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A Lévy flight is a random walk with step sizes that follow
a heavy-tailed probability distribution. This type of random
walk, with many small steps and a few large ones, has inspired
many applications in genetic programming and evolutionary al-
gorithms in recent years, but is yet to be applied to RNA de-
sign. Here we study the inverse folding problem for RNA, viz.
the discovery of sequences that fold into given target secondary
structures. We implement a Lévy mutation scheme in an up-
dated version of aRNAque, an evolutionary inverse folding al-
gorithm, and apply it to the design of RNAs with and without
pseudoknots. We find that the Lévy mutation scheme increases
the diversity of designed RNA sequences and reduces the aver-
age number of evaluations of the evolutionary algorithm. The
results show improved performance on both Pseudobase++
and the Eternal00 datasets, outperforming existing inverse
folding tools. We propose that a Lévy flight offers a better stan-
dard mutation scheme for optimizing RNA design.

Introduction

The function of non-coding RNA, which includes gene ex-
pression regulation (miRNAs, piRNAs, IncRNAs), RNA
maturation (snR- NAs, snoRNAs) and protein synthesis
(rRNAs, tRNAs), strongly depends on the hierarchical fold-
ing of RNA molecules. Given their sequence of bases (pri-
mary structure), RNAs fold into secondary structures, such as
stem loops and pseudoknots, before folding into higher level
(tertiary and quaternary) structures. The secondary structure
can be considered as a list of base pairs, including canon-
ical, Watson-Crick pairs (1, 2); non-canonical interactions,
that occur with reduced frequency; and crossing or pseudo-
knot interactions (when two canonical or non-canonical in-
teractions cross each other) (3).

Here, we consider the RNA secondary structure inverse fold-
ing problem. The goal is to find RNA sequences that fold
into a given target secondary structure, with or without pseu-
doknots. Considering pseudoknots in designing functional
RNAs is vital given their role in realising biological func-
tions. In modern bio-engineering, one must solve the RNA
inverse folding problem to be able to design RNA molecules
performing specific functions (4-6).

A key prerequisite to addressing the RNA inverse problem
is a reliable solution to the folding problem. Computation-
ally folding an RNA molecule consists of searching in the
space of all possible secondary structures for one that min-
imises the free energy. Designing sequences for a pseudo-
knotted target structure is computationally more expensive
than a pseudoknot-free target because of the complexity of

the folding algorithms required. Specifically, the time com-
plexity of the pseudoknot-free secondary structure prediction
is O(n3) when using dynamic programming approaches such
as RNAfold (7), or less with heuristic folding methods (e.g.
O(n) for LinearFoldand O(n?logn) for RAFFT (8)). By
contrast, when considering a special class of pseudoknots,
the time complexity of folding goes up to O(n) for an exact
thermodynamic prediction using a dynamic programming ap-
proach such as (9). In this work, we consider only two heuris-
tics tools (IPknot (10) and HotKnots (11)) chosen for
their lower time complexity O(n?).

Many of the studies addressing the inverse folding of RNA
considered only pseudoknot-free secondary structures (12—
19). There are, however, three exceptions, the most recent of
which is ant aRNA (20) utilising the "ant-colony" optimisa-
tion technique. The technique begins with an initial sequence
generated via a weighted random search; next the solutions
are evaluated, and the sequence fitness values are used to re-
fine the weights and improve the sequences over generations.
Another approach (Modena) implements a multi-objective
evolutionary algorithm measuring both the stability of the de-
signed sequences and the similarities of folded sequences to
the target structure. Although the first version of Modena
was implemented for pseudoknot-free structure (15), it has
since been extended to support pseudoknotted RNAs and a
new crossover operator (21). Inv (22) is the first inverse
folding tool handling pseudoknotted RNA target structures,
but is restricted to a specific type of pseudoknot pattern called
3-crossing nonplanar pseudoknots. In a prior publication
(23), we presented aRNAque, a simple evolutionary inverse
folding algorithm guided by local (or one-point mutations).
Although a local search can efficiently discover optima in a
simple landscape, more complex landscapes pose challenges
to the design of evolutionary algorithms that rely solely on
local search. This is especially true on a neutral landscape
where local search may be inefficient or risk getting stuck
on a plateau (or local optimum). To avoid this pitfall, we
propose here an extension of aRNAque which implements a
new mutation scheme inspired by Lévy flights (called Lévy
mutation) and supports pseudoknotted RNA target structures.

Lévy flights are random walks with a heavy-tailed step size
distribution. The concept originates in the work of Mandel-
brot on the fluctuation of commodities prices in the 1960s
(24), but has since found many more physical applications
(25). Lévy flights also play a key role in the context of an-
imal foraging, perhaps because they provide an optimal bal-
ance between exploration and exploitation (26, 27). For a
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Fig. 1. (A) Samplings Binomial and Zipf distributions for the best binomial mutation rate u* (respectively c¢* for the best Zipf exponent parameter). Both distributions have
a mean of 8.7 point mutations for a sequence of length 88 nucleotides. (B) Tuning of binomial mutation rate parameter. For each p € [0, 1] with a step size of 0.005 and
the pseudoknotted target PKB00342 of length 88, 50 sequences were designed using aRNAque. (B) shows the median generations and the success percentage vs. the
mutation rate (p). The best mutation rate is ©* = 0.085 (with a median number of generation 93.5 and a success rate of 92%). (C) Tuning of Levy exponent. Similar
to (B), for each ¢ € [0, 7] with a step size of 0.1 and for the same pseudoknotted target structure, 100 sequences were designed using aRNAque. It shows the median
generations and the percentage of success vs. the exponent parameter (c). The Zipf exponent distribution that produced the highest success rate and the minimum number

of generations is ¢* = 1.4.

recent review of applications of Lévy flights in biology from
the molecular to the ecological scale (28).

Similar to a Lévy flight, a Lévy mutation scheme allows si-
multaneous search at all scales over the landscape. New mu-
tations most often produce nearby sequences (one-point mu-
tations), but occasionally generate mutant sequences which
are far away in genotype space (macro-mutations). In this
work, the distribution of the number of point mutations at
every step is taken to follow a Zipf distribution (29).

The optimization approach implemented in aRNAque is an
evolutionary algorithm, which consists of a population of
RNA sequences that all perform separate random walks (are
mutated) in the space of possible sequences, and whose step-
sizes (number of point mutations) follow a Zipf distribution.
After each step, the probability of surviving is proportional to
the fitness of each sequence, which is evaluated by its ability
to approximate a given target structure. We provide a brief
overview of that approach in the following subsection.
Earlier works have applied similar ideas in genetic program-
ming (30), and in differential evolutionary algorithms (31).
This has motivated us to investigate the possible benefit of a
Lévy flight in the design of RNA sequences. Using a Lévy
mutation scheme, we aim to speed up our prior evolution-
ary algorithm and increase the diversity of the designed RNA
sequences.

We compared the performance of our newly modified ver-
sion of aRNAque to existing tools through a benchmark
on two well-known RNA datasets: PseudoBase+++ (32)
for the pseudoknotted targets and Eternal00 (33) for the
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pseudoknot-free targets. On the PseudoBase+++ dataset,
the difference between the local mutation and the Lévy mu-
tation with respect to the number of generations (or evalua-
tions) was significant (with a p-value =~ 0.00004). Using the
two pseudoknot folding tools HotKnots and IPknot, our
designed sequences were of better quality than the ones pro-
duced by ant aRNA regarding the average base pair distance
to the desired targets. We performed a second benchmark on
the Eternal00 dataset. Considering the Eternal00-V1
dataset, the Lévy mutation scheme solved 89 targets out of
100 whereas the local mutation scheme solved 91/100. To
compare aRNAque to the existing pseudoknot-free inverse
folding tools, we combined the two benchmark results ob-
tained using both mutation schemes, and we counted the total
number of distinct targets solved. aRNAque designs success-
fully 92/100 of the Eternal00-V1 dataset and 94/100 of
the Eternal 00-V2 dataset.

Evolutionary algorithm (EA)

Below, we provide a brief overview of our evolutionary
search algorithm and our mutation scheme.

Overview. In general, an evolutionary search algorithm on
any fitness landscape consists of three main parts, which in
the context of RNA inverse folding are as follows:

* Initialization: generating a random initial population of
RNA sequences compatible with the given target sec-
ondary structure.
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Fig. 2. Types of pseudoknots accommodated by aRNAque. (A) Hairpin (H-type)
pseudoknot. (B) Bulge (B-type) pseudoknot. (C) Complex hairpin (cH-type) pseu-
doknot. (D) Kissing hairpin (K-type) pseudoknot.

 Evaluation and selection: evaluating a population of
RNA sequences consists of two steps: 1) fold each se-
quence into a secondary structure and assign it a weight
based on its similarity to the target structure. 2) se-
lect a weighted random sample with replacement from
the current population to generate a new population. A
detailed description of the objective function used in
aRNAque is provided in (23).

e Mutation (or move) operation: define a set of rules or
steps used to produce new sequences from the selected
or initial ones. This component is elaborated further in
the next subsection.

Mutation mode. For a given target RNA secondary structure
ox of length L, the space of potential solutions to the inverse
folding problem is S = {A4,C,G,U}~. An evolutionary al-
gorithm explores the space .S through its move (or mutation)
operator.

Given a sequence ¢ € S, a sequence ¢’ € S is said to be an
n-point mutation of ¢ if it differs from ¢ at n nucleotides; i.e.
h(¢,¢’) = n where h(.,.) is the hamming distance on S.

A mutation mode is a random variable U taking values in
{1,...,L}. P(U =n) is defined as the probability that, ex-
actly n nucleotides, selected uniformly at random undergo
point mutation during a mutation event. U can generally be
any probability distribution. We examined the binomial and
Zipf distributions for local and Levy search, respectively:

¢ Binomial mutation: U has a binomial distribution:

=)

for some 0 <y <1, such that u = p -I. We can think
of this mutation mode arising from each nucleotide of
an RNA sequence independently undergoing a point
mutation with probability y, i.e. u is the per-nucleotide
or point mutation rate.

P(U
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* Lévy mutation: U has a Zipf distribution given by:

_ 1/n°

Sk /K

where ¢ > 0 is the value of the exponent characterizing
the distribution. Larger values of ¢ are associated a

greater proportion of local search, while smaller values
of ¢ imply a greater proportion of long-range search.

P(U=n)

Figure 1 shows the distribution of the number of point mu-
tations on a sequence of length 88 nucleotides for both mu-
tation schemes. Both distributions have the same mean, but
differ markedly in their tails.

Algorithm 1: Mutation algorithm

/x P'={S]...S},}: the mutated population;
P={S1...Sx}: a list of n RNA sequences to
mutate;

Po ={way,weu,wgc}: a vector containing the
weights associated with each canonical base
pairs;

Py ={wa,wy,wc,wg}: a vector containing the
weights associated with each nucleotide;

D:

a given probability distribution (Lévy or

Binomial) with parameter p and L where L is
the length of the target RNA structure */
Input: P, D(p,L), Pc, Py

Output: P’

{Bi} ~D(p,L), where i € {1,2,...,n};

random numbers that follows a given
distribution D(p,L)

// Draw n
(Lévy or Binomial). Bj; is
the number base pairs to mutate
{U;} ~D(p,L), where i € {1,2,...,n};

random numbers that follows the same

// Draw n

distribution as B; U; is
the number non base pair positions to mutate

for i€ {1,2,...,n} do

S’ < P;; // Assign the sequence S;€P to S’

for j€{1,2,..U;} do

re {172w..rL}fVZI; // select uniformly a
random position in the RNA sequence S’

n; € {A,U,C,G} ~ Py, // select a random
nucleotide n; with respect to Py

S;<——nj;
position j in the RNA sequence S’ with

(Lévy or Binomial).

// replace the nucleotide at

L "
or j€{1,2,..B;}do
k; e {AU,UA,CG,GC,GU, UG} ~ Pc ;

// select a random base pair k; with

)

respect to Pgo
be{(b1,b2)i} ~U;
random pair of base pair positions
/ .
Sy kj;
nucleotides at the base pair position

| bi€b by kEk;
P~ PuUS;

// select uniformly a

// replace respectively the

// Add S’ to the list P’
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Fig. 3. Parameter tuning for both binomial and Lévy mutation schemes.(A) Lévy mutation parameter tuning. Histogram of best exponent parameter (c*) for a set of 81 target
structures with different pseudoknot patterns and various lengths. The most frequent best exponent value is 1. (B) Binomial parameter tuning. Histogram of best mutation
rate (™) for the same set of 81 target structures with different pseudoknots and various lengths. The most frequent best parameter is the low mutation rate (~ 1/L). For

some structures, the best mutation rate is the high one for different lengths as well.

Throughout this paper, local mutation will refer to binomial
distributed mutation with parameter & 1/L or to one-point
mutation.

New feature. We provide an updated version of aRNAque
supporting pseudoknotted RNA target structures. In addition
to the support for pseudoknots, we provide an updated muta-
tion mode based on a Zipf distribution. We present the muta-
tion algorithm in Algorithm 1.

Parameter analysis and benchmark

Here we analyse mutation parameters and compare local and
Lévy mutation modes.

Benchmark data.To compare our new version of
aRNAque with existing tools in the literature, we used
the PseudoBase++ benchmark datasets for pseudo-
knotted target structures and the Eternal00 dataset for
pseudoknot-free target structures.

The PseudoBase++ is a set of 265 pseudoknotted RNA
structures used to benchmark Modena. It was initially 304
RNA secondary structures, but we excluded 37 because they
had non-canonical base pairs. We then grouped the structures
into four pseudoknot motifs (Figure 2): 209 hairpin pseu-
doknots (H), 29 bulge pseudoknots (B), 8 complex hairpin
pseudoknots (cH) and 4 kissing hairpin pseudoknots (K).
The Eternal00 dataset (34) is available in two versions
and both contain a set of 100 target structures extracted
from the EteRNA puzzle game and classified by their de-
gree of difficulty. The Eternal00-V1 was initially de-
signed using ViennaRNA 1.8.5, which relies on Turner1999
energy parameters (35). Out of the 100 target secondary
structures, 19 turned out to be unsolvable using the recent
version of ViennaRNA (Version 2.14). Subsequently, an
Eternal00-V2 (34) was released in which the 19 targets
were slightly modified to be solvable using ViennaRNA
2.14.
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Methodology. The best mutation parameters obtained for
both binomial and Lévy mutation modes are used to bench-
mark and compare the results on the entire datasets of
RNA structures (265 from PseudoBase++ and 100 from
EteRNA100). First, for each of the 365 target structures
o™ in the datasets, 20 sequences were designed. To measure
the performance of each tool, each designed sequence s is
folded into a secondary structure o and the similarities be-
tween o and ¢* are computed using the base pair distance.
Second, for each of the Eternal00 target structures and a
maximum of 5000 generations (i.e. 50,000 evaluations), 5
to 20 runs were launched independently, which results in at
least 5 designed sequences per target. We define success rate
simply as the number of successfully designed targets. A tar-
get is considered successfully designed when at least one of
the designed sequence folds into the target structure (i.e. the
Hamming distance between the target structure and the MFE
structure is 0).

Folding tools. Two tools for pseudoknotted RNA folding are
considered in this work: HotKnots and IPknot. For
pseudoknot-free RNA folding, we used RNAfold. For
the mutation parameter analysis presented here, we used
IPknot, and both HotKnots and IPknot for pseudo-
knotted targets. Furthermore, we considered pkiss, a well
know tool for K-type pseudoknot prediction, but since the
PseudoBase++ dataset contains just 5 K-type pseudo-
knotted structures and pKiss has higher time complexity
(O(n")), we did not find it efficient for the benchmark we
performed.

Mutation parameters tuning. One of the main challenges for
an evolutionary algorithm is to find optimum parameters such
as mutation rate, population size and selection function. We
used 81 pseudoknotted targets with lengths from 25 to 181
nucleotides for the mutation parameter analysis. We set the
maximum number of generations to 200 and the population
size to 100. The best mutation parameters (¢* for Levy and
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median number of generations difference between the Levy mutation and the one point mutation is 48 generations.

w* for Binomial) are those that have the lowest median num-
ber of generations.

* Binomial mutation: From Figure 1B, the critical range
was identified to be from 0 to 0.2 and as y becomes
greater than 0.1, the success rate decreases and the av-
erage number of generations increases. For each of the
80 target structures with pseudoknots, 20 sequences
were designed for p € [0,0.2] with a step size of 1/L.
Figure 3B shows the histogram of the best mutation
rate found for each target structure. Two main regimes
are apparent: one where the best mutation rate is very
low mutation rate (= 1/L) and another where the high
mutation rate is optimal.

e Lévy mutation: From Figure 1C, the critical range of
¢ was identified to be [1,2]. For ¢ € [1,2] and a step
size of 0.1, an optimum exponent parameter ¢* was in-
vestigated for all the 80 target structures. Figure 3A
shows the histogram of ¢*. Contrary to binomial mu-
tation, the optimum exponent parameter does not vary
too much (Vo, ¢* =~ 1).

Figure 3A shows that when using a Lévy mutation, the opti-
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mal mutation rate is approximately the same for most target
structures. In contrast, the optimum binomial mutation rate
parameter p* mostly varies with different targets. In Fig-
ures 1B and 1C, although both mutation modes have approx-
imately the same success rates (88% for the Lévy over 100
runs and = 92% for the binomial over 50 runs), the Lévy
flight mutation scheme is more robust to different targets.
Moreover, the median number of generations for the Lévy
mutation is lower (54 for the Lévy and 92 for the binomial
mutation mode), thus enhancing efficiency.

Results

We first compared the performance of aRNAque using Lévy
mutations to the previous version with local mutations (bi-
nomial number of point-mutations with p ~ 7). Sec-
ondly, we compared aRNAque to the existing pseudoknotted
RNA inverse folding tool ant aRNA using two folding tools:
HotKnots and IPknot. We used the PseudoBase++
dataset for both benchmarks.

Performance on PseudoBase++: Levy mutation vs.
local mutation. Figure 4 shows box plots for the base pair
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Fig. 5. aRNAque vs antaRNA on PseudoBase++ dataset using both TPknot and HotKnots. Lower values imply better performance. (A, B) Base pair distance
distributions of the designed sequences to the target structure for different pseudoknot types. (C,D) Mean base pair distance against target lengths.

distance (Hamming distance) and the number of generations
for increasing target lengths under our two mutation schemes:
binomial at low mutation rate (or one point mutation) and the
Lévy mutation. For each pseudoknotted RNA target structure
in the PseudoBase++ dataset, we designed 20 sequences.
The results show that using the Lévy mutation instead of a
local mutation scheme can significantly increase the perfor-
mance of aRNAque. The gain was less significant in terms of
designed sequences quality (base pair distance distributions,
with a ¢-value ~ —1.04 and p-value ~ 0.16) but more sig-
nificant in terms of the average minimum number of genera-
tions needed for successful matches to target structures (with
a t-value ~ —3.6 and p-value ~ 0.0004). This result demon-
strates a substantial gain in computational time when using a
Lévy mutation scheme instead of a purely local mutation.

Performance on PseudoBase++: aRNAque VS.
antaRNA. We also compared the sequences designed using
aRNAque (with the Lévy mutation scheme) to those pro-
duced by antaRNA. Figures 5A and 5C show the base pair
distance distribution for each category of pseudoknotted tar-
get structure and the mean of the base pair distance plotted
against the length of the target secondary structures. For
antaRNA, and when using IPknot as a folding tool, find-
ing sequences that fold into the target becomes increasingly
difficult with pseudoknot complexity (median base-pair dis-
tance distribution increases). On the other hand, aRNAque’s
performance improves as pseudoknot complexity increases
(e.g. the mean base-distance decreases with the pseudoknot
complexity). In sum, as target length increases, the perfor-
mance of antaRNA (local search) is considerably degraded
, while aRNAque (Lévy flight search) stays almost constant.
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A second benchmark using HotKnots as a folding tool
was performed on the same dataset. For both aRNAque
and antaRNA, the more complex the pseudoknot motifs,
the worse is the tool performance (median of the base-
pair distance distribution increases). Figures 5B and 5D
show the base pair distance distributions with respect to the
pseudoknot motifs for both aRNAque and antaRNA. Even
though both performances degrade as target length increases,
aRNAque (Lévy flight evolutionary search) performance re-
mains almost constant for all the target lengths greater than
60.

Performance on Eternal0O0 dataset. Finally, we per-
formed a third benchmark on the Eternal00 datasets.
First, on the Eternal00-V1 dataset, the Lévy flight ver-
sion of aRNAque successfully designed 89% of the targets
and the one-point mutation (local mutation) version achieved
91% of success, suggesting that for some target structures,
local mutation can outperform the Lévy mutation scheme.
Combining the two datasets, aRNAque solved in total 92%
of the targets of Eternal00-V1 (see also (23)).

When analysing the performance of Lévy flight for low and
high base pair densities separately, the median number of
generations of high base pair density targets was lower than
the one with low base-pair density (8 generations for high
density and 18 for the low base pairs density targets). The
same observation was drawn for the success rate. For the
low base-pair density targets, the Lévy flight achieved 87%
(49/56) success whereas, for the high base-pair density, it
achieved 91% (40/44). The same analysis can be done when
comparing the one-point mutation results for the high-density
targets to the Lévy flight mutation. The median number of
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over time. (C) Mean Shannon entropy of the population sequences over time for both binomial and Lévy mutation. (D) The max fitness plotted against the entropy over time.

generations for the low-density targets when using a one- aRNAque. The main advantage of using a Lévy flight over
point mutation operator was 34 (respectively 24 for the high local search is a reduction in the number of generations re-
base pair density targets) (see Figure 7A). quired to reach a target. This is because the infrequent oc-
A new benchmark was performed on Eternal00-V2 with currence of a high number of mutations allow a diverse set
aRNAque achieving a 93% success rate. Compared to re- of sequences among early generations, without the loss of ro-

cently reported benchmark results (34), aRNAque achieved bust local search. One consequence is a rapid increase in the
similar performance to NEMO on Eterna-V2: one target population mean fitness over time and a rapid convergence to

was unsolved by all existing tools and one target solved only the target of the maximally fit sequence. To illustrate that ad-
by NEMO remained unsolved by aRNAque. vantage, we ran aRNAque starting from an initial population
of unfolded sequences, both for a "one point mutation" and
Discussion "Lévy mutation".
In this work, we provide an updated version of aRNAque Figures 6A and 6B show respectively the max/mean fitness
implementing a Lévy flight mutation scheme that supports over time and the number of distinct structures discovered
pseudoknottted RNA secondary structures. A Lévy mutation over time plotted against the number of distinct sequences.
scheme offers a compromise between exploration at different When using a Lévy mutation scheme, the mean fitness in-
scales (mostly local search combined with rare big jumps). creases faster in the beginning but stays lower than that us-
Such a scheme significantly improves the number of evalu- ing local mutations. Later in the optimisation, a big jump
ations needed to hit the target structure, while better avoid- or high mutation on the RNA sequences produces structures
ing getting trapped in local optima. The benefit of a Lévy with fewer similarities and, by consequence, worse fitness.
flight over a purely local (binomial with y << 1 or a sin- In the (5 — 10)”‘ generation, sequences folding into the tar-
gle point mutation) mutation search allowed us to explore get are already present in the Lévy flight population, but only
RNA sequence space at all scales. Such a heavy tailed dis- at the 30" generation are similar sequences present in the
tribution in the number of point mutations permitted the de- local search population. The Lévy flight also allows explo-
sign of more diversified sequences and reduced the number ration of both the structure and sequence spaces, providing a
of evaluations of the evolutionary algorithm implemented in higher diversity of structures for any given set of sequences
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(Figure 6B). Using the mean entropy of structures as an alter-
nate measure of diversity, we see in Figures 6C and 6D how a
Lévy flight achieves high diversity early in implementation,
and maintains a higher diversity over all generations than a
local search algorithm. Although the mutation parameters
Pc and Py influence the absolute diversity of the designed
sequences, the Lévy flight always tends to achieve a higher
relative diversity than local search, all else being equal.

We argue that the improved performance of the Lévy Flight
over local search in target RNA structures is due to the high
base pair density of pseudoknotted structures. Given that
pseudoknots present a high density of interactions, there are
dramatic increases in possible incorrect folds and thus in-
creasing risk of becoming trapped near local optima (36).
Large numbers of mutations in paired positions, as implied
by a heavy tailed distribution, are necessary to explore radi-
cally different solutions.

To illustrate that Lévy Flight performance was due to base
pair density, we clustered the benchmark datasets into two
classes: one cluster for target structures with low base pair
density (density < 0.5) and a second cluster for structures
with high base pair density (density > 0.5). Figure 7B shows
the number of target sequences available in each low and high
density category. The number of targets available in each cat-
egory are colored according to the percentage of pseudoknot-
free targets (Eternal00-V1) vs. targets with pseudoknots
(Pseudobase++), showing that pseudoknots are strongly
associated with high base pair densities: 71% of the pseu-
doknotted target structures have a high base pair density. In
contrast, the Eternal00 dataset without psuedoknots has
somewhat higher representation at low base pair density. If
it is true that improved Lévy Flight performance is indeed
tied to base pair density, it is possible that similar heavy-
tailed mutation schemes could offer a scalable solution to
even more complex inverse folding problems.

Although we believe that Lévy flight-type search algorithms
offer a valuable alternative to local search, we emphasise that

8 | bioRxiv

its enhanced performance over say ant aRNA is partially in-
fluenced by the specific capabilities of existing folding tools.
Their limitations may account for the degradation of these
tools as the pseudoknot motifs get increasingly complex. An-
other possible limitation is the fact that most target structures
were relatively easy to solve (in less than 100 generations),
which possibly allowed local search to perform better than
Lévy search in some cases. Further research on more chal-
lenging target structures will improve our understanding of
which conditions favour local vs. Lévy search.

Conclusion

Our results show general and significant improvements in the
design of RNA secondary structures compared to the stan-
dard evolutionary algorithm mutation scheme with a mu-
tation parameter =~ 1/L, where L is the sequence solution
length. Not only does Lévy flight mutations lead to greater
diversity of RNA sequence solutions, but it also reduces the
evolutionary algorithm’s number of evaluations, thus improv-
ing computing time.

Availability

The implementation in python3.7 of aRNAque and
the benchmark data used in this manuscript are avail-
able at https://github.com/strevol-mpi-mis/
aRNAque. We also provide the scripts used for the figures
and the designed sequences analysis.
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