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Abstract

Circadian clocks are 24-hour endogenous oscillators in physiological and behavioral processes. Though recent
transcriptomic studies have been successful in revealing the circadian rhythmicity in gene expression, the power calculation
for omics circadian analysis have not been fully explored. In this paper, we develop a statistical method, namely
CircaPower, to perform power calculation for circadian pattern detection. Our theoretical framework is determined
by three key factors in circadian gene detection: sample size, intrinsic effect size and sampling design. Via simulations,
we systematically investigate the impact of these key factors on circadian power calculation. We not only demonstrate
that CircaPower is fast and accurate, but also show its underlying cosinor model is robust against variety of violations of
model assumptions. In real applications, we demonstrate the performance of CircaPower using mouse pan-tissue data and
human post-mortem brain data, and illustrate how to perform circadian power calculation using mouse skeleton muscle
RNA-Seq pilot as case study. Our method CircaPower has been implemented in an R package, which is made publicly
available on GitHub (https://github.com/circaPower /circaPower).

Key words: circadian rhythmicity, power calculateion, gene expression, R package

Introduction In addition to core clock genes, genome-wide transcriptomic
studies have revealed additional circadian genes in post-mortem
brain [6, 7], skeletal muscle [8], liver [9], and blood [10].
Transcriptomic circadian analyses in human [11], mouse [12],

Circadian rhythms are endogenous ~24 hour oscillations of
behavior, physiology, and homeostasis in adaption to the

diurnal cycle caused by the earth’s daily rotation. The circadian R . .
. . . and baboon [13] have shown that the circadian pattern in
clock is found in virtually all cells throughout the body . i . . K
. . . . . . . gene expression could be tissue-specific. Beyond transcriptomic
and controls oscillations in a wide variety of physiological ; R . . R
data, circadian rhythmicity was also discovered in other types

of omics data including DNA methylation [14], ChIP-Seq
(chromatin immunoprecipitation assays with sequencing) [15],

processes, including sleep-wake cycles, body temperature, and
melatonin secretion [1, 2, 3, 4]. From the literature, the
mechanism that drives circadian rhythms is a transcriptionial- X R R g
translational feedback loop encoded by a set of core clock proteomics [16], and metabolomics [17]. From epidemiology
genes [5], including CLOCK, BMAL1 as the transcriptional
activators; and period family (PER1, PER2, PER3) and

cryptochrome family (CRY1, CRY2) as the major inhibitors.

and animal studies, the disruption in clock and circadian gene
expression was found to be linked to diseases including type
2 diabetes [18], cancer [19, 20], sleep [10], major depression
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Fig. 1. Annual number of publications on PubMed that contain

the keywords “circadian/clock” and one of the following omics
type: “ChIPseq”, “Methylation”,

“Transcriptomics”.

“Metabolomics”, “Proteomics”,

disorder [21], aging [6], schizophrenia [7], and Alzheimer’s
disease [22].

As the circadian omics studies have become increasingly
popular over the years (Figure 1), the experimental design of
such circadian omics studies has come into focus [23, 24], where
the design refers to the distribution of the collected Zeitgeber
time (ZT; standardized diurnal time with ZT0/ZT24 for the
beginning of day and ZT12 for the beginning of night). In
this paper, we consider two types of sampling design: passive
and active sampling design. In passive design, investigators
have no control of the collected ZT. Such a passive design is
commonly seen in studies with human tissues that are difficult
to obtain (e.g., post-mortem brain tissues [6, 21, 7]) and the
irregular sampling distribution should be considered in power
calculation. In contrast, investigators have full control of the
sample collection time in an active sampling design. Such
an active design is commonly seen in animal studies [12] or
human blood studies [10]. In the literature, 6 time points
(every 4 hours) per cycle across one or multiple full cycles
have been widely adopted in many actively designed studies
[25, 26, 27]. Hughes et al. [28] recommended evenly sampling
at least 12 time points per cycle (i.e., every 2 hours) across 2
full cycles. For the ease of discussion, we refer to this type of
design as the “evenly-spaced sampling design”. Though these
empirical practices and guidelines were presented and well-
received, limited quantitative benchmarks are available. To
address this, Ness-Cohn et al. [29] developed a user-friendly
website, TimeTrial, which allows researchers to explore the
effects of experimental design on cycling detection. Although
multiple circadian detection methods are allowed, the results
are benchmarked through simulation using classification error
rate and area under the curve of a ROC curve. However,
a statistical method that enables exact power calculation
is still lacking. Previous studies have reported the lack of
overlapping circadian genes because of smaller number of
samples [30, 9], indicating statistical power, i.e., the probability
of successfully detecting the underlying circadian pattern, is
not fully considered/justified. Thus, an analytical method that
allows exact power calculation under different experimental
designs is urgently needed. In addition, all these prior works on
circadian study design were discussed within the scope of active
design, where investigators have control of sample collection
time. In the scope for passive design, there are no guidelines in
the literature. It is unclear whether and how the irregular ZT
distribution will impact the circadian power calculation.

To filli nt heser esearchg aps,w ep roposea model-
based approach to accurately calculate the circadian power
(namely CircaPower), based on the cosinor model [31, 32].
It assumes the expression level of a gene is a sinusoidal
function of the circadian time [31]. Though straightforward,
the model is biologically interpretable, and enjoys accurate
statistical inferences [32]. In the literature, there are
several other algorithms developed for circadian rhythm
Lomb-Scargle periodograms [33] and COSOPT

[34] (arithmetic linear-regression detrend of time series) are

detection.

more complicated parametric models. By assuming mixture of
multiple cosinor curves with distinct periods, these methods
facilitate the detection of oscillating transcripts with irregular
shape. ARSER [35] (autoregressive spectral estimation of
rhythmicity), RAIN [36] (rhythmicity analysis incorporating
nonparametric methods) and JTK CYCLE [37] (nonparametric
Jonckheere-Terpstra test) are non-parametric methods, which
are free of modeling assumption and more powerful to capture
irregular curve shapes. Both parametric and non-parametric
algorithms were widely applied in transcriptomic studies, and
comparisons of these algorithms have been conducted in several
review studies [28, 38, 39, 24]. Although the complex methods
have advantages to detect irregular curves beyond cosinor
models, the power calculation using these methods are not
always feasible since the effects ize a nd d ata v ariability are
not explicitly definedint hese m odels. I na ddition, concerns
about the accuracy of the statistical inference for these complex
methods have been raised [39]. To be specific, t he p-values
generated by many of these methods may not be correct (i.e.,
do not follow a uniform distribution UNIF(0,1) under the
null), implying a potential inflated o r d eflated ty pel error
rate. Therefore, we propose the power calculation framework
based on the cosinor model, because of its simplicity and
accurate statistical inference. Moreover, the biological rationale
for using a cosinor model is that the circadian rhythm is
amenable to adapt the cycles in the environment [5], including
the day-light cycle, the tides, the phases of the moon, the
seasons, etc [40]. Since the day-light cycle is the leading
environmental factor that governs circadian rhythms, a cosinor
wave model is widely used to mimic the cosinor cycle of the
day-light intensity and many previous literatures [6, 7, 41] have
used this model to identify biological meaningful findings. We
acknowledge that other complex parameters models and non-
parametric approaches are also popular with their own unique
merit, and exploring circadian power calculation using these
complex methods is one of our future directions.

To the best of our knowledge, this is the first theoretical
methodology developed for circadian power calculation in omics
data. The unique contribution of this paper includes: (i)
identifying factors related to the statistical power of circadian
rhythmicity detection, including sample size, intrinsic effect size
and sampling design; (ii) developing CircaPower, an analytical
solution based on a closed-form formula, for fast and accurate
circadian power calculation; (iii) demonstrating via simulations
that the evenly-spaced sampling design is superior because
of its phase-invariant property, which is also corroborated by
theoretical proofs; (iv) illustrating how to calculate statistical
power and to design a circadian experiment with pilot data
via a case study; (v) collecting, calculating, and summarizing
the intrinsic effect sizes of e xisting human and animal studies,
which serves as a useful reference resource when no pilot data
is available; and (vi) providing an open-source R package.

The superior performance of our method is demonstrated

in comprehensive simulation studies, as well as multiple
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transcriptomic applications in human and mouse. We
demonstrate the performance of CircaPower using continuous
gene expression data throughout this manuscript, but our
method is also applicable in single biomarker data or other
types of continuous omics data, including but not restricted to

ChIP-Seq, DNA methylation, proteomics, and metabolomics.

Methods

The CircaPower framework assumes the relationship of the
expression level (continuous data type) of a gene and the
Zeitgeber time (ZT) fits a sinusoidal wave curve, and is based on
the F statistics of a cosinor model [31]. Below we introduce the
model notations, the construction of the F' statistics, the null
and alternative distribution of the F' statistics, the closed-form
formula for circadian power calculation, and factors affecting
the power calculation of circadian rhythmicity detection.

Notations and basic model

As illustrated in Figure 2a, denote y as the expression value for
a gene; ¢ as the ZT; M as the MESOR (Midline Estimating
Statistic Of Rhythm, a rhythm-adjusted mean); A as the
amplitude. w is the frequency of the sinusoidal wave, where

27
Period"

hours to mimic the diurnal period. ¢ is the phase shift of the

w = Without loss of generality, we set period = 24
sinusoidal wave curve. Whenever there is no ambiguity, we
will omit the unit “hours” in period, phase, and other related
quantities. Due to the periodicity of a sinusoidal wave, (¢1,
¢2) are not identifiable when ¢1 = ¢2 + 24. Therefore, we will
restrict ¢ € [0, 24). ¢ is not intuitive to read from a sinusoidal
wave (see Figure 2a). A closely related quantity is the peak time
tp. The connection between ¢ and tp is that ¢+tp = 624N,
where N is an arbitrary natural number.

For a given sample ¢ (1 < ¢ < n, n is the total number
of samples), denote by y; the expression value of a gene and
t; the observed ZT. We assume the following sinusoidal wave
function:

y; = Asin(w(t; + ¢)) + M + &4, (1)

where e; is the error term for sample ¢; we assume ¢g;’s
are identically and independently distributed (%.i.d.) from
e; ~ N(0,02), where o is the noise level. To benchmark the
goodness of sinusoidal wave fitting, we define the coefficient of

. 5 RSS " .
determination R =1 — T35 where RSS = 37" (yi — 4i)°,
TSS = 2?:1(%‘ —}7)2, g = Asin(w(ti+ )+ M, 5=, yi/n,
with A, ¢, and M being the fitted value for A, ¢, and M in
Equation 1 under least squared loss. R? ranges from 0 to 1, with
1 indicating perfect sinusoidal wave fitting, and 0 indicating no

fitting at all. Equivalently, we could re-write Equation 1 as
y; = Hy sin(wt;) + Ha cos(wt;) + M + &5, (2)

where H; = Acos(w¢), and Hy = Asin(w¢), which turns into
a linear regression problem.

Power calculation

Analytical power calculation
According to linear model theories, the F statistics for the
circadian model in Equation 1 can be derived as

TSS—RSS

tat —1
P = —fss— @)

n—r

CircaPower | 3

y = Asin

(t+(P) +

Amplitude, A

Phase Shift, ¢ .
(a)

0.4

Density
0.2
|

0.1

F statistics
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Fig. 2. Basic sinusoidal model and the power/type I error discriminatory
curve. (a) shows a sinusoidal wave curve underlying circadian rhythmicity
power calculation framework. (b) shows the relationship between power
and type I control in detecting circadian rhythmicity. The black curve
represents the density function of the F' statistics under the null
distribution (no circadian pattern); the blue curve represents the density
function of the F' statistics under the alternative distribution. The red
dashed line represents the decision boundary (i.e., F*) such that the type
I error rate is controlled at a (shaded gray). The corresponding type II
error 3 is the area with lightblue color and the detection power is 1 — 3.

where n is number of independent samples, » = 3 is number of
parameters (i.e., A, ¢, and M in Equation 1).

Under the null hypothesis that there is no circadian
rhythmicity. i.e., A = 0 in Equation 1, or equivalently, H; =
Hs = 0 in Equation 2,

F*' ~ fo (2, n — 3), (4)

where 2 and n — 3 are the degrees of freedom of the F'
distribution, and fy denotes a regular F distribution with
non-centrality parameter 0 [42].

Under the alternative hypothesis that there exists a
circadian rhythmicity pattern. i.e., A # 0 in Equation 1, or
equivalently, H; # 0 or Hs # 0 in Equation 2, the F' statistics
follows a non-central F' distribution,

A2
Fo o i (2,n —3), A = ;ZSil’F(w(ti""‘z’))’ (5)
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where 2 and n — 3 are the degrees of freedom of the F
distribution, and fx denotes a non-central F' distribution with
non-centrality parameter \. (see Supplementary Section 1 for
proof).

Figure 2b shows the relationship between the null and
alternative distributions. By assuming the type I error rate at
the rejection boundary F'* is «, the relationship between o and
the power 1 — 3 is

F{Y(B]2,n —3) = Fy '(1 — «|2,n — 3), (6)

where F)\(z|df1,df2) represents cumulative density function
of fx(:|df1,df2) evaluated at x, and Fy(x|df1,df2) represents
cumulative density function of fo(-|df1, df2) evaluated at x.
As shown in Figure 2b, the non-centrality parameter A
controls the degree of separation of the null distribution
fo and the alternative distribution fx. The larger the A
is, the more likely the alternative distribution will be away
from the null distribution, and the higher power a gene will
achieve. We thus define A\ as the total effect size for the
circadian power calculation. By inspecting the total effect
‘;—:n% S»  sin®(w(t; + ¢)), this non-centrality
parameter can be decomposed into three parts: (i) sample

size A =

size n, (ii) intrinsic effect size r = A/o (closely relate to the
goodness of fit statistics R?), and (iii) sampling design effect
d = 23" sin®(w(t; + ¢)). We then discuss the impact of
each of these components on the circadian rhythmicity power
calculation:

1. Sample size: As expected, given fixed d and r, a larger
sample size n will result in a larger total effect size A, and
achieve a higher statistical power.

2. Intrinsic effect size: Intuitively, a larger circadian amplitude
A with smaller residual variability o will lead to a better
sinusoidal curve fitting (i.e. larger R?). Our formula
suggests that circadian fitting parameters A and o work
together as an intrinsic effect size r = A/o and has a
quadratic effect on the total effect size A.

3. Sampling design effect: The sampling design effect d =
1N n

Dy sin?(w(t; + ¢)) is more complicated, because it

involves both observed t¢; and the unknown parameter

phase shift ¢. In general, given an arbitrary circadian
sampling design, we need to estimate ¢ before performing
power calculation. Fortunately, the power calculation for
the evenly-spaced sampling design is independent of the
phase value (i.e., phase-invariant). For example, [28]
recommended a collection of 12 time points (every 2 hours)
per cycle across 2 full cycles, which belongs to the evenly-
spaced sampling design. Such active design is commonly
seen in animal studies or human blood studies, where
researchers can control the exact time to sacrifice the
animal or to collect blood. The following theorem (phase-
invariant property) shows that the sampling design effect
d is a constant under the one-period one-sample evenly-
spaced design, i.e., ts are evenly spread within one period

with only one sample per time point.

Theorem 1 (Phase-invariant property - one-period one-sample)
Assuming there is a total of n ZT points t;(1 < i < n) within
a circadian period 2w /w, which are ordered such thatt; < ti41
foralll <i<n—1.If n > 3, and t; is evenly-spaced over
the period (i.e., tix1 —t; =C forall1 <i<n-—1,C >0 is
a fized time interval, (t1 + 2w /w) — t, = C), then regardless

made available under aCC-BY-NC-ND 4.0 International license.

of the value for ¢, we have

LSS 2wt _ !
E;bm (’w(tl+¢))—2

The proof is given in Supplementary Section 2. It can
immediately be extended to the following corollary.
Corollary 1 (Phase-invariant property - multi-period
multi-sample). For multi-period (two or more cycles) multi-
sample evenly-spaced design, the sampling design effect is

phase-invariant.

- S sin® (s + ) = 5

This is because the multi-period multi-sample evenly-spaced
design just replicates the one-period one-sample evenly-spaced
design, therefore the average of them remains to be 1/2.

Assumptions underlying the circadian modeling framework
The proposed circadian modeling framework has two underlying
assumptions: (i) the relationship between the expression level
of a gene and the ZT follows a sinusoidal wave curve; (ii) the
error terms of each sample on top of the sinusoidal wave curve
follows independent and identical Gaussian distribution. We
discuss the implication of sinusoidal assumption on sampling
design in Section 3.3 and demonstrate that the F' statistics is
robust against various types of violation of model assumptions
in Section 3.4.

Alternative power calculation method by Monte-Carlo
simulation

Without the proposed analytical method CircaPower, a
conventional method for circadian detection power calculation
is by Monte-Carlo simulation (MC), which assumes known A,
¢, M,oandt;,1 < i< nin Equation 1. The detailed algorithm
for MC is described as following:

1. Given the ZT t)s for n samples (1 < i < n) and key
parameters (A, ¢, M, and o), we simulate gene expression
Ygi based on Equation 1, where 1 < g < G is the gene index
and G is the total number of genes. G = 10,100 genes is
used in the simulation comparison between CircaPower and
MC algorithm in Section 3.1.

2. We apply the cosinor method [31] to derive the rhythmic p-
value py for each gene g(1 < g < G). Given a pre-specified
alpha level «, the power of MC algorithm is calculated as
>, I(pg<a)
==

Although both the CircaPower and the MC algorithm rely on

the F' statistics for rhythmicity detection, the CircaPower has

several obvious advantages over the MC algorithm. First of all,
the explicit representation of total effect size in CircaPower
provides insights on the three determining factors (n,r,d) in
circadian detection power calculation while it is hard for MC
algorithm to determine selections and trends on the many
parameters (A, ¢, M,o, and t;,1 < ¢ < n). In addition,
our simulation shows the closed-form solution by CircaPower
is at least 10,000 folds faster than the MC algorithm (see

Section 3.1). More importantly, even though both approaches

can calculate power given sample size, only CircaPower can

directly solve the inverse problem of deriving the smallest
sample size meeting the desired detection power, while MC
algorithm needs repeated interpolation to obtain an answer.
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Simulation

Throughout simulation and real application, we control type I
error @ = 0.001 for circadian power calculations to account for
potential multiple comparisons.

Comparison between CircaPower and the MC algorithm

We compare CircaPower with the MC algorithm described in
Section 2.2.3. For both methods, the ZT points are simulated
from one-period one-sample evenly-spaced design for the ease of
discussion, which enjoys the phase-invariant property (d = 1/2,
Theory 1). Since phase shift ¢ and MESOR M has no impact
on circadian detection power calculation in this case, we fix
¢ = 0 and M = 10. We evaluate their power derived at a
grid of A = (0.4,0.8,1,1.2) and o = (1,2, 3,4). Note that for
CircaPower, we only need the underlying parameters A/o, t;,
and ¢ to perform power calculation, which does not rely on
the simulated dataset. We simulate the data for the purpose of
evaluating the MC algorithm.

Figure Sla shows that the power calculated from CircaPower
is almost identical to the MC algorithm, corroborating the
correctness of the closed-form solution in CircaPower. In
addition, the power increases with respect to (i) larger n, (ii)
larger A, and (iii) smaller o, which are consistent with our
theoretical formula of the total effect size \.

As discussed in Section 2.2.1, the two curve fitting
parameters A and o work together as the intrinsic effect size
r = A/o and therefore can be reduced to one parameter in MC
approach. We further validate this observation by co-varying
A and o simultaneously (i.e., A = ¢ = 1, 2,3) while keeping
their ratio as a constant (i.e., 7 = 1). Figure S1b shows that
the power trajectories remain the same, indicating the proposed
intrinsic effect size is sufficient to capture the goodness-of-fit of
the model for the power calculation.

In terms of computing time, to generate all the results in
Figure Sla, it takes 1.84 seconds for the CircaPower using 1
CPU thread on a regular PC (8th Gen Intel Core i5-8250U
Quad-Core processor, 1.60 GHz), while it requires 8 hours for
the MC algorithm using the same computing resource. With
parallel computing, the computing time reduces to 0.13 seconds
for CircaPower using 40 CPU threads on a Linux server (Intel
Xeon Gold 6130, 2.10GHz), while it still needs 24 minutes for
the MC algorithm.

Impact of sampling design on CircaPower

Since the sample collection scheme for active design and passive
design are quite different, we will discuss them separately. For
active designs, we vary the intrinsic effect » = 0.8,1,1.5,2 and
n = 12,24,36,48. For passive designs, we vary the intrinsic
effect » = 0.4,0.8,1,1.2 and n = 12,24, ...,180. The maximal
sample size we use for the active design is smaller than that
of the passive design, because the estimated intrinsic effect is
usually higher in animal studies compared with human studies
(see Table 1). Due to the fact that not all designs have the
phase-invariant property, we also vary the phase shift ¢ =
0,3, 6.

For a typical active design, researchers usually need to
control the number of (i) ZT points per cycle; (ii) replicates
at each time point within a cycle; and (iii) cycles. Because of
the periodicity property of the sinusoidal curve in the cosinor
model, (ii) and (iii) are statistically equivalent. Therefore, for
the ease of discussion, we summarize the following two key
parameters for an active design: (i) number of ZT points per

CircaPower | 5

cycle Nr; (ii) total number of samples n. The number of
replicated samples (at the same ZT across all cycles) could be
calculated as n/Nr.

We denote the active design scheme with Np points per
cycle as FixTimeNr an the one-period one-sample evenly-
spaced design (i.e., FixTime-n) as the EvenSpace. For Np =
3,4,6,n, Figure 3a shows that (i) the power curves are the
same regardless of phi, confirming the phase-invariant property;
(ii) the power trajectories for different N/.s are also identical,
which implies that under evenly-spaced sampling design with
Nr > 3, the detection power only depends on the total number
of samples n but not the Np. Note that these arguments are
purely based on the statistical power given sinusoidal wave
assumption. In reality, less number of time points may result
in unstable circadian curve fitting (see Section 3.3).
the collection of the ZT cannot
be controlled. We therefore simulate t,s from (i) uniform

44 UNIF(0,24); and (ii)

For passive designs,

distribution (uniform design): t;

bimodal Gaussian distributions (bimodal designs): ¢t;~p; N (7, sd)+

(1 — p;)N(17,sd); p; ~ Bernulli(0.5). We allow sd =
1,2,3,4 and calculate their corresponding Kullback—Leibler
divergence (KLD) against the uniform distribution as a relative
measurement to benchmark their divergence from the uniform.
Figure 3b shows that for the uniform design, the power
trajectory is close to phase-invariant. This is expected since
the uniform distribution is a random realization of the evenly-
spaced sampling design, and the impact of phase on the
individual t¢; will average out. The bimodal designs show
phase-dependent circadian power trajectories and the impact
of phase influence increases as the distribution deviates more
from uniform (i.e., larger KLD). Specifically, the power loss
of bimodal designs when ¢ = 0,3 is significant when KLD is
0.72 or greater (green and yellow curve) while negligible when
KLD is only 0.18 or smaller (purple and blue curve). In fact,
since the phase shift impacts the sampling design through d =
DN sin?(w(t; + ¢)), it achieves higher power if the mode of
the ZT distribution occurs at the underlying peak/trough time.
In real omics applications, circadian genes usually have different
phase shift values over the day. If the collected ZT distribution
is far away from the uniform distribution, the detection power
of each circadian gene would be affected differently across the
genome as a result of its unique phase shift.

Impact of the number of time points per cycle on CircaPower

From the perspective of circadian power calculation, Figure 3a
implies that the evenly-spaced sampling design is phase-
invariant as long as N7 > 3, which is further corroborated by
Corollary 1. However, in the perspective of curve fitting, smaller
number of time points may not necessarily guarantee the
goodness-of-fit for a sinusoidal curve, resulting in potentially
false positive findings.

To explore the impact of number of Nr on the goodness-of-
fit for a sinusoidal wave, we simulate expression data from the
sinusoidal model and perform non-parametric curve fitting to
identify the minimum N7 necessary to capture the sinusoidal
wave curve (see detailed simulation setting in Supplementary
Section 4). The data points and fitted smooth curves in one
circadian cycle [0, 24] are shown in Figure S2. When Np <
4, it is uncertain whether the underlying curve fitting is a
sinusoidal wave. Only when Np increases to 6 or more, the
curve fitting is stable and almost identical to the underlying
sinusoidal wave. To further justify this choice, we calculate the
root mean square distance between the fitted non-parametric


https://doi.org/10.1101/2022.01.19.476930
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.01.19.476930; this version posted June 23, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

) . , made available under aCC-BY
6 | Zong et al.

-NC-ND 4.0 International license.

phi=0 phi=3 phi=6 phi=0 phi=3 phi=6
1.00 1.00-
0.75 - 0.75- -
0.50 ) ) o & 0.50- 7 |&
. P P Pl E 7 Z g
0.25 7 e 7 0.25- .
?88 o—" — — 888 s
0.75 /."’ /."’ /x” _ 0.75- o
+ 0.50 / / / s 0.50- S g ; ;
y / y ; ; ampling design
Lo2s{ 7 e A Sampling design 025 ® p . 9 ¢}
) / / -' — ) — Uniform
o 0.00°7 - - EvenSpace = 0.00- Bimodal_sd1 (KLD=4.93)
@ 1.00 9 s —2% e —=9) FixTime3 S 1.00- —_— —— ———— ! .
o -~ ~ ~ FixTime4 o Bimodal_sd2 (KLD=0.72)
=075 f / Vi = e FixTime6 0.75- Bimodal_sd3 (KLD=0.18)
Oos0{ / / / i 0.50- 7 —- Bimodal_sd4 (KLD=0.08)
'/ '/ '/ w -
0.251 / / / 0.25-
4 4 L4
0.00 0.00-
1.00 9] p——] ) 1.00- ————— ——— ———
/ / /
0.75 / / / _ 0.75 o
0.501 / / / 4 0.50- &
d d d N
0.25 0.25-
0.00-

00
12 24 36 4812 24 36 4812 24 36 48
n

(a)
Fig. 3. Sampling design effect on circadian power calculation. (a) show

effect for passive design.

curve and the underlying sinusoidal curve at evenly spaced 1000
points between [0, 24] and plot against Np. The elbow plot
(Figure S3) suggests that Np = 6 is an inflection point after
which the change of distance between the fitted curve and the
underlying curve becomes stably small. Therefore, considering
both circadian power calculation and smooth curve fitting, our
results suggest Ny = 6 to be the minimum number of ZT points
to fully capture the circadian rhythmicity pattern, which is
commonly adopted in the literature.

Robustness analysis of F' statistics

To examine the robustness of our method when the iid Gaussian
assumption is violated, we investigate the type I error control
of F statistics in the following scenarios: (i) heavy tail error
distribution (i.e., student t distribution); (ii) existence of
outliers; (iii) non-independent Gaussian errors. For all these
simulations, G = 10,000 noisy genes are simulated with error
term e4;’s specified above. By declaring circadian rhythmicity
at 5% nominal « level, we will evaluate the actual type I error
rate of the F' test from the cosinor model. Since CircaPower
is built on the F statistics for rhythmicity detection it will
be benchmarked as robust if the actual type I error rate is
close to the nominal « level. The detailed simulateion setting
is provided in Supplementary Section 3. Since our goal is to
evaluate the type I error rate control, which does not involve
in any multiple testing issue, we directly use 5% nominal «
level. Figure S4 shows that the cosinor model only has slightly
conservative the type I error from cosinor model when error
terms are drawn from very heavy tail t distribution (df = 2.5
or 3) while maintains accurate type I error rate in all other
scenarios suggesting the robustness against the three types of
violation in general.

Real application
CircaPower for human studies with passive design

‘We investigate the power trajectories of human studies using
three human post-mortem brain transcriptomic studies (Chen
[6], Seney [7] and Ketchesin [41]) with different time of death

50 100 150 50 100 150 50 100 150
n

(b)

s the sampling design effect for active design; (b) shows the sampling design

distribution. Detailed descriptions of each dataset can be found
in the original papers. Briefly, Chen [6] and Seney [7] performed
gene expression circadian analysis using microarray (n = 147)
and RNA-seq (n = 104) respectively using pre-frontal cortex
tissues; and Ketchesin [41] performed RNA-seq gene expression
circadian analysis with n = 59 participants using dorsal and
ventral striatum tissues.

To estimate the intrinsic effect sizes from the three brain
studies, we apply the cosinor method [31] to identify genes with
rhythmic patterns and obtain estimates for their amplitude A
and noise level 6. We estimate the intrinsic effect sizes 7 = A/&
using the 7 core circadian genes, or the top 100 significant
rhythmic genes (ranked by p-values from the cosinor method).
The 7 core circadian genes include Arntl, Dbp, Nrid1, Nr1d2,
Per1, Per2, and Per3, which showed persistent circadian
pattern across 12 mouse tissues [12]. The Homo sapiens section
of Table 1 shows the estimated intrinsic effect sizes for: (i)
median r of the 7 core circadian genes; (ii) minimum 7 of the
100 most significant circadian genes. The estimated intrinsic
effect sizes for these three human studies range between 0.44
and 1.06 (see Table 1).

To demonstrate the power trajectories in real data, we vary
intrinsic effect sizes r = 0.4,0.6,0.8,1, which roughly cover
the estimated range of the intrinsic effect sizes in the post-
mortem brain studies. The ZT points are sampled 1000 times
from the kernel density estimated from the observed time-of-
death distributions in these three studies (see top panels of
Figure 4a). Since investigators in these human post-mortem
brain studies have no control of sample collection time (i.e.,
time of death) and can only accept passive sampling design,
the detection power curves are not phase-invariant. We vary
phase shift ¢ = 0,1,2,3,...,12 and use a confidence band to
represent the range of power achieved across phase shifts (see
bottom panels of Figure 4a). For each scenario (i.e., fixed r, n
and ¢), the mean power among the 1000 times repetitions is
reported. The power trajectory from an evenly-spaced design is
also calculated as a comparison.

As expected, larger sample size n and larger intrinsic
effect size r lead to a larger circadian power. In addition,
the power trajectory is phase-invariant for the evenly-spaced
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sampling design with 0 band width, but not for the passive
sampling designs from the three human studies. As discussed
in Section 3.2, the power will depend on the relationship
between the mode of the ZT distribution and the underlying
peak/trough time. To further demonstrate the impact of phase
on the non-uniform ZT distribution, we fix n = 120, r = 0.6,
while varying ¢ = 0,1,2,3,...,12. As shown in Figure 4b,
the power trajectories fluctuate across different ¢’s when
samples are drawn from irregular distributions in the three
post-mortem studies, while the trajectory stays the same for
evenly-spaced ZT. However, since the KLDs of the kernel
densities estimated from the Chen, Seney and Ketchesin are
relatively low (i.e., 0.12, 0.17, 0.14) compared with the bimodal
designs in Section 3.2, the variation of power as a result of
phase shift is small, with 3.8%, 4.4%, and 9.9% maximum drop,
respectively.

CircaPower for animal studies with with active design

We next examine the power trajectories of actively designed
mouse studies using 14 mouse gene expression circadian data
[43, 44, 45, 46, 47, 9, 48, 49, 50, 51, 52, 53, 54, 12] from 20
types of tissues.Sample sizes of each study tissue are shown in
Table 1. To estimate the intrinsic effect sizes of these tissues, we
apply the cosinor method [31] similarly to identify genes with
rhythmic patterns and obtained estimates for their amplitude
A and noise level 6. The estimated intrinsic effect sizes for
the median r of the 7 core circadian genes and the minimum
r of the top 100 significant circadian genes are shown in the
Mus musculus section of Table 1, ranging from 0.96 to 6.33, a
much larger magnitude than previous human studies. This is
reasonable since human studies are usually more heterogeneous
in terms of genetics and environmental background. We thus
fix the intrinsic effect sizes to be r = 1,2, 3,4 in our subsequent
power calculation. Since these experiments employ an evenly-
spaced active sampling design, the sampling design factor is a
constant (i.e., d = 1/2, Corollary 1) regardless of the phase
value.. As a result, we employ the one-sample one-period
evenly-spaced design (see left panel of Figure 5) for the purpose
of power calculation. By further assuming the alpha levels to
be a = 0.05,0.01, 0.001, the power trajectories with respect to
sample size n is shown in Figure 5 (right panel).

Case study: circadian power calculation using mouse pilot
dataset

To demonstrate how to perform circadian power calculation
using pilot dataset from scratch, we utilize a circadian gene
expression data in mouse with skeletal muscle, which is part of
the mouse pan-tissue gene expression circadian microarray data
[12]. Detailed description of this dataset has been described
previously [8]. Briefly, 24 mouse muscle samples were collected
(every 2 hours) across 2 full cycles. With this pilot data,
we perform genome-wide circadian rhythmicity detection using
the cosinor method [31]. Under p < 0.001, we identify
716 significant genes showing circadian pattern. We similarly
estimate the intrinsic effect sizes for: (i) median r of the 7
core circadian genes; (ii) minimum r of the top 100 significant
circadian genes. The resulting intrinsic effect sizes are 3.58 and
2.23 respectively. By assuming different « to be 0.05, 0.01,
0.001, the power curves with respect to sample size are shown in
Figure S5. We observe that n = 12 can achieve 97.1% and 50.5%
detection power for the two intrinsic effect sizes at o = 0.001.

CircaPower | 7

Discussion

In this paper, we propose an analytical framework, CircaPower,
to calculate the statistical power for circadian gene detection.
To the best of our knowledge, this is the first analytical
method to perform circadian power analysis. In simulations,
we not only demonstrate the CircaPower is fast and accurate,
but also show that its underlying cosinor model is robust
against violations of model assumptions. In real applications,
we show the performance of the CircaPower in mouse studies
and postmortem human studies. In addition, we obtain the
estimated intrinsic effect sizes from publicly available human
and mouse transcriptomic circadian data. These summarized
intrinsic effect sizes can be used as a reference resource to
facilitate investigators without pilot data to perform circadain
power calculation. In case study, we also demonstrate circadian
power calculation step-by-step given a pilot dataset.

Our method has several advantages. To begin with, the
theoretical framework suggests that the power calculation is
related to a total effect size, which can be decomposed into
sample size, intrinsic effect size (representing goodness-of-fit
of circadian curve), and sampling design factor. Moreover,
the sampling design factor brings about the concept of active
design and passive design when samples are collected. This is
an important concept in circadian experiment design, since
the ZT collection for human (passive design) and animal
After that, we
demonstrate the phase-invariant property of the evenly-spaced

(active design) could be quite different.

sampling design, which provides theoretical foundation for
the design of many published circadian studies. In addition,
the closed-form formula in CircaPower allows unique inverse
calculation of sample size given desired power at fast computing
speed compared with the conventional MC algorithm. In this
paper, we also systematically examine the intrinsic effect
sizes of published mouse or human gene expression circadian
data, which could provide guidance for future researchers
to design their transcriptomic circadian experiment when
pilot data are not available. Although we present our work
using transcriptomic data, CircaPower is applicable to other
omics data, such as DNA methylation, ChIP-Seq proteomics,
metabolomics, and clinical data (e.g., body temperature).

Our work has the following limitations and future work.
Firstly, the CircaPower assumes a pre-fixed alpha level. We
intentionally select a more stringent alpha (e.g., o = 0.001)
to account for multiple comparison when thousands of genes
are tested simultaneously. Additional modeling is needed to
extend for calculating genome-wide power calculation while
controlling false discovery rate. Secondly, in addition to
detecting genes with rhythmic pattern, another important
research question is to identify differential circadian pattern
[55, 56, 57, 32] (i.e., the circadian pattern is disrupted
because of the treatment or condition), which will be another
future direction. Thirdly, the Gaussian assumptions are widely
assumed in biomedical research, and we have demonstrated
that the cosinor model is robust against violations of Gaussian
assumptions. If an investigator still worries about these
assumptions, we would recommend data transformations (e.g.
Box—Cox transformation) before applying our method. Our
previous work [32] has shown that the Box-Cox transformation
can rescue the normality assumption for circadian rhythmicity
detection using cosinor models. Similar justifications have been
adopted in the literature. For example, though the student t
test also assumes Gaussian assumptions, but it is still widely
used in the literature, as long as there are methods to rescue
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Table 1. Intrinsic effect sizes for public available transcriptomic circadian data, including 3 passively designed human postmortem brain
studies and 14 actively designed mouse studies from 20 types of tissues. These data are processed using the cosinor method [31]. Two types
intrinsic effect sizes are used: (i) median r of the 7 core circadian genes; (ii) minimum r of the top 100 significant circadian genes. These
intrinsic effect sizes can be used as a reference resource when investigators need to perform power calculation without any pilot data.

Median r Minimum 7
Organism Study ].Dataj X Tissue Sar?nple of the 7 core of the top 100
Availability Size . X . i
circadian genes circadian genes
Pre-frontal cortex (BA11) 147 0.91 0.46
Chen [6] GSETI620 frontal cortex (BA47) 147 0.77 0.44
Homo Striatum (NAc) 59 0.71 1.06
sapiens Ketchesin [41] GSE160521* Striatum (caudate) 59 1.04 0.82
Striatum (putamen) 59 0.83 1.02
Common Mind
Seney [7] R Pre-frontal cortex 104 0.79 0.55
Consortium*
Aguilar-Arnal[43] GSE49638 Fibroblast 18 2.38 2.94
Atrium 32 3.43 1.46
Bray[44] GSE10045 Ventricle 32 0.96 1.09
Chol45] GSE34018 Liver 12 2.84 4.11
Gerstner[46] GSET78215 Cerebral cortex 34 2.46 2.18
Hoogerwerf[47] GSE10644 Colon 18 1.86 1.56
Hughes [9] GSE11922 Fibroblast 48 1.27 1.02
GSE11923 Liver 48 2.00 2.77
Mari[48] GSE52333 Liver 18 4.11 3.39
Masri [49] GSE73222 Liver 18 3.83 2.47
Masri [50] GSE57830 Liver 36 2.69 2.20
Na[51] GSE11516 Liver 36 3.65 3.69
Nikolaeval[52] GSE27366 Kidney 12 2.39 2.61
Paschos[53] GSE35026 Adipose 12 2.48 2.58
Mus Satellite 24 3.64 2.30
musculus Solanas(54] GSE84580 Epidermal 20 5.03 2.62
Adrenal gland 24 5.17 2.27
Aorta 24 5.55 2.29
Brainstem 24 3.90 2.07
Brown fat 24 5.05 2.72
Cerebellum 24 3.52 2.01
Heart 24 4.47 2.82
GSE54650 Hypothalamus 24 2.67 1.74
Kidney 24 6.33 3.65
Liver 24 3.51 3.67
Lung 24 5.78 3.47
Muscle 24 3.58 2.23
Zhang|[12] White fat 24 5.35 2.28
Adrenal gland 8 5.29 5.40
Aorta 8 3.97 5.23
Brainstem 8 2.21 4.16
Brown fat 8 4.15 5.94
Cerebellum 8 4.06 4.86
GSES4651* Heart 8 4.73 6.23
Hypothalamus 8 2.19 4.19
Kidney 8 5.11 6.44
Liver 8 4.40 6.16
Lung 8 4.57 5.41
Muscle 8 5.26 5.24
White fat 8 3.71 3.87
* denotes RNA-Seq data and others are microarray data.
the violation (i.e., data transformation). Lastly, as discussed in Competing interests

the introduction, both parametric and non-parametric models . .
) . K There is NO Competing Interest.
are popular and widely used in the literature. In the proposal,

we only focus on the cosinor model for its simplicity and

accurate statistical inference [32]. Further extending the current

framework to a more flexible family of circadian pattern is of

biological interests to the general circadian research field. Data Avai]abi]ity
To allow easy application by other researchers, our methods

have been implemented in the R package CircaPower, which is Seney [7] dataset is available in the Common Mind Consortium

publicly available in github (https://github.com/circaF’ower/Ci1rcaPéivis;/er}letpS ://wau.nimhgenetics.org/available_data/commonmind/

through an approval process. All other datasets are publicly
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Fig. 4. (a) demonstrates circadian power calculation using publicly available human datasets. The top panel shows the time of death distribution for
Chen, Seney, and Ketchesin. The bottom panel shows the mean power trajectories of different study designs over 1000 repetitions with different intrinsic
effect sizes r = (0.4, 0.6,0.8, 1). The confidence bands represent the range of power achieved across phase values at ¢ = 0,1, 2,3, ..., 12 for each scenario.
(b) shows mean power trajectories across different ¢ when n = 120 and r» = 0.6. For each ¢ and sampling distribution, we draw sampling times 1000
times and calculate corresponding power. Vertical bars indicate the 95% confidence interval of power estimates calculated form Z 4 1.96s/+/1000 where

- o . . . mawz,(mean-Power)—min,(mean_-Power
T and s are mean and standard deviation of power estimates respectively. Maximum power drop (calculated by o (me ower) no (me wer)

3.8%, 4.4%, and 9.9% respectively.

) is

maz,(mean-Power)
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Fig. 5. Circadian power calculation using publicly available mouse datasets. The left panel shows the distribution of one-sample one-period evenly-

spaced design. The right panel shows the power trajectories for each of the type I error control @ = (0.001, 0.01,0.05) assuming intrinsic effect sizes

T

=(1,2,3,4).

Key points

The circadian clock controls oscillations in a wide variety
of physiological processes, and the disruption in clock
and circadian gene expression was found to be linked to
many diseases. Though recent transcriptomic studies have
been successful in revealing the circadian rhythmicity in
gene expression, the power calculation for omics circadian
analysis have not been fully explored. To our knowledge,
we are the first to develop rigorous statistical methods for
circadian power calculations.

It is unclear what factors will impact the power calculation
of circadian analyses. Our theoretical framework is the
first to determine three key factors in circadian power
calculation, including sample size, intrinsic effect size and
sampling design factor.

We further summarize and document the intrinsic effect
sizes from 3 human postmortem brain studies and 14 mouse
studies from 20 types of tissues, which would facilitate
researchers without pilot data to perform circadian power
calculation.

Our method CircaPower has been implemented in an R
package, which is made publicly available on GitHub
(https://github.com/circaPower/CircaPower).
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