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Abstract

The sheep is a valuable model to test whether hormone mechanisms that sexually differentiate
the brain underlie the expression of sexual partner preferences because as many as 8% of rams
prefer same-sex partners. Epigenetic factors such as DNA methylation act as mediators in the
interaction between steroid hormones and the genome. Variations in the epigenome could be
important in determining morphological or behavior differences among individuals of the same
species. In this study, we explored DNA methylation differences in the hypothalamus of male
oriented rams (MORs) and female oriented rams (FORs). We employed reduced representation
bisulfite sequencing (RRBS) to generate a genome-wide map of DNA methylation and RNA-Seq
to profile the transcriptome. We found substantial DNA methylation and gene expression
differences between FORs and MORs. Although none of the differentially methylated genes
yielded significant functional terms directly associated with sex development, three
differentially expressed genes were identified that have been associated previously with sexual
behaviors. We hypothesize that these differences are involved in the phenotypic variation in
ram sexual partner preferences, whereas future studies will have to find the specific
mechanisms. Our results add an intriguing new dimension to sheep behavior that should be

useful for further understanding epigenetic and transcriptomic involvement.

Introduction
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The mechanisms underlying the development of sexual orientation remain unknown. A large
amount of empirical data suggest that genes and prenatal hormones are important
determinants [1]. Given that sexual orientation represents one of the largest sex differences in
humans, the leading neurohormone theory posits that like other sexually dimorphic behaviors,
sexual orientation reflects the sexual differentiation of the brain under the influence of
androgens. Simply stated, exposure to high levels of androgens during a critical period of
gestation (i.e., most males and a few females) programs attraction to females in adulthood.
While exposure to low levels of androgens (i.e., most females and a few males) programs sexual
attraction to males. There is also compelling evidence implicating the involvement of
epigenetic mechanisms in mediating the long-term effects of hormones on the sexual
differentiation of the brain in animal models [2—4]. Evidence in rodents suggests that perinatal
androgen exposure reduces DNA methylation in male brains compared to female brains,
releasing masculinizing genes from epigenetic repression and ultimately masculinizing sexual
behavior [5] and brain anatomy [6]. It is not known currently whether epigenetic factors

influence human sexual orientation although circumstantial evidence suggests that it could [4].

Domestic rams have emerged as an important animal model for human sexual orientation.
Approximately 8% of rams in natural populations of common western breeds can be reliably
identified to show exclusive and enduring sexual partner preference for either the opposite sex
(female-oriented) or same sex (male-oriented)[7]. Like men, rams have a sexually dimorphic
nucleus (SDN) in the preoptic area/anterior hypothalamus [8,9]. The volume of the ovine SDN
correlates with sexual partner preference and is larger in female-oriented rams than in male-

oriented rams and ewes. The precise function of the ovine SDN remains unclear but its volume
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has been shown to be a biomarker of prenatal androgen exposure [10]. Thus, the volume
difference between sexes and between female- and male-oriented rams most likely results
from a developmental difference in androgen exposure and may be reflected in differences in
DNA methylation states in the brain [11]. The medial basal hypothalamus is another brain area
that plays crucial roles in neuroendocrine control systems and sexual behaviors [12]. The
ventromedial nucleus is a major anatomical component of the medial basal hypothalamus that
is larger in males than in females, regulated by perinatal hormone exposure, and involved in
facilitating male sexual behavior[13—-16]. The present study evaluated the genome-wide
epigenetic and transcriptomic levels of the medial basal hypothalamus in female- and male-
oriented rams. We hypothesize that the DNA methylome and transcriptome of the
hypothalamus differs between these rams as evidence of a legacy of differential androgen

exposure during early fetal development.

Materials and Methods

Animals and behavioral classifications

Archival hypothalamic tissues were used in this study. The tissue was obtained from 4-5-year-
old adult rams that were given behavioral tests at the USDA Sheep Experiment Station in
Dubois, ID and classified as male-oriented rams (MORs) (n = 5) or female-oriented rams (FORs)
(n =4). The sheep were of mixed western breeds, including Rambollet, Targhee and Polypay.
Rams were given sexual partner preference tests administered as described previously [17].

Those that exclusively mounted other rams were classified as male oriented rams (MORs),
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whereas rams that exclusively mounted females were classified as female oriented rams

(FORs); (Table 1). All experimental animal protocols met the stipulations and guidelines of the

NIH policy on the Care and Use of Laboratory Animals and were approved by the Institutional

Animal Care and Use Committee of the Oregon Health and Science University.

Table 1: Number of mounts on female and male stimulus animals in the last two of four
sexual partner preference tests.

Ram Number Classification F/M Mounts* F/M Mounts
SPP Test #3 SPP Test #4
R2579 MOR/SSP 0/(36)* 0/38
R2810 MOR/SSP 0/(40) 0/3
A8337 MOR/SSP 0/97 0/6
T8384 MOR/SSP 0/(56) 0/(20)
R2423 MOR/SSP 0/(15) 0/0
A8736 FOR/OSP (7)/0 (9)/0
R3139 FOR/OSP (9)/0 (8)/0
R3362 FOR/OSP (7)/0 (8)/0
A9707 FOR/OSP (6)/0 (10)/0

Sample collection and preparation

The sheep were euthanized with an overdose (15 mg/kg) of sodium pentobarbital (Euthozol;

Delmarval Laboratories Inc, Midlothian, VA). The medial basal hypothalamus was dissected as a

block of tissue that extended from the caudal aspect of the optic chiasm to the rostral aspect of

the mammillary bodies, bilaterally to the optic nerves and dorsally to the top of the third

ventricle. The dissection was split through the ventricle into left and right halves that were

frozen immediately on dry ice and stored in a -80° C freezer. Genomic DNA was extracted from

one half of the hypothalamus using the DNeasy Blood & Tissue Kit (Qiagen, Germantown, MD,

USA) and concentrated using the Genomic DNA Clean & Concentrator Kit (Zymo Research,
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96 Irvine, CA, USA) as directed by the manufacturer. The concentration and quality of genomic
97  DNA was verified with absorbance spectroscopy and Qubit fluorimetry (ThermoFisher Scientific,
98  Waltham, MA, USA). RNA was extracted from the remaining half of the hypothalamus using the
99  RNeasy Mini kit (Qiagen). RNA was quantified with the Qubit RNA Broad range kit

100 (Thermofisher) and integrity was verified on a 4200 Tape station (Agilent, Santa Clara, CA, USA).

101  All RNA samples that were used in these studies had RIN values greater than 8.0.

102 Reduced representation bisulfite sequencing

103  To analyze DNA methylation, we used reduced representation bisulfite sequencing (RRBS) [17],
104 agenome-wide approach that examines about 2 million CpGs (7-10% of all CpGs in genome)
105 that are highly enriched key regulatory regions including promoters, CpG islands and CpG island
106  shores.

107  To generate RRBS libraries, ~150ng of sheep genomic DNA was digested overnight with the

108  restriction enzyme Mspl (New England Biolabs, Ipswich, MA, USA). The DNA was then purified
109  with AMPure XP magnetic beads (Beckman Coulter, Pasadena, CA, USA) before use with the
110  NEXTflex Bisulfite-Seq Kit (BioScientifica, Bristol, UK). The DNA was then end repaired, A-tailed
111  and ligated with the NEBNext Methylated Adaptor (New England Biolabs). The ligated DNA was
112 size-selected using AMPure XP magnetic beads to produce a final library size of 350 bp. Bisulfite
113 conversion was performed with the EZ DNA Methylation-Gold Kit (Zymo Research) before

114  carrying out PCR amplification with NEBNext Multiplex Oligos (New England Biolabs) to barcode
115  each library. A final AMPure XP bead purification was performed, and the resulting libraries

116  were quantified with the Qubit High Sensitivity double stranded (dsDNA) Assay (Life
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117  Technologies, Carlsbad, CA, USA) and the Bioanalyzer High Sensitivity Analysis (Agilent).

118  Libraries were multiplexed and sequenced on the Illumina NextSeq or HiSeq2500 to obtain ~30
119  million single end, 75 bp reads. The sequence data was deposited under the gene expression
120 omnibus (GEO) accession number GSE158287. Library names and associated phenotypes are in
121 Table 2.

122  Table 2: Sample names and associated Phenotypes

Sample Name Phenotype
LIB181217CR_ECL28_1_S1 MOR1
LIB181217CR_ECL28_2_S2 MOR2
LIB181217CR_ECL28 3 _S3 MOR3
LIB181217CR_ECL28 4 S4 MOR4
LIB181217CR_ECL28 5 S5 MORS5
LIB181217CR_ECL28_6_S6 FOR1
LIB181217CR_ECL28_7_S7 FOR2
LIB181217CR_ECL28_8 S8 FOR3
LIB181217CR_ECL28_9 S9 FOR4

123

124 Bioinformatic analysis

125  Quality reports for all the nine sample sequences (five MORs and four FORs), were generated
126 using FastQC [18] (generates per sample quality report) and MultiQC [19](generates a multi
127  sample quality report, by aggregating the individual FastQC reports). All samples passed the per
128  base sequence quality metrics, i.e. none of the bases have their lower quartile less than 10

129  Phred score[20,21] or median less than 25 Phred score (FastQC and MultiQC are in

130  https://github.com/VilainLab/SheepMethylation/tree/master/FastQC and

131  https://github.com/VilainLab/SheepMethylation/tree/master/MultiQC respectively). From the

132  MultiQC reports, it can be observed that for most of the samples the “per base sequence
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133 content” graph starts with a C or T followed by two Gs, excepting one sample

134  LIB181217CR_ECL28 7 _S7_R1_001 (FOR2) where the percentage of the T’s more than Cs or Gs
135  for the first three bases (S1 Fig). This discrepancy in the FOR2 sequence can be due to improper
136  MSPI digestion during library preparation, which in turn does not enrich reads that start with

137 CGGor TGG.

138  Next, trimming was performed using Trim Galore [22] to get high quality reads for better

139  methylation calls. It trims all reads having a Phred score less than 20 (i.e., 99% base call

140  accuracy), read length less than 20bp after quality trimming and adapter contamination and/or
141  when reads start with CAA or CGA (S1 File). For all but one sample, sequences removed for

142  quality score criterion were less than 15% of the total number of sequences for that sample and
143 for length criterion; it was less than 5%. For LIB181217CR_ECL28_7_S7_R1_001 (FOR2) sample,
144  the sequences removed for quality score criterion were 16.4% and for lengths less than 20 bp
145  were 6.9%. Similarly, for RRBS trimming excluding FOR2, all the samples had RRBS sequences
146  trimmed due to adapter contamination was < 30% and RRBS sequences trimmed due to reads
147  starting with CAA and CGA at 0.1%. For FOR2 sample, the reads trimmed due to adapter

148  contamination were 37%, whereas for the other criteria trimmed reads were 0.2% of all the

149  sequences in the sample (S1 file).

150 Bismark [23] with the Bowtie 2 [24] alignment option was used to align the trimmed sequence
151  to the reference genome (Oar_rambouillet_v1.0) and extract the methylation pattern, in the
152  form of cytosine reports for 3 different contexts CpG, CHH and CHG (where H can be A, T or C).
153  Default parameters were used for Bismark and the mapping efficiency was between ~64-69%.

154  The percentage of methylated cytosine in CpG sites in the sample, calculated by dividing
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155  number of methylated cytosines and total number of CpG sites, ranged from ~45-64% with
156  FOR2 having the maximum methylated cytosines in the CpG context. The range of methylation

157 on Cwas 0.6-0.8% for all CHH and CHG context (S2 File).

158  Further quality checks, normalizations and differential methylation analyses were performed
159  using the R Bioconductor package, methylKit [25]. Normalization was performed using the

160 normalizeCoverage function of methylKit, which normalizes the coverage between samples by
161  using a scaling factor derived by the difference of median coverages between samples.

162  Differential methylation can be broadly classified into two parts, differentially methylated

163  cytosines (DMC) and differentially methylated regions (DMR). While DMC looks at differences
164  in methylated cytosines between two conditions (MOR and FOR in this case), the DMR looks at
165 methylation differences in two regions (non-overlapping 1000 bases in this case) between the
166  conditions. The TileMethylCounts function from the methylKit package was used to estimate
167  the number of methylated Cs in 1000 bases of non-overlapping windows across the whole

168 genome. To identify the number of CpG contexts in a sample, we used a coverage threshold
169  between 10X (i.e., at least 10 reads cover that particular CpG context) and 99t percentile of the
170  highest CpG coverage per sample. In addition, at least 3 out of 5 samples were required to pass
171  the coverage criterion. All the samples were then merged by using the unite function in

172 methylKit. A further filtration was applied in this step to remove samples that had at least three
173  replicates having coverage for a CG position. We also merged both the strands to increase the

174  coverage of CpG, using the destrand=TRUE option.

175  Differential methylation was calculated using calculateDiffMeth and getMethyIDiff functions

176  from the methylKit package. The calculateDiffMeth function calculates the differential
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177  methylation using a logistic regression model based on a Chi-square test followed by an

178  overdispersion correction using the McCullagh and Nelder method [26], and then adjusts the p
179  value using a Sliding Linear Model (SLIM) [26] multiple test correction method. The

180  getMethylDiff function was used to extract the significant hypo and hyper DMR and DMC from
181  the result of calculateDiffMeth function. A false discovery rate (FDR) g value threshold of < 0.1
182  and methylation difference of £10% was used to identify significant DMRs and DMCs.

183  Annotation of the DMR and DMC was performed using genomation [27] . Codes used for gene
184  alignment, methylation extraction and differential methylation analysis are in

185  https://github.com/VilainLab/SheepMethylation/tree/master/Codes. The workflow of the

186  bioinformatics pipeline for the transcriptomic analysis is illustrated in S2A Fig.

187 RNA Library Preparation and Sequencing

188  Sequencing libraries were prepared using fragmentation, end repair, ligation and PCR using the
189  llumina Stranded mRNA Ligation Prep (llumina, San Diego, CA, USA). Briefly, 1 ug of total RNA
190  was purified, fragmented and primed with random hexamers to generate first strand

191 complementary DNA (cDNA) and the first stand cDNA was converted into second strand cDNA.
192  The 3’ ends of the second strand cDNA were subjected to blunt-end repair. In the next step,
193  pre-index anchors (RNA index anchors) were ligated to the ends of the double-stranded

194 cDNA fragments to prepare them for dual indexing. A subsequent PCR amplification step

195 followed to add the index adapter sequences (IDT for lllumina RNA UD Indexes Set A, Ligation
196 UDPO0001-UDPQQQ5). This step selectively amplified the anchor-ligated DNA fragments and

197  adds indexes and primer sequences for cluster generation. For indexing PCR, initial
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198  denaturation was carried out at 98° C for 30 sec, followed by 10 cycles of the following thermal-
199  cycle profile: denaturation at 98°C for 10 seconds, annealing at 60°C for 30 seconds, and

200 extension at 72°C for 30 seconds. A final extension at 72°C for 5 min was followed by a 4°C

201 hold. The resulting product was a dual-indexed library of DNA fragments with adapters at each
202  end. The libraries were purified using Agencourt AmPureXP beads (Beckman Coulter) and

203  eluted in 15 pl of resuspension buffer. Libraries were quantified using the Qubit broad range
204  assay kit (Thermofisher) and sized using the DNA 1000 kit (Agilent Technologies). The final 300
205  bp libraries were pooled in equimolar amounts and normalized. The pooled library (1.2 pM)

206  was sequenced on the Nextseq 550 using the NextSeq 500/550 High Output Kit v2.5 (150

207  cycles, 2 x 75 bp)and data captured in the Base space sequence Hub (llumina).

208 RNAseq Analysis

209  Preprocessing of the fastq files were performed using the method mentioned above. Quality
210  check was performed using fastQC [18] for single samples and MultiQC [19] for multi sample
211 summary, followed by quality and adapter trimming by trimmomatic [22]. Next, the fastq was
212 aligned to the Oar_rambouillet_v1.0 from Ensembl, using STAR [28] followed by read

213  quantification using RSEM[29]. Differential expression analysis was performed using deseq?2
214  [30] with the significance threshold being log2 fold change > 0.58 (1.5 fold change) and log2
215  fold change <-0.58 (-1.5 fold change), and p-value < 0.1. The workflow of the bioinformatics

216  pipeline for the transcriptomic analysis is illustrated in S2B Fig.

217  Functional annotation and visualization
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218  Functional annotation was performed using gProfileR [31]. Visualization was done using

219  methylKit [25], ViewBS [32], ggplot2 [33] and GOplot [34].

220 Quantitative PCR method

221  Total RNA (0.5 pg) was converted to cDNA using the SuperScript™ Il First-Strand Synthesis

222 System (Invitrogen, Waltham, MA, USA) according to the manufacturer’s directions. Real time
223 PCR reactions were run in triplicate using PowerSYBR Green Master Mix (Invitrogen). Primer
224  sets (S3 Table) for ovine genes were designed specifically to cross exon junctions using Clone
225  Manager software version 8 (Sci-Ed Software, Westminster, CO, USA). All reactions were run in
226  a Quant Studio 7 Flex Thermal Cycler (Applied Biosystems, Life Technologies, Eugene, OR, USA).
227  The primer efficiencies were > 95% for all primer pairs, and all melting curves showed a single
228  peak. Quantification of gene expression was performed by the delta delta Ct method, using
229  cDNA from MBH dissections obtained from four adult Polypay rams as calibrators and

230 normalized against the reference gene glyceraldehyde-3-phosphate dehydrogenase (GAPDH).

231  Data are reported as the fold difference relative to the mean for MORs.

232 Results

233 Distinct differential methylation patterns are observed between

234  MORs and FORs in all the three methylation contexts.

235 A global methylation analysis of the three contexts (CpG, CHG and CHH) for all the samples,
236  reveals higher average methylation levels for CpG context compared to the other 2 contexts

237  (Fig 1 A, S5—11 Fig). For each of the three different methylation contexts investigation of
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238  differential methylation patterns between MORs and FORs can be broadly classified into two
239  types: evaluation of differentially methylated cytosines (DMC) and differentially methylated

240  regions (DMR).

241  Fig 1. Distinct global CpG methylation pattern observed between contexts and conditions. A)

242  Global Methylation levels show higher methylation of CG context: Average Global methylation

243 levels of the eight samples (5 MORs, 3 FORs). CG methylation level is higher than the other

244  contexts for all the samples. B) Heatmap of DMR methylation ratios for reads in the CpG

245  context plotted against animal number shows differential methylation patterns between MORs

246 and FORs. Higher value red, lower value blue.

247  The range of CpG context sites, that passes both the coverage, and the sample threshold

248  criterion are between ~985,376 to ~1,201,527 for all samples excepting FOR2, for which the
249  number of CpG context site is 250,828 (Table 3). Hierarchical clustering of the average

250 methylation profile for CpG context revealed that FOR2 was not clustered with the other

251  samples and is an outlier (S4A Fig). The same pattern was observed in the other contexts (CHG
252  and CHH), with FOR2 being an outlier in both the scenarios (S4B and C Fig). This makes the
253  FOR2 sample an outlier and it was removed from further downstream DMR and DMC analysis,

254  for all the three contexts.

255  Table 3: Methylation sites per context

CpG CHG CHH
Sample Name Phenotype | Region region region
LIB181217CR_ECL28_1_S1 MOR1 1083643 | 1483439 | 2704253
LIB181217CR_ECL28_2_S2 MOR2 1184415 | 1618708 | 3039998
LIB181217CR_ECL28_3_S3 MOR3 1111216 | 1596032 | 3048524
LIB181217CR_ECL28_4 _S4 MOR4 1201527 | 1652283 | 3058649
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LIB181217CR_ECL28_5_S5 MORS5 1162673 | 1612379 | 3019239
LIB181217CR_ECL28_6_S6 FOR1 1197471 | 1697854 | 3275614
LIB181217CR_ECL28_7_S7 FOR2 250828 460853 644272
LIB181217CR_ECL28_8_S8 FOR3 1216055 | 1703738 | 3241296
LIB181217CR_ECL28_9_S9 FOR4 985376 | 1367634 | 2531456

256

257  DNA methylation has various functions, and methylation can occur in different locations. We
258  evaluated 656,897 filtered CpG context sites and identified 1552 DMCs of which 803 were

259  hypomethylated and 749 were hypermethylated in MORs compared to FORs. Of all the

260 differentially methylated cytosines, 44% are located in the intergenic regions, followed by 37%
261 inintrons, 11% in exons and 8% in promoters (Fig 2A). A similar distribution pattern of

262  methylated DMCs was observed for hypo- and hypermethylated CpG regions, with the majority
263  of the DMC’s located in intergenic regions and the least in the promoter region (Fig 2B and C, S4

264  File DMC_CpG tab, DMC_hyper_CpG tab and DMC_hypo_CpG tab).

265 Fig 2. Distribution of total CpG DMC and DMR across the different genomic regions. A) Distribution of

266 DMC CpG; B) Distribution of hyper DMC CpG; C) Distribution of hypo DMC CpG; D) Distribution of DMR
267  CpG; E) Distribution of hyper DMR CpG; F) Distribution of hypo DMR CpG; Distribution of hypo DMR

268  CpG. Legend: black = promoter region; pink = exon; green = intron and blue = intergenic regions.

269  For evaluation of DMRs, we looked at non-overlapping 1000 base pair regions and identified
270 805 DMRs of which 478 were hypomethylated and 327 were hypermethylated in MORs

271  compared to FORs. Visualization of all DMRs shows distinct differential patterns between the
272  two phenotypes i.e., MORs and FORs (Fig 1B). The distribution of DMRs is similar to that of
273  DMCs across genomic regions with the maximum (46%) falling in the intergenic regions, 33% in

274  introns, 16% in exons and 5% in the promoter regions (Fig 2D). Likewise, the distribution of
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275  hypo- and hypermethylated DMRs and DMCs are similar across genomic regions (Fig 2E and

276 F,S4 File DMR_CpG tab, DMR_hyper_CpG tab and DMR_hypo_CpG tab).

277  Although previous studies have not been conclusive about the function of non-CpG (CHG and
278  CHH) methylations in mammals, they have been observed previously in developing mouse brain
279  [29]. This enabled us to explore the methylation profile in these two contexts. For the CHG

280 context there are 25 DMCs with 10 hypermethylated and 15 hypomethylated (S5 File

281  DMC_CHG tab, DMC_hyper_CHG tab and DMC_hypo_CHG tab), and 16 regions for DMR, with
282  nine hypermethylated and seven hypomethylated. Out of the 25 DMCs, 60% are in the intronic
283  and 40% in intergenic regions (Fig 3A). For the hypermethylated CHGs, 80% are in the intronic
284  and 20% are intergenic regions (Fig 3B), whereas 47% of hypomethylated CHGs fall in intronic
285  and 53% fall in intergenic regions (Fig 3C). For DMR CHGs, 62% fall in intergenic regions, 25% in
286  introns and 12% in exons (Fig 3D). For hypermethylated CHGs, most DMRs (56%) fall in

287  intergenic regions, whereas 33% fall in introns and 11% fall in the exons (Fig 3E). For

288  hypomethylated CHGs, 71% of DMRs fall in intergenic regions, while equal distribution (14%)
289 falls in exons and introns (Fig 3 F, S5 File DMR_CHG tab, DMR_hyper_CHG tab and

290 DMR_hypo_CHG tab).

291  Fig 3. Distribution of CHG DMC and DMR across the different genomic regions. A) Distribution of DMC

292 CHG; B) Distribution of hyper DMC CHG; C) Distribution of hypo DMC CHG; D) Distribution of DMR CHG;
293 E) Distribution of hyper DMR CHG; F) Distribution of hypo DMR CHG; Legend: black = promoter region;

294 pink = exon; green = intron and blue = intergenic regions.

295  For CHH context, there are 15 DMC regions with 7 hypomethylated and 8 hypermethylated,

296 and 56 DMR regions with 17 hypomethylated and 39 hypermethylated. In the case of CHHs
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297  DMCs, the pattern is similar to DMC distribution in CpG context. Out of 15 DMCs, most (60%)
298  fallinintergenic regions, 33% in introns and 7% in promoter regions (Fig 4A). For

299  hypermethylated CHHs, most DMCs fall in intergenic regions (50%), 38% in introns and 12% in
300 exons (Fig 4B). For the hypomethylated CHHs, 71% of the DMCs fall in the intergenic regions
301 and 29% in introns (Fig 4C, S6 File DMC_CHH tab, DMC_hyper_CHH tab and DMC_hypo_CHH
302 tab). The distribution of DMR CHHs follows a similar pattern as DMC, with most falling in

303 intergenic regions (46%), followed by 34% in introns, 14% in exons and 5% in the promoter
304 regions (Fig 4D). Hypomethylated DMRs follow the same pattern as the distribution of all CHH
305 DMRs (most are located in the intergenic regions and the fewest in the promoter region). For
306 hypermethylated DMRs, the same percentage of DMRs fall in the intronic and intergenic

307 regions (38%), followed by exon (16%) and promoter (8%) regions (Fig 4E and F, S6 File

308 DMR_CHH tab, DMR_hyper_CHH tab and DMR_hypo_CHH tab).

309 Fig 4. Distribution of CHH DMC and DMR across the different genomic regions. A) Distribution
310 of DMC CHH; B) Distribution of hyper DMC CHH; C) Distribution of hypo DMC CHH; D)
311  Distribution of DMR CHH; E) Distribution of hyper DMR CHH; F) Distribution of hypo DMR CHH;

312  Legend: black = promoter region; pink = exon; green = intron and blue = intergenic regions.

313  Functional annotation of the individual methylation contexts reveals

314 distinct functional clusters.

315  To identify functionally relevant genes overlapping DMC/DMRs, we performed functional
316  annotation using gProfileR. We only chose genes that had DMC/DMRs in their gene body (i.e.,

317  exons and introns) or promoters, and left out intergenic DMC/DMRs from further analysis.
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318  Functional annotation for DMC CpG (hyper- and hypomethylated cytosines) context produced
319 28 significantly enriched functional clusters, adjusted p-value < 0.1 (Fig 5A, S4 File

320 DMC_CpG_GO tab). The significantly enriched functional terms are all gene ontology (GO)

321  terms with 14 of them pertaining to biological processes (BP), eight to molecular functions (MF)
322  and six to cellular components (CC). The BP GO clusters contain mainly developmental and

323  biological regulation processes, whereas the MF terms pertains to protein binding and

324  electrophysiological activities, while the CC pathways includes membrane and cytoplasm

325 related terms. The hypermethylated DMCs yielded ten significant GO terms, with seven MF

326  terms comprising electrophysiological and protein binding activities while three CC terms are
327 related to membrane and cation channel complex terms. The hypomethylated DMCs yielded 12
328  significant functionally relevant terms, with seven BP terms pertaining to biological regulation
329 and response to wound, two MF terms associated with protein binding and three CC terms

330 related to cytoplasm, cell periphery and Schaffer collateral - CA1 synapse (S4 File DMC_

331  hyper_CpG_GO and DMC_ hypo_ CpG_GO tab).

332  Functional annotation of DMRs for CpG regions revealed nine significant enriched functional
333  terms (Fig 5A, S4 File DMR_CpG_GO tab). Of the nine functional terms, five are CC functions
334 related to synapse and cell periphery, three are BP functions related to central nervous system
335 neuron development, activation of GTPase activity and movement of cell or subcellular

336 component), and one is a MF function associated with calcium ion binding. The

337 hypermethylated DMRs, yielded no significantly enriched terms, whereas the hypomethylated
338 DMRs yielded five terms with three BP functions related to regulation of GTPase activity and

339 chemorepulsion of axons and two MF functions associated with GTPase regulator activity and
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340 nucleoside-triphosphatase regulator activity (54 File DMR_ hyper_CpG_GO and DMR_ hypo_

341 CpG_GO tab).

342  Figure 5. Functional annotation for DMC and DMR for CpG context. A) Representation of gene
343  distribution across functional annotation terms for DMC CpG. The distribution of

344  hypermethylated (red) and hypomethylated (blue) terms for each of the functional terms is

345 represented in each quadrant. B) Representation of gene distribution across functional

346  annotation terms for DMR CpG. The distribution of hypermethylated (red) and hypomethylated
347  (blue) terms for each of the functional terms is represented in each quadrant. Enrichment of
348 each termis reported as a z-score, where z-score is the ratio of difference between number of
349  hyper methylated and hypomethylated DMC genes, and square root of total number of genes

350 for that term.

351  The non-CpG methylation yielded fewer functionally relevant terms, compared to the CpG

352  context. The functional annotation for DMCs in CHG context (both hyper- and hypomethylated
353 combined) yielded no significantly enriched terms. Hypermethylated DMCs yielded two

354  significant functionally enriched terms: one human phenotype (unilateral radial aplasia) and
355 one CC function related to mitochondrial pyruvate dehydrogenase complex. Hypomethylated
356 DMCs yielded only one MF function associated with phosphomevalonate kinase activity (S5 File
357 DMC_CHG_GO tab, DMC_hypo_CHG_GO tab and DMC_hyper_CHG_GO tab). The CHG DMRs
358 vyielded no significantly enriched functional annotation terms. A similar pattern was observed
359  for functional annotation of DMC/DMR for the CHH context. Only one enriched term was

360 observed for DMCs in the CHH context and it was associated with the MF phosphomevalonate

361  kinase activity. Hypermethylated DMCs yielded three BP functions linked with regulation of
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362  clathrin coat assembly and gastric acid secretion. Hypermethylated DMCs yielded one MF term
363 linked to phosphomevalonate kinase activity. Like DMRs in CHG context, none of the DMRs in
364 CHH context yielded any relevant functional terms (S6 File DMC_CHH_GO tab,

365 DMC_hypo_CHH_GO tab, DMC_hyper_CHH_GO tab).

366 Overlap of regions across the three methylation contexts show

367 distinct functional features.

368 To understand the effect of the different methylation contexts (CpG, CHH and CHG), we

369 investigated the DMRs that overlap for the multiple contexts. We identified three genes

370 common between all three contexts, one common between CpG and CHG, five common

371  between CpG and CHH and six common between CHH and CHG (Fig 6A; S7 File). The genes

372 common between the three contexts are ENSOARG00020023439, TPGS2 and SCNN1B. The

373 DMR was in an intergenic region near ENSOARG00020023439 (spindlin-2B homologue in sheep;
374 DMR coordinates: chromosome X- 50,554,001-50,555,000; intergenic near the gene) and was
375 hypomethylated (methylation difference MD = -35.6%, corrected P = 0.007) in MOR compared
376  to FOR in the CpG context, whereas it was hypermethylated in the CHG (MD = 16.36%, P = 0.08)
377 and CHH context (MD = 16.6%, P = 0.05). For TPGS2 (tubulin polyglutamylase complex subunit;
378 chromosome 23:24,612,001-24,613,000), the DMR was in the intron regions and was

379  hypermethylated in MOR compared to FOR, in all the three contexts (CpG: MD = 30.15%, P =
380 0.07; CHG: MD =10.63%, P =0.06; CHH: MD = 11.14%, P = 0.005). A similar pattern was

381 observed for the gene SCNN1B (sodium channel epithelial one subunit beta, chromosome 24:

382  21,728,001- 21,729,000), with the DMR occurring in exon and intron regions, and
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383  hypermethylated for all the three contexts (CpG: MD = 14.4%, P = 0.08; CHG: MD = 15.75%, P =
384  0.03; CHH: MD = 15.86%, P = 0.0001; S7 File). The three genes also have distinct functional

385 features. While spindlin-2B (human homologue of ENSOARG00020023439), is involved in

386  regulation of cell cycle progression [35] and H3K4me3-binding activity [36], TPGS2 codes for a
387  protein component of neuronal polyglutamylase complex [37], whereas SCNN1B is responsible
388  for sodium channel activity and mutation of the gene leads to autosomal disorders like Liddle

389  syndrome [38].

390 Fig 6. DMR genes common between the three contexts. DMR genes common between the
391 three contexts. Venn diagram depicting the genes that are shared among CHH (green),

392  CpG(purple) and CHG (yellow), in the DMC context. There are three genes in common among
393  the 3 contexts, one in common between CpG and CHG, five in common between CpG and CHH,

394  and six in common between CHG and CHH.

395 The DMR for the unannotated gene ENSOARG00020011386 (DMR coordinates: chromosome
396 18:66,982,001-66,983,000) common between CHG and CpG contexts was in the intergenic

397 region near the gene and was hypomethylated in MORs for both the contexts (S7 File). For the
398  six genes common between CHH and CHG, the DMR for four genes (ENSOARG00020000663,
399 EPCAM, ADAMTS15, and PLXND1) were in the intergenic region, whereas for the other two

400 genes (MAGI1, TVP23A) the DMR was in the intronic region. All the genes except one (PLXND1),
401  was hypermethylated in MORs compared to FORs, in the two contexts. Functional annotation
402  of the genes revealed three significantly enriched CC functional terms related to cellular

403  junctions. DMRs for the genes common between CHH and CpG, overlap the gene body with

404  four genes (U6, GSE1, MIR153-2 and AGPAT4), having DMRs in the intron, whereas for CARD11,
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405 DMR overlaps both exon and intron. There were only two significant functional annotation
406 terms, one CC (CBM complex) and one HP (decreased specific antibody response to

407  polysaccharide vaccine) associated with these genes (S6 File).

208 Differential expression analysis reveals significantly expressed genes

409 associated with sexual partner preference.

410 Toinvestigate the relationship between DNA methylation changes and gene expression, RNA-
411  Seq analysis was performed to identify differences in gene expression between the two

412  phenotypes. A total of 15 differentially expressed genes were detected between phenotypes,
413  with only one gene overlapping with the DMR gene lists and none with the DMC gene lists (Fig
414  7A). The gene BFSP1 (log2 FC=1.15, gvalue = 0.002), was hypomethylated in CoG DMR context,

415  with a methylation difference of -11.6% MOR vs. FOR (g value = 0.02; S8 Table or File).

416  Fig 7. Differential gene expression associated with sexual partner preference phenotype. A)
417 Heatmap of differentially expressed genes plotted against animal number and grouped by phenotype,
418 i.e., FOR or MOR. RNAseq analysis identified 15 genes that were differentially expressed between FORs
419 and MORs (adjusted p-value < 0.1, log2 Fold change = absolute (0.58). Heatmap colors are represented
420 by Z-score and annotation of ram phenotype has blue for FORs and red for MORs. Go pathway analysis
421 identified enrichment of three differentially expressed genes involved in hormone activity: prolactin

422 (PRL); MOR vs. FOR log2 fold difference (log2 FD) = -4.5, P = 1.8E-07), cholecystokinin (CCK); log2 FD = -
423 1.2, P = 5.09E-05 and neurotensin (NTS); log2 FD = 1.4, P = 8.40E-06. Differential gene expression was
424  confirmed using qPCR for: (B) PRL (log2 FD =-4.2, P = 1.8E-02), (C) CCK (log2 FD =-1.37, P = 0.13) and (D)

425  NTS (log2 FD = 0.67, P = 0.24). Data (mean * SEM) were analyzed by a Student’s t test.
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426  To explore further the effect of the differentially expressed genes, we performed functional
427  annotation. GO pathway analysis identified enrichment of three genes involved in hormone
428  activity (MF): prolactin (PRL); MOR vs. FOR log2 fold difference (log, FD) = -4.5, Fold change = -
429  0.04, P = 1.8E-07), cholecystokinin (CCK); log, FD = -1.2, Fold change =-0.43, P = 5.09E-05 and
430 neurotensin (NTS); log, FD = 1.4, Fold Change = 2.639016, P = 8.40E-06 (S8 File). To confirm the
431  differences in gene expression between MORs and FORs identified with RNAseq, we performed
432  quantitative real-time PCR. We observed down regulation of PRL in MORs vs. FORs (log, FD = -
433 4.2, Fold Change =-0.054, P = 0.001) and CCK (log, FD =-1.3, Fold Change =-0.406, P = 0.08)
434  and up regulation of NTS (log, FD = 0.67, Fold Change =1.59, P = 0.24) in MORs compared to

435  FORS, which is in accordance with what was seen in the RNA-Seq analysis (Fig 7B and C).

436 Discussion

437  Inthe present study, genome-wide DNA methylation in hypothalami of rams exhibiting

438  exclusive male versus female sexual partner preferences were analyzed for the first time. Out
439  of the three methylation contexts, CpG, CHG and CHH, the most significant differences were
440  observed in the CpG context with 1552 DMC and 805 DMRs being significantly methylated.
441  There were more hypomethylated CpGs in MORs compared to FORs for both the DMC and

442  DMR groups. The distribution in the case for DMCs was ~52% hypomethylated and ~48%

443  hypermethylated, whereas for DMRs the distribution was 60% hypomethylated compared to
444  40% hypermethylated. Functional annotation of the differentially methylated genes that fall in
445  the DMC or DMR regions revealed that most of the significant functional terms were related to

446  developmental processes, regulatory and electrophysiological activities that may be associated
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447  with the many homeostatic functions of the hypothalamus. Functional terms associated with
448  development of sexual characteristics and sex development were also identified but none of

449  them was differentially enriched.

450 CpG is considered the most relevant context because 80% of methylation events in humans

451  occur at CpG sites [42]. However, we also evaluated the CHG and CHH contexts because they
452  have been previously associated with brain development [43]. Moreover, CHH methylation is
453  highly conserved in the brain across vertebrate species and requires active maintenance in

454  postmitotic neurons [44]. We observed a pattern similar to previous studies [42,44], with fewer
455  significantly methylated DMCs and DMRs in the non-CpG (CHH and CHG) context, compared to
456  the CpG context. The DMCs for the CHG context followed the same pattern as for CpG, with

457  more hypomethylated than hypermethylated genes. In contrast, the DMRs for the CHG context,
458  and both DMC and DMR for the CHH contexts, exhibited more hypermethylated than

459  hypomethylated genes. There were only a few significant functional terms in both the

460  contexts, and most of them were related to molecular functions such as phosphomevalonate
461  kinase activity or biological processes pertaining to regulation of clathrin coat assembly and

462  regulation of gastric acid secretion. There were genes in common among all three different

463  contexts. Most of them were associated with molecular functions and cellular component

464  functionalities and none was associated with sexual behaviors, neuroendocrine functions or

465  development.

466  Transcriptomic analysis revealed 15 differentially expressed genes between the two
467  phenotypes with only one overlapping with the methylated list. The gene, Beaded Filament

468  Structural Protein 1 (BFSP1) was hypomethylated in CoG DMR context and overexpressed in
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469  MORs compared to FORs. This gene shows broad expression in a number of tissues including
470  brain, and has been previously associated with cataracts in humans [39-41]. Additionally,

471  functional annotation of the differentially expressed genes reveal one significant term

472  associated with hormone activity (MF) and consisting of three genes PRL, CCK and NTS.

473  Prolactin (PRL) is a hormone produced mainly by the pituitary gland, however, in some species
474  itis synthesized in other tissues including brain [45,46] . PRL is best known for its role in the
475  development of the mammary gland and milk production, but is also involved in the regulation
476  of parental and sexual behaviors in both males and females [47,48]. The neuropeptide

477  cholecystokinin (CCK) has been associated with mate preference in mice. CCK-expressing

478  neurons in the bed nucleus of the stria terminalis of males are activated by the scent of female
479  urine in association with the male’s preference for estrus females [49]. Finally, neurotensin

480  (NTS) neurons in the medial preoptic area were shown to encode attractive male cues and

481  direct behavior toward opposite-sex conspecifics in both sexes to drive social attraction toward
482  a potential mate [50]. Quantitative PCR validations show, that PRL is the only gene that was
483  significantly downregulated in MORs compared to FORs, which agrees with the RNASeq results.
484  Although, neither CCK nor NTS showed significant fold differences with quantitative PCR, they
485  show similar trends with RNA-Seq results, i.e., CCK downregulated and NTS upregulated in

486  MORs compared to FORs.

487  To our knowledge, our study presents the first genome-wide analysis of DNA methylation
488  profiles and gene expression of the adult sheep hypothalamus. We show that the epigenome
489  of the hypothalamus, in the form of DNA methylation pattern, differs substantially between

490 rams with different sexual partner preferences. This tentatively suggests that epigenetic factors
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491  may be important mechanisms involved in sexual attraction. Specifically, we highlight

492  expression differences in genes related to sexual behaviors. These data will be informative in
493  providing a basis for better understanding of the epigenetic regulation of sexual behavior in

494  sheep and help ascertain mechanisms that shape sexual partner preferences. However, further
495  studies will be required to determine whether differences in DNA methylation and consequent
496  gene expression are the cause or consequence of altered behavior. In addition, experiments
497  should be conducted at earlier developmental landmarks are needed to capture the effects

498  more efficiently. Finally, sample size is often a challenge with large animal models such as the
499  sheep. This study is no exception and would benefit from a replication with more animals. Thus,
500 further transcriptomic and epigenetic studies need to be performed with a larger sample size to
501 ascertain the developmental effect that the epigenome/transcriptome has on the expression of

502  sexual partner preferences in rams.
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637 Supporting information

638  S1 Fig. Per base sequence content graph shows discrepancy in starting bases of the sequence
639 in FOR7 compared to other samples. A) Sequence content across all bases for FOR1: Graph
640  showing the representation of the nucleotides across all base position in sample FOR1.

641  Percentage of C (marked in blue) is highest in the first base followed by G (in black) in the next
642  two positions. Similar pattern was observed in all other samples, excepting FOR2. A) Sequence
643  content across all bases for FOR2: Graph showing the representation of the nucleotides across
644  all base position in sample FOR2. Percentage of T (marked in red) is highest in the first three
645  base. Color code Thymine (T) =red, Adenosine = Green, Cytosine = Dark Blue, Guanine = Black.

646  S2 Fig. Workflow of Methylation analysis Pipeline. Quality Check using fastqc and trimgalore
647  was used to trim reads less than 20 Phred score. Alignment and methylation count was

648 calculated using Bismark, followed by methylKit to estimate the differentially methylated

649  regions (DMRs) and differentially methylated cytosines (DMCs). Methylation fold change

650 greater than 10; and q value < 0.01 was used for determining the most significant Genes.

651  Annotation of the DMR and DMC was done using genomation. Functional annotation was

652  performed using gProfiler functional annotation tool; followed by visualization using ViewBS for
653  heatmaps, methylKit for dendrogram and distribution of genomic regions for DMRs and GOPlot
654  for gene ontology visualization.
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655  S3 Fig. Quality of the sample reveals, Sample 2810 has more reads than the other samples. A)
656  Raw read counts from fastq: The plot of the sequence counts shows that for the trimmed

657 sample 2810, the number of reads is greater than 175 million reads, whereas for the other

658 samples has 30 to 75 million reads. We can also observe that the number of duplicate reads
659  (black) in this sample is also greater than the other samples. C) Align read counts from STAR:
660  Aligned read counts from STAR show that sample 2810 has more unmapped reads (red), and
661 least uniquely mapped reads (dark blue) than any of the other samples.

662  S4 Fig. Hierarchical clustering of sample methylation patterns across the 3 contexts. A) CpG
663  hierarchical Clustering: Hierarchical clustering of the methylation pattern of replicates of all the
664  samples, in CpG context) CHG hierarchical Clustering: Hierarchical clustering of the methylation
665  pattern of replicates of all the samples, in CHG context. C) CpG hierarchical Clustering:

666  Hierarchical clustering of the methylation pattern of replicates of all the samples, in CHH

667 context.

668 S5 Fig. Methylation pattern of Chromosome 1 and chromosome 2 in CG, CHG and CHH

669  context: Average methylation levels of the different context between the 2 different samples
670 MOR (red) and FOR (blue). Y-axis average methylation levels, x-axis chromosome coordinates in
671  mega base (Mb).

672  S6 Fig. Methylation pattern of Chromosome 3 and chromosome 4 in CG, CHG and CHH

673  context: Average methylation levels of the different context between the 2 different samples
674  MOR (red) and FOR (blue). Y-axis average methylation levels, x-axis chromosome coordinates in
675 mega base (Mb).

676  S7 Fig. Methylation pattern of Chromosome 5 and chromosome 6 in CG, CHG and CHH

677  context: Average methylation levels of the different context between the 2 different samples
678 MOR (red) and FOR (blue). Y-axis average methylation levels, x-axis chromosome coordinates in
679  mega base (Mb).

680 S8 Fig. Methylation pattern of Chromosome 7 and chromosome 8 in CG, CHG and CHH

681  context: Average methylation levels of the different context between the 2 different samples
682  MOR (red) and FOR (blue). Y-axis average methylation levels, x-axis chromosome coordinates in
683 mega base (Mb).

684  S9 Fig. Methylation pattern of Chromosome 9 and chromosome 10 in CG, CHG and CHH

685  context: Average methylation levels of the different context between the 2 different samples
686  MOR (red) and FOR (blue). Y-axis average methylation levels, x-axis chromosome coordinates in
687 mega base (Mb).

688  S10 Fig. Methylation pattern of Chromosome 11 and chromosome 12 in CG, CHG and CHH
689  context: Average methylation levels of the different context between the 2 different samples
690 MOR (red) and FOR (blue). Y-axis average methylation levels, x-axis chromosome coordinates in
691 mega base (Mb).
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692  S11 Fig. Methylation pattern of Chromosome 13 and chromosome 14 in CG, CHG and CHH
693  context: Average methylation levels of the different context between the 2 different samples
694  MOR (red) and FOR (blue). Y-axis average methylation levels, x-axis chromosome coordinates in
695 mega base (Mb).

696  S12 Fig. Methylation pattern of Chromosome 15 and chromosome 16 in CG, CHG and CHH
697  context: Average methylation levels of the different context between the 2 different samples
698 MOR (red) and FOR (blue). Y-axis average methylation levels, x-axis chromosome coordinates in
699  mega base (Mb).

700  S13 Fig. Methylation pattern of Chromosome 17 and chromosome 18 in CG, CHG and CHH
701  context: Average methylation levels of the different context between the 2 different samples
702  MOR (red) and FOR (blue). Y-axis average methylation levels, x-axis chromosome coordinates in
703  mega base (Mb).

704  S14 Fig. Methylation pattern of Chromosome 19 and chromosome 20 in CG, CHG and CHH
705  context: Average methylation levels of the different context between the 2 different samples
706  MOR (red) and FOR (blue). Y-axis average methylation levels, x-axis chromosome coordinates in
707  mega base (Mb).

708  S15 Fig. Methylation pattern of Chromosome 21 and chromosome 22 in CG, CHG and CHH
709  context: Average methylation levels of the different context between the 2 different samples
710 MOR (red) and FOR (blue). Y-axis average methylation levels, x-axis chromosome coordinates in
711 mega base (Mb).

712 S16 Fig. Methylation pattern of Chromosome 23 and chromosome 24 in CG, CHG and CHH
713  context: Average methylation levels of the different context between the 2 different samples
714  MOR (red) and FOR (blue). Y-axis average methylation levels, x-axis chromosome coordinates in
715  mega base (Mb).

716  S17 Fig. Methylation pattern of Chromosome 25 and chromosome 26 in CG, CHG and CHH
717  context: Average methylation levels of the different context between the 2 different samples
718  MOR (red) and FOR (blue). Y-axis average methylation levels, x-axis chromosome coordinates in
719  mega base (Mb).

720  S18 Fig. Methylation pattern of Chromosome XX in CG, CHG and CHH context: Average
721  methylation levels of the different context between the 2 different samples MOR (red) and FOR
722 (blue). Y-axis average methylation levels, x-axis chromosome coordinates in mega base (Mb).

723 S1 File. Results of quality trimming step by TrimGalore. (XLXS)
724  S2 File. Results from the alighment and methylation sites determination steps. (XLXS)
725  S3 File. Oligonucleotide primers used for real-time polymerase chain reaction. (XLXS)

726  SA4 File. Differentially methylation and Functional annotation of CpG context. (XLXS)
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727 S5 File. Differentially methylation and Functional annotation of CHG context. (XLXS)
728  S6 File. Differentially methylation and Functional annotation of CHH context. (XLXS)
729  S7 File. DMR Genes Overlapping between CpG, CHG and CHH context. (XLSX)

730 S8 File Differentially expressed genes between MORs and FORs. (XLSX)
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