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Abstract 17 

We use internal models of the external world to guide behavior, but little is known about 18 

how these cognitive maps are created. The orbitofrontal cortex (OFC) is typically thought 19 

to access these maps to support model-based decision-making, but it has recently been 20 

proposed that its critical contribution may be instead to integrate information into existing 21 

and new models. We tested between these alternatives using an outcome-specific 22 

devaluation task and a high-potency chemogenetic approach. We found that selectively 23 

inactivating OFC principal neurons when rats learned distinct cue-outcome associations, 24 

but prior to outcome devaluation, disrupted subsequent model-based inference, 25 

confirming that the OFC is critical for creating new cognitive maps. However, OFC 26 

inactivation surprisingly led to generalized devaluation. Using a novel reinforcement 27 

learning framework, we demonstrate that this effect is best explained not by a switch to a 28 

model-free system, as would be traditionally assumed, but rather by a circumscribed 29 

deficit in defining credit assignment precision during model construction. We conclude 30 

that the critical contribution of the OFC to learning is regulating the specificity of 31 

associations that comprise cognitive maps. 32 

 33 

One Sentence Summary: OFC inactivation impairs learning of new specific cue-34 

outcome associations without disrupting model-based learning in general. 35 

 36 

Keywords: inference, chemogenetics, reinforcement learning, learning theory, model-37 

based learning, JHU37160, cognitive map, devaluation, conditioned taste aversion. 38 
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Introduction 39 

Animals behave in ways that suggest that the brain can build, store, and use internal 40 

representations that account for the predictive relationships between elements in the 41 

external world. Also called associative models or cognitive maps1, these mental 42 

constructs are thought to be especially important for adaptive behavior under new or 43 

changed conditions2,3. The inability to use such models properly is thought to be a key 44 

feature of mental illnesses such as schizophrenia4, substance use disorder5,6, and 45 

obsessive compulsive disorder7. However, despite their importance, we are only 46 

beginning to understand the informational structure of cognitive maps and how the brain 47 

creates, stores, and uses them. 48 

In this regard, the orbitofrontal cortex (OFC) has been extensively implicated in model-49 

based behaviors 8311. However, its exact contributions to defining or using the cognitive 50 

maps that support these behaviors are still controversial. The currently prevailing view is 51 

that the OFC accesses information stored elsewhere to represent the current task space 52 

at the time a decision is made 12315. While broadly consistent with the literature, this view 53 

is most strongly supported by devaluation experiments in which pairing a given outcome 54 

with illness (or satiety) leads to reduced conditioned responding to a cue predicting that 55 

outcome. This effect has been shown repeatedly and across species to require the OFC 56 

at the time of the probe test 16319, a result generally interpreted as showing a role for OFC 57 

in using the associative map formed earlier in training. Compromising the OFC disrupts 58 

this usage, resulting in supposedly <model-free= or habit-like behavior. By this account, 59 

the OFC offers a form of specialized working memory required for mental simulation. 60 

However, recent studies suggest that the OFC might instead serve as the cognitive 61 

<cartographer=, playing a critical role not merely in using maps drawn by other regions but 62 

rather in creating and modifying the maps on which other regions rely 20. According to this 63 

view, OFC manipulations in devaluation probes affect behavior not because OFC is 64 

required for mental simulation but rather because the test requires changes to, or 65 

recombinations of, existing cognitive maps. 66 

A logical, but untested, corollary of this alternative proposal is that the OFC should also 67 

be necessary during initial conditioning in the reinforcement devaluation task, when a 68 

major part of the cognitive map used in the later probe is created. On the other hand, if 69 

the classic view is correct 3 that, at the time of decision-making, the OFC just uses maps 70 

made and maintained elsewhere 3 then this region should not be necessary during the 71 

conditioning phase. As one cannot read what is not yet written, this prediction allows for 72 

an acid test to differentiate whether the OFC is a reader or a cartographer of cognitive 73 

maps. Here, we performed this test using a within-subject outcome-specific devaluation 74 

task and high-potency chemogenetics to inactivate OFC transiently when maps were first 75 

being formed.  76 
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Results 77 

Food restricted rats, transfected with either hM4d (inhibitory DREADD receptor, n=15) or 78 

only mCherry (control; n=13) in the OFC (Figure S1), underwent conditioning in which 79 

two different auditory cues (A and B) predicted the delivery of either banana- or bacon-80 

flavored pellets (Figure 1A). Before each session, rats were injected with JHU37160 81 

dihydrochloride (JH60; i.p. 0.2 mg/kg), a high-potency DREADD agonist 21, to inactivate 82 

OFC principal neurons in hM4d-transfected rats both transiently and selectively 22. The 83 

use of this new generation compound avoids several confounds associated with other 84 

DREADD agonists 21,23. 85 

Despite inactivation, rats in both groups progressively increased responding to the food 86 

cup during presentation of either cue (Figure 1D). Initial acquisition rates were similar, 87 

although rats in the hM4d group responded slightly less during the last two sessions of 88 

conditioning, in agreement with recent work showing that transient OFC inactivation can 89 

reduce asymptotic conditioned responding in some settings 24. 90 

After conditioning, rats were subjected to conditioned taste aversion (CTA) training, in 91 

which one of the rewards (the one associated with B), was paired with LiCl injections, 92 

inducing nausea (Figure 1B). Rats initially preferred both rewards equally, but quickly and 93 

selectively reduced consumption of the pellet type paired with LiCl (Figure 1E).  94 

Finally, after CTA training, rats were given a probe test, in which the cues were presented 95 

as during conditioning but without reward (Figure 1C). As expected, control rats 96 

responded more to cue A (paired with the non-devalued pellet) than to cue B (paired with 97 

the devalued pellet), indicating they had learned the specific cue-reward and reward-98 

illness associations and were able to integrate them in the probe test to infer that B might 99 

lead to devalued reward (Figure 1F). By contrast, rats in the hM4d group responded 100 

equally to both cues (Figure 1F). This result is inconsistent with the hypothesis that OFC’s 101 

main function is to access mental maps stored elsewhere to support model-based 102 

behaviors at the time a decision is made, and instead supports the alternative hypothesis 103 

that OFC plays a critical role in drawing those maps during initial learning 20. 104 

That said, while this result supports this alternative hypothesis, rats in the hM4d group 105 

did not simply lack the devaluation effect, as would be expected if there was no model, 106 

but rather they appeared to generalize the devaluation effect across cues (Figure 1F). 107 

This was evident even if responses during the probe were normalized to the end of 108 

conditioning, indicating that the effect was not related to modest reduction in asymptotic 109 

conditioned responding (Figure 2A). That the two effects were orthogonal to each other 110 

is further supported by the lack of correlation between responding at the end of 111 

conditioning and the effect of devaluation (Figure 2B). Nor was the apparent 112 

generalization due to differences in CTA retention as preference tests revealed that CTA 113 

effects were similar in the two groups after the probe test (Figure 2C).  114 
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 115 

Figure 1. Chemogenetic inactivation of OFC during conditioning abolishes subsequent 116 

sensory-specific cue devaluation. (A-C): Schematic of the behavioral procedures. (A): Rats 117 

were conditioned to two cues, A and B, which lead to different rewards. The OFC was inactivated 118 

in the hM4d group. (B): Later, one of the rewards was paired with LiCl injections. (C): Finally, rats 119 

were re-exposed to the conditioned cues, testing if a model-based association had been 120 

established between them and the rewards. (D): Food cup responding during conditioning. There 121 

was no isolated or interaction effect of cue identity (P>0.05), nor an effect of group (P>0.05), and 122 

rats of both groups increased responding as sessions progressed (P<0.0001****). However, there 123 

was a significant interaction between group and session progression (P<0.0001****), visible in the 124 

last two sessions. (E): Pellet consumption during CTA. Rats from both groups consumed nearly 125 

all pellets in the first CTA session, and consumed less of the devalued pellet type as sessions 126 

progressed (P<0.0001****). (F): Food cup responding during probe. There was a significant effect 127 

of group (P=0.047*), and the interaction of the group with the cues (P=0.009**), as control rats 128 

responded more to A than to B, while hM4d rats responded equally to both cues. Asterisks in 129 

graphs indicate post-hoc multiple comparison test results. See Table S1 for detailed statistics. 130 

Data are represented as mean ± SEM. *P<0.05; ***P<0.001; ****P<0.0001.  131 
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 132 

 133 

Figure 2. Generalization of devaluation due to OFC inactivation is not dependent on effects 134 

on conditioned responding or CTA learning. (A): Food port responding in the final probe 135 

session but normalized to the last two sessions of conditioning. There was a significant interaction 136 

effect of the group with the cues (P = 0.002**), as well as only a significant difference between A 137 

and B in the control group in the post-hoc test. (B): Differential responding to valued and devalued 138 

cues (responding to A 3 mean responding to B) was not correlated to the conditioned responding 139 

at the end of initial learning (average of % time in port for both cues in the last two sessions of 140 

conditioning). (C): Consumption of pellets during preference tests for CTRL (blue and light blue) 141 

and hM4d (red and pink) rats. Rats from both groups consumed all pellets similarly during the first 142 

preference test (2-way ANOVA; ND x D: F1,26 = 0.12, P = 0.7318; CTRL vs hM4d: F1,26 = 1.235, P 143 

= 0.2766; interaction: F1,26 = 0.0171, P = 0.8969) and both groups equally consumed significantly 144 

less of the devalued pellet type (the one previously associated with cue B and paired with LiCl 145 

during CTA) in the second preference test (2-way ANOVA; ND x D: F1,26 = 1364, P < 0.0001****; 146 

CTRL vs hM4d: F1,26 = 0.3519, P = 0.5582; interaction: F1,26 = 0.0005, P = 0.9825). Asterisks in 147 

the graphs indicate results of post-hoc multiple comparison tests. Data are represented as mean 148 

± SEM. ****P<0.0001.  149 
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Generalization of devaluation also could not be accounted for by effects of OFC 150 

inactivation on perception or memory. To show this, we tested a subset of these rats in 151 

an object recognition task 25. OFC was inactivated prior to the sample phase of the task, 152 

while the rats first explored two identical objects (Figure 3A). Over the next 2 days, the 153 

rats were brought back to the same arena for two recognition tests in which novel objects 154 

were substituted for the objects introduced in the sample phase (Figure 3B-C). If OFC 155 

inactivation in these rats induced perceptual confusion, accelerated forgetting, or context-156 

dependent learning, then inactivation in the sample phase of this task should have 157 

disrupted object discrimination in the first but not the second recognition test, yet we found 158 

no such effect (Figure 3D-I).  159 

The generalization of devaluation in the OFC inactivated group was unexpected and 160 

intriguing, since model-based learning is traditionally treated as an all-or-none 161 

phenomenon. A complete failure of model-based control would leave only devaluation-162 

insensitive, model-free behavior intact, resulting in high responding to both cues. It has 163 

been proposed that associative learning may operate as a dynamic mixture of model-164 

based and model-free learning 3, and that the OFC may mediate this process 26. 165 

Therefore, we considered whether our results could be explained by a change in the 166 

balance between model-based to model-free learning under OFC inactivation. This 167 

explanation has some intrinsic disadvantages, as it requires at least two parallel learning 168 

systems and a third process to integrate their outputs, i.e., it is complex, with many free 169 

parameters. We found that it was possible to reproduce our results with this approach 170 

provided we also added a forgetting parameter (Figures S3). However, the resultant fits 171 

were hard to reconcile with the general understanding of OFC function, as they did not 172 

produce a decrease in model-based learning with OFC inactivation, but rather an increase 173 

in model-free learning rates (Figure S3C). This suggests a form of structural over-fitting, 174 

consistent with the observation that the fitted parameters could not be reliably recovered 175 

from simulated data (Figure S3D). Thus, a complete or partial shift from model-based to 176 

model-free control seemed not to offer a good explanation for the experimental results. 177 

A more promising way to account for the results is to consider the possibility that the 178 

subjects are still building, and then using, a cognitive map, but that the map is different 3 179 

perhaps less precise 3 without the contribution of OFC. This idea would be consistent 180 

with recent arguments against pure model-free processing 27,28, evidence that the OFC is 181 

particularly important for sculpting representations of various aspects of tasks13,29,30, and 182 

findings in OFC-lesioned macaques of impaired credit assignment 31. Translating this idea 183 

to the current task, we hypothesized that the OFC might be particularly important for 184 

segregating and separately updating each unique cue-outcome pair, which were of 185 

uncertain importance in initial conditioning.  186 
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 187 

Figure 3. OFC inactivation does not affect object recognition. (A): Sample phase, where rats 188 

explored two identical objects and received JH60 injections. (B): First recognition test, where one 189 

familiar object was replaced by a novel one. (C):Second recognition test, where the previous 190 

familiar object was substituted by yet another novel object. (D and G): Rats in both groups 191 

explored the two objects for the same amount of time during sample (2-way ANOVA; O1 x O2: 192 

F1,17 = 1.833, P = 0.193; CTRL vs hM4d: F1,17 = 0.14, P = 0.712; interaction: F1,26 = 0.059, P = 193 

0.809)(D) which was evident in the discrimination index (unpaired t-test, P = 0.634)(G), 194 

demonstrating that OFC inactivation does not affect exploratory behavior in this task. (E and H): 195 

Rats from both groups showed equally robust object recognition learning, evident in the increased 196 

exploration of the novel object (Familiar x Novel: F1,17 = 13.53, P = 0.002**; CTRL vs hM4d: F1,17 197 

= 0.045, P = 0.835; interaction: F1,26 = 0.025, P = 0.876) (E) and an increase in the discrimination 198 

index, which was identical between groups (P = 0.882) (H), indicating that OFC inactivation in 199 

sample did not affect recognition learning or memory retention, nor did it induce some form of 200 

context-dependent learning. (F and I): Again, rats in both the control and hM4d groups showed 201 

a similar level of preference for the novel object (Familiar x Novel: F1,17 = 18.13, P = 0.0005***; 202 

CTRL vs hM4d: F1,17 = 3.085, P = 0.097; interaction: F1,26 = 0.053, P = 0.82) (F), as confirmed in 203 

the discrimination index (P = 0.775)(I), confirming that learning under the effects of JH60 injections 204 

was similar to when no drug was injected. Asterisks in E and F indicate results of post-hoc multiple 205 

comparison tests. Data are represented as mean ± SEM. *P<0.05, **P<0.01.  206 
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We tested this proposal by fitting our data with a novel model-based reinforcement 207 

learning algorithm trained on the same sequence of trials as in the task 3,32 (Figure 4). 208 

The effect of OFC inactivation on learning during initial conditioning was captured by 209 

introducing an <imprecision= parameter (�) that defined how credit assignment spread 3 210 

i.e., whether updates were selective for each cue-outcome pair during the conditioning 211 

phase of the task (Figure 4A). Thus, receiving a banana-flavored pellet after cue A 212 

updates the association between the alternative cue B and the banana-flavored pellet by 213 

an amount proportional to �. Only if � = 0, would the update be confined exclusively to 214 

cue A. A model with a high � value would therefore be able to learn that auditory cues 215 

predict sucrose pellets, but would have trouble differentiating which pellet flavor (e.g., 216 

banana) is associated with which cue (A or B). Substantial confusion during conditioning 217 

(high �) would cause the loss of value imposed by the following CTA training (Figure 4B) 218 

to be at least partially generalized to both cues A and B, due to the imprecision of specific 219 

state predictions and subsequent inference (Figure 4C), noting that the rats remained well 220 

aware of the separate values of the pellet types after the probe test (Figure 2C, right). 221 

We found that this <imprecision= model fit our behavioral results well (Figure 5), 222 

reproducing the normal behavior in the control group and all effects of OFC inactivation, 223 

including both the apparent generalization of devaluation in the probe test (Figure 5B-C) 224 

as well as the lower asymptotic performance in conditioning (Figure 5E-F). Critical 225 

parameters in the model, particularly �, were recoverable from simulated data (Figure 226 

S2A) 33,34. Model fits to data from control and hM4d groups differed in their imprecision 227 

term �, which was significantly higher in hM4d models (Figure 5B and Table S2). 228 

Furthermore, � was highly correlated with the difference in responding to the valued (A) 229 

versus devalued (B) cues during probe (Figure 5C), even though this parameter only 230 

affected learning during conditioning (Figure 4A). Notably, this effect was not due to an 231 

effect of � on the strength of conditioning, as these were uncorrelated (Figure 5D).  232 

Our model also recapitulated other aspects of the results, specifically by having a value 233 

adjustment parameter (ÿpell2cue) that captured the asymptotic performance during 234 

conditioning. The value of this parameter differed between fits for control and hM4d 235 

subjects (Figure 5E), accounting for the reduced responding of hM4d rats at the end of 236 

conditioning (Figure 1D, 2B and 5F). Importantly, ÿpell2cue did not correlate with the 237 

difference in cue responses during the probe (Figure 5G). These results confirm that the 238 

effects of OFC inactivation during model creation on subsequent model-based decision 239 

making are not related to the concurrent effects on asymptotic value estimation. The latter 240 

may be related to the known role of OFC in representing and updating outcome value 241 

14,35.  242 
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 243 

Figure 4. A model-based reinforcement learning algorithm that simulates imprecise state 244 

identity credit assignment. (A): During initial conditioning, the value and state transition 245 

matrices are updated according to the task contingencies (A-R1, B-R2; solid black arrows), except 246 

for a parallel updating of the opposite association (A-R2, B-R1), which occurs proportionately to 247 

the imprecision term � (dashed red arrows). (B): During the CTA devaluation procedure, updating 248 

obeys task contingencies, with no value or state prediction updates to the R1 state, but with a 249 

learning that R2 predicts a devalued illness state. (C) During the probe, new learning follows the 250 

task states, and the value of cue states is adjusted according to the inferred state predictions 251 

(grey arrows), including generalized inferences driven by the imprecision term during initial 252 

acquisition (dashed grey arrows).  253 
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 254 

Figure 5. OFC inactivation effects on reinforcer devaluation are explained by a deficit in 255 

differentiating specific cue-outcome associations. (A): Model fit results for our model-based 256 

reinforcement learning model with potential outcome identity confusion. (B): The imprecision term 257 � was significantly higher in models fitted to hM4d behavioral data in relation to controls 258 

(P=0.027*). (C): � was negatively correlated with the differential responding to cues in the probe 259 

session. (D): � was not correlated with the average responding to cues at the end of conditioning. 260 

(E): The value adjustment term ÿpell2cue was significantly lower in hM4d models (P = 0.04*). 261 

(F): ÿpell2cue was positively correlated with average cue responding at the end of conditioning. 262 

(G): ÿpell2cue was uncorrelated with differential responding to cues in the probe session. See Table 263 

S2 and Figure S2 for detailed parameter comparisons. Data are represented as mean ± SEM. 264 

*P<0.05.  265 
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Discussion 266 

Our study demonstrates first that OFC is necessary for the construction of a normal 267 

cognitive map and second that the OFC appears to play a circumscribed role in this 268 

construction process. In our task, the map-making apparently did not cease when OFC 269 

was inactivated, but the created map was degraded and less specific about which cues 270 

led to which outcomes. This was modeled as a lack of precision in credit assignment, but 271 

a failure to create appropriately <granular= 36,37 internal representations of these external 272 

events would produce the same result and seems more likely than a direct control of OFC 273 

over error signal assignment.  274 

As an intuitive example of the utility of setting this granularity properly, an older child may 275 

learn that McDonald’s™ serves Happy Meals™ while Burger King™ serves King Jr™ 276 

meals, each with different toys, while a younger sibling may only recall that fast food 277 

restaurants serve kids’ meals. Both cognitive maps lead to food, but only one will help 278 

you collect all the Disney™ dragons! Whether to keep or discard the information related 279 

to which restaurant serves which kids’ meal with which toy is a question of how to 280 

segregate the states during learning36,37; it is this process that we propose OFC controls 281 

or contributes to during cognitive mapping 20. This example also illustrates the fact that 282 

the generalization afforded by discarding information is not automatically incorrect 3 it 283 

should respond to the exigencies of the circumstance. 284 

We would speculate that OFC’s particular contribution to this process is in determining 285 

whether to maintain separation between states that have uncertain or perhaps only 286 

potential biological significance, when other parts of the circuit might collapse them. Maps 287 

formed with too little separation due to hypofunction in OFC would tend to underrepresent 288 

potential or hidden associations and meaning and be unable to link to and infer 289 

relationships to other maps, as we have seen here. This is also evident in substance use 290 

disorder, neurodegenerative diseases, and advanced aging, in which OFC function is 291 

compromised5,6,38341, and in children and adolescents, which have immature frontal 292 

cortices42,43. Conversely, maps formed with too much separation due to an over-293 

exhuberant OFC would tend to instill hidden meaning where it does not exist; notably 294 

such an effect is arguably evident in obsessive compulsive disorder and paranoid 295 

psychosis, which involve hyperfunction in the OFC and related areas7,40,44349.  296 

The proposal that the OFC plays a critical role in defining the states that form the basis 297 

of cognitive maps is congruent with much existing data. This includes classic findings 298 

based on manipulations in the probe phase of reinforcer devaluation experiments16319,50, 299 

since the probe phase confounds the integration of established maps with their first time 300 

use. That is, the function proposed here would be invoked in the probe test in devaluation 301 

by the need to recognize the common reward state in the maps created during the 302 

conditioning and devaluation phases. Similar conclusions apply to other cardinal studies 303 

that have implicated the OFC in model-based behaviors, since these also normally 304 

involve integrating or changing task maps 51353. This more limited role for OFC also 305 

explains better why this area is necessary in many other behavioral settings where normal 306 

behavior depends upon recognizing states that are somewhat ambiguously defined with 307 

regard to biological value, including for instance the differential outcomes effect54 , latent 308 

inhibition 22, and reversal learning55357, and why OFC seems to grow less important in 309 

settings like reversal learning or economic choice once maps are well-established17,20,55,58 310 
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Finally, perhaps the most intriguing implication of our finding that OFC inactivation fails to 311 

reveal model-free learning is the possibility that most learning is, to some degree, model-312 

based, but that mental representations or cognitive maps can be formed with different 313 

degrees of granularity or specificity, as determined by the circuits that are engaged in the 314 

learning process, including the OFC and other prefrontal areas. In the absence of 315 

experimental interventions, illness, or lesions, it could be that the main determinant of the 316 

resolution of a cognitive map would be task requirements and learning context. This would 317 

mean that perhaps there is a unified learning process that can be more or less complex 318 

depending on the contribution of specific circuits or environmental demands. 319 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 26, 2022. ; https://doi.org/10.1101/2022.01.25.477716doi: bioRxiv preprint 

https://doi.org/10.1101/2022.01.25.477716
http://creativecommons.org/licenses/by-nc-nd/4.0/


13 

 

Materials and Methods 320 

Experimental Model and Subject Details  321 

Experiments were performed on 32 male Long-Evans rats (n=16 for each group, >3 322 

months of age at the start of the experiment, Charles River Laboratories) housed on a 12 323 

hr light/dark cycle at 25 °C. Rats were food restricted to ~85% of their original weight for 324 

the duration of the experiments and were tested at the NIDA-IRP in accordance with NIH 325 

guidelines determined by the Animal Care and Use Committee. All rats had ad libitum 326 

access to water during the experiment and were fed 16-20 g of food per day, including 327 

rat chow and pellets consumed during the behavioral task. Behavior was performed 328 

during the light phase of the light/dark schedule. The number of rats used was determined 329 

based on previous publications from the lab using Pavlovian conditioning tasks. Prior to 330 

surgery, rats were handled every other day for 5-10 minutes for one week. Handling 331 

procedures included the performance of mock i.p. injections (rats were scruffed and the 332 

experimenter gently poked their abdomen with his finger or the end of a syringe with no 333 

needle attached) to prepare the subjects for future real injections. These rats were also 334 

used in another study 22. One rat in each group was excluded due to incorrect anatomical 335 

placement, and two rats were excluded from the control group due to a hardware 336 

malfunction during one of the behavioral sessions, leading to n=13 for the control group 337 

and n=15 for the hM4d group. 338 

Surgical procedures 339 

Rats were anesthetized with 1-2% isoflurane and received either AAV8-CaMKIIa-hM4d-340 

mCherry (a Gi-coupled designer receptor exclusively activated by designer drugs 341 

(DREADD)) or AAV8-hSyn-mCherry (control), both purchased from Adgene (Cambridge, 342 

MA), bilaterally into the OFC (AP −3.0 mm, ML ± 3.2 mm, and DV -4.4 and -4.5 mm from 343 

the brain surface) 22. A total 0.5 μL was delivered in each site at 0.1 μL/min via an infusion 344 

pump.  345 

Sensory-specific conditioning 346 

Rats were trained and tested at least eight weeks after the surgeries in standard 347 

behavioral boxes (12= x 10= x 12,= Coulbourn Instruments, Holliston, MA). Each box was 348 

equipped with a food cup, a pellet dispenser and two wall speakers. Head entries into the 349 

food cup was measured based on breaks of an infra-red beam. 350 

Rats were conditioned for eight sessions. Prior to each session, each rat received an i.p. 351 

injection of JH60 (0.2 mg/kg, dissolved in 0.9% NaCl) and was left in their home cage for 352 

at least 15 minutes before the start of the session, to allow for the DREADD agonist to 353 

effectively inhibit transfected OFC neurons in the hM4d group 21,22. 354 

In every session, rats were exposed to two auditory stimuli, A and B (siren or white noise, 355 

counterbalanced across rats); each cue was presented for 10 seconds, immediately 356 

followed by the delivery of two bacon- or banana-flavored pellets (TestDiet; 357 

counterbalanced pairing). Each pairing was presented eight times per session with an 358 

average ITI of 2.5 minutes and the order of presentation was randomized and 359 

counterbalanced.  360 
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Behavioral responses were quantified as the percentage of time that each rat spent in the 361 

food cup during the last 5 seconds of each CS, subtracted by the time they spent in the 362 

food cup 5 seconds before CS onset. 363 

Reward preference tests 364 

Prior to the devaluation procedure, rats were given a preference test comparing 365 

consumption of the two pellet-types. Rats were provided 100 pellets of each type, placed 366 

in two ceramic bowls for 30 minutes with the location of the bowls reversed every 5 367 

minutes. The remaining pellets were counted after the 30 minute period. This procedure 368 

was repeated after the devaluation probe to confirm the permanence of conditioned taste 369 

aversion. 370 

Reinforcer devaluation via conditioned taste aversion with LiCl 371 

For outcome-specific reinforcer devaluation, we paired the reward associated with cue B 372 

with LiCl, while the reward associated with cue A was not paired with anything. This 373 

devaluation procedure lasted a total of six days. On days 1, 3 and 5, rats were given 30 374 

minutes of access to the devalued pellet, followed immediately by an i.p. injection of 0.3 375 

M LiCl, then returned to their home cages 17. On alternate days (2, 4 and 6), rats were 376 

given 30 minutes of access to the non-devalued pellet and then returned to their home 377 

cages. All preference and consumption tests were performed in clean home cages. 378 

Devaluation probe 379 

The devaluation probe was performed and analyzed exactly like one of the conditioning 380 

sessions, except that no reinforcer was delivered, and the rats did not receive an injection. 381 

Object recognition task 382 

A subset of 10 rats from each group of the previous experiment was randomly selected 383 

for this procedure. One of the control rats was the one excluded due to incorrect 384 

anatomical placement, leading to n=9 for the control group and n=10 for the hM4d group 385 

for this experiment. 386 

One square arena (60 x 60 cm) made of brown plexiglass with a striped black and white 387 

rectangular spatial cue was placed in a dimly (~3 lumens) red-light illuminated room. A 388 

video camera was mounted above the arenas, and activity during test sessions was 389 

digitized with a high-definition webcam (C920S PRO HD, Logitech, Suzhou, China). The 390 

objects to be discriminated were white glass bulbs, transparent glass jars, cylindrical 391 

amber glass bottles and trapezoidal white plastic bottles. All objects were glued to heavy 392 

metal disks to prevent them from being displaced by the rats, and positioned at the back 393 

corners of the arena (10 cm from walls). To avoid olfactory cues, the arena and objects 394 

were thoroughly cleaned with 0.1% acetic acid after each trial. 395 

For habituation, the rats were positioned into the open-field arena without any objects for 396 

10 min the day before the start of the experiment. Throughout the experiment, the position 397 

of the objects was constant, but the objects used and their relative positions were 398 

counterbalanced for every animal. In the sample phase, rats were placed in the arena 399 

facing the wall opposite the objects and were allowed to freely explore two identical 400 

objects (either two light bulbs or two jars) for 10 min. Prior to the sampling session, each 401 

rat received an i.p. injection of JH60 (0.2 mg/kg, dissolved in 0.9% NaCl) and was left in 402 
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their home cage for at least 20 minutes before the start of the session. This period was 403 

given to allow for the DREADD agonist to reach the brain and effectively inhibit 404 

transfected OFC neurons in the hM4d group. After 24 h, on memory test 1, rats were 405 

allowed to explore freely one copy of the previously presented object (familiar) together 406 

with a new one (novel) for 10 min. A second memory test was performed 24 h after the 407 

first test. During the second memory test, the object that was introduced in the previous 408 

memory test was kept in place (so now it was the familiar object), and the previous familiar 409 

object was replaced by a novel object (either amber or white bottles), and rats explored 410 

freely for 10 min. 411 

As previously described25, exploration was defined as pointing the nose toward to an 412 

object at a distance of less than 1 cm and/or touching it with the nose. Turning around or 413 

sitting on the objects was not considered as exploratory behavior. A Discrimination Index 414 

(DI) was calculated, where DI = difference between exploration of the novel and familiar 415 

objects / total object exploration time during each memory test, such as that a DI of 0 416 

indicates equal preference for both objects, a DI of 1 indicates exclusive exploration of 417 

the novel object, and a DI of -1 indicates exclusive exploration of the familiar object.This 418 

measure was also calculated using only the first 5 min of each test, but results were 419 

similar to when the whole test period was used (data not shown). Video recordings were 420 

scored automatically using TopScan Suite (Clever Sys, Reston, VA). Exploration times 421 

were verified manually by a trained rater blinded to treatment and objects identities using 422 

BORIS software (Version 7.9.19, University of Torino, Italy). 423 

Histological procedures 424 

After completion of the experiment, rats were perfused with chilled phosphate buffer 425 

saline (PBS) followed by 4% paraformaldehyde in PBS. The brains were then immersed 426 

in 18% sucrose in PBS for at least 24 hours and frozen. The brains were sliced at 40 μm 427 

and stained with DAPI (Vectashield-DAPI, Vector Lab, Burlingame, CA). Fluorescent 428 

microscopy images of the slides were acquired with a BZ-X800 Keyence microscope. 429 

Expression patterns were extracted from the images and then superimposed on 430 

anatomical templates 22. 431 

Statistical analyses 432 

Data were analyzed using GraphPad Prism (GraphPad Software, San Diego, CA). Error 433 

bars in figures denote the standard error of the mean. Effects of experimental variables 434 

on behavioral measures were examined with repeated-measures 2-way and 3-way 435 

ANOVAs combined with Sidak’s or Tukey’s post-hoc tests, respectively. Statistical 436 

significance threshold for all tests was set at P<0.05.  437 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 26, 2022. ; https://doi.org/10.1101/2022.01.25.477716doi: bioRxiv preprint 

https://doi.org/10.1101/2022.01.25.477716
http://creativecommons.org/licenses/by-nc-nd/4.0/


16 

 

Reinforcement learning modelling  438 

Background 439 

We modelled the five stages of the experiment in chronological order: Conditioning 440 

(COND), Preference Test 1 (PRFT1), Devaluation (DEV), Preference Test 2 (PRFT2) and 441 

finally Probe testing (PROBE). For COND and PROBE, the Port Stay Probability (PSP) 442 

upon cue presentation was quantified. In PRFT1, DEV and PRFT2, the percentage of 443 

pellets eaten (PPE) was quantified. Two pellets of a single type were delivered in each 444 

case. 445 

On each trial, an internal value estimate (�) was calculated based on contributions from 446 

a model based (MB) system (and, for the alternative hypothesis of a loss of MB learning, 447 

in combination with a model free, MF, system). This value estimate was then transformed 448 

to the behavioral measurement that was appropriate to the experimental stage. In keeping 449 

with standard practice, we described the Pavlovian connection between cue and outcome 450 

as being associations; however, in keeping with the temporal evolution of the task, we 451 

actual model them as transitions from cue to outcome. MB (and MF) systems were 452 

updated using the state transitions that were observed (e.g., A→ValuedOutcome) and the 453 

rewards that were received. 454 

The main hypothesis (we call this Ha) that we tested was that the OFC enables precise 455 

credit assignment through separation of specific cue-outcome relations (i.e., that sound 456 

A predicts banana flavored pallets) and when deactivated, only the general relation (that 457 

any auditory cue predicts delivery of food) can be learned. However, we also tested a 458 

model (Hb) which could potentially characterize a more conventional view of OFC 459 

deactivation, namely that it would suppress MB over MF control. Since Hb mostly nests 460 

Ha, we provide an partly integrated discussion. 461 

Formal model 462 ÿ = {Ā1, . . . , ĀĀ} is the set of states. Each state is typically associated with the presentation 463 

of a cue or an outcome that can be rewarded or devalued, i.e., ÿ ∼ {ý, þ,ValuedOutcome, 464 

DevaluedOutcome}. 465 

In order to be able to characterize MB and MF systems fairly, we considered forms of 466 

both that represent the uncertainty in their predictions of rewards and values. However, 467 

we adopt a heuristic Bayesian scheme, with observation rates (the equivalent of learning 468 

rates) that are parameters (rather than pure conjugate distributional updates). 469 

Following Dearden et al. 32, normal-gamma distributions are used to characterize this 470 

uncertainty (since, following Daw et al. 3, MB and MF systems share the characterization 471 

of the values of the final, reward, states, albeit potentially with different parameters, and 472 

with only the MB system being subject to the effects of devaluation). 473 

We write this down in terms of the value of state Ā. The normal-gamma distribution for the 474 

value �ý and the precision ÿý2 is written as ��(þý, ÿý, Āý, āý). According to this, the 475 

conditional distribution of �ý given ÿý2 is a normal distribution 476 �ý ∼ �(þý, 1/(ÿýÿý2))     (1) 477 

and the precision has an unconditional gamma distribution 478 
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 ÿý2 ∼ �(Āý, āý)       (2) 479 

in terms of our problem, we interpret the parameters as follows: 480 þý !is the mean reward across the previous iterationsÿý !is the number of outcomes seen (this also includes the cases when no reward!(ÿ = 0) is delivered in this state)Āý !describes the total opportunity for learning about the precision; assuming that we initialize!alpha to: Āý�Ā�þ = 0.5 ∗ ÿý�Ā�þ, then it holds that at all times Āý = 0.5 ∗ ÿý.āý !describes the scale of the precision across previous seen rewards

 481 

implying that the marginal mean and variance of �ý are: 482 �ý = Ā[�ý] = þý!!Var[�ý] = āý�ý∗(Āý21)     (3) 483 

For MB computations, we also need an internal model of the state graph. We use Ā to 484 

describe the distribution of transition probabilities from all to all states. Programmatically, 485 Ā can be described by a matrix where each row contains �’s that are parameters for the 486 

multinomial distribution that characterizes the transition probabilities from a "source" state 487 Ā to any of the other states (including the source state itself): 488 Āý⋅ ∼ ÿÿÿÿ�/ý�ā(�ýý1 , . . . , �ýý�) 489 

This will only be interpretable for non-terminal "source" states Ā, as the trial ends 490 

afterwards and no information about consecutive states can be collected. The terminal 491 

states are thus absorbing. The sum of probabilities for a fixed source state to all possible 492 

target states is 1 (see model based value calculation). 493 

Initialization 494 

We initialize all �’s in Ā to 10. This implies a moderately strong prior that the transition 495 

probabilities are uniform across all states: 496 �ýý′init = 10!!∀(Ā, Ā′)     (4) 497 

We initialize the distribution describing the reward distribution parameters to: 498 �ýinit, ÿý2$init ∼ ��(þýinit = 0, ÿýinit = 3, Āýinit = 1.5, āýinit = 1.5)!!∀(Ā)  (5) 499 

The rationale for these values is that Āýinit > 1 to ensure �ý has a finite marginal variance. 500 

The value of þýinit was chosen to be 0 as animals start out with no value expectation. ÿýinit 501 

was set to 2 × Āýinit, as this ratio is also maintained by the updates. āýinit was set to 1.5 in 502 

order to set the starting marginal variance to Var[�ýinit] = 1. However, we confirmed that 503 

our results are stable to quite a wide range of initialization values, provided that the 504 

variance is well-defined (Āý > 1). 505 

During the conditioning stage, ÿValuedOutcome = ÿDevaluedOutcome = 2 (for the number of 506 

pellets provided). The reward of the DevaluedOutcome changes during the devaluation 507 

period to NegRew < 0, which is a parameter that captures the strength of the devaluation 508 

effect for each animal. 509 

Model updates and value calculation 510 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 26, 2022. ; https://doi.org/10.1101/2022.01.25.477716doi: bioRxiv preprint 

https://doi.org/10.1101/2022.01.25.477716
http://creativecommons.org/licenses/by-nc-nd/4.0/


18 

 

The normal-gamma distribution characterizing the value �ý of a terminal state updates 511 

according to each observation. In general, given an observation ��ý, writing �′ý, ÿý2$′ ∼512 ��(þý′, ÿý′, Āý′, āý′) for the updated distribution at Ā, we update the parameters as: 513 þý′ = �ý⋅ÿý+�⋅��ý�+� , $ÿý′ = ÿý + �,$Āý′ = Āý + 0.5 ⋅ �,$āý′ = āý + �⋅�ý⋅(��ý2ÿý)22∗(�ý+�)     X (6) 514 

where � is called an observation rate and stands in for the number of subjective 515 

observations associated with each experience 3 it need only be positive and is not 516 

constrained to be less than 1. 517 

For the MB system, writing Vý(þ)mb ~��(þmbý(þ), ÿmbý(þ), Āmbý(þ), āmbý(þ)), for a terminal state, 518 

the update happens using ��ý(þ)mb = ÿý(þ) and observation rate � = �mb .  519 

For the transition matrix, if the state Ā(ā) is a non-terminal state that is followed by state 520 Ā(ā + 1), the parameters of the transition probability distribution Āý(þ)⋅ are updated using a 521 

notional transition observation rate �t as: 522 �′ý(þ)ý(þ+1) = �ý(þ)ý(þ+1) + �t     (7) 523 

The MB system combines its knowledge of transitions and immediate rewards by applying 524 

the Bellman equation, which, in this case is very straightforward, since there are only two 525 

steps. Ignoring any posterior correlation between Ā and Ā, ÿ, this implies that: 526 

�ý(þ)mb = {þý(þ)mb if Ā(ā) is a terminal stateþý(þ)mb + Ămb ⋅ ∑ Āý(þ+1) [Āý(þ)ý(þ+1)] ⋅ þý(þ+1)mb otherwise  527 

The expected value for the next state is discounted by Ămb, which normally is close to 1. 528 

The expected value for the transition probability from state Ā(ā) to state Ā(ā + 1) can be 529 

calculated using: Ā[Āý(þ)ý(þ+1)] = �ý(þ)ý(þ+1)/ ∑ �ý(þ)��  . 530 

The approximate variance can be calculated from the Bellman equation (again ignoring 531 

correlations). 532 

Transformation of Estimated Values to Behavioral Measures 533 

Having generated a prediction �ý(þ)mb  from the MB system, it is necessary to convert it into 534 

the different experimental measures used in the various stages of the experimental 535 

paradigm. To do this, the combined value is normalized by the standard scalar reward 536 

received (2, for the number of pellets), and thresholded at 0 in order to avoid negative 537 

percentages when calculating the behavioral measures: 538 �ý(þ)norm = max (�ý(þ)mb2 , 0)     (8) 539 

This normalized value can then be transformed to the respective behavioral measures for 540 

each stage, each given as percentages in the range [0,100]: 541 
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PSPý(þ)COND = �ý(þ)norm ⋅ 100 ⋅ ÿpell2cue þþþþþþþþþþÿþþþþþþþþþþ(9)
PPEý(þ)DEV þ = �ý(þ)norm ⋅ 100 þþþþþþþþþþþþþþþþþþþþþþþþþþþ(10) PSPý(þ)PROBE = �ý(þ)norm ⋅ 100 ⋅ ÿpell2cue ⋅ ÿcp þþþþþþþþþþþþþþþþ(11) 542 

 543 ÿpell2cue accounts for the difference in the impact of a secondary predictor versus a primary 544 

reinforcer, and ÿcp may account for the forgetting of cue values from COND to the PROBE 545 

phase. Both factors are in the range [0,1]. An additional factor for the calculation of 546 

PPEýDEV
 was not necessary. PPEýPRFT1

 and PPEýPRFT2
 are calculated the same way as 547 

PPEýDEV
. 548 

Ha: Outcome-specific encoding deficit 549 

In this version, only the MB system is used, and we assume no forgetting happens from 550 

COND to PROBE so ÿcp is fixed to 1. 551 

We model the inactivation of OFC as implying that the representation of the relevant cues 552 

(here, A and B) is potentially only partially distinct. Thus, if, for instance Ā(ā) = ý is 553 

presented, then writing Ā̃(ā) = þ as the ’other’ cue, we imagine a spillover or fuzziness 554 

factor � is introduced that is taken into consideration when doing the updates so that, 555 

along with equation 7, we have 556 �′ý̃(þ)ý(þ+1) = �ý̃(þ)ý(þ+1) + �t�    (12) 557 

If � = 0, nothing is learned for the opposite state, if � = 1, then exactly the same transition 558 

information is learned for both states, and if � > 1, then more is learned for the 559 

opposite/unseen state. Note that we continue to consider the outcome pellets to be 560 

perfectly distinguishable. 561 

The free parameters used for model fitting are: NegRew, ÿpell2cue, �mb, �t, �. 562 

Model Fitting 563 

Separate sets of parameters were fit for each animal using 564 

scipy.optimize.least_squares, optimizing the mean squared error (MSE) between the real 565 

behavioral recordings and the model "behavior" outputs based on the current set of 566 

parameters. A weighted MSE was used in order to increase the contribution of the 567 

PROBE trials as behavioral differences across groups (control/OFC deactivation) were 568 

most apparent here, and the number of trials comparably few (there is 8x more condition 569 

trials, so PROBE trials have an 8x higher weight). The following bounds for the parameter 570 

fitting were defined as follows: 571 

 572 

Param NegRew ÿpell2cue �mb �t � 

Min xx-90 xx0 x0 x0 xx0 

Max xx0 xx1 x40 x40 xx1.5 
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Individual parameter estimates for either of the models were then compared across 573 

groups using t-tests and Bonferroni-corrected for multiple comparisons. 574 

Parameter Recovery 575 

In order to ensure that recovered parameter values are meaningful in case of the model 576 

fits, we checked parameter recoverability. Here, we use known parameter values along 577 

with realistic noise to generate synthetic data, and then assess if we can recover from 578 

these data values of the parameters that are close to the original generating levels. In 579 

order to stay close to the real data, we used the parameters recovered for each animal 580 

individually to generate one synthetic dataset/behavioral trace per animal. The noise was 581 

generated using individual variability estimates of per trial behavioral measures for each 582 

experiment stage (COND, DEV, PROBE). This yields 28 pairs (one pair per animal) of 583 

real and estimated parameter values for each of the model’s parameters. Good parameter 584 

recoverability is when real and estimated parameter values are well correlated. 585 

Recovery of most of the parameters was good (ÿNegRew = 0.9, ÿÿpell2cue = 0.8, ÿ�mb = 0.8, 586 

and ÿ� = 0.7); only the recovery of the state transition observation rate �t was slightly less 587 

faithful (ÿ�t = 0.6), and so should be interpreted cautiously. 588 

Repeating the recovery procedure multiple times produced comparable results. We also 589 

used a synthetic generative procedure to assess the posterior correlations between 590 

recovered parameter values, something that matters for prediction, albeit less for the 591 

overall interpretation of the model. We started out with the median parameter values 592 

across animals to generate synthetic data, with noise generated based on the variability 593 

of behavioral measures per experiment stage, this time on the group level, and recovered 594 

those parameter values from these data. We did this 30 times and assessed the 595 

correlations between all pairs of inferred parameters. We found that most of the 596 

correlations were mild 3 although the highest correlations between ÿpell2cue and �þ (ÿ =597 20.57), were quite substantial. This is not unexpected, as in effect ÿpell2cue accounts for 598 

the difference between the asymptotic performance at the end of conditioning, which is in 599 

turn set by the observation rates. 600 

Hypothesis Hb. MB deficit 601 

Hb parameterizes a more conventional view of the effect of OFC inactivation, allowing for 602 

a combination between MF and MB learning and control, with the possibility that this 603 

combination is disturbed by inactivation.  604 

As hypothesis Hb makes use of both model free and model based value systems, it 605 

employs two sets of value distributions: �ýmf, ÿý2$mf and �ýmb, ÿý2$mb. MB learning and 606 

inference happens as for hypothesis Ha, except that the imprecision parameter � is not 607 

part of Hb. Following Dearden et al. (18), the MF value system uses normal-gamma 608 

distributions for characterizing the values �ýmf of all states Ā, both terminal (with rewards) 609 

and non-terminal (with cues). 610 

For the MF system, each time the animal passes through state Ā, the value distribution at 611 

this state is updated according to either a scalar estimate ��ý of the long-run reward from 612 

that state Ā for the MF system, or the immediate reward ÿ using an observation rate �mf. 613 
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Updating the MF values of terminal states is the same as for the MB system (using 614 

equation 6) with ��ý(þ)mf = ÿý(þ) and an observation rate � = �mf. Updating the values of non-615 

terminal (cue) states also follows equation (6), but now (since, in this task, there are no 616 

rewards at non-terminal states) with  617 ��ý(þ)mf = Ămf ⋅ �ý(þ+1)mf
 618 

Generally, the estimated value of the model free system is �ýmf = þýmf and the estimated 619 

variance is given by the expression in equation 3. 620 

According to Hb, both MB and MF contribute to the value of a cue, according to a convex 621 

combination parameter ýmf, which is in range [0,1] with 0 meaning only the model-based 622 

system is used and 1 that only the model free system is used: 623 �ý(þ)comb = ýmf ⋅ �ý(þ)mf + (1 2 ýmf) ⋅ �ý(þ)mb ,   xxxxx(13) 624 

This then generates the normalized value  625 �ý(þ)norm = max (�ý(þ)comb2 , 0)     (14) 626 

which leads to behavioral measures as in equations (9)-(11). 627 

For convenience of fitting, the observation rate for the transition matrix was fixed to the 628 

one for the model based value distributions �t = �mb, and Ămf and Ămb were set to 1. The 629 

free parameters used for model fitting were therefore: NegRew, ÿpell2cue, ÿcp, �mf, �mb and 630 ýmf. As an important simplification, we fixed ýmf to have the same value for COND and 631 

PROBE, even in the inactivation case, as if this had been stamped in during COND, for 632 

instance because of heightened MB uncertainty. If ýmf was lower in PROBE then, we 633 

would not have expected such equivalent decreased responding to both cues. An 634 

alternative possibility we did not explore is that inactivation would leave the MB system 635 

with impaired learning in COND, even at asymptote for both cues; and that if ýmf was 636 

indeed lower in PROBE, reduced responding would come from averaging a persistent 637 

value from the MF system with the decreased output of the MB system. This would be an 638 

alternative to making parameter ÿcp small. 639 

The same constraints as above were used for fitting the MB system (albeit with � 640 

effectively clamped at 0). Additionally, we had 641 

 642 

Param ÿcp �mf ýmf 

Min xxx0 0 0 

Max xxx1 40 1 
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Parameter recovery of the observation rate parameters were the least faithful (ÿ�mf =643 0.6, ÿ�mb = 0.2 and ÿ�mf = 06), while the estimated values of the other parameters were 644 

closer to real ones (ÿNegRew = 0.9, ÿÿpell2cue = 0.9, ÿÿcp = 0.8). Thus, when interpreting this 645 

model, less emphasis should be placed on the first three parameters. Correlations in the 646 

recovered values of the parameters were mild 3 with the highest correlation being 647 

between ÿpell2cue and ýmf (ÿ = 20.54).  648 
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Supplementary Information 

Table S1. Statistical results of behavioral experiments 

Conditioning (3-way ANOVA) SS MS F (DFn, DFd) P value 

Sessions 39952 5707 F (7, 182) = 26.74 P<0.0001**** 

(CTRL vs hM4d) 2512 2512 F (1, 26) = 0.7170 P=0.4048 

(A vs B) 12.16 12.16 F (1, 26) = 0.02112 P=0.8856 

Sessions x (CTRL vs hM4d) 6981 997.3 F (7, 182) = 4.672 P<0.0001**** 

Sessions x (A vs B) 874.0 124.9 F (7, 182) = 1.353 P=0.2279 

(CTRL vs hM4d) x (A vs B) 9.810 9.810 F (1, 26) = 0.01703 P=0.8972 

Sessions x (CTRL vs hM4d) x (A vs B) 517.3 73.90 F (7, 182) = 0.8008 P=0.5876 

     

CTA (3-way ANOVA) SS MS F (DFn, DFd) P value 

Sessions 37224 18612 F (2, 52) = 64.18 P<0.0001**** 

(CTRL vs hM4d) 1344 1344 F (1, 26) = 2.912 P=0.0998 

(ND vs D) 53832 53832 F (1, 26) = 127.1 P<0.0001**** 

Sessions x (CTRL vs hM4d) 39.38 19.69 F (2, 52) = 0.06789 P=0.9344 

Sessions x (ND vs D) 41521 20761 F (2, 52) = 83.36 P<0.0001**** 

(CTRL vs hM4d) x (ND vs D) 155.6 155.6 F (1, 26) = 0.3675 P=0.5497 

Sessions x (CTRL vs hM4d) x (ND vs D) 32.92 16.46 F (2, 52) = 0.06609 P=0.9361 

     

PROBE (2-way ANOVA) SS MS F (DFn, DFd) P value 

(CTRL vs hM4d) 806.6 806.6 F (1, 26) = 4.340 P=0.0472* 

(A vs B) 143.3 143.3 F (1, 26) = 1.743 P=0.1983 

(CTRL vs hM4d) x (A vs B) 658.8 658.8 F (1, 26) = 8.013 P=0.0088** 
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Table S2. Comparisons of fitted parameters for the control and hM4d groups withing the 
two tested reinforcement learning models. Data are represented as mean ± SEM. 

Ha: Precision deficit model parameters  Control hM4d P value 

Imprecision term - � 0.64 ± 0.138 1.031 ± 0.099 P=0.027* 

Model-based value observation rate - �ÿ� 2.669 ± 1.964 5.062 ± 2.626 P=0.169 

Model-based transition observation rate - �þÿ 11 ± 4.657 22.41 ± 4.477 P=0.067 

Strength of devaluation - NegRew -50.82 ± 5.092 -60.21 ± 4.81 P=0.185 

Value adjustment - ÿpell2cue 0.718 ± 0.069 0.512 ± 0.066 P=0.04* 

 

Hb: MB vs MF model parameters Control hM4d P value 

Model-free observation rate - �mf 3.71 ± 2.778 15.21 ± 4.758 P=0.007** 

Model-based observation rate - �ÿ� 12.8 ± 4.51 15.77 ± 4.82 P=0.575 

Contribution of model-free system - ýmf 0.553 ± 0.106 0.703 ± 0.081 P=0.513 

Strength of devaluation - NegRew -52.09 ± 5.85 -54.78 ± 5.243 P=0.821 

Value adjustment - ÿpell2cue 0.761 ± 0.069 0.501 ± 0.059 P=0.012* 

Conditioning to probe forgetting - ÿcp 0.603 ± 0.079 0.385 ± 0.083 P=0.071 
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Figure S1. Histological validation of DREADD strategy. Reconstruction of viral expression patterns in 
the OFC across the control and hM4d groups. Viral spread was mostly contained withing OFC and was 
similar for control and hM4d subjects.  
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Figure S2. Parameter recovery and correlations for the reinforcement learning model with 
association specificity deficit. A: Correlations between estimated and original parameters. Note that 
most parameters were recovered with r>0.7, with the least faithfully recovered parameter being the state 
transition observation rate ηtm with r < 0.6. B: Correlations between fitted parameters. Note that only 

correlations between ÿpell2cue and ýmf (ÿ = 20.54) in HB and between ÿpell2cue and �þÿ (ÿ = 20.57) are 

substantial. 
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Figure S3. Data fitting with a reinforcement learning model that allows for a shift between model-
based (MB) and model-free (MF) learning. (A) Model fit results for our MB vs MF reinforcement learning 
model. Note that it can also replicate our behavioral results well. (B) Schematic of the critical aspect of the 
model and the expected result: the observation rate for both the MB and MF systems, as well as the 
potential contribution of each to behavior, were free parameters, and we expected that the contribution of 
the MB system would be diminished, either by a reduced MB observation rate or an increase in the MF 
contribution. (C) Values of the critical observation rate-related parameters, namely the proportion of 

contribution of the MF (ýmf) system, the MF observation rate (�mf), and the MB observation rate (�ÿ�) for 
both control and hM4d model fits. Note that instead of a reduction in MB learning or proportional 
contribution, only the MF observation rate was significantly higher in the hM4d group. See table S2 for 
detailed parameter comparisons. (D) Correlations between estimated and original parameters for the MB 
vs MF model. Note that parameter recovery of all critical observation rate-related parameters was not very 
faithful (r < 0.7). Data are represented as mean ± SEM. **P<0.01. 
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