

1 **Regulation of balanced root fungal community of *Vanda falcata* (Orchidaceae) by**
2 **partitioning its mycorrhizal fungi and ascomycetous fungi across growth and**
3 **development**

4

5 **Running title:** *Vanda-Ceratobasidium* association

6

7 Galih Chersy Pujasatria¹, Ikuo Nishiguchi², Chihiro Miura³, Masahide Yamato⁴, and Hironori
8 Kaminaka³, *

9

10 ¹ The United Graduate School of Agricultural Science, Tottori University, Tottori 680-8553,
11 Japan

12 ² Suzuka city, Mie 510-0226, Japan

13 ³ Faculty of Agriculture, Tottori University, Tottori 680-8553, Japan

14 ⁴ Faculty of Education, Chiba University, Chiba 263-8522, Japan

15

16 * Corresponding author

17

18 **Corresponding Author:**

19 Hironori Kaminaka

20 Tel: +81-857-31-5378

21 E-mail: kaminaka@tottori-u.ac.jp

22

23 **ORCID**

24 Galih Chersy Pujasatria: <https://orcid.org/0000-0002-2768-8250>

25 Masahide Yamato: <https://orcid.org/0000-0003-2238-4044>

26 Hironori Kaminaka: <https://orcid.org/0000-0002-3685-8688>

27

28

29 **Abstract**

30 Epiphytic orchids are commonly found in exposed environments, which plausibly lead to
31 different root fungal community structures from terrestrial orchids. Until recently, no studies
32 have been conducted to show the fungal community structure during the growth of a
33 photosynthetic and epiphytic orchid in its natural growing state. In this study, the *Vanda*
34 *falcata* (commonly known as *Neofinetia falcata*), one of Japan's ornamental orchids, was used
35 to characterize the fungal community structure at different developmental stages. Amplicon
36 sequencing analysis showed that all development stages contain a similar fungal community:
37 Ascomycota dominates half of the community while one-third of the community is
38 Basidiomycota. *Rhizoctonia*-like fungi, a term to group the most common basidiomycetous
39 fungi that form orchid mycorrhiza, exist even in a smaller portion (around a quarter)
40 compared to other Basidiomycota members. While ascomycetous fungi exhibit pathogenicity,
41 two *Ceratobasidium* strains isolated from young and adult plants could initiate seed
42 germination *in vitro*. It was also found that the colonization of mycorrhizal fungi was
43 concentrated in the lower part of the root where it directly attaches to the phorophyte bark,
44 while ascomycetous fungi were distributed in the velamen but never colonized cortical cells.
45 Additionally, lower root parts attached to the bark have denser exodermal passage cells, and
46 these cells were colonized only by mycorrhizal fungi that further infiltrated the cortical area.
47 Therefore, we propose that physical regulation of fungal entry to partition the ascomycetes
48 and mycorrhizal fungi results in the balanced mycorrhizal symbiosis in this orchid.

49 (243 words)

50

51 **Keywords:** *Ceratobasidium*, epiphytic orchid, fungal microbiome, microbial dynamics,
52 symbiotic germination, *Vanda falcata*

53 **Introduction**

54 Orchidaceae, one of the biggest flowering plant families, is widely distributed in almost all
55 parts of the world. However, many orchid species are listed as endangered owing to habitat
56 degradation and dependence on other organisms, i.e., pollinators (Suetsugu et al. 2015; Freitas
57 et al. 2020). Moreover, establishing orchids in the natural habitat is always complicated, even
58 in suitable conditions (Pujasatria et al. 2020). Due to its unique, one-of-a-kind traits, orchid
59 seed germination is often hard to occur naturally. Despite extremely high fecundity,
60 endosperm in orchids' seeds is almost absent. Consequently, orchids' seeds are nearly
61 impossible to germinate without nutritional support. For seeds to successfully germinate and
62 grow into mature plants, they must establish orchid mycorrhizal (OM) symbiosis (Arditti and
63 Ghani 2000; Barthlott et al. 2014; Yeh et al. 2019; Pujasatria et al. 2020). Colonization of
64 orchid mycorrhizal fungi (OMF) starts at seed germination and may last until adulthood. As
65 with other mycorrhizae, OMF forms coiled hyphae in its host cells. This structure is termed
66 peloton, where the exchange of nutrients (e.g., carbon, nitrogen, and phosphorus) occurs (Yeh
67 et al. 2019). However, OM is unique because the host eventually digests the pelotons for
68 further nutrient acquisition (Kuga et al. 2014). Based on this, orchids are considered
69 parasitizing the fungus. This behavior, termed mycoheterotrophy, occurs mostly during the
70 early growth stage where protocorms are still achlorophyllous and may continue until
71 adulthood in various genera (Rasmussen et al. 2015; Yeh et al. 2019).

72 Most orchids associate with *Rhizoctonia*-like fungi, a broad term for several genera
73 resembling the anamorphic morphology of *Rhizoctonia*. As symbionts, there are three
74 genera in this group: *Ceratobasidium*, *Serendipita* (often associated with *Sebacina* *sensu*
75 *lato*), and *Tulasnella* (Rasmussen et al. 2015; Yeh et al. 2019; Pujasatria et al. 2020).
76 Originally, those fungi are saprophytic, endophytic, or even pathogenic. However, among

77 those genera, many species were isolated from orchid roots and proved to be mycorrhizal
78 upon co-inoculation with seeds of respective orchid species (Pujasatria et al. 2020).

79 Studies on OMF of epiphytic orchids are lacking despite their vast diversity, compared to
80 terrestrial orchids (Yukawa et al. 2009). While the roots of terrestrial orchids are usually
81 subterranean, epiphytic orchids are commonly found growing in exposed environments and
82 are prone to desiccation due to weather change (Rachanarin et al. 2018; Freitas et al. 2020).
83 This leads to a presumably different fungal community compared to those of the underground.
84 Microclimate change and phorophyte architecture also affect the establishment of epiphytic
85 orchids (Rasmussen and Rasmussen 2018), especially for those living in a fluctuating climate,
86 such as temperate regions. The availability of OMF on a particular substrate—in this case,
87 arboreal—is also dependent on such a microenvironment since fungus intrinsically prefers
88 unexposed, moist conditions to grow. When orchid seed lands on the substrate, its
89 germination is not guaranteed since colonization of appropriate OMF is required. Thus, the
90 interaction between 'the orchid and the fungal community would be important during the
91 orchid's establishment and growth.

92 Most epiphytic orchids studied tend to associate with either *Ceratobasidium* or *Tulasnella*
93 (Yukawa et al. 2009; Zettler et al. 2013; Rachanarin et al. 2018; Pujasatria et al. 2020; Freitas
94 et al. 2020). However, more specifically, studies on OMFs of monopodial epiphytic orchids
95 are limited. Several studies were already conducted on angraecoids (Hoang et al. 2017;
96 Kendon et al. 2020), either leafy or aphyllous, but still limited to vandaceous (Carlsward et al.
97 2006).

98 This study focused on *Vanda* (syn. *Neofinetia*) *falcata*. This epiphytic orchid is known as
99 one of Japan's ornamental orchids. Naturally, this orchid is distributed across central to
100 southern Japan and reportedly grows on evergreen or deciduous trees (Suetsugu et al. 2015).

101 Unlike typical epiphytic orchids concentrated in tropical regions, *V. falcata* is adapted to
102 subtropic and to the temperate areas, which may affect its association with fungi on
103 phorophytes. Previous studies suggested that vandaceous orchids—especially those of
104 subtribe Aeridinae—mainly associated with *Ceratobasidium*, proven by metabarcoding and
105 seed germination results (Otero et al. 2002; Yukawa et al. 2009; Hoang et al. 2017; Mújica
106 et al. 2018; Rammitsu et al. 2019; Kendon et al. 2020). Although *Ceratobasidium* strains
107 have also been isolated from *V. falcata* (Rammitsu et al. 2021), mycobionts for seed
108 germination have never been reported. Thus, this study analyzed the whole fungal
109 community in seeds and root samples of *V. falcata* using amplicon sequencing.
110 Additionally, pure fungal cultures were isolated from the same root pieces. Based on
111 microscopic and molecular analysis, it was found that some of the isolated fungi were
112 *Rhizoctonia*-like fungi. Finally, co-inoculation experiment was conducted to determine the
113 interaction of these fungi for their colonization with seeds and roots of *V. falcata*.

114

115 **Materials and Methods**

116 *Plant materials*

117 *Vanda falcata* plants growing on a persimmon (*Diospyros kaki*) trunk were obtained from
118 Kihoku Town, Mie Prefecture, Japan (34°06'27" N, 136°14'17" E). The residents eventually
119 cut the trunk due to safety reasons, and it was maintained in Suzuka City of the same
120 prefecture (34°51'05" N, 136°36'123" E) (Fig. 1A). Roots of young (small to medium plants
121 that never flowered) and adult (those already flowered at least once) plants (Fig. 1B, C)
122 attached to bark were randomly collected, and the harvested samples were stored at 4°C until
123 use. The baiting method assessed fungal diversity inside the seeds: 3 x 6 cm nylon mesh
124 packs containing ca. 100 *V. falcata* seeds were tied adjacent to twelve randomly selected

125 plants, including young and adult plants. The baiting method was conducted during spring
126 (March–June 2020). The seeds and young/adult plant roots were surface sterilized and stored
127 in 70% ethanol at 4°C until DNA extraction.

128

129 *DNA extraction from plant materials and amplicon sequencing*

130 Seeds isolated from the baiting method and root segments of randomly selected young and
131 adult plants were used as materials for DNA extraction using the Real Genomics Plant DNA
132 Extraction kit (RBC Bioscience, Taipei, Taiwan). After extraction, DNA concentration was
133 measured using DS-11 spectrophotometer (DeNovix, DW, USA). The internal transcribed
134 spacer (ITS) region was amplified using ITS1F_KYO1/ITS2_KYO2 for ITS1 and a pair of
135 gITS/ITS4 for ITS2 (Ihrmark et al. 2012; Toju et al. 2012) (Table S1). Each reaction mixture
136 (20-μl) contains 1-ng genomic DNA, 1-μl of 20-μM primer forward/reverse, and 10-μl KOD
137 One PCR Master Mix (Toyobo, Osaka, Japan). For amplification, PCR was coconducted on
138 T100 thermal cycler (Bio-Rad, CA, USA) using the following program: initial denaturation at
139 94°C for two minutes, 94°C for 30 secs, followed by 25 cycles of 50°C for 30 secs, 72°C for
140 one minute, and final elongation step at 72°C for seven minutes. PCR results were confirmed
141 using 1% (w/v) agarose gel electrophoresis. The sequencing of libraries prepared by PCR
142 with barcode-containing primers using Illumina MiSeq platform (2 × 300 bp) and data
143 analysis was conducted by the Bioengineering Lab Co., Ltd. (Atsugi, Japan). The raw
144 sequence data obtained as fastq file was processed using the FASTX toolkit v0.0.13 (Hannon
145 2010) and Sickle v1.33 (Joshi and Fass 2011) to remove adaptor and primer sequences,
146 ambiguous reads, low-quality sequences (quality score less than Q20), and reads no more than
147 40-bp. Quality-filtered sequences were merged using FLASH v1.12.11 (Magoč and Salzberg
148 2011) and used for the production of the representative sequences and operational taxonomic

149 unit (OTU) table using Qiime2 (v2020.6) (Bolyen et al. 2019) after removing the illusion and
150 noise sequences using dada2 plugin. The representative sequences were compared to OTUs
151 (97%) in UNITE v8.2 (Nilsson et al. 2019) to classify by taxon using the fitted classifier of
152 Qiime2. Additionally, alpha and beta diversity analyses were conducted using Qiime2
153 diversity plugin.

154 Amplicon sequencing results were visualized using RStudio v4.0.2. The *ggpubr* package
155 was used to visualize fungal diversity indices (OTU abundance, Chao1, Pielou, and
156 Shannon Evenness Index/SEI), and the proportion of each fungal phylum observed in
157 samples (Kassambara 2018). Principal coordinate analysis (PCoA) plots—based on Bray-
158 Curtis index, Euclidean distance, and without any data transformations—were visualized
159 using the *vegan* package (Oksanen et al. 2007). Additionally, analysis of similarity
160 (ANOSIM) was used to calculate PCoA statistical significance ($p < 0.05$), using the same
161 package.

162

163 *Fungi-colonized root morphology observation*

164 Crossing manual sections of fungi-colonized root were stained using 3% (w/v) acid fuchsin in
165 glacial acetic acid (Gange et al. 1999) or UV autofluorescence after clearing in 10% KOH for
166 one hour at 90°C to observe the presence of OMF and other fungi. The samples were then
167 observed under a light microscope (BX53; Olympus, Tokyo, Japan), and images were taken
168 using the equipped digital camera (DP27; Olympus). Statistics for quantification of OMF
169 colonization in roots was calculated using ANOVA based on the results of the Kolmogorov-
170 Smirnov normality test and Bartlett test using *ggpubr* package of RStudio v4.0.2 (Kassambara
171 2018). Subsequent Tukey *post hoc* test was conducted using the same software.

172

173 *Rhizoctonia-like and pathogenic fungi isolation*

174 Roots of young and adult plants were sectioned manually and observed using light (BX53) or
175 stereo microscope (SZX16; Olympus). Subsequently, root sections with fungal colonization in
176 cortex were put on either potato dextrose agar (PDA), one-sixth strength Czapek-Dox agar, or
177 Fungal Isolation Medium (Zettler et al. 2013) supplemented with 10- μ g/mL tetracycline.
178 Fungi with *Rhizoctonia*-like characteristics (Oberwinkler et al. 2013; Weiß et al. 2016) were
179 cultured on PDA, malt extract agar (MA), full-strength V8 juice agar (V8), or oatmeal agar
180 (OMA) media at 25°C, and then stored at 4°C for long-term storage, while all non-
181 *Rhizoctonia*-like fungi were cultured only on OMA at 25°C. Hyphae were stained using
182 0.01% ethidium bromide in 25% ethanol (Singh and Kumar 1991), and the cell wall was
183 stained using a mixture of 1-mg/L calcofluor white and 0.5-mg/L Evans blue, to count the
184 nuclei of *Rhizoctonia*-like fungal hyphae. Samples were observed under a fluorescence
185 microscope (DM2500; Leica, Wetzlar, Germany) equipped with a digital camera (DFC310
186 FX; Leica) and visualized using ImageJ v.1.53a.

187 Fungal genomic DNA was extracted from the cultured fungi using the sorbitol-
188 cetyltrimonium bromide (CTAB) combination method (Inglis et al. 2018). After extraction,
189 DNA concentration was measured as described above. The ITS region was amplified using a
190 combination of ITS1OF/ITS4 (Table S1) (Taylor and McCormick 2008; Toju et al. 2012).
191 The PCR mixture for each sample contains 1- μ l fungal genomic DNA, 1- μ l of 20- μ M primer
192 forward/reverse, and 10- μ l GoTaq Green Master Mix (Promega, WI, USA). Amplification
193 was conducted using the following program: initial denaturation at 95°C for ten minutes,
194 followed by 35 cycles at 95°C for 20 secs, 50°C for 30 secs, 72°C for 20 secs, and a final
195 elongation step at 72°C for seven minutes. Successfully amplified DNA fragments confirmed
196 by 1% (w/v) agarose gel electrophoresis were cloned using TOPO TA Cloning Kit

197 (ThermoFischer Scientific, MA, USA) and sequenced using Sanger method with both M13
198 forward and reverse primers by Eurofins Genomics (Tokyo, Japan). DNA sequences were
199 subjected to BLAST (<https://blast.ncbi.nlm.nih.gov/Blast.cgi>) to identify the closest taxa.

200

201 *Phylogenetic analysis*

202 Fungal ITS DNA sequences were aligned using ClustalW v1.6, and subsequent maximum
203 likelihood (ML) phylogenetic tree construction was conducted using RAxML-HPC v8.2.10
204 implemented in GENETYX-Windows v15 (Genetyx, Tokyo, Japan) with GTRGAMMA
205 model and 1000 bootstrap analysis to infer the phylogenetic position of fungal OTUs and
206 isolated strains of *Rhizoctonia*-like fungi. The best rooted tree was visualized using Iroki
207 online tool (Moore et al. 2020).

208

209 *In vitro seed germination assay*

210 Eleven *Rhizoctonia*-like fungal strains containing *Ceratobasidium*, *Serendipita*, and
211 *Tulasnella* (Table 1), obtained from culture stock centers, ATCC (American Type Culture
212 Collection), RIKEN bioresource center (JCM strain), NARO Genebank (MAFF strains) and
213 NITE biological resource center (NBRC strains), were inoculated on OMA for two weeks
214 before symbiotic germination assay. Dehiscent capsules formed from naturally pollinated
215 flowers were used to obtain the *V. falcata* seeds. Seeds were sterilized using 3% hydrogen
216 peroxide and washed two to three times with sterilized water. Cultures were stored at 25°C for
217 eight weeks in darkness. Germination stage description (Zettler et al. 2007) was modified
218 according to the preliminary germination assay result (Table 2, Fig. S1). Protocorm growth
219 index (GI) was evaluated using the equation $GI = \sum_{i=5}^n i(S_i) / \sum S$, with i; germination stage
220 number (starting from stage 0 to 5), n; total seeds in one treatment, and n_i ; total seeds

221 reaching germination stage *i* (Guimarães et al. 2013), and symbiotic cells were counted after
222 six weeks. Each fungal treatment was replicated four times, with each plate containing ca.
223 100–300 seeds. Additionally, two ascomycetous fungi isolated from roots, *Pyrenophaetopsis*
224 and *Fusarium*, were also subjected to similar germination assay to observe their interaction
225 with seeds (Table 3). Protocorms were stained using 1-g/L calcofluor white counterstained
226 with 0.5-g/L Evans blue, and fungal hyphae were stained using 1-mg/L WGA-Alexa Fluor
227 594 (ThermoFisher Scientific). Visualization was conducted using a fluorescent microscope
228 (DM2500) equipped with a digital camera (DFC310 FX) and ImageJ v.1.53a, while symbiotic
229 cells were counted using a tally counter from 25 randomly selected protocorms. Based on the
230 results of the Kolmogorov-Smirnov normality test and Bartlett test, the Kruskal-Wallis test
231 was conducted using *ggpubr* package of RStudio v4.0.2 (Kassambara 2018). Subsequently,
232 Dunn's *post hoc* test with Benjamini-Hochberg false discovery rate adjustment ($p < 0.05$) was
233 conducted using the *FSA* package of the same software (Ogle et al. 2021).

234

235 **Results**

236 *Amplicon sequencing*

237 Genomic DNA was obtained from three kinds of samples: seeds, roots of young plants, and
238 roots of adult plants. The seeds were taken from twelve seed packs and combined as one even
239 though no germinating seeds were found. For root samples, three to four root sections (ca. 5-
240 cm each) were cut from a young or adult plant. In root samples, the most conspicuous feature
241 of the symbiotic region was a yellowish root surface that contains digested pelotons (Fig. 1D).
242 This was primarily obvious when the roots were wet. This coloration is unique to the root
243 parts directly attached to *D. kaki* bark (Fig. 1E).

244 The ITS1 and ITS2 PCR products were subjected to amplicon sequencing by Illumina
245 MiSeq. Each sample sequencing generated 36,027 to 72,301 raw reads for ITS1 and 40,033 to
246 72,014 raw reads for ITS2. 83% and 89.47% of the whole reads were processed and used
247 for further analysis (Table S2). Phylogenetic OTUs were generated at 97% similarity cutoff
248 using Qiime2 and ranged from 155 to 411 OTUs for each sample in ITS1 and 174 to 476
249 OTUs for each sample in ITS2 (Table S3, S4). In total, 1274 and 1358 phylogenetic OTUs
250 were obtained for ITS1 and ITS2, respectively.

251

252 *General fungal diversity and OMF localization in roots*

253 PCoA results conducted using generated OTUs from both ITS sequenced data showed distinct
254 groupings of fungal communities among the three development stages—seed, young plant, and
255 adult plant (Fig. 2), but ANOSIM did not give a significant result for ITS2 ($p < 0.05$). R-value
256 of 0.3913 (sig. = 0.0419) for ITS1 and 0.2047 (sig. = 0.1965) for ITS2 shows that the fungal
257 compositions between the stages were not distinguished (Clarke 1993) (Fig. 2). R-value
258 between ITS1 and ITS2 communities has different significance level but both values imply
259 that the degree of discrimination is not changed. The community structure similarities were
260 also supported by Pielou evenness (J') and SEI, where fungal diversity in all samples was not
261 significantly different (Fig. S2). Ascomycota and Basidiomycota were the most prevalent
262 phyla at the phylum level, with coverage of above 50% in each sample (Fig. S3). The other
263 phyla were Chytridiomycota, Mortierellomycota, and Mucoromycota, which were found in
264 smaller amounts.

265 In *Rhizoctonia*-like fungi, *Ceratobasidium* was found in trace amounts in seed samples
266 but was unexpectedly found only in one young root sample. It was also found in two other
267 adult root samples but only in trace amounts. Another similar case is in *Serendipita*, which

268 was relatively abundant only in seed samples. *Tulasnella* was very limited in seed samples but
269 gradually increased in young and adult root samples (Fig. 3A, S4). Thus, while the whole
270 fungal community did not alter, existence of *Rhizoctonia*-like fungi (*Ceratobasidium*,
271 *Serendipita*, and *Tulasnella*) tended to change over time following the growth and
272 development of *V. falcata*.

273 Both ITS sequences exhibited relatively similar diversity indices. However, ITS2 has been
274 considered a suitable marker for revealing the operational taxonomic richness and taxonomy
275 specifics of fungal communities due to the broader taxonomic information (Yang et al. 2018).
276 Therefore, this study mainly focused on the ITS2 sequences in subsequent analysis.

277

278 *Identification of Rhizoctonia-like fungal OTUs*

279 Among all basidiomycetous fungal sequences, fourteen OTUs annotated as *Rhizoctonia*-like
280 genera (Table S5) were extracted for the heatmap diagram (Fig. 3A). ML phylogenetic trees
281 based on the representative sequences of each OTU were constructed to see whether the fungi
282 belong to a particular OMF species in their respective families (Fig. 3B). Five
283 *Ceratobasidium* OTUs (accession numbers LC602782–LC602785) were closely related to a
284 mycobiont of epiphytic orchid *Taeniophyllum glandulosum* isolated in Japan (LC405936)
285 (Rammitsu et al. 2019). Six *Serendipita* OTUs (LC602788–LC602792) assigned to
286 Sebacinaceae were divided into two clades inside Serendipitaceae: two OTUs were related to
287 *Serendipita herbamans* (NR144842), an endophyte of *Bistorta vivipara* (Polygonaceae)
288 (Riess et al. 2014) in one clade, and the other four OTUs were close to *S. indica* (NR166023,
289 KF061284, MH863568), a well-known endophyte occurring in several flowering plants
290 (Weiβ et al. 2016). Two *Tulasnella* OTUs (LC602793 and LC602794) were related to *T.*
291 *irregularis* (EU218889) and *T. amonilioides* (JF907601 and JF907599), mycobionts first

292 reported in *Dendrobium affine* (syn. *dicuphum*) and *Encyclia dichroma*, respectively (Warcup
293 and Talbot 1980; Almeida et al. 2014).

294

295 *Isolation of Rhizoctonia-like fungi from plant samples*

296 We initially attempted to isolate pure fungal cultures from all samples (seeds, protocorms, and
297 roots) to verify that *V. falcata* associated with *Rhizoctonia*-like fungus during the
298 development *in situ*. However, since no germinating seeds were found, roots of randomly
299 selected young and adult plants were only used for the fungal isolation. We could only isolate
300 two pure isolates of *Rhizoctonia*-like fungi from these root sections despite more than 30
301 attempts, including those with conspicuous symbiotic regions. We faced two major challenges
302 to obtain a pure culture, which include: (1) most pelotons were already digested, and (2) other
303 endophytic ascomycetous fungi—mostly those morphologically resembling *Trichoderma*,
304 *Cladosporium*, or *Phoma*—often outgrew preferred *Rhizoctonia*-like fungi in the isolation
305 media. In root samples, ascomycetous fungi were found in the epidermis with its conidial
306 form (Fig. 4A). Based on the conidia structure, some of these fungi were identified as
307 *Lasiodiplodia* and *Pleosporales* (Zhang et al. 2012). However, upon further examination into
308 exodermis, no fungi colonized the exodermal cells. Instead, *Rhizoctonia*-like fungi formed
309 peloton in exodermal passage cells. Based on hyphal morphology, it resembles *Rhizoctonia*-
310 like fungus isolated from roots: both possess hyphae with irregular width, commonly called
311 monilioid hyphae (Fig. 4B, S5). Upon forming peloton inside passage cells, the *Rhizoctonia*-
312 like fungi infiltrate cortical cells to form the peloton network. Additionally, passage cells are
313 concentrated in lower part of the root. Following this, OMF is also mostly found in the same
314 part (Fig. 4C).

315 The isolated *Rhizoctonia*-like fungi were named BI-103P from young and DE-52P
316 from the adult plant root segments (Table 3, Fig. S6A, B). Morphologically, those fungal
317 strains followed common descriptions for *Rhizoctonia*: branching at a right angle, constriction
318 of hyphae at the site of branching, occasionally visible dolipore septa, and septation at a short
319 distance after branching (Ogoshi 1975). The ITS sequences of these isolates were subjected to
320 pairwise DNA alignment, a feature of Mycobank (<https://www.mycobank.org/>) and BLAST,
321 which revealed that both strains belong to Ceratobasidiaceae. These strains were closest to
322 AB507066.1, an uncultured *Ceratobasidium* from another epiphytic orchid *Phalaenopsis* (syn.
323 *Sedirea*) *japonica* from Miyazaki Prefecture in southern Japan (Yukawa et al. 2009). We also
324 found that the hyphae are binucleate, indicating that these fungi are traditionally classified
325 into 'binucleate *Rhizoctonia*' (Fig. S6C, D).

326

327 *In vitro* seed germination using isolated *Ceratobasidium* strains and *Ascomycota* fungi
328 *V. falcata* seeds were used for symbiotic germination using isolated *Ceratobasidium* strains
329 and other *Rhizoctonia*-like fungi strains including *Serendipita* and *Tulasnella* obtained from
330 culture stock centers (Table 1). Seeds inoculated with compatible OMF started to undergo
331 imbibition and usually formed rhizoids upon entering stage 2 (Fig. S1A). Protocorms started
332 to turn greenish at the onset of stage 3, and shoot primordium was developed as an irregular
333 protrusion on the terminal part (Fig. S1B). This protrusion will eventually form a crest (Fig.
334 S1C). Compared to other stages, stage 4 protocorms were rarely observed. This stage is
335 characterized by the formation of the first leaf (Fig. S1C). Based on fluorescence imaging,
336 fungal colonization started from the suspensor and spread up to 75% of protocorm size (Fig.
337 S1D).

338 Based on the germination stage description summarized in Table 2, four of six
339 Ceratobasidium strains (C. sp. BI (BI-103P), C. sp. DE (DE-52P), C. sp. TA1, and C. sp.
340 TA2) yielded remarkably higher GI than others based on Kruskal-Wallis test ($p < 0.05$)
341 (Fig. 5A). Following GI, symbiotic cell count also increased. Protocorms yielded from
342 suitable fungal treatments also had a high symbiotic cell count (Fig. 5B). It was found that
343 these four strains are included in the same phylogenetic clade (Fig. 6). However, few
344 symbiotic cells were found in other Ceratobasidium, Serendipita, and Tulasnella treatments.
345 These strains could only induce germination until stage 1 even after eight weeks. The
346 protocorms kept swollen, but no pathogenic effect was observed, indicating that these
347 strains simply did not further associate with protocorms, and the swelling was merely a
348 result of imbibition. These results indicated that *V. falcata* seeds may have specificity
349 toward a group of Ceratobasidium fungi.

350 During the process of isolating the *Rhizoctonia*-like fungi from root samples, two
351 Ascomycota fungi *Pyrenopeziza* (NE-4) and *Fusarium* (MI-5) (Table 3), were also
352 isolated and identified. Since these are known as pathogenic fungi, the effects of these non-
353 *Rhizoctonia*-like fungi on *V. falcata* seeds were also analyzed using *in vitro* germination
354 assay. At the early stage, seeds were swelling and colonized by *Pyrenopeziza* but
355 eventually killed after pycnidia formation, indicated by the blackening of seeds (Fig. 7A).
356 Similarly, the seeds sown on *Fusarium* were heavily colonized and were eventually
357 degraded (Fig. 7B). These results suggested the importance of partitioning between
358 ascomycetous and *Rhizoctonia*-like fungi inside the roots. Additionally, these
359 ascomycetous fungi were incompatible with *V. falcata* seeds for germination.

360

361 **Discussion**

362 While most reports on mycorrhizal associations of the Vandeae tribe come from the
363 Angraecinae subtribe (angraecoids), reports on the Aeridinae subtribe members are still
364 minimal. This study focused on *V. falcata* fungal community structure of the three
365 developmental stages, i.e., seeds, young plants, and adult plants. This study emphasizes this
366 point to show how an orchid maintains its inner fungal community in each developmental
367 stage. All observations provided several findings. Firstly, Ascomycota was the dominant
368 phylum in all examined seeds, young plants, and adult plants. Secondly, ascomycetous, some
369 of which are potential pathogenic fungi, colonized epidermal areas of *V. falcata* roots, while
370 *Rhizoctonia*-like fungi (OMF) colonized the cortical area. Thirdly, *V. falcata* associates with a
371 group of *Ceratobasidium* fungi for seed germination.

372 Although amplicon sequencing results are not thought to directly reflect fungal community
373 outside samples (i.e., bark surface), the results suggest that the growing substrate does not
374 necessarily provide suitable conditions for OM establishment in epiphytic orchids. Based on
375 the information obtained from PCoA, it was shown that the fungal community in seeds, young,
376 and adult plants were similar with slight differences. Ascomycetous fungal classes, such as
377 Sordariomycetes, Dothideomycetes, and Leotiomycetes frequently occur in all samples, and
378 most of the members are known to be saprobic or parasitic in several habitats, including tree
379 surface where epiphytic orchids coexist (Schoch et al. 2009; Herrera et al. 2010). Seeds
380 landing on bark become the potential hosts of these fungi, especially for *Rhizoctonia*-like
381 fungi, present on the same site. Although it is unknown whether the proportion of
382 ascomycetous and *Rhizoctonia*-like fungi on *D. kaki* bark is similar to that inside *V. falcata*
383 seeds, in the end, ascomycetous fungi will be dominant in the seeds. Even if compatible
384 *Rhizoctonia*-like fungus is present inside the seeds, ascomycetous fungi could encompass the
385 seeds even before germination occurs. Severe infection of *Pyrenophaetopsis* and *Fusarium*,

386 which were isolated from healthy roots upon inoculation with these fungi, indicates that the
387 presence of ascomycetous fungi is a potential hinderance for *V. falcata* germination. As
388 with any endophytic relationship, there is a balanced state between endophyte and roots
389 where the endophyte inhabits within the root without damage to the root. However, when
390 the endophyte was grown on nutrient rich media, it may exhibit virulence against the host
391 (Sarsaiya et al. 2020). In this study, *V. falcata* seeds dispersed on the substrate was
392 vulnerable to *Pyrenopeziza* and *Fusarium*.

393 In the case of *Rhizoctonia*-like fungi, sequence reads in *Serendipita* OTUs were high in
394 seeds, but they much lower in young and adult roots. Conversely, little reads in *Tulasnella*
395 were found in seeds, but its occurrence increases in young and adult roots. The occurrence of
396 *Serendipita* OTUs compared to that of *Ceratobasidium* and *Tulasnella* in seeds indicates the
397 shifting of *Rhizoctonia*-like fungi preference during development but may not necessarily
398 reflect the actual OM association. If *Serendipita* is the OMF of *V. falcata*, seeds in baiting
399 samples should have germinated. Although the number of OTU sequences for *Serendipita*,
400 *Tulasnella*, and *Ceratobasidium* were different at each developmental stage as mentioned, the
401 function of these *Rhizoctonia*-like fungi is difficult to be speculated based only on the current
402 data and needs to be further investigated.

403 Among all fungi isolated from root sections, *Ceratobasidium* sp. BI and *C. sp.* DE from
404 young and adult plant roots were confirmed to associate with *V. falcata* due to their capability
405 to propagate seed germination. Interestingly, another strain *Ceratobasidium* sp. TA2 isolated
406 from an epiphytic orchid *Taeniophyllum glandulosum* in Shizuoka Prefecture (Rammitsu et al.
407 2019) induced better germination results. These three *Ceratobasidium* strains formed a similar
408 clade in the phylogenetic analysis. Therefore, it is suggested that *V. falcata* associates with a
409 narrow range of *Ceratobasidium* in seed germination. Associating with various fungi is

410 advantageous if the OMF occurrence is sporadic, which allows the orchid to readily develop
411 with any compatible fungus available on each growing site (Xing et al. 2019). Generally, it is
412 accepted that orchids with high mycorrhizal specificity are most likely to be rare due to high
413 dependency on OMF distribution in their natural habitats. In the case of *V. falcata*, its
414 distributions were constricted from central to southern Japan with various types of
415 phorophytes (Suetsugu et al. 2015; Rammitsu et al. 2019, 2021). Accordingly, *V. falcata* has
416 high phenotypic variation even for wild plants across Japan, causing such extensive
417 association to be beneficial to the plant for distribution.

418 We propose that the partitioning of OMF and ascomycetous fungi protects the mycorrhizal
419 root. In this study, ascomycetous fungi mainly detected in *V. falcata* roots were
420 Sordariomycetes, Dothideomycetes, and Leotiomycetes, commonly known as saprobes and
421 pathogens on tree bark (Naranjo-Ortiz and Gabaldón 2019). Primarily based on their saprobic
422 nature, it is plausible that these fungi mainly colonize *D. kaki* bark, and through the orchid
423 root-bark interface, these fungi further penetrate velamen. Although OMF can penetrate into
424 cortical cells, invasion of the ascomycetous fungi is inhibited by exodermis, thus
425 accumulating them inside velamen. Orchid roots typically contain exodermis with
426 lignification of the tangential walls and smaller, non-lignified passage cells that allow OMF to
427 penetrate the cortical cells (Esnault et al. 1994). It is also reported that the passage cell is
428 related to OMF colonization; that is, the root part with denser passage cells has more OMF
429 colonization (Chomicki et al. 2014). Based on these concepts, we also confirmed that passage
430 cells exist in both root surfaces, those attached to bark and those exposed to the air, and the
431 lower part attached to bark had dense passage cells, which was related to higher mycorrhizal
432 colonization in this part. While passage cells are constantly available for OMF to infiltrate,
433 the upper parts of the root mostly remain uncolonized. The exact explanations for this finding

434 are still lacking, but we suggest that chemical (deposition of phenolics, etc.) or environmental
435 (light exposure, etc.) factors might be included. Further studies on how internal and external
436 factors affect epiphytic root colonization by fungi are required to elaborate on this
437 phenomenon.

438

439 **Conclusions**

440 To sum up, *V. falcata*'s fungal community structure is similar across growth development.
441 Ascomycota was the dominant phylum, while the others were found in a smaller amount,
442 even for *Rhizoctonia*-like fungi (Fig. 8). It was also confirmed that seeds of *V. falcata*
443 germinated in symbioses with *Ceratobasidium* isolated from its roots and another strain
444 isolated from another orchid. We also propose that the innate regulation of fungal entry also
445 causes this balanced fungal community and partitioning of ascomycetes as well as OMF.
446 Therefore, further studies on how root balances fungal colonization are required to decipher
447 this partitioning mechanism in *V. falcata* or any other epiphytic orchids.

448

449 **Data Accessibility**

450 The raw sequence reads have been deposited into the DNA Data Bank of Japan (DDBJ)
451 Sequence Read Archive database under the accession number DRA012420 for ITS1 and
452 DRA012422 for ITS2. OTU sequences were registered as LC602782 - LC602786 for
453 *Ceratobasidium*, LC602787 - LC602792 for *Serendipita*, and LC602793 - LC602794 for
454 *Tulasnella*. ITS sequences of isolated *Ceratobasidium* were registered as LC600231 for BI-
455 103P and LC600232 for DE-52P.

456

457 **Author Contributions**

458 GCP, CM, MY, and HK designed the experiments; GCP and IN performed the experiments
459 and analyzed the sequencing data; GCP, CM, MY, and HK wrote the manuscript. All authors
460 approved the final manuscript.

461

462 **Acknowledgments**

463 We are grateful to the Japanese Ministry of Education, Culture, Sports, Science, and
464 Technology (MEXT) scholarship to GCP and Research Fellowships of Japan Society for the
465 Promotion of Science (JSPS) for Young Scientists (grant number 201801755) to CM. We also
466 thank Takahiro Yagame (Mizuho Kyodo Museum) for the provision of *Ceratobasidium* TA1-
467 1 and TA2-1, Kenji Suetsugu (Kobe University) for the critical reading of the manuscript, and
468 Rudy Hermawan (Tottori University) for technical assistance.

469

470 **Conflict of interest**

471 The authors declare no competing interests.

472

473 **References**

474 Almeida PRM, van den Berg C, Góes-Neto A (2014) *Epulorhiza amonilioides* sp. nov.: a new
475 anamorphic species of orchid mycorrhiza from Brazil. *Neodiversity* 7:1–10.

476 <https://doi.org/10.13102/neod.71.1>

477 Arditti J, Ghani AKA (2000) Numerical and physical properties of orchid seeds and their
478 biological implications. *New Phytologist* 145:367–421. <https://doi.org/10.1046/j.1469->
479 8137.2000.00587.x

480 Barthlott W, Große-Veldmann B, Korotkova N (2014) Orchid seed diversity: A scanning
481 electron microscopy survey. *Englera*, Berlin. ISBN: 9783921800928

482 Bolyen E, Rideout JR, Dillon MR, et al (2019) Reproducible, interactive, scalable and
483 extensible microbiome data science using QIIME 2. *Nature Biotechnology* 37:852–857.
484 <https://doi.org/10.1038/s41587-019-0209-9>

485 Carlsward BS, Whitten WM, Williams NH, Bytebier B (2006) Molecular phylogenetics of
486 Vandaeae (Orchidaceae) and the evolution of leaflessness. *American Journal of Botany*
487 93:770–786. <https://doi.org/10.3732/ajb.93.5.770>

488 Chomicki G, Bidel LPR, Jay-Allemand C (2014) Exodermis structure controls fungal
489 invasion in the leafless epiphytic orchid *Dendrophylax lindenii* (Lindl.) Benth. ex Rolfe.
490 *Flora* 209:88–94. <https://doi.org/10.1016/j.flora.2014.01.001>

491 Clarke KR (1993) Non-parametric multivariate analysis of changes in community structure.
492 *Australian Journal of Ecology* 18:117–143. <https://doi.org/10.1111/j.1442->
493 9993.1993.tb00438.x

494 Esnault A-L, Masuhara G, McGee PA (1994) Involvement of exodermal passage cells in
495 mycorrhizal infection of some orchids. *Mycological Research* 98:672–676.
496 [https://doi.org/10.1016/S0953-7562\(09\)80415-2](https://doi.org/10.1016/S0953-7562(09)80415-2)

497 Freitas EFS, da Silva M, Cruz E da S, et al (2020) Diversity of mycorrhizal *Tulasnella*
498 associated with epiphytic and rupicolous orchids from the Brazilian Atlantic Forest,
499 including four new species. *Scientific Reports* 10:7069. <https://doi.org/10.1038/s41598-020-63885-w>

501 Gange AC, Bower E, Stagg PG, et al (1999) A comparison of visualization techniques for
502 recording arbuscular mycorrhizal colonization. *New Phytologist* 142: 123-132.
503 <https://doi.org/10.1046/j.1469-8137.1999.00371.x>

504 Guimarães FAR, Pereira MC, Felício C da S, et al (2013) Symbiotic propagation of seedlings
505 of *Cyrtopodium glutiniferum* Raddi (Orchidaceae). *Acta Botanica Brasilica* 27:590–596.
506 <https://doi.org/10.1590/S0102-33062013000300016>

507 Hannon GJ (2010) FASTX-Toolkit.

508 Herrera P, Suárez JP, Kottke I (2010) Orchids keep the ascomycetes outside: a highly diverse
509 group of ascomycetes colonizing the velamen of epiphytic orchids from a tropical
510 mountain rainforest in Southern Ecuador. *Mycology* 1:262–268.
511 <https://doi.org/10.1080/21501203.2010.526645>

512 Hoang NH, Kane ME, Radcliffe EN, et al (2017) Comparative seed germination and seedling
513 development of the ghost orchid, *Dendrophylax lindenii* (Orchidaceae), and molecular
514 identification of its mycorrhizal fungus from South Florida. *Annals of Botany* 119:379–
515 393. <https://doi.org/10.1093/aob/mcw220>

516 Ihrmark K, Bödeker ITM, Cruz-Martinez K, et al (2012) New primers to amplify the fungal
517 ITS2 region - evaluation by 454-sequencing of artificial and natural communities. FEMS
518 Microbiology Ecology 82:666–677. <https://doi.org/10.1111/j.1574-6941.2012.01437.x>

519 Inglis PW, Marilia de Castro RP, Resende L V., Grattapaglia D (2018) Fast and inexpensive
520 protocols for consistent extraction of high quality DNA and RNA from challenging plant
521 and fungal samples for high-throughput SNP genotyping and sequencing applications.
522 PLoS ONE 13:1–14. <https://doi.org/10.1371/journal.pone.0206085>

523 Joshi N, Fass JN (2011) Sickle: A sliding-window, adaptive, quality-based trimming tool for
524 FastQ files (Version 1.33). Available at <https://github.com/najoshi/sickle>.

525 Kassambara A (2018) ggpubr: “ggplot2” Based Publication Ready Plots. R package version
526 0.2. Available at <https://CRAN.R-project.org/package=ggpubr>.

527 Kendon JP, Yokoya K, Zettler LW, et al (2020) Recovery of mycorrhizal fungi from wild
528 collected protocorms of Madagascan endemic orchid *Aerangis ellisii* (B.S. Williams)
529 Schltr. and their use in seed germination in vitro. Mycorrhiza 30:567–576.
530 <https://doi.org/10.1007/s00572-020-00971-x>

531 Kuga Y, Sakamoto N, Yurimoto H (2014) Stable isotope cellular imaging reveals that both
532 live and degenerating fungal pelotons transfer carbon and nitrogen to orchid protocorms.
533 New Phytologist 202:594–605. <https://doi.org/10.1111/nph.12700>

534 Magoč T, Salzberg SL (2011) FLASH: Fast length adjustment of short reads to improve
535 genome assemblies. Bioinformatics 27:2957–2963.
536 <https://doi.org/10.1093/bioinformatics/btr507>

537 Moore RM, Harrison AO, McAllister SM, et al (2020) Iroki: automatic customization and
538 visualization of phylogenetic trees. PeerJ 8:e8584. <https://doi.org/10.7717/peerj.8584>

539 Mújica EB, Mably JJ, Skarha SM, et al (2018) A comparision of ghost orchid (*Dendrophylax*
540 *lindenii*) habitats in Florida and Cuba, with particular reference to seedling recruitment
541 and mycorrhizal fungi. Botanical Journal of the Linnean Society 186:572–586.
542 <https://doi.org/10.1093/botlinnean/box106>

543 Naranjo-Ortiz MA, Gabaldón T (2019) Fungal evolution: major ecological adaptations and
544 evolutionary transitions. Biological Reviews 94:1443–1476.
545 <https://doi.org/10.1111/brv.12510>

546 Nilsson RH, Larsson KH, Taylor AFS, et al (2019) The UNITE database for molecular
547 identification of fungi: Handling dark taxa and parallel taxonomic classifications.
548 Nucleic Acids Research 47:D259–D264. <https://doi.org/10.1093/nar/gky1022>

549 Oberwinkler F, Riess K, Bauer R, et al (2013) Taxonomic re-evaluation of the
550 *Ceratobasidium-Rhizoctonia* complex and *Rhizoctonia butinii*, a new species attacking
551 spruce. Mycological Progress 12:763–776. <https://doi.org/10.1007/s11557-013-0936-0>

552 Ogle DH, Wheeler P, Dinno A (2021) FSA: Fisheries Stock Analysis. R package version
553 0.9.1.9000. Available at <https://github.com/droglenc/FSA>.

554 Ogoshi A (1975) Studies on the anastomosis groups of *Rhizoctonia solani* Kühn. Bull Natl
555 Inst, Agrie Sci Ser C 9:198–203

556 Oksanen J, Legendre P, O'Hara B, et al (2007) The vegan package. Community ecology
557 package 10:631–637. Available at <http://vegan.r-forge.r-project.org/>

558 Otero JT, Ackerman JD, Bayman P (2002) Diversity and host specificity of endophytic
559 *Rhizoctonia*-like fungi from tropical orchids. American Journal of Botany 89:1852–1858.
560 <https://doi.org/10.3732/ajb.89.11.1852>

561 Pujasatria GC, Miura C, Kaminaka H (2020) In vitro symbiotic germination: A revitalized
562 heuristic approach for orchid species conservation. Plants 9:1–15.
563 <https://doi.org/10.3390/plants9121742>

564 Rachanarin C, Suwannarach N, Kumla J, et al (2018) A new endophytic fungus, *Tulasnella*
565 *phu hinrongklaensis* (Cantharellales, Basidiomycota) isolated from roots of the terrestrial
566 orchid, *Phalaenopsis pulcherrima*. Phytotaxa 374:99–109.
567 <https://doi.org/10.11646/phytotaxa.374.2.1>

568 Rammitsu K, Kajita T, Imai R, Ogura-Tsujita Y (2021) Strong primer bias for Tulasnellaceae
569 fungi in metabarcoding: Specific primers improve the characterization of the mycorrhizal
570 communities of epiphytic orchids. Mycoscience 62:1–17.
571 <https://doi.org/10.47371/mycosci.2021.06.005>

572 Rammitsu K, Yagame T, Yamashita Y, et al (2019) A leafless epiphytic orchid,
573 *Taeniophyllum glandulosum* Blume (Orchidaceae), is specifically associated with the
574 Ceratobasidiaceae family of basidiomycetous fungi. Mycorrhiza 29:159–166.
575 <https://doi.org/10.1007/s00572-019-00881-7>

576 Rasmussen HN, Dixon KW, Jersáková J, Těšitelová T (2015) Germination and seedling
577 establishment in orchids: A complex of requirements. Annals of Botany 116:391–402.
578 <https://doi.org/10.1093/aob/mcv087>

579 Rasmussen HN, Rasmussen FN (2018) The epiphytic habitat on a living host: Reflections on
580 the orchid-tree relationship. *Botanical Journal of the Linnean Society* 186:456–472.
581 <https://doi.org/10.1093/botlinnean/box085>

582 Riess K, Oberwinkler F, Bauer R, Garnica S (2014) Communities of endophytic *Sebacinales*
583 associated with roots of herbaceous plants in agricultural and grassland ecosystems are
584 dominated by *Serendipita herbamans* sp. nov. *PLoS ONE* 9: e94676.
585 <https://doi.org/10.1371/journal.pone.0094676>

586 Sarsaiya S, Jain A, Jia Q, et al (2020) Molecular identification of endophytic fungi and their
587 pathogenicity evaluation against *Dendrobium nobile* and *Dendrobium officinale*.
588 *International Journal of Molecular Sciences* 21:1–16.
589 <https://doi.org/10.3390/ijms21010316>

590 Schoch CL, Sung GH, López-Giráldez F, et al (2009) The Ascomycota tree of life: A phylum-
591 wide phylogeny clarifies the origin and evolution of fundamental reproductive and
592 ecological traits. *Systematic Biology* 58:224–239. <https://doi.org/10.1093/sysbio/syp020>

593 Singh US, Kumar J (1991) Staining of nuclei in fungi by ethidium bromide. *Biotechnic and*
594 *Histochemistry* 66:266–268. <https://doi.org/10.3109/10520299109109984>

595 Suetsugu K, Tanaka K, Okuyama Y, Yukawa T (2015) Potential pollinator of *Vanda falcata*
596 (Orchidaceae): *Theretra* (Lepidoptera: Sphingidae) hawkmoths are visitors of long
597 spurred orchid. *European Journal of Entomology* 112:393–397.
598 <https://doi.org/10.14411/eje.2015.031>

599 Taylor DL, McCormick MK (2008) Internal transcribed spacer primers and sequences for
600 improved characterization of basidiomycetous orchid mycorrhizas. *New Phytologist*
601 177:1020–1033. <https://doi.org/10.1111/j.1469-8137.2007.02320.x>

602 Toju H, Tanabe AS, Yamamoto S, Sato H (2012) High-coverage ITS primers for the DNA-
603 based identification of ascomycetes and basidiomycetes in environmental samples. *PLoS*
604 ONE 7: e40863. <https://doi.org/10.1371/journal.pone.0040863>

605 Warcup JH, Talbot PHB (1980) Perfect States of Rhizoctonias Associated With Orchids. III.
606 *New Phytologist* 86:267–272. <https://doi.org/10.1111/j.1469-8137.1980.tb00787.x>

607 Weiβ M, Waller F, Zuccaro A, Selosse MA (2016) Sebacinales - one thousand and one
608 interactions with land plants. *New Phytologist* 211:20–40.
609 <https://doi.org/10.1111/nph.13977>

610 Xing X, Jacquemyn H, Gai X, et al (2019) The impact of life form on the architecture of
611 orchid mycorrhizal networks in tropical forest. *Oikos* 128:1254–1264.
612 <https://doi.org/10.1111/oik.06363>

613 Yang RH, Su JH, Shang JJ, et al (2018) Evaluation of the ribosomal DNA internal transcribed
614 spacer (ITS), specifically ITS1 and ITS2, for the analysis of fungal diversity by deep
615 sequencing. *PLoS ONE* 13:1–17. <https://doi.org/10.1371/journal.pone.0206428>

616 Yeh CM, Chung KM, Liang CK, Tsai WC (2019) New insights into the symbiotic
617 relationship between orchids and fungi. *Applied Sciences* 9:1–14.
618 <https://doi.org/10.3390/app9030585>

619 Yukawa T, Ogura-Tsujita Y, Shefferson RP, Yokoyama J (2009) Mycorrhizal diversity in
620 *Apostasia* (Orchidaceae) indicates the origin and evolution of orchid mycorrhiza.
621 American Journal of Botany 96:1997–2009. <https://doi.org/10.3732/ajb.0900101>

622 Zettler LW, Corey LL, Jacks AL, et al (2013) *Tulasnella irregularis* (Basidiomycota:
623 Tulasnellaceae) from roots of *Encyclia tampensis* in South Florida, and confirmation of
624 its mycorrhizal significance through symbiotic seed germination. Lankesteriana 13:119–
625 128. <https://doi.org/10.15517/lank.v0i0.11552>

626 Zettler LW, Poulter SB, McDonald KI, Stewart SL (2007) Conservation-driven propagation
627 of an epiphytic orchid (*Epidendrum nocturnum*) with a mycorrhizal fungus. HortScience
628 42: 135-139. <https://doi.org/10.21273/hortsci.42.1.135>

629 Zhang Y, Crous PW, Schoch CL, Hyde KD (2012) Pleosporales. Fungal Diversity 53:1–221.
630 <https://doi.org/10.1007/s13225-011-0117-x>

631

632

633 **Figure legends**

634 **Fig. 1.** Plant samples. A) Location of Mie Prefecture, Kihoku Town, and Suzuka City (green)
635 inside Japan. B) *Vanda falcata* young plant example. C) Adult plants with old, drying
636 inflorescences. D) Colonized root parts conspicuously turned yellow upon orchid mycorrhizal
637 fungi (OMF) colonization (arrowheads). E) OMF mostly colonizes the root part that attaches
638 to the bark. Bar = 1-mm.

639

640 **Fig. 2.** Beta diversity of the fungi in *Vanda falcata* based on the ITS1 and ITS2 sequences.
641 Principal coordinate analysis (PCoA) plots of ITS1 (A) and ITS2 (B) based on Bray-Curtis
642 distance showing a composition of fungal community structure in all samples, e.g., seeds
643 from seed baiting (SB, red), young plant roots (YR, green), and adult plant roots (AR, blue).
644 R-value was calculated using ANOSIM ($p < 0.05$).

645

646 **Fig. 3.** *Rhizoctonia*-like fungal OTUs inferred from amplicon sequencing results. A) Heat
647 map diagram showing *Rhizoctonia*-like fungi OTUs present in seed (SB), seedling (Y1-3),
648 and adult (A1-4) root samples. B) Maximum likelihood (ML) phylogenetic tree of OTUs
649 assigned to each order (colored branches)—Cantharellales (chartreuse) and Sebacinales (light
650 blue)—and family (arcs): Ceratobasidiaceae (green), Serendipitaceae (blue), Sebacinaceae
651 (light blue), and Tulasnellaceae (yellow). Only bootstrap numbers above 80% (dotted nodes)
652 are shown. *Clavulina caespitosa*, *Craterellus atratoides*, and *Craterellus indicus* are used as
653 outgroups from Cantharellales.

654

655 **Fig. 4.** Colonization of ascomycetous and orchid mycorrhizal fungi (OMF) inside roots. A)
656 Conidia of *Lasiodiplodia* (L) and unidentified Pleosporales (P) on the epidermis. B) OMF

657 hyphae (arrowheads) infiltrating the cortical cells (Co) through velamen (VR) and passage
658 cell (PC) of exodermis (Ex). Bar = 40 μ m. C) Localization of exodermal passage cells in the
659 upper, side, and lower parts of root (left), and those colonized by OMF (right). Different
660 letters represent significant difference by Tukey's test at $p < 0.05$.

661

662 **Fig. 5.** *In vitro* germination assay results. *Vanda falcata* seeds were inoculated with eleven
663 *Rhizoctonia*-like fungi, including those isolated in this study (BI-103P and DE-52P). Boxplots
664 showing growth index (A) and symbiotic cell count (B) after eight weeks. Different letters
665 represent significant difference by Dunn's test at $p < 0.05$.

666

667 **Fig. 6.** Maximum likelihood phylogenetic tree of *Ceratobasidium* strains, including those
668 inducing seed germination of *Vanda falcata* (red) and other isolated strains (blue). Dotted
669 nodes indicate a bootstrap number of 80% or higher. The clade containing strains with the
670 best germination output is shown in chartreuse branches. Adjacent boxes indicate the
671 nutritional mode of each species, i.e., plant-pathogen (red), saprobe (yellow), orchid
672 mycorrhizal fungus (green), and lichen-forming (blue). *Rhizoctonia solani* strains are used as
673 an outgroup (red branches).

674

675 **Fig. 7.** Infected *Vanda falcata* seeds upon inoculation with pathogenic ascomycetous fungi
676 isolated from *V. falcata* roots. A) Seeds infected with *Pyrenopeziza*. Black, swollen seed
677 (arrow) was filled with pycnidium. (B) Seed colonized by *Fusarium*. Although inconspicuous,
678 the seed starts to degrade.

679

680 **Fig. 8.** Inner fungal community composition in *Vanda falcata*. Along with growth and
681 development (i.e., from seed germination to reproductive stage), despite an increase in size
682 and trophic mode, the inner fungal community has a similar structure with Ascomycota as the
683 dominant phylum, followed by Basidiomycota. Even for Basidiomycota, *Rhizoctonia*-like
684 fungi abundance is less than half compared to other genera. Among all *Rhizoctonia*-like fungi,
685 *Ceratobasidium* is the OMF of *V. falcata* based on germination assay results, thus correlating
686 with its higher portion. Additionally, only *Rhizoctonia*-like fungus colonizes cortical cells
687 through exodermal passage cells.

688

689 **Table 1.** *Rhizoctonia*-like fungi used for *Vanda falcata* seed symbiotic germination

Treatment	Species name	Strain no.	Source	
			Host plant	Location
C.gra53	<i>Ceratobasidium gramineum</i>	MAFF235853	<i>Agrostis</i> sp.* **	Japan
C.sp.87	<i>Ceratobasidium</i> sp.	MAFF244587	<i>Dactylorhiza aristata</i>	Japan
C.sp.BI	<i>Ceratobasidium</i> sp.	N/A	this study	Japan
C.sp.DE	<i>Ceratobasidium</i> sp.	N/A	this study	Japan
C.sp.TA1	<i>Ceratobasidium</i> sp.	NBRC109234	<i>Taeniothallus glandulosum</i>	Japan
C.sp.TA2	<i>Ceratobasidium</i> sp.	NBRC109235	<i>Taeniothallus glandulosum</i>	Japan
S.ind27	<i>Serendipita indica</i>	ATCC DSM11827	<i>Prosopis juliflora</i> and <i>Zizyphus nummularia</i> * ***	India
S.ver30	<i>Serendipita vermicifera</i>	MAFF305830	<i>Cyrtostylis reniformis</i>	Australia
T.asy08	<i>Tulasnella asymmetrica</i>	MAFF305808	<i>Thelymitra epipactoides</i>	Australia
T.cal05	<i>Tulasnella calospora</i>	MAFF305805	unspecified	Australia
T.irr96	<i>Tulasnella irregularis</i>	JCM9996	<i>Dendrobium dicuphum</i>	Australia

* Non-orchidaceous plants, ** isolated as pathogen, *** isolated as endophyte

691 **Table 2.** Seed germination stage morphological descriptions

Stage	Description
0	No response
1	Imbibition, OMF starts to colonize
2	Swelling, testa rupture, formation of rhizoids
3	Formation of shoot primordium
4	Formation of first crest
5	Formation of first leaf

692

693 **Table 3.** Isolated fungi from *Vanda falcata* seedling and adult plant roots

Isolate	Source sample	Closest match in Genbank	Similarity
BI-103P	Young root	AB507066.1 uncultured Ceratobasidiaceae from <i>Sedirea japonica</i> (Miyazaki Prefecture, Japan)	97.74%
DE-52P	Adult plant root	AB507066.1 uncultured Ceratobasidiaceae from <i>Sedirea japonica</i> (Miyazaki Prefecture, Japan)	98.79%
MI-3	Young root	NR_155625.1 <i>Parateratosphaeria karinae</i> holotype CBS128774 (South Africa)	84.20%
MI-4	Young root	NR_153559.1 <i>Atrocalyx bambusae</i> holotype MFLU 11-0150 (Thailand)	97.25%
MI-5	Young root	NR_159064.1 <i>Subulicystidium harpagum</i> isotype KAS L 1726a (Réunion Island)	89.26%
NE-4	Adult plant root	NR_160059.1 <i>Pyrenophaetopsis microspora</i> type material CBS 102876 (Montenegro)	99.81%
NE-5	Adult plant root	NR_137617.1 <i>Fusicolla violacea</i> holotype CBS:634.76 (Iran)	80.92%

694

Fig. 1

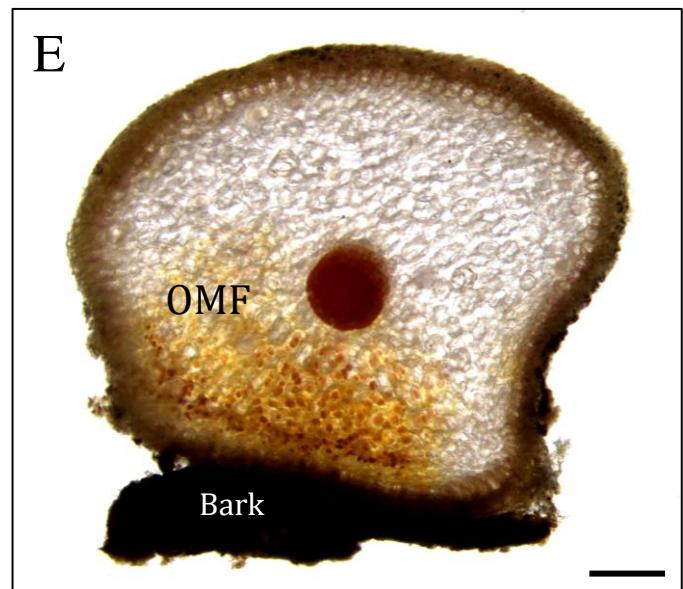
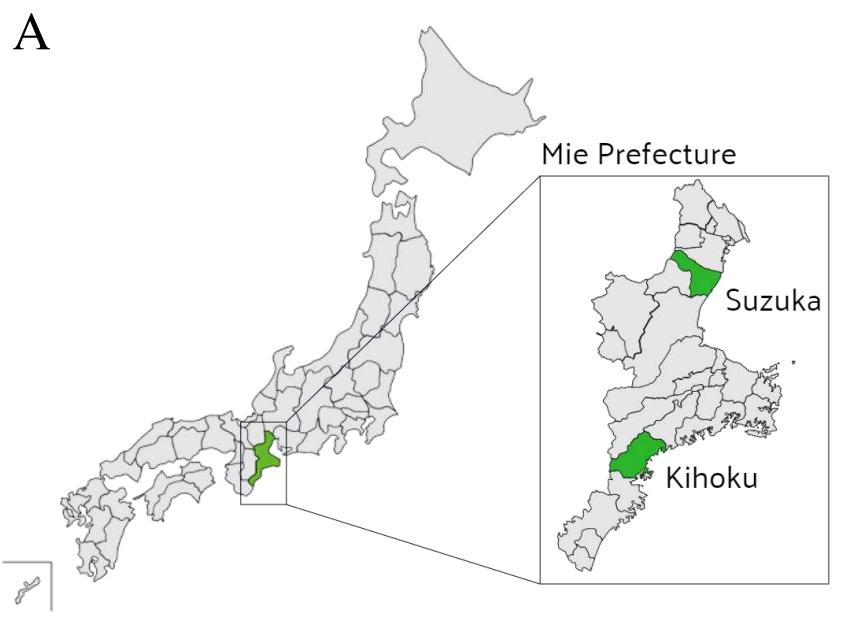
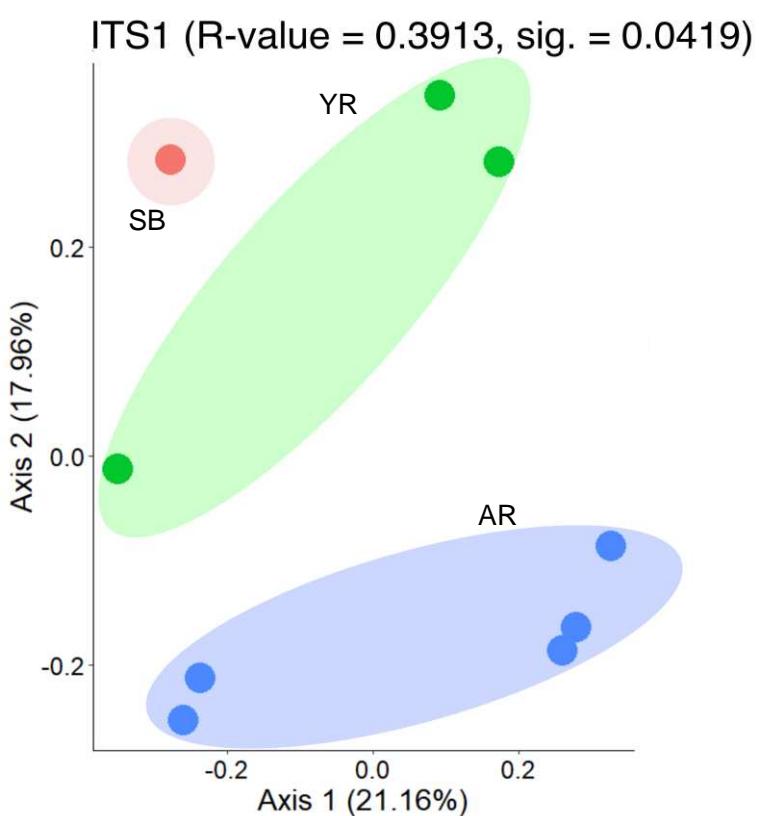




Fig. 2

A

B

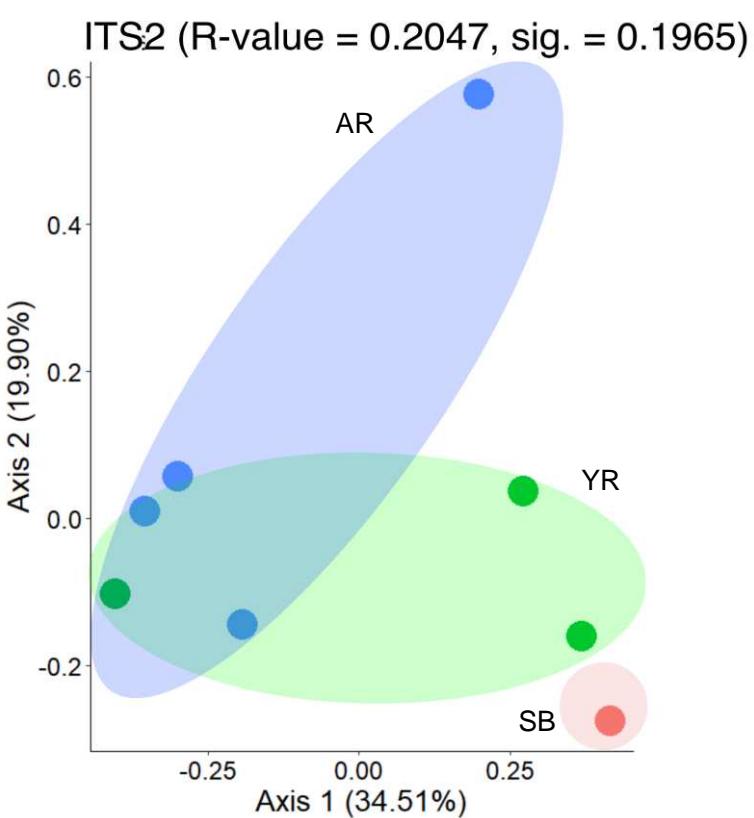


Fig. 3

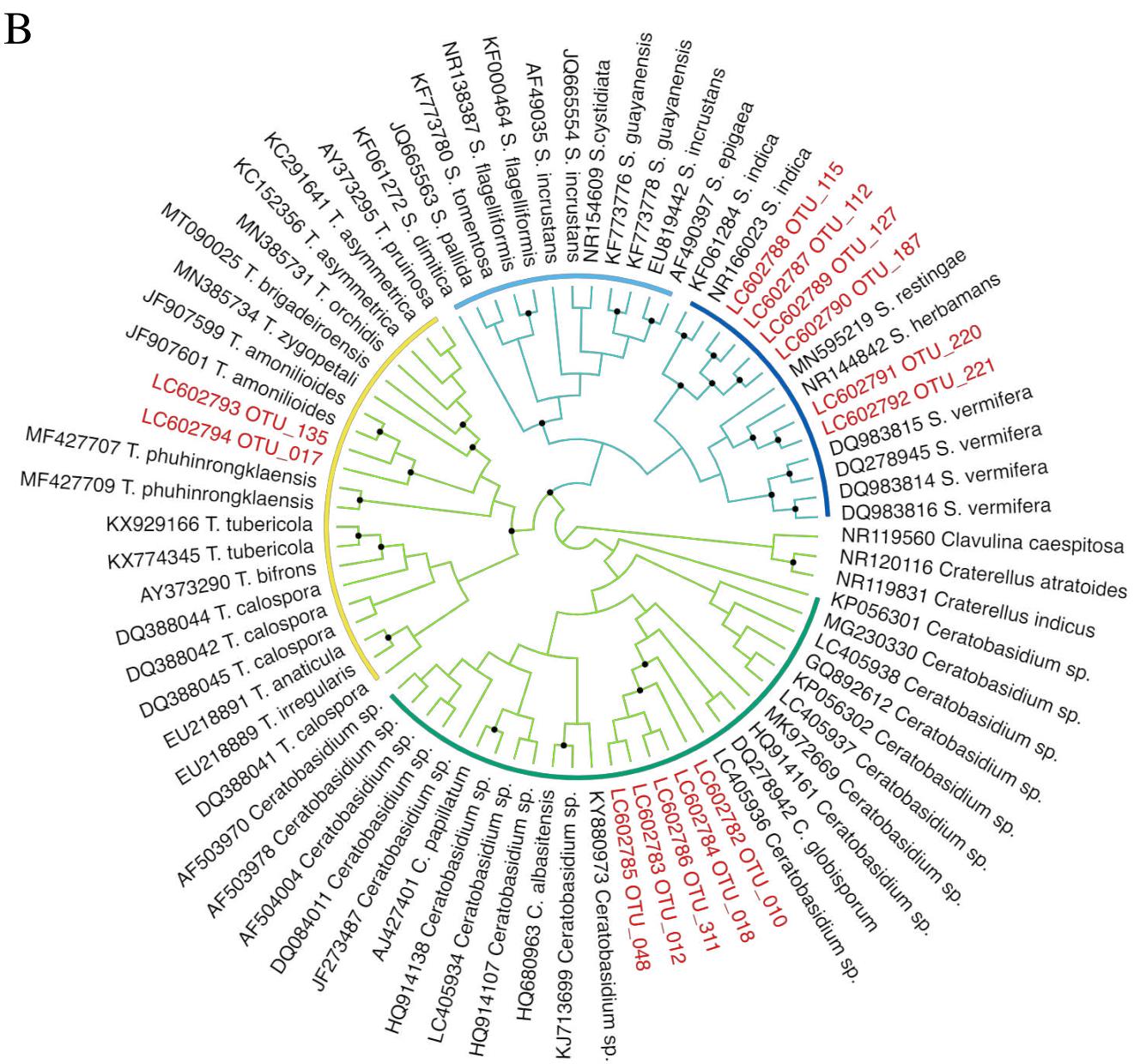
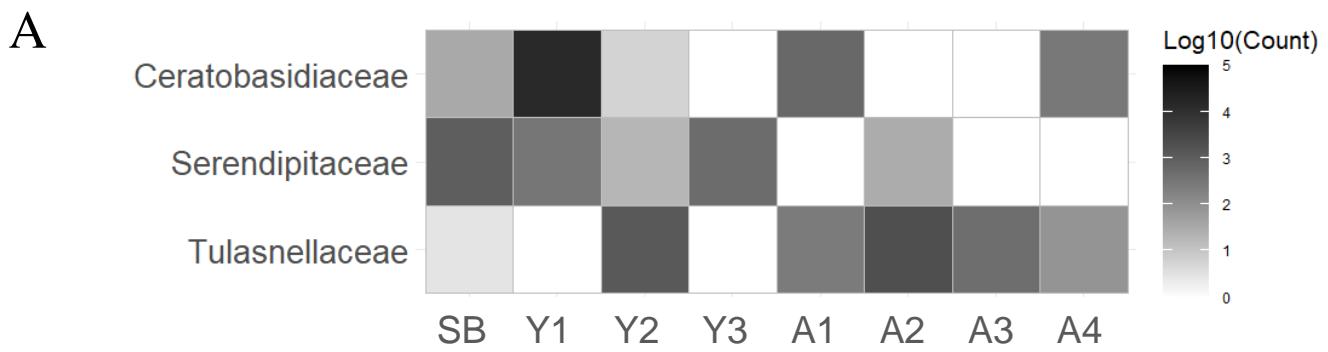



Fig. 4

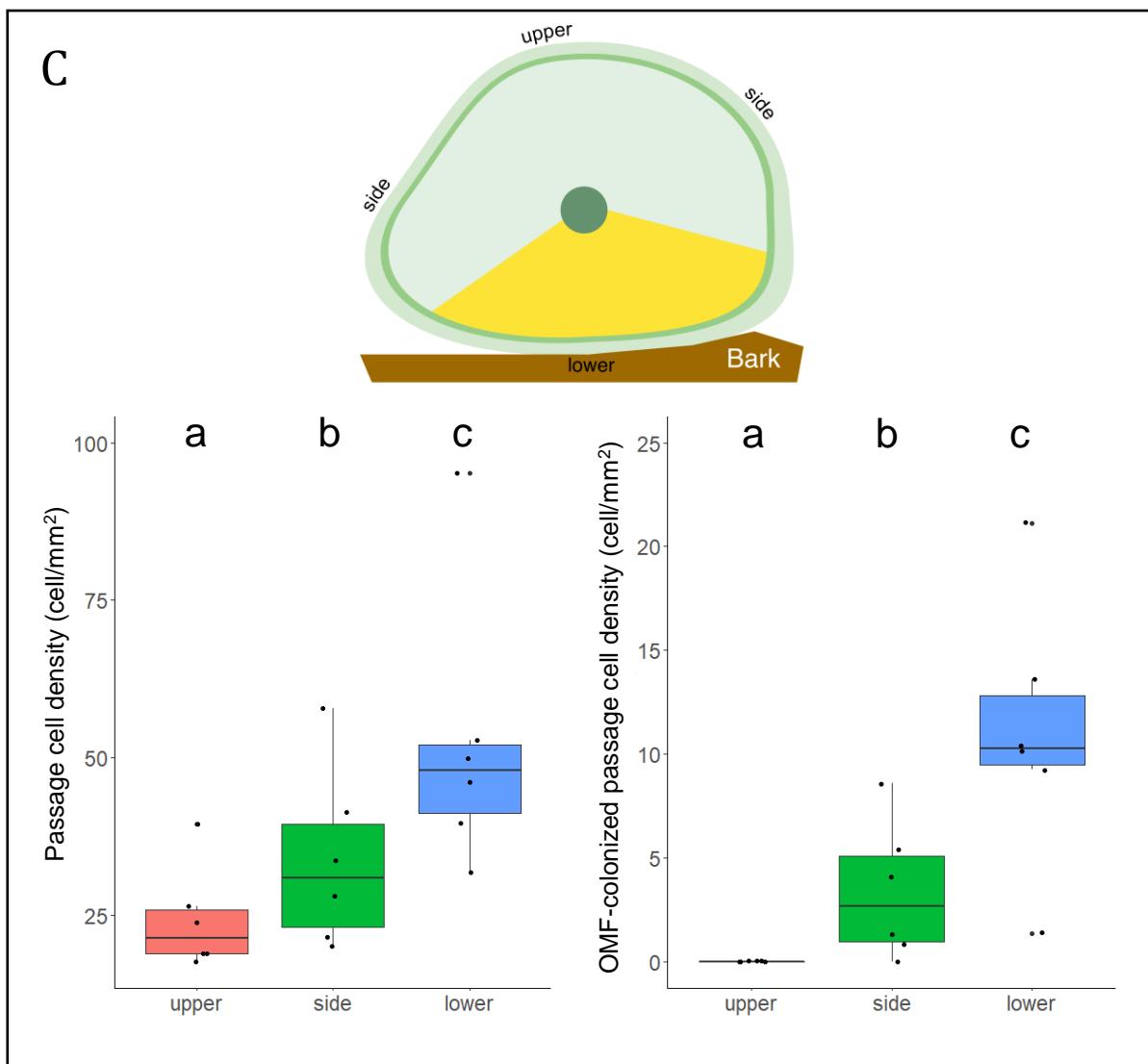
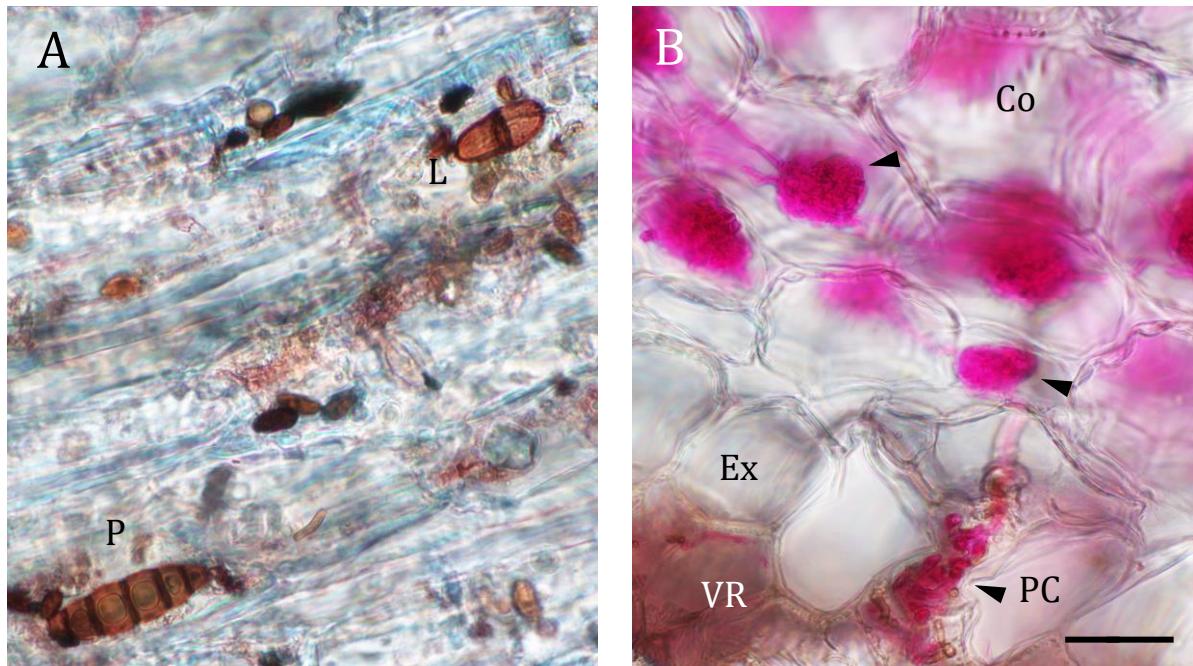
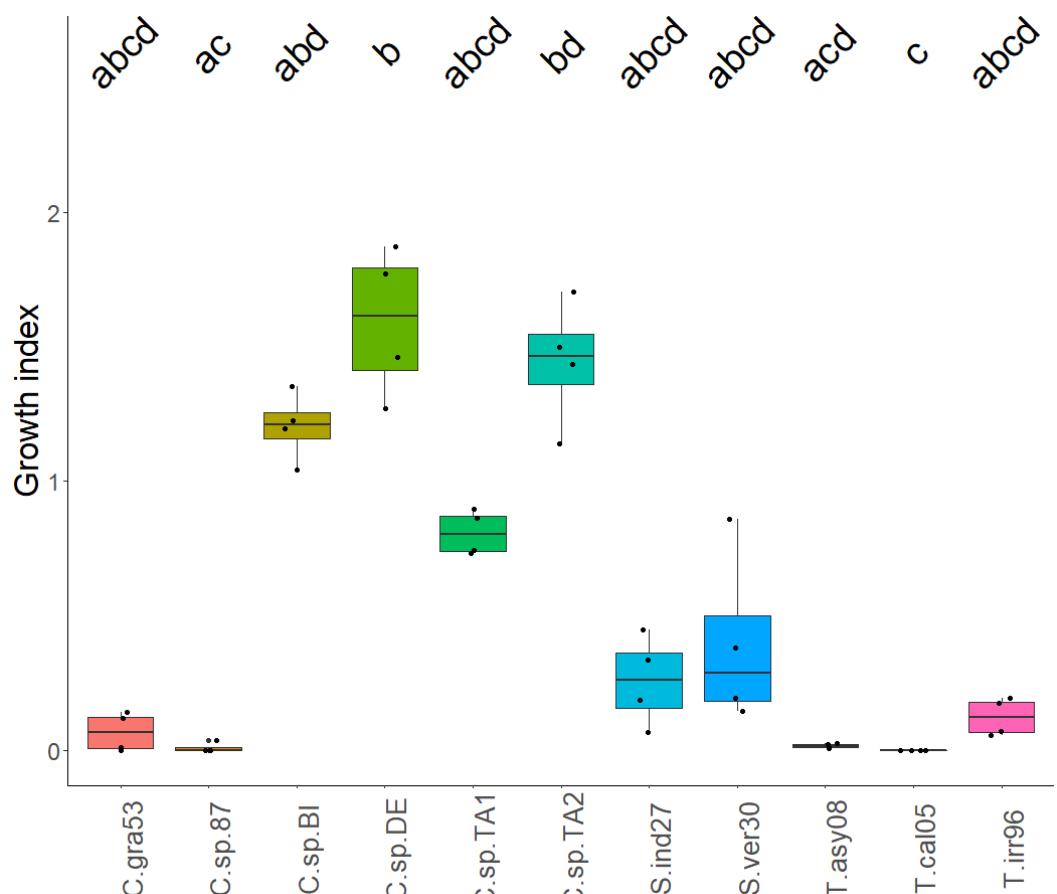




Fig. 5 A

B

Fig. 6

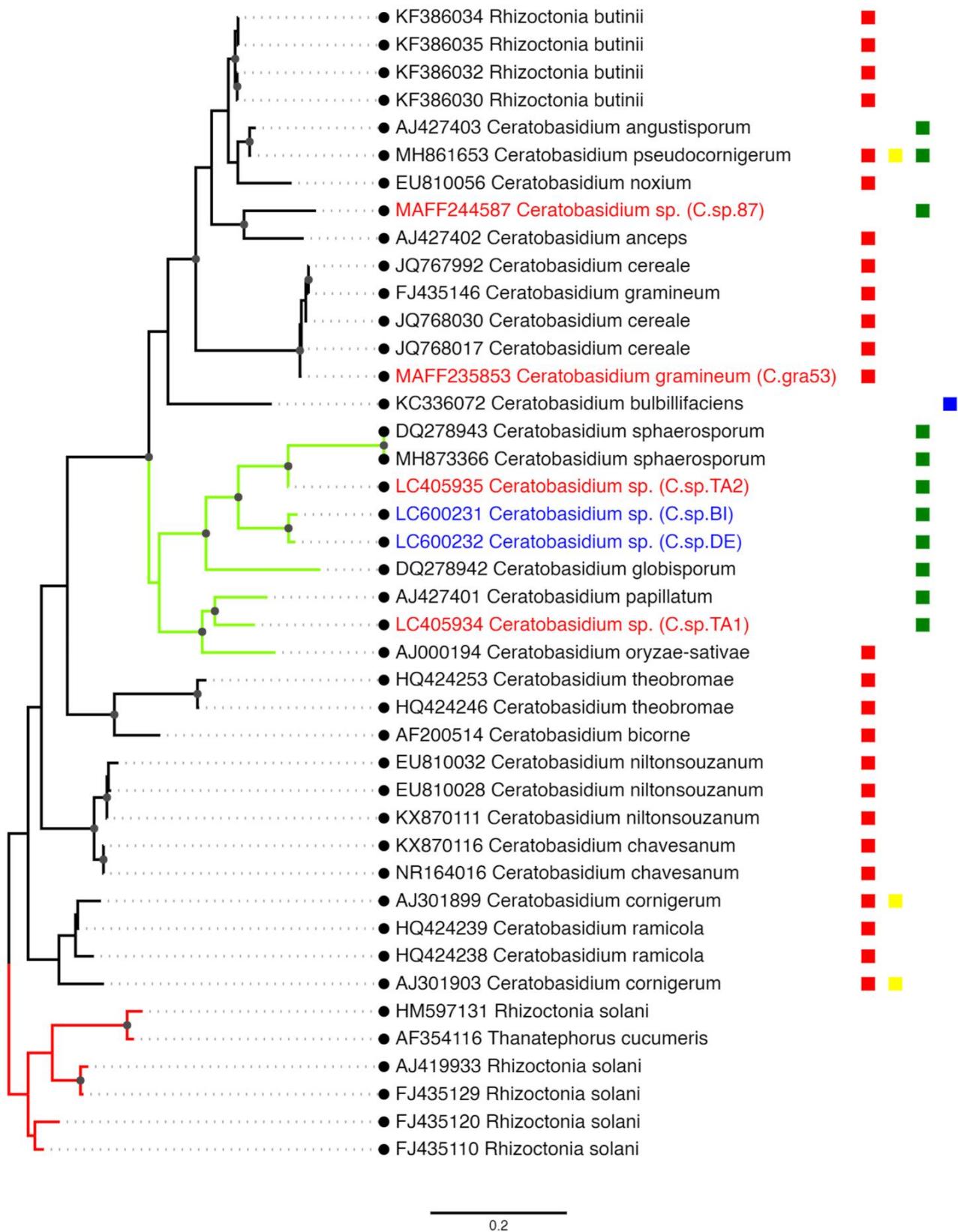
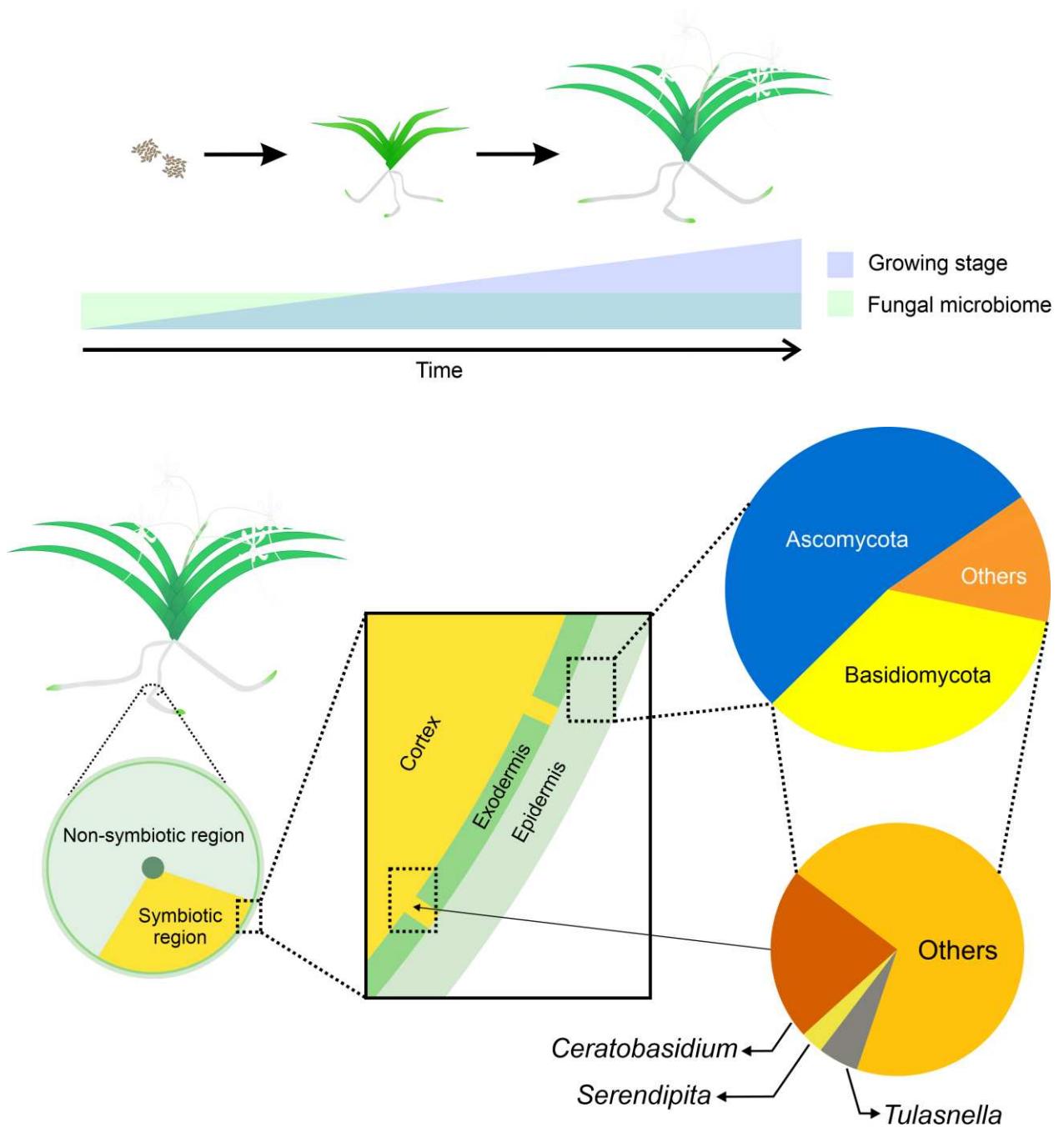



Fig. 7

Fig. 8

