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ABSTRACT

Genome-wide association studies (GWASs) have identified thousands of genetic variants
associated with common polygenic traits. The candidate causal risk variants reside almost
exclusively in noncoding regions of the genome and the underlying mechanisms remain elusive
for most. Innovative approaches are necessary to understand their biological function. Multimarker
analysis of genomic annotation (MAGMA) is a widely used program that nominates candidate risk
genes by mapping single-nucleotide polymorphism (SNP) summary statistics from genome-wide
association studies to gene bodies. We augmented MAGMA into chromatin-MAGMA
(chromMAGMA), a novel method to nominate candidate risk genes based on the presence of risk
variants within noncoding regulatory elements (REs). We applied chromMAGMA to a genetic
susceptibility dataset for epithelial ovarian cancer (EOC), a rare gynecologic malignancy
characterized by high mortality. Disease-specific RE landscapes were defined using H3K27ac
chromatin immunoprecipitation-sequence data. This identified 155 unique candidate EOC risk
genes across five EOC histotypes; 83% (105/127) of high-grade serous ovarian cancer risk genes
had not previously been implicated in this EOC histotype. Risk genes nominated by
chromMAGMA converged on mRNA splicing and transcriptional dysregulation pathways.
chromMAGMA is a pipeline that nominates candidate risk genes through a gene regulation-
focused approach and helps interpret the biological mechanism of noncoding risk variants in

complex diseases.
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INTRODUCTION

Multi-marker Analysis of Genomic Annotation, or MAGMA (de Leeuw et al. 2015) uses
multiple regression to group raw or summary SNP statistics from GWASs to the level of genes
while accounting for linkage disequilibrium (LD) between variants. Instead of testing millions of
variants individually, MAGMA reduces the multiple testing burden by performing gene level
analyses and has emerged as a powerful approach for the discovery of candidate genes and
pathways associated with risk of complex traits (Wray et al. 2018; Demontis et al. 2019; Jansen et
al. 2019). MAGMA captures SNPs positionally mapped to gene-bodies; however, many studies
have now shown that noncoding tissue-specific REs (such as transcriptional enhancers marked by
H3K?27ac) are enriched for risk SNPs, and risk REs often interact with genes hundreds of kilobases
away (Gerasimova et al. 2013, 2019; Jones et al. 2020; Nasser et al. 2021). Identifying candidate
risk REs and the gene(s) they regulate remains a major bottleneck in the post-GWAS field. We
therefore created a bioinformatic tool termed ‘chromatin-MAGMA’, or chromMAGMA, a
pipeline that augments MAGMA to infer the target gene of noncoding risk variants based on user-
inputted disease-relevant REs and RE-to-gene maps.

Here we tested chromMAGMA in epithelial ovarian cancer (EOC), a deadly disease with
approximately 22,240 new cases and 14,070 annual deaths in the US (Torre et al. 2018). EOC can
be stratified into five main histologic subtypes (histotypes) - high-grade serous (HGSOC), low-
grade serous (LGSOC), endometrioid (EnOC), clear cell (CCOC), and mucinous ovarian cancer
(MOC) (Soslow 2008; Torre et al. 2018). Each histotype is characterized by distinct molecular
drivers, clinicopathologic features, and distinct germline genetic risk variants (Jones et al. 2017;
Nameki et al. 2021). Of the 39 known unique EOC susceptibility loci (P-value < 5x10°®) identified

through GWASs, 9 are associated with risk of HGSOC, 5 with risk of LGSOC, 4 with risk of
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MOC, and 1 with risk of EnOC. 20 loci are associated with all invasive disease, or a combination
of one or more histotypes (Song et al. 2009; Bolton et al. 2010; Goode et al. 2010; Bojesen et al.
2013; Pharoah et al. 2013; Kelemen et al. 2015; Kuchenbaecker et al. 2015; Lawrenson et al. 2015;
Kar et al. 2016; Lawrenson et al. 2016; Jones et al. 2017; Phelan et al. 2017). These genome-wide
significant risk loci represent a fraction of all narrow-sense heritability in EOC and it is predicted
that additional SNPs also contribute to disease susceptibility (Manolio et al. 2009; Boyle et al.
2017). Innovative approaches are needed to deconvolute additional true risk loci falling below
genome-wide significance from false positives due to limited power, particularly for the rarer
histotypes.

We applied chromMAGMA to EOC, inputting histotype-specific GWAS summary
statistics, REs identified by H3K27ac chromatin immunoprecipitation-sequencing (ChIP-Seq) of
Miillerian tissues, and RE-to-gene maps from the GeneHancer database (Corona et al. 2019).
ChromMAGMA highlighted mRNA splicing and transcriptional dysregulation in EOC risk. In
addition, lineage-specifying transcription factors (TFs) marked by super-enhancers (large stretches
of H3K27ac) were particularly enriched for EOC risk associations based on chromMAGMA
analyses and are likely to represent the nexus of noncoding EOC risk and transcriptional
dysregulation. Overall chromMAGMA offers a flexible, gene regulation-focused approach to
nominate noncoding regulatory elements and target genes involved in risk of polygenic traits.
RESULTS
chromMAGMA maps risk-associated, active regulatory elements to target genes

To identify candidate risk REs and associated genes for polygenic traits, we built the
chromMAGMA pipeline by modifying the pre-processing and processing steps of conventional

MAGMA and tested its performance using GWAS summary statistics and epigenome data for
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epithelial ovarian cancer (Supplementary Table 1). First, the genome is trimmed to only include
regions annotated as high-confidence active REs from the GeneHancer database (Fishilevich et al.
2017). This reduces the genome from three billion base pairs (bp) to ~400 million bp (Figure 1a).
Since GeneHancer includes data from 46 tissue types, for an EOC-specific analysis we further
restricted the universe of GeneHancer REs to those regions marked by H3K27ac in normal and
malignant Miillerian tissues and cell lines (Coetzee et al. 2015; Fishilevich et al. 2017; Corona et
al. 2019). This created a final genome of ~200 million base pairs containing only regions of active
chromatin identified in ovarian cancer-relevant tissues. GWAS SNP identifiers (reference SNP
cluster identifiers, rsIDs) from 6 histotype-specific GWAS summary statistics (CCOC, EnOC,
HGSOC, LGSOC, MOC, and NMOC — a dataset consisting of all samples except for MOC)
(Coetzee et al. 2021) (Figure 1b) were then positionally mapped to the aforementioned RE dataset
by applying the MAGMA annotation command (Methods). The SNP rsID-to-RE annotation was
then processed for gene-level analysis using MAGMA (Methods) alongside EOC GWAS SNP
summary statistics (P-values) and 1000 Genome European panel reference LD data (1000
Genomes Project Consortium et al. 2015). As multiple REs can regulate one gene (Peng and Zhang
2018), each gene was assigned the P-value of the most significant RE.

Since REs marked by H3K27ac can identify both transcriptionally active promoters and
enhancers, we stratified REs into promoters (defined as 1000bp upstream and 100bp downstream
of a transcription start site) or candidate enhancers (all other regions of active chromatin)
(Methods). This identified an average of 9,682 risk-associated REs for each histotype (range:
9,624-9,713) assigned to 17,435 protein-coding genes, of which 38% of the REs (3,703/9,682;
range: 3,669-3,731) were active promoters and 62% (5,979/9,682; range: 5,966-6,002) were

enhancers. The enhancer-to-promoter distance varied widely, with an average distance of 187,647
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bp (range: 2 bp — 5 Mbp; SD +/- 230,272 bp) between enhancer start and transcription start sites

(Supplementary Figure 1)
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Figure 1. Applying chromMAGMA to EOC risk. a) Overview of the chromMAGMA approach. The
GeneHancer database of regulatory elements (and linked genes) was limited to REs detected in Miillerian tissues.
An EOC SNP rsID-to-RE-to-gene annotation list was created and used for gene-level analysis using the MAGMA
model, along with EOC GWAS summary statistic P-values and reference linkage disequilibrium correlations from
the European ancestry subset of the 1000 Genomes reference panel. Since multiple REs can be associated with
one gene, the RE with the most significant P-value represents each gene. b) Study population of EOC GWAS
dataset from Coetzee et al. 2021 CCOC, clear cell ovarian cancer; EnOC, endometrioid ovarian cancer; HGSOC,
high-grade serous ovarian cancer; MOC, mucinous ovarian cancer; NMOC, all non-mucinous ovarian cancers
(Coetzee et al. 2021).

We ran conventional MAGMA alongside chromMAGMA to compare risk genes
implicated by the two methods (Supplementary Table 2). In MAGMA and chromMAGMA, the
P-value is calculated in a two-step process: first the SNP matrix is projected into a smaller set of
principal components to remove the effects of highly correlated SNPs; second these principal
components are used in a linear regression whose outputs (feature-wise enrichment for significant
SNPs) are tested for statistical significance using an F-test (de Leeuw et al. 2015). Considering all
protein coding genes, the average chromMAGMA P-value was significantly lower compared to
MAGMA across EOC histotypes (P-value < 0.001 for all histotypes; Welch two-sample T-test),

consistent with previous evidence that REs, but not protein coding exons, are enriched for risk-
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associated SNPs (2019). After Bonferroni correction to account for the total number of genes tested
in each histotype-specific analysis, we identified 68 unique significant genes in MAGMA and 155
unique significant genes in chromMAGMA, with 56 genes identified by both methods (MAGMA
Bonferroni corrected P-value < 2.70x10% chromMAGMA Bonferroni corrected P-value <
2.87x10©). The number of genes identified by histotype ranged from 0 (EnOC) to 53 (all non-
mucinous cancers, NMOC) significant genes in MAGMA and 0 (EnOC) to 131 (NMOC)
significant genes using chromMAGMA (Figure 2a). Disparity in the number of significant genes
by histotype is likely due to power, as HGSOC and NMOC represents a majority of the overall
sample size in the EOC GWAS.

Gene-dense GWAS loci at genome-wide significance account for many of the risk genes
identified by MAGMA and chromMAGMA (Berisa and Pickrell 2016). For example, genes on
chromosome 17 are overrepresented in MAGMA and chromMAGMA in EOC (26/68 and 52/155
unique genes respectively) likely due to the presence of two genome-wide significant loci in this
chromosome and the high degree of LD due to an inversion at 17q31 (Jones et al. 2017).We divided
the genome into distinct bins based on LD to identify instances where chromMAGMA nominates
candidate risk REs within novel LD bins, scenarios where the same candidate gene could not
readily be identified through MAGMA. Using this approach, twenty-nine unique genes were
identified as candidate risk genes only in chromMAGMA (Supplementary Table 3). Using
chromMAGMA NMOC as an example, a significant promoter (P-value 4.3x10°®) at a known breast
and ovarian cancer genome-wide significant risk locus at chromosome 9q31 is assigned to SMC2;
whereas in MAGMA, SMC2 is not significant (P-value 1.9x107%) (Kar et al. 2016) (Figure 2b).
Other candidates not previously implicated in EOC risk such as PRSS23 (P-value 2.6x10°), a

serine-protease regulated by HGSOC biomarker PAXS8 (Adler et al. 2017) were also identified
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(Figure 2c). The same RE assigned to PRSS23 interacts across an LD boundary with the promoter
of EED. EED is a component of the polycomb repressor complex involved in the pathogenesis of
numerous cancer types (Kim et al. 2013).

We next compared chromMAGMA risk genes with candidate susceptibility genes
nominated by alternative approaches. This analysis was limited to HGSOC as it is the most
common and well-studied EOC subtype. Chromosome conformation capture assays have
identified candidate susceptibility genes previously undiscovered based on proximity to the nearest
gene promoter. So far three GWAS significant loci at 11q31, 8924, and 19p13 originally mapped
by proximity to HOXD3, PVTI, and BABAM1 was found, via chromosome conformation capture
assays to interact with HOXD9, MYC, and ABHDS respectively (Grisanzio and Freedman 2010;
Lawrenson et al. 2015, 2016). chromMAGMA nominated all three as candidate susceptibility
genes in HGSOC (HOXD9, P-value 1.52x10°'2; MYC, P-value 6.39x10°'! and ABHDS, P-value
3.9x107'%). As chromMAGMA also identifies risk variants that may impact short-range enhancer-
promoter interactions, promoters, and intronic enhancers, we reasoned that it should also be able
to capture susceptibility genes identified through traditional GWAS based on closest proximity.
Indeed, 10 out of 12 (83 %) genes previously labeled as genome-wide significant based on
proximity to a lead variant overlapped with chromMAGMA nominated genes (P-value < 5x10%)
(Figure 2d). Cis-expression quantitative trait loci (eQTL) and transcriptome-wide association
studies (TWASs) integrate genotype data with gene expression to identify candidate genes
associated with disease risk. To date, 26 candidate genes have been identified as HGSOC candidate
risk genes using these methods (Lawrenson et al. 2015; Lu et al. 2018; Kar et al. 2020); 16 out of
26 genes (62%) previously identified by HGSOC eQTL or TWAS analyses were also nominated

by chromMAGMA (Figure 2d). chromMAGMA identified 105 additional genes previously not
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implicated in HGSOC risk. 22/105 of these genes had long range interactions (> 500 kilobases)
with the risk RE, highlighting how chromMAGMA can identify candidate genes transcriptionally
impacted by noncoding risk SNPs that are hundreds of kilobases away. For example, the longest
promoter-risk RE interaction identified in this analysis was between the GMPS gene (P-value
5x101%) and an associated RE 9.4 kilobases away in linear genomic distance. Overall,
chromMAGMA nominates candidate risk genes that are consistent with alternate methods, but
also implicates additional genes in HGSOC susceptibility through risk SNPs with their upstream

active regulatory elements.
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Figure 2. ChromMAGMA identifies risk genes for epithelial ovarian cancer through risk SNPs coinciding
with regulatory elements. a) Candidate risk genes identified by conventional MAGMA and chromMAGMA
across EOC histotypes (adjusted P-value < 0.05). b) Locus view displaying the NMOC chromMAGMA RE-to-
gene association for SMC2. LD boundaries and GWAS SNP associations (-logio(P-value)) are shown. ¢) Locus
view displaying the NMOC chromMAGMA RE-to-gene association for PRSS23 and EED. d) UpSet plot of
chromMAGMA genome-wide significant genes in HGSOC and alternate approaches to nominate candidate risk
genes. Proximity, lead variants labeled as genome-wide significant (P < 5x10®) assigned to genes based on nearest
transcription start site; eQTL, cis-expression quantitative trait loci; TWAS, transcriptome-wide association
studies; CCOC, clear cell ovarian cancer; EnOC, endometrioid ovarian cancer; HGSOC, high-grade serous ovarian
cancer; LGSOC, low-grade serous ovarian cancer; MOC, mucinous ovarian cancer; NMOC, all non-mucinous
ovarian cancers.

chromMAGMA implicates splicing and gene regulation in EOC risk
To identify pathways regulated by risk-associated regulatory elements, we conducted gene

set enrichment analysis to ask whether any gene sets from the Gene Ontology (GO) database were
enriched in ranked gene-level associations (based on descending order of -logio(P-value)) from
MAGMA and chromMAGMA. This approach allows for the investigation of sets of genes without
the need to assign arbitrary P-value cutoffs. Since one RE can be assigned to multiple genes in the
chromMAGMA gene-level association, gene ranks were weighted using a mRNA expression
dataset comprised of disease-relevant primary tissue samples (Corona et al. 2019) to generate a
ranked list in which highly expressed genes are ranked higher than relatively lower expressed
genes associated with the same RE (Methods). Pathway enrichment analysis with the
chromMAGMA-derived gene list identified 140 common pathways across all histotypes, of which
7 were related to mRNA splicing and processing (considering only pathways with positive
normalized enrichment scores and adjusted P-value < 0.05) (Figure 3a, Supplementary Table 4).
Spliceosome factors CHERP and EFTUD?2 were the top 2 (out of 349) most significant genes
related to mRNA splicing in the weighted chromMAGMA gene list. In addition, 20 of the common
pathways were terms related to transcription or chromatin, including RNA polymerase II activity
and transcription factor activities (Figure 3a). DNA-binding Transcription Factors SIN3B and

NFE2L1 were the top 2 most significant genes (out of 1746) in the weighted chromMAGMA gene
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list and the transcription mediator complex coactivator MED26 ranked 3". Histotype-specific
pathways were also observed for CCOC (195 pathways), EnOC (58 pathways), HGSOC (17
pathways), LGSOC (30 pathways) and MOC (70 pathways) (Figure 3b). In contrast, pathway gene
set enrichment with conventional MAGMA had no enriched pathways that passed the P <0.05

(after adjustment for multiple comparisons) threshold across all histotypes.
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Figure 3. chromMAGMA identifies histotype-specific as well as common pathways involved in EOC risk.
a) Dot plot representing transcription, splicing, and chromatin related pathways that were enriched in risk genes
nominated in all histotypes by chromMAGMA. b) Bar plots representing the top 10 histotype-specific
chromMAGMA pathways based on normalized enrichment score. NES, normalized enrichment score; CCOC,
clear cell ovarian cancer; EnOC, endometrioid ovarian cancer; HGSOC, high-grade serous ovarian cancer;
LGSOC, low-grade serous ovarian cancer; MOC, mucinous ovarian cancer.

Super-enhancer-associated transcription factors are associated with EOC risk

Cancer cells are often dependent on lineage-specifying TFs whose expression is propelled
by large clusters of enhancers termed super-enhancers or stretch enhancers (Bradner et al. 2017).
Of 1,671 known human TFs, 257, 220, 202, and 247 TFs are associated with super-enhancers in
CCOC, EnOC, HGSOC, and MOC respectively (Supplementary Table 5). Using chromMAGMA
we identified super-enhancer-associated TFs as enriched for association with risk at P-value <
0.05; FDR (g-value) < 0.25 for all histotypes except LGSOC, as LGSOC tissue H3K27ac ChIP-
seq data were not available (Figure 4a) (Hnisz et al. 2013; Whyte et al. 2013; Corona et al. 2019).
By contrast, super-enhancer associated TFs were only significantly enriched for HGSOC risk (P-
value < 0.05; FDR g-value < 0.25) when using gene-level statistics derived from conventional
MAGMA. Leading-edge analysis was performed to identify the super-enhancer associated TFs
overrepresented in the top ranks of chromMAGMA gene-level associations. TFs previously
implicated in epithelial ovarian cancer development including 6/14 candidate master regulators for
HGSOC based on a recent pan-cancer gene expression analysis were implicated in EOC risk
(Supplementary Table 6). Three of these factors (PAXS8, SOX17, and MECOM) are functionally
validated master regulators of HGSOC development (Figure 4b) (Reddy et al. 2019). HNFIB, a
CCOC biomarker and a key regulator of CCOC tumorigenesis (Cuff et al. 2013; Li et al. 2015),

was also on the leading edge of the clear cell ovarian cancer analysis (Figure 4b).
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Figure 4. Super-enhancers upstream of transcription factors are associated with histotype-specific EOC
risk. a) Gene-set enrichment plot of super-enhancer associated TFs from each EOC histotype from Corona et al.
2020 in conventional MAGMA and chromMAGMA. b) Gene -logio(P-value) versus gene rank based on -
log10(P-value) with known genes implicated in CCOC and HGSOC from the leading-edge list of the super-
enhancer associated TF gene-set enrichment analysis highlighted. CCOC, clear cell ovarian cancer; EnOC,
endometrioid ovarian cancer; HGSOC, high-grade serous ovarian cancer; LGSOC, low-grade serous ovarian
cancer; MOC, mucinous ovarian cancer; NMOC, all non-mucinous ovarian cancers.

Gene set enrichment analysis of TF cistromes

In addition to TFs being the target of risk SNPs, noncoding SNPs may also impact disease
risk by modifying TF binding within enhancers to impact gene expression (Oldridge et al. 2015;
Kandaswamy et al. 2016; Huo et al. 2019). Therefore, we asked whether target genes of specific
TFs are disproportionally impacted by EOC risk SNPs in chromMAGMA. For this analysis we
asked if TF-specific gene sets in the Molecular Signatures database (MsigDB) are enriched in the

ranked gene list from chromMAGMA (Subramanian et al. 2005; Liberzon et al. 2011)
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(Supplementary Table 7). TF targets are defined as genes with motifs located within 4 kb around
their transcription start sites by MsigDB.

We first explored the PAXS target gene sets in HGSOC, as we have previously identified
PAXS target gene sets to be enriched in this histotype(Kar et al. 2017). PAXS is represented by
two gene sets in MsigDB - PAX8_B contains 106 genes, PAX8_01 contains 39 genes, with 23
genes in common across the two sets. When ranked by the normalized enrichment score, PAX8_B
ranked 24/573 (P-value =0.032, FDR g-value = 0.098) and PAX8_01 ranked 42/573 (P-value
=0.13, FDR g-value = 0.34) in MAGMA. With chromMAGMA, the PAXS target gene sets ranked
higher, with PAX8_B ranked 1/573 (P-value < 1.0 x1073, FDR g-value = 0.115), and PAXS8_01
ranked 12/573 (P-value =0.040, FDR g-value = 0.18). We also explored chromMAGMA
performed for NMOC, and this analysis identified targets of EVI1, also known as MDS1 and EVI1
Complex Locus (MECOM) as a significant gene set not identified in MAGMA (MsigDB-EVI1_05
P-value = 1.0 x10, FDR g-value = 0.17; MsigDB-EVI1_04; P-value = .041, FDR g-value =0.15;
MsigDB-EVI1_03; P- value= 4.6 x10-2, FDR g-value = 0.229). MECOM is a known master
regulator TF in HGSOC that 1s functionally involved in disease pathogenesis (Reddy et al. 2019;
Bleu et al. 2021). Leading-edge analysis was performed for MsigDB-PAX8 B and MsigDB-
EVI1_05 to identify the candidate susceptibility genes potentially regulated by PAX8 and
MECOM. This analysis identified 29 and 49 candidate susceptibility genes regulated by PAXS
and MECOM, respectively. Interestingly, HOXB5, HOXB7, HOXBS, and NEURODG6 genes were
common target genes between the two factors. HOXBS, HOXB7, and HOXBS are homeobox
superfamily TFs that are particularly highly expressed in HGSOC and associated with poor

survival (Idaikkadar et al. 2019).
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We then used chromMAGMA to discover additional TFs not previously implicated in EOC
risk with histotype specificity in consideration. Since one transcription factor can be represented
by multiple gene sets, the gene set with the most significant P-value was chosen to represent each
transcription factor. chromMAGMA performed for NMOC were excluded from this as it is a
dataset consisting of all samples except for MOC. Considering P-value <0.05 & FDR cutoff of <
0.25, we identified 113 transcription factors implicated in EOC risk. Of these 113 transcription
factors, 13 were specific to CCOC, 4 to EnOC, 5 to HGSOC, 7 to LGSOC, 9 to MOC and 7
common across all 5 histotypes (Figure 5a, Supplementary Figure 5a). SOX9 was identified as a
CCOC specific TF in which its downstream regulatory targets are enriched for risk SNPs. A recent
single-cell RNA sequencing study of the human endometrium (hypothesized tissue-of-origin for
CCOC) grouped SOX9 positive epithelial cells of the endometrium as a regenerating and
proliferative subset (Garcia-Alonso et al. 2021).

Finally, we set to identify TFs that are likely to be directly regulated by risk SNPs and
where risk SNPs also modify TF downstream binding, hereinafter termed as ‘nexus TFs’. Nexus
TFs were defined as TFs that were (1) on the leading edge of the super-enhancer associated TF
gene set enrichment analysis and (2) TF target gene sets from MsigDB that were significantly
enriched in chromMAGMA for each respective histotype (Figure 5b, Supplementary Table 7). 16
TFs such as PAX8 were identified for HGSOC and EnOC, along with novel TFs implicated in
EOC such as SP1, a TF implicated in a variety of biological processes across multiple cancer types
(Vizcaino et al. 2015). To explore the functional role of Nexus TFs, we leveraged a publicly
available CRISPR-Cas9 knock-out screen that includes seven CCOC cell lines, four EnOC cell
lines, 15 HGSOC cell lines, and five MOC cell line models (Meyers et al. 2017). Although there

is heterogeneity across cell lines and histotypes, EOC lines are largely dependent on RREBI,
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ATF4, MAX, PAXS, MZF I, SRF (average essentiality scores < -0.4; average score for pan-essential
genes = -1) and SPI, MECOM, and CEBPB (average essentiality scores < -0.3) (Figure 5c, Table
1). By comparison, negative control TFs that were (1) not on the leading edge of the super-
enhancer associated TF gene set enrichment analysis and (2) bottom 16 of the TF target gene sets
from MsigDB were less likely to be essential in EOC cell lines (Figure 5c¢). In total 9/16 nexus
TFs showed at least modest dependency (average essentiality scores < -0.3) in at least one
histotype, compared to 2/16 negative control TFs. These results imply that TFs on the nexus of
risk through genetic variation both in upstream REs and downstream binding sites can be identified

in chromMAGMA and are often essential genes in EOC.
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Figure 5. Transcription factor networks in EOC risk. a) Genome-wide significant Molecular Signatures
Databse transcription factor targets (MsigDB ‘TFT _legacy’) gene-sets (FDR < 0.05) compared between MAGMA
and chromMAGMA across histotypes b) Schematic depiction of the definition of a ‘Nexus TF’. Top ranks =
leading edge of the gene-set enrichment analysis. ¢c) Heatmap displaying the essentiality score of Nexus TFs in
EOC lines (data from Depmap.org). Columns clustered using unsupervised hierarchical clustering (method = X).
CCOC, clear cell ovarian cancer; EnOC, endometrioid ovarian cancer; HGSOC, high-grade serous ovarian cancer;
LGSOC, low-grade serous ovarian cancer; MOC, mucinous ovarian cancer; NMOC, all non-mucinous ovarian
cancers.
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ccoc EnOC HGSOC MocC
TF Mean SD Mean SD Mean SD Mean SD

Essentiality Essentiality Essentiality Essentiality

Score Score Score Score
EGRI -0.12 0.21 -0.03 0.19 -0.15 0.11 -0.11 0.10
RREBI -0.47%* 0.20 -0.19 0.16 -0.43%* 0.16 -0.52%* 0.22
SP1 -0.34%* 0.22 -0.37** 0.23 -0.29 0.20 -0.50* 0.08
ATF4 -0.76* 0.18 -0.73* 0.06 -0.78* 0.20 -0.91* 0.26
HIFIA 0.34 0.36 0.15 0.10 0.14 0.10 0.06 0.30
MECOM -0.34%* 0.61 0.10 0.04 -0.23 0.38 0.10 0.12
MEIS1 -0.01 0.06 -0.04 0.16 -0.11 0.16 -0.04 0.15
VDR -0.05 0.13 -0.09 0.14 -0.06 0.12 -0.13 0.07
IRF?2 -0.04 0.09 0.04 0.04 0.10 0.18 0.02 0.21
MAX -0.58* 0.16 -0.47* 0.10 -0.52* 0.15 -0.62* 0.12
PAXS -0.98%* 0.66 -0.36 0.40 -0.71%* 0.58 -0.25 0.44
CEBPB -0.40%* 0.25 -0.18 0.05 -0.30%* 0.13 -0.28 0.32
IRF1 -0.16 0.10 -0.17 0.13 -0.09 0.07 -0.20 0.13
MZF1 -0.56* 0.28 -0.48* 0.17 -0.51* 0.11 -0.58* 0.23
RFX1 -0.15 0.11 -0.25 0.14 -0.26 0.11 -0.24 0.18
SRF -0.76* 0.17 -0.52* 0.16 -0.67* 0.14 -0.48%* 0.29
AR -0.12 0.14 -0.11 0.05 -0.01 0.13 -0.06 0.08

*Mean essentiality score =< -0.4 **Mean essentiality score =< -0.3

Table 1. Average essentiality scores for Nexus TFs across EOC cell lines. Mean essentiality score represents
the average essentiality score for all cell lines associated with each EOC histotype. CCOC, clear cell ovarian
cancer; EnOC, endometrioid ovarian cancer; HGSOC, high-grade serous ovarian cancer; LGSOC, low-grade
serous ovarian cancer; MOC, mucinous ovarian cancer; NMOC, all non-mucinous ovarian cancers; SD, standard
deviation.

18


https://doi.org/10.1101/2022.01.21.477270
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.01.21.477270; this version posted January 23, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

DISCUSSION

Most common risk polymorphisms associated with complex traits in GWAS are located in
the noncoding portion of the genome (Zhang and Lupski 2015). These noncoding risk
polymorphisms likely modify the activity of noncoding regulatory elements to impact the
expression of a target gene (or genes) that play a role in disease susceptibility (2019). Identifying
the risk RE and target gene remain two main challenges in post-GWAS functional work, since REs
outside of promoters are tissue-specific and can interact with transcription start sites over large
linear genomic distances (Sanyal et al. 2012). Here we built chromatin-MAGMA, or
‘chromMAGMA”, to prioritize candidate risk REs and target genes based on the landscape of gene
regulation in a specific tissue type. chromMAGMA first maps SNPs to user-defined tissue-specific
regulatory element landscapes. REs are linked to putative target genes using the GeneHancer
database, or any other resource. The collection of annotated active REs can then be interrogated at
the gene level, or gene set level. Here we focused on epithelial data sets representing the tumor
type of interest, plus likely precursor cell types; however analogous data sets for other cell types
could also be interrogated, where they exist.

We tested the performance of chromMAGMA using the largest EOC GWAS dataset to
date, consisting of 26,151 EOC cases and 105,724 controls (Coetzee et al. 2021) combined with
disease-relevant Miillerian active REs and RE-to-gene contact maps from the GeneHancer
database. We contrasted the RE-centric chromMAGMA to genes nominated by conventional
MAGMA. Overall, chromMAGMA assigned lower P-values to genes compared to MAGMA, in
line with evidence that SNPs are enriched in active REs, validating the overall premise of this
approach (Gerasimova et al. 2013, 2019; Jones et al. 2020; Nasser et al. 2021). Orthogonal

evidence to validate the chromMAGMA approach came from concordant results obtained when
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using chromMAGMA and alternative approaches to nominate candidate EOC susceptibility genes
(including proximity, chromosome conformation capture assays, and quantitative trait locus-based
analyses). Of particular note is that chromMAGMA identified previously validated candidate
genes in scenarios where large genomic distances or multiple genes lie between the candidate
causal risk SNPs and the risk gene. This highlights how the chromMAGMA approach represents
an efficient route to candidate gene nomination that incorporates the benefits of popular existing
methods, while avoiding some of the limitations associated with those techniques. For example,
chromMAGMA circumvents the distance bias of both eQTL analyses (which are often only
powered to identify local cis interactions) or analyses that leverage chromatin interactome data
(which conversely cannot resolve short-range interactions, which poses a particular challenge in
gene-dense regions).

In addition to validating known risk genes, chromMAGMA provided insights into EOC
risk that have not been achieved using previous methods. Pathway analysis of the chromMAGMA
ranked gene list revealed enrichments of mRNA processing and splicing pathways across all
histotypes, indicating that noncoding risk SNPs falling on REs regulate genes within these
pathways. While splicing events have been recently associated with EOC risk(Gusev et al. 2019),
components of splicing machinery have not been implicated in EOC risk previously.
Transcriptional regulation pathways were also enriched in risk genes highly ranked by
chromMAGMA, particularly super-enhancer associated lineage specific factors (such as PAXS in
HGSOC and HNFIB in CCOC). A study incorporating long-range, noncoding chromatin
interactions from Hi-C with MAGMA (H-MAGMA) in 9 neuropsychiatric disorders also found
common pathways in transcriptional regulation/RNA splicing(Sey et al. 2020). These results

suggest that risk variants impacting such pathways may be common occurrences across complex
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traits. As TFs can be both targets and mediators of risk SNPs, we identified a set of ‘Nexus TFs’,
i.e., transcription factors with oncogenic transcriptional properties that are enriched for risk
variation both in its upstream cis regulatory element and in its downstream target binding sites.
Gene dependency data prioritized nine transcription factors, which included master regulators of
HGSOC — PAX8 and MECOM. PAX8 and MECOM are known to co-occupy a majority of
H3K27ac active regions in HGSOC, and may be contributing to the differential regulation of
HGSOC-relevant risk genes (Reddy et al. 2019).

While our study used H3K27ac chromatin immunoprecipitation data — a widely available
mark of active chromatin, other technologies and epigenetic marks — such as other histone post-
translational modifications, transcription factor binding sites, open chromatin regions, and
methylation profiles - are all compatible with chromMAGMA. In this study we used GeneHancer
active regulatory-element-to-gene contact map data (Fishilevich et al. 2017). GeneHancer is the
most comprehensive catalogue of gene-regulatory element associations currently available and is
comprised of RE-to-gene maps represented by 46 tissue types. One limitation to this approach is
that Miillerian tissues are not well represented in the GeneHancer database and could be missing
interactions unique to gynecologic tissues. Alternative data types, such as in silico maps of RE-
promoter interactions inferred from ATAC-seq data (Corces et al. 2018) or genome-wide data from
epigenome and genome editing screens could be incorporated to create tissue-specific maps of
gene-RE assignments. Another limitation of chromMAGMA is the necessary step of assigning a
representative RE to a single gene for the generation of gene-level statistics. In this study, genes
were mapped 1:1 to the RE with the most significant P-value. This step simplifies the biological
complexity of multiple REs influencing a gene in an additive (Hay et al. 2016; Kawakami et al.

2021), or sometimes hierarchal manner (Shin et al. 2016; Huang et al. 2018), but for some genes,
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may miss a critical aspect of transcriptional regulation relevant to risk. Integration of
chromMAGMA with data from perturbation (Fulco et al. 2019) and massively parallel reporter
(Muerdter et al. 2015) assays may be a superior way to prioritize REs associated with each gene.
Overall, chromMAGMA is a flexible approach that can be readily adapted to prioritize candidate
risk genes and regulatory elements for a wide array of phenotypes.

COMPUTATIONAL METHODS

MAGMA

MAGMA uses the P-values of SNPs and local linkage disequilibrium to assign SNPs to
gene locations, and then aggregates SNPs within the same gene body using a hypergeometric
distribution (de Leeuw et al. 2015). These genes are then ranked by ranking the -logio(P-value).
The greater the -logio(P-value), the greater the number and/or significance of GWAS SNPs lying
within the interval of the gene. MAGMA requires two external data sources: a list of GWAS SNPs
with associated P-values from that of GWAS, number of participants, and a list of annotations
linking gene names to intervals in the genome.

GWAS data came from the OCAC consortium study of 26,151 cases and 105,274 controls
participants (Coetzee et al. 2021). The GWAS data contained SNP P-values for five histotypes of
ovarian cancer - high-grade serous, low-grade serous, clear cell, endometrioid, mucinous, and a
composite category of all non-mucinous histotypes. Gene locations from the NCBI build 37.
Significant genes were identified by filtering genes whose P-values were less than the Bonferroni
corrected value of 2.70x10°.
chromMAGMA

A list of all REs (hg19) and corresponding gene targets was obtained from Genehancer

(v4.7) a publicly available database of RE-to-gene maps (Fishilevich et al. 2017). Genehancer
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captures a broad universe of RE activity which we wished to reduce to those specific to ovarian
cancer and precursor cell states. We used a dataset of H3K27ac peaks derived from clear cell
(number of non-unique peaks = 119,549 peaks), endometrioid (125,743 peaks), high-grade serous
(122,734 peaks), mucinous (131,655 peaks) ovarian tumor tissues, and samples from
endometriosis epithelial (44,083 peaks), and normal fallopian tube secretory epithelial cell lines
(43,734 peaks) (Coetzee et al. 2015; Corona et al. 2020). This was converted to hg19 using UCSC
liftOver, duplicates were removed and the remainder were merged into 80,271 distinct intervals
using bedtools v2.25.0 (Quinlan and Hall 2010). We then selected REs from Genehancers which
overlapped with our H3K27ac intervals by at least one base pair.

We used the REs as the interval input into MAGMA to replace the gene intervals used by
MAGMA. This generated a list of REs and their statistics. This list was then linked to the genes,
where each gene was assigned the greatest -logio(P-value) from its REs. REs were defined as
promoters based on the txdb.hsapiens.ucsc.hg19.knowngene database, and all non-promoters were
labeled as candidate transcriptionally active enhancers. Significant genes were identified by
filtering genes whose P-values were less than the Bonferroni corrected value of 2.87x10°®.
Identifying proximal genes to GWAS genome-wide significant loci
All lead variants labeled as genome-wide significant (P < 5x10°®) in ovarian cancer by Jones et al.
2017 (Jones et al. 2017) were assigned to a gene based on nearest transcription start site.
Generation of the gene list

Gene identifiers in chromMAGMA and MAGMA were curated by restricting to those
identifiable as ‘ensembl gene id’, ‘external gene name’,’external synonym’,’hgnc symbol’,
‘entrez_gene id’, and ‘uniprot _gn symbol’ and filtered for genes labeled as ‘protein coding’

from the BioMart portal (Smedley et al. 2015). For MAGMA, the maximal -logio(P-value) was
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then assigned to a gene, and simply ranked with -logio(P-value) in descending order. For
chromMAGMA, ties in the -logio(P-value) were broken using the average expression of variance
stabilization normalized primary CCOC, EnOC, HGSOC, MOC and fallopian tube secretory
epithelium (Average Miillerian mRNA Expression) as described from Corona et al. 2020 (Corona
et al. 2020). The ties were broken using this formula:
Weighted P-value = -logjo(P-Value)*Average Miillerian mRNA Expression

The same list was used for subsequent gene set enrichment analysis.
Pathway gene set enrichment analysis

Pathway enrichment analysis was conducted using the ClusterProfiler package in R. We
removed the HLA genes defined by the HLA Informatics Group (Tiercy et al. 2002; Hollenbach
et al. 2011; Nunes et al. 2011) from the ranked list prior to carrying out gene set enrichment
analysis. This is because the strong, long-distance linkage disequilibrium between SNPs in this
region led to a clustering of multiple gene-level associations in this region making it difficult to
differentiate between these genes in terms of ranks. This clustering in turn may yield potentially
spurious enrichment signals for pathways that contain several HLA genes. We ran this analysis
using the following script:
gseGO(geneList= <GENE-LIST>,

ont ="ALL",

keyType = "ENTREZID",

nPerm = 10000,

minGSSize = 3,

maxGSSize = 800,

pvalueCutoff = 0.05,
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verbose = TRUE,

OrgDb = org.Hs.eg.db,

pAdjustMethod = "BH")
Pathways with gene set sizes less than 25 (as recommended by the BROAD institute) were
removed from further analysis as the normalization to variation in gene set size becomes inaccurate
for small gene sets.
Super-enhancer associated TF gene set enrichment analysis

This analysis was conducted using the default GSEA preranked setting within the Broad
GSEA (v3.0) program. The super-enhancer associated TF gene set was generated by taking known
TFs from the Human Transcription Factor data base (Lambert et al. 2018), which was then filtered
to only include TFs that were proximal, overlapping, or nearest to a super-enhancer as defined by
ROSE2 (Whyte et al. 2013) for CCOC, EnOC, HGSOC, MOC, and NMOC (Corona et al. 2020).
Enrichment plots were generated with the R package fgsea.
MsigDB TF cistrome gene set enrichment analysis

This analysis was conducted using the default GSEA preranked setting within the Broad
GSEA program (v3.0).
EXPERIMENTAL METHODS
Fallopian tube secretory epithelium RNA-seq
RNA-sequencing data from primary fallopian tube secretory epithelial cells were generated as
described in Corona et al. 2020 (Corona et al. 2020). They are available in the GEO database under
the accession code GSE182510.
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