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Abstract

Circadian clocks are 24-hour endogenous oscillators in physiological and behavioral processes. Though recent
transcriptomic studies have been successful in revealing the circadian rhythmicity in gene expression, the power calculation
for omics circadian analysis have not been fully explored. In this paper, we develop a statistical method, namely
CircaPower, to perform power calculation for circadian pattern detection. Our theoretical framework is determined
by three key factors in circadian gene detection: sample size, intrinsic effect size and sampling design. Via simulations,
we systematically investigate the impact of these key factors on circadian power calculation. We not only demonstrate
that CircaPower is fast and accurate, but also show its underlying cosinor model is robust against variety of violations of
model assumptions. In real applications, we demonstrate the performance of CircaPower using mouse pan-tissue data and
human post-mortem brain data, and illustrate how to perform circadian power calculation using mouse skeleton muscle
RNA-Seq pilot as case study. Our method CircaPower has been implemented in an R package, which is made publicly
available on GitHub (https://github.com/circaPower/circaPower).
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Introduction

Circadian rhythms are endogenous ∼24 hour oscillations of

behavior, physiology, and homeostasis in adaption to the

diurnal cycle caused by the earth’s daily rotation. The circadian

clock is found in virtually all cells throughout the body

and controls oscillations in a wide variety of physiological

processes, including sleep-wake cycles, body temperature, and

melatonin secretion [1, 2, 3, 4]. From the literature, the

mechanism that drives circadian rhythms is a transcriptionial-

translational feedback loop encoded by a set of core clock

genes [5], including CLOCK, BMAL1 as the transcriptional

activators; and period family (PER1, PER2, PER3) and

cryptochrome family (CRY1, CRY2) as the major inhibitors.

In addition to core clock genes, genome-wide transcriptomic

studies have revealed additional circadian genes in post-mortem

brain [6, 7], skeletal muscle [8], liver [9], and blood [10].

Transcriptomic circadian analyses in human [11], mouse [12],

and baboon [13] have shown that the circadian pattern in

gene expression could be tissue-specific. Beyond transcriptomic

data, circadian rhythmicity was also discovered in other types

of omics data including DNA methylation [14], ChIP-Seq

(chromatin immunoprecipitation assays with sequencing) [15],

proteomics [16], and metabolomics [17]. From epidemiology

and animal studies, the disruption in clock and circadian gene

expression was found to be linked to diseases including type

2 diabetes [18], cancer [19, 20], sleep [10], major depression
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Fig. 1. Annual number of publications on PubMed that contain

the keywords “circadian/clock” and one of the following omics

type: “ChIPseq”, “Metabolomics”, “Methylation”, “Proteomics”,

“Transcriptomics”.

disorder [21], aging [6], schizophrenia [7], and Alzheimer’s

disease [22].

As the circadian omics studies have become increasingly

popular over the years (Figure 1), the experimental design of

such circadian omics studies has come into focus [23, 24], where

the design refers to the distribution of the collected Zeitgeber

time (ZT; standardized diurnal time with ZT0/ZT24 for the

beginning of day and ZT12 for the beginning of night). In

this paper, we consider two types of sampling design: passive

and active sampling design. In passive design, investigators

have no control of the collected ZT. Such a passive design is

commonly seen in studies with human tissues that are difficult

to obtain (e.g., post-mortem brain tissues [6, 21, 7]) and the

irregular sampling distribution should be considered in power

calculation. In contrast, investigators have full control of the

sample collection time in an active sampling design. Such

an active design is commonly seen in animal studies [12] or

human blood studies [10]. In the literature, 6 time points

(every 4 hours) per cycle across one or multiple full cycles

have been widely adopted in many actively designed studies

[25, 26, 27]. Hughes et al. [28] recommended evenly sampling

at least 12 time points per cycle (i.e., every 2 hours) across 2

full cycles. For the ease of discussion, we refer to this type of

design as the “evenly-spaced sampling design”. Though these

empirical practices and guidelines were presented and well-

received, limited quantitative benchmarks are available. To

address this, Ness-Cohn et al. [29] developed a user-friendly

website, TimeTrial, which allows researchers to explore the

effects of experimental design on cycling detection. Although

multiple circadian detection methods are allowed, the results

are benchmarked through simulation using classification error

rate and area under the curve of a ROC curve. However,

a statistical method that enables exact power calculation

is still lacking. Previous studies have reported the lack of

overlapping circadian genes because of smaller number of

samples [30, 9], indicating statistical power, i.e., the probability

of successfully detecting the underlying circadian pattern, is

not fully considered/justified. Thus, an analytical method that

allows exact power calculation under different experimental

designs is urgently needed. In addition, all these prior works on

circadian study design were discussed within the scope of active

design, where investigators have control of sample collection

time. In the scope for passive design, there are no guidelines in

the literature. It is unclear whether and how the irregular ZT

distribution will impact the circadian power calculation.

To fill i n t hese r esearch g aps, w e p ropose a  model-

based approach to accurately calculate the circadian power 
(namely CircaPower), based on the cosinor model [31, 32]. 
It assumes the expression level of a gene is a sinusoidal 
function of the circadian time [31]. Though straightforward, 
the model is biologically interpretable, and enjoys accurate 
statistical inferences [32]. In the literature, there are 
several other algorithms developed for circadian rhythm 
detection. Lomb-Scargle periodograms [33] and COSOPT 
[34] (arithmetic linear-regression detrend of time series) are 
more complicated parametric models. By assuming mixture of 
multiple cosinor curves with distinct periods, these methods 
facilitate the detection of oscillating transcripts with irregular 
shape. ARSER [35] (autoregressive spectral estimation of 
rhythmicity), RAIN [36] (rhythmicity analysis incorporating 
nonparametric methods) and JTK CYCLE [37] (nonparametric 
Jonckheere-Terpstra test) are non-parametric methods, which 
are free of modeling assumption and more powerful to capture 
irregular curve shapes. Both parametric and non-parametric 
algorithms were widely applied in transcriptomic studies, and 
comparisons of these algorithms have been conducted in several 
review studies [28, 38, 39, 24]. Although the complex methods 
have advantages to detect irregular curves beyond cosinor 
models, the power calculation using these methods are not 
always feasible since the effect s ize a nd d ata v ariability are 
not explicitly defined i n t hese m odels. I n a ddition, concerns 
about the accuracy of the statistical inference for these complex 
methods have been raised [39]. To be specific, t he p-values 
generated by many of these methods may not be correct (i.e., 
do not follow a uniform distribution UNIF (0, 1) under the 
null), implying a potential inflated o r d eflated ty pe I error 
rate. Therefore, we propose the power calculation framework 
based on the cosinor model, because of its simplicity and 
accurate statistical inference. Moreover, the biological rationale 
for using a cosinor model is that the circadian rhythm is 
amenable to adapt the cycles in the environment [5], including 
the day-light cycle, the tides, the phases of the moon, the 
seasons, etc [40]. Since the day-light cycle is the leading 
environmental factor that governs circadian rhythms, a cosinor 
wave model is widely used to mimic the cosinor cycle of the 
day-light intensity and many previous literatures [6, 7, 41] have 
used this model to identify biological meaningful findings. We 
acknowledge that other complex parameters models and non-
parametric approaches are also popular with their own unique 
merit, and exploring circadian power calculation using these 
complex methods is one of our future directions.

To the best of our knowledge, this is the first theoretical 
methodology developed for circadian power calculation in omics 
data. The unique contribution of this paper includes: (i) 
identifying factors related to the statistical power of circadian 
rhythmicity detection, including sample size, intrinsic effect size 
and sampling design; (ii) developing CircaPower, an analytical 
solution based on a closed-form formula, for fast and accurate 
circadian power calculation; (iii) demonstrating via simulations 
that the evenly-spaced sampling design is superior because 
of its phase-invariant property, which is also corroborated by 
theoretical proofs; (iv) illustrating how to calculate statistical 
power and to design a circadian experiment with pilot data 
via a case study; (v) collecting, calculating, and summarizing 
the intrinsic effect s izes o f e xisting human and animal studies, 
which serves as a useful reference resource when no pilot data 
is available; and (vi) providing an open-source R package.

The superior performance of our method is demonstrated 
in comprehensive simulation studies, as well as multiple
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transcriptomic applications in human and mouse. We

demonstrate the performance of CircaPower using continuous

gene expression data throughout this manuscript, but our

method is also applicable in single biomarker data or other

types of continuous omics data, including but not restricted to

ChIP-Seq, DNA methylation, proteomics, and metabolomics.

Methods

The CircaPower framework assumes the relationship of the

expression level (continuous data type) of a gene and the

Zeitgeber time (ZT) fits a sinusoidal wave curve, and is based on

the F statistics of a cosinor model [31]. Below we introduce the

model notations, the construction of the F statistics, the null

and alternative distribution of the F statistics, the closed-form

formula for circadian power calculation, and factors affecting

the power calculation of circadian rhythmicity detection.

Notations and basic model

As illustrated in Figure 2a, denote y as the expression value for

a gene; t as the ZT; M as the MESOR (Midline Estimating

Statistic Of Rhythm, a rhythm-adjusted mean); A as the

amplitude. ω is the frequency of the sinusoidal wave, where

ω = 2π
Period

. Without loss of generality, we set period = 24

hours to mimic the diurnal period. φ is the phase shift of the

sinusoidal wave curve. Whenever there is no ambiguity, we

will omit the unit “hours” in period, phase, and other related

quantities. Due to the periodicity of a sinusoidal wave, (φ1,

φ2) are not identifiable when φ1 = φ2 + 24. Therefore, we will

restrict φ ∈ [0, 24). φ is not intuitive to read from a sinusoidal

wave (see Figure 2a). A closely related quantity is the peak time

tP . The connection between φ and tP is that φ+ tP = 6±24N ,

where N is an arbitrary natural number.

For a given sample i (1 f i f n, n is the total number

of samples), denote by yi the expression value of a gene and

ti the observed ZT. We assume the following sinusoidal wave

function:

yi = A sin(ω(ti + φ)) + M + εi, (1)

where εi is the error term for sample i; we assume εi’s

are identically and independently distributed (i.i.d.) from

εi ∼ N(0, σ2), where σ is the noise level. To benchmark the

goodness of sinusoidal wave fitting, we define the coefficient of

determination R2 = 1 −
RSS

TSS
, where RSS =

∑n
i=1(yi − ŷi)

2,

TSS =
∑n

i=1(yi− ȳ)2, ŷi = Â sin(ω(ti+ φ̂))+M̂ , ȳ =
∑

i yi/n,

with Â, φ̂, and M̂ being the fitted value for A, φ, and M in

Equation 1 under least squared loss. R2 ranges from 0 to 1, with

1 indicating perfect sinusoidal wave fitting, and 0 indicating no

fitting at all. Equivalently, we could re-write Equation 1 as

yi = H1 sin(ωti) + H2 cos(ωti) + M + εi, (2)

where H1 = A cos(ωφ), and H2 = A sin(ωφ), which turns into

a linear regression problem.

Power calculation

Analytical power calculation

According to linear model theories, the F statistics for the

circadian model in Equation 1 can be derived as

F
stat

=

TSS−RSS
r−1

RSS
n−r

, (3)
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Fig. 2. Basic sinusoidal model and the power/type I error discriminatory

curve. (a) shows a sinusoidal wave curve underlying circadian rhythmicity

power calculation framework. (b) shows the relationship between power

and type I control in detecting circadian rhythmicity. The black curve

represents the density function of the F statistics under the null

distribution (no circadian pattern); the blue curve represents the density

function of the F statistics under the alternative distribution. The red

dashed line represents the decision boundary (i.e., F ∗) such that the type

I error rate is controlled at α (shaded gray). The corresponding type II

error β is the area with lightblue color and the detection power is 1 − β.

where n is number of independent samples, r = 3 is number of

parameters (i.e., A, φ, and M in Equation 1).

Under the null hypothesis that there is no circadian

rhythmicity. i.e., A = 0 in Equation 1, or equivalently, H1 =

H2 = 0 in Equation 2,

F
stat

∼ f0(·|2, n − 3), (4)

where 2 and n − 3 are the degrees of freedom of the F

distribution, and f0 denotes a regular F distribution with

non-centrality parameter 0 [42].

Under the alternative hypothesis that there exists a

circadian rhythmicity pattern. i.e., A ̸= 0 in Equation 1, or

equivalently, H1 ̸= 0 or H2 ̸= 0 in Equation 2, the F statistics

follows a non-central F distribution,

F
stat

∼ fλ(·|2, n − 3), λ =
A2

σ2

∑

i

sin
2
(w(ti + φ)), (5)
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where 2 and n − 3 are the degrees of freedom of the F

distribution, and fλ denotes a non-central F distribution with

non-centrality parameter λ. (see Supplementary Section 1 for

proof).

Figure 2b shows the relationship between the null and

alternative distributions. By assuming the type I error rate at

the rejection boundary F∗ is α, the relationship between α and

the power 1 − β is

F
−1
λ (β|2, n − 3) = F

−1
0 (1 − α|2, n − 3), (6)

where Fλ(x|df1, df2) represents cumulative density function

of fλ(·|df1, df2) evaluated at x, and F0(x|df1, df2) represents

cumulative density function of f0(·|df1, df2) evaluated at x.

As shown in Figure 2b, the non-centrality parameter λ

controls the degree of separation of the null distribution

f0 and the alternative distribution fλ. The larger the λ

is, the more likely the alternative distribution will be away

from the null distribution, and the higher power a gene will

achieve. We thus define λ as the total effect size for the

circadian power calculation. By inspecting the total effect

size λ = A2

σ2 n
1
n

∑n
i=1 sin2(w(ti + φ)), this non-centrality

parameter can be decomposed into three parts: (i) sample

size n, (ii) intrinsic effect size r = A/σ (closely relate to the

goodness of fit statistics R2), and (iii) sampling design effect

d = 1
n

∑n
i=1 sin2(w(ti + φ)). We then discuss the impact of

each of these components on the circadian rhythmicity power

calculation:

1. Sample size: As expected, given fixed d and r, a larger

sample size n will result in a larger total effect size λ, and

achieve a higher statistical power.

2. Intrinsic effect size: Intuitively, a larger circadian amplitude

A with smaller residual variability σ will lead to a better

sinusoidal curve fitting (i.e. larger R2). Our formula

suggests that circadian fitting parameters A and σ work

together as an intrinsic effect size r = A/σ and has a

quadratic effect on the total effect size λ.

3. Sampling design effect: The sampling design effect d =
1
n

∑n
i=1 sin2(w(ti + φ)) is more complicated, because it

involves both observed ti and the unknown parameter

phase shift φ. In general, given an arbitrary circadian

sampling design, we need to estimate φ before performing

power calculation. Fortunately, the power calculation for

the evenly-spaced sampling design is independent of the

phase value (i.e., phase-invariant). For example, [28]

recommended a collection of 12 time points (every 2 hours)

per cycle across 2 full cycles, which belongs to the evenly-

spaced sampling design. Such active design is commonly

seen in animal studies or human blood studies, where

researchers can control the exact time to sacrifice the

animal or to collect blood. The following theorem (phase-

invariant property) shows that the sampling design effect

d is a constant under the one-period one-sample evenly-

spaced design, i.e., t′is are evenly spread within one period

with only one sample per time point.

Theorem 1 (Phase-invariant property - one-period one-sample)

Assuming there is a total of n ZT points ti(1 f i f n) within

a circadian period 2π/ω, which are ordered such that ti < ti+1

for all 1 f i f n − 1. If n g 3, and ti is evenly-spaced over

the period (i.e., ti+1 − ti = C for all 1 f i f n − 1, C > 0 is

a fixed time interval, (t1 + 2π/ω) − tn = C), then regardless

of the value for φ, we have

1

n

n∑

i=1

sin
2
(w(ti + φ)) =

1

2

The proof is given in Supplementary Section 2. It can

immediately be extended to the following corollary.

Corollary 1 (Phase-invariant property - multi-period

multi-sample). For multi-period (two or more cycles) multi-

sample evenly-spaced design, the sampling design effect is

phase-invariant.

1

n

n∑

i=1

sin
2
(w(ti + φ)) =

1

2

This is because the multi-period multi-sample evenly-spaced

design just replicates the one-period one-sample evenly-spaced

design, therefore the average of them remains to be 1/2.

Assumptions underlying the circadian modeling framework

The proposed circadian modeling framework has two underlying

assumptions: (i) the relationship between the expression level

of a gene and the ZT follows a sinusoidal wave curve; (ii) the

error terms of each sample on top of the sinusoidal wave curve

follows independent and identical Gaussian distribution. We

discuss the implication of sinusoidal assumption on sampling

design in Section 3.3 and demonstrate that the F statistics is

robust against various types of violation of model assumptions

in Section 3.4.

Alternative power calculation method by Monte-Carlo

simulation

Without the proposed analytical method CircaPower, a

conventional method for circadian detection power calculation

is by Monte-Carlo simulation (MC), which assumes known A,

φ, M , σ and ti, 1 f i f n in Equation 1. The detailed algorithm

for MC is described as following:

1. Given the ZT t′is for n samples (1 f i f n) and key

parameters (A, φ, M , and σ), we simulate gene expression

ygi based on Equation 1, where 1 f g f G is the gene index

and G is the total number of genes. G = 10, 100 genes is

used in the simulation comparison between CircaPower and

MC algorithm in Section 3.1.

2. We apply the cosinor method [31] to derive the rhythmic p-

value pg for each gene g(1 f g f G). Given a pre-specified

alpha level α, the power of MC algorithm is calculated as∑
g I(pgfα)

G
.

Although both the CircaPower and the MC algorithm rely on

the F statistics for rhythmicity detection, the CircaPower has

several obvious advantages over the MC algorithm. First of all,

the explicit representation of total effect size in CircaPower

provides insights on the three determining factors (n,r,d) in

circadian detection power calculation while it is hard for MC

algorithm to determine selections and trends on the many

parameters (A, φ,M, σ, and ti, 1 f i f n). In addition,

our simulation shows the closed-form solution by CircaPower

is at least 10,000 folds faster than the MC algorithm (see

Section 3.1). More importantly, even though both approaches

can calculate power given sample size, only CircaPower can

directly solve the inverse problem of deriving the smallest

sample size meeting the desired detection power, while MC

algorithm needs repeated interpolation to obtain an answer.
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Simulation

Throughout simulation and real application, we control type I

error α = 0.001 for circadian power calculations to account for

potential multiple comparisons.

Comparison between CircaPower and the MC algorithm

We compare CircaPower with the MC algorithm described in

Section 2.2.3. For both methods, the ZT points are simulated

from one-period one-sample evenly-spaced design for the ease of

discussion, which enjoys the phase-invariant property (d = 1/2,

Theory 1). Since phase shift φ and MESOR M has no impact

on circadian detection power calculation in this case, we fix

φ = 0 and M = 10. We evaluate their power derived at a

grid of A = (0.4, 0.8, 1, 1.2) and σ = (1, 2, 3, 4). Note that for

CircaPower, we only need the underlying parameters A/σ, ti,

and φ to perform power calculation, which does not rely on

the simulated dataset. We simulate the data for the purpose of

evaluating the MC algorithm.

Figure S1a shows that the power calculated from CircaPower

is almost identical to the MC algorithm, corroborating the

correctness of the closed-form solution in CircaPower. In

addition, the power increases with respect to (i) larger n, (ii)

larger A, and (iii) smaller σ, which are consistent with our

theoretical formula of the total effect size λ.

As discussed in Section 2.2.1, the two curve fitting

parameters A and σ work together as the intrinsic effect size

r = A/σ and therefore can be reduced to one parameter in MC

approach. We further validate this observation by co-varying

A and σ simultaneously (i.e., A = σ = 1, 2, 3) while keeping

their ratio as a constant (i.e., r = 1). Figure S1b shows that

the power trajectories remain the same, indicating the proposed

intrinsic effect size is sufficient to capture the goodness-of-fit of

the model for the power calculation.

In terms of computing time, to generate all the results in

Figure S1a, it takes 1.84 seconds for the CircaPower using 1

CPU thread on a regular PC (8th Gen Intel Core i5-8250U

Quad-Core processor, 1.60 GHz), while it requires 8 hours for

the MC algorithm using the same computing resource. With

parallel computing, the computing time reduces to 0.13 seconds

for CircaPower using 40 CPU threads on a Linux server (Intel

Xeon Gold 6130, 2.10GHz), while it still needs 24 minutes for

the MC algorithm.

Impact of sampling design on CircaPower

Since the sample collection scheme for active design and passive

design are quite different, we will discuss them separately. For

active designs, we vary the intrinsic effect r = 0.8, 1, 1.5, 2 and

n = 12, 24, 36, 48. For passive designs, we vary the intrinsic

effect r = 0.4, 0.8, 1, 1.2 and n = 12, 24, ..., 180. The maximal

sample size we use for the active design is smaller than that

of the passive design, because the estimated intrinsic effect is

usually higher in animal studies compared with human studies

(see Table 1). Due to the fact that not all designs have the

phase-invariant property, we also vary the phase shift φ =

0, 3, 6.

For a typical active design, researchers usually need to

control the number of (i) ZT points per cycle; (ii) replicates

at each time point within a cycle; and (iii) cycles. Because of

the periodicity property of the sinusoidal curve in the cosinor

model, (ii) and (iii) are statistically equivalent. Therefore, for

the ease of discussion, we summarize the following two key

parameters for an active design: (i) number of ZT points per

cycle NT ; (ii) total number of samples n. The number of

replicated samples (at the same ZT across all cycles) could be

calculated as n/NT .

We denote the active design scheme with NT points per

cycle as FixTimeNT an the one-period one-sample evenly-

spaced design (i.e., FixTime-n) as the EvenSpace. For NT =

3, 4, 6, n, Figure 3a shows that (i) the power curves are the

same regardless of phi, confirming the phase-invariant property;

(ii) the power trajectories for different N ′
T s are also identical,

which implies that under evenly-spaced sampling design with

NT g 3, the detection power only depends on the total number

of samples n but not the NT . Note that these arguments are

purely based on the statistical power given sinusoidal wave

assumption. In reality, less number of time points may result

in unstable circadian curve fitting (see Section 3.3).

For passive designs, the collection of the ZT cannot

be controlled. We therefore simulate t′is from (i) uniform

distribution (uniform design): ti
iid
∼ UNIF(0, 24); and (ii)

bimodal Gaussian distributions (bimodal designs): ti∼piN(7, sd)+

(1 − pi)N(17, sd); pi ∼ Bernulli(0.5). We allow sd =

1, 2, 3, 4 and calculate their corresponding Kullback–Leibler

divergence (KLD) against the uniform distribution as a relative

measurement to benchmark their divergence from the uniform.

Figure 3b shows that for the uniform design, the power

trajectory is close to phase-invariant. This is expected since

the uniform distribution is a random realization of the evenly-

spaced sampling design, and the impact of phase on the

individual ti will average out. The bimodal designs show

phase-dependent circadian power trajectories and the impact

of phase influence increases as the distribution deviates more

from uniform (i.e., larger KLD). Specifically, the power loss

of bimodal designs when φ = 0, 3 is significant when KLD is

0.72 or greater (green and yellow curve) while negligible when

KLD is only 0.18 or smaller (purple and blue curve). In fact,

since the phase shift impacts the sampling design through d =
1
n

∑n
i=1 sin2(w(ti +φ)), it achieves higher power if the mode of

the ZT distribution occurs at the underlying peak/trough time.

In real omics applications, circadian genes usually have different

phase shift values over the day. If the collected ZT distribution

is far away from the uniform distribution, the detection power

of each circadian gene would be affected differently across the

genome as a result of its unique phase shift.

Impact of the number of time points per cycle on CircaPower

From the perspective of circadian power calculation, Figure 3a

implies that the evenly-spaced sampling design is phase-

invariant as long as NT g 3, which is further corroborated by

Corollary 1. However, in the perspective of curve fitting, smaller

number of time points may not necessarily guarantee the

goodness-of-fit for a sinusoidal curve, resulting in potentially

false positive findings.

To explore the impact of number of NT on the goodness-of-

fit for a sinusoidal wave, we simulate expression data from the

sinusoidal model and perform non-parametric curve fitting to

identify the minimum NT necessary to capture the sinusoidal

wave curve (see detailed simulation setting in Supplementary

Section 4). The data points and fitted smooth curves in one

circadian cycle [0, 24] are shown in Figure S2. When NT f

4, it is uncertain whether the underlying curve fitting is a

sinusoidal wave. Only when NT increases to 6 or more, the

curve fitting is stable and almost identical to the underlying

sinusoidal wave. To further justify this choice, we calculate the

root mean square distance between the fitted non-parametric
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Fig. 3. Sampling design effect on circadian power calculation. (a) shows the sampling design effect for active design; (b) shows the sampling design

effect for passive design.

curve and the underlying sinusoidal curve at evenly spaced 1000

points between [0, 24] and plot against NT . The elbow plot

(Figure S3) suggests that NT = 6 is an inflection point after

which the change of distance between the fitted curve and the

underlying curve becomes stably small. Therefore, considering

both circadian power calculation and smooth curve fitting, our

results suggest NT = 6 to be the minimum number of ZT points

to fully capture the circadian rhythmicity pattern, which is

commonly adopted in the literature.

Robustness analysis of F statistics

To examine the robustness of our method when the iid Gaussian

assumption is violated, we investigate the type I error control

of F statistics in the following scenarios: (i) heavy tail error

distribution (i.e., student t distribution); (ii) existence of

outliers; (iii) non-independent Gaussian errors. For all these

simulations, G = 10, 000 noisy genes are simulated with error

term εgi’s specified above. By declaring circadian rhythmicity

at 5% nominal α level, we will evaluate the actual type I error

rate of the F test from the cosinor model. Since CircaPower

is built on the F statistics for rhythmicity detection it will

be benchmarked as robust if the actual type I error rate is

close to the nominal α level. The detailed simulateion setting

is provided in Supplementary Section 3. Since our goal is to

evaluate the type I error rate control, which does not involve

in any multiple testing issue, we directly use 5% nominal α

level. Figure S4 shows that the cosinor model only has slightly

conservative the type I error from cosinor model when error

terms are drawn from very heavy tail t distribution (df = 2.5

or 3) while maintains accurate type I error rate in all other

scenarios suggesting the robustness against the three types of

violation in general.

Real application

CircaPower for human studies with passive design

We investigate the power trajectories of human studies using

three human post-mortem brain transcriptomic studies (Chen

[6], Seney [7] and Ketchesin [41]) with different time of death

distribution. Detailed descriptions of each dataset can be found

in the original papers. Briefly, Chen [6] and Seney [7] performed

gene expression circadian analysis using microarray (n = 147)

and RNA-seq (n = 104) respectively using pre-frontal cortex

tissues; and Ketchesin [41] performed RNA-seq gene expression

circadian analysis with n = 59 participants using dorsal and

ventral striatum tissues.

To estimate the intrinsic effect sizes from the three brain

studies, we apply the cosinor method [31] to identify genes with

rhythmic patterns and obtain estimates for their amplitude Â

and noise level σ̂. We estimate the intrinsic effect sizes r̂ = Â/σ̂

using the 7 core circadian genes, or the top 100 significant

rhythmic genes (ranked by p-values from the cosinor method).

The 7 core circadian genes include Arntl, Dbp, Nr1d1, Nr1d2,

Per1, Per2, and Per3, which showed persistent circadian

pattern across 12 mouse tissues [12]. The Homo sapiens section

of Table 1 shows the estimated intrinsic effect sizes for: (i)

median r of the 7 core circadian genes; (ii) minimum r of the

100 most significant circadian genes. The estimated intrinsic

effect sizes for these three human studies range between 0.44

and 1.06 (see Table 1).

To demonstrate the power trajectories in real data, we vary

intrinsic effect sizes r = 0.4, 0.6, 0.8, 1, which roughly cover

the estimated range of the intrinsic effect sizes in the post-

mortem brain studies. The ZT points are sampled 1000 times

from the kernel density estimated from the observed time-of-

death distributions in these three studies (see top panels of

Figure 4a). Since investigators in these human post-mortem

brain studies have no control of sample collection time (i.e.,

time of death) and can only accept passive sampling design,

the detection power curves are not phase-invariant. We vary

phase shift φ = 0, 1, 2, 3, ..., 12 and use a confidence band to

represent the range of power achieved across phase shifts (see

bottom panels of Figure 4a). For each scenario (i.e., fixed r, n

and φ), the mean power among the 1000 times repetitions is

reported. The power trajectory from an evenly-spaced design is

also calculated as a comparison.

As expected, larger sample size n and larger intrinsic

effect size r lead to a larger circadian power. In addition,

the power trajectory is phase-invariant for the evenly-spaced
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sampling design with 0 band width, but not for the passive

sampling designs from the three human studies. As discussed

in Section 3.2, the power will depend on the relationship

between the mode of the ZT distribution and the underlying

peak/trough time. To further demonstrate the impact of phase

on the non-uniform ZT distribution, we fix n = 120, r = 0.6,

while varying φ = 0, 1, 2, 3, . . . , 12. As shown in Figure 4b,

the power trajectories fluctuate across different φ′s when

samples are drawn from irregular distributions in the three

post-mortem studies, while the trajectory stays the same for

evenly-spaced ZT. However, since the KLDs of the kernel

densities estimated from the Chen, Seney and Ketchesin are

relatively low (i.e., 0.12, 0.17, 0.14) compared with the bimodal

designs in Section 3.2, the variation of power as a result of

phase shift is small, with 3.8%, 4.4%, and 9.9% maximum drop,

respectively.

CircaPower for animal studies with with active design

We next examine the power trajectories of actively designed

mouse studies using 14 mouse gene expression circadian data

[43, 44, 45, 46, 47, 9, 48, 49, 50, 51, 52, 53, 54, 12] from 20

types of tissues.Sample sizes of each study tissue are shown in

Table 1. To estimate the intrinsic effect sizes of these tissues, we

apply the cosinor method [31] similarly to identify genes with

rhythmic patterns and obtained estimates for their amplitude

Â and noise level σ̂. The estimated intrinsic effect sizes for

the median r of the 7 core circadian genes and the minimum

r of the top 100 significant circadian genes are shown in the

Mus musculus section of Table 1, ranging from 0.96 to 6.33, a

much larger magnitude than previous human studies. This is

reasonable since human studies are usually more heterogeneous

in terms of genetics and environmental background. We thus

fix the intrinsic effect sizes to be r = 1, 2, 3, 4 in our subsequent

power calculation. Since these experiments employ an evenly-

spaced active sampling design, the sampling design factor is a

constant (i.e., d = 1/2, Corollary 1) regardless of the phase

value.. As a result, we employ the one-sample one-period

evenly-spaced design (see left panel of Figure 5) for the purpose

of power calculation. By further assuming the alpha levels to

be α = 0.05, 0.01, 0.001, the power trajectories with respect to

sample size n is shown in Figure 5 (right panel).

Case study: circadian power calculation using mouse pilot

dataset

To demonstrate how to perform circadian power calculation

using pilot dataset from scratch, we utilize a circadian gene

expression data in mouse with skeletal muscle, which is part of

the mouse pan-tissue gene expression circadian microarray data

[12]. Detailed description of this dataset has been described

previously [8]. Briefly, 24 mouse muscle samples were collected

(every 2 hours) across 2 full cycles. With this pilot data,

we perform genome-wide circadian rhythmicity detection using

the cosinor method [31]. Under p < 0.001, we identify

716 significant genes showing circadian pattern. We similarly

estimate the intrinsic effect sizes for: (i) median r of the 7

core circadian genes; (ii) minimum r of the top 100 significant

circadian genes. The resulting intrinsic effect sizes are 3.58 and

2.23 respectively. By assuming different α to be 0.05, 0.01,

0.001, the power curves with respect to sample size are shown in

Figure S5. We observe that n = 12 can achieve 97.1% and 50.5%

detection power for the two intrinsic effect sizes at α = 0.001.

Discussion

In this paper, we propose an analytical framework, CircaPower,

to calculate the statistical power for circadian gene detection.

To the best of our knowledge, this is the first analytical

method to perform circadian power analysis. In simulations,

we not only demonstrate the CircaPower is fast and accurate,

but also show that its underlying cosinor model is robust

against violations of model assumptions. In real applications,

we show the performance of the CircaPower in mouse studies

and postmortem human studies. In addition, we obtain the

estimated intrinsic effect sizes from publicly available human

and mouse transcriptomic circadian data. These summarized

intrinsic effect sizes can be used as a reference resource to

facilitate investigators without pilot data to perform circadain

power calculation. In case study, we also demonstrate circadian

power calculation step-by-step given a pilot dataset.

Our method has several advantages. To begin with, the

theoretical framework suggests that the power calculation is

related to a total effect size, which can be decomposed into

sample size, intrinsic effect size (representing goodness-of-fit

of circadian curve), and sampling design factor. Moreover,

the sampling design factor brings about the concept of active

design and passive design when samples are collected. This is

an important concept in circadian experiment design, since

the ZT collection for human (passive design) and animal

(active design) could be quite different. After that, we

demonstrate the phase-invariant property of the evenly-spaced

sampling design, which provides theoretical foundation for

the design of many published circadian studies. In addition,

the closed-form formula in CircaPower allows unique inverse

calculation of sample size given desired power at fast computing

speed compared with the conventional MC algorithm. In this

paper, we also systematically examine the intrinsic effect

sizes of published mouse or human gene expression circadian

data, which could provide guidance for future researchers

to design their transcriptomic circadian experiment when

pilot data are not available. Although we present our work

using transcriptomic data, CircaPower is applicable to other

omics data, such as DNA methylation, ChIP-Seq proteomics,

metabolomics, and clinical data (e.g., body temperature).

Our work has the following limitations and future work.

Firstly, the CircaPower assumes a pre-fixed alpha level. We

intentionally select a more stringent alpha (e.g., α = 0.001)

to account for multiple comparison when thousands of genes

are tested simultaneously. Additional modeling is needed to

extend for calculating genome-wide power calculation while

controlling false discovery rate. Secondly, in addition to

detecting genes with rhythmic pattern, another important

research question is to identify differential circadian pattern

[55, 56, 57, 32] (i.e., the circadian pattern is disrupted

because of the treatment or condition), which will be another

future direction. Thirdly, the Gaussian assumptions are widely

assumed in biomedical research, and we have demonstrated

that the cosinor model is robust against violations of Gaussian

assumptions. If an investigator still worries about these

assumptions, we would recommend data transformations (e.g.

Box–Cox transformation) before applying our method. Our

previous work [32] has shown that the Box-Cox transformation

can rescue the normality assumption for circadian rhythmicity

detection using cosinor models. Similar justifications have been

adopted in the literature. For example, though the student t

test also assumes Gaussian assumptions, but it is still widely

used in the literature, as long as there are methods to rescue
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Table 1. Intrinsic effect sizes for public available transcriptomic circadian data, including 3 passively designed human postmortem brain

studies and 14 actively designed mouse studies from 20 types of tissues. These data are processed using the cosinor method [31]. Two types

intrinsic effect sizes are used: (i) median r of the 7 core circadian genes; (ii) minimum r of the top 100 significant circadian genes. These

intrinsic effect sizes can be used as a reference resource when investigators need to perform power calculation without any pilot data.

Organism Study
Data

Availability
Tissue

Sample

Size

Median r

of the 7 core

circadian genes

Minimum r

of the top 100

circadian genes

Homo

sapiens

Chen [6] GSE71620
Pre-frontal cortex (BA11) 147 0.91 0.46

Pre-frontal cortex (BA47) 147 0.77 0.44

Ketchesin [41] GSE160521*

Striatum (NAc) 59 0.71 1.06

Striatum (caudate) 59 1.04 0.82

Striatum (putamen) 59 0.83 1.02

Seney [7]
Common Mind

Consortium*
Pre-frontal cortex 104 0.79 0.55

Aguilar-Arnal[43] GSE49638 Fibroblast 18 2.38 2.94

Mus

musculus

Bray[44] GSE10045
Atrium 32 3.43 1.46

Ventricle 32 0.96 1.09

Cho[45] GSE34018 Liver 12 2.84 4.11

Gerstner[46] GSE78215 Cerebral cortex 34 2.46 2.18

Hoogerwerf[47] GSE10644 Colon 18 1.86 1.56

Hughes [9]
GSE11922 Fibroblast 48 1.27 1.02

GSE11923 Liver 48 2.00 2.77

Mari[48] GSE52333 Liver 18 4.11 3.39

Masri [49] GSE73222 Liver 18 3.83 2.47

Masri [50] GSE57830 Liver 36 2.69 2.20

Na[51] GSE11516 Liver 36 3.65 3.69

Nikolaeva[52] GSE27366 Kidney 12 2.39 2.61

Paschos[53] GSE35026 Adipose 12 2.48 2.58

Solanas[54] GSE84580
Satellite 24 3.64 2.30

Epidermal 20 5.03 2.62

Zhang[12]

GSE54650

Adrenal gland 24 5.17 2.27

Aorta 24 5.55 2.29

Brainstem 24 3.90 2.07

Brown fat 24 5.05 2.72

Cerebellum 24 3.52 2.01

Heart 24 4.47 2.82

Hypothalamus 24 2.67 1.74

Kidney 24 6.33 3.65

Liver 24 3.51 3.67

Lung 24 5.78 3.47

Muscle 24 3.58 2.23

White fat 24 5.35 2.28

GSE54651*

Adrenal gland 8 5.29 5.40

Aorta 8 3.97 5.23

Brainstem 8 2.21 4.16

Brown fat 8 4.15 5.94

Cerebellum 8 4.06 4.86

Heart 8 4.73 6.23

Hypothalamus 8 2.19 4.19

Kidney 8 5.11 6.44

Liver 8 4.40 6.16

Lung 8 4.57 5.41

Muscle 8 5.26 5.24

White fat 8 3.71 3.87

* denotes RNA-Seq data and others are microarray data.

the violation (i.e., data transformation). Lastly, as discussed in

the introduction, both parametric and non-parametric models

are popular and widely used in the literature. In the proposal,

we only focus on the cosinor model for its simplicity and

accurate statistical inference [32]. Further extending the current

framework to a more flexible family of circadian pattern is of

biological interests to the general circadian research field.

To allow easy application by other researchers, our methods

have been implemented in the R package CircaPower, which is

publicly available in github (https://github.com/circaPower/CircaPower).
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Fig. 4. (a) demonstrates circadian power calculation using publicly available human datasets. The top panel shows the time of death distribution for

Chen, Seney, and Ketchesin. The bottom panel shows the mean power trajectories of different study designs over 1000 repetitions with different intrinsic

effect sizes r = (0.4, 0.6, 0.8, 1). The confidence bands represent the range of power achieved across phase values at φ = 0, 1, 2, 3, . . . , 12 for each scenario.

(b) shows mean power trajectories across different φ when n = 120 and r = 0.6. For each φ and sampling distribution, we draw sampling times 1000

times and calculate corresponding power. Vertical bars indicate the 95% confidence interval of power estimates calculated form x̄ ± 1.96s/
√

1000 where

x̄ and s are mean and standard deviation of power estimates respectively. Maximum power drop (calculated by
maxφ(mean Power)−minφ(mean Power)

maxφ(mean Power)
) is

3.8%, 4.4%, and 9.9% respectively.

available on the NCBI GEO database with accession numbers

shown in Table 1.
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Fig. 5. Circadian power calculation using publicly available mouse datasets. The left panel shows the distribution of one-sample one-period evenly-

spaced design. The right panel shows the power trajectories for each of the type I error control α = (0.001, 0.01, 0.05) assuming intrinsic effect sizes

r = (1, 2, 3, 4).

Key points

• The circadian clock controls oscillations in a wide variety

of physiological processes, and the disruption in clock

and circadian gene expression was found to be linked to

many diseases. Though recent transcriptomic studies have

been successful in revealing the circadian rhythmicity in

gene expression, the power calculation for omics circadian

analysis have not been fully explored. To our knowledge,

we are the first to develop rigorous statistical methods for

circadian power calculations.

• It is unclear what factors will impact the power calculation

of circadian analyses. Our theoretical framework is the

first to determine three key factors in circadian power

calculation, including sample size, intrinsic effect size and

sampling design factor.

• We further summarize and document the intrinsic effect

sizes from 3 human postmortem brain studies and 14 mouse

studies from 20 types of tissues, which would facilitate

researchers without pilot data to perform circadian power

calculation.

• Our method CircaPower has been implemented in an R

package, which is made publicly available on GitHub

(https://github.com/circaPower/CircaPower).
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Lars R Ingerslev, Ali Altıntaş, Shogo Sato, Paolo Sassone-

Corsi, Romain Barrès, Juleen R Zierath, and John A

Hawley. Time-restricted feeding alters lipid and amino

acid metabolite rhythmicity without perturbing clock gene

expression. Nature communications, 11(1):1–11, 2020.

26. Danyi Ma, Meng Zhao, Lucheng Xie, Qingqin Wu, Lingfeng

Gou, Chuanzhen Zhu, Yuqi Fan, Haifang Wang, Jun

Yan, et al. Spatiotemporal single-cell analysis of gene

expression in the mouse suprachiasmatic nucleus. Nature

neuroscience, 23(3):456–467, 2020.

27. Shogo Sato, Astrid Linde Basse, Milena Schönke, Siwei

Chen, Muntaha Samad, Ali Altıntaş, Rhianna C Laker,
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