

1 **Differential UBE2H-CTLH E2-E3 ubiquitylation modules regulate erythroid maturation**

2
3 Dawafuti Sherpa^{1,a}, Judith Müller^{1,a}, Özge Karayel^{2,a}, Jakub Chrstowicz¹, Peng Xu^{3,4}, Karthik
4 V. Gottemukkala¹, Christine Baumann¹, Annette Gross^{1,7}, Oliver Czarnecki^{1,8}, Wei Zhang^{5,6,9},
5 Jun Gu^{5,6}, Johan Nilvebrant^{5,6}, Mitchell J. Weiss⁴, Sachdev S. Sidhu^{5,6}, Peter J. Murray⁷,
6 Matthias Mann², Brenda A. Schulman¹, and Arno F. Alpi^{1,b}

7
8 ¹ Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry,
9 Martinsried, Germany.

10 ² Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry,
11 Martinsried, Germany.

12 ³ Hematology Center, Cyrus Tang Medical Institute, Soochow University, Suzhou, China.

13 ⁴ Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN, USA.

14 ⁵ Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto,
15 Canada.

16 ⁶ Department of Molecular Genetics, University of Toronto, Toronto, Canada.

17 ⁷ Department of Immunoregulation, Max Planck Institute of Biochemistry, Martinsried,
18 Germany.

19 ⁸ Present address: Institute of Diabetes and Regeneration Research, Helmholtz Centre Munich,
20 Neuherberg, Germany.

21 ⁹ Present address: Department of Molecular and Cellular Biology, College of Biological
22 Sciences, University of Guelph, Guelph, Canada.

23
24 ^a These authors contributed equally

25 ^b Corresponding author

26
27 Correspondence: aalpi@biochem.mpg.de (AFA)

28
29 **Running title:** UBE2H-CTLH modules in erythropoiesis

30
31

32 **Abstract**

33 The development of haematopoietic stem cells into mature erythrocytes – erythropoiesis – is a
34 controlled process characterized by cellular reorganisation and drastic reshaping of the
35 proteome landscape. Failure of ordered erythropoiesis is associated with anaemias and
36 haematological malignancies. Although the ubiquitin (UB) system is a known crucial post-
37 translational regulator in erythropoiesis, how the erythrocyte is reshaped by the UB system is
38 poorly understood. By measuring the proteomic landscape of *in vitro* human erythropoiesis
39 models, we found dynamic differential expression of subunits of the CTLH E3 ubiquitin ligase
40 complex that formed distinct maturation stage-dependent assemblies of structurally
41 homologous RANBP9- and RANBP10-CTLH complexes. Moreover, protein abundance of
42 CTLH's cognate E2-conjugating enzyme UBE2H increased during terminal differentiation,
43 which depended on catalytically active CTLH E3 complexes. CRISPR-Cas9 mediated
44 inactivation of all CTLH E3 assemblies by targeting the catalytic subunit *MAEA*, or *UBE2H*,
45 triggered spontaneous and accelerated maturation of erythroid progenitor cells including
46 increased heme and haemoglobin synthesis. Thus, the orderly progression of human
47 erythropoiesis is controlled by the assembly of distinct UBE2H-CTLH modules functioning at
48 different developmental stages.

49

50 INTRODUCTION

51
52 Cellular differentiation in multicellular organisms is often accompanied by programmed
53 proteome reshaping and cellular reorganisation to accomplish cell-type specific functions. For
54 instance, during myogenesis proliferative myoblasts undergo a differentiation programme with
55 induction of specialised cytoskeletal proteins to form myofibrils in terminally differentiated
56 myofibers (Chal & Pourquie, 2017; Le Bihan *et al*, 2015), whereas adipose stem cells induce
57 differentiation cues controlling expression of proteins involved in lipid storage and lipid
58 synthesis (Tsuji *et al*, 2014). Recently, global temporal proteomic analysis during neurogenesis
59 of human embryonic stem cells revealed large-scale proteome and organelle remodelling via
60 selective autophagy (Ordureau *et al*, 2021). A striking example of proteome remodelling is
61 mammalian erythropoiesis, which is required for the generation of disc-shaped enucleated
62 erythrocytes, whose unique topology dictates function of efficient red blood cell movement
63 through the vasculature (**Figure 1A**). After several specialized cell divisions, erythroid
64 progenitors progress through morphologically distinct differentiation stages known as pro-
65 erythroblasts (ProE), early and late basophilic erythroblasts (EBaso and LBaso, respectively),
66 polychromatic erythroblasts (Poly), and orthochromatic erythroblasts (Ortho), a process
67 associated with erythroid-specific gene expression (Cantor & Orkin, 2002; Cross & Enver,
68 1997; Perkins *et al*, 1995; Pevny *et al*, 1991; Shivdasani *et al*, 1995), reduction of cell volume
69 (Dolznig *et al*, 1995), chromatin condensation (Zhao *et al*, 2016), and haemoglobinization.
70 Ejection of the nucleus at the reticulocyte stage (Keerthivasan *et al*, 2011) is followed by the
71 elimination of all remaining organelles such as Golgi, mitochondria, endoplasmic reticulum,
72 peroxisomes, and ribosomes (Moras *et al*, 2017; Nguyen *et al*, 2017). The progression of
73 erythroid maturation must be tightly controlled, although the molecular regulation of this
74 process is not fully understood.

75
76 Our current knowledge of protein dynamics during erythropoiesis has been deduced largely
77 from epigenetic and transcriptomic studies (reviewed in (An *et al*, 2015)), which used *in vitro*
78 differentiation systems where erythroid progenitors, such as primary multipotent CD34⁺
79 haematopoietic stem and progenitor cells (HSPC) or immortalized CD34⁺-derived lines (known
80 as HUDEP2 and BEL-A) (Kurita *et al*, 2013; Trakarnsanga *et al*, 2017), possess an autonomous
81 differentiation programme with a capacity to complete terminal differentiation when cultured
82 with cytokines and other factors (Seo *et al*, 2019). However, the dynamics of mRNA expression
83 during erythropoiesis does not accurately predict protein expression (Gautier *et al*, 2016). We
84 recently mapped the erythroid proteome landscape of defined precursors generated by *in vitro*
85 differentiation of normal donor CD34⁺ cells (Karayel *et al*, 2020). Our findings provided insight
86 into cellular remodelling at protein resolution and indicated high level of post-transcriptional
87 regulation.

88
89 Ubiquitin (UB)-mediated protein degradation pathways are likely to play prominent roles in
90 post-transcriptional regulation of erythropoiesis. Components of the E3 ubiquitin ligation
91 machinery and deubiquitylases have been implicated in regulating protein stability and turnover
92 in erythroid cell proliferation and maturation (Liang *et al*, 2019; Maetens *et al*, 2007; Mancias
93 *et al*, 2015; Minella *et al*, 2008; Randle *et al*, 2015; Thom *et al*, 2014; Xu *et al*, 2020). The E2
94 enzyme UBE2O is greatly upregulated in reticulocytes and required for clearing ribosomes

95 (Nguyen *et al.*, 2017). Recently, a functional role of the multi-protein *C*-terminal to *LisH*
96 (CTLH) E3 ligase complex was implicated in mammalian erythropoiesis. The CTLH subunits
97 MAEA and WDR26 have been shown to be expressed in a differentiation stage-dependent
98 manner and be implicated in maintaining erythroblastic islands in the bone marrow and
99 regulating nuclear condensation in developing erythroblasts, respectively (Wei *et al*, 2019;
100 Zhen *et al*, 2020). The tight correlation between protein abundance and functionality in
101 differentiation suggested that large scale proteome profiling is a potential way to identify
102 proteins that are important for the functional specialization of erythroid cells. Here, we profiled
103 protein abundance of E2-E3 modules in erythroid differentiation uncovering a dynamic
104 regulation of CTLH E3 ligase subunits and CTLH's cognate E2 conjugating enzyme UBE2H.
105 Interestingly, UBE2H amounts are dependent on active CTLH E3, suggesting a coupled E2/E3
106 regulation. We further show that CTLH complex compositions are remodelled and discrete
107 complex assemblies are formed in a maturation stage-dependent manner. Our study indicates
108 that unique UBE2H-CTLH assemblies are organized and co-regulated in functional E2-E3
109 modules and are required for the orderly progression of terminal erythroid maturation.
110

111 RESULTS

112

113 **Stage-dependent expression of UBE2H and CTLH complex subunits in erythropoiesis**
114 Reshaping of the erythropoietic proteome is thought to be regulated in part by the transient
115 presence of stage-specific E2-E3 ubiquitin targeting machineries. To identify potential E2-E3
116 components, we applied a system-wide approach and established differentiation stage-specific
117 proteomes of human erythropoiesis from two *in vitro* erythropoiesis cell model systems: CD34⁺
118 and HUDEP2 cells (**Figure 1 supplemental figure 1A, 1B**). We recently described the stage-
119 specific proteomes from *in vitro* differentiated CD34⁺ cells (Karayel *et al.*, 2020). HUDEP2
120 cells proliferate in immature progenitor state and can be induced to undergo terminal erythroid
121 differentiation by modulating cell culture conditions (**Figure 1 supplemental figure 1B**)
122 (Kurita *et al.*, 2013). In this study, HUDEP2 cells were shifted to differentiation conditions and
123 semi-synchronous bulk cell populations were obtained at different time points (day 0, 3, 6, 9,
124 and 12) corresponding to maturation stages spanning from proerythroblast to orthochromatic
125 stages. Each population was processed in three biological replicates, and their proteomes were
126 acquired by measuring single 100-minute gradient runs for each sample/replicate in data-
127 independent acquisition (DIA) mode (Aebersold & Mann, 2016; Gillet *et al*, 2012; Karayel *et*
128 *al.*, 2020; Ludwig *et al*, 2018). We measured HUDEP2 proteomes by DIA, as it provides
129 sensitive and in-depth stage-specific proteome analysis of human erythropoiesis by maintaining
130 a broad dynamic range of peptide detection in the presence of very abundant species, such as
131 haemoglobin peptides, that accumulate to very high levels at late erythroid maturation stages
132 (Karayel *et al.*, 2020). DIA raw files were searched with direct DIA (dDIA), yielding 6,727
133 unique proteins and quantitative reproducibility with Pearson correlation coefficients higher
134 than 0.9 between the biological replicates of all populations (**Figure 1 supplemental figure**
135 **1C, 1D and supplemental table 1**). When we clustered the 2,771 differentially expressed
136 proteins (ANOVA, FDR<0.01 and S0=0.1) we observed dynamic changes of the proteome
137 between early (day 0) and late (day 12) time points across erythroid differentiation (**Figure 1**
138 **supplemental figure 1E**). The majority of proteins cluster into two co-expression profiles:

139 continuous decrease or increase of protein levels that ultimately resulted in a reshaped
140 erythrocyte-specific proteome.

141
142 We next examined our proteome data for all (~40) annotated human E2 conjugating enzymes.
143 The levels of most E2s detected in HUDEP2 cells varied across maturation, with a cluster of
144 six enzymes progressively accumulating until day 12 (**Figure 1B**). Included among them was
145 UBE2O, which mediates ribosomal clearance in reticulocytes (Nguyen *et al.*, 2017). We
146 expanded the analysis to stage-specific proteomes from *in vitro* differentiated CD34⁺ cells
147 (**Figure 1C**) (Karayel *et al.*, 2020), which revealed a similar cluster of E2s upregulated at poly-
148 and orthochromatic stages. Notably, UBE2B, UBE2O, CDC34 (aka UBE2R1), and UBE2H
149 enzymes exhibited similar protein abundance profiles during HUDEP2 and CD34⁺ maturation
150 suggesting important roles for these E2s during terminal erythropoiesis. CDC34, the cognate
151 E2 for cullin-1 RING ligase (CRL1) complexes, is essential for cell cycle regulation (Kleiger
152 *et al.*, 2009; Skaar & Pagano, 2009). UBE2B (aka RAD6B) regulates DNA repair pathways,
153 histone modifications, and proteasomal degradation (Kim *et al.*, 2009; Varshavsky, 1996;
154 Watanabe *et al.*, 2004). We focused on UBE2H because it is transcriptionally regulated by the
155 essential erythroid nuclear protein TAL1 and it accumulates to high levels during terminal
156 maturation (Lausen *et al.*, 2010; Wefes *et al.*, 1995). Immunoblotting confirmed UBE2H protein
157 upregulation during maturation of HUDEP2 and CD34⁺ cells, which was paralleling induction
158 of the erythroid membrane protein CD235a (Glycophorin A, GYPA) and haemoglobin
159 expression (**Figure 1D and 1E**).
160

161 The stage-dependent regulation of UBE2H suggested that a cognate E3 partnering with UBE2H
162 would have a similar expression profile during erythropoiesis. *In vitro* ubiquitylation reactions
163 indicate that UBE2H is the preferred E2 of the CTLH E3 complex (Lampert *et al.*, 2018; Sherpa
164 *et al.*, 2021). The multi-protein CTLH complex consists of at least RANBP9 and/or RANBP10
165 (orthologous subunit of yeast Gid1), TWA1, ARMC8, WDR26 and/or MKLN1 (orthologous
166 subunit of yeast Gid7), the catalytic module – MAEA and RMND5a that mediate ubiquitin
167 transfer, and the substrate receptor GID4 (Kobayashi *et al.*, 2007; Lampert *et al.*, 2018;
168 Mohamed *et al.*, 2021; Sherpa *et al.*, 2021; Umeda *et al.*, 2003). Our analyses of the stage-
169 dependent proteomes of differentiated HUDEP2 (**Figure 1F**) and CD34⁺ cells (**Figure 1G**)
170 revealed that protein levels of most annotated CTLH subunits increased during erythroid
171 maturation, in parallel with UBE2H. Interestingly, the homologues RANBP9 and RANBP10
172 showed an inverse expression pattern: RANBP9 levels were high at progenitor stages and
173 dropped at later stages, whereas RANBP10 levels exhibited the opposite pattern. Taken
174 together, analyses of differentiation-resolved proteomes revealed stage-dependent expression
175 of CTLH subunits and UBE2H suggesting a dynamic assembly of distinct CTLH complexes
176 linked to erythrocyte development.
177

178 **RANBP9 and RANBP10 assemble into distinct CTLH E3 complexes**

179 To monitor CTLH complex assemblies, we next fractionated whole cell lysates from non-
180 differentiated (day 0) or differentiated (day 6) HUDEP2 cells on 5-40% sucrose density
181 gradients and detected CTLH subunits by immunoblot analysis. All CTLH subunits sedimented
182 at ≥660 kDa, apparently corresponding to the supramolecular CTLH assemblies we previously
183 described (**Figure 2A**) (Sherpa *et al.*, 2021). However, RANBP9 amounts in the CTLH fraction

were higher at day 0 compared to day 6, while RANBP10 amounts had the opposite pattern, suggesting stage-specific modulation of CTLH complex composition and/or stoichiometry during differentiation. To further test this, we immunoprecipitated (IP) CTLH complexes from day 0 and day 6 lysates using an anti-ARMC8-specific nanobody. This resulted in coprecipitation of predominantly RANBP9 from day 0 cell lysates, whereas RANBP10 was found in elevated levels in lysates from day 6 differentiated HUDEP2 cells (**Figure 2B**). Next, we asked whether RANBP9 and RANBP10 can independently form CTLH complexes. Using CRISPR-Cas9 editing, we deleted either *RANBP9* or *RANBP10* in HUDEP2 cells (**Figure 2C**). Notably, we observed elevated RANBP10 amounts in *RANBP9*^{-/-} cells, and slightly increased RANBP9 amounts in *RANBP10*^{-/-} cells, suggesting a possible reciprocal compensatory effect for the loss of either homologue. Whole cell lysates of parental and KO lines were analysed using sucrose density gradients and immunoblot analysis to assess the sedimentation of RANBP9 and RANBP10 (**Figure 2D**). The sedimentation of the supramolecular CTLH complex containing RANBP9 was similar in parental and *RANBP10*^{-/-} cells. Likewise, RANBP10-CTLH assemblies sedimented similarly in parental and *RANBP9*^{-/-} cells. These data indicate that RANBP9 and RANBP10 assemble in distinct CTLH E3 supramolecular complexes.

201

202 **RANBP9 and RANBP10 form homologous CTLH E3 complexes that cooperate with** 203 **UBE2H to promote ubiquitin transfer**

204 Recent cryo-EM maps of human CTLH sub- and supramolecular complexes revealed that
205 RANBP9 supports complex assembly (Sherpa *et al.*, 2021). Beyond an N terminal extension
206 unique to RANBP9, RANBP9 and RANBP10 have a common domain architecture (**Figure 3**
207 **supplemental figure 2A**). Hence, we reasoned that RANBP10 may form similar parallel
208 interactions with other CTLH subunits. To test this, we expressed and purified a core CTLH
209 subcomplex, containing a scaffold module (RANBP10, TWA1, α -ARMC8), the catalytic
210 module (MAEA and RMND5a), and the substrate receptor GID4 (named thereafter RANBP10-
211 CTLH^{SR4}). In parallel, we generated the previously described homologous complex where
212 RANBP9 replaced RANBP10 (RANBP9-CTLH^{SR4}) (Mohamed *et al.*, 2021; Sherpa *et al.*,
213 2021). The two complexes eluted at similar range in size exclusion chromatography (SEC),
214 indicating they had comparable subunit stoichiometry (**Figure 3A**). Cryo-EM analysis of the
215 RANBP10-CTLH^{SR4} peak fraction yielded a reconstitution at ~12 Å resolution (**Figure 3B**).
216 Comparison to the previously determined RANBP9-CTLH^{SR4} map (EMDB: EMD-12537)
217 revealed an overall structural similarity and the clamp-like assembly of substrate receptor
218 scaffolding (SRS) and catalytic (Cat) modules conserved in related yeast GID complexes (Qiao
219 *et al.*, 2020; Sherpa *et al.*, 2021) (**Figure 3 supplemental figure 1**). Furthermore, atomic
220 coordinates of α -ARMC8, hGID4 and TWA1 derived from the RANBP9-CTLH^{SR4} structure
221 (PDB: 7NSC), along with crystal structure of RANBP10-SPRY domain (PDB: 5JIA) fit into
222 the 7.3 Å resolution focused refined map of RANBP10-CTLH^{SR4} map (**Figure 3C**). To
223 accurately position RANBP10, the crystal structure of the RANBP10's SPRY domain (PDB:
224 5JIA) was superimposed to the structure of the recently published RANBP9-CTLH^{SR4} (**Figure**
225 **3 supplemental figure 2A and B**). Thus, at an overall level, the RANBP10-CTLH^{SR4} and
226 RANBP9-CTLH^{SR4} complexes are structurally homologous.

227

228 We next asked whether the structural similarity of RANBP10-CTLH^{SR4} and RANBP9-
229 CTLH^{SR4} complexes extended to the mechanism of ubiquitin transfer activity. First, we
230 assessed the physical association between UBE2H and CTLH complex subunits in HUDEP2
231 or erythroleukemia K562 cells using anti-UBE2H IPs (**Figure 3D, 3E**) (Andersson *et al*, 1979).
232 Endogenous UBE2H specifically co-precipitated the Cat-module subunit MAEA in whole cell
233 lysates from both cell lines, indicating that UBE2H can form a reasonably stable E2-E3 enzyme
234 module. Next, we tested ubiquitin transfer activity by *in vitro* ubiquitylation assays with a
235 fluorescently labelled model peptide substrate (Sherpa *et al*, 2021). This model substrate
236 consisted of an N-terminal PGLW sequence, that binds human GID4 (Dong *et al*, 2020; Dong
237 *et al*, 2018), and a 30 residue linker sequence with the target lysine (K) towards the C-terminus
238 at position 23 (PGLW[X]₃₀K23) (**Figure 3F**). In a reaction with UBE2H, both RANBP9-CTLH
239 and RANBP10-CTLH promoted polyubiquitylation of the model substrate peptide in a GID4-
240 dependent manner, although RANBP10-CTLH was less active under these conditions than the
241 homologous RANBP9-CTLH complex. Cumulatively, biochemical and structural data
242 revealed that RANBP9 and RANBP10 can assemble in distinct homologous CTLH complexes
243 capable of activating UBE2H-dependent ubiquitin transfer activity. More broadly, CTLH may
244 represent a larger family of E3 ligase complexes generated by assembly of different variable
245 members with invariable core scaffold subunits.

246

247 **Catalytically inactive CTLH E3 complexes and UBE2H deficiency cause deregulated** 248 **proteome dynamics**

249 To investigate potential functional roles of CTLH E3 complex assemblies and UBE2H in
250 erythroid cells, we edited HUDEP2 cell lines with CRISPR-Cas9 to disrupt either *UBE2H* or
251 *MAEA* (**Figure 4 supplemental figure 1A and 1B**). Presumably, deletion of *MAEA*, the
252 enzymatic subunit in all CTLH E3 assemblies, will result in a complete loss of all CTLH
253 complex E3 ligase activities. As terminal erythropoiesis is characterized by a stage-dependent
254 proteome remodelling (**Figure 1 supplemental figure 1**) (Gautier *et al*, 2016; Karayel *et al*,
255 2020), we first assessed how UBE2H and MAEA deficiency might alter the global proteome.
256 Global proteomic analysis of undifferentiated parental, *UBE2H*^{-/-} (clone 13), and *MAEA*^{-/-}
257 (clone 3-1) HUDEP2 cells identified 6,210 unique proteins in total (**Figure 1 supplemental**
258 **figure 1C and 1D and supplemental table 2**) (Student t-test with FDR<0.05 and S0=0.1). We
259 found that 18% (1,170) and 6.5% (404) of all proteins were significantly changed in *UBE2H*^{-/-}
260 vs. parental and *MAEA*^{-/-} vs. parental comparisons, respectively (Students t-test with FDR<0.05
261 and S0=0.1) (**Figure 4A and 4B**). Notably, 271 of these proteins were differentially changed in
262 both, a MAEA- and UBE2H-dependent manner (**Figure 4C**). These included several erythroid-
263 specific proteins including haemoglobin subunits (HBD, HBG2, and HBM) and Band3
264 (SLC4A1) in both comparisons indicating an erythroid-typical remodelled proteome (**Figure**
265 **4D**). In Gene Ontology (GO) enrichment analysis proteins associated with annotations related
266 to erythropoiesis such as ‘haemoglobin complex’ and ‘oxygen binding’ were significantly
267 enriched in both *MAEA*^{-/-} and *UBE2H*^{-/-} cells compared to parental cells (**Figure 4E**). Next, we
268 turned to network analysis of physically interacting or functionally associated proteins that were
269 significantly up-regulated in both *MAEA*^{-/-} and *UBE2H*^{-/-} cells compared to parental.
270 Overrepresentation analysis revealed significant enrichment of protein networks involved in
271 terms including ‘haemoglobin-haptoglobin complex’ and ‘regulation of erythrocyte
272 differentiation’ (Benjamini Hochberg, FDR 5%) (**Figure 5F**). Consistent with accelerated

273 erythroid maturation, we detected a 3-6-fold higher levels of cellular heme compared to parental
274 cells in lysates of *MAEA*^{-/-} and *UBE2H*^{-/-} cells (**Figure 4G**). To test the temporal nature of the
275 proteome changes, we obtained and compared differentiation time-specific proteomes (day 0
276 to day 12) of parental and *MAEA*^{-/-} (clone 3-1) cells (**Figure 1 supplemental figure 1C and**
277 **Figure 4 supplemental figure 2A and 2B**). The five distinct temporal stages of erythroid
278 differentiation clustered separately by principal component analysis (PCA) with high
279 consistencies between the three biological replicates (**Figure 4H**). Remarkably, parental versus
280 *MAEA*^{-/-} clusters progressively diverged up to differentiation day 6 and remained separated to
281 day 12, suggesting a *MAEA*-dependent proteome remodelling at early stages of differentiation
282 (**Figure 5H**). PCA analysis based on 28 erythroid-specific marker proteins (**Figure 4I**) revealed
283 that the separation of parental versus *MAEA*^{-/-} cluster was pronounced even at early
284 differentiation time points day 0 (**Figure 4J**). In fact, the *MAEA*^{-/-} cluster at day 0 shows a closer
285 correlation with the parental cluster at day 3 than day 0. Together, *UBE2H*^{-/-} and *MAEA*^{-/-} cells
286 are characterized by enhanced proteome-wide changes towards an erythroid-specific proteome
287 signature.

288

289 **MAEA and UBE2H deficiency cause aberrant erythroid differentiation**

290 The deregulated proteome landscapes of *UBE2H*^{-/-} and *MAEA*^{-/-} cells indicate a functional role
291 of UBE2H-CTLH modules in the initiation of erythroid differentiation of progenitors and/or
292 the progression through erythropoiesis. First, we used K562 cells as a surrogate erythroid cell
293 model that expresses erythroid markers, including CD235a/GYPA and haemoglobins upon
294 treatment with the pan histone deacetylase inhibitor Na-butyrate (NaB) (Andersson *et al.*,
295 1979). We generated K562 *UBE2H*^{-/-} and *MAEA*^{-/-} cells by CRISPR-Cas9 editing (**Figure 5A**
296 and **Figure 4 supplemental figure 1B**). Parental and knock out cell lines were either mock or
297 NaB-treated and erythroid differentiation was assessed by CD235a/GYPA surface expression
298 via flow cytometry. At baseline cell conditions (mock) *MAEA*^{-/-} and *UBE2H*^{-/-} lines showed
299 increased CD235a/GYPA positive (CD235a⁺) cells comparable to NaB-treated parental cells
300 (**Figure 5B** and **Figure 5 supplemental figure 1C**). Furthermore, immunoblot analysis
301 showed increased CD235a/GYPA expression in whole cell lysates of *MAEA*^{-/-} and *UBE2H*^{-/-}
302 lines treated at low dose of NaB suggesting that *MAEA* and *UBE2H* deficiency might promote
303 erythroid differentiation (**Figure 5C**). To further substantiate the observation, we expanded the
304 analysis to *MAEA*- and *UBE2H*-deficient HUDEP2 cell lines. Flow cytometry analysis revealed
305 an elevated proportion of CD235⁺ cells in clones lacking *MAEA* (cl3-1 and cl23) or *UBE2H*
306 (cl13 and cl16), indicating spontaneous erythroid maturation in expansion medium (**Figure 5E**
307 and **5F**). Next, we induced erythroid differentiation for three days and evaluated erythroid
308 markers CD49d (Integrin alpha 4) and Band3 (SLC4A1). Each *MAEA*^{-/-} and *UBE2H*^{-/-} clone
309 showed higher CD49d⁺/Band3⁺ cell populations compared to parental HUDEP2, indicating
310 either precocious or accelerated maturation (**Figure 5E and 5G**). To determine whether *MAEA*^{-/-}
311 and *UBE2H*^{-/-} cells mature faster compared to controls, we sorted Band3⁺ cells to generate
312 “synchronous” non-differentiated populations prior to differentiation. CD49d⁺/Band3⁺
313 measurement after day 4 confirmed an accelerated maturation in the absence of UBE2H or
314 *MAEA* (**Figure 5H and 5I**). Taken together, the data suggest that UBE2H and *MAEA*
315 deficiencies share the common defects of spontaneous erythroid differentiation of cells while
316 propagated in expansion media and accelerated initial stages of erythroid maturation.

317

318 **Cellular abundance of UBE2H is coupled to functional MAEA**

319 Evidence for a regulatory relationship between UBE2H and MAEA during erythropoiesis was
320 provided by an unexpected observation that UBE2H protein levels are dependent on MAEA.
321 Proteomics and immunoblot analyses showed consistently lower UBE2H levels in K562 and
322 HUDEP2 *MAEA*^{-/-} cell lines (**Figure 4D and Figure 5A and 5D**). Moreover, differentiating
323 *MAEA*^{-/-} cells failed to express increased UBE2H protein levels at terminal maturation stages
324 (day 9 and 12) (**Figure 6A**). UBE2H mRNA levels, however, were not significantly different
325 between parental and *MAEA*^{-/-} cells at day 9 of differentiation (**Figure 6B**), indicating that
326 transcriptional regulation of UBE2H is not affected. We next expanded our analysis to the K562
327 cells (**Figure 6C**). Parental and knock-out K562 cell lines were either treated with NaB to induce
328 erythroid-like or with 12-O-Tetradodecanoyl-phorbol-13 acetate (TPA, chemical activator of
329 PKC kinase) to induce megakaryocyte-like differentiation (Tabilio *et al.*, 1983). Both, NaB and
330 TPA efficiently induced UBE2H protein levels in parental cells suggesting that UBE2H
331 regulation is not restricted to erythroid differentiation (**Figure 6D and 6E**). In contrast, *MAEA*^{-/-}
332 cells had constitutively less and only marginally induced UBE2H protein levels in response
333 to NaB or TPA. Ectopic expression of Myc-tagged MAEA in *MAEA*^{-/-} cells rescued UBE2H
334 protein levels, confirming that the presence of MAEA is critical for maintaining UBE2H protein
335 levels (**Figure 6 supplemental figure 1A**). Notably, cells either lacking CTLH's substrate
336 receptor GID4 or subunits of the supramolecular module, WDR26 and MKLN1, showed
337 UBE2H abundance and regulation similar to parental cells (**Figure 6D, 6E, and Figure 6**
338 **supplemental figure 1D**). The assessment of UBE2H mRNA levels revealed no significant
339 difference of NaB-induced UBE2H transcription between parental and *MAEA*^{-/-} cells (**Figure**
340 **6F**).

341

342 To further investigate the mechanism that underlies regulation of UBE2H protein level and
343 stability we first asked whether UBE2H is targeted by proteasomal degradation. K562 parental
344 and *MAEA*^{-/-} cells were mock or NaB-treated followed by a time course treatment with
345 proteasomal inhibitor (MG132). Whereas MG132 treatment for 2 hours had only a modest
346 effect on UBE2H levels, 6-24 hours exposure resulted in an increasing stabilisation of UBE2H
347 in *MAEA*^{-/-} cells (lane 6 and 8) matching levels of parental cells (lane 2 and 4) (**Figure 6G and**
348 **6H**). Notably, NaB-induced UBE2H levels are comparable to 24 hours MG132 treated parental
349 cells. Second, we asked whether MAEA activity is required for UBE2H abundance and
350 stability. To this end, we studied the MAEA Y394A mutation (MAEA-Y394A) that abolishes
351 activity of the Cat-module *in vitro* (Sherpa *et al.*, 2021), but maintains binding capacity to
352 UBE2H in immune precipitation (IP) experiments (**Figure 6 supplemental figure 1B and 1C**).
353 Ectopic expression of Flag-tagged MAEA-Y394A in *MAEA*^{-/-} cells revealed no rescued
354 UBE2H protein levels, whereas wild type MAEA expression resulted in a significant increase
355 of UBE2H abundance (compare lane 7 and 8) (**Figure 6I**). Hence, association with MAEA
356 is itself not sufficient to maintain UBE2H protein levels, but rather the catalytic activity of MAEA
357 is required. Overall, we conclude that UBE2H protein levels are coupled to the presence of
358 active MAEA and are controlled by differentiation-induced transcription and post-
359 transcriptionally by proteasomal degradation.

360

361 **DISCUSSION**

362

363 We demonstrate here that in-depth analysis of dynamic proteome profiles obtained from
364 different *in vitro* reconstituted erythropoiesis systems is an effective method to uncover
365 differentiation stage-dependent expression of protein and protein complexes with functional
366 roles in erythropoiesis. We observed that UBE2H and CTLH E3 complex assemblies form co-
367 regulated E2-E3 modules required for erythropoiesis. Importantly, distinct protein profiles of
368 the CTLH subunit homologues RANBP9 and RANBP10, suggest a remodelling of CTLH
369 complex and the presence of stage-dependent CTLH assemblies.

370
371 The activity and substrate specificity of multi-subunit E3 ligases are generally regulated by the
372 control of complex subunit assembly. One of the best studied E3 ligase complexes are members
373 of the CRL family which engage interchangeable substrate receptor/adapter complexes for
374 substrate-specific ubiquitylation. Substrate receptor assembly is kept in a highly dynamic state
375 (Reitsma *et al*, 2017; Straube *et al*, 2017), whereby specific expression of substrate receptors
376 in response to external and internal cellular cues, as well as in a cell-type and tissue specific
377 way, allows the formation of CRLs for selective and efficient client substrate ubiquitylation
378 (Gupta *et al*, 2013; McGourty *et al*, 2016; Ravenscroft *et al*, 2013). Recently, the activity of the
379 multiprotein yeast GID (orthologue of human CTLH complex) was shown to be predominantly
380 regulated by engaging interchangeable substrate receptors, which conceivably target distinct
381 substrates for degradation (Chrystowicz *et al*, 2021; Kong *et al*, 2021; Liu & Pfirrmann, 2019;
382 Melnykov *et al*, 2019; Shin *et al*, 2021)(Langlois *et al*. 2021 BioRxiv
383 doi: <https://doi.org/10.1101/2021.09.02.458684>). However, the regulation of human CTLH
384 activity via substrate receptor assembly is not well understood. Here we show that protein levels
385 of GID4 – the only substrate receptor identified in higher eukaryotes – did not significantly
386 change in the HUDEP2 differentiation system, suggesting that GID4 may not be the critical
387 regulatory subunit of CTLH complex during erythropoiesis. In contrast, other CTLH subunits
388 were significantly up or down regulated with correlating protein intensity profiles indicating
389 distinct classes of CTLH assemblies. In particular, the homologues scaffold module subunits
390 RANBP9 and RANBP10 displayed inverse expression profiles. As a consequence, non-
391 differentiated HUDEP2 cells preferentially assembled RANBP9-CTLH complexes, whereas
392 differentiated cells showed increased levels of RANBP10-CTLH complexes. These complexes
393 were formed independently in cells, and additional structural/biochemical characterization of
394 recombinant complexes revealed overall similar architectures of catalytic and scaffold modules
395 exerting E3 ligase activities *in vitro* with UBE2H.

396
397 Despite the compelling evidence of distinct CTLH assemblies in differentiating erythroid cells,
398 we can only speculate about the mechanism of assembly and remodelling of complex subunits.
399 RANBP9 and RANBP10 are unlikely to exchange freely within the CTLH complexes given
400 that both subunits form extended surface interactions with ARMC8 and TWA1 forming the
401 core of the scaffold module (Sherpa *et al.*, 2021). Indeed, depleting RANBP9 destabilized
402 CTLH in cell lysates (Maitland *et al*, 2019). Hence, RANBP9 and RANBP10 are likely to
403 assemble CTLH complexes *de novo*, dependent on their availability and expression profiles.
404 Furthermore, we observed increased protein levels of RANBP10 in *RANBP9*^{-/-} cells (and
405 increased RANBP9 in *RANBP10*^{-/-} cells), suggesting that the cellular stoichiometry of CTLH
406 subunits allows a “compensatory” assembly of RANBP10-CTLH complexes. Importantly, our
407 description of RANBP9-CTLH and RANBP10-CTLH complexes substantiate the notion that

408 CTLH complexes exist in multiple compositions and architectures thereby expanding the
409 complexity of the CTLH E3 family (Sherpa *et al.*, 2021).

410
411 To determine the biological role of all possible CTLH complexes in erythropoiesis, we focused
412 on *MAEA* knock-out cells. *MAEA* deficiency in K562 and HUDEP2 cells caused significantly
413 lower protein amounts of RMND5a and UBE2H, suggesting the ubiquitin transfer activity of
414 most - if not all - cognate UBE2H-CTLH modules was eliminated. Analysis of *MAEA* and
415 *UBE2H* in HUDEP2 cells, that were cultured under expansion growing (non-differentiating)
416 conditions, showed increased haemoglobinization and enrichment of erythroid marker proteins,
417 resembling a spontaneously differentiated cell population. Hence, these knock out cells might
418 be more susceptible to signals that promote erythropoiesis. Therefore, we reasoned that *MAEA*
419 and *UBE2H* are required to maintain HUDEP2 cells in a dormant/quiescent progenitor stage.
420 The *in vitro* reconstitution of erythropoiesis by the HUDEP2 system does not fully recapitulate
421 *in vivo* erythropoiesis. However, our findings are supported by *MAEA* knock out studies in
422 mice. Conditional *MAEA* deletion in murine haematopoietic stem cells (HSCs) impaired HSC
423 quiescence, leading to a lethal myeloproliferative syndrome (Wei *et al.*, 2021). The authors
424 proposed a mechanism whereby the absence of *MAEA* leads to a stabilisation of several
425 haematopoietic cytokine receptors causing prolonged intracellular signalling (Wei *et al.*, 2021).
426 A similar concept might apply to the observed phenotypes of HUDEP2 *MAEA*^{-/-} cells. Besides
427 overrepresentation of several erythroid plasma membrane proteins, these cells have increased
428 TFRC (Transferrin receptor 1) levels, and hence, are potentially more responsive to
429 extracellular ferritin, enabling increased heme and haemoglobin production. Furthermore,
430 mouse studies, that either conditionally deleted *MAEA* in central macrophages of erythroblastic
431 islands or in erythroid progenitors, have revealed abnormal erythroblast maturation in the bone
432 marrow showing altered profiles with distinct accumulation of maturation stages (Wei *et al.*,
433 2019). This phenotype is, in part, recapitulated in *MAEA*- and *UBE2H*-deficient HUDEP2 cells
434 by an apparent accumulation of early maturation stages.
435

436 The functions of E2-E3 ubiquitylation modules are typically considered to be regulated via the
437 E3 enzyme. However, E3 ubiquitylation involves different E2s which themselves can be
438 regulated by multiple mechanisms (Stewart *et al.*, 2016), such as modulation by
439 transcriptional/translational control (Mejia-Garcia *et al.*, 2015; Whitcomb *et al.*, 2009; Ying *et*
440 *al.*, 2013). Apart from transcriptional regulation of UBE2H in mammalian erythropoiesis
441 (Lausen *et al.*, 2010; Wefes *et al.*, 1995), its *Drosophila* orthologue Marie Kondo (Kdo) was
442 shown to be translationally upregulated upon oocyte-to-embryo transition (Zavortink *et al.*,
443 2020), suggesting that UBE2H levels are regulatory nodes in developmental processes of higher
444 eukaryotes. In agreement with transcriptional upregulation of UBE2H mRNA in terminal
445 erythroid maturation (Lausen *et al.*, 2010), we observe a substantial increase in UBE2H protein
446 at orthochromatic stages of differentiating HUDEP2 cells. Surprisingly, absence of *MAEA*
447 caused reduced protein but not mRNA levels of UBE2H, suggesting a *MAEA*-dependent post-
448 transcriptional mode of regulation. A *MAEA* mutant that still can bind UBE2H, but is defective
449 in E3 ligase activity, does not efficiently rescue UBE2H levels in *MAEA*^{-/-} cells. Therefore, in
450 the absence of an active CTLH complex, UBE2H might become an “orphan” E2, which is
451 subsequently targeted for proteasomal degradation. To our knowledge, UBE2H-CTLH is the
452 first E2-E3 module described whereby E2 levels are coupled to the activity of the cognate E3.

453

454 Cumulatively, our work features a mechanism of developmentally regulated E2-E3
455 ubiquitylation modules, which couples remodelling of multi-protein E3 complexes with
456 cognate E2 availability. This mechanism assures assembly of distinct erythroid maturation
457 stage-dependent UBE2H-CTLH modules, required for the orderly progression of human
458 erythropoiesis, thus establishing a paradigm for other E2-E3 modules involved in development
459 processes.

460

461

462 MATERIALS AND METHODS

463

464 **HUDEP2 and K562 cell culture and manipulation**

465 HUDEP2 cells were cultured as described (Kurita *et al.*, 2013). Immature cells were expanded
466 in StemSpan serum free medium (SFEM; Stem Cell Technologies) supplemented with 50 ng/ml
467 human stem cell factor (hSCF) (R&D, '7466-SC-500), 3 IU/ml erythropoietin (EPO) (R&D,
468 #287-TC-500), 1 µm dexamethasone (Sigma, #D4902), and 1µg/ml doxycycline (Sigma,
469 #D3072). Cell densities were kept within 50x10³-0.8x10⁶ cells/ml and media replaced every
470 other day. To induce erythroid maturation, HUDEP2 cells were cultured for three days (phase
471 1) in differentiation medium composed of IMDM base medium (GIBCO) supplemented with
472 2% (v/v) FCS, 3% (v/v) human serum AB-type, 3 IU/ml EPO, 10 µg/ml insulin, 3 U/ml heparin,
473 1 mg/ml holo-transferrin, 50 ng/ml hSCF, and 1 µg/ml doxycycline, followed by 9 days (phase
474 2) in differentiation medium without hSCF. Erythroid differentiation and maturation were
475 monitored by flow cytometry (LSRFortessa, BD Biosciences), using PE-conjugated anti-
476 CD235a/GYPA (BD Biosciences, clHIR2, #555570), FITC conjugated anti-CD49d (BD
477 Biosciences, cl9F10, #304316), and APC-conjugated anti-Band3/SLC4A1 (gift from Xiulan
478 An lab, New York Blood Centre) and analysed with FlowJo software.

479 The erythroleukemia cell lines K562 was obtained from ATCC (CCL-243TM) and cultured in
480 IMDM (GIBCO) supplemented with 10% (v/v) FCS (GIBCO) and antibiotics (100 U/ml
481 penicillin, 0.1 mg/ml streptomycin, GIBCO), and regularly checked for the absence of
482 mycoplasma contamination. To induce erythroid-like differentiation, K562 cells were treated
483 with 0.3 mM or 0.6 mM Na-butyrate (NaB, Millipore) for 24 hrs, and megakaryocyte-like
484 differentiation was induced with 10 nM or 50 nM 12-O-Tetradecanoyl-phorbol-13 acetate
485 (TPA, Sigma) for 24 hrs. Where indicated, cells were treated with 10 µM proteasome inhibitor
486 MG132 (Sigma) for different time phases.

487

488 **Plasmid preparation and mutagenesis**

489 The cDNAs for MAEA and UBE2H, corresponding to the canonical UniProt sequences, were
490 obtained from human cDNA library (Max-Planck-Institute of Biochemistry). 3xFlag- and
491 6xMyc-tagged constructs, using pcDNA5-FRT/TO as parental vector, were generated by
492 classic recombinant cloning methods. Mutant versions of MAEA and UBE2H were prepared
493 by the QuickChange protocol (Stratagene). All coding sequences were verified by DNA
494 sequencing.

495

496 **K562 cell transfections, generation of CRISPR-Cas9 knock out cell lines**

497 K562 cells were transformed by electroporation with Nucleofector Kit V (Bioscience, Lonza)
498 according to the manufacturer's protocol. Briefly, 1×10^6 cell were harvested, washed once
499 with 1xPBS (at room temperature), resuspended in 100 μ l Nucleofector solution, and mixed
500 with 5 μ g plasmid DNA. After electroporation, cells were recovered in 3 ml medium and
501 cultured for 48 hrs. For immune precipitation (IP) experiments, three electroporation reactions
502 with 1×10^6 cells were done in parallel, transformed cells pooled and cultured for 48hrs.
503 *MAEA*^{-/-}, *MKLNI*^{-/-}, and *WDR26*^{-/-} knock out cell lines were described previously (Sherpa *et al.*,
504 2021). To generate CRISPR-Cas9-(D10A) nickase-mediated functional knock outs of UBE2H,
505 paired sense and anti-sense guide RNAs (gRNA) were designed to target exon 2 of UBE2H
506 (**Figure 4 Supplemental figure 1B**). Sense and antisense gRNAs were cloned into pBABED-
507 U6-Puromycin plasmid (gift from Thomas Macartney, University of Dundee, UK) and pX335-
508 Cas9(D10a) (Addgene) (Cong *et al*, 2013), respectively. The plasmid pair was co-transfected
509 into K562 cells using Lipofectamine LTX reagent (Invitrogen) according to the
510 manufacturer's protocol. Twenty-four hours after transfection, cells were selected in 2 μ g/ml
511 puromycin for two days, followed by expansion and single cell dilution to obtain cell clones.
512 Successful knock out of UBE2H was validated by immunoblot analysis and genomic
513 sequencing of the targeted locus (**Figure 4A and figure 4 Supplemental figure 1B**).
514

515 **Generation of CRISPR-Cas9-edited HUDEP2 knock out cell lines**

516 To generate CRISPR-Cas9-(D10A) nickase-mediated functional knock outs of UBE2H in
517 HUDEP2 cells, the same gRNA pair as described for the K562 knock out cell line has been
518 used. For the functional knock outs of MAEA, RANBP9, and RANBP10 paired sense and anti-
519 sense guide RNAs (gRNA) were designed to target exon 2 (MAEA), exon1 (RANBP9), and
520 exon 7 (RANBP10) (**Figure 2 Supplemental figure 1 and Figure 4 Supplemental figure**
521 **1A**). The plasmid pairs were co-electroporated into HUDEP2 cells using Nucleofector Kit
522 CD34⁺ (Bioscience, Lonza) according to the manufacturer's protocol. Twenty-four hours after
523 transfection, cells were selected in 2 μ g/ml puromycin for two days, followed by expansion and
524 single cell dilution to obtain cell clones. Cell densities were kept below 0.6×10^6 cells/ml
525 throughout the process. Successful knock outs were validated by immunoblot analysis and
526 genomic sequencing of targeted loci (**Figure 2C and 4D, Figure 2 Supplemental figure 1,**
527 **and Figure 4 Supplemental figure 1A and 1B**).
528

529 **Cell lysate preparation, immunoblot analysis, fractionation by sucrose density gradient,** 530 **immunoprecipitation**

531 To generate K562 and HUDEP2 cell lysates, cells were harvested by centrifugation at 360 x g,
532 washed once with ice-cold 1xPBS, and resuspended in lysis buffer (40 mM HEPES pH7.5, 120
533 mM NaCl, 1mM EGTA, 0.5% NP40, 1mM DTT, and Complete protease inhibitor mix (Roche),
534 and incubated on ice for 10 min. Cells were homogenized by pushing them ten times through a
535 23G syringe. The obtained lysates were cleared by centrifugation at 23,000 x g for 30 min at
536 4°C, and protein concentration was determined by Micro BCA-Protein Assay (Thermo
537 Scientific, # 23235).

538 For immunoblot analysis lysates were denatured with SDS sample buffer, boiled at 95°C for 5
539 min, separated on SDS PAGE, and proteins were visualized by immunoblotting using indicated
540 primary antibodies: RMND5a (Santa Cruz), MAEA (R&D systems), RANBP9 (Novus
541 Biologicals), RANBP10 (Invitrogen, #PA5-110267), TWA1 (Thermo Fisher), ARMC8 (Santa

542 Cruz), WDR26 (Bethyl Laboratories), MKLN1 (Santa Cruz), YPEL5 (Thermo Fisher), GID4
543 (described in (Sherpa *et al.*, 2021)), CD235a/GYPA (Abcam), HBD (Cell-Signaling), HBG1/2
544 (Cell-Signaling), and Flag (Sigma). Antibodies that recognize UBE2H were generated by
545 immunizing sheep with GST-UBE2H (full length). Blots were developed using Clarity Western
546 ECL Substrate (BioRad) and imaged using Amersham Imager 600 (GE Lifesciences). For
547 quantitation described in **Figure 6H**, immunoblots from at least three biological repetitions
548 were scanned with an Amersham Biosciences Imager 600 (GE Healthcare) and analyzed using
549 ImageJ software.

550 For the sucrose gradient fractionation, 3 mg of total protein were loaded on to of a continues
551 5%-40% sucrose gradient (weight/volume in 40 mM HEPES pH7.5, 120 mM NaCl, 1mM
552 EGTA, 0.5% NP40, 1mM DTT, and Complete protease inhibitor mix (Roche)) and centrifuged
553 in a SW60 rotor at 34,300 rpm for 16 hours at 4°C. Thirteen 300 μ l fractions were collected
554 from top of the gradient, separated by SDS-PAGE, followed by immunoblotting using indicated
555 antibodies.

556 Flag-tagged proteins were captured from 1 mg total cell lysate using anti-Flag affinity matrix
557 (Sigma) for 1 hour at 4°C. For immunoprecipitation of endogenous proteins, 50 μ g of antibody
558 (ARMC8 or UBE2H) was incubated overnight with 4 mg of cell lysate at 4°C. In all, 30 μ l of
559 Protein-G agarose (Sigma) was added and the reaction was incubated for a further 2 hours. All
560 immunoprecipitation reactions were washed in lysis buffer to remove non-specific binding,
561 immunoabsorbed proteins eluted by boiling in reducing SDS sample buffer, separated by SDS-
562 PAGE followed by immunoblotting using indicated antibodies.

563

564 **Nanobody production**

565 Phage display selections: Purified human RANBP9-CTLH complex was coated on 96-well
566 MaxiSorp plates by adding 100 μ L of 1 μ M proteins and incubating overnight at 4°C. Five
567 rounds of phage display selections were then performed following standard protocols (Tonikian
568 *et al*, 2007). The phage-displayed VH library used was reported before (Nilvebrant & Sidhu,
569 2018). Individual phage with improved binding properties obtained from round 4 and round 5
570 are identified by phage ELISA and subjected to DNA sequencing of the phagemids to obtain
571 VH sequences. Phage ELISA with immobilized proteins were performed as described before
572 (Zhang *et al*, 2016).

573 Cloning and protein purification: The nanobody cDNA was cloned into a vector containing
574 either a C-terminal His tag (used for cryo-EM experiments) or an N-terminal GST tag (used for
575 *in vivo* pulldown assays). The nanobody expression was carried out using BL21 pRIL cells and
576 was purified from *E. coli* using either a Ni-NTA or a glutathione affinity chromatography,
577 followed by size exclusion chromatography (SEC) in the final buffer containing 25 mM HEPES
578 pH 7.5, 200 mM NaCl and 1 mM DTT.

579

580 **Determination of heme in cell lysates**

581 HUDEP2 cell lines in proliferation media were allowed to grow to a maximum cell density of
582 0.8x10⁶ / ml in 12-Well plates. Cells were counted by an automated cell counter (Luna II, Logos
583 Biosystems) before they were collected by centrifugation for 3 min, 300 x g. Cell pellets of
584 1.5x10⁶ cells were flash frozen in liquid nitrogen and stored at -80°C until further use. Cells
585 were lysed in ice-cold HEPES-Triton-Lysis buffer (40 mM HEPES pH 7.5, 120 mM NaCl, 1
586 mM EDTA, 1 % Triton X-100, and cOmplete protease inhibitor (Roche)) with 1 μ l of Lysis

587 buffer per 10^4 cells and kept on ice for 5 min. Cell lysates were cleared by centrifugation for 20
588 min, at 21000 x g at 4 °C and carefully transferred into new tubes. A second centrifugation step
589 and transfer was performed to remove lipid residues. Protein concentration was determined by
590 Micro BCA-Protein Assay (Thermo Scientific, # 23235). Lysate samples were diluted to 1
591 μ g/ μ l with DPBS (GIBCO) and spectra analyses were done with 1.5 μ l on a Nanodrop
592 Spectrophotometer (Implen, NP80). The wavelength scans with peak maxima around 414 nm
593 correspond to globin bound heme in differentiated HUDEP2 cell supernatants (Ghosh *et al*,
594 2018).

595

596 **RNA isolation and RT-qPCR**

597 Cells were treated with indicated concentrations of Sodium butyrate (NaB) and TPA,
598 respectively. 10×10^6 cells were lysed in 1 ml Trizol (ThermoScientific, #15596018). 200 μ L
599 chloroform (FisherChemical, C496017) was added and samples were vigorously mixed. For
600 phase separation, samples were then centrifuged at 10000x g for 10 min at 4°C. Subsequently,
601 400 μ l of the upper clear phase were transferred into a new tube containing 500 μ L isopropanol,
602 mixed and incubated for 30min on ice, followed by centrifugation at 10000x g at 4°C for 10
603 mins. Pellet was washed once with 500 μ l 70% ethanol and resuspended in RNase free water
604 (Invitrogen, 10977-035). Samples were stored at -80°C until analysis. cDNA was generated
605 using SuperScript IV First Strand Synthesis System (Invitrogen, 18091050) according to the
606 manufacturer's protocol. For qRT-PCR, cDNA, primers and SsoAdvanced Universal SYBR
607 Green Supermix (BioRad, 1725274) were mixed and run on a CFX96 Touch Deep Well Real
608 Time PCR System (Biorad) as per manufacturer's protocol. Following forward/reverse primer
609 pairs were used: for GAPDH 5' GTTCGACAGTCAGCCGCATC / 5'
610 GGAATTGCCATGGGTGGA; UBE2H 5' CCTTCCTGCCTCAGTTATTGGC / 5'
611 CCGTGGCGTATTCTGGATGTAC; GYPA 5' ATATGCAGCCACTCCTAGAGCTC / 5'
612 CTGGTTCAGAGAAATGATGGGCA. Data was analyzed with BioRad CFX Manager using
613 GAPDH for normalization.

614

615 **Protein expression and purification**

616 The human RANBP10- and RANBP9-CTLH (TWA1-ARMC8-MAEA-RMND5A with either
617 RANBP10 or RANBP9) complexes were purified from insect cell lysates using StrepTactin
618 affinity chromatography, followed by anion exchange chromatography and size exclusion
619 chromatography (SEC) in the final buffer containing 25 mM HEPES pH 7.5, 200 mM NaCl
620 and 5 mM (for Cryo EM) or 1 mM DTT (for biochemical assays). N terminal GST-tagged
621 version of hGid4(Δ 1-99) and UBE2H were expressed in bacteria and purified by glutathione
622 affinity chromatography followed by overnight cleavage using tobacco etch virus (TEV)
623 protease. Further purification was carried out by anion exchange chromatography followed by
624 size exclusion chromatography (SEC) in the final buffer containing 25 mM HEPES pH 7.5,
625 200 mM NaCl and 1 mM DTT. To obtain saturated RANBP10-CTLH complex with hGid4 for
626 cryo EM analysis, it was added in 2-fold excess to TWA1-ARMC8-MAEA-RMND5A-
627 RANBP10 before final SEC.

628 Untagged WT ubiquitin used for *in vitro* assays was purified via glacial acetic acid method
629 (Kaiser *et al*, 2011), followed by gravity S column ion exchange chromatography and SEC.

630

631 **Ubiquitylation assay**

632 The *in vitro* multi-turnover ubiquitylation assays with RANPB9-CTLH or RANBP10-CTLH
633 complexes were performed using a C-terminally fluorescent-tagged model peptide with an N-
634 terminal hGID4-interacting sequence PGLW and a single lysine placed at the 23rd or 27th
635 position from the N terminus. The reaction was started by mixing 0.2 μ M Uba1, 1 μ M Ube2H,
636 0.5 μ M RANBP9-TWA1-ARMC8-RMND5A-MAEA or RANBP10-TWA1-ARMC8-
637 RMND5A-MAEA complex, 1 μ M hGid4, 1 μ M fluorescent model peptide substrate and 20 μ M
638 Ub. The reaction was quenched in sample loading buffer at different timepoints and visualized
639 by scanning the SDS-PAGE in the Typhoon Imager (GE Healthcare).

640

641 **Analytical SEC for RANBP10- and RANBP9-CTLH complexes**

642 To see if the RANBP10 and RANBP9 complexes assemble and migrate at similar molecular
643 weight range, analytical size exclusion chromatography was performed in a Superose 6 column
644 (GE Healthcare) which was fitted to the Thermo Scientific Vanquish HPLC system. The
645 column was equilibrated with 25 mM Hepes 7.5, 150 mM NaCl and 5 mM DTT and a 60 μ l
646 each of 10 μ M purified RANBP10/TWA1/ARMC8/hGid4/RMND5A/MAEA and
647 RANBP9/TWA1/ARMC8/hGid4/RMND5A/MAEA complexes were run through the HPLC
648 system consecutively. The SEC fractions obtained were analyzed with Coomassie-stained SDS-
649 PAGE.

650

651 **Cryo EM sample preparation and processing**

652 Cryo EM grids were prepared using Vitrobot Mark IV (Thermo Fisher Scientific) maintained
653 at 4°C and 100% humidity. 3.5 μ l of the purified RANBP10-CTLH (RANBP9-TWA1-
654 ARMC8-RMND5A-MAEA-hGid4) complex at 0.6 mg/ml was applied to Quantifoil holey
655 carbon grids (R1.2/1.3 300 mesh) that were glow-discharged separately in Plasma Cleaner.
656 After sample application grids were blotted with Whatman no. 1 filter paper (blot time: 3 s, blot
657 force: 3) and vitrified by plunging into liquid ethane.

658

659 For the nanobody bound RANBP9-CTLH complex, the purified nanobody was first mixed to
660 the RANBP9-CTLH complex and ran on size exclusion chromatography. The peak fraction
661 was then concentrated and prepared for Cryo-EM using the same approach as mentioned above.

662

663 Both the Cryo EM data were collected on a Talos Arctica transmission electron microscope
664 (Thermo Fisher Scientific) operated at 200 kV, equipped with a Falcon III (Thermo Fisher
665 Scientific) direct electron detector, respectively. The data collection was carried out using EPU
666 software (Thermo Fisher Scientific).

667

668 The Cryo EM data processing was carried out with Relion (Fernandez-Leiro & Scheres, 2017;
669 Scheres, 2012; Zivanov *et al*, 2018). For processing the micrographs, frames were first motion-
670 corrected using Relion's own implementation of MotionCor like algorithm by Takanori Nakane
671 followed by contrast transfer function estimation using CTFFind 4.1. Particles were auto-
672 picked using Gautomatch (<http://www.mrc-lmb.cam.ac.uk/kzhang/>) using a template of
673 RANBP9-CTLH^{SR4} (EMDB: EMD-12537). The extracted particles were subjected to several
674 rounds of 2D classification and 3D classification followed by auto-refinement without and with
675 a mask. To improve the quality of maps obtained for RANBP10-CTLH complex, a focused 3D

676 classification without particle alignment was performed with a mask over CTLH^{SRS}. The best
677 class with most features were chosen and auto-refinement with mask over the CTLH^{SRS} was
678 performed followed by post-processing.
679

680 **MS-based proteomics analysis of HUDEP2 samples**

681 Cell pellets were lysed in SDC buffer (1% sodium deoxycholate in 100 mM Tris pH 8.5) and
682 then heated for 5 min at 95°C. Lysates were cooled on ice and sonicated for 15 min at 4°.
683 Protein concentration was determined by Tryptophan assay as described in (Kulak *et al*, 2014)
684 and equal amount of proteins were reduced and alkylated by 10 mM TCEP and 40 mM 2-
685 Chloroacetamide, respectively, for 5 min at 45°C. Proteins were subsequently digested by the
686 addition of 1:100 LysC and Trypsin overnight at 37°C with agitation (1,500 rpm). Next day,
687 around 10 µg of protein material was processed using an in-StageTip (iST) protocol (Kulak *et*
688 *al.*, 2014). Briefly, samples were at least 4-fold diluted with 1% trifluoro-acetic acid (TFA) in
689 isopropanol to a final volume of 200 µL and loaded onto SDB-RPS StageTips (Empore). Tips
690 are then washed with 200µL of 1% TFA in isopropanol and 200µL 0.2% TFA/2% ACN
691 (acetonitrile). Peptides were eluted with 80 µl of 1.25% Ammonium hydroxide (NH₄OH)/80%
692 ACN and dried using a SpeedVac centrifuge (Concentrator Plus; Eppendorf). MS loading
693 buffer (0.2% TFA/2%ACN (v/v)) was added to the dried samples prior to LC-MS/MS analysis.
694 Peptide concentrations were measured optically at 280 nm (Nanodrop 2000; Thermo Scientific)
695 and subsequently equalized using MS loading buffer. Approximately, 300-500 ng peptide from
696 each sample was analyzed using a 100 min gradient single shot DIA method.
697

698 **LC-MS/MS analysis and data processing**

699 Nanoflow LC-MS/MS measurements were carried out on an EASY-nLC 1200 system (Thermo
700 Fisher Scientific) coupled to the Orbitrap instrument, namely Q Exactive HF-X and a nano-
701 electrospray ion source (Thermo Fisher Scientific). We used a 50 cm HPLC column (75 µm
702 inner diameter, in-house packed into the tip with ReproSil-Pur C18-AQ1.9 µm resin (Dr.
703 Maisch GmbH)). Column temperature was kept at 60°C with an in-house developed oven.
704 Peptides were loaded in buffer A (0.1 % formic acid (FA) (v/v)) and eluted with a linear 80 min
705 gradient of 5–30 % of buffer B (80 % acetonitrile (ACN) and 0.1% FA (v/v)), followed by a 4
706 min increase to 60 % of buffer B and a 4 min increase to 95 % of buffer B, and a 4 min wash
707 of 95% buffer B at a flow rate of 300 nl/min. Buffer B concentration was decreased to 4% in 4
708 min and stayed at 4% for 4 min. MS data were acquired using the MaxQuant Live software and
709 a data-independent acquisition (DIA) mode (Wichmann *et al*, 2019). Full MS scans were
710 acquired in the range of m/z 300-1,650 at a resolution of 60,000 at m/z 200 and the automatic
711 gain control (AGC) set to 3e6. Full MS events were followed by 33 MS/MS windows per cycle
712 at a resolution of 30,000 at m/z 200 and ions were accumulated to reach an AGC target value
713 of 3e6 or an Xcalibur-automated maximum injection time. The spectra were recorded in profile
714 mode.

715 The single shot DIA runs of HUDEP2 samples were searched with direct DIA (dDIA) mode in
716 Spectronaut version 14 (Biognosys AG) for final protein identification and quantification. All
717 searches were performed against the human SwissProt reference proteome of canonical and
718 isoform sequences with 42,431 entries downloaded in July 2019. Carbamidomethylation was
719 set as fixed modification and acetylation of the protein N-terminus and oxidation of methionine
720 as variable modifications. Trypsin/P proteolytic cleavage rule was used with a maximum of two

721 miscleavages permitted and a peptide length of 7–52 amino acids. A protein and precursor FDR
722 of 1% were used for filtering and subsequent reporting in samples (q-value mode).

723

724 **Bioinformatics data analysis**

725 We mainly performed data analysis in the Perseus (version 1.6.0.9 and 1.6.1.3) (Tyanova *et al*,
726 2016). Protein intensities were log2-transformed for further analysis. Data sets were filtered to
727 make sure that identified proteins showed expression in all biological triplicates of at least one
728 experimental group and the missing values were subsequently replaced by random numbers
729 that were drawn from a normal distribution (width = 0.3 and down shift = 1.8). PCA of
730 experimental groups and biological replicates was performed using Perseus. Multi-sample test
731 (ANOVA) for determining if any of the means of experimental group was significantly different
732 from each other was applied to protein data set. For truncation, we used permutation-based
733 FDR which was set to 0.01 or 0.05 in conjunction with an S0-parameter of 0.1. For hierarchical
734 clustering of significant proteins, median protein abundances of biological replicates were z-
735 scored and clustered using Euclidean as a distance measure for row and/or column clustering.
736 Gene Ontology (GO) enrichments in the clusters were calculated by Fisher's exact test using
737 Benjamini-Hochberg FDR for truncation. Mean log2 ratios of biological triplicates and the
738 corresponding P-values were visualized with volcano plots and significance was based on a
739 FDR < 0.05 or 0.01. Network representation of significantly regulated proteins was performed
740 with the STRING app (1.5.1) in Cytoscape (3.7.2).

741

742 **ACKNOWLEDGEMENTS**

743

744 This work was supported by the Max Planck Society for the Advancement of Science and by
745 the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) – SCHU 3196/1-
746 1. We thank all the members of the department of Molecular Machines and Signaling at Max
747 Planck Institute of Biochemistry for their assistance and helpful discussions, especially J. Rajan
748 Prabu for guidance in structural analysis, Susanne von Gronau for maintaining the insect cells
749 and Josef Kellermann for maintaining the lab. We also thank Daniel Bollschweiler and Tillman
750 Schäfer for maintaining the MPIB Cryo EM facility; Stephan Übel and Stefan Pettera in the
751 MPIB biochemistry core facility for the peptide synthesis.

752

753 **REFERENCES**

754

755 Aebersold R, Mann M (2016) Mass-spectrometric exploration of proteome structure and
756 function. *Nature* 537: 347-355

757 An X, Schulz VP, Mohandas N, Gallagher PG (2015) Human and murine erythropoiesis. *Curr*
758 *Opin Hematol* 22: 206-211

759 Andersson LC, Jokinen M, Gahmberg CG (1979) Induction of erythroid differentiation in the
760 human leukaemia cell line K562. *Nature* 278: 364-365

761 Cantor AB, Orkin SH (2002) Transcriptional regulation of erythropoiesis: an affair involving
762 multiple partners. *Oncogene* 21: 3368-3376

763 Chal J, Pourquie O (2017) Making muscle: skeletal myogenesis in vivo and in vitro.
764 *Development* 144: 2104-2122

765 Chrustowicz J, Sherpa D, Teyra J, Loke MS, Popowicz GM, Basquin J, Sattler M, Prabu JR, Sidhu
766 SS, Schulman BA (2021) Multifaceted N-Degron Recognition and Ubiquitylation by GID/CTLH
767 E3 Ligases. *J Mol Biol* 434: 167347

768 Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N, Hsu PD, Wu X, Jiang W, Marraffini LA *et al*
769 (2013) Multiplex genome engineering using CRISPR/Cas systems. *Science* 339: 819-823

770 Cross MA, Enver T (1997) The lineage commitment of haemopoietic progenitor cells. *Curr Opin*
771 *Genet Dev* 7: 609-613

772 Dolznig H, Bartunek P, Nasmyth K, Mullner EW, Beug H (1995) Terminal differentiation of
773 normal chicken erythroid progenitors: shortening of G1 correlates with loss of D-cyclin/cdk4
774 expression and altered cell size control. *Cell Growth Differ* 6: 1341-1352

775 Dong C, Chen SJ, Melnykov A, Weirich S, Sun K, Jeltsch A, Varshavsky A, Min J (2020)
776 Recognition of nonproline N-terminal residues by the Pro/N-degron pathway. *Proc Natl Acad*
777 *Sci U S A* 117: 14158-14167

778 Dong C, Zhang H, Li L, Tempel W, Loppnau P, Min J (2018) Molecular basis of GID4-mediated
779 recognition of degrons for the Pro/N-end rule pathway. *Nat Chem Biol* 14: 466-473

780 Fernandez-Leiro R, Scheres SHW (2017) A pipeline approach to single-particle processing in
781 RELION. *Acta Crystallogr D Struct Biol* 73: 496-502

782 Gautier EF, Ducamp S, Leduc M, Salnot V, Guillonneau F, Dussiot M, Hale J, Giarratana MC,
783 Raimbault A, Douay L *et al* (2016) Comprehensive Proteomic Analysis of Human
784 Erythropoiesis. *Cell Rep* 16: 1470-1484

785 Ghosh A, Garee G, Sweeny EA, Nakamura Y, Stuehr DJ (2018) Hsp90 chaperones hemoglobin
786 maturation in erythroid and nonerythroid cells. *Proc Natl Acad Sci U S A* 115: E1117-E1126

787 Gillet LC, Navarro P, Tate S, Rost H, Selevsek N, Reiter L, Bonner R, Aebersold R (2012) Targeted
788 data extraction of the MS/MS spectra generated by data-independent acquisition: a new
789 concept for consistent and accurate proteome analysis. *Mol Cell Proteomics* 11: O111 016717

790 Gupta VA, Ravenscroft G, Shaheen R, Todd EJ, Swanson LC, Shiina M, Ogata K, Hsu C, Clarke
791 NF, Darras BT *et al* (2013) Identification of KLHL41 Mutations Implicates BTB-Kelch-Mediated
792 Ubiquitination as an Alternate Pathway to Myofibrillar Disruption in Nemaline Myopathy. *Am*
793 *J Hum Genet* 93: 1108-1117

794 Kaiser SE, Riley BE, Shaler TA, Trevino RS, Becker CH, Schulman H, Kopito RR (2011) Protein
795 standard absolute quantification (PSAQ) method for the measurement of cellular ubiquitin
796 pools. *Nat Methods* 8: 691-696

797 Karayel O, Xu P, Bludau I, Velan Bhoopalan S, Yao Y, Ana Rita FC, Santos A, Schulman BA, Alpi
798 AF, Weiss MJ *et al* (2020) Integrative proteomics reveals principles of dynamic
799 phosphosignaling networks in human erythropoiesis. *Mol Syst Biol* 16: e9813

800 Keerthivasan G, Wickrema A, Crispino JD (2011) Erythroblast enucleation. *Stem Cells Int* 2011:
801 139851

802 Kim J, Guermah M, McGinty RK, Lee JS, Tang Z, Milne TA, Shilatifard A, Muir TW, Roeder RG
803 (2009) RAD6-Mediated transcription-coupled H2B ubiquitylation directly stimulates H3K4
804 methylation in human cells. *Cell* 137: 459-471

805 Kleiger G, Saha A, Lewis S, Kuhlman B, Deshaies RJ (2009) Rapid E2-E3 assembly and
806 disassembly enable processive ubiquitylation of cullin-RING ubiquitin ligase substrates. *Cell*
807 139: 957-968

808 Kobayashi N, Yang J, Ueda A, Suzuki T, Tomaru K, Takeno M, Okuda K, Ishigatubo Y (2007)
809 RanBPM, Muskelin, p48EMLP, p44CTLH, and the armadillo-repeat proteins ARMC8alpha and
810 ARMC8beta are components of the CTLH complex. *Gene* 396: 236-247

811 Kong KE, Fischer B, Meurer M, Kats I, Li Z, Ruhle F, Barry JD, Kirrmaier D, Chevryreva V, San Luis
812 BJ *et al* (2021) Timer-based proteomic profiling of the ubiquitin-proteasome system reveals a
813 substrate receptor of the GID ubiquitin ligase. *Mol Cell* 81: 2460-2476 e2411

814 Kulak NA, Pichler G, Paron I, Nagaraj N, Mann M (2014) Minimal, encapsulated proteomic-
815 sample processing applied to copy-number estimation in eukaryotic cells. *Nat Methods* 11:
816 319-324

817 Kurita R, Suda N, Sudo K, Miharada K, Hiroyama T, Miyoshi H, Tani K, Nakamura Y (2013)
818 Establishment of immortalized human erythroid progenitor cell lines able to produce
819 enucleated red blood cells. *PLoS One* 8: e59890

820 Lampert F, Stafa D, Goga A, Soste MV, Gilberto S, Olieric N, Picotti P, Stoffel M, Peter M (2018)
821 The multi-subunit GID/CTLH E3 ubiquitin ligase promotes cell proliferation and targets the
822 transcription factor Hbp1 for degradation. *Elife* 7

823 Lausen J, Pless O, Leonard F, Kuvardina ON, Koch B, Leutz A (2010) Targets of the Tal1
824 transcription factor in erythrocytes: E2 ubiquitin conjugase regulation by Tal1. *J Biol Chem*
825 285: 5338-5346

826 Le Bihan MC, Barrio-Hernandez I, Mortensen TP, Henningsen J, Jensen SS, Bigot A, Blagoev B,
827 Butler-Browne G, Kratchmarova I (2015) Cellular Proteome Dynamics during Differentiation
828 of Human Primary Myoblasts. *J Proteome Res* 14: 3348-3361

829 Liang L, Peng Y, Zhang J, Zhang Y, Roy M, Han X, Xiao X, Sun S, Liu H, Nie L *et al* (2019)
830 Deubiquitylase USP7 regulates human terminal erythroid differentiation by stabilizing GATA1.
831 *Haematologica* 104: 2178-2187

832 Liu H, Pfirrmann T (2019) The Gid-complex: an emerging player in the ubiquitin ligase league.
833 *Biol Chem* 400: 1429-1441

834 Ludwig C, Gillet L, Rosenberger G, Amon S, Collins BC, Aebersold R (2018) Data-independent
835 acquisition-based SWATH-MS for quantitative proteomics: a tutorial. *Mol Syst Biol* 14: e8126

836 Maetens M, Doumont G, Clercq SD, Francoz S, Froment P, Bellefroid E, Klingmuller U, Lozano
837 G, Marine JC (2007) Distinct roles of Mdm2 and Mdm4 in red cell production. *Blood* 109: 2630-
838 2633

839 Maitland MER, Onea G, Chiasson CA, Wang X, Ma J, Moor SE, Barber KR, Lajoie GA, Shaw GS,
840 Schild-Poulter C (2019) The mammalian CTLH complex is an E3 ubiquitin ligase that targets its
841 subunit muskelin for degradation. *Sci Rep* 9: 9864

842 Mancias JD, Pontano Vaites L, Nissim S, Biancur DE, Kim AJ, Wang X, Liu Y, Goessling W,
843 Kimmelman AC, Harper JW (2015) Ferritinophagy via NCOA4 is required for erythropoiesis and
844 is regulated by iron dependent HERC2-mediated proteolysis. *Elife* 4

845 McGourty CA, Akopian D, Walsh C, Gorur A, Werner A, Schekman R, Bautista D, Rape M (2016)
846 Regulation of the CUL3 Ubiquitin Ligase by a Calcium-Dependent Co-adaptor. *Cell* 167: 525-
847 538 e514

848 Mejia-Garcia A, Gonzalez-Barbosa E, Martinez-Guzman C, Torres-Ramos MA, Rodriguez MS,
849 Guzman-Leon S, Elizondo G (2015) Activation of AHR mediates the ubiquitination and
850 proteasome degradation of c-Fos through the induction of Ubcm4 gene expression.
851 *Toxicology* 337: 47-57

852 Melnykov A, Chen SJ, Varshavsky A (2019) Gid10 as an alternative N-recognin of the Pro/N-
853 degron pathway. *Proc Natl Acad Sci U S A* 116: 15914-15923

854 Minella AC, Loeb KR, Knecht A, Welcker M, Varnum-Finney BJ, Bernstein ID, Roberts JM,
855 Clurman BE (2008) Cyclin E phosphorylation regulates cell proliferation in hematopoietic and
856 epithelial lineages in vivo. *Genes Dev* 22: 1677-1689

857 Mohamed WI, Park SL, Rabl J, Leitner A, Boehringer D, Peter M (2021) The human GID complex
858 engages two independent modules for substrate recruitment. *EMBO Rep* 22: e52981

859 Moras M, Lefevre SD, Ostuni MA (2017) From Erythroblasts to Mature Red Blood Cells:
860 Organelle Clearance in Mammals. *Front Physiol* 8: 1076

861 Nguyen AT, Prado MA, Schmidt PJ, Sendamarai AK, Wilson-Grady JT, Min M, Campagna DR,
862 Tian G, Shi Y, Dederer V *et al* (2017) UBE2O remodels the proteome during terminal erythroid
863 differentiation. *Science* 357

864 Nilvebrant J, Sidhu SS (2018) Construction of Synthetic Antibody Phage-Display Libraries.
865 *Methods Mol Biol* 1701: 45-60

866 Ordureau A, Kraus F, Zhang J, An H, Park S, Ahfeldt T, Paulo JA, Harper JW (2021) Temporal
867 proteomics during neurogenesis reveals large-scale proteome and organelle remodeling via
868 selective autophagy. *Mol Cell*

869 Perkins AC, Sharpe AH, Orkin SH (1995) Lethal beta-thalassaemia in mice lacking the erythroid
870 CACCC-transcription factor EKLF. *Nature* 375: 318-322

871 Pevny L, Simon MC, Robertson E, Klein WH, Tsai SF, D'Agati V, Orkin SH, Costantini F (1991)
872 Erythroid differentiation in chimaeric mice blocked by a targeted mutation in the gene for
873 transcription factor GATA-1. *Nature* 349: 257-260

874 Qiao S, Langlois CR, Chrstowicz J, Sherpa D, Karayel O, Hansen FM, Beier V, von Gronau S,
875 Bollschweiler D, Schafer T *et al* (2020) Interconversion between Anticipatory and Active GID
876 E3 Ubiquitin Ligase Conformations via Metabolically Driven Substrate Receptor Assembly. *Mol
877 Cell* 77: 150-163 e159

878 Randle SJ, Nelson DE, Patel SP, Laman H (2015) Defective erythropoiesis in a mouse model of
879 reduced Fbxo7 expression due to decreased p27 expression. *J Pathol* 237: 263-272

880 Ravenscroft G, Miyatake S, Lehtokari VL, Todd EJ, Vornanen P, Yau KS, Hayashi YK, Miyake N,
881 Tsurusaki Y, Doi H *et al* (2013) Mutations in KLHL40 are a frequent cause of severe autosomal-
882 recessive nemaline myopathy. *Am J Hum Genet* 93: 6-18

883 Reitsma JM, Liu X, Reichermeier KM, Moradian A, Sweredoski MJ, Hess S, Deshaies RJ (2017)
884 Composition and Regulation of the Cellular Repertoire of SCF Ubiquitin Ligases. *Cell* 171: 1326-
885 1339 e1314

886 Scheres SH (2012) RELION: implementation of a Bayesian approach to cryo-EM structure
887 determination. *J Struct Biol* 180: 519-530

888 Seo Y, Shin KH, Kim HH, Kim HS (2019) Current Advances in Red Blood Cell Generation Using
889 Stem Cells from Diverse Sources. *Stem Cells Int* 2019: 9281329

890 Sherpa D, Chrstowicz J, Qiao S, Langlois CR, Hehl LA, Gottemukkala KV, Hansen FM, Karayel
891 O, von Gronau S, Prabu JR *et al* (2021) GID E3 ligase supramolecular chelate assembly
892 configures multipronged ubiquitin targeting of an oligomeric metabolic enzyme. *Mol Cell* 81:
893 2445-2459 e2413

894 Shin JS, Park SH, Kim L, Heo J, Song HK (2021) Crystal structure of yeast Gid10 in complex with
895 Pro/N-degron. *Biochem Biophys Res Commun* 582: 86-92

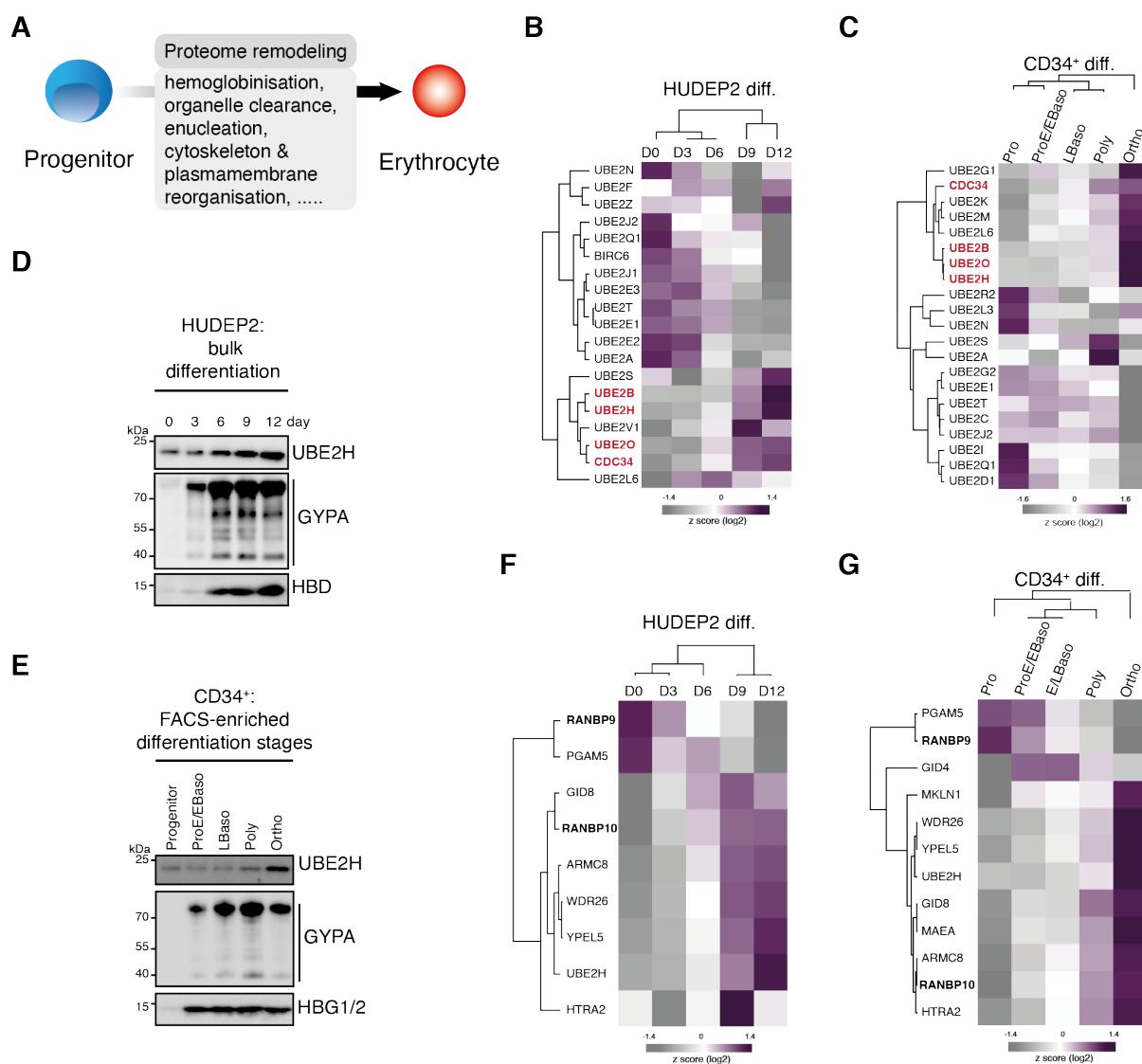
896 Shivdasani RA, Mayer EL, Orkin SH (1995) Absence of blood formation in mice lacking the T-
897 cell leukaemia oncoprotein tal-1/SCL. *Nature* 373: 432-434
898 Skaar JR, Pagano M (2009) Control of cell growth by the SCF and APC/C ubiquitin ligases. *Curr*
899 *Opin Cell Biol* 21: 816-824
900 Stewart MD, Ritterhoff T, Klevit RE, Brzovic PS (2016) E2 enzymes: more than just middle men.
901 *Cell Res* 26: 423-440
902 Straube R, Shah M, Flockerzi D, Wolf DA (2017) Trade-off and flexibility in the dynamic
903 regulation of the cullin-RING ubiquitin ligase repertoire. *PLoS Comput Biol* 13: e1005869
904 Tabilio A, Pelicci PG, Vinci G, Mannoni P, Civin CI, Vainchenker W, Testa U, Lipinski M, Rochant
905 H, Breton-Gorius J (1983) Myeloid and megakaryocytic properties of K-562 cell lines. *Cancer*
906 *Res* 43: 4569-4574
907 Thom CS, Traxler EA, Khandros E, Nickas JM, Zhou OY, Lazarus JE, Silva AP, Prabhu D, Yao Y,
908 Aribeana C *et al* (2014) Trim58 degrades Dynein and regulates terminal erythropoiesis. *Dev*
909 *Cell* 30: 688-700
910 Tonikian R, Zhang Y, Boone C, Sidhu SS (2007) Identifying specificity profiles for peptide
911 recognition modules from phage-displayed peptide libraries. *Nat Protoc* 2: 1368-1386
912 Trakarnsanga K, Griffiths RE, Wilson MC, Blair A, Satchwell TJ, Meinders M, Cogan N, Kupzig S,
913 Kurita R, Nakamura Y *et al* (2017) An immortalized adult human erythroid line facilitates
914 sustainable and scalable generation of functional red cells. *Nat Commun* 8: 14750
915 Tsuji W, Rubin JP, Marra KG (2014) Adipose-derived stem cells: Implications in tissue
916 regeneration. *World J Stem Cells* 6: 312-321
917 Tyanova S, Temu T, Sinitcyn P, Carlson A, Hein MY, Geiger T, Mann M, Cox J (2016) The Perseus
918 computational platform for comprehensive analysis of (prote)omics data. *Nat Methods* 13:
919 731-740
920 Umeda M, Nishitani H, Nishimoto T (2003) A novel nuclear protein, Twa1, and Muskelin
921 comprise a complex with RanBPM. *Gene* 303: 47-54
922 Varshavsky A (1996) The N-end rule: functions, mysteries, uses. *Proc Natl Acad Sci U S A* 93:
923 12142-12149
924 Watanabe K, Tateishi S, Kawasaji M, Tsurimoto T, Inoue H, Yamaizumi M (2004) Rad18 guides
925 poleta to replication stalling sites through physical interaction and PCNA monoubiquitination.
926 *EMBO J* 23: 3886-3896
927 Wefes I, Mastrandrea LD, Haldeman M, Koury ST, Tamburlin J, Pickart CM, Finley D (1995)
928 Induction of ubiquitin-conjugating enzymes during terminal erythroid differentiation. *Proc*
929 *Natl Acad Sci U S A* 92: 4982-4986
930 Wei Q, Boulais PE, Zhang D, Pinho S, Tanaka M, Frenette PS (2019) Maea expressed by
931 macrophages, but not erythroblasts, maintains postnatal murine bone marrow erythroblastic
932 islands. *Blood* 133: 1222-1232
933 Wei Q, Pinho S, Dong S, Pierce H, Li H, Nakahara F, Xu J, Xu C, Boulais PE, Zhang D *et al* (2021)
934 MAEA is an E3 ubiquitin ligase promoting autophagy and maintenance of haematopoietic
935 stem cells. *Nat Commun* 12: 2522
936 Whitcomb EA, Dudek EJ, Liu Q, Taylor A (2009) Novel control of S phase of the cell cycle by
937 ubiquitin-conjugating enzyme H7. *Mol Biol Cell* 20: 1-9
938 Wichmann C, Meier F, Virreira Winter S, Brunner AD, Cox J, Mann M (2019) MaxQuant.Live
939 Enables Global Targeting of More Than 25,000 Peptides. *Mol Cell Proteomics* 18: 982-994
940 Xu P, Scott DC, Xu B, Yao Y, Feng R, Cheng L, Mayberry K, Bi W, Palmer LE, King MT *et al* (2020)
941 FBXO11-Mediated Proteolysis of BAHD1 Relieves PRC2-dependent Transcriptional Repression
942 in Erythropoiesis. *Blood*

943 Ying S, Dunnebier T, Si J, Hamann U (2013) Estrogen receptor alpha and nuclear factor Y
944 coordinately regulate the transcription of the SUMO-conjugating UBC9 gene in MCF-7 breast
945 cancer cells. *PLoS One* 8: e75695

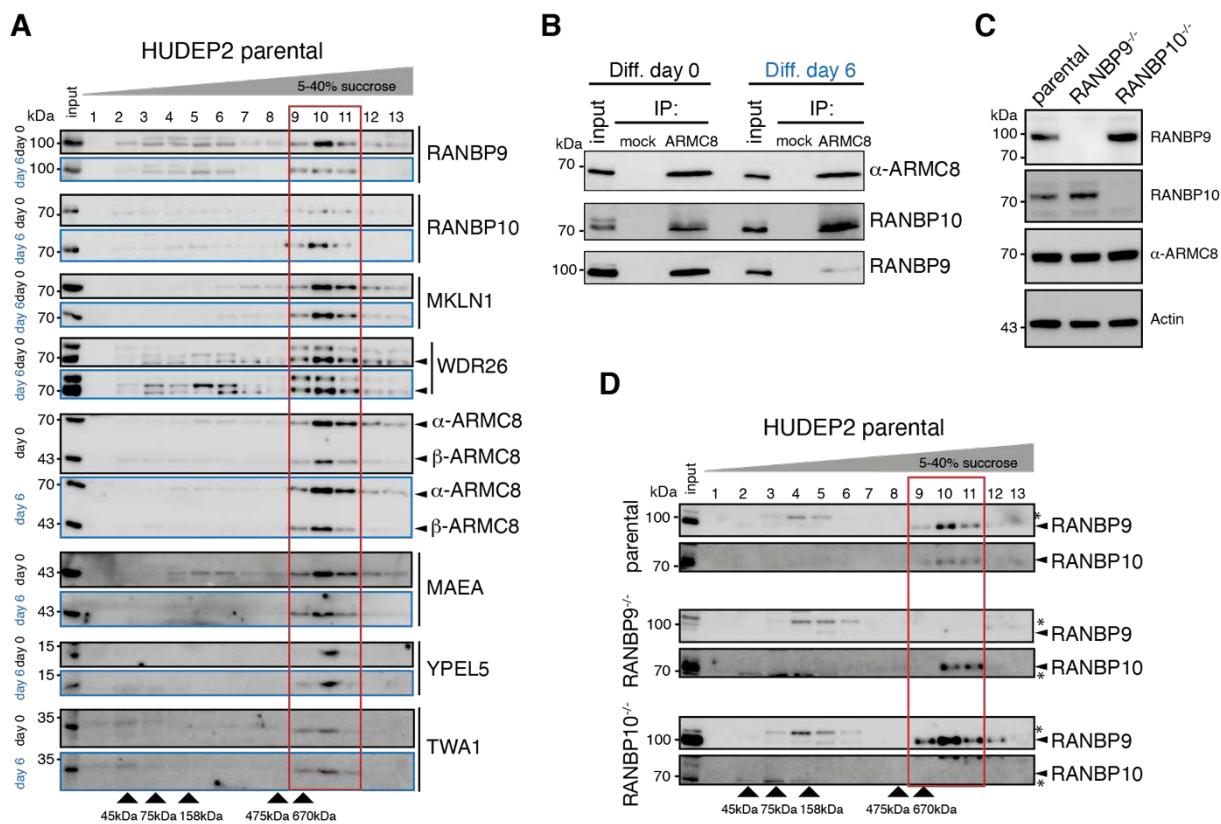
946 Zavortink M, Rutt LN, Dzitoyeva S, Henriksen JC, Barrington C, Bilodeau DY, Wang M, Chen
947 XXL, Rissland OS (2020) The E2 Marie Kondo and the CTLH E3 ligase clear deposited RNA
948 binding proteins during the maternal-to-zygotic transition. *Elife* 9

949 Zhang W, Wu KP, Sartori MA, Kamadurai HB, Ordureau A, Jiang C, Mercredi PY, Murchie R, Hu
950 J, Persaud A *et al* (2016) System-Wide Modulation of HECT E3 Ligases with Selective Ubiquitin
951 Variant Probes. *Mol Cell* 62: 121-136

952 Zhao B, Yang J, Ji P (2016) Chromatin condensation during terminal erythropoiesis. *Nucleus* 7:
953 425-429

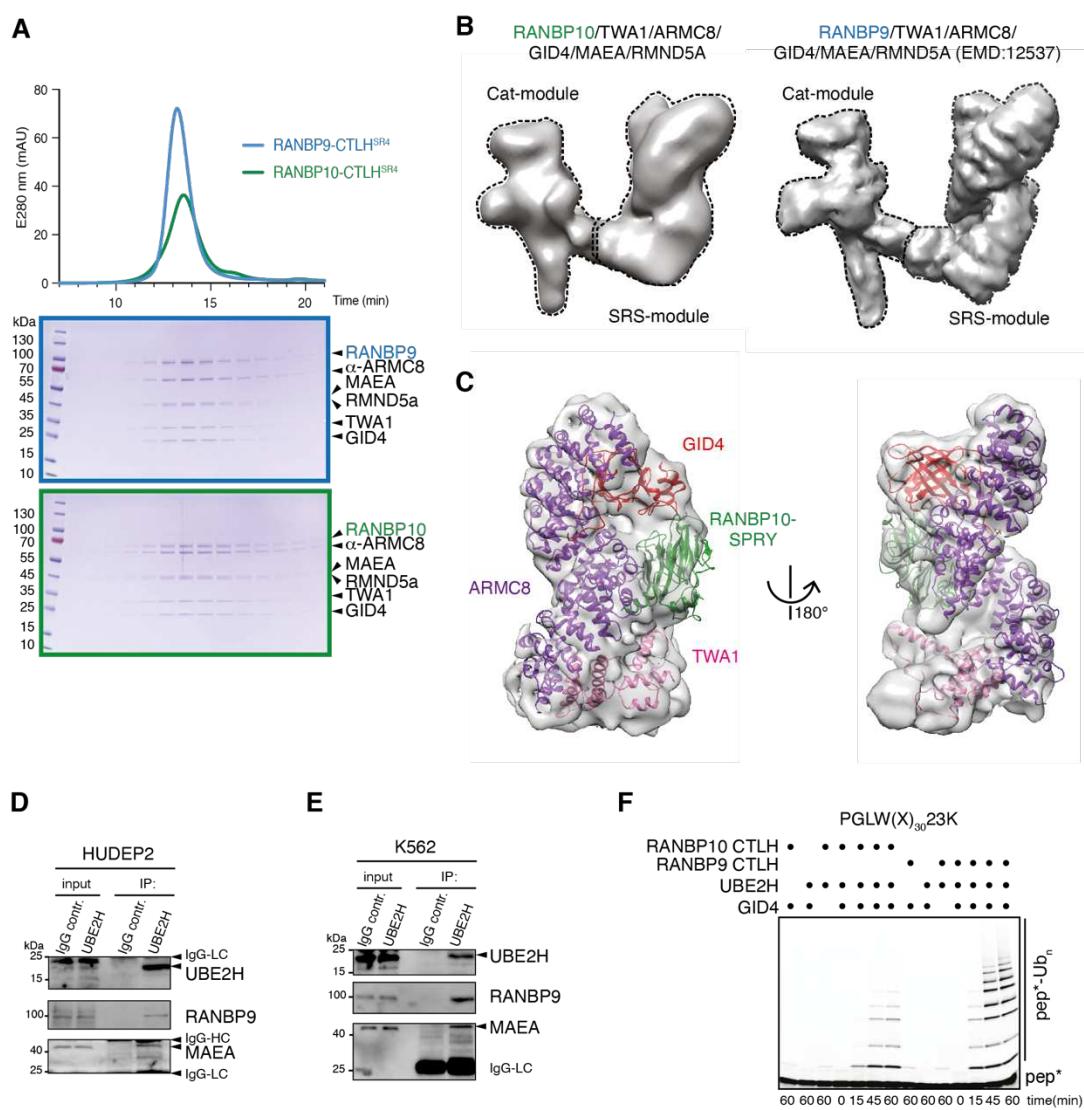

954 Zhen R, Moo C, Zhao Z, Chen M, Feng H, Zheng X, Zhang L, Shi J, Chen C (2020) Wdr26 regulates
955 nuclear condensation in developing erythroblasts. *Blood* 135: 208-219

956 Zivanov J, Nakane T, Forsberg BO, Kimanis D, Hagen WJ, Lindahl E, Scheres SH (2018) New
957 tools for automated high-resolution cryo-EM structure determination in RELION-3. *Elife* 7


958

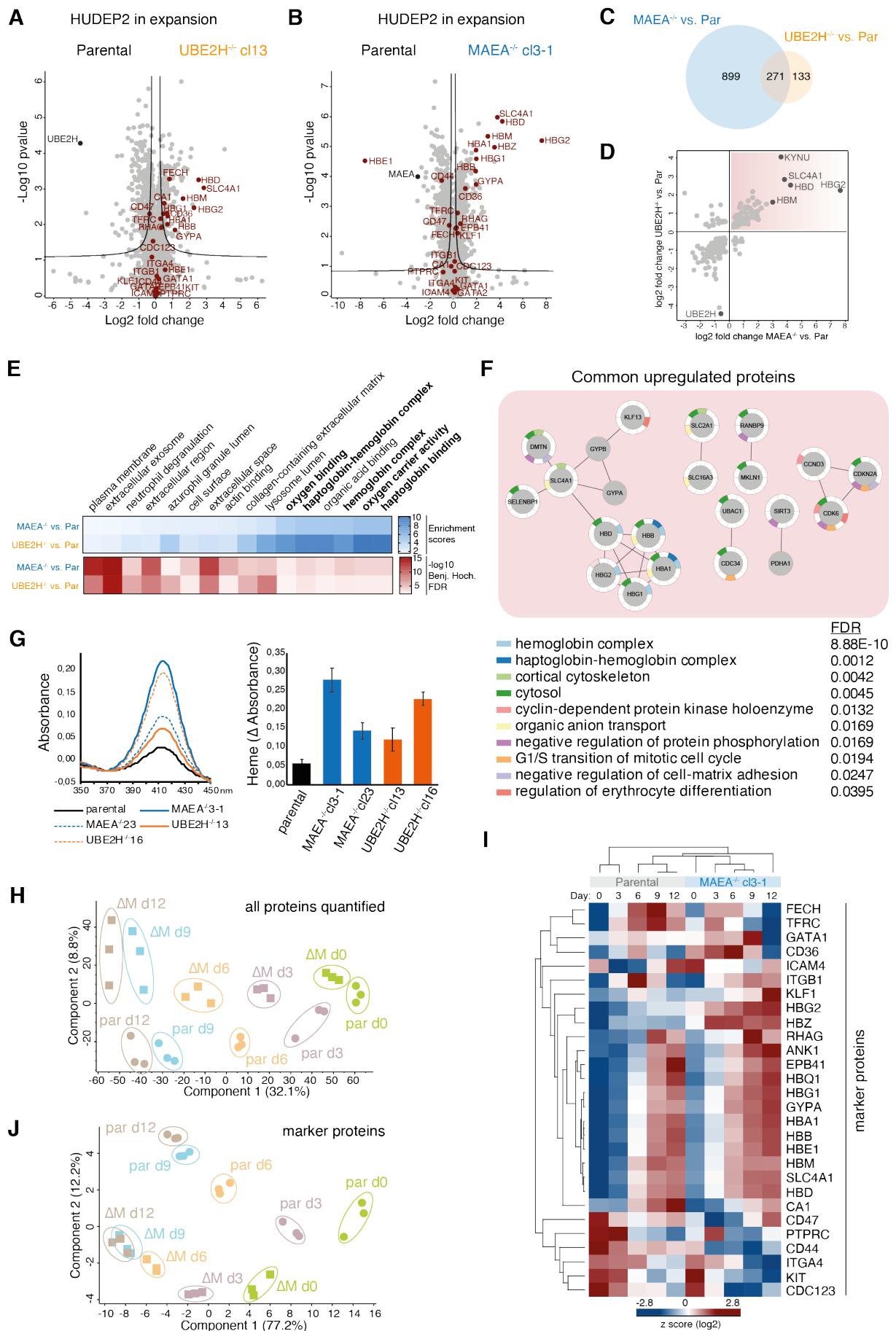
959

960 **FIGURES**
 961
 962

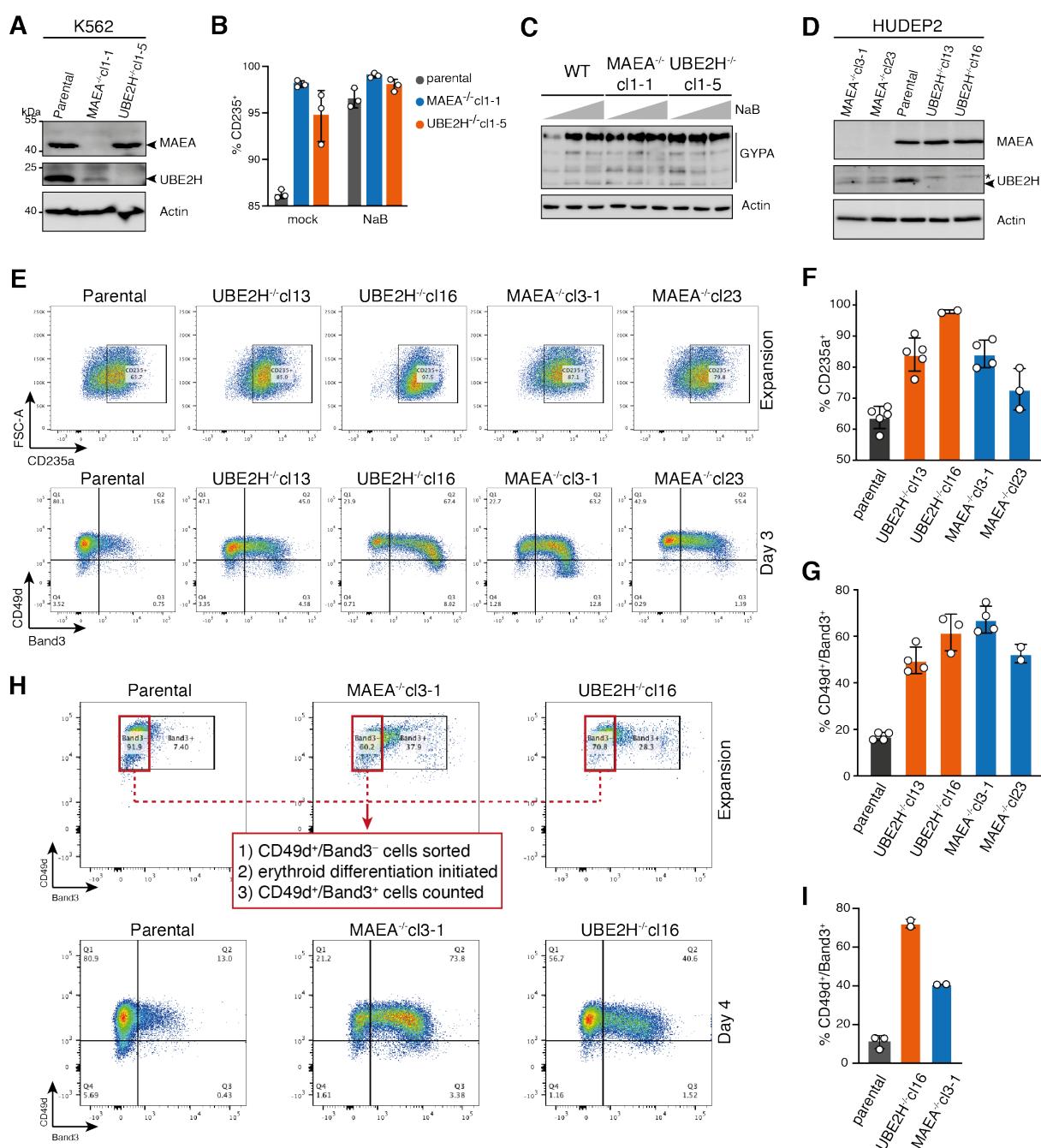

963
 964
 965 **Figure 1. In-depth proteome profiling reveals stage-dependent expression of UBE2H and**
 966 **CTLH complex subunits in erythropoiesis. A)** Cartoon indicating key features of mammalian
 967 **erythropoiesis. B)** Heat map of z-scored protein abundance (log₂ DIA intensity) of differentially
 968 **expressed E2 enzymes in differentiated HUDEP2 cells. C)** Heat map of z-scored protein
 969 **abundance (log₂ DIA intensity) of differentially expressed E2 enzymes in differentiated CD34⁺**
 970 **cells. D)** HUDEP2 cells were differentiated *in vitro* and analysed by immunoblotting with
 971 **indicated antibodies. E)** CD34⁺ cells were differentiated *in vitro*, cell populations enriched by
 972 **FACS and analysed by immunoblotting with indicated antibodies. F)** Heat map of z-scored
 973 **protein abundance (log₂ DIA intensity) of differentially expressed CTLH complex subunits in**
 974 **differentiated HUDEP2 cells. G)** Heat map of z-scored protein abundance (log₂ DIA intensity)
 975 **of differentially expressed CTLH complex subunits in differentiated CD34⁺ cells.**
 976

977
978

979 **Figure 2. RANBP9 and RANBP10 assemble in distinct CTLH E3 complexes. A)** HUDEP2
980 cell lysates from differentiation day 0 and day 6 were separated on sucrose gradients, and
981 fractions analysed by immunoblotting with indicated antibodies. **B)** Immunoprecipitation (IP)
982 of HUDEP2 cell lysates from differentiation day 0 and day 6 with IgG control (mock) and
983 ARMC8-specific nanobody, and immunoblot analysis with indicated antibodies. **C)**
984 Immunoblots of lysates of HUDEP2 parental, RANBP9^{-/-}, and RANBP10^{-/-} cells probing for
985 RANBP9 and RANBP10. Actin serves as loading control. **D)** Sucrose gradient fractionation of
986 HUDEP2 cell lysates from RANBP9^{-/-} or RANBP10^{-/-} knock out lines, fractions were analysed
987 by immunoblotting with indicated antibodies.


988

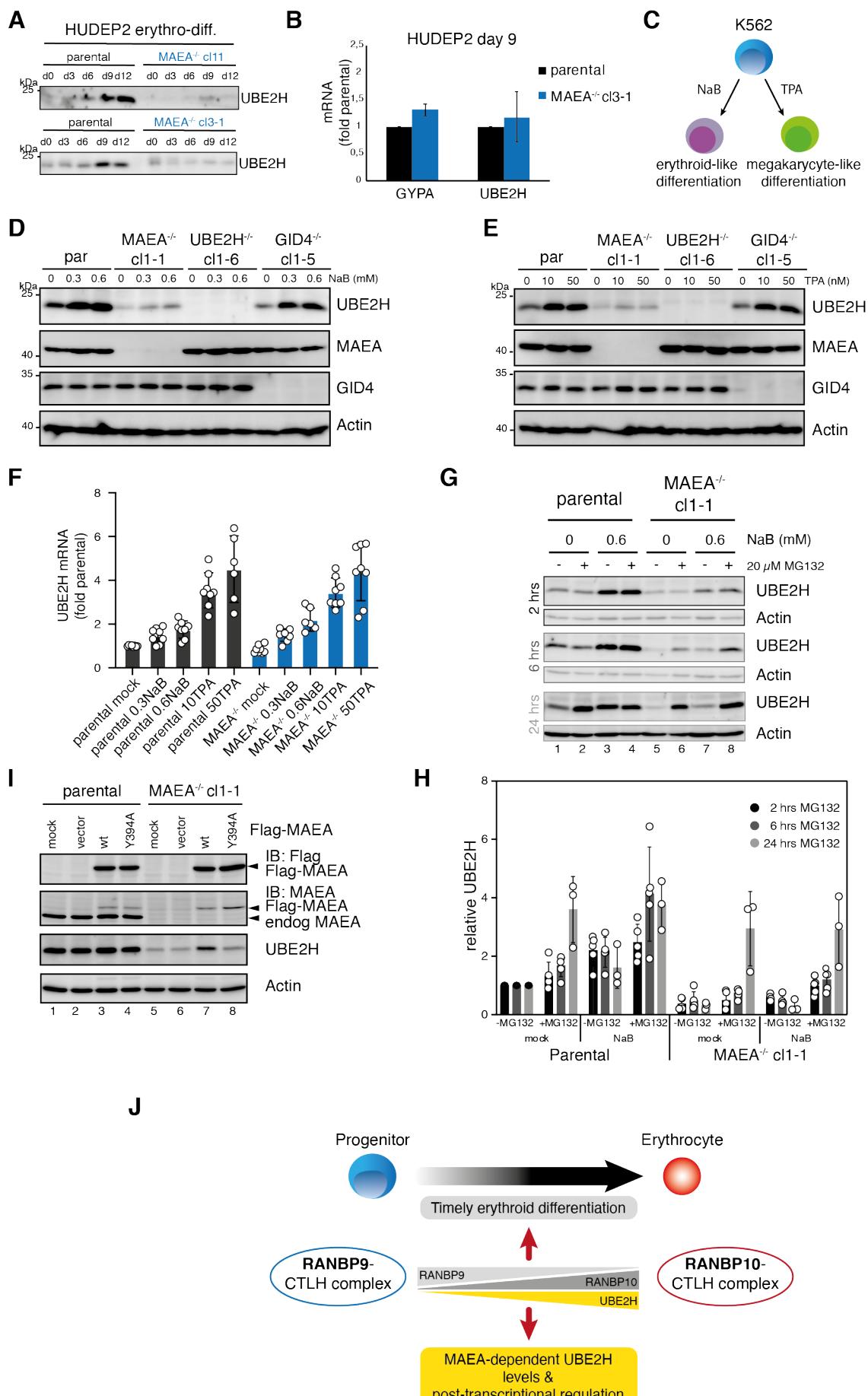
989
990


991 **Figure 3. RANBP9 and RANBP10 form homologous CTLH E3 complexes that promote**
992 **ubiquitin transfer in cooperation with UBE2H. A)** Chromatograms (top) and Coomassie-
993 stained SDS PAGE gels (bottom) from size exclusion chromatography of recombinant
994 RANBP10-CTLH^{SR4} and RANBP9-CTLH^{SR4} complexes. **B)** Cryo-EM map of RANBP10-
995 CTLH^{SR4} (left) and RANBP9-CTLH^{SR4} (EMD:12537) (right) with Cat-module and SRS-
996 module indicated. **C)** Focused refined map of the RANBP10-CTLH SRS-module with coloured
997 subunits: ARMC8, purple; TWA1, salmon; hGid4, red; RANBP10 SPRY-domain, green; **D)**
998 Immunoprecipitation (IP) from HUDEP2 cell lysates with IgG control and UBE2H-specific
999 antibody and immunoblot analysis. **E)** Immunoprecipitation (IP) from K562 cell lysates with
1000 IgG control and UBE2H-specific antibody and immunoblot analysis. IgG light chain (IgG-LC),
1001 IgG heavy chain (IgG-HC). **F)** Fluorescence scan of SDS-PAGE gels presenting time course
1002 of *in vitro* ubiquitylation assay with fluorescently-labelled model substrate peptide PGLW(X)_n-
1003 23K with lysine at position 23 (pep*), in the presence of UBE2H, RANBP10-CTLH or
1004 RANBP9-CTLH, and GID4.

1005

1007 **Figure 4. Catalytically inactive CTLH E3 complexes and UBE2H deficiency cause**
1008 **deregulated proteome dynamics. A)** Volcano plots of p-values (-log₁₀) versus protein
1009 abundance (log₂) differences between parental and UBE2H^{-/-}cl13 cells with erythroid marker
1010 proteins highlighted in red. **B)** Volcano plots of p-values (-log10) versus protein abundance
1011 (log₂) differences between parental and MAEA^{-/-}cl3-1 cells with erythroid marker proteins
1012 highlighted in red. **C)** Overlap between proteins with abundance differences of UBE2H^{-/-} versus
1013 parental and MAEA^{-/-} versus parental comparisons. **D)** Proteins with abundance differences
1014 (log₂) of UBE2H^{-/-} versus parental blotted against proteins with abundance differences (log₂)
1015 MAEA^{-/-} versus parental comparisons. Commonly enriched proteins are highlighted (top right
1016 quadrant). **E)** Gene Ontology (GO) enrichment analyses of up-regulated protein in MAEA^{-/-}
1017 versus parental and UBE2H^{-/-} versus parental comparisons performed using Fisher's exact test
1018 (Benjamini-Hochberg, FDR 5%). **F)** Overrepresentation analysis revealed the significant
1019 enrichment of protein networks (Benjamini-Hochberg, FDR 5%) based on physically
1020 interacting or functionally associated proteins which were significantly up-regulated in both
1021 MAEA^{-/-} and UBE2H^{-/-} versus parental cells. **G)** Spectra of cleared cell lysates of indicated cell
1022 lines showing Soret absorbance peak at 414 nm corresponding to heme-bound haemoglobins
1023 (left). Relative Soret absorbance peak intensity calculated from spectra of cleared cell lysates
1024 of indicated cell lines. Results are mean \pm SD of n=3 experiments. **H)** Principal Component
1025 Analysis (PCA) of erythroid differentiation stages (day 0, green; day 3, purple; day 6, orange;
1026 day 9, blue; day 12, brown) of HUDEP2 parental (par) and MAEA^{-/-}cl3-1 (Δ M) cell lines with
1027 their biological replicates based on expression profiles of all quantified proteins. **I)** Heat map
1028 of z-scored protein abundance (log₂ DIA intensity) of differentially expressed erythroid marker
1029 proteins in differentiating HUDEP2 parental and MAEA^{-/-}cl3-1 cells. **J)** PCA as in H), but
1030 based on expression profiles of selected erythroid marker proteins in I).

1031



1032
1033

1034 **Figure 5. MAEA and UBE2H deficiency cause aberrant erythroid differentiation. A)**
1035 Immunoblots of lysates of K562 parental, MAEA^{-/-}cl1-1, UBE2H^{-/-}cl1-5 cells probing for
1036 MAEA and UBE2H. Actin serves as loading control. **B)** Graph shows fraction of CD235a-
1037 expressing K562 parental, MAEA^{-/-}cl1-1, UBE2H^{-/-}cl1-5 cells in the presence of Na-butyrate
1038 (NaB) or mock treated. Error bars represent mean \pm STDEV of n=3 biological replicates. **C)**
1039 Immunoblot analysis of cell lysates from K562 parental, MAEA^{-/-}cl1-1, UBE2H^{-/-}cl1-5 treated
1040 with 0, 0.3, or 0.6 mM NaB for 24 hrs. Anti-GYPA/CD235a antibody detects variant forms of
1041 glycosylated GYPA. Actin serves as loading control. **D)** Immunoblots of lysates of HUDEP2
1042 parental, MAEA^{-/-}, and UBE2H^{-/-} knock out clones probing for MAEA and UBE2H. Actin
1043 serves as loading control. **E)** Flow cytometry blots of indicated HUDEP2 cell lines showing
1044 CD235a (top) and CD49d/Band3 (bottom) expression in expansion growing media condition

1045 (top) or day 3 after induced erythroid differentiation (bottom). **F**) Quantitation of E) with graph
1046 showing fraction of CD235a⁺ cells. Error bars represent mean \pm SD of n=2 to 5 biological
1047 replicates. **G**) Quantitation of E) with graph showing fraction of CD49d⁺/Band3⁺ cells. Error
1048 bars represent mean \pm SD of n=2 to 4 biological replicates. **H**) Indicated HUDEP2 cell lines,
1049 cultured in expansion media, were sorted for CD49d⁺/Band3⁻ (flow cytometry blots, top)
1050 followed by induction of erythroid maturation. Flow cytometry blots of indicated HUDEP2 cell
1051 lines showing CD49d/Band3 expression at day 4 after induced erythroid maturation. **I**)
1052 Quantitation of H) with graph showing fraction of CD49d⁺/Band3⁺ cells. Error bars represent
1053 mean \pm SD of n=2 biological replicates.

1054

1056 **Figure 6. Cellular abundance of UBE2H is coupled to functional MAEA. A)** HUDEP2
1057 parental and MAEA^{-/-} (clone 3-1 and 11) cells were differentiated *in vitro* and analysed by
1058 immunoblotting to detect UBE2H protein levels. **B)** mRNA determination by RT-qPCR of
1059 HUDEP2 parental and MAEA^{-/-}cl3-1 cells at differentiation stage day 9. Results (normalized
1060 to GAPDH) are mean \pm SD of n=2 experiments. **C)** K562 cell can be either induced with Na-
1061 butyrate (NaB) for erythroid-like differentiation, or induced with 12-O-Tetradodecanoyl-
1062 phorbol-13 acetate (TPA) for megakaryocyte-like differentiation. **D)** K562 parental and knock
1063 out cell lines were treated with NaB for 24 hrs and analysed by immunoblotting with indicated
1064 antibodies. **E)** K562 parental and knock out cell lines were treated with TPA for 24 hrs and
1065 analysed by immunoblotting with indicated antibodies. **F)** K562 parental and MAEA^{-/-}cl1-1
1066 cell lines were treated with either NaB or TPA for 24 hrs, and UBE2H mRNA levels
1067 determination by RT-qPCR. Results (normalized to GAPDH) are mean \pm SD of n=6 to 8
1068 experiments. **G)** K562 parental and MAEA^{-/-}cl1-1 cell lines were mock or 0.6 mM NaB treated
1069 for 24 hrs, followed by 2, 6, and 24 hours proteasome inhibition with 20 μ M MG132 and
1070 immunoblot analysis of cell lysates for UBE2H. Actin serves as protein loading control. **H)**
1071 Quantitation of UBE2H immunoblot signals from G) normalized to Actin and relative to
1072 parental mock values. Graph shows results by mean \pm SD of n=3 to 5 experiments. **I)** K562
1073 parental and MAEA^{-/-}cl1-1 cells were mock, empty vector, Flag-MAEA wildtype (WT), or
1074 mutated Flag-MAEA-Y394A (Y394A) transfected and cell lysates were analysed for UBE2H
1075 protein levels by immunoblotting. **J)** Model indicating stage-dependent CTLH complex
1076 assemblies coupled with UBE2H abundance required in erythropoiesis.