bioRxiv preprint doi: https://doi.org/10.1101/2022.01.25.477716; this version posted January 26, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY-NC-ND 4.0 International license.

1

The role of the orbitofrontal cortex in creating cognitive maps

Kaué Machado Costa'’, Robert Scholz?3, Kevin Lloyd?, Perla Moreno-Castilla*, Matthew
P. H. Gardner®, Peter Dayan?% and Geoffrey Schoenbaum?’

! National Institute on Drug Abuse Intramural Research Program, National Institutes of Health,
Baltimore, MD, 21224, USA

2 Max Planck Institute for Biological Cybernetics, Tlbingen, 72076, Germany
3 Max Planck School of Cognition, Leipzig, 04103, Germany

* National Institute on Aging Intramural Research Program, National Institutes of Health,
Baltimore, MD, 21224, USA

5 Concordia University, Montreal, QC, 7141, Canada
& University of Tlbingen, Tlbingen, 72074, Germany
* Corresponding authors: kaue.m.costa@gmail.com and geoffrey.schoenbaum@nih.gov

Abstract

We use internal models of the external world to guide behavior, but little is known about
how these cognitive maps are created. The orbitofrontal cortex (OFC) is typically thought
to access these maps to support model-based decision-making, but it has recently been
proposed that its critical contribution may be instead to integrate information into existing
and new models. We tested between these alternatives using an outcome-specific
devaluation task and a high-potency chemogenetic approach. We found that selectively
inactivating OFC principal neurons when rats learned distinct cue-outcome associations,
but prior to outcome devaluation, disrupted subsequent model-based inference,
confirming that the OFC is critical for creating new cognitive maps. However, OFC
inactivation surprisingly led to generalized devaluation. Using a novel reinforcement
learning framework, we demonstrate that this effect is best explained not by a switch to a
model-free system, as would be traditionally assumed, but rather by a circumscribed
deficit in defining credit assignment precision during model construction. We conclude
that the critical contribution of the OFC to learning is regulating the specificity of
associations that comprise cognitive maps.

One Sentence Summary: OFC inactivation impairs learning of new specific cue-
outcome associations without disrupting model-based learning in general.

Keywords: inference, chemogenetics, reinforcement learning, learning theory, model-
based learning, JHU37160, cognitive map, devaluation, conditioned taste aversion.
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Introduction

Animals behave in ways that suggest that the brain can build, store, and use internal
representations that account for the predictive relationships between elements in the
external world. Also called associative models or cognitive maps'!, these mental
constructs are thought to be especially important for adaptive behavior under new or
changed conditions?3. The inability to use such models properly is thought to be a key
feature of mental illnesses such as schizophrenia®, substance use disorder®8, and
obsessive compulsive disorder’. However, despite their importance, we are only
beginning to understand the informational structure of cognitive maps and how the brain
creates, stores, and uses them.

In this regard, the orbitofrontal cortex (OFC) has been extensively implicated in model-
based behaviors &'1. However, its exact contributions to defining or using the cognitive
maps that support these behaviors are still controversial. The currently prevailing view is
that the OFC accesses information stored elsewhere to represent the current task space
at the time a decision is made '2-'5. While broadly consistent with the literature, this view
is most strongly supported by devaluation experiments in which pairing a given outcome
with illness (or satiety) leads to reduced conditioned responding to a cue predicting that
outcome. This effect has been shown repeatedly and across species to require the OFC
at the time of the probe test '6-1°, a result generally interpreted as showing a role for OFC
in using the associative map formed earlier in training. Compromising the OFC disrupts
this usage, resulting in supposedly “model-free” or habit-like behavior. By this account,
the OFC offers a form of specialized working memory required for mental simulation.

However, recent studies suggest that the OFC might instead serve as the cognitive
“cartographer”, playing a critical role not merely in using maps drawn by other regions but
rather in creating and modifying the maps on which other regions rely 20. According to this
view, OFC manipulations in devaluation probes affect behavior not because OFC is
required for mental simulation but rather because the test requires changes to, or
recombinations of, existing cognitive maps.

A logical, but untested, corollary of this alternative proposal is that the OFC should also
be necessary during initial conditioning in the reinforcement devaluation task, when a
major part of the cognitive map used in the later probe is created. On the other hand, if
the classic view is correct — that, at the time of decision-making, the OFC just uses maps
made and maintained elsewhere — then this region should not be necessary during the
conditioning phase. As one cannot read what is not yet written, this prediction allows for
an acid test to differentiate whether the OFC is a reader or a cartographer of cognitive
maps. Here, we performed this test using a within-subject outcome-specific devaluation
task and high-potency chemogenetics to inactivate OFC transiently when maps were first
being formed.
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77 Results

78  Food restricted rats, transfected with either hM4d (inhibitory DREADD receptor, n=15) or
79  only mCherry (control; n=13) in the OFC (Figure S1), underwent conditioning in which
80 two different auditory cues (A and B) predicted the delivery of either banana- or bacon-
81 flavored pellets (Figure 1A). Before each session, rats were injected with JHU37160
82  dihydrochloride (JH60; i.p. 0.2 mg/kg), a high-potency DREADD agonist ?', to inactivate
83  OFC principal neurons in hM4d-transfected rats both transiently and selectively 22. The
84  use of this new generation compound avoids several confounds associated with other
85 DREADD agonists 2'-23,

86  Despite inactivation, rats in both groups progressively increased responding to the food
87  cup during presentation of either cue (Figure 1D). Initial acquisition rates were similar,
88 although rats in the hM4d group responded slightly less during the last two sessions of
89  conditioning, in agreement with recent work showing that transient OFC inactivation can
90 reduce asymptotic conditioned responding in some settings 4.

91  After conditioning, rats were subjected to conditioned taste aversion (CTA) training, in
92  which one of the rewards (the one associated with B), was paired with LiCl injections,
93 inducing nausea (Figure 1B). Rats initially preferred both rewards equally, but quickly and
94  selectively reduced consumption of the pellet type paired with LiCl (Figure 1E).

95 Finally, after CTA training, rats were given a probe test, in which the cues were presented

96 as during conditioning but without reward (Figure 1C). As expected, control rats

97 responded more to cue A (paired with the non-devalued pellet) than to cue B (paired with

98 the devalued pellet), indicating they had learned the specific cue-reward and reward-

99 iliness associations and were able to integrate them in the probe test to infer that B might
100 lead to devalued reward (Figure 1F). By contrast, rats in the hM4d group responded
101 equally to both cues (Figure 1F). This result is inconsistent with the hypothesis that OFC’s
102  main function is to access mental maps stored elsewhere to support model-based
103  behaviors at the time a decision is made, and instead supports the alternative hypothesis
104 that OFC plays a critical role in drawing those maps during initial learning 2°.

105  That said, while this result supports this alternative hypothesis, rats in the hM4d group
106  did not simply lack the devaluation effect, as would be expected if there was no model,
107  but rather they appeared to generalize the devaluation effect across cues (Figure 1F).
108  This was evident even if responses during the probe were normalized to the end of
109  conditioning, indicating that the effect was not related to modest reduction in asymptotic
110  conditioned responding (Figure 2A). That the two effects were orthogonal to each other
111 is further supported by the lack of correlation between responding at the end of
112 conditioning and the effect of devaluation (Figure 2B). Nor was the apparent
113 generalization due to differences in CTA retention as preference tests revealed that CTA
114  effects were similar in the two groups after the probe test (Figure 2C).
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116  Figure 1. Chemogenetic inactivation of OFC during conditioning abolishes subsequent
117  sensory-specific cue devaluation. (A-C): Schematic of the behavioral procedures. (A): Rats
118  were conditioned to two cues, A and B, which lead to different rewards. The OFC was inactivated
119  inthe hM4d group. (B): Later, one of the rewards was paired with LiCl injections. (C): Finally, rats
120 were re-exposed to the conditioned cues, testing if a model-based association had been
121  established between them and the rewards. (D): Food cup responding during conditioning. There
122 was no isolated or interaction effect of cue identity (P>0.05), nor an effect of group (P>0.05), and
123 rats of both groups increased responding as sessions progressed (P<0.0001****). However, there
124  was a significant interaction between group and session progression (P<0.0001****), visible in the
125 last two sessions. (E): Pellet consumption during CTA. Rats from both groups consumed nearly
126  all pellets in the first CTA session, and consumed less of the devalued pellet type as sessions
127  progressed (P<0.0001****). (F): Food cup responding during probe. There was a significant effect
128  of group (P=0.047*), and the interaction of the group with the cues (P=0.009**), as control rats
129  responded more to A than to B, while hM4d rats responded equally to both cues. Asterisks in
130 graphs indicate post-hoc multiple comparison test results. See Table S1 for detailed statistics.
131  Data are represented as mean + SEM. *P<0.05; ***P<0.001; ****P<0.0001.
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134  Figure 2. Generalization of devaluation due to OFC inactivation is not dependent on effects
135 on conditioned responding or CTA learning. (A): Food port responding in the final probe
136  session but normalized to the last two sessions of conditioning. There was a significant interaction
137  effect of the group with the cues (P = 0.002**), as well as only a significant difference between A
138 and B in the control group in the post-hoc test. (B): Differential responding to valued and devalued
139  cues (responding to A — mean responding to B) was not correlated to the conditioned responding
140  at the end of initial learning (average of % time in port for both cues in the last two sessions of
141  conditioning). (C): Consumption of pellets during preference tests for CTRL (blue and light blue)
142  and hM4d (red and pink) rats. Rats from both groups consumed all pellets similarly during the first
143 preference test (2-way ANOVA; ND x D: Fi26=0.12, P=0.7318; CTRL vs hM4d: Fi 2= 1.235, P
144 = 0.2766; interaction: Fi26=0.0171, P = 0.8969) and both groups equally consumed significantly
145  less of the devalued pellet type (the one previously associated with cue B and paired with LiCl
146  during CTA) in the second preference test (2-way ANOVA; ND x D: Fi26= 1364, P < 0.0001****;
147  CTRL vs hM4d: Fi2= 0.3519, P = 0.5582; interaction: Fi26 = 0.0005, P = 0.9825). Asterisks in
148  the graphs indicate results of post-hoc multiple comparison tests. Data are represented as mean
149  + SEM. ****P<0.0001.
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150  Generalization of devaluation also could not be accounted for by effects of OFC
151  inactivation on perception or memory. To show this, we tested a subset of these rats in
152 an object recognition task 25. OFC was inactivated prior to the sample phase of the task,
153  while the rats first explored two identical objects (Figure 3A). Over the next 2 days, the
154  rats were brought back to the same arena for two recognition tests in which novel objects
155  were substituted for the objects introduced in the sample phase (Figure 3B-C). If OFC
156 inactivation in these rats induced perceptual confusion, accelerated forgetting, or context-
157 dependent learning, then inactivation in the sample phase of this task should have
158  disrupted object discrimination in the first but not the second recognition test, yet we found
159  no such effect (Figure 3D-I).

160 The generalization of devaluation in the OFC inactivated group was unexpected and
161 intriguing, since model-based learning is traditionally treated as an all-or-none
162  phenomenon. A complete failure of model-based control would leave only devaluation-
163  insensitive, model-free behavior intact, resulting in high responding to both cues. It has
164  been proposed that associative learning may operate as a dynamic mixture of model-
165 based and model-free learning 3, and that the OFC may mediate this process 26.
166  Therefore, we considered whether our results could be explained by a change in the
167 balance between model-based to model-free learning under OFC inactivation. This
168  explanation has some intrinsic disadvantages, as it requires at least two parallel learning
169  systems and a third process to integrate their outputs, i.e., it is complex, with many free
170  parameters. We found that it was possible to reproduce our results with this approach
171 provided we also added a forgetting parameter (Figures S3). However, the resultant fits
172 were hard to reconcile with the general understanding of OFC function, as they did not
173 produce a decrease in model-based learning with OFC inactivation, but rather an increase
174  in model-free learning rates (Figure S3C). This suggests a form of structural over-fitting,
175  consistent with the observation that the fitted parameters could not be reliably recovered
176  from simulated data (Figure S3D). Thus, a complete or partial shift from model-based to
177  model-free control seemed not to offer a good explanation for the experimental results.

178 A more promising way to account for the results is to consider the possibility that the
179  subjects are still building, and then using, a cognitive map, but that the map is different —
180 perhaps less precise — without the contribution of OFC. This idea would be consistent
181  with recent arguments against pure model-free processing 27?8, evidence that the OFC is
182  particularly important for sculpting representations of various aspects of tasks'32930 and
183  findings in OFC-lesioned macaques of impaired credit assignment 3'. Translating this idea
184  to the current task, we hypothesized that the OFC might be particularly important for
185  segregating and separately updating each unique cue-outcome pair, which were of
186  uncertain importance in initial conditioning.
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188  Figure 3. OFC inactivation does not affect object recognition. (A): Sample phase, where rats
189  explored two identical objects and received JH60 injections. (B): First recognition test, where one
190 familiar object was replaced by a novel one. (C):Second recognition test, where the previous
191 familiar object was substituted by yet another novel object. (D and G): Rats in both groups
192  explored the two objects for the same amount of time during sample (2-way ANOVA; O1 x O2:
193  Fi17=1.833, P =0.193; CTRL vs hM4d: Fi17= 0.14, P = 0.712; interaction: Fi2 = 0.059, P =
194  0.809)(D) which was evident in the discrimination index (unpaired t-test, P = 0.634)(G),
195 demonstrating that OFC inactivation does not affect exploratory behavior in this task. (E and H):
196  Rats from both groups showed equally robust object recognition learning, evident in the increased
197  exploration of the novel object (Familiar x Novel: Fi17=13.53, P = 0.002**; CTRL vs hM4d: F; 17
198 = 0.045, P=0.835; interaction: Fi 2= 0.025, P=0.876) (E) and an increase in the discrimination
199 index, which was identical between groups (P = 0.882) (H), indicating that OFC inactivation in
200 sample did not affect recognition learning or memory retention, nor did it induce some form of
201  context-dependent learning. (F and I): Again, rats in both the control and hM4d groups showed
202  a similar level of preference for the novel object (Familiar x Novel: Fi 7= 18.13, P = 0.0005***;
203  CTRL vs hM4d: Fq47=3.085, P = 0.097; interaction: Fy26= 0.053, P = 0.82) (F), as confirmed in
204  thediscrimination index (P = 0.775)(l), confirming that learning under the effects of JH60 injections
205  was similar to when no drug was injected. Asterisks in E and F indicate results of post-hoc multiple
206  comparison tests. Data are represented as mean + SEM. *P<0.05, **P<0.01.
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207  We tested this proposal by fitting our data with a novel model-based reinforcement
208 learning algorithm trained on the same sequence of trials as in the task 332 (Figure 4).
209 The effect of OFC inactivation on learning during initial conditioning was captured by
210 introducing an “imprecision” parameter (y) that defined how credit assignment spread —
211 i.e., whether updates were selective for each cue-outcome pair during the conditioning
212 phase of the task (Figure 4A). Thus, receiving a banana-flavored pellet after cue A
213  updates the association between the alternative cue B and the banana-flavored pellet by
214  an amount proportional to y. Only if y = 0, would the update be confined exclusively to
215  cue A. A model with a high y value would therefore be able to learn that auditory cues
216  predict sucrose pellets, but would have trouble differentiating which pellet flavor (e.g.,
217  banana) is associated with which cue (A or B). Substantial confusion during conditioning
218  (high y) would cause the loss of value imposed by the following CTA training (Figure 4B)
219 to be at least partially generalized to both cues A and B, due to the imprecision of specific
220 state predictions and subsequent inference (Figure 4C), noting that the rats remained well
221 aware of the separate values of the pellet types after the probe test (Figure 2C, right).

222 We found that this “imprecision” model fit our behavioral results well (Figure 5),
223 reproducing the normal behavior in the control group and all effects of OFC inactivation,
224  including both the apparent generalization of devaluation in the probe test (Figure 5B-C)
225 as well as the lower asymptotic performance in conditioning (Figure 5E-F). Critical
226  parameters in the model, particularly y, were recoverable from simulated data (Figure
227  S2A) 3334 Model fits to data from control and hM4d groups differed in their imprecision
228 term y, which was significantly higher in hM4d models (Figure 5B and Table S2).
229  Furthermore, y was highly correlated with the difference in responding to the valued (A)
230 versus devalued (B) cues during probe (Figure 5C), even though this parameter only
231  affected learning during conditioning (Figure 4A). Notably, this effect was not due to an
232 effect of y on the strength of conditioning, as these were uncorrelated (Figure 5D).

233 Our model also recapitulated other aspects of the results, specifically by having a value
234 adjustment parameter (Vpeiocue) that captured the asymptotic performance during
235 conditioning. The value of this parameter differed between fits for control and hM4d
236  subjects (Figure 5E), accounting for the reduced responding of hM4d rats at the end of
237 conditioning (Figure 1D, 2B and 5F). Importantly, Vpeiocue did not correlate with the
238  difference in cue responses during the probe (Figure 5G). These results confirm that the
239  effects of OFC inactivation during model creation on subsequent model-based decision
240 making are not related to the concurrent effects on asymptotic value estimation. The latter
241  may be related to the known role of OFC in representing and updating outcome value
242 14,35_
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Figure 4. A model-based reinforcement learning algorithm that simulates imprecise state
identity credit assignment. (A): During initial conditioning, the value and state transition
matrices are updated according to the task contingencies (A-R1, B-R2; solid black arrows), except
for a parallel updating of the opposite association (A-R2, B-R1), which occurs proportionately to
the imprecision term y (dashed red arrows). (B): During the CTA devaluation procedure, updating
obeys task contingencies, with no value or state prediction updates to the R1 state, but with a
learning that R2 predicts a devalued iliness state. (C) During the probe, new learning follows the
task states, and the value of cue states is adjusted according to the inferred state predictions
(grey arrows), including generalized inferences driven by the imprecision term during initial
acquisition (dashed grey arrows).
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255  Figure 5. OFC inactivation effects on reinforcer devaluation are explained by a deficit in
256 differentiating specific cue-outcome associations. (A): Model fit results for our model-based
257  reinforcement learning model with potential outcome identity confusion. (B): The imprecision term
258  y was significantly higher in models fitted to hM4d behavioral data in relation to controls
259  (P=0.027*). (C): x was negatively correlated with the differential responding to cues in the probe
260  session. (D): y was not correlated with the average responding to cues at the end of conditioning.
261  (E): The value adjustment term V20, Was significantly lower in hM4d models (P = 0.04%).
262 (F): Vpaizcue Was positively correlated with average cue responding at the end of conditioning.
263 (G): Vpeicue Was uncorrelated with differential responding to cues in the probe session. See Table
264  S2 and Figure S2 for detailed parameter comparisons. Data are represented as mean = SEM.
265  *P<0.05.
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266 Discussion

267  Our study demonstrates first that OFC is necessary for the construction of a normal
268 cognitive map and second that the OFC appears to play a circumscribed role in this
269  construction process. In our task, the map-making apparently did not cease when OFC
270  was inactivated, but the created map was degraded and less specific about which cues
271  led to which outcomes. This was modeled as a lack of precision in credit assignment, but
272 a failure to create appropriately “granular” 3637 internal representations of these external
273 events would produce the same result and seems more likely than a direct control of OFC
274  over error signal assignment.

275  As an intuitive example of the utility of setting this granularity properly, an older child may
276  learn that McDonald’s™ serves Happy Meals™ while Burger King™ serves King Jr™
277  meals, each with different toys, while a younger sibling may only recall that fast food
278  restaurants serve kids’ meals. Both cognitive maps lead to food, but only one will help
279  you collect all the Disney™ dragons! Whether to keep or discard the information related
280 to which restaurant serves which kids’ meal with which toy is a question of how to
281  segregate the states during learning®®-%7; it is this process that we propose OFC controls
282  or contributes to during cognitive mapping 2°. This example also illustrates the fact that
283  the generalization afforded by discarding information is not automatically incorrect — it
284  should respond to the exigencies of the circumstance.

285  We would speculate that OFC’s particular contribution to this process is in determining
286  whether to maintain separation between states that have uncertain or perhaps only
287  potential biological significance, when other parts of the circuit might collapse them. Maps
288  formed with too little separation due to hypofunction in OFC would tend to underrepresent
289  potential or hidden associations and meaning and be unable to link to and infer
290 relationships to other maps, as we have seen here. This is also evident in substance use
291 disorder, neurodegenerative diseases, and advanced aging, in which OFC function is
292  compromised®83-41" and in children and adolescents, which have immature frontal
293  cortices*>43. Conversely, maps formed with too much separation due to an over-
294  exhuberant OFC would tend to instill hidden meaning where it does not exist; notably
295 such an effect is arguably evident in obsessive compulsive disorder and paranoid
296  psychosis, which involve hyperfunction in the OFC and related areas” 404449,

297  The proposal that the OFC plays a critical role in defining the states that form the basis
298  of cognitive maps is congruent with much existing data. This includes classic findings
299  based on manipulations in the probe phase of reinforcer devaluation experiments'6-19.50,
300 since the probe phase confounds the integration of established maps with their first time
301 use. Thatis, the function proposed here would be invoked in the probe test in devaluation
302 by the need to recognize the common reward state in the maps created during the
303 conditioning and devaluation phases. Similar conclusions apply to other cardinal studies
304 that have implicated the OFC in model-based behaviors, since these also normally
305 involve integrating or changing task maps 5'-53. This more limited role for OFC also
306 explains better why this area is necessary in many other behavioral settings where normal
307 behavior depends upon recognizing states that are somewhat ambiguously defined with
308 regard to biological value, including for instance the differential outcomes effect* , latent
309 inhibition 22, and reversal learning®-%7, and why OFC seems to grow less important in
310 settings like reversal learning or economic choice once maps are well-established7-20:55.58
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Finally, perhaps the most intriguing implication of our finding that OFC inactivation fails to
reveal model-free learning is the possibility that most learning is, to some degree, model-
based, but that mental representations or cognitive maps can be formed with different
degrees of granularity or specificity, as determined by the circuits that are engaged in the
learning process, including the OFC and other prefrontal areas. In the absence of
experimental interventions, illness, or lesions, it could be that the main determinant of the
resolution of a cognitive map would be task requirements and learning context. This would
mean that perhaps there is a unified learning process that can be more or less complex
depending on the contribution of specific circuits or environmental demands.
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320 Materials and Methods
321  Experimental Model and Subject Details

322  Experiments were performed on 32 male Long-Evans rats (n=16 for each group, >3
323  months of age at the start of the experiment, Charles River Laboratories) housed on a 12
324  hrlight/dark cycle at 25 °C. Rats were food restricted to ~85% of their original weight for
325 the duration of the experiments and were tested at the NIDA-IRP in accordance with NIH
326  guidelines determined by the Animal Care and Use Committee. All rats had ad libitum
327 access to water during the experiment and were fed 16-20 g of food per day, including
328 rat chow and pellets consumed during the behavioral task. Behavior was performed
329  during the light phase of the light/dark schedule. The number of rats used was determined
330 based on previous publications from the lab using Pavlovian conditioning tasks. Prior to
331  surgery, rats were handled every other day for 5-10 minutes for one week. Handling
332 procedures included the performance of mock i.p. injections (rats were scruffed and the
333  experimenter gently poked their abdomen with his finger or the end of a syringe with no
334 needle attached) to prepare the subjects for future real injections. These rats were also
335 used in another study 22. One rat in each group was excluded due to incorrect anatomical
336 placement, and two rats were excluded from the control group due to a hardware
337  malfunction during one of the behavioral sessions, leading to n=13 for the control group
338 and n=15 for the hM4d group.

339  Surgical procedures

340 Rats were anesthetized with 1-2% isoflurane and received either AAV8-CaMKlla-hM4d-
341  mCherry (a Gi-coupled designer receptor exclusively activated by designer drugs
342 (DREADD)) or AAV8-hSyn-mCherry (control), both purchased from Adgene (Cambridge,
343  MA), bilaterally into the OFC (AP =3.0 mm, ML + 3.2 mm, and DV -4.4 and -4.5 mm from
344  the brain surface) 22. A total 0.5 uL was delivered in each site at 0.1 uL/min via an infusion
345  pump.

346  Sensory-specific conditioning

347 Rats were trained and tested at least eight weeks after the surgeries in standard
348  behavioral boxes (12" x 10” x 12,” Coulbourn Instruments, Holliston, MA). Each box was
349  equipped with a food cup, a pellet dispenser and two wall speakers. Head entries into the
350 food cup was measured based on breaks of an infra-red beam.

351  Rats were conditioned for eight sessions. Prior to each session, each rat received an i.p.
352 injection of JH60 (0.2 mg/kg, dissolved in 0.9% NaCl) and was left in their home cage for
353 at least 15 minutes before the start of the session, to allow for the DREADD agonist to
354  effectively inhibit transfected OFC neurons in the hM4d group 222,

355 In every session, rats were exposed to two auditory stimuli, A and B (siren or white noise,
356 counterbalanced across rats); each cue was presented for 10 seconds, immediately
357 followed by the delivery of two bacon- or banana-flavored pellets (TestDiet;
358 counterbalanced pairing). Each pairing was presented eight times per session with an
359 average ITlI of 2.5 minutes and the order of presentation was randomized and
360 counterbalanced.
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361 Behavioral responses were quantified as the percentage of time that each rat spent in the
362 food cup during the last 5 seconds of each CS, subtracted by the time they spent in the
363 food cup 5 seconds before CS onset.

364  Reward preference tests

365 Prior to the devaluation procedure, rats were given a preference test comparing
366  consumption of the two pellet-types. Rats were provided 100 pellets of each type, placed
367 in two ceramic bowls for 30 minutes with the location of the bowls reversed every 5
368  minutes. The remaining pellets were counted after the 30 minute period. This procedure
369  was repeated after the devaluation probe to confirm the permanence of conditioned taste
370 aversion.

371  Reinforcer devaluation via conditioned taste aversion with LiCl

372 For outcome-specific reinforcer devaluation, we paired the reward associated with cue B
373 with LiCl, while the reward associated with cue A was not paired with anything. This
374  devaluation procedure lasted a total of six days. On days 1, 3 and 5, rats were given 30
375 minutes of access to the devalued pellet, followed immediately by an i.p. injection of 0.3
376 M LiCl, then returned to their home cages 7. On alternate days (2, 4 and 6), rats were
377  given 30 minutes of access to the non-devalued pellet and then returned to their home
378 cages. All preference and consumption tests were performed in clean home cages.

379  Devaluation probe

380 The devaluation probe was performed and analyzed exactly like one of the conditioning
381  sessions, except that no reinforcer was delivered, and the rats did not receive an injection.

382  Object recognition task

383 A subset of 10 rats from each group of the previous experiment was randomly selected
384 for this procedure. One of the control rats was the one excluded due to incorrect
385 anatomical placement, leading to n=9 for the control group and n=10 for the hM4d group
386 for this experiment.

387 One square arena (60 x 60 cm) made of brown plexiglass with a striped black and white
388 rectangular spatial cue was placed in a dimly (~3 lumens) red-light illuminated room. A
389 video camera was mounted above the arenas, and activity during test sessions was
390 digitized with a high-definition webcam (C920S PRO HD, Logitech, Suzhou, China). The
391 objects to be discriminated were white glass bulbs, transparent glass jars, cylindrical
392 amber glass bottles and trapezoidal white plastic bottles. All objects were glued to heavy
393  metal disks to prevent them from being displaced by the rats, and positioned at the back
394 corners of the arena (10 cm from walls). To avoid olfactory cues, the arena and objects
395  were thoroughly cleaned with 0.1% acetic acid after each trial.

396  For habituation, the rats were positioned into the open-field arena without any objects for
397 10 min the day before the start of the experiment. Throughout the experiment, the position
398 of the objects was constant, but the objects used and their relative positions were
399  counterbalanced for every animal. In the sample phase, rats were placed in the arena
400 facing the wall opposite the objects and were allowed to freely explore two identical
401 objects (either two light bulbs or two jars) for 10 min. Prior to the sampling session, each
402  rat received an i.p. injection of JH60 (0.2 mg/kg, dissolved in 0.9% NaCl) and was left in
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403  their home cage for at least 20 minutes before the start of the session. This period was
404 given to allow for the DREADD agonist to reach the brain and effectively inhibit
405 transfected OFC neurons in the hM4d group. After 24 h, on memory test 1, rats were
406 allowed to explore freely one copy of the previously presented object (familiar) together
407  with a new one (novel) for 10 min. A second memory test was performed 24 h after the
408 first test. During the second memory test, the object that was introduced in the previous
409 memory test was kept in place (so now it was the familiar object), and the previous familiar
410 object was replaced by a novel object (either amber or white bottles), and rats explored
411 freely for 10 min.

412 As previously described?®®, exploration was defined as pointing the nose toward to an
413  object at a distance of less than 1 cm and/or touching it with the nose. Turning around or
414  sitting on the objects was not considered as exploratory behavior. A Discrimination Index
415  (DI) was calculated, where DI = difference between exploration of the novel and familiar
416  objects / total object exploration time during each memory test, such as that a DI of O
417  indicates equal preference for both objects, a DI of 1 indicates exclusive exploration of
418 the novel object, and a DI of -1 indicates exclusive exploration of the familiar object.This
419 measure was also calculated using only the first 5 min of each test, but results were
420  similar to when the whole test period was used (data not shown). Video recordings were
421  scored automatically using TopScan Suite (Clever Sys, Reston, VA). Exploration times
422  were verified manually by a trained rater blinded to treatment and objects identities using
423  BORIS software (Version 7.9.19, University of Torino, ltaly).

424  Histological procedures

425  After completion of the experiment, rats were perfused with chilled phosphate buffer
426  saline (PBS) followed by 4% paraformaldehyde in PBS. The brains were then immersed
427 in 18% sucrose in PBS for at least 24 hours and frozen. The brains were sliced at 40 um
428 and stained with DAPI (Vectashield-DAPI, Vector Lab, Burlingame, CA). Fluorescent
429  microscopy images of the slides were acquired with a BZ-X800 Keyence microscope.
430 Expression patterns were extracted from the images and then superimposed on
431  anatomical templates 22.

432  Statistical analyses

433  Data were analyzed using GraphPad Prism (GraphPad Software, San Diego, CA). Error
434  bars in figures denote the standard error of the mean. Effects of experimental variables
435 on behavioral measures were examined with repeated-measures 2-way and 3-way
436 ANOVAs combined with Sidak’s or Tukey’s post-hoc tests, respectively. Statistical
437  significance threshold for all tests was set at P<0.05.
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438  Reinforcement learning modelling

439  Background

440 We modelled the five stages of the experiment in chronological order: Conditioning
441  (COND), Preference Test 1 (PRFT1), Devaluation (DEV), Preference Test 2 (PRFT2) and
442  finally Probe testing (PROBE). For COND and PROBE, the Port Stay Probability (PSP)
443  upon cue presentation was quantified. In PRFT1, DEV and PRFT2, the percentage of
444  pellets eaten (PPE) was quantified. Two pellets of a single type were delivered in each
445  case.

446  On each trial, an internal value estimate (V) was calculated based on contributions from
447  a model based (MB) system (and, for the alternative hypothesis of a loss of MB learning,
448  in combination with a model free, MF, system). This value estimate was then transformed
449  tothe behavioral measurement that was appropriate to the experimental stage. In keeping
450  with standard practice, we described the Pavlovian connection between cue and outcome
451  as being associations; however, in keeping with the temporal evolution of the task, we
452  actual model them as transitions from cue to outcome. MB (and MF) systems were
453  updated using the state transitions that were observed (e.g., A—»ValuedOutcome) and the
454  rewards that were received.

455  The main hypothesis (we call this Ha) that we tested was that the OFC enables precise
456  credit assignment through separation of specific cue-outcome relations (i.e., that sound
457 A predicts banana flavored pallets) and when deactivated, only the general relation (that
458 any auditory cue predicts delivery of food) can be learned. However, we also tested a
459  model (Hb) which could potentially characterize a more conventional view of OFC
460 deactivation, namely that it would suppress MB over MF control. Since Hb mostly nests
461 Ha, we provide an partly integrated discussion.

462  Formal model

463 S ={sy,...,S,}is the set of states. Each state is typically associated with the presentation
464  of a cue or an outcome that can be rewarded or devalued, i.e., S ~ {4, B,ValuedOutcome,
465 DevaluedOutcome}.

466  In order to be able to characterize MB and MF systems fairly, we considered forms of
467  both that represent the uncertainty in their predictions of rewards and values. However,
468  we adopt a heuristic Bayesian scheme, with observation rates (the equivalent of learning
469 rates) that are parameters (rather than pure conjugate distributional updates).

470  Following Dearden et al. 32, normal-gamma distributions are used to characterize this
471  uncertainty (since, following Daw et al. 3, MB and MF systems share the characterization
472  of the values of the final, reward, states, albeit potentially with different parameters, and
473 with only the MB system being subject to the effects of devaluation).

474  We write this down in terms of the value of state s. The normal-gamma distribution for the
475  value V, and the precision p? is written as NG(mg, A, as, Bs). According to this, the
476  conditional distribution of V; given p? is a normal distribution

477 Vi ~N(ms,1/(Asp35)) (1)
478  and the precision has an unconditional gamma distribution
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psz ~ F(as' ﬁs) (2)

in terms of our problem, we interpret the parameters as follows:

Bs

is the mean reward across the previous iterations

is the number of outcomes seen (this also includes the cases when no reward

(r = 0) is delivered in this state)

describes the total opportunity for learning about the precision; assuming that we initialize
alpha to: al™t = 0.5 « A" then it holds that at all times a; = 0.5 * A,.

describes the scale of the precision across previous seen rewards

implying that the marginal mean and variance of V; are:

Vs =EMl=ms Varl] =2 (3)

For MB computations, we also need an internal model of the state graph. We use T to
describe the distribution of transition probabilities from all to all states. Programmatically,
T can be described by a matrix where each row contains ¢’s that are parameters for the
multinomial distribution that characterizes the transition probabilities from a "source" state
s to any of the other states (including the source state itself):

Ts. ~ Dirichlet(¢ss,, -, Pss,)

This will only be interpretable for non-terminal "source" states s, as the trial ends
afterwards and no information about consecutive states can be collected. The terminal
states are thus absorbing. The sum of probabilities for a fixed source state to all possible
target states is 1 (see model based value calculation).

Initialization

We initialize all ¢’s in T to 10. This implies a moderately strong prior that the transition
probabilities are uniform across all states:

W =10 Y(s,s) (4)

We initialize the distribution describing the reward distribution parameters to:

V;init, pSZ init NG(miSnit =0, /1i5nit =3, aisnit — 1_5’ﬁ;nit — 15) V(S) (5)

The rationale for these values is that a!™ > 1 to ensure V, has a finite marginal variance.
The value of m"t was chosen to be 0 as animals start out with no value expectation. A
was set to 2 x a, as this ratio is also maintained by the updates. gi"t was set to 1.5 in
order to set the starting marginal variance to Var[Vi"!] = 1. However, we confirmed that
our results are stable to quite a wide range of initialization values, provided that the
variance is well-defined (ag > 1).

During the conditioning stage, mauedoutcome = "Devaluedoutcome = 2 (for the number of
pellets provided). The reward of the DevaluedOutcome changes during the devaluation
period to NegRew < 0, which is a parameter that captures the strength of the devaluation
effect for each animal.

Model updates and value calculation
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511  The normal-gamma distribution characterizing the value V; of a terminal state updates

512 according to each observation. In general, given an observation V;, writing V', p2 ' ~

513 NG(mJ', A, a,', Bs") for the updated distribution at s, we update the parameters as:

r )ls'ms+7l'vs
- A+n

n-As:(Vs—myg)?
T2 Gsrm (6)
515 where n is called an observation rate and stands in for the number of subjective

516 observations associated with each experience — it need only be positive and is not
517 constrained to be less than 1.

514 ms ’ /1512/15_"77' as,= as +0.5-7, ﬁs’2ﬁ5+

518  For the MB system, writing Vi ~N'G(m™ ¢y, Ay, a™ o, ,mes(t)), for a terminal state,
519 the update happens using 17;?8 = 75y and observation rate n = nme .

520 For the transition matrix, if the state s(t) is a non-terminal state that is followed by state
521  s(t+ 1), the parameters of the transition probability distribution 7). are updated using a

522 notional transition observation rate n' as:

523 ®'syse+1) = Psoyse+ny TN (7)
524  The MB system combines its knowledge of transitions and immediate rewards by applying
525 the Bellman equation, which, in this case is very straightforward, since there are only two
526  steps. Ignoring any posterior correlation between T and p, g, this implies that:

o mye if s(t) is a terminal state

527 Vswy = miyy +ym™ - Z E [Tsoyse+n)] - Mis41) Otherwise

s(t+1)
528  The expected value for the next state is discounted by y™, which normally is close to 1.
529 The expected value for the transition probability from state s(t) to state s(t + 1) can be
530 calculated using: E[Ts)scc+1)] = Psoysie+1)/ 2o Psvw -
531  The approximate variance can be calculated from the Bellman equation (again ignoring
532  correlations).

533  Transformation of Estimated Values to Behavioral Measures

534 Having generated a prediction V;n(:) from the MB system, it is necessary to convert it into
535 the different experimental measures used in the various stages of the experimental
536 paradigm. To do this, the combined value is normalized by the standard scalar reward
537 received (2, for the number of pellets), and thresholded at 0 in order to avoid negative
538 percentages when calculating the behavioral measures:

—mb

539 Vi = max(“2,0) ®

540 This normalized value can then be transformed to the respective behavioral measures for
541 each stage, each given as percentages in the range [0,100]:
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COND —norm
PSPs(t) = Vs(t) 100 - Vpell2cue €))
DEV —hnorm
PROBE _ Tnorm
PSP =Vswy 100 - Vpenizcue - Vop (11)

543

544 Vhecue accounts for the difference in the impact of a secondary predictor versus a primary
545  reinforcer, and V;, may account for the forgetting of cue values from COND to the PROBE
546  phase. Both factors are in the range [0,1]. An additional factor for the calculation of
547 PPEEEV was not necessary. PPEE’RFT1 and PPEERFT2 are calculated the same way as
sag8  PPESEY.

549 Ha: Outcome-specific encoding deficit

550 In this version, only the MB system is used, and we assume no forgetting happens from
551  COND to PROBE so I, is fixed to 1.

552  We model the inactivation of OFC as implying that the representation of the relevant cues
553 (here, A and B) is potentially only partially distinct. Thus, if, for instance s(t) = A4 is
554  presented, then writing 5(t) = B as the 'other’ cue, we imagine a spillover or fuzziness
555  factor y is introduced that is taken into consideration when doing the updates so that,
556  along with equation 7, we have

557 ®'soyse+1) = Psoyserny + 10X (12)

558 If y = 0, nothing is learned for the opposite state, if y = 1, then exactly the same transition
559 information is learned for both states, and if y > 1, then more is learned for the
560 opposite/unseen state. Note that we continue to consider the outcome pellets to be
561  perfectly distinguishable.

562  The free parameters used for model fitting are: NegRew, Vyeizcue; nm nt x.

563  Model Fitting

564 Separate sets of parameters were fit for each animal using
565  scipy.optimize.least_squares, optimizing the mean squared error (MSE) between the real
566 behavioral recordings and the model "behavior" outputs based on the current set of
567 parameters. A weighted MSE was used in order to increase the contribution of the
568 PROBE trials as behavioral differences across groups (control/OFC deactivation) were
569  most apparent here, and the number of trials comparably few (there is 8x more condition
570 trials, so PROBE trials have an 8x higher weight). The following bounds for the parameter
571  fitting were defined as follows:

572
Param NegRew  Vogiocue 7™ nt X
Min -90 0 0 0 0
Max 0 1 40 40 1.5
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573 Individual parameter estimates for either of the models were then compared across
574  groups using t-tests and Bonferroni-corrected for multiple comparisons.

575 Parameter Recovery

576  In order to ensure that recovered parameter values are meaningful in case of the model
577 fits, we checked parameter recoverability. Here, we use known parameter values along
578  with realistic noise to generate synthetic data, and then assess if we can recover from
579 these data values of the parameters that are close to the original generating levels. In
580 order to stay close to the real data, we used the parameters recovered for each animal
581 individually to generate one synthetic dataset/behavioral trace per animal. The noise was
582  generated using individual variability estimates of per trial behavioral measures for each
583 experiment stage (COND, DEV, PROBE). This yields 28 pairs (one pair per animal) of
584 real and estimated parameter values for each of the model’s parameters. Good parameter
585  recoverability is when real and estimated parameter values are well correlated.

586  Recovery of most of the parameters was good (ryegrew = 0.9, W peizone = 0-85 Tpymb = 0.8,

587 andr, = 0.7); only the recovery of the state transition observation rate n' was slightly less
588  faithful (r,« = 0.6), and so should be interpreted cautiously.

589  Repeating the recovery procedure multiple times produced comparable results. We also
590 used a synthetic generative procedure to assess the posterior correlations between
591 recovered parameter values, something that matters for prediction, albeit less for the
592  overall interpretation of the model. We started out with the median parameter values
593  across animals to generate synthetic data, with noise generated based on the variability
594  of behavioral measures per experiment stage, this time on the group level, and recovered
595 those parameter values from these data. We did this 30 times and assessed the
596 correlations between all pairs of inferred parameters. We found that most of the
597  correlations were mild — although the highest correlations between Vpgcue @and nt (r =
598  —0.57), were quite substantial. This is not unexpected, as in effect Vg2 accounts for
599 the difference between the asymptotic performance at the end of conditioning, which is in
600 turn set by the observation rates.

601  Hypothesis Hb. MB deficit

602  Hb parameterizes a more conventional view of the effect of OFC inactivation, allowing for
603 a combination between MF and MB learning and control, with the possibility that this
604  combination is disturbed by inactivation.

605 As hypothesis Hb makes use of both model free and model based value systems, it
606 employs two sets of value distributions: V™, p2™ and V™, p2™ MB learning and
607 inference happens as for hypothesis Ha, except that the imprecision parameter y is not
608 part of Hb. Following Dearden et al. (18), the MF value system uses normal-gamma
609 distributions for characterizing the values V;™ of all states s, both terminal (with rewards)
610 and non-terminal (with cues).

611  For the MF system, each time the animal passes through state s, the value distribution at
612 this state is updated according to either a scalar estimate ¥, of the long-run reward from
613 that state s for the MF system, or the immediate reward r using an observation rate n™.
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614  Updating the MF values of terminal states is the same as for the MB system (using
615  equation 6) with VS‘{‘{) = 75y and an observation rate n = n™f. Updating the values of non-
616 terminal (cue) states also follows equation (6), but now (since, in this task, there are no
617 rewards at non-terminal states) with

—mf

618 I,/\'sr?tf) = ymf Vsern

—mf
619  Generally, the estimated value of the model free system is V;n = m™ and the estimated
620 variance is given by the expression in equation 3.

621  According to Hb, both MB and MF contribute to the value of a cue, according to a convex
622 combination parameter w™, which is in range [0,1] with 0 meaning only the model-based
623  system is used and 1 that only the model free system is used:

—comb

—mf —mb
624 ey  =w™ Ve + (1 —w™) - V), (13)

625  This then generates the normalized value

—comb
626 Vo = max <V%o> (14)
627  which leads to behavioral measures as in equations (9)-(11).

628  For convenience of fitting, the observation rate for the transition matrix was fixed to the
629 one for the model based value distributions nt = n™, and y™ and y™ were setto 1. The
630 free parameters used for model fitting were therefore: NegRew, Vejiocue, Veps n™, n™ and
631  w™. As an important simplification, we fixed w™ to have the same value for COND and
632 PROBE, even in the inactivation case, as if this had been stamped in during COND, for
633  instance because of heightened MB uncertainty. If w™ was lower in PROBE then, we
634 would not have expected such equivalent decreased responding to both cues. An
635 alternative possibility we did not explore is that inactivation would leave the MB system
636  with impaired learning in COND, even at asymptote for both cues; and that if w™ was
637 indeed lower in PROBE, reduced responding would come from averaging a persistent
638  value from the MF system with the decreased output of the MB system. This would be an
639  alternative to making parameter I, small.

640 The same constraints as above were used for fitting the MB system (albeit with y
641  effectively clamped at 0). Additionally, we had

642
Param Vep n™ wmf
Min 0 0 0
Max 1 40 1
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Parameter recovery of the observation rate parameters were the least faithful (Tnmf =
0.6, rpmo = 0.2 and r, m = 06), while the estimated values of the other parameters were
closer to real ones (ryggrew = 0.9, W eizeue = 0-95 Trgp = 0.8). Thus, when interpreting this

model, less emphasis should be placed on the first three parameters. Correlations in the
recovered values of the parameters were mild — with the highest correlation being
between Vpepeue and w™ (r = —0.54).
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Table S1. Statistical results of behavioral experiments
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Conditioning (3-way ANOVA) SS MS F (DFn, DFd) P value
Sessions 39952 5707 F(7,182) =26.74 P<0.0001****
(CTRL vs hM4d) 2512 2512 F(1,26)=0.7170 P=0.4048
(AvsB) 1216 12.16 F (1,26) =0.02112 P=0.8856
Sessions x (CTRL vs hM4d) 6981 997.3 F(7,182)=4.672 P<0.0001****
Sessions x (A vs B) 874.0 1249 F(7,182)=1.353 P=0.2279
(CTRL vs hM4d) x (A vs B) 9.810 9.810 F(1,26)=0.01703 P=0.8972
Sessions x (CTRL vs hM4d) x (Avs B) | 517.3 73.90 F (7,182)=0.8008 P=0.5876
CTA (3-way ANOVA) SS Ms F (DFn, DFd) P value
Sessions 37224 18612 F (2,52) =64.18 P<0.0001****
(CTRL vs hM4d) 1344 1344 F (1,26) =2.912 P=0.0998
(ND vs D) 53832 53832 F(1,26)=127.1 P<0.0001****
Sessions x (CTRL vs hM4d) 39.38 19.69 F(2,52)=0.06789 P=0.9344
Sessions x (ND vs D) 41521 20761 F (2,52) =83.36 P<0.0001****
(CTRL vs hM4d) x (ND vs D) 155.6 155.6 F (1,26)=0.3675 P=0.5497
Sessions x (CTRL vs hM4d) x (NDvs D) | 32.92 16.46 F (2, 52) = 0.06609 P=0.9361
PROBE (2-way ANOVA) SS Ms F (DFn, DFd) P value
(CTRL vs hM4d) 806.6 806.6 F(1,26)=4.340 P=0.0472*
(AvsB) 143.3 143.3 F(1,26)=1.743 P=0.1983
(CTRL vs hM4d) x (A vs B) 658.8 658.8 F(1,26)=28.013 P=0.0088**
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Table S2. Comparisons of fitted parameters for the control and hM4d groups withing the
two tested reinforcement learning models. Data are represented as mean + SEM.

Ha: Precision deficit model parameters Control hM4d P value
Imprecision term - 0.64 +0.138 1.031 £ 0.099 P=0.027*
Model-based value observation rate - n™ 2.669 = 1.964 5.062 £ 2.626 P=0.169
Model-based transition observation rate - nt™ 11 £ 4.657 22.41 £ 4.477 P=0.067
Strength of devaluation - NegRew -50.82 £ 5.092 -60.21 £ 4.81 P=0.185
Value adjustment - Vpgjzcue 0.718 £ 0.069 0.512 + 0.066 P=0.04*
Hb: MB vs MF model parameters Control hM4d P value
Model-free observation rate - n™ 3.71 £2.778 15.21 +4.758 P=0.007**
Model-based observation rate - n™" 12.8 £ 4.51 15.77 £4.82 P=0.575
Contribution of model-free system - w™ 0.553 £ 0.106 0.703 + 0.081 P=0.513
Strength of devaluation - NegRew -52.09 £ 5.85 -54.78 + 5.243 P=0.821
Value adjustment - Vpgjcue 0.761 £ 0.069 0.501 £ 0.059 P=0.012~
Conditioning to probe forgetting - V,, 0.603 +0.079 0.385 +0.083 P=0.071
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Figure S1. Histological validation of DREADD strategy. Reconstruction of viral expression patterns in
the OFC across the control and hM4d groups. Viral spread was mostly contained withing OFC and was
similar for control and hM4d subjects.
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Figure S2. Parameter recovery and correlations for the reinforcement learning model with
association specificity deficit. A: Correlations between estimated and original parameters. Note that
most parameters were recovered with r>0.7, with the least faithfully recovered parameter being the state
transition observation rate n'™ with r < 0.6. B: Correlations between fitted parameters. Note that only
correlations between Vpepeue and w™ (r = —0.54) in HB and between Vg0 and n™ (r = —0.57) are

substantial.
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Figure S3. Data fitting with a reinforcement learning model that allows for a shift between model-
based (MB) and model-free (MF) learning. (A) Model fit results for our MB vs MF reinforcement learning
model. Note that it can also replicate our behavioral results well. (B) Schematic of the critical aspect of the
model and the expected result: the observation rate for both the MB and MF systems, as well as the
potential contribution of each to behavior, were free parameters, and we expected that the contribution of
the MB system would be diminished, either by a reduced MB observation rate or an increase in the MF
contribution. (C) Values of the critical observation rate-related parameters, namely the proportion of
contribution of the MF (w™) system, the MF observation rate (™), and the MB observation rate (n™?) for
both control and hM4d model fits. Note that instead of a reduction in MB learning or proportional
contribution, only the MF observation rate was significantly higher in the hM4d group. See table S2 for
detailed parameter comparisons. (D) Correlations between estimated and original parameters for the MB
vs MF model. Note that parameter recovery of all critical observation rate-related parameters was not very
faithful (r < 0.7). Data are represented as mean + SEM. **P<0.01.
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