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Abstract 1 

 2 

Individuals with autism spectrum disorder (ASD) have been widely reported to show 3 

atypicalities in predictive coding, though there remains a controversy regarding what causes 4 

such atypical processing. Suggestions range from overestimation of volatility to rigidity in the 5 

reaction to environmental changes. Here, we tested two accounts directly using duration 6 

reproduction of volatile and non-volatile interval sequences, which were generated from the 7 

same set of intervals (i.e., the same ensemble prior). We found that both individuals with ASD 8 

and matched controls were able to adjust the weight of the ensemble prior for the reproduction 9 

according to the volatility of the sequence. However, the ASD group, as compared to the 10 

control group, relied generally less on the prior while also exhibiting marked carry-over of the 11 

weight of the prior when environmental volatility changes. Of note, though, four extremes 12 

among the 32 ASD individuals showed a reproduction pattern on the opposite end of the 13 

spectrum: heavy reliance on the prior in the volatile environment. Overall, our findings suggest 14 

that it is not the learning of the prior per se that is compromised in ASD. Rather, a less adaptive 15 

response to a change of the volatility regimen or to a volatile environment causes a highly 16 

inflexible weighting of prediction errors and the prior.  17 

 18 
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1. Introduction 1 

Autism Spectrum Disorder (ASD) is characterized by symptoms in social interaction 2 

and communication, and concerning repetitive and stereotypical behaviour [1]. Compared to 3 

typically developed individuals (TD), individuals with ASD often find it more difficult to adapt 4 

to situations with overwhelming sensory stimulation [234]. There is a growing body of 5 

evidence of atypical sensory processing in ASD [5,6]. Thus, for instance, several studies have 6 

reported correlations between abnormal visual sensory processing and symptom severity [737 

10]. The sensory processing abnormalities also extend to time processing [9,11,12], though 8 

atypical performance is rather mixed [9,11].  9 

Over the past decade, several accounts based on the predictive coding theory have been 10 

formulated to explain sensory atypicalities in autism [13319]. While it is commonly agreed 11 

certain predictive differences occur in ASD, the various accounts differ with respect to the 12 

component of predictive processing that is compromised in ASD. To better elaborate the 13 

theoretical differences, we should first consider the key idea of predictive coding, namely, that 14 

the goal of our perception and action is to update our predictions and minimize prediction errors 15 

based on Bayesian inference. In a simple form of Bayesian inference, the perceptual estimate 16 

(�!"#$"!%) is an optimal integration of the prediction based on the internal prior  (�!#&'#) with 17 

the sensory measurement ( �(")("):  18 

�!"#$"!% =	 (1 2 �)�!#&'# +��(")(",   (1) 19 

where � is the weight of the sensory measurement based on its precision. With a simple 20 

mathematical transformation, the same integration can also be expressed as updating the 21 

posterior belief (�!'(%"#&'#) based on the prediction error:  22 

�!'(%"#&'# =	�!#&'# +��,     (2) 23 

where the prediction error � = �(")(" 2 �!#&'#. According to the predictive-coding framework 24 

[20], the posterior is adjusted by each prediction error with learning rate �, such that it 25 

minimizes future prediction errors. This form is also known as delta learning rule [21]. 26 

Incorporating cross-trial dynamic updating within the Bayesian inference framework renders 27 

an iterative Bayesian model [22324] which takes a similar form to Eq. (2). One important 28 

implication of Eq. 2 is that, rather than being fixed, the prior is dynamically adjusted trial by 29 

trial according to the delta rule to minimize future prediction errors. Accordingly, perceptual 30 

estimation can be influenced by recent trial history, known as sequential-dependence effect 31 

[25,26].  32 

Pellicano and Burr9s attenuated-prior account [13] advocates chronic differences in 33 

precision weighting in ASD: individuals with ASD, in general, place less trust on the prior, 34 

because their prior beliefs are compromised. Van de Cruys and colleagues [15], on the other 35 

hand, have argued that it is the 8High and Inflexible Precision of Prediction Errors in Autism9 36 

(HIPPEA) that underlies the observed atypicalities. In a similar vein, Lawson et al. [14] 37 

surmised that a failure to attenuate sensory precision may lead to overweighting of sensory 38 

inputs in ASD. Although conceptually distinct, these theories agree that individuals with ASD 39 

place greater trust on sensory inputs (Eq. 1) or prediction errors (Eq. 2). Supportive evidence 40 

has been provided by recent studies, including findings of reduced utilization of predictable 41 

information [27,28], needing more time to perform goal-directed anticipations [29], and greatly 42 

reduced usage of the prior in duration reproduction [30]. Karaminis and colleagues [30] used 43 
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the central-tendency effect as their main tool to disassociate the weights of the sensory 1 

measurement and, respectively, the internal prior. The central-tendency effect describes a 2 

classical perceptual bias: in a set of duration estimations, short durations tend to be 3 

overestimated and long durations underestimated. This can be seen from Eq. 1: if the weight 4 

(w) of the sensory input is low, the perceptual estimate (�!"#$"!%) regresses toward the prior 5 

(�!#&'#) [17,31]. Thus, a high central tendency means that the prior information is weighted 6 

highly (i.e., the learning rate � is low), and observers are less sensitive to the prediction errors 7 

generated by new sensory information. Conversely, a low central tendency means that the 8 

inference is primarily driven by the sensory inputs (i.e., the learning rate � is high), and 9 

observers trust the sensory information over the prior. Using this Bayesian framework, 10 

Karaminis et al. [30] demonstrated that, even though children with ASD exhibited a much 11 

stronger central-tendency effect compared to matched controls, their observed central tendency 12 

was far less than the theoretical model prediction on the basis of their time discrimination 3 a 13 

tool measuring sensory precision. In other words, although children with ASD exhibit a 14 

stronger central-tendency effect and their priors are of poorer precision, they place less trust on 15 

the prior than predicted by the model 3 consistent with the 8attenuated-prior9 [13] and 8aberrant-16 

precision9 [14] accounts.  17 

 It should be noted, though, that not all types of prior, or learning of priors, are 18 

compromised in ASD. In fact, priors based on experience or top-down knowledge are often 19 

preserved in ASD, such as in one-shot learning (e.g., perception of a Dalmatian dog hidden in 20 

an image composed of black patches) [32], the influence of gaze cues from previous trials 21 

[33,34], and reliance on external-world coordinates in tactile spatial processing [35]. Those 22 

mixed findings of usage of priors led Palmer et al. [17] argue that the simple Baysian model 23 

has a crucial limitation in assuming an unchanging world; instead, they speculated that the 24 

atypicalities in ASD may lie in the differential expectation about the uncertainty of changes in 25 

hidden states in a hierarchical inference. To examine how individuals with ASD learn 26 

uncertainty about environmental change (in their term 8metavolatility9), Lawson et al. [19] 27 

manipulated the cue-outcome association in a discrimination task, in which a probabilistic cue 28 

(a high or low tone) predicted the upcoming stimulus (a house or face picture) to which 29 

participants had to produce a speeded two-alternative (8house9 vs. 8face9) response. The cue-30 

outcome probabilistic association could be either stable within a block of trials or randomly 31 

switched (i.e., volatile). Compared to matched TD individuals, participants with ASD showed 32 

a smaller difference in response times (RTs) and pupil-size changes between the expected and 33 

unexpected cue-outcome association, and Lawson et al.9s computational model suggested that 34 

individuals with ASD show reduced behavioral surprise and larger metavolatility.  Lawson et 35 

al. [19] took this as evidence that individuals with ASD have a larger <gain (precision) on 36 

cortical responses (prediction errors) under conditions of uncertainty= (p. 1298); as a result, 37 

they tend to overestimate volatility, thus rendering unexpected events less surprising.  38 

At the same time, Manning et al. [36] directly compared reward-probability learning 39 

between children with ASD and matched TD controls employing a task they adapted for 40 

children from an earlier study by Behrens et al. [37]: On each trial, the children had to choose 41 

between two different treasure chests, of which only one actually contained a reward. The 42 

potential reward in each chest was indicated in advance, but not which of the chests contained 43 
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a reward. In some blocks of trials, there was a fixed probability distribution of each chest 1 

containing a reward (stable condition), whereas in other blocks the distribution changed 2 

regularly (volatile condition). In contrast to Lawson et al. [19], Manning et al. [36] found both 3 

groups to display a higher learning rate in the volatile relative to stable condition, without any 4 

difference between the two groups (i.e., there were no effects involving the factor Group). 5 

Manning et al. [36] concluded that, while <atypical predictive mechanisms account for 6 

perception in autism, [this] & may not extend to learning tasks= (p. 10). This echoes a recent 7 

finding that at the root of the problem is not a nonspecific learning deficit, but rather that 8 

learning other people9s intention is compromised in high-functioning adults with ASD [38]. 9 

Recent evidence also suggests that, while individuals with ASD are able to extract 10 

environmental statistics appropriately, the rate at which their internal priors are updated is 11 

greatly reduced compared to neurotypical individuals [39,40].  12 

The ability of individuals with ASD to learn prior information has also been confirmed 13 

in our recent study of distractor-location probability cueing in a visual-search paradigm [41]. 14 

In this paradigm, unbeknown to participants, a salient 3 that is, potentially attention-capturing 15 

3 singleton distractor (which was task-irrelevant and so to be ignored for optimal performance) 16 

appeared more likely in one display region or one particular location [42,43]. Learning this 17 

spatial distribution would be beneficial for reducing attentional capture by distractors occurring 18 

at high- (vs. low-) probability locations [43346]. Similar to Manning et al. [34], Allenmark et 19 

al. [41] observed that individuals with ASD learned the high- vs. low-probability distractor 20 

locations equally well to matched TD controls, and they successfully used this prior 21 

information to proactively prevent attentional capture. However, compared to the controls, 22 

individuals with ASD showed an atypically strong reaction to a prediction error when the 23 

distractor appeared at an unlikely location: they strongly marked that location as being a 24 

distractor position, setting up a bias that carried over to the next few trials. Thus, when the task-25 

relevant target appeared at that location, this stimulus was often mis-interpreted as a distractor 26 

when the eye first landed on that location. Consequently, oculomotor scanning proceeded to 27 

other, non-target items before eventually returning to the target and identifying it as the 28 

response-relevant item. Assuming that a distractor appearing at an unexpected location results 29 

in a prediction error, this pattern reflects overweighting of prediction errors in individuals with 30 

ASD, as proposed by Van de Cruys et al. [15].  31 

Thus, while there is a consensus that individuals with ASD display atypical sensory 32 

processing, the underlying causes remain controversial: does it arise from overlearning of 33 

environmental volatility [14,19] or reduced reliance on priors [13]? Or, alternatively, is 34 

learning intact [36], but the learning rate is reduced [39,40]? Of note in this context, while 35 

predictive-coding models of ASD [14,15,19] predict differences in predictive error handling in 36 

individuals with ASD relative to neurotypical individuals, the extant studies have focused 37 

primarily on differences in global priors and the consequent influences on sensory estimates 3 38 

thus largely neglecting effects of sequential uncertainty (i.e., volatility) and session order (i.e., 39 

the direction of volatility changes). In particular, examining how individuals with ASD 40 

(compared to TD individuals) handle short-term trial-to-trial changes and longer-term 41 

environmental volatility changes may provide crucial evidence for deciding between two 42 

promising accounts of abnormal predictive coding in ASD, namely: (a) do individuals with 43 
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ASD form atypical priors regarding volatility; or, rather, (b) do they show atypical handling of 1 

prediction errors, such as slow updating, in response to volatility changes? 2 

Accordingly, the present study was designed to examine how individuals respond to 3 

sequential uncertainty, employing a duration-reproduction paradigm [23,30,47]. Specifically, 4 

we compared the handling of (and shifting between) two types of duration sequences that were 5 

generated from the same (duration-) sample distribution, but differed in terms of trial-to-trial 6 

volatility (see Figure 1). We hypothesized that if the prior is chronically compromised (i.e., 7 

weaker) in individuals with ASD, they would display a reduced central-tendency effect in 8 

duration reproduction compared to TD individuals. In addition, if (a) was the case and 9 

individuals with ASD overestimate the environment volatility [19] and place an overly high 10 

weight on sensory inputs, their central-tendency and serial-dependence effects should be 11 

affected less by changes in the environmental volatility regimen (from low to high, or vice 12 

versa), compared to TD individuals. In contrast, if both groups learn the volatility in a similar 13 

manner but (b) differ in their handling of prediction errors [41] induced by volatility changes, 14 

individuals with ASD and matched TD controls would be expected to show comparable 15 

changes in the central tendency, but differ in terms of the carry-over of the previously learnt 16 

prior following a change in the volatility regimen.  17 

2. Methods 18 

(a) Participants 19 

32 individuals (13 females, 19 males, aged between 18 and 67 years, M = 32.0; SD = 20 

12.3) with confirmed ICD-10 ASD diagnosis [48] of F84.0 or F84.5 were recruited from the 21 

database and network partners of the Outpatient Clinic for Autism Spectrum Disorders at the 22 

Department of Psychiatry, LMU Munich. 32 TD controls (13 females, 19 males, aged between 23 

18 and 70 years, M = 31.6, SD = 13.6) with no reported history of mental illnesses or 24 

neurological deficits were recruited via local advertising. The groups were matched pairwise 25 

using the 8Wortschatztest9 [WST, 49], a measure of crystalline intelligence. Both groups 26 

completed the Autism-Spectrum Quotient [AQ, 50], Empathy Quotient [EQ, 51], Systemizing 27 

Quotient [SQ, 52], and Beck9s Depression Inventory [BDI, 53]. The groups did not differ 28 

significantly in terms of IQ (p=.28), age (p=.9). As expected, the groups differed significantly 29 

on AQ (p < .001), EQ (p < .001), SQ (p = .005), and BDI (p=.018) (see Appendix Table A1).  30 

All participants gave written informed consent prior to the experiment, and they were 31 

compensated for their time and participation at a rate of 10 Euros per hour. The study was 32 

approved by the Ethics Board of the Faculty of Pedagogics and Psychology at LMU Munich, 33 

Germany. 34 

(b) Design and procedure  35 

The experiment was carried out in a sound-reduced and moderately lit experimental 36 

cabin. The visual stimulus was a yellow disk patch (diameter: 4.7° of visual angle; luminance; 37 

21.7 cd/m2), which was presented on a 21-inch LACIE CRT monitor with a refresh rate of 85 38 
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Hz. The experimental code was developed using the Matlab PsychoToolbox (Kleiner et al., 1 

2007).  2 

We adopted the duration production-reproduction paradigm [54] (Figure 1a). A typical 3 

trial started with a fixation cross (size: 0.75° of visual angle) in the center of the screen for 500 4 

ms, which was followed by a white dot (diameter: 0.2°), prompting the participant to press and 5 

hold the mouse button (either left or right) to start the production phase. Immediately after 6 

pressing the mouse button, a yellow circle was shown on the screen for a given duration, 7 

randomly selected from 400 ms to 1800 ms (see next subsection for details), and then 8 

disappeared, upon which the participant had to release the key immediately. The reproduction 9 

phase was separated from the production phase by a 500-ms blank screen. Again, a white dot 10 

appeared, prompting participants to reproduce the duration that they had just experienced by 11 

pressing the mouse button for as long as the yellow circle had been displayed earlier on, and 12 

then release it. Immediately after the participant pressed the mouse button, a visual display with 13 

a yellow disk appeared on the screen, which disappeared again immediately after the participant 14 

released the button. Following the reproduction, a feedback display was shown for 500 ms to 15 

indicate the reproduction accuracy, using the ratio of the reproduction error relative to the 16 

respective physical duration. The relative reproduction accuracy consisted of the highlighting, 17 

in green or red, of one among five horizontally arranged disks which, from the left to the right, 18 

were mapped to the relative error ranges: less than -30%; between -30% and -5%, between -19 

5% and 5%, between 5% and 30%, and greater than 30%, respectively. The three circles in the 20 

middle were highlighted in green, and the outer left and right circles in red, the latter indicating 21 

a large error which should be avoided.  22 

 23 

 24 
Figure 1. (a) Schematic illustration of a trial sequence used in the production-reproduction 25 

task. (b)  Example duration (trial) sequences in two consecutive 8volatility9 sessions. The first 26 

session (depicted in cyan) consists of a low-volatility sequence (Low Vola.), and the second 27 

session (red) of a high-volatility sequence (High Vola.). Both sessions comprised exactly the 28 

same durations (the same density function depicted on the right), differing only in their orders 29 

(right panel: the same density profile).  30 

 31 
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The experiment consisted of two sessions. Both sessions comprised the same set of 1 

stimulus durations and the same number of duration repetitions, but differed in their 2 

presentation order. Each session consisted of 10 mini-blocks of 25 trials each. First, we 3 

generated a sequence of durations employing a random-walk process, that is,  the duration on 4 

trial n was calculated based on the duration on trial n31 with a small random fluctuation. Given 5 

that random fluctuation over the trials may exceed the probe range of 400 to 1600 ms, we scaled 6 

the durations in the sequence back to this range and rounded them up or down  to the nearest 7 

100-ms value, making it possible to present multiple repetitions of the tested durations. As the 8 

resulting fluctuation of durations across trials was relatively modest in this sequence, we will 9 

refer to it as the 8low volatile9 sequence. Using the durations of this sequence, we randomly 10 

shuffled their positions to generate a new sequence. Due to the randomization, this sequence 11 

was characterized by high variation from trial to trial, compared to the 8low volatile9 sequence 12 

(see Figure 1b); accordingly, we will refer to the session with this sequence as the high-13 

volatility session. Figure 1b illustrates typical sequences for a low- and, respectively, a high-14 

volatility sequence in two successive sessions. The two sequences were generated prior to the 15 

experiment and the order of the two, low- and high-volatility, sessions was counterbalanced 16 

across participants. Of note, we administered the same sequences to (age- and IQ-) matched 17 

(pairs of) participants in the ASD and TD groups, ensuring that any differences we observed 18 

would truly reflect differences between the two groups.  19 

Prior to the experiment, participants were given detailed written and verbal instructions. 20 

In addition, all participants underwent a pre-experimental training session with an 21 

individualized number of trials in order to make sure they understood the instructions. Once 22 

this was confirmed by the experimenter, the formal experiment started, which took about 60 23 

minutes to complete. Following the formal experiment, the participants filled out the various 24 

questionnaires (see above).  25 

(c) Data analysis  26 

The individual, raw reproduction data were first pre-processed and screened for 27 

outliers, that is: reproduced durations exceeding the range [Duration/3, 3×Duration], which 28 

were omitted from further analysis. Such extreme trials were very rare: only 0.58% of the trials 29 

in total.  30 

Given that the central-tendency effect approximates linearly (see Eq. 1), we applied 31 

linear regression to estimate the central-tendency effect and the weight of the prior (1-w, in Eq. 32 

1, equivalent to the 1-slope) as the central-tendency index (CTI). A CTI close to 0 indicates 33 

less influence of the prior, whereas a CTI near 1 indicates a strong dependence on the prior. In 34 

addition, the short-term trial-to-trial updating could be different between the ASD and TD 35 

groups. To measure the trial-to-trial sequential dependence, we conducted linear regression 36 

with the duration of the previous trial (trial n31) as the predictor for the reproduction error on 37 

the current trial (n), and used the estimated slope as the sequential- dependence index (SDI). If 38 

the current estimate is independent of the previous sensory input (i.e., the regression slope is 39 

close to zero), one should expect zero sequential dependence. Note, both assimilation and 40 

repulsion effects have been observed in sequential dependence [26,55], thus the regression 41 

slope of the sequential dependence could be ranged between -1 to 1.  42 
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The estimated CTIs and SDIs were then submitted to mixed ANOVAs with the within-1 

subject factor Volatility and the between-subject factors Group and Session Order. We also 2 

conducted statistical analyses separately for the ASD and TD groups to further investigate 3 

influences of Volatility and Session Order within each group.  4 

2. Results 5 

Using regression analysis, we estimated the CTIs and SDIs for individual participants 6 

(Appendix Figure A1 shows the histograms). Based on the three-sigma rule (< 0.3% according 7 

to a Gaussian population), we identified four extreme outliers among the 64 participants, who 8 

all showed a markedly different pattern of performance from the other participants. In the next 9 

two subsections, we report the results without outliers (28 pairs after outlier exclusion) and the 10 

outliers (four pairs) separately.   11 

2.1 Results excluding outliers 12 

Fig. 2 depicts the average reproduction as a function of the probe durations for the two 13 

groups, plus representative individuals in the insets, separately for the low- and high-volatility 14 

sessions. By visual inspection of the linear slopes (less than 1.0), both groups show central-15 

tendency biases in the duration reproduction, which were more marked in the high- (red) vs. 16 

the low-volatility session (cyan). Applying linear regression, for each participant, we estimated 17 

the slopes for each experimental condition. The slope is a good approximation for the weight 18 

(w) of the sensory input in Eq. 1. Accordingly, we calculated 1-slope (approximation of the 19 

prior9s weight) as the CTI. A CTI of 0% means no central-tendency bias, while a CTI of 100% 20 

would indicate a strong bias.  21 

 22 

 23 
Figure 2. Mean duration reproduction for the ASD and TD groups. Insets: duration 24 

reproduction from a representative individual with ASD (left inset) and a representative, 25 

matched TD individual (right inset), separately for the low- (cyan) and high-volatility (red) 26 

sessions. Both participants received the same duration sequences. The dashed lines represent 27 

veridical reproduction. Dots above the dashed line indicate overestimates and dots below the 28 

dashed line underestimates. Solid lines show the fitted trend of the reproduction. The slopes of 29 
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the fitted trend were shallower than the dashed line (i.e., 1), indicative of central-tendency 1 

biases.  2 

 3 

Since participants performed the high- and low-volatility in close succession, 4 

expectations about the statistical properties of the stimulus sequence acquired during the first 5 

session may be carried over to the second session. Thus, we included Session Order as a 6 

between-participants factor in the further analyses. Figure 3a shows the mean CTI for the ASD 7 

and TD groups, for the two session orders. Visually, the main difference between the two 8 

groups concerns the Session Order: the two lines are clearly separated in the ASD group but 9 

overlapping in the TD group.  A mixed ANOVA of the CTIs, with the within-subject factor 10 

Volatility and the between-subject factors Group and Session Order revealed all main effects 11 

to be significant [Group: F1,52 = 5.26, p = .026, �*
+ = .057; Volatility: F1,52 = 88.38, p < .001, 12 

�*
+ = .41; Session Order: F1,52 = 4.51, p = .039, �*

+ = .05]. On average, the ASD group 13 

exhibited less central tendency (CTI of 17.3%) than the TD group (CTI of 22.9%), suggesting 14 

that individuals with ASD trusted the ensemble prior less in their duration judgments. Further, 15 

the high-volatility session yielded a stronger central tendency (CTI of 30.5%) than the low-16 

volatility session (CTI of 9.8%). Moreover, performing the high-volatility session first, relative 17 

to the low-volatility session first, gave rise to a stronger central tendency (22.7% vs. 17%). The 18 

two-way interactions were significant or marginal significant, with similar effect sizes: 19 

Volatility × Session Order,  F1,52 = 4.36, p = .042, �*
+ = .032; Group × Session-Order, F1,52 = 20 

2.93, p = .09, �*
+ = .033; and Group  × Volatility, F1,52 = 3.08, p = .085, �*

+ = .023. The 21 

three-way interaction, however, was not significant, F1,52 = 0.813, p = .37, �*
+ = .006.  22 

 23 
Figure 3. (a) The mean central tendency indices (CTIs) and (b) the mean sequential 24 

dependence indices (SDIs) and their associated standard errors plotted for the high/low 25 

volatility sessions, separated for the session order and the ASD/TD groups.  26 

 27 

Given that the two-way interactions yielded similar small to medium effect sizes (0.023 28 

to 0.033) and the focus of our study was to look for differential reactions, between the ASD 29 

and TD groups, to the change in Volatility modulated by the Session Order, we went on to 30 
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analyze the two groups separately. For the ASD group, a mixed ANOVA of the CTIs revealed 1 

both main effects to be significant: Volatility, F1,26 = 32.67, p < .001, �*
+ = .29, and Session 2 

Order, F1,26 = 5.94, p = .022, �*
+ = .134, but not the (Volatility  × Session Order) interaction,  3 

F1,26 = 0.787, p = .383, �*
+ = .01. The significant Volatility main effect indicates that 4 

individuals with ASD actually learned the volatility and changed the weight of the prior 5 

according to the uncertainty of the sequence, with a similar pattern as for the ASD group (see 6 

the next analysis). However, their adjustment of the weight of the prior also depended on the 7 

session order: individuals with ASD who started with the high-volatility session elevated the 8 

weight of the prior compared to those starting with the low-volatility session. For the TD group, 9 

by contrast, only the main effect of Volatility was significant, F1,26 = 56.39, p < .001, �*
+ =10 

.52 (main effect of Session Order, F1,26 = 0.111, p = .74, �*
+ = .002; Volatility × Session 11 

Order interaction, F1,26 = 4.05, p = .055, �*
+ = .07). Thus, the separate analyses revealed that 12 

the main effect of Session Order in the combined analysis was contributed mainly from the 13 

ASD group (the CTI was elevated by 10.6% when the high-volatility session was performed 14 

first), rather than their matched controls (the change of the CTI was only 1.1%), suggesting 15 

that individuals with ASD were significantly influenced by the order of the environment 16 

changes: starting with a low-volatile environment reduced the central tendency (indicative of 17 

reduced trust in the prior) in the subsequent, high-volatile environment, whereas encountering 18 

the high-volatile environment first led to a carry-over of the (high) the central-tendency bias 19 

(indicative of greater trust in the prior) to the following, low-volatile environment. The latter 20 

evidences the characteristic 8behavioral rigidity9 despite changes in the environmental 21 

condition (see Fig. 3a).  22 

Another short-term 8local9 bias that we examined, in addition to the more 8global9 23 

central tendency, is the sequential (inter-trial) dependence. Specifically, we estimated the linear 24 

relation of the reproduction error on a given trial n as a function of the probe duration on the 25 

previous trial n31. Fig. 3b shows the sequential dependence effect for the ASD and TD groups, 26 

for the two session orders. A mixed ANOVA of the sequential-dependence indices (SDIs) 27 

revealed significant main effects of Volatility and Session Order [Volatility: F1,52 = 98.81, p 28 

< .001, �*
+ = .49, Session Order: F1,26 = 8.08, p = .006, �*

+ = .07], as well as a significant 29 

Session-Order × Volatility interaction, F1,26 = 7.59, p = .008, �*
+ = .07. The interaction was 30 

due to the session order influencing the SDI only in the low-volatility condition (see Figure 31 

3b). However, the critical main effect of Group was not significant, F1,52 = 0.11, p = .74, �*
+ =32 

.001, that is, both (the ASD and TD) groups showed comparable sequential dependence. In 33 

other words, the patterns of short-term 8local9 biases were similar for both groups across the 34 

different volatility environments and session orders.  35 

Further, we calculated the mean reproduction errors (i.e., reproduced duration 3 probe 36 

duration) and the reproduction precision (measured by the standard deviation of the reproduced 37 

errors) for each condition. On average, the ASD group over-reproduced durations by 45.2 ± 38 

9.1 ms (mean ± SE), and the control group by 33.9 ± 8.5 ms, with the estimates being 39 

significantly positive for both groups (ps < .001). However, there were no significant 40 

differences between Groups or among conditions (Fs1,52 < 3.3, ps > .07, �*
+< .006).  41 
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The reproduction precision was influenced by Volatility, F1,52 = 32.9, p < .001, �*
+ =1 

.04: the reproduction variability was higher in the high- relative to the low-volatility session. 2 

But there were no main effects of Session Order, F1,52 = 0.26, p = .6, �*
+ = .004, or Group, 3 

F1,52 = 0.80, p = .37, �*
+ = .014. Among the interactions, only the Volatility  × Session Order 4 

interaction was significant,   F1,52 = 18.5, p < .001, �*
+ = .024, mainly attributable to a 5 

variability spike in the high-volatility session when tested first (SD: 182 ms as compared to 6 

163, 153, and 160 ms in the other three, high-volatility second, low-volatility first, low-7 

volatility second, conditions).   8 

Finally, we conducted correlation analysis to examine whether there was any relation 9 

between the AQ, EQ, BDI scores, as a proxy of symptom severity, and the reproduction biases 10 

shown by CTI and SDI, separately for Group, Volatility, and Session Order. We found no 11 

significant correlations (all ps > .1 after correction for multiple comparisons), which suggests 12 

that neither CTI nor SDI was modulated by symptom severity (Appendix C, Fig. A2).  13 

2.2 Outliers 14 

 15 
Figure 4. (a) Duration reproduction by 8extreme9 ASD individuals (red) and their matched TD 16 

individuals (cyan), separately for the high- (dots) and low-volatility (triangles) sessions. For 17 

three of the four 8extreme9 ASD individuals, the reproduced durations were similarly 8flat9 (red 18 

solid lines) across the range of durations in the high-volatility session, while being in line with 19 

other data sets from both groups in the low-volatility session (dashed lines). The diagonal 20 

dashed line denotes veridical reproduction. (b) One of the four 8extreme9 ASD individuals (the 21 

third in Fig. 4a) produced strong negative sequential dependence (red) relative to its matched 22 

control participant (cyan). The dashed line indicates no sequential dependence.   23 

 24 

Four outlier participants, all in the ASD group, were identified according to the three-25 

sigma rules applied for the CTI and SDI scores across all participants (Appendix B). Three of 26 

the four outliers reproduced the durations similarly across the probe range in the high-volatility 27 

session (see the flat solid red lines in Fig. 4a; the CTIs were 0.9, 0.99, 0.45, and 0.9, 28 

respectively, for the four outliers). A mixed ANOVA of the CTIs from the outliers and their 29 

matched controls with Volatility as within-subject factor and Group (ASD vs TD) as between-30 
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subject factor revealed both main effects to be significant: Group, F1,6 = 58.37, p < .001, �*
+ =1 

.73, and Volatility, F1,6 = 11.48, p = .014, �*
+ = .57; the Group × Volatility interaction was 2 

not significant, F1,6 = 3.11, p = .13, �*
+ = .26. The outliers significantly relied significantly 3 

more on the prior (they exhibited a stronger central tendency) than their matched controls, more 4 

so in the high- than in the low-volatility session 3 in fact showing performance at the opposite 5 

end of the spectrum (in the high-volatility session) where the duration reproduction was little 6 

influenced by the variation of actual durations. One of the outliers, identified by the SDI, also 7 

showed an extreme negative sequential dependence, indicative of heavy usage of the short-8 

term prior experience (from the previous trial).  9 

Thus, in brief, a minority of individuals in the ASD group (4/32) heavily relied on prior 10 

knowledge, particularly in the high-volatile environment, exhibiting extreme rigidity in 11 

responding.  12 

3. Discussion 13 

The aim of the current study was to investigate two promising avenues of explaining 14 

atypical predictive coding in ASD, namely: (a) atypical prior formation regarding volatility 15 

[17], and (b) atypical handling of prediction errors in response to volatility changes [39341]. 16 

To this end, the present study compared duration reproduction in individuals with ASD with 17 

matched TD controls in a paradigm allowing for variation of volatility using the same set of 18 

presented durations. In one session, the order of presented durations was randomized, rendering 19 

it highly volatile and unpredictable; in the other session, the order of durations was created by 20 

a random-walk process, producing a more predictable sequence (see Figure 1b). We found both 21 

groups were influenced by the volatility manipulation, showing a larger central-tendency effect 22 

in the high- relative to the low-volatility session. However, the majority of high-functioning 23 

individuals (excluding outliers) with ASD relied less on the prior overall (i.e., they exhibited 24 

less central tendency) compared to matched TD participants, which is consistent with the 25 

8reduced-prior9 account [13,30]. On the other hand, we also found the weights of the sensory 26 

inputs and prior carried over partially from the first to the second session, and this was mainly 27 

driven by the ASD group, rather than the TD group. In other words, updating of the prior was 28 

lagging and sticky across sessions for individuals with ASD, consistent with slow updating of 29 

the prior [39]. However, the short-term trial-by-trial bias, measured by the sequential-30 

dependence index, was comparable for both groups. In contrast to the majority of individuals 31 

with ASD, four out of 32 revealed rigidity behavior on the opposite end of the spectrum, that 32 

is, they reproduced an average duration across all probed durations in the high-volatility 33 

session.  34 

The overall comparable duration-reproduction accuracy for the TD and ASD groups 35 

and variability between the two groups suggest intact sensitivity for visual interval timing in 36 

individuals with ASD. This is in line with previous studies [9,56,57], though some studies have 37 

reported reduced sensitivity in ASD, albeit specific to certain temporal intervals and involving 38 

auditory stimuli [9,12,58,59]. Interestingly, though, we found the majority of adults with ASD 39 

(excluding the extreme minority) to show greater reliance on sensory input and less on prior 40 

knowledge, compared to TD individuals, as evidenced by their reduced central tendency in the 41 

current task. At face level, this finding is opposite to the previous study [30] on children 42 
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(whereas we tested adults) with ASD: their younger participants exhibited a stronger central 1 

tendency and worse temporal resolution than matched TD children. However, using Bayesian 2 

modeling, Karaminis et al. [30] determined the central tendency in children with ASD to be far 3 

weaker than the theoretical model prediction on the basis of their performance, indicating that 4 

their priors were poorer compared to matched controls. In the present study, the finding of a 5 

weaker central tendency in (adult) participants with ASD suggests that they placed less trust 6 

on priors than matched controls. In this respect, the interpretation offered by [30] is in line with 7 

the current findings with adult participants. Of note, though, while individuals with ASD in the 8 

present study showed comparable precision to their matched controls in the interval-timing 9 

task, Karaminis et al.9s children with ASD performed overall rather poorly 3 pointing to a 10 

developmental delay in interval timing in the latter sample. Thus, while individuals with ASD 11 

improve their temporal resolution from child- to adulthood, likely in a slow updating mode 12 

[39,40], their internal prior seems to remain poorer compared to matched controls 3 which 13 

would be in line with a chronically attenuated prior [13]. However, when taking the differential 14 

responses to volatility into account, the picture becomes more multifaceted 3 not in keeping 15 

with the notion of a generally attenuated prior, as we will argue below.  16 

The focus of the present study was on the volatility of the tested duration sequences. In 17 

two sessions, the tested durations were drawn from the same sample distribution (ensemble 18 

prior), but differed in the trial-to-trial volatility (Figure 1b). The results revealed volatility to 19 

matter greatly for the central-tendency and serial-dependence effects. Interestingly, though, 20 

both groups equally showed a greater central tendency and a stronger serial dependence in the 21 

high-, relative to the low-, volatility session, indicating that both groups were able to adjust 22 

their decision making according to the volatility of the respective environment. Thus, our 23 

results provide no clear support for a general difference in the learning of volatility between 24 

the two groups. However, the central tendency was impacted differentially between the ASD 25 

and TD groups by the order in which the volatility conditions were encountered. While the TD 26 

group was not sensitive to the order change, the ASD group showed a 8sticky9 carry-over from 27 

the first to the second session (Fig. 3a). In other words, the weight of the prior in the second 28 

session was influenced not only by the volatility itself, but also partially by weight of the prior 29 

acquired in the first session. This finding is somewhat different from Lawson et al. [19] who 30 

reported that, compared to matched controls, individuals with ASD tended to overestimate 31 

volatility, rendering them less surprised by volatility changes. Our findings suggest that, while 32 

both groups updated and used their priors according to the volatility prevailing in the respective 33 

session, the ASD group tended to persist with the decision-making strategy they developed 34 

previously, evidencing stickiness in reaction to environmental changes.  35 

Of note, this difference was only seen in the 8global9 central tendency, but not in the 36 

short-term trial-to-trial sequential dependence. The latter reflects the 8local9 integration and 37 

updating strategy [25], which turned out to be comparable between the two groups in the 38 

current study. Thus, it suggests that it is likely not the updating of the prior1 that is 39 

compromised in the low-volatility-first order; rather, the usage of the prior is not 8optimal9 40 

according to standard Bayesian inference. The majority of individuals with ASD (excluding 41 

 
1 Note, the updating of the prior should be distinguished from the chronic attenuated prior. As shown in the result 

section, individuals with ASD showed a general attenuated prior as compared to the matched controls.  
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outliers) persist using prior information from the previous environment, even though the 1 

environmental volatility has changed. Similar evidence of cognitive rigidity and slow updating 2 

has been reported in several recent studies [39,40,60362]. For example, in a voluntary task-3 

switching test, high-functioning individuals with ASD often stay with the same task longer 4 

compared to matched controls [61]. Thus, the present finding is in line with the 8slow-updating9 5 

account [39,40], given that individuals with ASD showed strong carry-over of the central 6 

tendency across volatility regimes.  7 

Our finding that individuals with ASD show intact short-term updating but slow 8 

updating of the longer-term prior may well be consistent with the mixed reports of predictive 9 

coding in autism. Individuals with ASD can acquire appropriate priors from one-shot learning 10 

[32], prior trials [33], or statistically global settings [34,35,41]. In those studies, however, the 11 

volatility of the environment and the prior were often fixed throughout the test. Thus, probing 12 

prior acquisition alone may not reveal any atypicalities. Indeed, the present study revealed that 13 

only when the uncertainty regimen changed did high-functioning individuals with ASD show 14 

atypical inflexibility in dealing with prediction errors. In fact, studies that reported atypicalities 15 

often also included changes in the volatility regimen, pushing individuals with ASD out from 16 

a certain into an uncertain zone [19,27,28,63].  17 

While the effect pattern described above was quite consistent among individuals with 18 

ASD, there were four individuals, out of our sample of 32 participants (12.5%), who showed a 19 

marked deviation from the others in the ASD group while exhibiting striking similarities among 20 

themselves (even though they actually performed the two volatility conditions in different 21 

orders): for the relatively stable and predictable (i.e., the low-volatility) sequence, extreme 22 

individuals produced time intervals proportional to the to-be-reproduced durations (albeit with 23 

some general over- or underestimation); for the volatile, random sequences, by contrast, they 24 

kept reproducing the same duration across all sampled intervals. That is, they appeared to 25 

completely disregard the (external) sensory inputs and solely base their reproduction 26 

performance on an overly strong (internal) prior duration under highly volatile, unpredictable 27 

task conditions, whereas their performance accorded with that of the other 28 participants with 28 

ASD in the low-volatility, predictable environment. The latter effectively rules out that their 29 

deviant behavior is simply attributable to a misunderstanding of the instruction. Importantly, 30 

those participants, when specifically asked during debriefing, stated that they had not noticed 31 

any difference in the randomization (i.e., sequential duration volatility) regimens between the 32 

two sessions, which thus influenced their performance only implicitly. One possible, if 33 

speculative, explanation is that the extreme participants reacted by 8shutting out9 the sensory 34 

input when being confronted with a highly volatile sequence. In the present study, the 35 

unpredictability of the sequence may have engendered a sensory hyposensitivity. In principle, 36 

this explanation would be in keeping with an interpretation of compromised adaptability in 37 

ASD [4] as advanced above. Further investigation would be required to corroborate the deviant 38 

pattern of performance in these four individuals.        39 

 40 

Conclusion 41 

In summary, while our results confirm that high-functioning adults with ASD have a 42 

chronically attenuated prior [13], they actually are able to learn the prevailing (task-) 43 

environmental volatility and adapt to environmental changes to a certain degree.  However, 44 
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high-functioning adults with ASD show strong carry-over of the weight of the acquired prior  1 

when environmental volatility changes. The rigid sticking to prior information from the past 2 

environment evidences inflexible or slow updating of prediction errors [15]. Accordingly, we 3 

propose to interpret the current, and possibly previous, findings of atypical predictive coding 4 

in ASD in terms of a reduced adaptability to environmental changes.  5 
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Electronic supplementary material 1 

  2 

Appendix A: Descriptive characteristics of the ASD and TD groups 3 

The groups were matched pairwise using the 8Wortschatztest9[WST, 49], a measure of crystalline 4 

intelligence. Both groups completed the Autism-Spectrum Quotient[AQ, 50], Empathy Quotient[EQ, 5 

51], Systemizing Quotient[SQ, 52], and Beck9s Depression Inventory[BDI, 53]. 6 

  7 

Table A1. Descriptive characteristics (Means and SDs) for ASD and TD group. 8 

Measures ASD (n=32) TD (n=32) Group comparison 

Age 32.03 (12.3) 31.6 (13.6) 
t31 = 0.13, p = .898 

IQ score 107.4 (9.7) 109.1 (13.4) 
t31 = 0.573, p = .28 

Autism-Spectrum Quotient score 36.7 (7.4) 15.8 (6.0) 
t31 = 18.06, p < .001** 

Empathy Quotient score 26.97 (12.32) 50.38 (14.46) 
t31 = -7.85,  p < .001** 

Systemizing Quotient score 35.25 (14.93) 26.63 (10.1) 
t31 = 3.05, p < .01** 

Beck9s Depression Inventory score 10.69 (8.37) 5.25 (7.46) 
t31 = 2.49,  p = .018 * 

Note: ** denotes p < .05 and ** p < .001. 9 
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Appendix B: Outlier detection and outliers 1 

 2 

 3 
Figure A1. Histogram (normalized as density) plots of the central tendency and sequential 4 

dependence. The left and right red dashed lines indicate the three-sigma range deviation from 5 

the mean. The data points outside the three-sigma range were treated as outliers.  6 

 7 

We first calculated the central-tendency and sequential-dependence indices for individual 8 

participants. Figure A1 presents the respective histogram plots for all participants. The red 9 

vertical lines indicate the locations of the three-sigma deviation from the mean. Using the 10 

standard three-sigma rule, we defined the data points outside this three-sigma range as outliers. 11 

Based on this criterion, four matched pairs were excluded from further analysis in the main 12 

Results text.  13 

 14 
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Appendix C: Correlations between symptom severity and reproduction biases 1 

 2 

 3 

 4 
Figure A2. Scatterplots between survey scores (AQ, EQ, and, respectively, BDI) and 5 

reproduction-bias (CTI and, respectively, SDI) scores. The lines are the fitted linear 6 

regressions, and the gray areas the 95% confidence intervals. There were no significant 7 

correlations between survey scores and reproduction biases (all ps > .1).  8 

 9 
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