

1 The role of the orbitofrontal cortex in creating cognitive maps

2
3 Kauê Machado Costa^{1*}, Robert Scholz^{2,3}, Kevin Lloyd², Perla Moreno-Castilla⁴, Matthew
4 P. H. Gardner⁵, Peter Dayan^{2,6} and Geoffrey Schoenbaum^{1*}

5
6 ¹ National Institute on Drug Abuse Intramural Research Program, National Institutes of Health,
7 Baltimore, MD, 21224, USA

8 ² Max Planck Institute for Biological Cybernetics, Tübingen, 72076, Germany

9 ³ Max Planck School of Cognition, Leipzig, 04103, Germany

10 ⁴ National Institute on Aging Intramural Research Program, National Institutes of Health,
11 Baltimore, MD, 21224, USA

12 ⁵ Concordia University, Montreal, QC, 7141, Canada

13 ⁶ University of Tübingen, Tübingen, 72074, Germany

14 * Corresponding authors: kaue.m.costa@gmail.com and geoffrey.schoenbaum@nih.gov

17 Abstract

18 We use internal models of the external world to guide behavior, but little is known about
19 how these cognitive maps are *created*. The orbitofrontal cortex (OFC) is typically thought
20 to access these maps to support model-based decision-making, but it has recently been
21 proposed that its critical contribution may be instead to integrate information into existing
22 and new models. We tested between these alternatives using an outcome-specific
23 devaluation task and a high-potency chemogenetic approach. We found that selectively
24 inactivating OFC principal neurons when rats learned distinct cue-outcome associations,
25 but prior to outcome devaluation, disrupted subsequent model-based inference,
26 confirming that the OFC is critical for creating new cognitive maps. However, OFC
27 inactivation surprisingly led to generalized devaluation. Using a novel reinforcement
28 learning framework, we demonstrate that this effect is best explained not by a switch to a
29 model-free system, as would be traditionally assumed, but rather by a circumscribed
30 deficit in defining credit assignment precision during model construction. We conclude
31 that the critical contribution of the OFC to learning is regulating the specificity of
32 associations that comprise cognitive maps.

33
34 **One Sentence Summary:** OFC inactivation impairs learning of new specific cue-
35 outcome associations without disrupting model-based learning in general.

36
37 **Keywords:** inference, chemogenetics, reinforcement learning, learning theory, model-
38 based learning, JHU37160, cognitive map, devaluation, conditioned taste aversion.

39 **Introduction**

40 Animals behave in ways that suggest that the brain can build, store, and use internal
41 representations that account for the predictive relationships between elements in the
42 external world. Also called associative models or cognitive maps¹, these mental
43 constructs are thought to be especially important for adaptive behavior under new or
44 changed conditions^{2,3}. The inability to use such models properly is thought to be a key
45 feature of mental illnesses such as schizophrenia⁴, substance use disorder^{5,6}, and
46 obsessive compulsive disorder⁷. However, despite their importance, we are only
47 beginning to understand the informational structure of cognitive maps and how the brain
48 creates, stores, and uses them.

49 In this regard, the orbitofrontal cortex (OFC) has been extensively implicated in model-
50 based behaviors⁸⁻¹¹. However, its exact contributions to defining or using the cognitive
51 maps that support these behaviors are still controversial. The currently prevailing view is
52 that the OFC accesses information stored elsewhere to represent the current task space
53 at the time a decision is made¹²⁻¹⁵. While broadly consistent with the literature, this view
54 is most strongly supported by devaluation experiments in which pairing a given outcome
55 with illness (or satiety) leads to reduced conditioned responding to a cue predicting that
56 outcome. This effect has been shown repeatedly and across species to require the OFC
57 at the time of the probe test¹⁶⁻¹⁹, a result generally interpreted as showing a role for OFC
58 in using the associative map formed earlier in training. Compromising the OFC disrupts
59 this usage, resulting in supposedly “model-free” or habit-like behavior. By this account,
60 the OFC offers a form of specialized working memory required for mental simulation.

61 However, recent studies suggest that the OFC might instead serve as the cognitive
62 “cartographer”, playing a critical role not merely in using maps drawn by other regions but
63 rather in creating and modifying the maps on which other regions rely²⁰. According to this
64 view, OFC manipulations in devaluation probes affect behavior not because OFC is
65 required for mental simulation but rather because the test requires changes to, or
66 recombinations of, existing cognitive maps.

67 A logical, but untested, corollary of this alternative proposal is that the OFC should also
68 be necessary during initial conditioning in the reinforcement devaluation task, when a
69 major part of the cognitive map used in the later probe is *created*. On the other hand, if
70 the classic view is correct – that, at the time of decision-making, the OFC just uses maps
71 made and maintained elsewhere – then this region should not be necessary during the
72 conditioning phase. As one cannot read what is not yet written, this prediction allows for
73 an acid test to differentiate whether the OFC is a reader or a cartographer of cognitive
74 maps. Here, we performed this test using a within-subject outcome-specific devaluation
75 task and high-potency chemogenetics to inactivate OFC transiently when maps were first
76 being formed.

77 **Results**

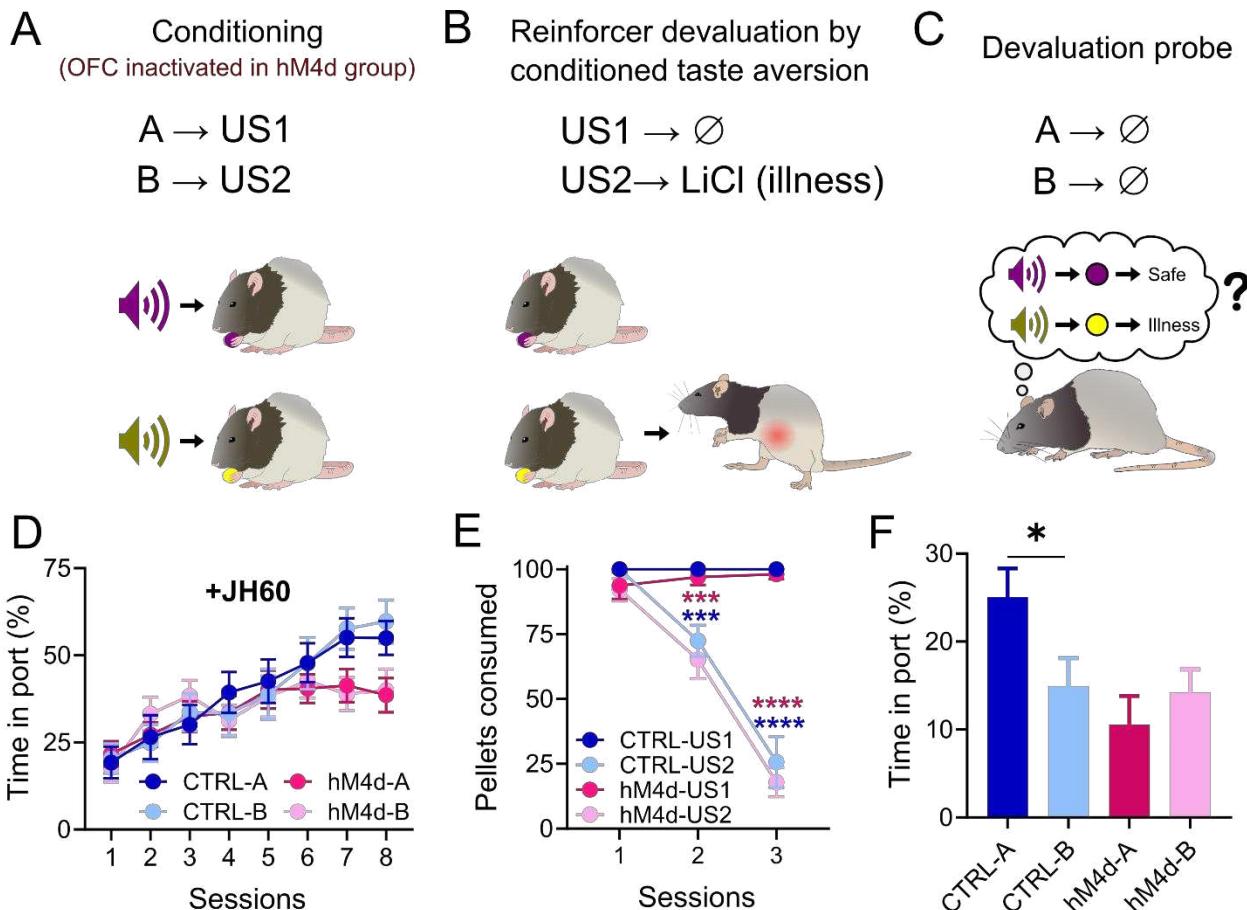
78 Food restricted rats, transfected with either hM4d (inhibitory DREADD receptor, n=15) or
79 only mCherry (control; n=13) in the OFC (Figure S1), underwent conditioning in which
80 two different auditory cues (A and B) predicted the delivery of either banana- or bacon-
81 flavored pellets (Figure 1A). Before each session, rats were injected with JHU37160
82 dihydrochloride (JH60; i.p. 0.2 mg/kg), a high-potency DREADD agonist ²¹, to inactivate
83 OFC principal neurons in hM4d-transfected rats both transiently and selectively ²². The
84 use of this new generation compound avoids several confounds associated with other
85 DREADD agonists ^{21,23}.

86 Despite inactivation, rats in both groups progressively increased responding to the food
87 cup during presentation of either cue (Figure 1D). Initial acquisition rates were similar,
88 although rats in the hM4d group responded slightly less during the last two sessions of
89 conditioning, in agreement with recent work showing that transient OFC inactivation can
90 reduce asymptotic conditioned responding in some settings ²⁴.

91 After conditioning, rats were subjected to conditioned taste aversion (CTA) training, in
92 which one of the rewards (the one associated with B), was paired with LiCl injections,
93 inducing nausea (Figure 1B). Rats initially preferred both rewards equally, but quickly and
94 selectively reduced consumption of the pellet type paired with LiCl (Figure 1E).

95 Finally, after CTA training, rats were given a probe test, in which the cues were presented
96 as during conditioning but without reward (Figure 1C). As expected, control rats
97 responded more to cue A (paired with the non-devalued pellet) than to cue B (paired with
98 the devalued pellet), indicating they had learned the specific cue-reward and reward-
99 illness associations and were able to integrate them in the probe test to infer that B might
100 lead to devalued reward (Figure 1F). By contrast, rats in the hM4d group responded
101 equally to both cues (Figure 1F). This result is inconsistent with the hypothesis that OFC's
102 main function is to access mental maps stored elsewhere to support model-based
103 behaviors at the time a decision is made, and instead supports the alternative hypothesis
104 that OFC plays a critical role in drawing those maps during initial learning ²⁰.

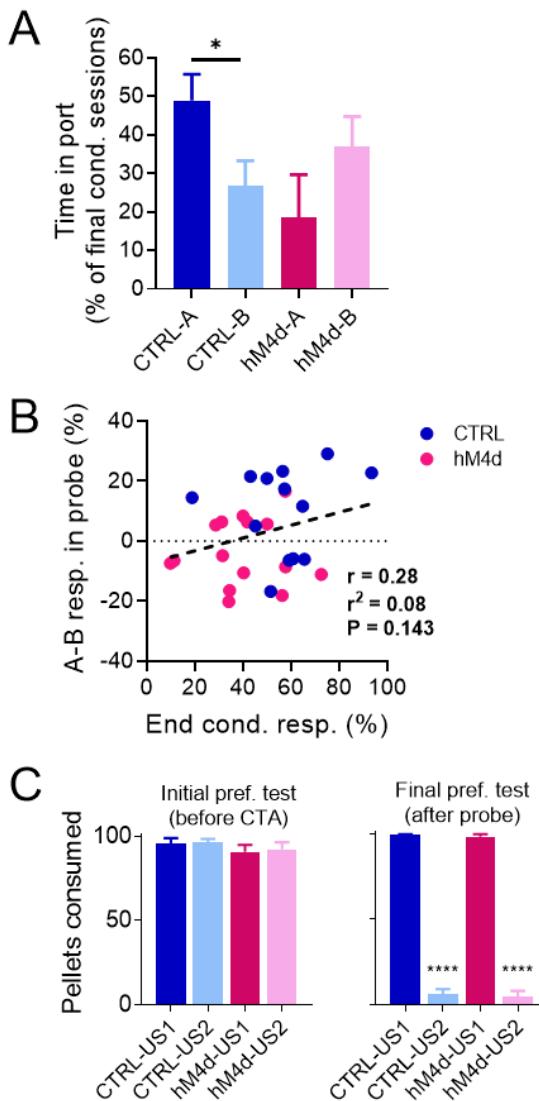
105 That said, while this result supports this alternative hypothesis, rats in the hM4d group
106 did not simply lack the devaluation effect, as would be expected if there was no model,
107 but rather they appeared to generalize the devaluation effect across cues (Figure 1F).
108 This was evident even if responses during the probe were normalized to the end of
109 conditioning, indicating that the effect was not related to modest reduction in asymptotic
110 conditioned responding (Figure 2A). That the two effects were orthogonal to each other
111 is further supported by the lack of correlation between responding at the end of
112 conditioning and the effect of devaluation (Figure 2B). Nor was the apparent
113 generalization due to differences in CTA retention as preference tests revealed that CTA
114 effects were similar in the two groups after the probe test (Figure 2C).



115

116 **Figure 1. Chemogenetic inactivation of OFC during conditioning abolishes subsequent**
117 **sensory-specific cue devaluation. (A-C):** Schematic of the behavioral procedures. **(A):** Rats
118 were conditioned to two cues, A and B, which lead to different rewards. The OFC was inactivated
119 in the hM4d group. **(B):** Later, one of the rewards was paired with LiCl injections. **(C):** Finally, rats
120 were re-exposed to the conditioned cues, testing if a model-based association had been
121 established between them and the rewards. **(D):** Food cup responding during conditioning. There
122 was no isolated or interaction effect of cue identity ($P>0.05$), nor an effect of group ($P>0.05$), and
123 rats of both groups increased responding as sessions progressed ($P<0.0001^{****}$). However, there
124 was a significant interaction between group and session progression ($P<0.0001^{****}$), visible in the
125 last two sessions. **(E):** Pellet consumption during CTA. Rats from both groups consumed nearly
126 all pellets in the first CTA session, and consumed less of the devalued pellet type as sessions
127 progressed ($P<0.0001^{****}$). **(F):** Food cup responding during probe. There was a significant effect
128 of group ($P=0.047^*$), and the interaction of the group with the cues ($P=0.009^{**}$), as control rats
129 responded more to A than to B, while hM4d rats responded equally to both cues. Asterisks in
130 graphs indicate post-hoc multiple comparison test results. See Table S1 for detailed statistics.
131 Data are represented as mean \pm SEM. * $P<0.05$; ** $P<0.01$; *** $P<0.001$; **** $P<0.0001$.

132



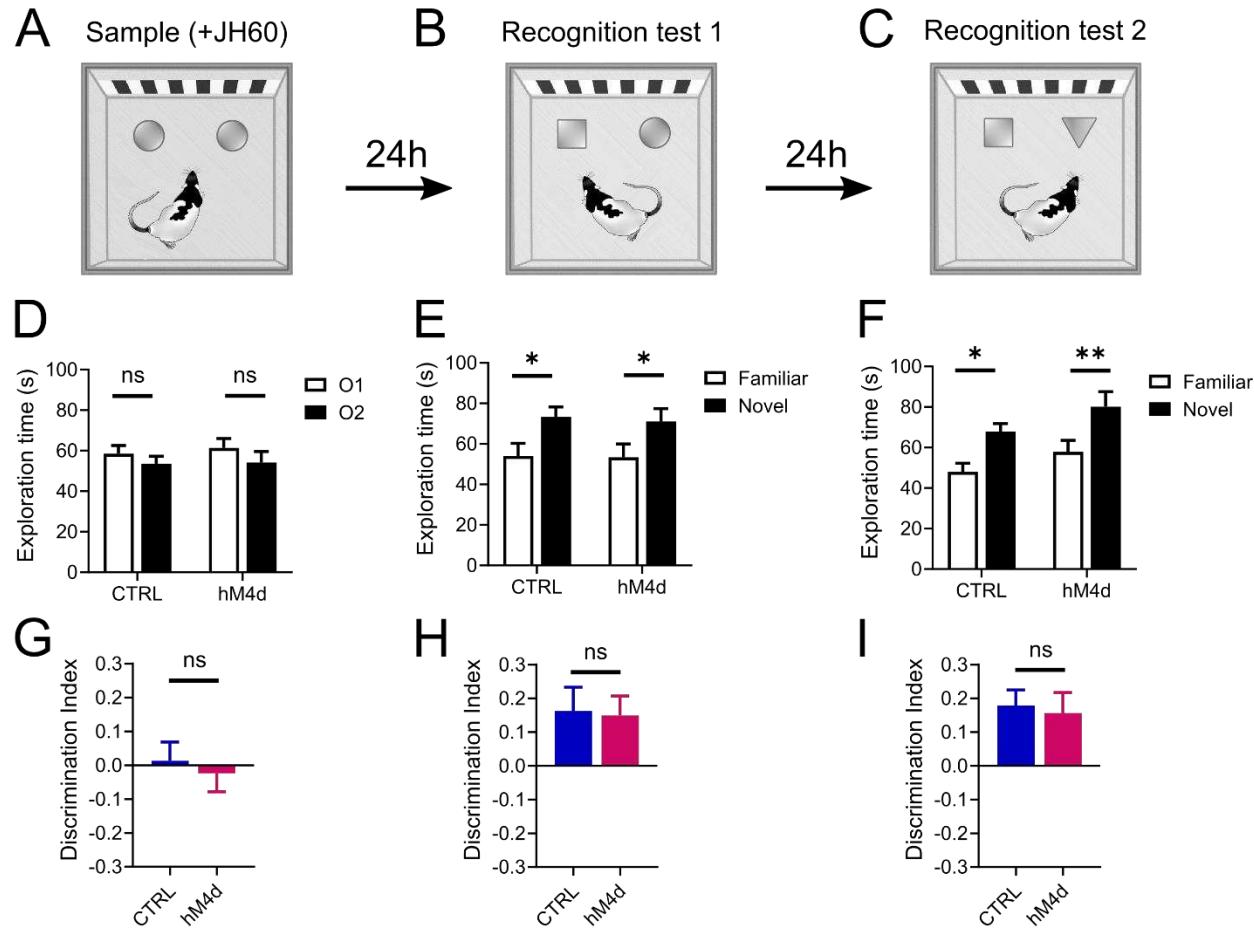
133

134 **Figure 2. Generalization of devaluation due to OFC inactivation is not dependent on effects**
135 **on conditioned responding or CTA learning. (A):** Food port responding in the final probe
136 session but normalized to the last two sessions of conditioning. There was a significant interaction
137 effect of the group with the cues ($P = 0.002^{**}$), as well as only a significant difference between A
138 and B in the control group in the post-hoc test. **(B):** Differential responding to valued and devalued
139 cues (responding to A – mean responding to B) was not correlated to the conditioned responding
140 at the end of initial learning (average of % time in port for both cues in the last two sessions of
141 conditioning). **(C):** Consumption of pellets during preference tests for CTRL (blue and light blue)
142 and hM4d (red and pink) rats. Rats from both groups consumed all pellets similarly during the first
143 preference test (2-way ANOVA; ND x D: $F_{1,26} = 0.12$, $P = 0.7318$; CTRL vs hM4d: $F_{1,26} = 1.235$, P
144 = 0.2766; interaction: $F_{1,26} = 0.0171$, $P = 0.8969$) and both groups equally consumed significantly
145 less of the devalued pellet type (the one previously associated with cue B and paired with LiCl
146 during CTA) in the second preference test (2-way ANOVA; ND x D: $F_{1,26} = 1364$, $P < 0.0001^{****}$;
147 CTRL vs hM4d: $F_{1,26} = 0.3519$, $P = 0.5582$; interaction: $F_{1,26} = 0.0005$, $P = 0.9825$). Asterisks in
148 the graphs indicate results of post-hoc multiple comparison tests. Data are represented as mean
149 \pm SEM. $^{****}P < 0.0001$.

150 Generalization of devaluation also could not be accounted for by effects of OFC
151 inactivation on perception or memory. To show this, we tested a subset of these rats in
152 an object recognition task ²⁵. OFC was inactivated prior to the sample phase of the task,
153 while the rats first explored two identical objects (Figure 3A). Over the next 2 days, the
154 rats were brought back to the same arena for two recognition tests in which novel objects
155 were substituted for the objects introduced in the sample phase (Figure 3B-C). If OFC
156 inactivation in these rats induced perceptual confusion, accelerated forgetting, or context-
157 dependent learning, then inactivation in the sample phase of this task should have
158 disrupted object discrimination in the first but not the second recognition test, yet we found
159 no such effect (Figure 3D-I).

160 The generalization of devaluation in the OFC inactivated group was unexpected and
161 intriguing, since model-based learning is traditionally treated as an all-or-none
162 phenomenon. A complete failure of model-based control would leave only devaluation-
163 insensitive, model-free behavior intact, resulting in high responding to both cues. It has
164 been proposed that associative learning may operate as a dynamic mixture of model-
165 based and model-free learning ³, and that the OFC may mediate this process ²⁶.
166 Therefore, we considered whether our results could be explained by a change in the
167 balance between model-based to model-free learning under OFC inactivation. This
168 explanation has some intrinsic disadvantages, as it requires at least two parallel learning
169 systems and a third process to integrate their outputs, i.e., it is complex, with many free
170 parameters. We found that it was possible to reproduce our results with this approach
171 provided we also added a forgetting parameter (Figures S3). However, the resultant fits
172 were hard to reconcile with the general understanding of OFC function, as they did not
173 produce a decrease in model-based learning with OFC inactivation, but rather an increase
174 in model-free learning rates (Figure S3C). This suggests a form of structural over-fitting,
175 consistent with the observation that the fitted parameters could not be reliably recovered
176 from simulated data (Figure S3D). Thus, a complete or partial shift from model-based to
177 model-free control seemed not to offer a good explanation for the experimental results.

178 A more promising way to account for the results is to consider the possibility that the
179 subjects are still building, and then using, a cognitive map, but that the map is different –
180 perhaps less precise – without the contribution of OFC. This idea would be consistent
181 with recent arguments against pure model-free processing ^{27,28}, evidence that the OFC is
182 particularly important for sculpting representations of various aspects of tasks ^{13,29,30}, and
183 findings in OFC-lesioned macaques of impaired credit assignment ³¹. Translating this idea
184 to the current task, we hypothesized that the OFC might be particularly important for
185 segregating and separately updating each unique cue-outcome pair, which were of
186 uncertain importance in initial conditioning.



187

188 **Figure 3. OFC inactivation does not affect object recognition.** **(A)**: Sample phase, where rats
189 explored two identical objects and received JH60 injections. **(B)**: First recognition test, where one
190 familiar object was replaced by a novel one. **(C)**: Second recognition test, where the previous
191 familiar object was substituted by yet another novel object. **(D and G)**: Rats in both groups
192 explored the two objects for the same amount of time during sample (2-way ANOVA; O1 x O2:
193 $F_{1,17} = 1.833$, $P = 0.193$; CTRL vs hM4d: $F_{1,17} = 0.14$, $P = 0.712$; interaction: $F_{1,26} = 0.059$, $P =$
194 0.809)(D) which was evident in the discrimination index (unpaired t-test, $P = 0.634$)(G),
195 demonstrating that OFC inactivation does not affect exploratory behavior in this task. **(E and H)**:
196 Rats from both groups showed equally robust object recognition learning, evident in the increased
197 exploration of the novel object (Familiar x Novel: $F_{1,17} = 13.53$, $P = 0.002^{**}$; CTRL vs hM4d: $F_{1,17}$
198 = 0.045, $P = 0.835$; interaction: $F_{1,26} = 0.025$, $P = 0.876$) (E) and an increase in the discrimination
199 index, which was identical between groups ($P = 0.882$) (H), indicating that OFC inactivation in
200 sample did not affect recognition learning or memory retention, nor did it induce some form of
201 context-dependent learning. **(F and I)**: Again, rats in both the control and hM4d groups showed
202 a similar level of preference for the novel object (Familiar x Novel: $F_{1,17} = 18.13$, $P = 0.0005^{***}$;
203 CTRL vs hM4d: $F_{1,17} = 3.085$, $P = 0.097$; interaction: $F_{1,26} = 0.053$, $P = 0.82$) (F), as confirmed in
204 the discrimination index ($P = 0.775$)(I), confirming that learning under the effects of JH60 injections
205 was similar to when no drug was injected. Asterisks in E and F indicate results of post-hoc multiple
206 comparison tests. Data are represented as mean \pm SEM. * $P < 0.05$, ** $P < 0.01$.

207 We tested this proposal by fitting our data with a novel model-based reinforcement
208 learning algorithm trained on the same sequence of trials as in the task ^{3,32} (Figure 4).
209 The effect of OFC inactivation on learning during initial conditioning was captured by
210 introducing an “imprecision” parameter (χ) that defined how credit assignment spread –
211 i.e., whether updates were selective for each cue-outcome pair during the conditioning
212 phase of the task (Figure 4A). Thus, receiving a banana-flavored pellet after cue A
213 updates the association between the alternative cue B and the banana-flavored pellet by
214 an amount proportional to χ . Only if $\chi = 0$, would the update be confined exclusively to
215 cue A. A model with a high χ value would therefore be able to learn that auditory cues
216 predict sucrose pellets, but would have trouble differentiating which pellet flavor (e.g.,
217 banana) is associated with which cue (A or B). Substantial confusion during conditioning
218 (high χ) would cause the loss of value imposed by the following CTA training (Figure 4B)
219 to be at least partially generalized to both cues A and B, due to the imprecision of specific
220 state predictions and subsequent inference (Figure 4C), noting that the rats remained well
221 aware of the separate values of the pellet types after the probe test (Figure 2C, right).

222 We found that this “imprecision” model fit our behavioral results well (Figure 5),
223 reproducing the normal behavior in the control group and all effects of OFC inactivation,
224 including both the apparent generalization of devaluation in the probe test (Figure 5B-C)
225 as well as the lower asymptotic performance in conditioning (Figure 5E-F). Critical
226 parameters in the model, particularly χ , were recoverable from simulated data (Figure
227 S2A) ^{33,34}. Model fits to data from control and hM4d groups differed in their imprecision
228 term χ , which was significantly higher in hM4d models (Figure 5B and Table S2).
229 Furthermore, χ was highly correlated with the difference in responding to the valued (A)
230 versus devalued (B) cues during probe (Figure 5C), even though this parameter only
231 affected learning during conditioning (Figure 4A). Notably, this effect was not due to an
232 effect of χ on the strength of conditioning, as these were uncorrelated (Figure 5D).

233 Our model also recapitulated other aspects of the results, specifically by having a value
234 adjustment parameter (V_{pell2cue}) that captured the asymptotic performance during
235 conditioning. The value of this parameter differed between fits for control and hM4d
236 subjects (Figure 5E), accounting for the reduced responding of hM4d rats at the end of
237 conditioning (Figure 1D, 2B and 5F). Importantly, V_{pell2cue} did not correlate with the
238 difference in cue responses during the probe (Figure 5G). These results confirm that the
239 effects of OFC inactivation during model creation on subsequent model-based decision
240 making are not related to the concurrent effects on asymptotic value estimation. The latter
241 may be related to the known role of OFC in representing and updating outcome value
242 ^{14,35}.

A

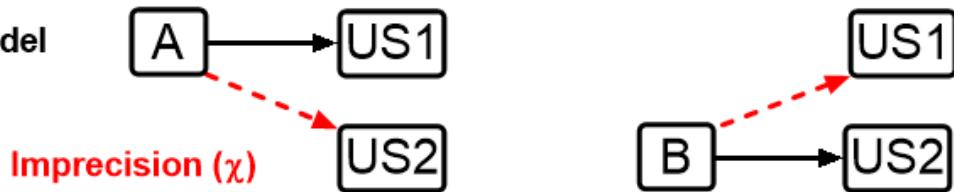
Conditioning

Task

$A \rightarrow US1$

$B \rightarrow US2$

Model



B

Devaluation

Task

$US1 \rightarrow \emptyset$

$US2 \rightarrow LiCl$

Model

C

Probe

Task

$A \rightarrow \emptyset$

$B \rightarrow \emptyset$

Model

243

244 **Figure 4. A model-based reinforcement learning algorithm that simulates imprecise state**
245 **identity credit assignment.** (A): During initial conditioning, the value and state transition

246 matrices are updated according to the task contingencies ($A \rightarrow R1$, $B \rightarrow R2$; solid black arrows), except

247 for a parallel updating of the opposite association ($A \rightarrow R2$, $B \rightarrow R1$), which occurs proportionately to

248 the imprecision term χ (dashed red arrows). (B): During the CTA devaluation procedure, updating

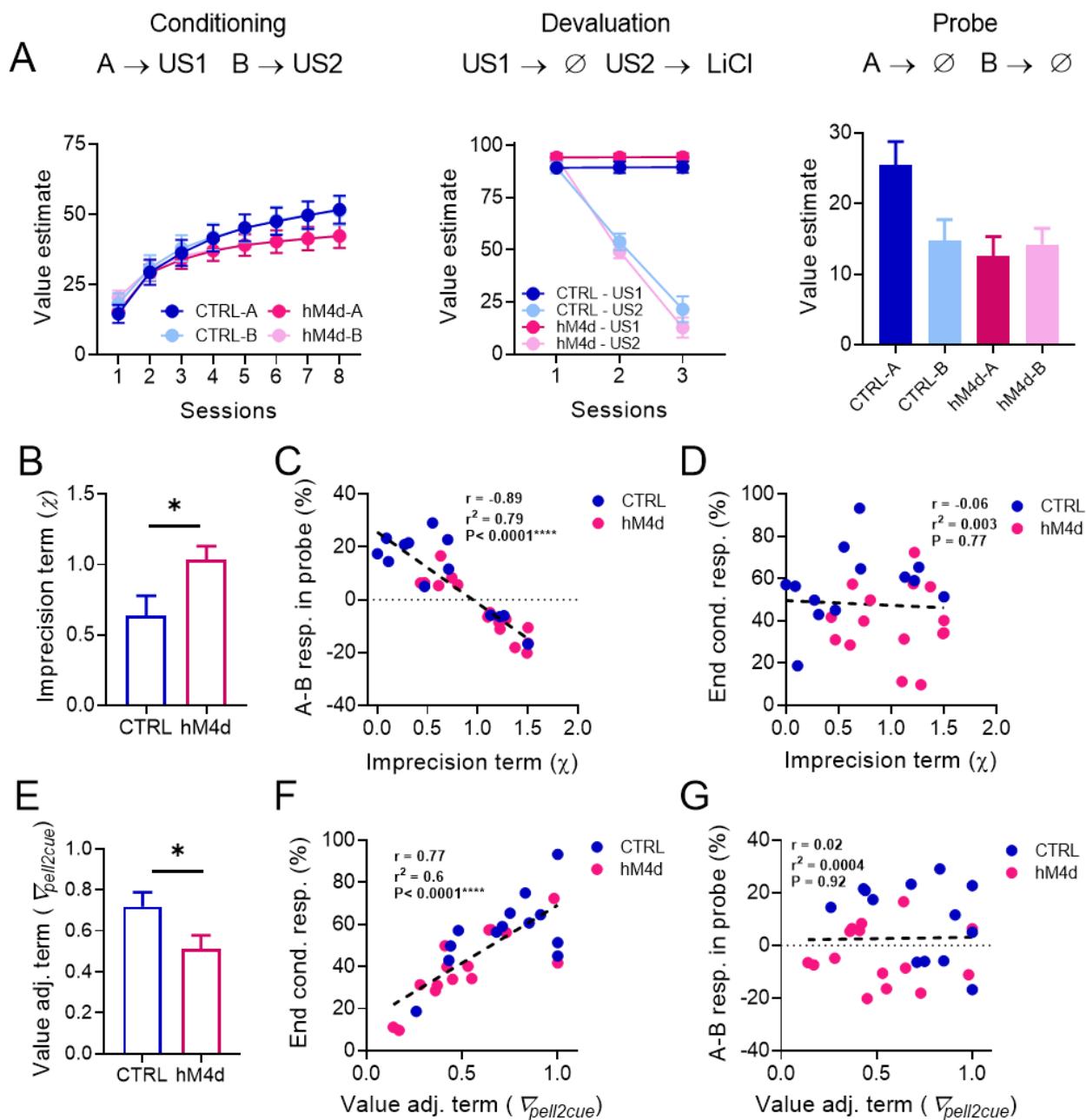
249 obeys task contingencies, with no value or state prediction updates to the $R1$ state, but with a

250 learning that $R2$ predicts a devalued illness state. (C) During the probe, new learning follows the

251 task states, and the value of cue states is adjusted according to the inferred state predictions

252 (grey arrows), including generalized inferences driven by the imprecision term during initial

253 acquisition (dashed grey arrows).



254

255 **Figure 5. OFC inactivation effects on reinforcer devaluation are explained by a deficit in**
 256 **differentiating specific cue-outcome associations. (A):** Model fit results for our model-based
 257 reinforcement learning model with potential outcome identity confusion. **(B):** The imprecision term
 258 χ was significantly higher in models fitted to hM4d behavioral data in relation to controls
 259 ($P=0.027^*$). **(C):** χ was negatively correlated with the differential responding to cues in the probe
 260 session. **(D):** χ was not correlated with the average responding to cues at the end of conditioning.
 261 **(E):** The value adjustment term ∇_{pell2cue} was significantly lower in hM4d models ($P = 0.04^*$).
 262 **(F):** ∇_{pell2cue} was positively correlated with average cue responding at the end of conditioning.
 263 **(G):** ∇_{pell2cue} was uncorrelated with differential responding to cues in the probe session. See Table
 264 S2 and Figure S2 for detailed parameter comparisons. Data are represented as mean \pm SEM.
 265 $^*P<0.05$.

266 **Discussion**

267 Our study demonstrates first that OFC is necessary for the construction of a normal
268 cognitive map and second that the OFC appears to play a circumscribed role in this
269 construction process. In our task, the map-making apparently did not cease when OFC
270 was inactivated, but the created map was degraded and less specific about which cues
271 led to which outcomes. This was modeled as a lack of precision in credit assignment, but
272 a failure to create appropriately “granular”^{36,37} internal representations of these external
273 events would produce the same result and seems more likely than a direct control of OFC
274 over error signal assignment.

275 As an intuitive example of the utility of setting this granularity properly, an older child may
276 learn that McDonald’s™ serves Happy Meals™ while Burger King™ serves King Jr™
277 meals, each with different toys, while a younger sibling may only recall that fast food
278 restaurants serve kids’ meals. Both cognitive maps lead to food, but only one will help
279 you collect all the Disney™ dragons! Whether to keep or discard the information related
280 to which restaurant serves which kids’ meal with which toy is a question of how to
281 segregate the states during learning^{36,37}; it is this process that we propose OFC controls
282 or contributes to during cognitive mapping²⁰. This example also illustrates the fact that
283 the generalization afforded by discarding information is not automatically incorrect – it
284 should respond to the exigencies of the circumstance.

285 We would speculate that OFC’s particular contribution to this process is in determining
286 whether to maintain separation between states that have uncertain or perhaps only
287 potential biological significance, when other parts of the circuit might collapse them. Maps
288 formed with too little separation due to hypofunction in OFC would tend to underrepresent
289 potential or hidden associations and meaning and be unable to link to and infer
290 relationships to other maps, as we have seen here. This is also evident in substance use
291 disorder, neurodegenerative diseases, and advanced aging, in which OFC function is
292 compromised^{5,6,38–41}, and in children and adolescents, which have immature frontal
293 cortices^{42,43}. Conversely, maps formed with too much separation due to an over-
294 exuberant OFC would tend to instill hidden meaning where it does not exist; notably
295 such an effect is arguably evident in obsessive compulsive disorder and paranoid
296 psychosis, which involve hyperfunction in the OFC and related areas^{7,40,44–49}.

297 The proposal that the OFC plays a critical role in defining the states that form the basis
298 of cognitive maps is congruent with much existing data. This includes classic findings
299 based on manipulations in the probe phase of reinforcer devaluation experiments^{16–19,50},
300 since the probe phase confounds the integration of established maps with their first time
301 use. That is, the function proposed here would be invoked in the probe test in devaluation
302 by the need to recognize the common reward state in the maps created during the
303 conditioning and devaluation phases. Similar conclusions apply to other cardinal studies
304 that have implicated the OFC in model-based behaviors, since these also normally
305 involve integrating or changing task maps^{51–53}. This more limited role for OFC also
306 explains better why this area is necessary in many other behavioral settings where normal
307 behavior depends upon recognizing states that are somewhat ambiguously defined with
308 regard to biological value, including for instance the differential outcomes effect⁵⁴, latent
309 inhibition²², and reversal learning^{55–57}, and why OFC seems to grow less important in
310 settings like reversal learning or economic choice once maps are well-established^{17,20,55,58}.

311 Finally, perhaps the most intriguing implication of our finding that OFC inactivation fails to
312 reveal model-free learning is the possibility that most learning is, to some degree, model-
313 based, but that mental representations or cognitive maps can be formed with different
314 degrees of granularity or specificity, as determined by the circuits that are engaged in the
315 learning process, including the OFC and other prefrontal areas. In the absence of
316 experimental interventions, illness, or lesions, it could be that the main determinant of the
317 resolution of a cognitive map would be task requirements and learning context. This would
318 mean that perhaps there is a unified learning process that can be more or less complex
319 depending on the contribution of specific circuits or environmental demands.

320 **Materials and Methods**

321 *Experimental Model and Subject Details*

322 Experiments were performed on 32 male Long-Evans rats (n=16 for each group, >3
323 months of age at the start of the experiment, Charles River Laboratories) housed on a 12
324 hr light/dark cycle at 25 °C. Rats were food restricted to ~85% of their original weight for
325 the duration of the experiments and were tested at the NIDA-IRP in accordance with NIH
326 guidelines determined by the Animal Care and Use Committee. All rats had *ad libitum*
327 access to water during the experiment and were fed 16-20 g of food per day, including
328 rat chow and pellets consumed during the behavioral task. Behavior was performed
329 during the light phase of the light/dark schedule. The number of rats used was determined
330 based on previous publications from the lab using Pavlovian conditioning tasks. Prior to
331 surgery, rats were handled every other day for 5-10 minutes for one week. Handling
332 procedures included the performance of mock i.p. injections (rats were scruffed and the
333 experimenter gently poked their abdomen with his finger or the end of a syringe with no
334 needle attached) to prepare the subjects for future real injections. These rats were also
335 used in another study ²². One rat in each group was excluded due to incorrect anatomical
336 placement, and two rats were excluded from the control group due to a hardware
337 malfunction during one of the behavioral sessions, leading to n=13 for the control group
338 and n=15 for the hM4d group.

339 *Surgical procedures*

340 Rats were anesthetized with 1-2% isoflurane and received either AAV8-CaMKIIa-hM4d-
341 mCherry (a Gi-coupled designer receptor exclusively activated by designer drugs
342 (DREADD)) or AAV8-hSyn-mCherry (control), both purchased from Adgene (Cambridge,
343 MA), bilaterally into the OFC (AP -3.0 mm, ML ± 3.2 mm, and DV -4.4 and -4.5 mm from
344 the brain surface) ²². A total 0.5 µL was delivered in each site at 0.1 µL/min via an infusion
345 pump.

346 *Sensory-specific conditioning*

347 Rats were trained and tested at least eight weeks after the surgeries in standard
348 behavioral boxes (12" x 10" x 12," Coulbourn Instruments, Holliston, MA). Each box was
349 equipped with a food cup, a pellet dispenser and two wall speakers. Head entries into the
350 food cup was measured based on breaks of an infra-red beam.

351 Rats were conditioned for eight sessions. Prior to each session, each rat received an i.p.
352 injection of JH60 (0.2 mg/kg, dissolved in 0.9% NaCl) and was left in their home cage for
353 at least 15 minutes before the start of the session, to allow for the DREADD agonist to
354 effectively inhibit transfected OFC neurons in the hM4d group ^{21,22}.

355 In every session, rats were exposed to two auditory stimuli, A and B (siren or white noise,
356 counterbalanced across rats); each cue was presented for 10 seconds, immediately
357 followed by the delivery of two bacon- or banana-flavored pellets (TestDiet;
358 counterbalanced pairing). Each pairing was presented eight times per session with an
359 average ITI of 2.5 minutes and the order of presentation was randomized and
360 counterbalanced.

361 Behavioral responses were quantified as the percentage of time that each rat spent in the
362 food cup during the last 5 seconds of each CS, subtracted by the time they spent in the
363 food cup 5 seconds before CS onset.

364 *Reward preference tests*

365 Prior to the devaluation procedure, rats were given a preference test comparing
366 consumption of the two pellet-types. Rats were provided 100 pellets of each type, placed
367 in two ceramic bowls for 30 minutes with the location of the bowls reversed every 5
368 minutes. The remaining pellets were counted after the 30 minute period. This procedure
369 was repeated after the devaluation probe to confirm the permanence of conditioned taste
370 aversion.

371 *Reinforcer devaluation via conditioned taste aversion with LiCl*

372 For outcome-specific reinforcer devaluation, we paired the reward associated with cue B
373 with LiCl, while the reward associated with cue A was not paired with anything. This
374 devaluation procedure lasted a total of six days. On days 1, 3 and 5, rats were given 30
375 minutes of access to the devalued pellet, followed immediately by an i.p. injection of 0.3
376 M LiCl, then returned to their home cages ¹⁷. On alternate days (2, 4 and 6), rats were
377 given 30 minutes of access to the non-devalued pellet and then returned to their home
378 cages. All preference and consumption tests were performed in clean home cages.

379 *Devaluation probe*

380 The devaluation probe was performed and analyzed exactly like one of the conditioning
381 sessions, except that no reinforcer was delivered, and the rats did not receive an injection.

382 *Object recognition task*

383 A subset of 10 rats from each group of the previous experiment was randomly selected
384 for this procedure. One of the control rats was the one excluded due to incorrect
385 anatomical placement, leading to n=9 for the control group and n=10 for the hM4d group
386 for this experiment.

387 One square arena (60 x 60 cm) made of brown plexiglass with a striped black and white
388 rectangular spatial cue was placed in a dimly (~3 lumens) red-light illuminated room. A
389 video camera was mounted above the arenas, and activity during test sessions was
390 digitized with a high-definition webcam (C920S PRO HD, Logitech, Suzhou, China). The
391 objects to be discriminated were white glass bulbs, transparent glass jars, cylindrical
392 amber glass bottles and trapezoidal white plastic bottles. All objects were glued to heavy
393 metal disks to prevent them from being displaced by the rats, and positioned at the back
394 corners of the arena (10 cm from walls). To avoid olfactory cues, the arena and objects
395 were thoroughly cleaned with 0.1% acetic acid after each trial.

396 For habituation, the rats were positioned into the open-field arena without any objects for
397 10 min the day before the start of the experiment. Throughout the experiment, the position
398 of the objects was constant, but the objects used and their relative positions were
399 counterbalanced for every animal. In the sample phase, rats were placed in the arena
400 facing the wall opposite the objects and were allowed to freely explore two identical
401 objects (either two light bulbs or two jars) for 10 min. Prior to the sampling session, each
402 rat received an i.p. injection of JH60 (0.2 mg/kg, dissolved in 0.9% NaCl) and was left in

403 their home cage for at least 20 minutes before the start of the session. This period was
404 given to allow for the DREADD agonist to reach the brain and effectively inhibit
405 transfected OFC neurons in the hM4d group. After 24 h, on memory test 1, rats were
406 allowed to explore freely one copy of the previously presented object (familiar) together
407 with a new one (novel) for 10 min. A second memory test was performed 24 h after the
408 first test. During the second memory test, the object that was introduced in the previous
409 memory test was kept in place (so now it was the familiar object), and the previous familiar
410 object was replaced by a novel object (either amber or white bottles), and rats explored
411 freely for 10 min.

412 As previously described²⁵, exploration was defined as pointing the nose toward to an
413 object at a distance of less than 1 cm and/or touching it with the nose. Turning around or
414 sitting on the objects was not considered as exploratory behavior. A Discrimination Index
415 (DI) was calculated, where DI = difference between exploration of the novel and familiar
416 objects / total object exploration time during each memory test, such as that a DI of 0
417 indicates equal preference for both objects, a DI of 1 indicates exclusive exploration of
418 the novel object, and a DI of -1 indicates exclusive exploration of the familiar object. This
419 measure was also calculated using only the first 5 min of each test, but results were
420 similar to when the whole test period was used (data not shown). Video recordings were
421 scored automatically using TopScan Suite (Clever Sys, Reston, VA). Exploration times
422 were verified manually by a trained rater blinded to treatment and objects identities using
423 BORIS software (Version 7.9.19, University of Torino, Italy).

424 *Histological procedures*

425 After completion of the experiment, rats were perfused with chilled phosphate buffer
426 saline (PBS) followed by 4% paraformaldehyde in PBS. The brains were then immersed
427 in 18% sucrose in PBS for at least 24 hours and frozen. The brains were sliced at 40 µm
428 and stained with DAPI (Vectashield-DAPI, Vector Lab, Burlingame, CA). Fluorescent
429 microscopy images of the slides were acquired with a BZ-X800 Keyence microscope.
430 Expression patterns were extracted from the images and then superimposed on
431 anatomical templates ²².

432 *Statistical analyses*

433 Data were analyzed using GraphPad Prism (GraphPad Software, San Diego, CA). Error
434 bars in figures denote the standard error of the mean. Effects of experimental variables
435 on behavioral measures were examined with repeated-measures 2-way and 3-way
436 ANOVAs combined with Sidak's or Tukey's post-hoc tests, respectively. Statistical
437 significance threshold for all tests was set at $P<0.05$.

438 *Reinforcement learning modelling*

439 Background

440 We modelled the five stages of the experiment in chronological order: Conditioning
441 (COND), Preference Test 1 (PRFT1), Devaluation (DEV), Preference Test 2 (PRFT2) and
442 finally Probe testing (PROBE). For COND and PROBE, the *Port Stay Probability (PSP)*
443 upon cue presentation was quantified. In PRFT1, DEV and PRFT2, the *percentage of*
444 *pellets eaten (PPE)* was quantified. Two pellets of a single type were delivered in each
445 case.

446 On each trial, an internal value estimate (\bar{V}) was calculated based on contributions from
447 a model based (MB) system (and, for the alternative hypothesis of a loss of MB learning,
448 in combination with a model free, MF, system). This value estimate was then transformed
449 to the behavioral measurement that was appropriate to the experimental stage. In keeping
450 with standard practice, we described the Pavlovian connection between cue and outcome
451 as being associations; however, in keeping with the temporal evolution of the task, we
452 actual model them as transitions from cue to outcome. MB (and MF) systems were
453 updated using the state transitions that were observed (e.g., A → ValuedOutcome) and the
454 rewards that were received.

455 The main hypothesis (we call this Ha) that we tested was that the OFC enables precise
456 credit assignment through separation of specific cue-outcome relations (i.e., that sound
457 A predicts banana flavored pellets) and when deactivated, only the general relation (that
458 any auditory cue predicts delivery of food) can be learned. However, we also tested a
459 model (Hb) which could potentially characterize a more conventional view of OFC
460 deactivation, namely that it would suppress MB over MF control. Since Hb mostly nests
461 Ha, we provide an partly integrated discussion.

462 Formal model

463 $S = \{s_1, \dots, s_n\}$ is the set of states. Each state is typically associated with the presentation
464 of a cue or an outcome that can be rewarded or devalued, i.e., $S \sim \{A, B, \text{ValuedOutcome},$
465 $\text{DevaluedOutcome}\}$.

466 In order to be able to characterize MB and MF systems fairly, we considered forms of
467 both that represent the uncertainty in their predictions of rewards and values. However,
468 we adopt a heuristic Bayesian scheme, with observation rates (the equivalent of learning
469 rates) that are parameters (rather than pure conjugate distributional updates).

470 Following Dearden et al.³², normal-gamma distributions are used to characterize this
471 uncertainty (since, following Daw et al.³, MB and MF systems share the characterization
472 of the values of the final, reward, states, albeit potentially with different parameters, and
473 with only the MB system being subject to the effects of devaluation).

474 We write this down in terms of the value of state s . The normal-gamma distribution for the
475 value V_s and the *precision* ρ_s^2 is written as $\mathcal{NG}(m_s, \lambda_s, \alpha_s, \beta_s)$. According to this, the
476 *conditional* distribution of V_s given ρ_s^2 is a normal distribution

$$477 \quad V_s \sim \mathcal{N}(m_s, 1/(\lambda_s \rho_s^2)) \quad (1)$$

478 and the precision has an unconditional gamma distribution

479 $\rho_s^2 \sim \Gamma(\alpha_s, \beta_s)$ (2)

480 in terms of our problem, we interpret the parameters as follows:

m_s is the mean reward across the previous iterations

λ_s is the number of outcomes seen (this also includes the cases when no reward

($r = 0$) is delivered in this state)

481 α_s describes the total opportunity for learning about the precision; assuming that we initialize alpha to: $\alpha_s^{init} = 0.5 * \lambda_s^{init}$, then it holds that at all times $\alpha_s = 0.5 * \lambda_s$.

β_s describes the scale of the precision across previous seen rewards

482 implying that the marginal mean and variance of V_s are:

483 $\bar{V}_s = E[V_s] = m_s \quad \text{Var}[V_s] = \frac{\beta_s}{\lambda_s * (\alpha_s - 1)}$ (3)

484 For MB computations, we also need an internal model of the state graph. We use T to
485 describe the distribution of transition probabilities from all to all states. Programmatically,
486 T can be described by a matrix where each row contains ϕ 's that are parameters for the
487 multinomial distribution that characterizes the transition probabilities from a "source" state
488 s to any of the other states (including the source state itself):

489 $T_s \sim Dirichlet(\phi_{ss_1}, \dots, \phi_{ss_n})$

490 This will only be interpretable for non-terminal "source" states s , as the trial ends
491 afterwards and no information about consecutive states can be collected. The terminal
492 states are thus absorbing. The sum of probabilities for a fixed source state to all possible
493 target states is 1 (see model based value calculation).

494 Initialization

495 We initialize all ϕ 's in T to 10. This implies a moderately strong prior that the transition
496 probabilities are uniform across all states:

497 $\phi_{ss'}^{init} = 10 \quad \forall (s, s')$ (4)

498 We initialize the distribution describing the reward distribution parameters to:

499 $V_s^{init}, \rho_s^{2 init} \sim NG(m_s^{init} = 0, \lambda_s^{init} = 3, \alpha_s^{init} = 1.5, \beta_s^{init} = 1.5) \quad \forall (s)$ (5)

500 The rationale for these values is that $\alpha_s^{init} > 1$ to ensure V_s has a finite marginal variance.
501 The value of m_s^{init} was chosen to be 0 as animals start out with no value expectation. λ_s^{init}
502 was set to $2 \times \alpha_s^{init}$, as this ratio is also maintained by the updates. β_s^{init} was set to 1.5 in
503 order to set the starting marginal variance to $\text{Var}[V_s^{init}] = 1$. However, we confirmed that
504 our results are stable to quite a wide range of initialization values, provided that the
505 variance is well-defined ($\alpha_s > 1$).

506 During the conditioning stage, $r_{ValueOutcomes} = r_{DevaluedOutcomes} = 2$ (for the number of
507 pellets provided). The reward of the DevaluedOutcome changes during the devaluation
508 period to $\text{NegRew} < 0$, which is a parameter that captures the strength of the devaluation
509 effect for each animal.

510 Model updates and value calculation

511 The normal-gamma distribution characterizing the value V_s of a terminal state updates
 512 according to each observation. In general, given an observation \hat{V}_s , writing $V'_s, \rho_s^2 \sim$
 513 $NG(m_s', \lambda_s', \alpha_s', \beta_s')$ for the updated distribution at s , we update the parameters as:

$$514 \quad m_s' = \frac{\lambda_s \cdot m_s + \eta \cdot \hat{V}_s}{\lambda + \eta}, \quad \lambda_s' = \lambda_s + \eta, \quad \alpha_s' = \alpha_s + 0.5 \cdot \eta, \quad \beta_s' = \beta_s + \frac{\eta \cdot \lambda_s \cdot (\hat{V}_s - m_s)^2}{2 * (\lambda_s + \eta)} \quad (6)$$

515 where η is called an observation rate and stands in for the number of subjective
 516 observations associated with each experience – it need only be positive and is not
 517 constrained to be less than 1.

518 For the MB system, writing $V_{s(t)}^{\text{mb}} \sim \mathcal{NG}(m_{s(t)}^{\text{mb}}, \lambda_{s(t)}^{\text{mb}}, \alpha_{s(t)}^{\text{mb}}, \beta_{s(t)}^{\text{mb}})$, for a terminal state,
 519 the update happens using $\hat{V}_{s(t)}^{\text{mb}} = r_{s(t)}$ and observation rate $\eta = \eta^{\text{mb}}$.

520 For the transition matrix, if the state $s(t)$ is a non-terminal state that is followed by state
 521 $s(t+1)$, the parameters of the transition probability distribution $T_{s(t)}$ are updated using a
 522 notional transition observation rate η^t as:

$$523 \quad \phi'_{s(t)s(t+1)} = \phi_{s(t)s(t+1)} + \eta^t \quad (7)$$

524 The MB system combines its knowledge of transitions and immediate rewards by applying
 525 the Bellman equation, which, in this case is very straightforward, since there are only two
 526 steps. Ignoring any posterior correlation between T and μ, σ , this implies that:

$$527 \quad \bar{V}_{s(t)}^{\text{mb}} = \begin{cases} m_{s(t)}^{\text{mb}} & \text{if } s(t) \text{ is a terminal state} \\ m_{s(t)}^{\text{mb}} + \gamma^{\text{mb}} \cdot \sum_{s(t+1)} E[T_{s(t)s(t+1)}] \cdot m_{s(t+1)}^{\text{mb}} & \text{otherwise} \end{cases}$$

528 The expected value for the next state is discounted by γ^{mb} , which normally is close to 1.
 529 The expected value for the transition probability from state $s(t)$ to state $s(t+1)$ can be
 530 calculated using: $E[T_{s(t)s(t+1)}] = \phi_{s(t)s(t+1)} / \sum_{\omega} \phi_{s(t)\omega}$.

531 The approximate variance can be calculated from the Bellman equation (again ignoring
 532 correlations).

533 Transformation of Estimated Values to Behavioral Measures

534 Having generated a prediction $\bar{V}_{s(t)}^{\text{mb}}$ from the MB system, it is necessary to convert it into
 535 the different experimental measures used in the various stages of the experimental
 536 paradigm. To do this, the combined value is normalized by the standard scalar reward
 537 received (2, for the number of pellets), and thresholded at 0 in order to avoid negative
 538 percentages when calculating the behavioral measures:

$$539 \quad \bar{V}_{s(t)}^{\text{norm}} = \max\left(\frac{\bar{V}_{s(t)}^{\text{mb}}}{2}, 0\right) \quad (8)$$

540 This normalized value can then be transformed to the respective behavioral measures for
 541 each stage, each given as percentages in the range [0,100]:

542
$$PSP_{s(t)}^{\text{COND}} = \bar{V}_{s(t)}^{\text{norm}} \cdot 100 \cdot V_{\text{pell2cue}} \quad (9)$$

$$PPE_{s(t)}^{\text{DEV}} = \bar{V}_{s(t)}^{\text{norm}} \cdot 100 \quad (10)$$

$$PSP_{s(t)}^{\text{PROBE}} = \bar{V}_{s(t)}^{\text{norm}} \cdot 100 \cdot V_{\text{pell2cue}} \cdot V_{\text{cp}} \quad (11)$$

543

544 V_{pell2cue} accounts for the difference in the impact of a secondary predictor versus a primary
 545 reinforcer, and V_{cp} may account for the forgetting of cue values from COND to the PROBE
 546 phase. Both factors are in the range [0,1]. An additional factor for the calculation of
 547 PPE_s^{DEV} was not necessary. PPE_s^{PRFT1} and PPE_s^{PRFT2} are calculated the same way as
 548 PPE_s^{DEV} .

549 Ha: Outcome-specific encoding deficit

550 In this version, only the MB system is used, and we assume no forgetting happens from
 551 COND to PROBE so V_{cp} is fixed to 1.

552 We model the inactivation of OFC as implying that the representation of the relevant cues
 553 (here, A and B) is potentially only partially distinct. Thus, if, for instance $s(t) = A$ is
 554 presented, then writing $\tilde{s}(t) = B$ as the 'other' cue, we imagine a spillover or fuzziness
 555 factor χ is introduced that is taken into consideration when doing the updates so that,
 556 along with equation 7, we have

557
$$\phi'_{\tilde{s}(t)s(t+1)} = \phi_{\tilde{s}(t)s(t+1)} + \eta^t \chi \quad (12)$$

558 If $\chi = 0$, nothing is learned for the opposite state, if $\chi = 1$, then exactly the same transition
 559 information is learned for both states, and if $\chi > 1$, then more is learned for the
 560 opposite/unseen state. Note that we continue to consider the outcome pellets to be
 561 perfectly distinguishable.

562 The free parameters used for model fitting are: NegRew, V_{pell2cue} , η^{mb} , η^t , χ .

563 Model Fitting

564 Separate sets of parameters were fit for each animal using
 565 `scipy.optimize.least_squares`, optimizing the mean squared error (MSE) between the real
 566 behavioral recordings and the model "behavior" outputs based on the current set of
 567 parameters. A weighted MSE was used in order to increase the contribution of the
 568 PROBE trials as behavioral differences across groups (control/OFC deactivation) were
 569 most apparent here, and the number of trials comparably few (there is 8x more condition
 570 trials, so PROBE trials have an 8x higher weight). The following bounds for the parameter
 571 fitting were defined as follows:

572

Param	NegRew	V_{pell2cue}	η^{mb}	η^t	χ
Min	-90	0	0	0	0
Max	0	1	40	40	1.5

573 Individual parameter estimates for either of the models were then compared across
574 groups using t-tests and Bonferroni-corrected for multiple comparisons.

575 Parameter Recovery

576 In order to ensure that recovered parameter values are meaningful in case of the model
577 fits, we checked parameter recoverability. Here, we use known parameter values along
578 with realistic noise to generate synthetic data, and then assess if we can recover from
579 these data values of the parameters that are close to the original generating levels. In
580 order to stay close to the real data, we used the parameters recovered for each animal
581 individually to generate one synthetic dataset/behavioral trace per animal. The noise was
582 generated using individual variability estimates of per trial behavioral measures for each
583 experiment stage (COND, DEV, PROBE). This yields 28 pairs (one pair per animal) of
584 real and estimated parameter values for each of the model's parameters. Good parameter
585 recoverability is when real and estimated parameter values are well correlated.

586 Recovery of most of the parameters was good ($r_{\text{NegRew}} = 0.9$, $r_{V_{\text{pell2cue}}} = 0.8$, $r_{\eta^{\text{mb}}} = 0.8$,
587 and $r_{\chi} = 0.7$); only the recovery of the state transition observation rate η^t was slightly less
588 faithful ($r_{\eta^t} = 0.6$), and so should be interpreted cautiously.

589 Repeating the recovery procedure multiple times produced comparable results. We also
590 used a synthetic generative procedure to assess the posterior correlations between
591 recovered parameter values, something that matters for prediction, albeit less for the
592 overall interpretation of the model. We started out with the median parameter values
593 across animals to generate synthetic data, with noise generated based on the variability
594 of behavioral measures per experiment stage, this time on the group level, and recovered
595 those parameter values from these data. We did this 30 times and assessed the
596 correlations between all pairs of inferred parameters. We found that most of the
597 correlations were mild – although the highest correlations between V_{pell2cue} and η^t ($r =$
598 -0.57), were quite substantial. This is not unexpected, as in effect V_{pell2cue} accounts for
599 the difference between the asymptotic performance at the end of conditioning, which is in
600 turn set by the observation rates.

601 Hypothesis Hb. MB deficit

602 Hb parameterizes a more conventional view of the effect of OFC inactivation, allowing for
603 a combination between MF and MB learning and control, with the possibility that this
604 combination is disturbed by inactivation.

605 As hypothesis Hb makes use of both model free and model based value systems, it
606 employs two sets of value distributions: $V_s^{\text{mf}}, \rho_s^2{}^{\text{mf}}$ and $V_s^{\text{mb}}, \rho_s^2{}^{\text{mb}}$. MB learning and
607 inference happens as for hypothesis Ha, except that the imprecision parameter χ is not
608 part of Hb. Following Dearden et al. (18), the MF value system uses normal-gamma
609 distributions for characterizing the values V_s^{mf} of all states s , both terminal (with rewards)
610 and non-terminal (with cues).

611 For the MF system, each time the animal passes through state s , the value distribution at
612 this state is updated according to either a scalar estimate \hat{V}_s of the long-run reward from
613 that state s for the MF system, or the immediate reward r using an observation rate η^{mf} .

614 Updating the MF values of terminal states is the same as for the MB system (using
 615 equation 6) with $\hat{V}_{s(t)}^{\text{mf}} = r_{s(t)}$ and an observation rate $\eta = \eta^{\text{mf}}$. Updating the values of non-
 616 terminal (cue) states also follows equation (6), but now (since, in this task, there are no
 617 rewards at non-terminal states) with

618
$$\hat{V}_{s(t)}^{\text{mf}} = \gamma^{\text{mf}} \cdot \bar{V}_{s(t+1)}^{\text{mf}}$$

619 Generally, the estimated value of the model free system is $\bar{V}_s^{\text{mf}} = m_s^{\text{mf}}$ and the estimated
 620 variance is given by the expression in equation 3.

621 According to Hb, both MB and MF contribute to the value of a cue, according to a convex
 622 combination parameter w^{mf} , which is in range [0,1] with 0 meaning only the model-based
 623 system is used and 1 that only the model free system is used:

624
$$\bar{V}_{s(t)}^{\text{comb}} = w^{\text{mf}} \cdot \bar{V}_{s(t)}^{\text{mf}} + (1 - w^{\text{mf}}) \cdot \bar{V}_{s(t)}^{\text{mb}}, \quad (13)$$

625 This then generates the normalized value

626
$$\bar{V}_{s(t)}^{\text{norm}} = \max\left(\frac{\bar{V}_{s(t)}^{\text{comb}}}{2}, 0\right) \quad (14)$$

627 which leads to behavioral measures as in equations (9)-(11).

628 For convenience of fitting, the observation rate for the transition matrix was fixed to the
 629 one for the model based value distributions $\eta^t = \eta^{\text{mb}}$, and γ^{mf} and γ^{mb} were set to 1. The
 630 free parameters used for model fitting were therefore: NegRew, ∇_{pell2cue} , ∇_{cp} , η^{mf} , η^{mb} and
 631 w^{mf} . As an important simplification, we fixed w^{mf} to have the same value for COND and
 632 PROBE, even in the inactivation case, as if this had been stamped in during COND, for
 633 instance because of heightened MB uncertainty. If w^{mf} was lower in PROBE then, we
 634 would not have expected such equivalent decreased responding to both cues. An
 635 alternative possibility we did not explore is that inactivation would leave the MB system
 636 with impaired learning in COND, even at asymptote for both cues; and that if w^{mf} was
 637 indeed lower in PROBE, reduced responding would come from averaging a persistent
 638 value from the MF system with the decreased output of the MB system. This would be an
 639 alternative to making parameter ∇_{cp} small.

640 The same constraints as above were used for fitting the MB system (albeit with χ
 641 effectively clamped at 0). Additionally, we had

642

Param	∇_{cp}	η^{mf}	w^{mf}
Min	0	0	0
Max	1	40	1

643 Parameter recovery of the observation rate parameters were the least faithful ($r_{\eta^{\text{mf}}} =$
644 0.6 , $r_{\eta^{\text{mb}}} = 0.2$ and $r_{w^{\text{mf}}} = 0.6$), while the estimated values of the other parameters were
645 closer to real ones ($r_{\text{NegRew}} = 0.9$, $r_{V_{\text{pell2cue}}} = 0.9$, $r_{V_{\text{cp}}} = 0.8$). Thus, when interpreting this
646 model, less emphasis should be placed on the first three parameters. Correlations in the
647 recovered values of the parameters were mild – with the highest correlation being
648 between V_{pell2cue} and w^{mf} ($r = -0.54$).

649 **References**

- 650 1. Tolman, E. C. Cognitive maps in rats and men. *Psychol. Rev.* **55**, 189–208 (1948).
- 651 2. Behrens, T. E. J. *et al.* What Is a Cognitive Map? Organizing Knowledge for Flexible
652 Behavior. *Neuron* **100**, 490–509 (2018).
- 653 3. Daw, N. D., Niv, Y. & Dayan, P. Uncertainty-based competition between prefrontal and
654 dorsolateral striatal systems for behavioral control. *Nat. Neurosci.* **2005** *8*, 1704–
655 1711 (2005).
- 656 4. Titone, D., Ditman, T., Holzman, P. S., Eichenbaum, H. & Levy, D. L. Transitive inference
657 in schizophrenia: impairments in relational memory organization. *Schizophr. Res.* **68**,
658 235–247 (2004).
- 659 5. Schoenbaum, G., Chang, C. Y., Lucantonio, F. & Takahashi, Y. K. Thinking Outside the
660 Box: Orbitofrontal Cortex, Imagination, and How We Can Treat Addiction.
661 *Neuropsychopharmacology* vol. 41 2966–2976 (2016).
- 662 6. Shields, C. N. & Gremel, C. M. Review of Orbitofrontal Cortex in Alcohol Dependence: A
663 Disrupted Cognitive Map? *Alcohol. Clin. Exp. Res.* **44**, 1952–1964 (2020).
- 664 7. Sharp, P. B., Dolan, R. J. & Eldar, E. Disrupted state transition learning as a
665 computational marker of compulsivity. (2020) doi:10.31234/OSF.IO/X29JQ.
- 666 8. Stalnaker, T. A., Cooch, N. K. & Schoenbaum, G. What the orbitofrontal cortex does not
667 do. *Nature Neuroscience* vol. 18 620–627 (2015).
- 668 9. Wallis, J. D. Cross-species studies of orbitofrontal cortex and value-based decision-
669 making. *Nat. Neurosci.* **2011** *15*, 13–19 (2011).
- 670 10. Rudebeck, P. H. & Rich, E. L. Orbitofrontal cortex. *Curr. Biol.* **28**, R1083–R1088 (2018).
- 671 11. Rudebeck, P. H. & Murray, E. A. The Orbitofrontal Oracle: Cortical Mechanisms for the
672 Prediction and Evaluation of Specific Behavioral Outcomes. *Neuron* **84**, 1143–1156
673 (2014).
- 674 12. Wilson, R. C., Takahashi, Y. K., Schoenbaum, G. & Niv, Y. Orbitofrontal cortex as a
675 cognitive map of task space. *Neuron* **81**, 267–279 (2014).
- 676 13. Schuck, N. W., Cai, M. B., Wilson, R. C. & Niv, Y. Human Orbitofrontal Cortex
677 Represents a Cognitive Map of State Space. *Neuron* **91**, 1402–1412 (2016).
- 678 14. Rustichini, A. & Padoa-Schioppa, C. A neuro-computational model of economic
679 decisions. *J. Neurophysiol.* **114**, 1382–1398 (2015).
- 680 15. Howard, J. D. & Kahnt, T. To be specific: The role of orbitofrontal cortex in signaling
681 reward identity. *Behav. Neurosci.* **135**, 210–217 (2021).
- 682 16. Gallagher, M., McMahan, R. W. & Schoenbaum, G. Orbitofrontal Cortex and
683 Representation of Incentive Value in Associative Learning. *J. Neurosci.* **19**, 6610–6614
684 (1999).
- 685 17. Gardner, M. P. H., Conroy, J. S., Shaham, M. H., Styler, C. V. & Schoenbaum, G. Lateral
686 Orbitofrontal Inactivation Dissociates Devaluation-Sensitive Behavior and Economic
687 Choice. *Neuron* **96**, 1192–1203.e4 (2017).
- 688 18. Izquierdo, A., Suda, R. K. & Murray, E. A. Bilateral Orbital Prefrontal Cortex Lesions in
689 Rhesus Monkeys Disrupt Choices Guided by Both Reward Value and Reward
690 Contingency. *J. Neurosci.* **24**, 7540–7548 (2004).

691 19. Howard, J. D. *et al.* Targeted Stimulation of Human Orbitofrontal Networks Disrupts
692 Outcome-Guided Behavior. *Curr. Biol.* **30**, 490-498.e4 (2020).

693 20. Gardner, M. P. H. & Schoenbaum, G. The orbitofrontal cartographer. *Behav. Neurosci.*
694 **135**, 267–276 (2021).

695 21. Bonaventura, J. *et al.* High-potency ligands for DREADD imaging and activation in
696 rodents and monkeys. *Nat. Commun.* **10**, 1–12 (2019).

697 22. Costa, K. M., Sengupta, A. & Schoenbaum, G. The orbitofrontal cortex is necessary for
698 learning to ignore. *Curr. Biol.* **31**, 2652-2657.e3 (2021).

699 23. Gomez, J. L. *et al.* Chemogenetics revealed: DREADD occupancy and activation via
700 converted clozapine. *Science (80-)* **357**, 503–507 (2017).

701 24. Panayi, M. C. & Killcross, S. The Role of the Rodent Lateral Orbitofrontal Cortex in
702 Simple Pavlovian Cue-Outcome Learning Depends on Training Experience. **2**, 1–14
703 (2021).

704 25. Weiler, M. *et al.* Effects of repetitive Transcranial Magnetic Stimulation in aged rats
705 depend on pre-treatment cognitive status: Toward individualized intervention for
706 successful cognitive aging. *Brain Stimul. Basic, Transl. Clin. Res. Neuromodulation* **14**,
707 1219–1225 (2021).

708 26. Panayi, M. C., Khamassi, M. & Killcross, S. The rodent lateral orbitofrontal cortex as an
709 arbitrator selecting between model-based and model-free learning systems. *Behav.*
710 *Neurosci.* **135**, 226–244 (2021).

711 27. Dezfouli, A. & Balleine, B. W. Habits, action sequences and reinforcement learning. *Eur.*
712 *J. Neurosci.* **35**, 1036–1051 (2012).

713 28. Miller, K. J., Shenhav, A. & Ludvig, E. A. Habits without values. *Psychol. Rev.* **126**, 292–
714 311 (2019).

715 29. Zhou, J. *et al.* Evolving schema representations in orbitofrontal ensembles during
716 learning. *Nat. 2020* **5907847** **590**, 606–611 (2020).

717 30. Takahashi, Y. K., Stalnaker, T. A., Marrero-Garcia, Y., Rada, R. M. & Schoenbaum, G.
718 Expectancy-Related Changes in Dopaminergic Error Signals Are Impaired by Cocaine
719 Self-Administration. *Neuron* **101**, 294-306.e3 (2019).

720 31. Walton, M. E., Behrens, T. E. J., Buckley, M. J., Rudebeck, P. H. & Rushworth, M. F. S.
721 Separable Learning Systems in the Macaque Brain and the Role of Orbitofrontal Cortex
722 in Contingent Learning. *Neuron* **65**, 927–939 (2010).

723 32. Dearden, R., Dearden, R., Friedman, N. & Russell, S. Bayesian Q-learning. *IN AAAI/IAAI*
724 761–768 (1998).

725 33. Wilson, R. C. & Collins, A. G. E. Ten simple rules for the computational modeling of
726 behavioral data. *Elife* **8**, (2019).

727 34. Palminteri, S., Wyart, V. & Koechlin, E. The Importance of Falsification in Computational
728 Cognitive Modeling. *Trends Cogn. Sci.* **21**, 425–433 (2017).

729 35. Camille, N., Griffiths, C. A., Vo, K., Fellows, L. K. & Kable, J. W. Ventromedial Frontal
730 Lobe Damage Disrupts Value Maximization in Humans. *J. Neurosci.* **31**, 7527–7532
731 (2011).

732 36. Dezfouli, A. & Balleine, B. W. Learning the structure of the world: The adaptive nature of
733 state-space and action representations in multi-stage decision-making. *PLOS Comput.*

734 *Biol.* **15**, e1007334 (2019).

735 37. Gershman, S. J. & Niv, Y. Learning latent structure: carving nature at its joints. *Curr.*
736 *Opin. Neurobiol.* **20**, 251–256 (2010).

737 38. Denburg, N. L. *et al.* The Orbitofrontal Cortex, Real-World Decision Making, and Normal
738 Aging. *Ann. N. Y. Acad. Sci.* **1121**, 480 (2007).

739 39. Van Hoesen, G. W., Parvizi, J. & Chu, C. C. Orbitofrontal Cortex Pathology in Alzheimer's
740 Disease. *Cereb. Cortex* **10**, 243–251 (2000).

741 40. Jackowski, A. P. *et al.* The involvement of the orbitofrontal cortex in psychiatric disorders:
742 an update of neuroimaging findings. *Brazilian J. Psychiatry* **34**, 207–212 (2012).

743 41. Volkow, N. D. & Fowler, J. S. Addiction, a Disease of Compulsion and Drive: Involvement
744 of the Orbitofrontal Cortex. *Cereb. Cortex* **10**, 318–325 (2000).

745 42. Decker, J. H., Otto, A. R., Daw, N. D. & Hartley, C. A. From Creatures of Habit to Goal-
746 Directed Learners: Tracking the Developmental Emergence of Model-Based
747 Reinforcement Learning. *Psychol. Sci.* **27**, 848–858 (2016).

748 43. Sowell, E. R., Thompson, P. M., Holmes, C. J., Jernigan, T. L. & Toga, A. W. In vivo
749 evidence for post-adolescent brain maturation in frontal and striatal regions. *Nat.*
750 *Neurosci.* **1999** *210* **2**, 859–861 (1999).

751 44. Fradkin, I., Adams, R. A., Parr, T., Roiser, J. P. & Huppert, J. D. Searching for an anchor
752 in an unpredictable world: A computational model of obsessive compulsive disorder.
753 *Psychol. Rev.* **127**, (2020).

754 45. Jung, W. H. *et al.* Abnormal corticostriatal-limbic functional connectivity in obsessive–
755 compulsive disorder during reward processing and resting-state. *NeuroImage Clin.* **3**, 27–
756 38 (2013).

757 46. Rauch, S. L. *et al.* Functional Magnetic Resonance Imaging Study of Regional Brain
758 Activation During Implicit Sequence Learning in Obsessive–Compulsive Disorder. *Biol.*
759 *Psychiatry* **61**, 330–336 (2007).

760 47. Walther, S. *et al.* Limbic links to paranoia: increased resting-state functional connectivity
761 between amygdala, hippocampus and orbitofrontal cortex in schizophrenia patients with
762 paranoia. *Eur. Arch. Psychiatry Clin. Neurosci.* **1**, 1–12 (2021).

763 48. Yu, L., Kazinka, R., Pratt, D., Kwashie, A. & Macdonald, A. W. Resting-State Networks
764 Associated with Behavioral and Self-Reported Measures of Persecutory Ideation in
765 Psychosis. *Brain Sci.* **2021**, Vol. 11, Page 1490 **11**, 1490 (2021).

766 49. Pauly, K. *et al.* Cerebral Dysfunctions of Emotion—Cognition Interactions in Adolescent-
767 Onset Schizophrenia. *J. Am. Acad. Child Adolesc. Psychiatry* **47**, 1299–1310 (2008).

768 50. Murray, E. A., Moylan, E. J., Saleem, K. S., Basile, B. M. & Turchi, J. Specialized areas
769 for value updating and goal selection in the primate orbitofrontal cortex. *Elife* **4**, (2015).

770 51. Jones, J. L. *et al.* Orbitofrontal cortex supports behavior and learning using inferred but
771 not cached values. *Science (80-)* **338**, 953–956 (2012).

772 52. Takahashi, Y. K. *et al.* The Orbitofrontal Cortex and Ventral Tegmental Area Are
773 Necessary for Learning from Unexpected Outcomes. *Neuron* **62**, 269–280 (2009).

774 53. Ostlund, S. B. & Balleine, B. W. Orbitofrontal Cortex Mediates Outcome Encoding in
775 Pavlovian But Not Instrumental Conditioning. *J. Neurosci.* **27**, 4819–4825 (2007).

776 54. McDannald, M. A., Saddoris, M. P., Gallagher, M. & Holland, P. C. Lesions of
777 Orbitofrontal Cortex Impair Rats' Differential Outcome Expectancy Learning But Not
778 Conditioned Stimulus-Potentiated Feeding. *J. Neurosci.* **25**, 4626–4632 (2005).

779 55. Schoenbaum, G., Nugent, S. L., Saddoris, M. P. & Setlow, B. Orbitofrontal lesions in rats
780 impair reversal but not acquisition of go, no-go odor discriminations. *Neuroreport* **13**,
781 885–890 (2002).

782 56. Jones, B. & Mishkin, M. Limbic lesions and the problem of stimulus—Reinforcement
783 associations. *Exp. Neurol.* **36**, 362–377 (1972).

784 57. Ghods-Sharifi, S., Haluk, D. M. & Floresco, S. B. Differential effects of inactivation of the
785 orbitofrontal cortex on strategy set-shifting and reversal learning. *Neurobiol. Learn. Mem.*
786 **89**, 567–573 (2008).

787 58. Dias, R., Robbins, T. W. & Roberts, A. C. Dissociable Forms of Inhibitory Control within
788 Prefrontal Cortex with an Analog of the Wisconsin Card Sort Test: Restriction to Novel
789 Situations and Independence from “On-Line” Processing. *J. Neurosci.* **17**, 9285–9297
790 (1997).

791

792 **Acknowledgments:** We thank Jordi Bonaventura for guidance on chemogenetic
793 methods, Nishika Raheja and Savana Agyemang for technical assistance, as well as
794 Evan Hart and Marios Panayi for stimulating discussions. The opinions expressed in this
795 article are the authors' own and do not reflect the view of the NIH/DHHS.

796

797 **Funding:**

798 Intramural Research Program at the National Institute on Drug Abuse (KMC, MG, GS)

799 Max Planck Society (RS, KL, PD)

800 Humboldt Foundation (PD).

801 German Research Foundation grant MA 8509/1-1 (KMC)

802

803 **Author contributions:**

804 Conceptualization: KMC, MPHG, PD, GS

805 Methodology: KMC, RS, KL, MPHG, PD, GS

806 Investigation: KMC

807 Software: RS, KL, PD

808 Validation: KMC, RS, KL, PD

809 Data Curation: KMC, RS

810 Formal analysis: KMC, RS

811 Visualization: KMC, RS

812 Resources: PD, GS

813 Supervision: PD, GS

814 Project Management: PD, GS

815 Writing – original draft: KMC

816 Writing – review & editing: KMC, RS, PD, GS

817

818 **Competing interests:** Authors declare that they have no competing interests.

819

820 **Data and materials availability:** all code and data used in this study are available on

821 <https://colab.research.google.com/drive/1VYRAnvAO8OmzQpVaJe5radKIZnpEn638?us>

822 p-sharing. Additional information on materials and protocols are available upon request
823 to the corresponding authors.

Supplementary Information

Table S1. Statistical results of behavioral experiments

Conditioning (3-way ANOVA)	SS	MS	F (DFn, DFd)	P value
<i>Sessions</i>	39952	5707	F (7, 182) = 26.74	P<0.0001****
<i>(CTRL vs hM4d)</i>	2512	2512	F (1, 26) = 0.7170	P=0.4048
<i>(A vs B)</i>	12.16	12.16	F (1, 26) = 0.02112	P=0.8856
<i>Sessions x (CTRL vs hM4d)</i>	6981	997.3	F (7, 182) = 4.672	P<0.0001****
<i>Sessions x (A vs B)</i>	874.0	124.9	F (7, 182) = 1.353	P=0.2279
<i>(CTRL vs hM4d) x (A vs B)</i>	9.810	9.810	F (1, 26) = 0.01703	P=0.8972
<i>Sessions x (CTRL vs hM4d) x (A vs B)</i>	517.3	73.90	F (7, 182) = 0.8008	P=0.5876
CTA (3-way ANOVA)	SS	MS	F (DFn, DFd)	P value
<i>Sessions</i>	37224	18612	F (2, 52) = 64.18	P<0.0001****
<i>(CTRL vs hM4d)</i>	1344	1344	F (1, 26) = 2.912	P=0.0998
<i>(ND vs D)</i>	53832	53832	F (1, 26) = 127.1	P<0.0001****
<i>Sessions x (CTRL vs hM4d)</i>	39.38	19.69	F (2, 52) = 0.06789	P=0.9344
<i>Sessions x (ND vs D)</i>	41521	20761	F (2, 52) = 83.36	P<0.0001****
<i>(CTRL vs hM4d) x (ND vs D)</i>	155.6	155.6	F (1, 26) = 0.3675	P=0.5497
<i>Sessions x (CTRL vs hM4d) x (ND vs D)</i>	32.92	16.46	F (2, 52) = 0.06609	P=0.9361
PROBE (2-way ANOVA)	SS	MS	F (DFn, DFd)	P value
<i>(CTRL vs hM4d)</i>	806.6	806.6	F (1, 26) = 4.340	P=0.0472*
<i>(A vs B)</i>	143.3	143.3	F (1, 26) = 1.743	P=0.1983
<i>(CTRL vs hM4d) x (A vs B)</i>	658.8	658.8	F (1, 26) = 8.013	P=0.0088**

Table S2. Comparisons of fitted parameters for the control and hM4d groups within the two tested reinforcement learning models. Data are represented as mean \pm SEM.

Ha: Precision deficit model parameters	Control	hM4d	P value
<i>Imprecision term - χ</i>	0.64 ± 0.138	1.031 ± 0.099	P=0.027*
<i>Model-based value observation rate - η^{mb}</i>	2.669 ± 1.964	5.062 ± 2.626	P=0.169
<i>Model-based transition observation rate - η^{tm}</i>	11 ± 4.657	22.41 ± 4.477	P=0.067
<i>Strength of devaluation - NegRew</i>	-50.82 ± 5.092	-60.21 ± 4.81	P=0.185
<i>Value adjustment - $\nabla_{pell2cue}$</i>	0.718 ± 0.069	0.512 ± 0.066	P=0.04*

Hb: MB vs MF model parameters	Control	hM4d	P value
<i>Model-free observation rate - η^{mf}</i>	3.71 ± 2.778	15.21 ± 4.758	P=0.007**
<i>Model-based observation rate - η^{mb}</i>	12.8 ± 4.51	15.77 ± 4.82	P=0.575
<i>Contribution of model-free system - w^{mf}</i>	0.553 ± 0.106	0.703 ± 0.081	P=0.513
<i>Strength of devaluation - NegRew</i>	-52.09 ± 5.85	-54.78 ± 5.243	P=0.821
<i>Value adjustment - $\nabla_{pell2cue}$</i>	0.761 ± 0.069	0.501 ± 0.059	P=0.012*
<i>Conditioning to probe forgetting - ∇_{cp}</i>	0.603 ± 0.079	0.385 ± 0.083	P=0.071

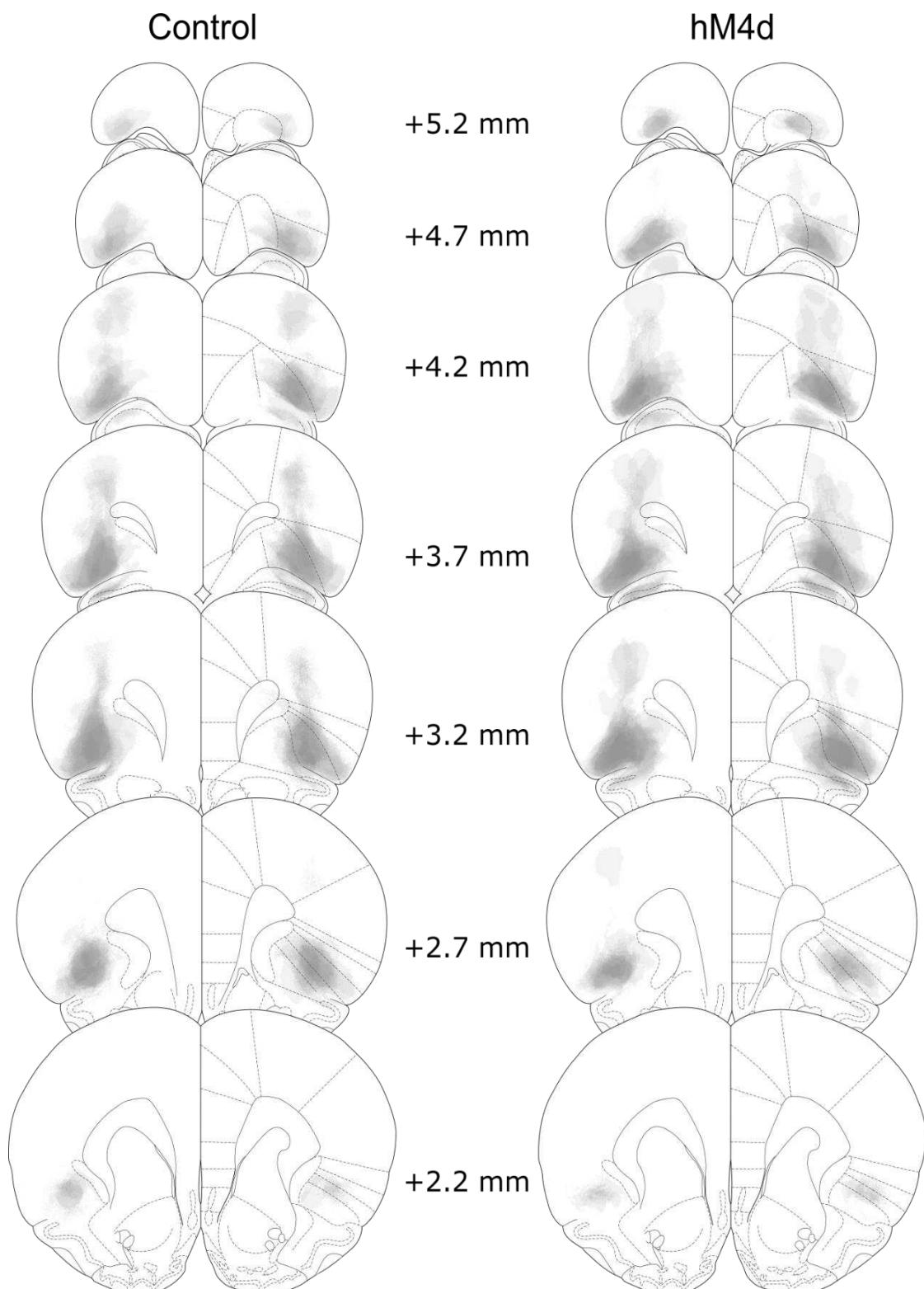


Figure S1. Histological validation of DREADD strategy. Reconstruction of viral expression patterns in the OFC across the control and hM4d groups. Viral spread was mostly contained within the OFC and was similar for control and hM4d subjects.

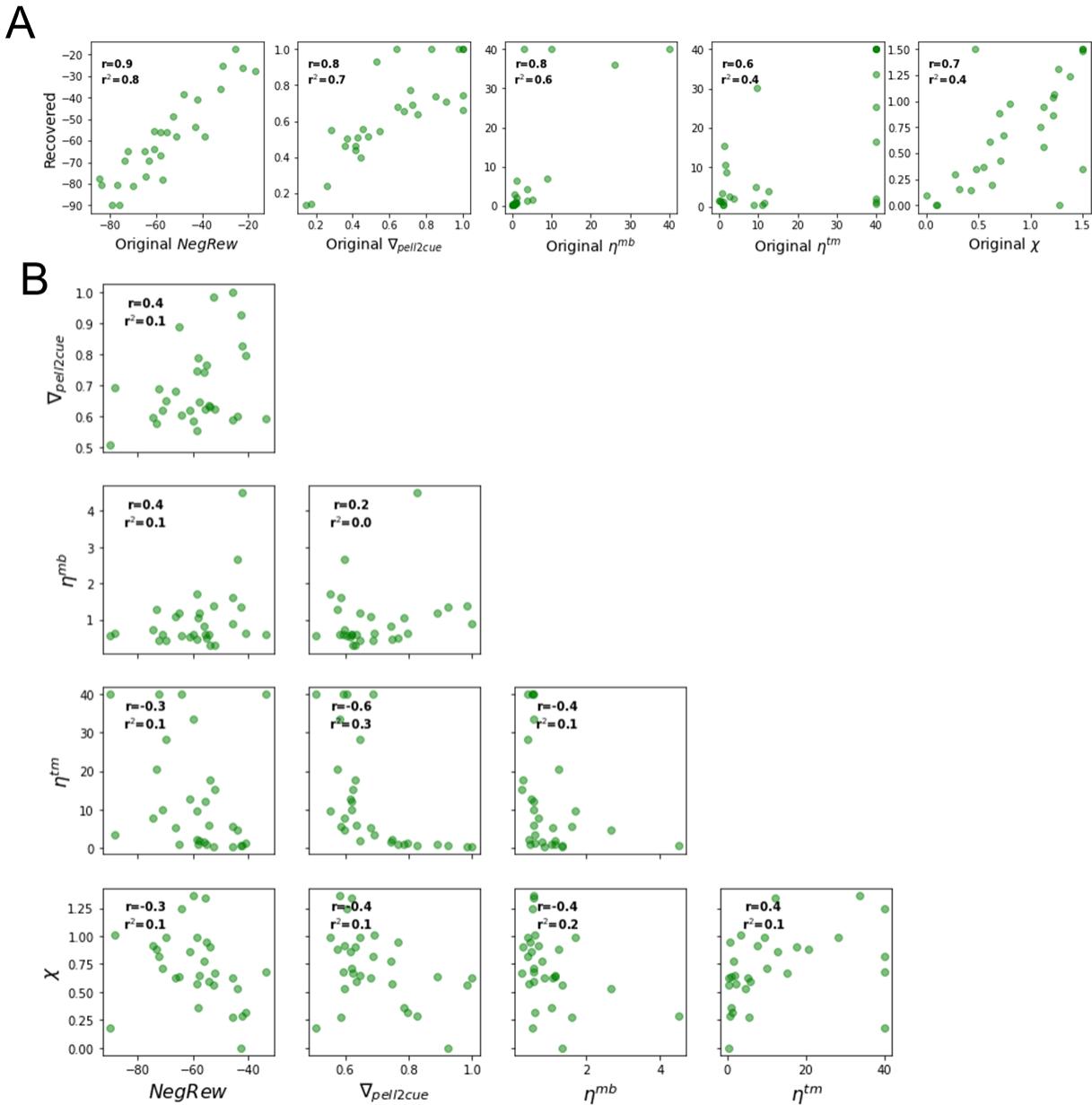


Figure S2. Parameter recovery and correlations for the reinforcement learning model with association specificity deficit. A: Correlations between estimated and original parameters. Note that most parameters were recovered with $r > 0.7$, with the least faithfully recovered parameter being the state transition observation rate η^{tm} with $r < 0.6$. **B:** Correlations between fitted parameters. Note that only correlations between $V_{pell2cue}$ and η^{mb} ($r = -0.54$) in HB and between $V_{pell2cue}$ and η^{tm} ($r = -0.57$) are substantial.

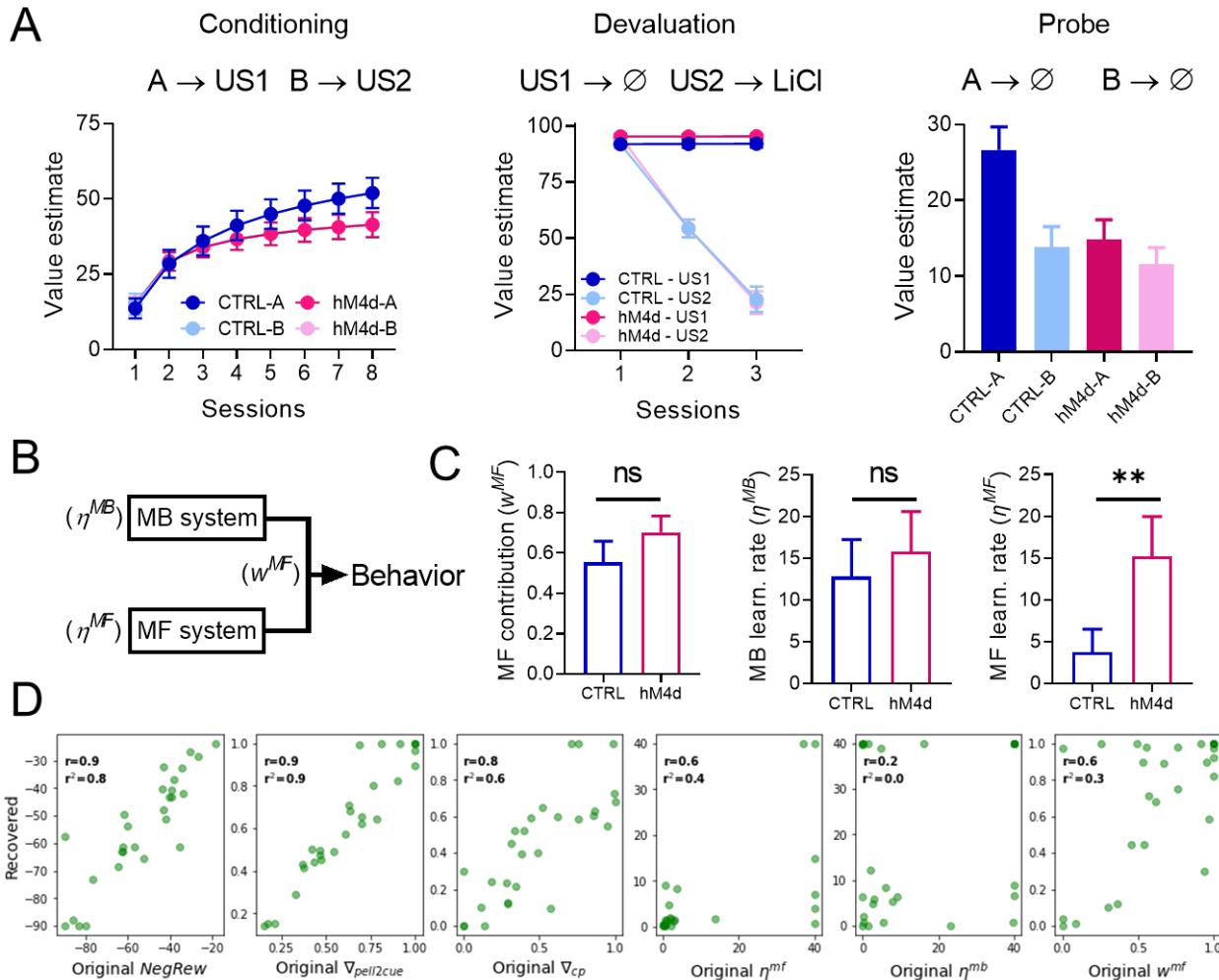


Figure S3. Data fitting with a reinforcement learning model that allows for a shift between model-based (MB) and model-free (MF) learning. (A) Model fit results for our MB vs MF reinforcement learning model. Note that it can also replicate our behavioral results well. (B) Schematic of the critical aspect of the model and the expected result: the observation rate for both the MB and MF systems, as well as the potential contribution of each to behavior, were free parameters, and we expected that the contribution of the MB system would be diminished, either by a reduced MB observation rate or an increase in the MF contribution. (C) Values of the critical observation rate-related parameters, namely the proportion of contribution of the MF (w^{MF}) system, the MF observation rate (η^{MF}), and the MB observation rate (η^{MB}) for both control and hM4d model fits. Note that instead of a reduction in MB learning or proportional contribution, only the MF observation rate was significantly higher in the hM4d group. See table S2 for detailed parameter comparisons. (D) Correlations between estimated and original parameters for the MB vs MF model. Note that parameter recovery of all critical observation rate-related parameters was not very faithful ($r < 0.7$). Data are represented as mean \pm SEM. ** $P < 0.01$.