% 24% 0%
Phenylpropionylglycine 0.75 0.6 03 0 2% 22% 0%
Heptanoic acid 0.74 06 03 Ll o% 11% 0%
Indole 0.53 0.2 2.6 1 o% 69% 0%
Butyrylglycine 0.39 1.1 14 B 3% 28% 0%
4-Hydroxylphenylacetate 0.37 0.7 1.0 ] o% 32% 0%
N-Acetyl-Tryptophan 0.37 0.1 0.5 T o% 13% 0%
Tauroursodeoxycholic acid 0.33 2.9 22 1 o% 0% 0%
4-Hydroxybenzoic acid 0.25 0.7 1.0 T o% 9% 0%
Cinnamic acid 0.20 25 26 T o% 61% 0%
Taurodeoxycholic acid 0.11 438 3.1 T o% 0% 0%
2-Hydroxyhippuric acid 0.062 15 07 1 o% 22% 0%
Imidazole propionate 0.051 0.7 07 1 o% 53% 0%
Deoxycholic acid 0.048 3.1 <50 T o% 0% 0%
Indole-3-ethanol 0.032 1.6 0.3 T o% 81% 0%
Ursodeoxycholic acid 0.026 2.5 <50 T o% 0% 0%
4-Cresol sulfate 0.026 0.2 28 ] o% 26% 0%
Phenylacetylglycine 0.017 0.2 03 B 0% 32% 0%
Equol 0.013 3.7 <50 Others 0% 0% 0%
Hyodeoxycholic acid 0.009 3.0 3.7 1 0% 0% 0%
Lithocholic acid 0.008 1.8 <5.0 L1 o% 0% 0%
Taruolithocholic acid <0.001 >5.0 <50 1 o% 0% 0%
Isoallolithocholic acid <0.001 >5.0 <50 1 o% 0% 0%
Glycoursodeoxycholic acid ~ <0.001 >5.0 45 1 0% 0% 0%
Glycodeoxycholic acid <0.001 >5.0 1.3 T o% 0% 0%

899 Table 1. Absolute concentrations and sources of microbiota-associated metabolites.

900  Data are from ad lib fed state (ZTO); for ad lib fasted state (ZT12), see Supplementary Table S1. Absolute
901  concentration is mean, N = 5 mice. Portal/systemic = fold-change in concentration between the portal vein
902  and tail vein (median, N = 5 mice). Abx/Conv refers to fold-change in portal blood concentration between
903  mice treated with antibiotics cocktail versus not (median, N = 5 mice/group). Source bar indicates the
904 relative contribution to the indicated metabolite from dietary inulin, algal protein and circulating lactate
905  (based on isotope tracing). Percentages indicate quantitative relative contributions from those nutrients
906  (median, N =4). Numbers typically add up to less than 100%, as other sources (e.g. mucins) contribute.
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Figure 2. Circulating lactate and 3-hydroxybutyrate feed the gut microbiome.

(A) Schematic of intravenous infusion of isotope-labeled nutrients to identify circulating metabolites
that feed gut microbiome.

(B) Circulating lactate rapidly enters the feces. Mice were infused with '3C-lactate and serum and fresh
feces enrichment were compared. Meanzts.e. N = 3.

(C) Circulating citrate does not enter the feces. As in (B), for *C-citrate.

(D) Passage of circulating '*C-labeled nutrients into the feces. Mice were infused with labeled nutrients
for 2.5 h, and labeling fraction in feces was normalized to labeling fraction in serum. Meanzts.e.
N = 3 except for lactate (N = 8) and 3-hydroxybutyrate (N = 7).

(E) Passage of circulating 'N-labeled nutrients into the feces. As in (D), for ’N-lableing. Meanzs.e.
N = 3 except for urea (N = 4) and ammonia (N = 5).
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922  Figure 3. Quantitative analysis of dietary and circulating nutrient contributions to gut microbiome.

923  (A) Experimental design. Mice were fed chow containing '*C-protein, *C-inulin, '3C-fatty acids, or ’N-
924  protein for 24 h. Alternatively, mice were intravenously infused with '3C-lactate, '*C-3-hydroxybutyrate or
925  N-urea for 24 h. The labeling of cecal content metabolites was analyzed by LC-MS.

926  (B) Contribution of dietary and circulating nutrients to carbohydrate fermentation pathways in gut
927  microbiome. Mean + s.e. N =4.

928 (C) Contribution of dietary and circulating nutrients to cecal amino acid carbon. The names of essential
929  amino acids (EAA) are written in blue and non-essential amino acids (NEAA) in black. Mean £ s.e. N = 4.

930 (D) Contribution of dietary and circulating nutrients to cecal amino acid nitrogen. As in (C), for nitrogen.

931  (E) Positive correlation, across amino acids in the cecal contents, of carbon contribution from dietary inulin
932  and nitrogen contribution from circulating urea. Mean £ s.e. N = 4.
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933

934  Figure 4. Growth rate of different gut bacterial genera quantified by isotope tracing.

935 (A) Experimental approach for isotope tracing into specific gut bacteria. Only peptides that are specific to
936  a particular bacterial genus were examined.

937  (B) Growth rate quantification using D>O. Mice received D-O by i.p. injection followed by D-O drinking
938  water and cecal content labeling was measured over time by proteomics and metabolomics.

939  (C) Calculation of newly synthesized peptide fraction (6). The experimentally observed peptide mass
940  isotope distribution was fit to a linear combination of unlabeled peptide (“old,” heavy forms from natural
941  isotope abundance) and newly synthesized peptide (“new,” heavy forms from isotope labeling pattern of
942  free cecal amino acids and from natural isotope abundance).

943 (D) Different cellular compartments from the same bacterial genus show similar labeling rate.

944  (E) Genus-specific growth rates were determined by a single exponential fitting, as a function of time, of
945  (mean across both different peptides measured from that genus and replicate mice). Meants.e. N=5 mice
946  for each time point.

947  (F) Bacterial replication half time of different gut bacteria. Data are exponential fits +s.e.

948  (G) The gut bacteria synthesize protein in sync with the physiological feeding patterns of the host. The
949  figure shows the average newly synthesized peptide fraction (8) for different gut bacterial genera after
950 DO labeling during daytime vs nighttime. Each line connects the daytime and nighttime measurements
951  for one genus. Mean, N = 5 mice for daytime and for nighttime.

952
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955  Figure 5. Preferred carbon sources differ across gut bacteria (legend on next page).
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956  Figure 5. Preferred carbon sources differ across gut bacteria

957  (A) Calculation of peptide relative *C-enrichment (y) and carbon contribution from the tracer to a bacterial
958  genus (feenus cnurrient). First, the experimentally observed peptide mass isotope distribution was fit to a linear
959  combination of unlabeled peptide (heavy forms from natural isotope abundance) and a peptide made from
960  free cecal amino acids (heavy forms from isotope labeling pattern of free cecal amino acids and from natural
961 isotope abundance), yielding y . Then, feemusenurien Was determined by correcting for the fractional
962  contribution of that tracer to the cecal free amino acid pools.

963  (B) Carbon contribution of dietary inulin across bacterial genera. Meants.e. N=4 mice.

964  (C) Carbon contribution of dietary algal protein across bacterial genera. Meants.e. N=6 mice.

965 (D) Carbon contribution of circulating lactate across bacterial genera. Meants.e. N=7 mice.

966  (E) Experimental scheme of high-inulin diet feeding followed by 16S ribosomal RNA sequencing.

967  (F) Genus-level microbiota composition changes after high-inulin diet. The genera increased after high-
968  inulin diet prefer inulin in (B). Meants.e. N=3 mice. *P<0.05 and **P<0.01 by two-sided Student’s t-test.

969  (G) Correlation between genera abundance changes and carbon-source preference.
970 (H-1J) Asin (E - G), for algal protein-supplemented diet.
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Figure 6. Firmicutes favor dietary protein while Bacteroidetes prefer secreted host protein

(A) Nitrogen contribution of dietary algal protein across bacterial genera. Mean+s.e. N=6 mice.

(B) Nitrogen contribution of circulating urea across bacterial genera. Mean#s.e. N=6 mice.

(C) Experimental schematic of long-term '"N-lysine and "N-arginine infusion to probe the contribution of

secreted host proteins to different bacterial genera.

(D) Nitrogen contribution of secreted host proteins across bacterial genera. Mean+s.e. N=5 mice.

(E) Negatlve correlation between fgenus«secreted proteins N and fgenusedietary proteins N -

(F) Summary of carbon and nitrogen inputs to different gut bacteria. Firmicutes prefer dietary carbon
sources (fiber and protein) and nitrogen from host circulating urea. Bacteroidetes heavily use dietary fiber,
while using on host secreted proteins for nitrogen. Verrucomicrobia prefers host secreted nutrients, both

protein and circulating small molecules (lactate, urea).
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1000  Figure S1. Microbiome consumes dietary fiber and protein.
1001 (A) Composition of the measured cecal microbial metabolome. The pie charts show the molar
1002 abundance of different gut microbiota-associated metabolites (N = 6 mice).
1003 (B) Heatmap showing the percentage of labeled carbon atoms in the indicated metabolites in portal
1004 circulation, following gavage of 4:2:1 starch: protein (or free amino acids): inulin, with the
1005 indicated nutrient labeled. Each data point is median of N = 3 mice.
1006 (C) Metabolic fate of inulin and starch. Stacked bars show the fraction of gavaged inulin and starch
1007 that is converted into each of the indicated metabolic products, with the undigested fraction being
1008 excreted in the feces (mean + s.e., N = 3 mice).
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1009 (D) Undigested carbohydrate in the feces. Graph shows the fraction of labeled hexose after cecal
1010 content hydrolysis, 12 h following gavage as above (mean + s.e., N = 3 mice).

1011 (E) Heatmap showing the percentage of labeled carbon atoms in the indicated amino acids in portal
1012 circulation, following gavage of 4:2:1 starch: protein (or free amino acids): inulin, with the
1013 indicated nutrient labeled. Each data point is median of N = 3 mice.

1014 (F) Asin (E), for microbiota-associated metabolites.
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1036  Figure S2. Circulating ammonia contributes to microbiota metabolism via circulating urea.

1037  (A) Normalized labeling of serum urea, ammonia and cecal amino acids after '"N-urea infusion (mean+
1038  s.e., N =4 mice). Feces labeling fraction is normalized to serum infused tracer (urea) labeling fraction.

1039 (B) As in (A), for "N-ammonia infusion (meanz s.e., N = 5 mice),

1040 (O Model of direct contribution calculation from circulating urea and ammonia to fecal amino acids.
1041 (D) Direct contributions of circulating urea and ammonia to cecal amino acids (mean+ s.e., N =4
1042  mice).
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1048

1049  Figure S3. Quantitative analysis of dietary and circulating nutrient contributions to gut
1050  microbiome metabolism.

1051 (A) Heat maps showing the contribution of dietary or circulating nutrients to cecal metabolites. For
1052 experimental design, see Figure 3. N = 4 mice.
1053 (B) Amino acids synthesized in the gut microbiome, stay in the microbiome, as urea contributes to

1054 microbiome amino acids but not host circulating amino acids. Mean + s.e. N = 4 mice.
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Figure S4. Liver and kidney use circulating glycine to synthesize acyl-glycines.

(A) Experimental design. Mice were intravenously infused with [U-*C]glycine for 2.5 h and tissue
and serum glycine and acyl-glycine labeling were measured.

(B) Circulating acyl-glycines are made from circulating glycine. Mean * s.e. N = 4 mice.

(C) Tissue phenylpropionylglycine labeling (normalized to circulating glycine labeling). Mean = s.e.
N =4 mice.

(D) Tissue butyrylglycine labeling (normalized to circulating glycine labeling). Mean = s.e. N =4
mice.
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Figure S5. Single exponential fit of newly synthesized fraction of microbial peptides over time.

(A) Different cellular compartments from the same bacterial genus show similar labeling rate.

(B) Single exponential fit was applied to determine genus-level microbial turnover. Data are mean = s.e.

N = 5 mice.


https://doi.org/10.1101/2022.01.25.477736
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.01.25.477736; this version posted January 26, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

C
A 0.4 B Firmicutes Firmicutes
= 0.15- cor = 0.52 0.15  cor =-0.56
£ p = 0.05 p =0.03
g 0.3 o » W =
3 $ 8
N 3 o.10- o % e 2 o.10
8 0.2 T o f
2 %) L4 7]
? 3 P 3
5 - 5
g 0.1+ O 0057 . > 0.05- et
‘hg, : i & ® °
0.0 ‘ . | ¢
00 01 02 03 04 0.00 ' T ' 0.00 . [ [ ‘
000 005 010  0.15 o8 04 02 03 04
fgenus «dietary proteins C f N
genus—urea fgenus —dietary proteins N
D E
5 =
5- corr=-0.44 COIFO 002'51
p =0.04 ol P
4+ ® > =
z 3 .
:‘.P 3* . 3 S 3_ L ] :
~ ® ® oo -~ ®
E °® e » ¢
D2 o, g’ 2+ L4 ®
Q): e ,* @ N o) Q/\: ® o8
14 ° 14 9
0 \ I [ | i 0 T T
0.00 0.05 0.10 0.15 0.20 0.25 0.0 0.1 0.2 0.3 0.4

fgenus —secreted proteins N

f genus <dietary proteins N

1091  Figure S6. Correlation analysis of nutrient preferences across different gut bacterial genera.
1092 (A) Positive correlation between fyenusegietary proteins ¢ a4 fyenuscdietary proteins N-
1093 (B) Positive correlation between fyenyseinutin ¢ aMd fgenuscurea v in Firmicutes.
1094  (C) Negative correlation between fyenyscurea N aNd fgenusc—dietary proteins n in Firmicutes.
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1102
1103  Figure S7. Host secreted proteins are synthesized from host circulating amino acids.

1104  (A) Experimental design. Mice were infused with '*C-lysine and *C-arginine and mouse colon protein
1105  was analyzed by proteomics.

1106  (B) MUC2 labeling (multiple different MUC2 peptides). N = 3 mice.

1107  (C) MUCI13 labeling (multiple different MUC13 peptides). N = 3 mice.

1108 (D) Single exponential fit of labeling fraction of MUC2 and MUC13 over time. Meants.e. N = 3 mice.
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