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A Lévy flight is a random walk with step sizes that follow

a heavy-tailed probability distribution. This type of random

walk, with many small steps and a few large ones, has inspired

many applications in genetic programming and evolutionary al-

gorithms in recent years, but is yet to be applied to RNA de-

sign. Here we study the inverse folding problem for RNA, viz.

the discovery of sequences that fold into given target secondary

structures. We implement a Lévy mutation scheme in an up-

dated version of aRNAque, an evolutionary inverse folding al-

gorithm, and apply it to the design of RNAs with and without

pseudoknots. We find that the Lévy mutation scheme increases

the diversity of designed RNA sequences and reduces the aver-

age number of evaluations of the evolutionary algorithm. The

results show improved performance on both Pseudobase++

and the Eterna100 datasets, outperforming existing inverse

folding tools. We propose that a Lévy flight offers a better stan-

dard mutation scheme for optimizing RNA design.

Introduction

The function of non-coding RNA, which includes gene ex-

pression regulation (miRNAs, piRNAs, lncRNAs), RNA

maturation (snR- NAs, snoRNAs) and protein synthesis

(rRNAs, tRNAs), strongly depends on the hierarchical fold-

ing of RNA molecules. Given their sequence of bases (pri-

mary structure), RNAs fold into secondary structures, such as

stem loops and pseudoknots, before folding into higher level

(tertiary and quaternary) structures. The secondary structure

can be considered as a list of base pairs, including canon-

ical, Watson-Crick pairs (1, 2); non-canonical interactions,

that occur with reduced frequency; and crossing or pseudo-

knot interactions (when two canonical or non-canonical in-

teractions cross each other) (3).

Here, we consider the RNA secondary structure inverse fold-

ing problem. The goal is to find RNA sequences that fold

into a given target secondary structure, with or without pseu-

doknots. Considering pseudoknots in designing functional

RNAs is vital given their role in realising biological func-

tions. In modern bio-engineering, one must solve the RNA

inverse folding problem to be able to design RNA molecules

performing specific functions (4–6).

A key prerequisite to addressing the RNA inverse problem

is a reliable solution to the folding problem. Computation-

ally folding an RNA molecule consists of searching in the

space of all possible secondary structures for one that min-

imises the free energy. Designing sequences for a pseudo-

knotted target structure is computationally more expensive

than a pseudoknot-free target because of the complexity of

the folding algorithms required. Specifically, the time com-

plexity of the pseudoknot-free secondary structure prediction

is O(n3) when using dynamic programming approaches such

as RNAfold (7), or less with heuristic folding methods (e.g.

O(n) for LinearFold and O(n2 logn) for RAFFT (8)). By

contrast, when considering a special class of pseudoknots,

the time complexity of folding goes up to O(n6) for an exact

thermodynamic prediction using a dynamic programming ap-

proach such as (9). In this work, we consider only two heuris-

tics tools (IPknot (10) and HotKnots (11)) chosen for

their lower time complexity O(n4).

Many of the studies addressing the inverse folding of RNA

considered only pseudoknot-free secondary structures (12–

19). There are, however, three exceptions, the most recent of

which is antaRNA (20) utilising the "ant-colony" optimisa-

tion technique. The technique begins with an initial sequence

generated via a weighted random search; next the solutions

are evaluated, and the sequence fitness values are used to re-

fine the weights and improve the sequences over generations.

Another approach (Modena) implements a multi-objective

evolutionary algorithm measuring both the stability of the de-

signed sequences and the similarities of folded sequences to

the target structure. Although the first version of Modena

was implemented for pseudoknot-free structure (15), it has

since been extended to support pseudoknotted RNAs and a

new crossover operator (21). Inv (22) is the first inverse

folding tool handling pseudoknotted RNA target structures,

but is restricted to a specific type of pseudoknot pattern called

3-crossing nonplanar pseudoknots. In a prior publication

(23), we presented aRNAque, a simple evolutionary inverse

folding algorithm guided by local (or one-point mutations).

Although a local search can efficiently discover optima in a

simple landscape, more complex landscapes pose challenges

to the design of evolutionary algorithms that rely solely on

local search. This is especially true on a neutral landscape

where local search may be inefficient or risk getting stuck

on a plateau (or local optimum). To avoid this pitfall, we

propose here an extension of aRNAque which implements a

new mutation scheme inspired by Lévy flights (called Lévy

mutation) and supports pseudoknotted RNA target structures.

Lévy flights are random walks with a heavy-tailed step size

distribution. The concept originates in the work of Mandel-

brot on the fluctuation of commodities prices in the 1960s

(24), but has since found many more physical applications

(25). Lévy flights also play a key role in the context of an-

imal foraging, perhaps because they provide an optimal bal-

ance between exploration and exploitation (26, 27). For a
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Fig. 1. (A) Samplings Binomial and Zipf distributions for the best binomial mutation rate µ∗ (respectively c∗ for the best Zipf exponent parameter). Both distributions have

a mean of 8.7 point mutations for a sequence of length 88 nucleotides. (B) Tuning of binomial mutation rate parameter. For each µ ∈ [0,1] with a step size of 0.005 and

the pseudoknotted target PKB00342 of length 88, 50 sequences were designed using aRNAque. (B) shows the median generations and the success percentage vs. the

mutation rate (µ). The best mutation rate is µ∗ = 0.085 (with a median number of generation 93.5 and a success rate of 92%). (C) Tuning of Levy exponent. Similar

to (B), for each c ∈ [0,7] with a step size of 0.1 and for the same pseudoknotted target structure, 100 sequences were designed using aRNAque. It shows the median

generations and the percentage of success vs. the exponent parameter (c). The Zipf exponent distribution that produced the highest success rate and the minimum number

of generations is c∗ = 1.4. .

recent review of applications of Lévy flights in biology from

the molecular to the ecological scale (28).

Similar to a Lévy flight, a Lévy mutation scheme allows si-

multaneous search at all scales over the landscape. New mu-

tations most often produce nearby sequences (one-point mu-

tations), but occasionally generate mutant sequences which

are far away in genotype space (macro-mutations). In this

work, the distribution of the number of point mutations at

every step is taken to follow a Zipf distribution (29).

The optimization approach implemented in aRNAque is an

evolutionary algorithm, which consists of a population of

RNA sequences that all perform separate random walks (are

mutated) in the space of possible sequences, and whose step-

sizes (number of point mutations) follow a Zipf distribution.

After each step, the probability of surviving is proportional to

the fitness of each sequence, which is evaluated by its ability

to approximate a given target structure. We provide a brief

overview of that approach in the following subsection.

Earlier works have applied similar ideas in genetic program-

ming (30), and in differential evolutionary algorithms (31).

This has motivated us to investigate the possible benefit of a

Lévy flight in the design of RNA sequences. Using a Lévy

mutation scheme, we aim to speed up our prior evolution-

ary algorithm and increase the diversity of the designed RNA

sequences.

We compared the performance of our newly modified ver-

sion of aRNAque to existing tools through a benchmark

on two well-known RNA datasets: PseudoBase+++ (32)

for the pseudoknotted targets and Eterna100 (33) for the

pseudoknot-free targets. On the PseudoBase+++ dataset,

the difference between the local mutation and the Lévy mu-

tation with respect to the number of generations (or evalua-

tions) was significant (with a p-value ≈ 0.00004). Using the

two pseudoknot folding tools HotKnots and IPknot, our

designed sequences were of better quality than the ones pro-

duced by antaRNA regarding the average base pair distance

to the desired targets. We performed a second benchmark on

the Eterna100 dataset. Considering the Eterna100-V1

dataset, the Lévy mutation scheme solved 89 targets out of

100 whereas the local mutation scheme solved 91/100. To

compare aRNAque to the existing pseudoknot-free inverse

folding tools, we combined the two benchmark results ob-

tained using both mutation schemes, and we counted the total

number of distinct targets solved. aRNAque designs success-

fully 92/100 of the Eterna100-V1 dataset and 94/100 of

the Eterna100-V2 dataset.

Evolutionary algorithm (EA)

Below, we provide a brief overview of our evolutionary

search algorithm and our mutation scheme.

Overview. In general, an evolutionary search algorithm on

any fitness landscape consists of three main parts, which in

the context of RNA inverse folding are as follows:

• Initialization: generating a random initial population of

RNA sequences compatible with the given target sec-

ondary structure.
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Fig. 2. Types of pseudoknots accommodated by aRNAque. (A) Hairpin (H-type)

pseudoknot. (B) Bulge (B-type) pseudoknot. (C) Complex hairpin (cH-type) pseu-

doknot. (D) Kissing hairpin (K-type) pseudoknot.

• Evaluation and selection: evaluating a population of

RNA sequences consists of two steps: 1) fold each se-

quence into a secondary structure and assign it a weight

based on its similarity to the target structure. 2) se-

lect a weighted random sample with replacement from

the current population to generate a new population. A

detailed description of the objective function used in

aRNAque is provided in (23).

• Mutation (or move) operation: define a set of rules or

steps used to produce new sequences from the selected

or initial ones. This component is elaborated further in

the next subsection.

Mutation mode. For a given target RNA secondary structure

σ∗ of length L, the space of potential solutions to the inverse

folding problem is S = {A,C,G,U}L. An evolutionary al-

gorithm explores the space S through its move (or mutation)

operator.

Given a sequence φ ∈ S, a sequence φ′ ∈ S is said to be an

n-point mutation of φ if it differs from φ at n nucleotides; i.e.

h(φ,φ′) = n where h(., .) is the hamming distance on S.

A mutation mode is a random variable U taking values in

{1, ...,L}. P (U = n) is defined as the probability that, ex-

actly n nucleotides, selected uniformly at random undergo

point mutation during a mutation event. U can generally be

any probability distribution. We examined the binomial and

Zipf distributions for local and Levy search, respectively:

• Binomial mutation: U has a binomial distribution:

P (U = n) =

(

l

n

)

µn(1−µ)l−n

for some 0 ≤ µ ≤ 1, such that u = µ · l. We can think

of this mutation mode arising from each nucleotide of

an RNA sequence independently undergoing a point

mutation with probability µ, i.e. µ is the per-nucleotide

or point mutation rate.

• Lévy mutation: U has a Zipf distribution given by:

P (U = n) =
1/nc

∑l
k=1 1/kc

where c > 0 is the value of the exponent characterizing

the distribution. Larger values of c are associated a

greater proportion of local search, while smaller values

of c imply a greater proportion of long-range search.

Figure 1 shows the distribution of the number of point mu-

tations on a sequence of length 88 nucleotides for both mu-

tation schemes. Both distributions have the same mean, but

differ markedly in their tails.

Algorithm 1: Mutation algorithm

/* P ′ = {S′

1
. . .S′

n}: the mutated population;

P = {S1 . . .Sn}: a list of n RNA sequences to

mutate;

PC = {wAU ,wGU ,wGC}: a vector containing the

weights associated with each canonical base

pairs;

PN = {wA,wU ,wC ,wG}: a vector containing the

weights associated with each nucleotide;

D: a given probability distribution (Lévy or

Binomial) with parameter p and L where L is

the length of the target RNA structure */

Input: P , D(p,L), PC , PN

Output: P ′

1 {Bi} ∼ D(p,L), where i ∈ {1,2, . . . ,n} ; // Draw n

random numbers that follows a given

distribution D(p,L) (Lévy or Binomial). Bi is

the number base pairs to mutate

2 {Ui} ∼ D(p,L), where i ∈ {1,2, . . . ,n} ; // Draw n

random numbers that follows the same

distribution as Bi (Lévy or Binomial). Ui is

the number non base pair positions to mutate

3 for i ∈ {1,2, . . . ,n} do

4 S′← Pi ; // Assign the sequence Si ∈ P to S′

5 for j ∈ {1,2, ...Ui} do

6 r ∈ {1,2, . . . ,L} ∼ U ; // select uniformly a

random position in the RNA sequence S′

7 nj ∈ {A,U,C,G} ∼ PN ; // select a random

nucleotide nj with respect to PN

8 S′

r← nj ; // replace the nucleotide at

position j in the RNA sequence S′ with

nj

9 for j ∈ {1,2, ...Bi} do

10 kj ∈ {AU,UA,CG,GC,GU,UG} ∼ PC ;

// select a random base pair ki with

respect to PC

11 b ∈ {(b1, b2)i} ∼ U ; // select uniformly a

random pair of base pair positions

12 S′

b← kj ; // replace respectively the

nucleotides at the base pair position

bi ∈ b by k ∈ kj

13 P ′← P ′∪S′ ; // Add S′ to the list P ′
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Fig. 3. Parameter tuning for both binomial and Lévy mutation schemes.(A) Lévy mutation parameter tuning. Histogram of best exponent parameter (c∗) for a set of 81 target

structures with different pseudoknot patterns and various lengths. The most frequent best exponent value is 1. (B) Binomial parameter tuning. Histogram of best mutation

rate (µ∗) for the same set of 81 target structures with different pseudoknots and various lengths. The most frequent best parameter is the low mutation rate (≈ 1/L). For

some structures, the best mutation rate is the high one for different lengths as well.
.

Throughout this paper, local mutation will refer to binomial

distributed mutation with parameter µ≈ 1/L or to one-point

mutation.

New feature. We provide an updated version of aRNAque

supporting pseudoknotted RNA target structures. In addition

to the support for pseudoknots, we provide an updated muta-

tion mode based on a Zipf distribution. We present the muta-

tion algorithm in Algorithm 1.

Parameter analysis and benchmark

Here we analyse mutation parameters and compare local and

Lévy mutation modes.

Benchmark data. To compare our new version of

aRNAque with existing tools in the literature, we used

the PseudoBase++ benchmark datasets for pseudo-

knotted target structures and the Eterna100 dataset for

pseudoknot-free target structures.

The PseudoBase++ is a set of 265 pseudoknotted RNA

structures used to benchmark Modena. It was initially 304
RNA secondary structures, but we excluded 37 because they

had non-canonical base pairs. We then grouped the structures

into four pseudoknot motifs (Figure 2): 209 hairpin pseu-

doknots (H), 29 bulge pseudoknots (B), 8 complex hairpin

pseudoknots (cH) and 4 kissing hairpin pseudoknots (K).

The Eterna100 dataset (34) is available in two versions

and both contain a set of 100 target structures extracted

from the EteRNA puzzle game and classified by their de-

gree of difficulty. The Eterna100-V1 was initially de-

signed using ViennaRNA 1.8.5, which relies on Turner1999

energy parameters (35). Out of the 100 target secondary

structures, 19 turned out to be unsolvable using the recent

version of ViennaRNA (Version 2.14). Subsequently, an

Eterna100-V2 (34) was released in which the 19 targets

were slightly modified to be solvable using ViennaRNA

2.14.

Methodology. The best mutation parameters obtained for

both binomial and Lévy mutation modes are used to bench-

mark and compare the results on the entire datasets of

RNA structures (265 from PseudoBase++ and 100 from

EteRNA100). First, for each of the 365 target structures

σ∗ in the datasets, 20 sequences were designed. To measure

the performance of each tool, each designed sequence s is

folded into a secondary structure σ and the similarities be-

tween σ and σ∗ are computed using the base pair distance.

Second, for each of the Eterna100 target structures and a

maximum of 5000 generations (i.e. 50,000 evaluations), 5
to 20 runs were launched independently, which results in at

least 5 designed sequences per target. We define success rate

simply as the number of successfully designed targets. A tar-

get is considered successfully designed when at least one of

the designed sequence folds into the target structure (i.e. the

Hamming distance between the target structure and the MFE

structure is 0).

Folding tools. Two tools for pseudoknotted RNA folding are

considered in this work: HotKnots and IPknot. For

pseudoknot-free RNA folding, we used RNAfold. For

the mutation parameter analysis presented here, we used

IPknot, and both HotKnots and IPknot for pseudo-

knotted targets. Furthermore, we considered pkiss, a well

know tool for K-type pseudoknot prediction, but since the

PseudoBase++ dataset contains just 5 K-type pseudo-

knotted structures and pKiss has higher time complexity

(O(n6)), we did not find it efficient for the benchmark we

performed.

Mutation parameters tuning. One of the main challenges for

an evolutionary algorithm is to find optimum parameters such

as mutation rate, population size and selection function. We

used 81 pseudoknotted targets with lengths from 25 to 181
nucleotides for the mutation parameter analysis. We set the

maximum number of generations to 200 and the population

size to 100. The best mutation parameters (c∗ for Levy and
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Fig. 4. Lévy mutation mode vs local mutation (one-point mutation). (A) Hamming distance distributions vs. target structure lengths. (B) Number of generations distributions

for different length groups. In both (A) and (B), lower values indicate better performance. The target structures are solvable in less than 100 generations for both mutation

schemes and most length groups. Still, the difference in the number of generations gets more significant as the target lengths increase, except for the two last length groups for

which both mutation schemes mostly failed. The highest difference in terms of median number of generations is 150 for target lengths in the range [124 − 144] (respectively

123,49,46,16,7,0,0 for the length ranges [84 − 104], [64 − 84], [104 − 124], [44 − 64], [24 − 44], [144 − 164], [164 − 184]). Averaging over all length groups, the

median number of generations difference between the Levy mutation and the one point mutation is 48 generations.
.

µ∗ for Binomial) are those that have the lowest median num-

ber of generations.

• Binomial mutation: From Figure 1B, the critical range

was identified to be from 0 to 0.2 and as µ becomes

greater than 0.1, the success rate decreases and the av-

erage number of generations increases. For each of the

80 target structures with pseudoknots, 20 sequences

were designed for µ ∈ [0,0.2] with a step size of 1/L.

Figure 3B shows the histogram of the best mutation

rate found for each target structure. Two main regimes

are apparent: one where the best mutation rate is very

low mutation rate (≈ 1/L) and another where the high

mutation rate is optimal.

• Lévy mutation: From Figure 1C, the critical range of

c was identified to be [1,2]. For c ∈ [1,2] and a step

size of 0.1, an optimum exponent parameter c∗ was in-

vestigated for all the 80 target structures. Figure 3A

shows the histogram of c∗. Contrary to binomial mu-

tation, the optimum exponent parameter does not vary

too much (∀σ, c∗ ≈ 1).

Figure 3A shows that when using a Lévy mutation, the opti-

mal mutation rate is approximately the same for most target

structures. In contrast, the optimum binomial mutation rate

parameter µ∗ mostly varies with different targets. In Fig-

ures 1B and 1C, although both mutation modes have approx-

imately the same success rates (88% for the Lévy over 100
runs and ≈ 92% for the binomial over 50 runs), the Lévy

flight mutation scheme is more robust to different targets.

Moreover, the median number of generations for the Lévy

mutation is lower (54 for the Lévy and 92 for the binomial

mutation mode), thus enhancing efficiency.

Results

We first compared the performance of aRNAque using Lévy

mutations to the previous version with local mutations (bi-

nomial number of point-mutations with µ ≈ 1
L ). Sec-

ondly, we compared aRNAque to the existing pseudoknotted

RNA inverse folding tool antaRNA using two folding tools:

HotKnots and IPknot. We used the PseudoBase++

dataset for both benchmarks.

Performance on PseudoBase++: Levy mutation vs.

local mutation. Figure 4 shows box plots for the base pair
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Fig. 5. aRNAque vs antaRNA on PseudoBase++ dataset using both IPknot and HotKnots. Lower values imply better performance. (A, B) Base pair distance

distributions of the designed sequences to the target structure for different pseudoknot types. (C,D) Mean base pair distance against target lengths.
.

distance (Hamming distance) and the number of generations

for increasing target lengths under our two mutation schemes:

binomial at low mutation rate (or one point mutation) and the

Lévy mutation. For each pseudoknotted RNA target structure

in the PseudoBase++ dataset, we designed 20 sequences.

The results show that using the Lévy mutation instead of a

local mutation scheme can significantly increase the perfor-

mance of aRNAque. The gain was less significant in terms of

designed sequences quality (base pair distance distributions,

with a t-value ≈ −1.04 and p-value ≈ 0.16) but more sig-

nificant in terms of the average minimum number of genera-

tions needed for successful matches to target structures (with

a t-value ≈−3.6 and p-value ≈ 0.0004). This result demon-

strates a substantial gain in computational time when using a

Lévy mutation scheme instead of a purely local mutation.

Performance on PseudoBase++: aRNAque vs.

antaRNA. We also compared the sequences designed using

aRNAque (with the Lévy mutation scheme) to those pro-

duced by antaRNA. Figures 5A and 5C show the base pair

distance distribution for each category of pseudoknotted tar-

get structure and the mean of the base pair distance plotted

against the length of the target secondary structures. For

antaRNA, and when using IPknot as a folding tool, find-

ing sequences that fold into the target becomes increasingly

difficult with pseudoknot complexity (median base-pair dis-

tance distribution increases). On the other hand, aRNAque’s

performance improves as pseudoknot complexity increases

(e.g. the mean base-distance decreases with the pseudoknot

complexity). In sum, as target length increases, the perfor-

mance of antaRNA (local search) is considerably degraded

, while aRNAque (Lévy flight search) stays almost constant.

A second benchmark using HotKnots as a folding tool

was performed on the same dataset. For both aRNAque

and antaRNA, the more complex the pseudoknot motifs,

the worse is the tool performance (median of the base-

pair distance distribution increases). Figures 5B and 5D

show the base pair distance distributions with respect to the

pseudoknot motifs for both aRNAque and antaRNA. Even

though both performances degrade as target length increases,

aRNAque (Lévy flight evolutionary search) performance re-

mains almost constant for all the target lengths greater than

60.

Performance on Eterna100 dataset. Finally, we per-

formed a third benchmark on the Eterna100 datasets.

First, on the Eterna100-V1 dataset, the Lévy flight ver-

sion of aRNAque successfully designed 89% of the targets

and the one-point mutation (local mutation) version achieved

91% of success, suggesting that for some target structures,

local mutation can outperform the Lévy mutation scheme.

Combining the two datasets, aRNAque solved in total 92%
of the targets of Eterna100-V1 (see also (23)).

When analysing the performance of Lévy flight for low and

high base pair densities separately, the median number of

generations of high base pair density targets was lower than

the one with low base-pair density (8 generations for high

density and 18 for the low base pairs density targets). The

same observation was drawn for the success rate. For the

low base-pair density targets, the Lévy flight achieved 87%
(49/56) success whereas, for the high base-pair density, it

achieved 91% (40/44). The same analysis can be done when

comparing the one-point mutation results for the high-density

targets to the Lévy flight mutation. The median number of
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Fig. 6. Lévy mutation vs one-point mutation: diversity analysis. For the Eterna100 target structure [CloudBeta] 5 Adjacent Stack Multi-Branch Loop, ten independent runs

were performed in which a minimum of 10 sequences were designed per run. (A) Max fitness and mean fitness (inset) over time. (B) Distinct sequences vs. Distinct structures

over time. (C) Mean Shannon entropy of the population sequences over time for both binomial and Lévy mutation. (D) The max fitness plotted against the entropy over time.

generations for the low-density targets when using a one-

point mutation operator was 34 (respectively 24 for the high

base pair density targets) (see Figure 7A).

A new benchmark was performed on Eterna100-V2 with

aRNAque achieving a 93% success rate. Compared to re-

cently reported benchmark results (34), aRNAque achieved

similar performance to NEMO on Eterna-V2: one target

was unsolved by all existing tools and one target solved only

by NEMO remained unsolved by aRNAque.

Discussion

In this work, we provide an updated version of aRNAque

implementing a Lévy flight mutation scheme that supports

pseudoknottted RNA secondary structures. A Lévy mutation

scheme offers a compromise between exploration at different

scales (mostly local search combined with rare big jumps).

Such a scheme significantly improves the number of evalu-

ations needed to hit the target structure, while better avoid-

ing getting trapped in local optima. The benefit of a Lévy

flight over a purely local (binomial with µ << 1 or a sin-

gle point mutation) mutation search allowed us to explore

RNA sequence space at all scales. Such a heavy tailed dis-

tribution in the number of point mutations permitted the de-

sign of more diversified sequences and reduced the number

of evaluations of the evolutionary algorithm implemented in

aRNAque. The main advantage of using a Lévy flight over

local search is a reduction in the number of generations re-

quired to reach a target. This is because the infrequent oc-

currence of a high number of mutations allow a diverse set

of sequences among early generations, without the loss of ro-

bust local search. One consequence is a rapid increase in the

population mean fitness over time and a rapid convergence to

the target of the maximally fit sequence. To illustrate that ad-

vantage, we ran aRNAque starting from an initial population

of unfolded sequences, both for a "one point mutation" and

"Lévy mutation".

Figures 6A and 6B show respectively the max/mean fitness

over time and the number of distinct structures discovered

over time plotted against the number of distinct sequences.

When using a Lévy mutation scheme, the mean fitness in-

creases faster in the beginning but stays lower than that us-

ing local mutations. Later in the optimisation, a big jump

or high mutation on the RNA sequences produces structures

with fewer similarities and, by consequence, worse fitness.

In the (5− 10)th generation, sequences folding into the tar-

get are already present in the Lévy flight population, but only

at the 30th generation are similar sequences present in the

local search population. The Lévy flight also allows explo-

ration of both the structure and sequence spaces, providing a

higher diversity of structures for any given set of sequences
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Fig. 7. Lévy mutation vs. Local mutation: performance analysis with respect to the base-pair density. The higher the base-pair density is, the more useful the Lévy mutation

scheme to speed up the optimization EA. (A) Distributions of number of generations for the low and high base-pair density targets of the Eterna100 dataset. (B) Percentages

of targets with low and high base-pair density for the Eterna100 and PseudBase++

(Figure 6B). Using the mean entropy of structures as an alter-

nate measure of diversity, we see in Figures 6C and 6D how a

Lévy flight achieves high diversity early in implementation,

and maintains a higher diversity over all generations than a

local search algorithm. Although the mutation parameters

PC and PN influence the absolute diversity of the designed

sequences, the Lévy flight always tends to achieve a higher

relative diversity than local search, all else being equal.

We argue that the improved performance of the Lévy Flight

over local search in target RNA structures is due to the high

base pair density of pseudoknotted structures. Given that

pseudoknots present a high density of interactions, there are

dramatic increases in possible incorrect folds and thus in-

creasing risk of becoming trapped near local optima (36).

Large numbers of mutations in paired positions, as implied

by a heavy tailed distribution, are necessary to explore radi-

cally different solutions.

To illustrate that Lévy Flight performance was due to base

pair density, we clustered the benchmark datasets into two

classes: one cluster for target structures with low base pair

density (density ≤ 0.5) and a second cluster for structures

with high base pair density (density > 0.5). Figure 7B shows

the number of target sequences available in each low and high

density category. The number of targets available in each cat-

egory are colored according to the percentage of pseudoknot-

free targets (Eterna100-V1) vs. targets with pseudoknots

(Pseudobase++), showing that pseudoknots are strongly

associated with high base pair densities: 71% of the pseu-

doknotted target structures have a high base pair density. In

contrast, the Eterna100 dataset without psuedoknots has

somewhat higher representation at low base pair density. If

it is true that improved Lévy Flight performance is indeed

tied to base pair density, it is possible that similar heavy-

tailed mutation schemes could offer a scalable solution to

even more complex inverse folding problems.

Although we believe that Lévy flight-type search algorithms

offer a valuable alternative to local search, we emphasise that

its enhanced performance over say antaRNA is partially in-

fluenced by the specific capabilities of existing folding tools.

Their limitations may account for the degradation of these

tools as the pseudoknot motifs get increasingly complex. An-

other possible limitation is the fact that most target structures

were relatively easy to solve (in less than 100 generations),

which possibly allowed local search to perform better than

Lévy search in some cases. Further research on more chal-

lenging target structures will improve our understanding of

which conditions favour local vs. Lévy search.

Conclusion

Our results show general and significant improvements in the

design of RNA secondary structures compared to the stan-

dard evolutionary algorithm mutation scheme with a mu-

tation parameter ≈ 1/L, where L is the sequence solution

length. Not only does Lévy flight mutations lead to greater

diversity of RNA sequence solutions, but it also reduces the

evolutionary algorithm’s number of evaluations, thus improv-

ing computing time.

Availability

The implementation in python3.7 of aRNAque and

the benchmark data used in this manuscript are avail-

able at https://github.com/strevol-mpi-mis/

aRNAque. We also provide the scripts used for the figures

and the designed sequences analysis.
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