

1 **Parallel molecular mechanisms underlie convergent**
2 **evolution of the exaggerated snout phenotype in East**
3 **African cichlids**

4
5 Anna Duenser¹, Pooja Singh^{1,2,3}, Laurène Alicia Lecaudey⁴, Christian Sturmbauer^{1*}, Craig
6 Albertson⁵, Wolfgang Gessl¹, Ehsan Pashay Ahi^{1,6*}
7

8 1. Institute of Biology, University of Graz, Universitätsplatz 2, A-8010 Graz, Austria
9 2. Aquatic Ecology and Evolution, Institute of Ecology and Evolution, University of Bern,
10 Bern, Switzerland
11 3. EAWAG, Swiss Federal Institute of Aquatic Science and Technology, Kastanienbaum,
12 Switzerland
13 4. Department of Natural History, NTNU University Museum, Norwegian University of
14 Science and Technology, NO-7491 Trondheim, Norway
15 5. Department of Biology, University of Massachusetts, Amherst MA 01003, USA
16 6. Organismal and Evolutionary Biology Research Programme, University of Helsinki,
17 Viikinkaari 9, 00014, Helsinki, Finland
18

19 *Authors of Correspondence:
20 Ehsan Pashay Ahi^{1,6}, Email: ehsanpashayahi@gmail.com
21 Christian Sturmbauer¹, Email: christian.sturmbauer@uni-graz.at
22
23
24

25 **Abstract**

26 Studying instances of convergent evolution of novel phenotypes can shed light on the
27 evolutionary constraints that shape morphological diversity. Cichlid fishes from the East
28 African Great Lakes are a prime model to investigate convergent adaptations. However, most
29 studies on cichlid craniofacial morphologies have primarily considered bony structures, while
30 soft tissue adaptations have been less intensely scrutinised. A rare example of an exaggerated
31 soft tissue phenotype is the formation of a snout flap. This tissue flap develops from the
32 upper lip and has evolved in only one cichlid genus from Lake Malawi and one genus from
33 Lake Tanganyika. To investigate the molecular basis of snout flap convergence, we used
34 mRNA sequencing to compare two species with snout flap (*Labeotropheus trewavasae* and
35 *Ophthalmotilapia nasuta*) to their close relatives without snout flaps (*Tropheops tropheops*
36 and *Ophthalmotilapia ventralis*) from Lake Tanganyika and Malawi. Our analysis revealed a
37 greater complexity of differential gene expression patterns underlying the snout flap in the
38 younger adaptive radiation of Lake Malawi than in the older Lake Tanganyika radiation. We
39 identified 201 genes that were repeatedly differentially expressed between species with and
40 without the snout flap in both lakes, suggesting that the pathway that gives rise to snout flaps
41 is evolutionarily constrained, even though the flaps play very different functions in each
42 species. The convergently expressed genes are involved in proline and hydroxyproline
43 metabolism, which have been linked to human skin and facial deformities. Additionally, we
44 also found enrichment for transcription factor binding sites upstream of differentially
45 expressed genes such as members of the FOX transcription factor family, especially *foxf1* and
46 *foxa2*, which also showed an increased expression in the flapped snout and are linked to nose
47 morphogenesis in mammals, as well as *ap4* (*tfap4*), a transcription factor showing reduced
48 expression in the flapped snout with an unknown role in the development of craniofacial soft
49 tissues. As genes involved in cichlids snout flap development are associated with many

50 human mid-line facial dysmorphologies, our findings imply a conservation of genes involved
51 in mid-line patterning across vastly distant evolutionary lineages of vertebrates.

52

53 **Key words:** RNA-seq, mid-line patterning, soft tissue adaptation, Lake Malawi, Lake
54 Tanganyika, snout flap, cichlids

55

56 **Significance statement**

57 The study of the evolution of similar physical traits across taxa can give insight into the
58 molecular architecture underlying shared phenotypes. This has mostly been studied in bony
59 structures, while soft tissue traits have been less intensely covered. We investigated the
60 exaggerated snout in cichlid species from Lake Malawi and Lake Tanganyika and found that
61 many genes involved in the development of the snout flap are also associated with mid-line
62 dysmorphologies in humans, implying a conservation across distant vertebrate lineages.

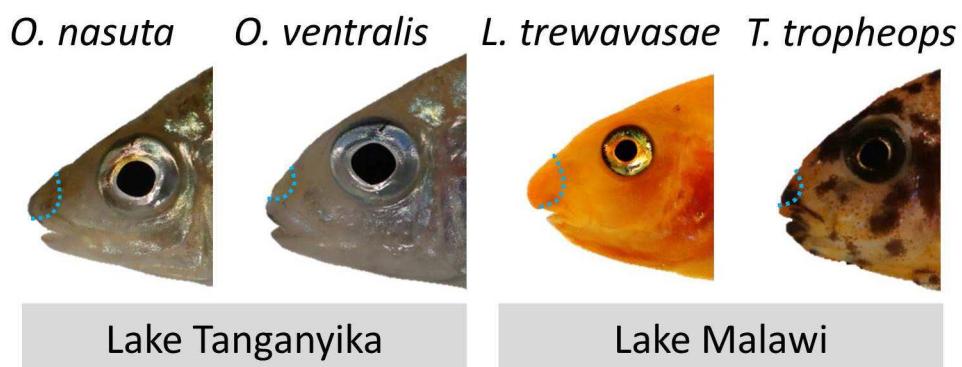
63

64 **Introduction**

65 Convergent evolution of phenotypes, reflecting particular ecological specializations, is a
66 ubiquitous characteristic of adaptive radiations (Schluter & Nagel 1995; Losos et al. 1998;
67 Rundle et al. 2000; Rüber et al. 1999). Cichlid adaptive radiations from the East African
68 Great lakes display an impressive array of repeated morphological traits (Kocher et al. 1993),
69 including a few dramatic examples such as nuchal humps and hypertrophied lips (Machado-
70 Schiaffino et al. 2014; Manousaki et al. 2013; Colombo et al. 2013; Baumgarten et al. 2015;
71 Lecaudey et al. 2019, 2021). However, the evolution of such phenotypic novelties is not well
72 understood, but a comparative approach can shed light on the genetic and developmental
73 mechanisms that reconfigure the body plan and give rise to complex traits. Cases of repeated

74 evolution of such phenotypic novelties can thus also help us to understand the constraints that
75 shape morphological diversity.

76 The overgrowth of craniofacial soft tissues in cichlid fishes has presented some intriguing
77 examples of exaggerated phenotypes in various anatomical regions such as lips, frontal head
78 (nuchal hump) and nose snout (or nose flap) (Colombo et al. 2013; Manousaki et al. 2013;
79 Henning et al. 2017; Lecaudey et al. 2019; Concannon & Albertson 2015; Conith et al. 2018).
80 The exaggerated snout flap is a pronounced projection that emanates from a flap of fibrous
81 tissue just above the upper lip. It is a rare morphological innovation that has only evolved in
82 two tribes of cichlid fishes from East Africa, the modern Haplochromines in Lake Malawi
83 and the Ectodini in Lake Tanganyika (Concannon & Albertson 2015). When this snout is
84 sexually monomorphic, it is thought to be a trophic adaptation that improves feeding
85 efficiency (Konings 2007). When the snout is sexually dimorphic, it is hypothesised to be
86 involved in sexual selection (Konings 2007; Concannon & Albertson 2015). The cichlid
87 snout flap has been studied at the molecular level only in the genus *Labeotropheus* from Lake
88 Malawi where it is sexually monomorphic and functions as a trophic adaptation to efficiently
89 leverage algae from rocks (Concannon & Albertson 2015; Conith et al. 2018). A similar
90 snout structure has also been described in two species from the Ectodini tribe
91 (*Ophthalmotilapia nasuta* and *Asprotilapia leptura*) from Lake Tanganyika. In *A. leptura* it is
92 sexually monomorphic and likely involved in increased foraging efficiency (similar to
93 *Labeotropheus*), whereas in *O. nasuta* it is only found in mature males and is likely a
94 secondary sexual character (Hanssens et al. 1999; Conith et al. 2019). Thus, the exaggerated
95 snout is a convergent phenotype that evolved independently in two cichlid lineages that
96 diverged > 9 MYA (Irisarri et al. 2018; Conith et al. 2019).


97 In *Labeotropheus*, the snout is evident histologically by the time the yolk is absorbed and
98 exogenous feeding occurs (~1 month post-fertilization) (Conith et al. 2018; Concannon &

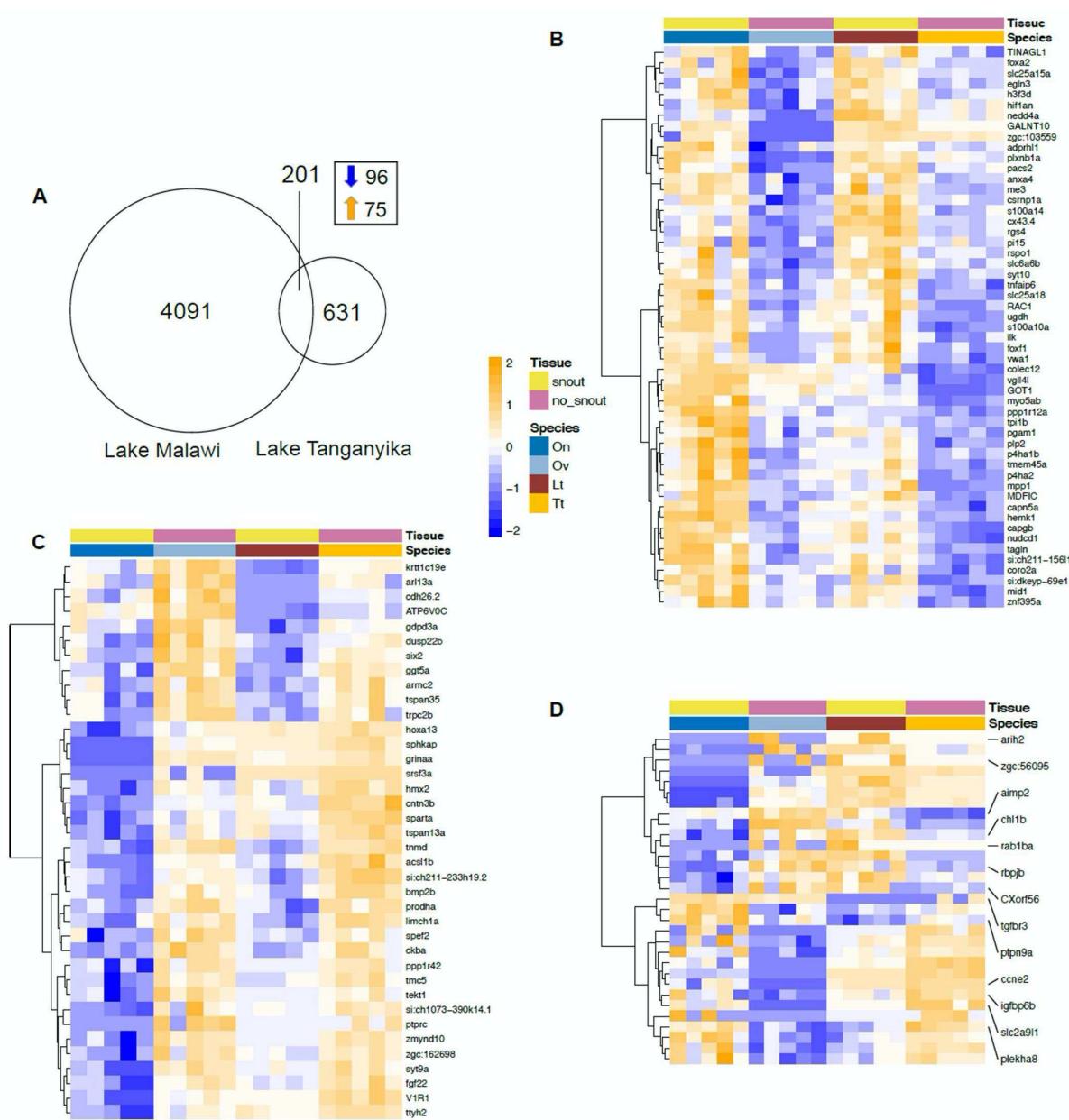
99 Albertson 2015), and early formation and growth of the snout is linked to the transforming
100 growth factor beta (TGF β) signalling pathway (Conith et al. 2018). However, it remains
101 unclear whether (1) similar molecular players are involved in maintaining this phenotype at
102 later life-history stages and if (2) the molecular mechanism of snout formation is the same in
103 other cichlid species that possess a snout. Furthermore, while previous research focused on
104 the TGF β signalling pathway, a more extensive molecular interaction map of the formation
105 and maintenance of this exaggerated phenotype remains to be unravelled. A transcriptome-
106 wide overview is particularly important since it is well-known that there is molecular cross-
107 talk between the TGF β signalling pathway and several other pathways which all play a
108 pivotal role in craniofacial morphogenesis and adaptive evolutionary divergence in teleost
109 fishes (Ahi 2016).

110 In this study, we set out to investigate the molecular mechanisms that underlie the convergent
111 evolution of the exaggerated snout phenotype, in two non-sister cichlid lineages from lakes
112 Tanganyika and Malawi (Figure 1A). We compared two species that develop the snout; (1)
113 *Labeotropheus trewavasae* (tribe Haplochromini) from Lake Malawi and (2)
114 *Ophthalmotilapia nasuta* (tribe Ectodini) from Lake Tanganyika (Figure 1). As controls, we
115 used two closely related species within each tribe that do not develop such a structure; (1) the
116 Lake Malawi mbuna species *Tropheops tropheops* (Haplochromini) and (2) the Lake
117 Tanganyika featherfin cichlid *Ophthalmotilapia ventralis* (Ectodini) (Figure 1). We used
118 mRNA-sequencing to quantify gene expression differences between the exaggerated snout
119 and non-snout tissues for each lake. Altogether, we identified parallel and non-parallel
120 molecular mechanisms that underlie the evolution of the snout flap in Lake Malawi and Lake
121 Tanganyika cichlids. Our study design provides valuable information on convergent
122 regulatory mechanisms underlying the morphogenesis of a unique hypertrophic facial soft

123 tissue in cichlids, which also exhibit striking similarity to those mechanisms driving
124 craniofacial development and mid-line patterning in other vertebrates including humans.

125

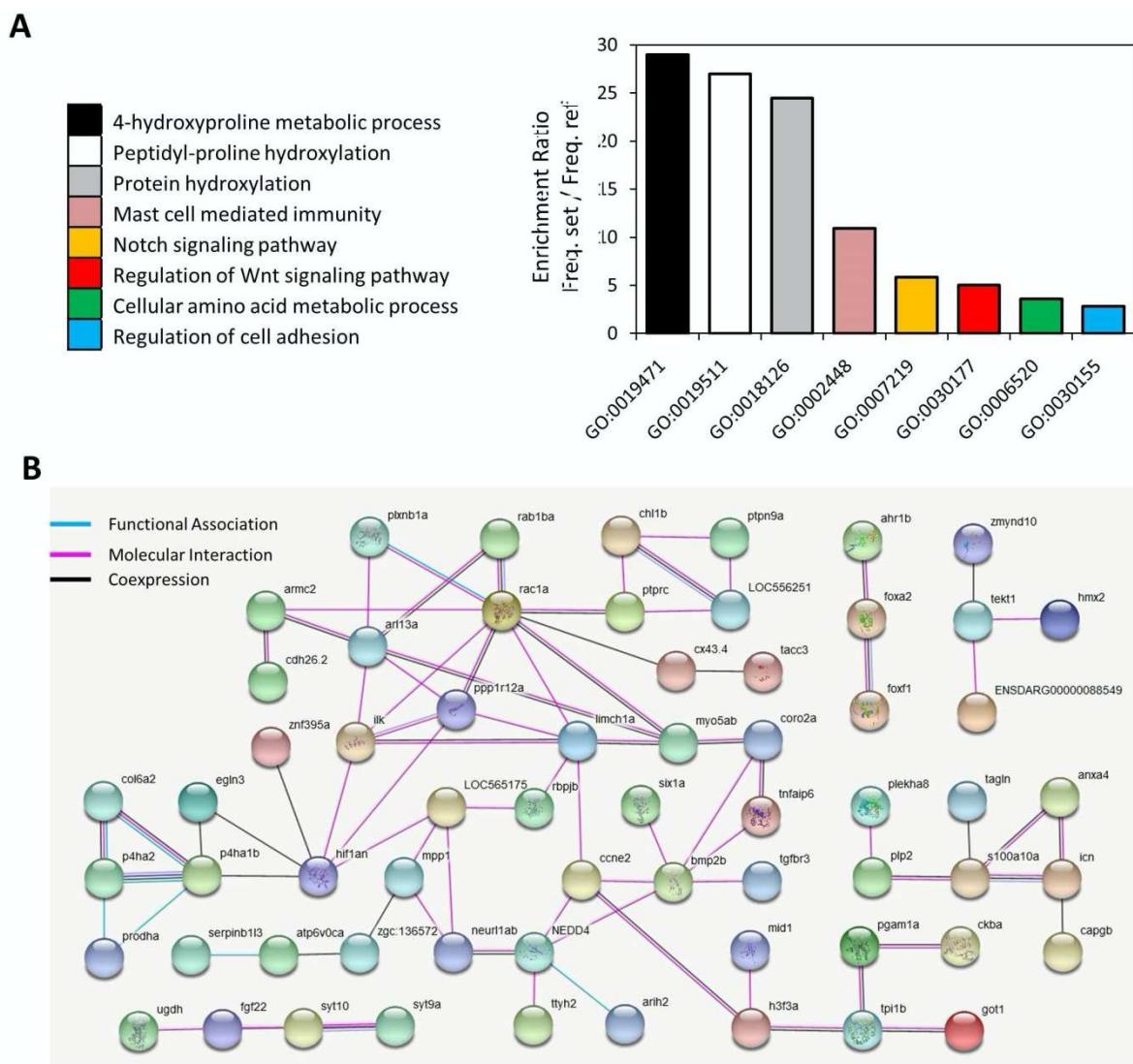
126
127 **Fig. 1. Convergent cases of snout evolution.** East African cichlid species used in this study. The
128 area of the soft tissue that was dissected is depicted by blue dashed lines.


129

130 **Results**

131 **RNA-sequencing, gene expression and downstream analyses**

132 The RNA-sequencing resulted in between 6.7 and 15.8 million reads per sample and after
133 filtering of low-quality reads, between 4.6 and 11.1 million reads were retained for each
134 sample (Supplementary File S1). The raw data of sequence reads have been deposited in the
135 Sequencing Read Archive (SRA) of NCBI (accession number: PRJNA770252). The pairwise
136 comparisons between species of each lake radiation resulted in 832 differentially expressed
137 genes for the comparison of *O. nasuta* versus *O. ventralis*, while the comparison between *L.*
138 *trevalasae* versus *T. tropheops* yielded 4292 differentially expressed genes. Between these
139 both results we identified an overlapping list of 201 differentially expressed (DE) genes
140 which were distinct between the flapped snout versus the non-flapped snout regions in both
141 lakes (Figure 2A) (Supplementary File S2). Among the DE genes, 74 genes showed


142 upregulation and 96 genes showed downregulation in snout tissues in both comparisons,
143 whereas 31 genes showed expression differences in opposite directions across the
144 comparisons for each Lake (Figure 2B-D). The heatmap clustering of the DE genes showed
145 that there are at least two major branches in each group of up- or down-regulated gene sets,
146 while the clustering of the DE gene with opposite expression pattern also revealed the
147 presence of two major branches (Figure 2B-D). These clustering structures indicate distinct
148 transcriptional regulations within each group which potentially originated from the effects of
149 different upstream regulators.

151 **Fig. 2. Differentially expressed genes in the snout regions.** (A) Venn diagram of 201 genes with
152 differential expression between the snout regions ("snout" and "no snout") which overlap between the
153 two comparisons. Dendrogram clusters of the overlapping annotated genes showing upregulation (B),
154 and downregulation (C) in expression in the flapped snout tissue, as well as those showing differential
155 expression in both comparisons but in opposite direction (D). Orange and blue shadings indicate
156 higher and lower relative expression respectively. *Ophthalmotilapia ventralis* (Ov), *Ophthalmotilapia*
157 *nasuta* (On), *Labeotropheus trewavasae* (Lt), *Tropheops tropheops* (Tt).

158 We next performed gene ontology enrichment analysis using the list of 201 DE genes as the
159 input, and the result showed significant enrichment of GO terms for several biological
160 processes such as amino acid metabolism (particularly proline related metabolic processes),
161 Wnt and Notch signalling pathways, and regulation of cell adhesion (Figure 3A).

162

Fig. 3. Functional analyses of the overlapping differentially expressed genes in flapped snout. (A) Enrichment for gene ontologies of biological processes using the shared 201 differentially expressed genes and Manteia online tool. **(B)** Functional interactions between the differentially expressed genes predicted based on zebrafish databases in STRING v10 (<http://string-db.org/>).

163
164
165
166
167
168

169 We also applied the same list of DE genes for interactome analysis which demonstrated a
170 large, interconnected network of genes with molecular and functional associations. Some of
171 the genes in the network formed an interaction hub with the highest level of associations with
172 other genes such as *bmp2b*, *hif1an* and *rac1a*, suggesting their more pivotal role in the
173 formation of the flapped snout structure in cichlids (Figure 3B). Furthermore, we conducted
174 TF binding motif overrepresentation analysis on the upstream regulatory sequences of the DE

175 genes through MEME tool (Bailey et al. 2009). In total, seven motifs were enriched on the
176 upstream regulatory sequences of at least 40 out of 201 DE genes (Table 1). Next, we
177 checked the similarities of the enriched motifs with known TF binding sites in vertebrates and
178 at least 11 TF candidates were identified to potentially bind to those motifs.

179

180 **Table 1. Predicted motifs and upstream regulators potentially binding to them.** Enriched motifs
181 on upstream regulatory sequences of the DE genes are presented in degenerated sequence format.
182 PWD IDs indicate positional weight matrix ID of predicted binding sites and E-values refer to
183 matching similarity between the predicted motif sequences and the PWD IDs. The count implies the
184 number of genes containing the predicted motif sequence on their regulatory region.

TF binding site	PWM ID	Count	Predicted motif sequence	E-value
FOXP1	M00987	71 / 201	AMAMACAMAMAMAMAMACACACAMAMACA	3.85E-12
FOXJ1	M00742			3.52E-08
RREB1	MA0073.1			1.87E-07
FOXJ1	M00742	47 / 201	AAAAASAAAMAAAMWMWCWKT	8.69E-10
FOX	M00809			9.15E-07
FOXD3	MA0041.1			3.95E-07
SP1	MA0079.2	41 / 201	CHCCYCCYCCYCCSYCTCCY	1.12E-08
IRF9	M00258	61 / 201	KTTTTTYTTTYYCWK	2.90E-09
MEF2	M00405	72 / 201	RTTAAAAAAA	4.28E-08
AP4	M00927	93 / 201	CWGCTGCWGCTKSTS	7.38E-08
HEB/tcf12	M00698	66 / 201	NYYCTGCTGD	1.03E-06

185

186 Expression analysis by qPCR

187 Validation of DE genes from RNA-seq was accomplished via quantitative RT-PCR (qPCR),
188 normalised to stably expressed reference genes (Kubista et al. 2006). In our previous studies

189 of East African cichlids, we found that validation of reference gene(s) is an essential step for
190 every species and tissues (Ehsan P. Ahi et al. 2020; Ehsan Pashay Ahi et al. 2020; Pashay Ahi
191 & Sefc 2018; Ahi et al. 2019). We chose six candidate reference genes with a small log2 fold
192 change and the lowest coefficient of variation (CV) throughout all the samples
193 (Supplementary File S2). Based on the rankings by the three software tools, BestKeeper,
194 geNorm and NormFinder, only one of the candidate reference genes, *pak2b*, showed
195 consistent stability, i.e. always ranked among top two most stable reference genes (Table 2).
196 Thus, we used the Cq value of *pak2b* in each sample to normalize the relative gene
197 expression levels of our target genes.

198

199 **Table 2. Ranking of reference genes in the nose tissue samples using three different algorithms.**

BestKeeper				geNorm		NormFinder	
Ranking	SD	Ranking	r	Ranking	M	Ranking	SV
<i>sp3</i>	0.461	<i>pak2b</i>	0.94	<i>pak2b</i>	0.369	<i>nup58</i>	0.310
<i>pak2b</i>	0.471	<i>pphln1</i>	0.931	<i>flot2a</i>	0.386	<i>pak2b</i>	0.408
<i>flot2a</i>	0.491	<i>flot2a</i>	0.926	<i>pphln1</i>	0.397	<i>pphln1</i>	0.443
<i>nup58</i>	0.509	<i>vps26a</i>	0.916	<i>sp3</i>	0.418	<i>flot2a</i>	0.498
<i>vps26a</i>	0.551	<i>nup58</i>	0.889	<i>nup58</i>	0.427	<i>sp3</i>	0.518
<i>pphln1</i>	0.587	<i>sp3</i>	0.887	<i>vps26a</i>	0.428	<i>vps26a</i>	0.646

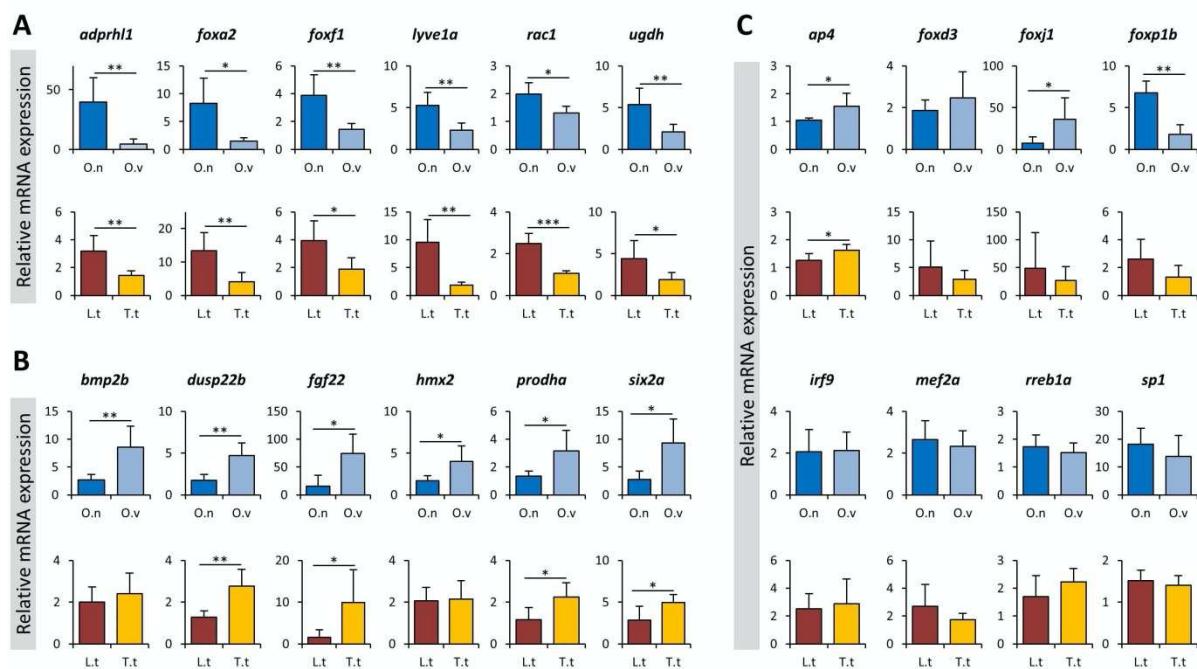
200

201 Abbreviations: SD = Standard deviation, r = Pearson product-moment correlation coefficient, SV = stability
202 value, M = M value of stability.

203

204 Among the DE genes identified by RNA-seq, we chose 12 genes with a known role in nose
205 morphogenesis and/or other related functions in craniofacial development mainly based on
206 genetic studies in humans (Table 3), together with eight predicted upstream TFs (including
207 *ap4, foxd3, foxj1, foxp1, irf9, mef2a, rreb1a* and *sp1*) for qPCR analysis (Figure 4).

208


209

210

211 **Table 3. A selected set of differentially expressed genes in the flapped snout regions of studied**
212 **cichlids with known related functions in nose morphogenesis in mammalian models.**

Gene	Related function	Organism	References
<i>adprhl1</i>	Duplication of this gene is associated with prominent forehead, short and bulbous nose, and broad philtrum	Human	(De Pater et al. 2005)
<i>bmp2</i>	A ligand of the TGF β signaling and its monoallelic deletion is associated with short upturned nose and long philtrum	Human	(Tan et al. 2017)
<i>dusp22</i>	Deletion at terminal end of this gene is associated with saddle shape nose morphogenesis	Human	(Hosono et al. 2020)
<i>fgf22</i>	Genomic rearrangement encompassing this gene is associated with elongation of nose with prominent nasal bridge	Human	(Quigley et al. 2004)
<i>foxa2</i>	Both deletion and missense variation in this gene causes hallow nasal bridge, short upturned nose and downturned nasolabial folds	Human	(Dines et al. 2019)
<i>foxf1</i>	Duplication and triplication causes bulbous nose and wide nasal bridge	Human	(Kucharczyk et al. 2014)
<i>hmx2</i>	Hemizygous deletion in this gene causes broad nasal bridge and prominent nose	Human	(Miller et al. 2009)
<i>lyve1</i>	Dysregulation of this gene is associated with cutaneous angiosarcoma on the nose	Human	(Mitteldorf et al. 2018)
<i>prodh</i>	Deletion and/or missense mutations in this gene causes frontal bossing, thin upper lip and short nose	Human	(Guilmatre et al. 2010)
<i>rac1</i>	Loss of function mutation in this gene causes failure in fusion of medial nasal processes and prominent nasal bridge	Human Mouse	(Thomas et al. 2010)(Reijnders et al. 2017)
<i>six2</i>	Deletion in this gene causes frontonasal dysplasia syndrome in human with nasal clefting and broad nasal tip, and developmental deformities in nasal bridge in mouse	Human Mouse	(Hufnagel et al. 2016)(Okello et al. 2017)
<i>ugdh</i>	Missense mutation in this gene causes bulbous nose and smooth philtrum	Human	(Alhamoudi et al. 2020)

213
214 Based on the RNA-seq results, six of these candidate genes displayed up-regulation in
215 expression in the flapped snout (*adprhl1*, *foxa2*, *foxf1*, *lyve1a*, *rac1* and *ugdh*), while the six
216 other candidate genes (*bmp2b*, *dusp22b*, *fgf22*, *hmx2*, *prodha* and *six2a*) showed a down-
217 regulation in expression in the flapped snout. The results of qPCR analysis confirmed that
218 almost all of the genes showed expression patterns similar to RNA-seq results, except for
219 *bmp2b* and *hmx2* which showed no significant difference between the snout regions of L.t
220 and T.t. Among the predicted TFs only *ap4* showed consistent differences across both
221 comparisons displaying a slightly reduced expression in both species with protruded snouts
222 (O.n and L.t). This indicates potential transcriptional repressor effects of *ap4* on the
223 downstream genes in the hypertrophic snout region. Two members of FOX transcription
224 factors, *foxf1* and *foxp1*, also showed expression differences but only in one of the
225 comparisons (O.n vs O.v). Altogether, the qPCR results demonstrate consistency between
226 RNA-seq and qPCR results confirming the validity of our transcriptome data analysis.
227

228

229 **Fig. 4. qPCR expression analysis of a selected set of candidate genes.** The bars indicate mean and
230 standard deviation of RQ expression values for five biological replicates per species. The asterisks
231 above the bar represent significant expression differences (*P<0.05; **P<0.01; ***P<0.001).
232 *Ophthalmotilapia ventralis* (O.v), *Ophthalmotilapia nasuta* (O.n), *Labeotropheus trewavasae* (L.t),
233 *Tropheops tropheops* (T.t)

234

235 **Discussion**

236 Biologists have been fascinated with divergent as well as convergent morphological
237 evolution as it contributes to our understanding of the interplay between ecological
238 opportunity and genetic constraints. The snout flap of *L. trewavasae* is thought to have
239 evolved under natural selection (Concannon & Albertson 2015), as it plays a distinct role in
240 the foraging efficiency for algal scraping (Konings 2007; Conith et al. 2019). Additionally,
241 no difference in snout flap size has been detected between male and female of *Labeotropheus*
242 and its formation has been shown to coincide with the time point of independent foraging,
243 further supporting its function (Concannon & Albertson 2015). In contrast, only *O. nasuta*
244 males show the distinct snout flap, implicating its role in mate choice (Concannon &

245 Albertson 2015). Furthermore, both sexes of *O. nasuta* are planktivorous suction feeders, a
246 feeding adaptation that is presumably not enhanced by a snout flap, although the snout of
247 males continues to grow with increasing age (Hanssens et al. 1999). In a comparison of tissue
248 types of the snout flap it has been found that the snout of *Labeotropheus fuelleborni* contains
249 a lot more of intermaxillary ligament and loose connective tissue (80%) than the snout of *O.*
250 *nasuta* (50%) (Conith et al. 2019). The morphological convergence of the snout flap across
251 two cichlid radiations allows us to investigate if convergence can also be found at the
252 transcriptional level, even if the morphologies probably possess different functions and differ
253 in tissue composition and life-history.

254 We found many of DE genes, both upregulated and downregulated, that are associated with
255 craniofacial development and involved in human dysmorphologies, many with mid-line facial
256 defects including those that effect the nose in literature. Among the upregulated genes with
257 related functions were *adprhl1* (De Pater et al. 2005), *angptl2* (Ehret et al. 2015), *colec12*
258 (Zlotina et al. 2016), *cx43* (McLachlan et al. 2005), *foxa2* (Dines et al. 2019), *foxf1*
259 (Kucharczyk et al. 2014), *galnt10* (Starkovich et al. 2016), *got1* (Tomkins et al. 1983), *lyve1*
260 (Mitteldorf et al. 2018), *mdfic* (Kosho et al. 2008), *mid1* (Preiksaitiene et al. 2015)(Hüning et
261 al. 2013), *nudcd1* (Selenti et al. 2015), *pacs2* (Holder et al. 2012), *plxnb1* (Haldeman-Englert
262 et al. 2009), *rac1* (Thomas et al. 2010)(Reijnders et al. 2017), *rspo1* (Wieacker & Volleth
263 2007), *s100a10* (Sawyer et al. 2007), *slc25a18* (Chen et al. 2013), *slc6a6* (Kariminejad et al.
264 2015), *ugdh* (Alhamoudi et al. 2020), *vglil4* (Czeschik et al. 2014)(Barriónuevo et al. 2014),
265 and *vwa1* (Giannikou et al. 2012). Among the downregulated genes we also found the
266 following candidates to have such roles; *acsll* (Yakut et al. 2015), *adgb* (Alazami et al.
267 2016), *arl13* (Brugmann et al. 2010), *ATP6v0c* (Mucha et al. 2019; Tinker et al. 2021), *bmp2*
268 (Tan et al. 2017), *cntn3* (Tuțulan-Cuniță et al. 2012), *dusp22* (Hosono et al. 2020)(Martinez-
269 Glez et al. 2007), *fgf22* (Quigley et al. 2004), *gdpd3* (Dell'Edera et al. 2018), *grina* (Bonaglia

270 et al. 2005), *hmx2* (Miller et al. 2009), *hoxa13* (Fryssira et al. 2011), *il23r* (Rivera-Pedroza et
271 al. 2017), *ppp1r42* (Mordaunt et al. 2015), *prodh* (Guilmatre et al. 2010), *six2* (Hufnagel et
272 al. 2016)(Okello et al. 2017), *srsf3* (Pillai et al. 2019), *syt9* (Sofos et al. 2012), and *trpc2*
273 (Sansone et al. 2014)(Zhang et al. 2010). Interestingly, one of the downregulated genes, *pi15*,
274 is known as an important molecular player in beak formation in birds (Nimmagadda et al.
275 2015). Even among the overlapping DE genes which showed opposing expression patterns
276 between the two comparisons, we still found at least four genes to have been associated with
277 craniofacial mid-line defects in other vertebrates, including *ccne2* (Jain et al. 2010), *plekha8*
278 (Schulz et al. 2008), *rab1b* (Alwadei et al. 2016), *rbpj* (Nakayama et al. 2014) and *tgfb3*
279 (Lopes et al. 2019). These findings demonstrate that similar sets of genes are involved in
280 mid-line patterning and growth across evolutionary distant vertebrates. Thus, functional
281 studies investigating their specific role in divergent morphogenesis of snout structures in fish
282 can provide valuable information about the conserved molecular mechanisms underlying the
283 formation of facial soft tissues (Powder & Albertson 2016).

284 Conducting gene ontology enrichment analysis on the list of DE genes also revealed the
285 involvement of several biological processes such as proline and hydroxyproline metabolisms,
286 regulation of cell adhesion, as well as Notch and Wnt signalling pathways in the formation of
287 the flapped snout in these cichlid species. Interestingly, a defective proline and
288 hydroxyproline metabolisms has been already associated with a range of skin and facial
289 deformities including abnormal nose morphogenesis in humans (Kiratli & Satılımış 1998;
290 Kretz et al. 2011; Zaki et al. 2016; Baumgartner et al. 2016). A defective proline metabolism
291 is known to severely affect collagen formation and extracellular matrix integrity, and
292 subsequently cell adhesion (Velez et al. 2019; Karna et al. 2020; Xinjie et al. 2001; Javitt et
293 al. 2019; Noguchi et al. 2020). The lack of proline hydroxylation in collagen by reduced
294 prolyl 4-hydroxylase activity can directly affect integrin binding and cell adhesion

295 mechanisms (Sipila et al. 2018). Interestingly, we found genes involved in 4-hydroxyproline
296 metabolic process as the most enriched biological process, which suggests changes in proline
297 hydroxylation as top candidate of metabolic changes during the formation of exaggerated
298 snout in cichlids. In addition, it has been recently shown that the biosynthesis of proline is
299 tightly regulated by transforming growth factor-beta (Tgf β) (Schwörer et al. 2020), a
300 transcription factor that is also playing an important role in the early development of the
301 flapped snout structure in cichlids (Conith et al. 2018). Although, we did not detect
302 differential expression of *Tgfb1* itself, components of this pathway were identified (e.g.,
303 *tgfb3*), and both of the enriched signalling pathways, Wnt and Notch, have evolutionary
304 conserved crosstalk with Tgf β mediated signal in regulation of various molecular, cellular
305 and developmental events (Attisano & Labb   2004; Chesnutt et al. 2004; Arnold et al. 2019;
306 Kl  ppel & Wrana 2005; Ahi 2016). In addition, both Wnt and Notch signalling pathways are
307 known to play a pivotal role in craniofacial development and morphogenesis including the
308 formation of middle structures including nasal structures (Penton et al. 2012; Pakvasa et al.
309 2020; Brugmann et al. 2007; Wang et al. 2011).

310 A proposed model for Tgf β and Notch crosstalk suggests that induction of Tgf β signalling is
311 required for the early establishment of cell-cell contacts in different tissues, whereas later
312 induction of Notch signal stabilizes the Tgf β mediated effects (Kl  ppel & Wrana 2005). This
313 allows the cells to react to a new environment through induction of alternative genetic
314 programs controlling differentiation or migration (Kl  ppel & Wrana 2005). In the context of
315 the snout, it is possible that activation of Tgf β is required for early snout induction (Conith et
316 al. 2018) and that continued snout growth is maintained via Notch signalling. This potential
317 time dependent crosstalk may be mediated through the downstream targets of Notch and Tgf β
318 signals, since it is shown that both signals can regulate similar target genes (Kl  ppel &
319 Wrana 2005; De Jong et al. 2004), including *foxa2*, a member of the FOX family of

320 transcription factors (both signals suppress *foxa2* expression) (Kondratyeva et al. 2016; Liu et
321 al. 2012). In our study, we found upregulation of *foxa2* in the flapped snout region, and
322 interestingly, a recent study in human shows that a deletion in *Foxa2* can cause specific facial
323 deformities including a shallow nasal bridge, a short upturned nose, and a downturned
324 nasolabial fold (Dines et al. 2019). In addition, we found *rpbj*, a major transcription factor
325 mediating canonical Notch signal in various cell types (Tanigaki et al. 2002) to be
326 differentially expressed in the flapped snout of both species. *rpbj* is shown to directly regulate
327 a receptor of Tgf β signal (*Tgfb1*) in mice, thus making a reciprocal positive regulatory loop
328 between the two pathways (Valdez et al. 2012). We also found another receptor of Tgf β
329 signal (*Tgfb3*) to show a similar expression pattern as *rpbj* raising the possibility of the
330 existence of such a reciprocal regulatory loop in flapped snout cichlids. In human, a deletion
331 in *Rpbj* gene has been linked to developmental defects in brain and abnormal thickening of
332 the nose and lip (Nakayama et al. 2014). Another genome-wide study revealed that *Rpbj* acts
333 as a direct upstream regulator of Wnt signalling in mammalian stem cells (Li et al. 2012). On
334 the other hand, Bmp2 signal which is regarded as a molecular cross point between
335 Smad/Tgf β and Notch pathways (De Jong et al. 2004), mediates its signal through *Tgfb3*
336 (Hill et al. 2012). It is already known that Bmp2 can regulate Notch signal and its
337 downstream target genes (De Jong et al. 2004). Previous studies in cichlids had proposed
338 variations in Bmp expression as a molecular player in adaptive morphological divergence in
339 different skeletal structures (Gunter et al. 2013; Albertson et al. 2005; Ahi et al. 2017; Hulsey
340 et al. 2016). We found down-regulation of *bmp2b* expression suggesting that a key regulator
341 linking both pathways is affected in the flapped snout region of the cichlid species in this
342 study. Furthermore, deletion of *Bmp2* in human has been reported to cause a range of facial
343 deformities including shortened nose, anteverted nares, elongation of the philtrum and
344 changes in the thickness of lips (Tan et al. 2017). Taken together, these findings suggest

345 potentially complex interactions between Notch and Tgf β signals in the formation and
346 possibly the maintenance of the flapped snout structure in cichlids.

347 Finally, we also conducted enrichment for TF binding sites on regulatory sequences of DEGs
348 and found several potential binding sites for TFs that may play a role in the formation of a
349 flapped snout. The most represented TF binding sites belonged to members of FOX
350 transcription factor family, e.g. *foxd3*, *foxj1* and *foxp1*. In previous studies of East African
351 cichlids, both *foxd3* and *foxp1* were found to act upstream of a gene network involved in
352 exaggerated fin elongation (Pashay Ahi & Sefc 2018; Ahi et al. 2019). Additionally, *foxp1*
353 was recently identified as a key upstream regulator of genes involved in the formation of the
354 hypertrophic lip in another East African cichlid species from Lake Tanganyika (Lecaudey et
355 al. 2021). None of the predicted FOX members (*foxd3*, *foxj1* and *foxp1*) displayed consistent
356 differential expression across both comparisons, but interestingly, the consensus binding site
357 for FOX transcription factor family was also among the predicted binding sites. It is,
358 therefore, possible that the two other FOX members identified by RNA-seq and qPCR, *foxf1*
359 and *foxa2*, are the key regulators of the entire list of DEGs, since they might bind to the
360 consensus FOX binding site. In addition, both *foxf1* and *foxa2* displayed consistently
361 increased expression in the flapped snout in both comparisons, and are also implicated in the
362 nose morphogenesis in mammals (Dines et al. 2019; Kucharczyk et al. 2014). We have
363 recently found *foxf1* among the regulators of lip hypertrophy in an East African cichlid
364 species as well (Lecaudey et al. 2021), suggesting a potentially important and general role of
365 *foxf1* in soft tissues exaggeration in cichlids, and given the potential role of *foxd3* and *foxp1*
366 in cichlid fin exaggeration, FOX genes may play a more general role in tissue elaboration in
367 vertebrates. Among the other predicted TF binding site we found overrepresentation of
368 binding motif for *tcf12*, a transcription factor with known roles in crano-skeletal
369 development; particularly in the morphogenesis of the frontal bone and cranial vault

370 thickening in mammals (Piard et al. 2015; Sharma et al. 2013). Moreover, we have previously
371 identified *tcfl2* as a potential key player in the formation of a nuchal hump in an East African
372 cichlid (Lecaudey et al. 2019). In this study, however, we did not detect its expression in the
373 snout region by differential gene expression or qPCR analysis. The only predicted TF with
374 consistent expression difference in both comparisons was *ap4* (or *tfap4*), i.e. showing slight
375 but significant reduced expression in the flapped snout. *ap4* encodes a member of the basic
376 helix-loop-helix-zipper (bHLH-ZIP) family, and can act as a transcriptional activator or
377 repressor on a variety of downstream target genes mediating cell fate decisions (Wong et al.
378 2021). The exact role of *ap4* in craniofacial morphogenesis of soft tissues is unclear,
379 however, deletions in a genomic region containing this gene appeared to cause facial
380 dysmorphisms in human such as prominent beaked nose and micrognathia (Gervasini et al.
381 2007). Future functional studies are required to verify the role of *ap4* in formation and
382 morphogenesis of craniofacial soft tissues in fish.

383

384 **Conclusions**

385 The snout flap in *Labeotropheus trewavasae* and *Ophthalmotilapia nasuta* is a striking and
386 rare example of an exaggerated soft tissue trait that has evolved repeatedly in the cichlid
387 radiations of Lake Malawi and Lake Tanganyika, albeit for different functions. Comparing
388 the transcriptional landscape of the snout flap tissue of these two species with the snout of
389 close relatives that do not develop such a structure, we identified 201 genes that were
390 repeatedly recruited to give rise to the snout flap phenotype even after > 9 MYA of
391 divergence. Our study provides support for a change in proline hydroxylation, a mechanism
392 also linked to human facial deformations, to be a mechanism for metabolic changes involved
393 in the formation of the snout flap in fish. Additionally, we found indications of complex
394 interactions between the transforming growth factor-beta (Tgf β), regulating the biosynthesis

395 of proline, and Notch signalling, associated with morphogenesis and craniofacial
396 development, in the formation and maintenance of the snout flap. Upstream of the
397 differentially expressed genes we identified transcription factors belonging to the FOX family
398 (especially *foxf1* and *foxa2*) which are both linked to the morphogenesis of the nose in
399 mammals and *ap4* a transcription factor that showed reduced expression in the species with
400 snout flap, but with an unknown role in craniofacial soft tissue formation. We want to
401 emphasise that the identification of genes involved in snout morphogenesis in fish can shed
402 light on the conserved molecular mechanisms crucial for the development and shaping of
403 facial soft tissue. In the future it would be important to build on these findings and confirm
404 the reuse of these genes and pathways across more distant teleost groups.

405

406 **Methods**

407 **Fish rearing and tissue sampling**

408 Five captive bred males of each *O. nasuta*, *O. ventralis*, and five captive bred females of *L.*
409 *trewavasae* and *T. tropheops* were raised and kept in a large tank (approximately 450 litres)
410 containing multiple stony shelters to decrease competition stress. All specimens were at the
411 young adult stage and have been fed with the same diet, Tropical multi-ingredient flakes
412 suitable for omnivorous cichlids. The two species in each comparison were sampled at the
413 same time when the protrusion of the flapped snout had already appeared (Figure 1). To
414 perform the dissections, we used a solution with 0.3 g MS222 per 1L water to euthanize the
415 fish, and similar snout regions, an area above the upper lip encompassing the nostrils which
416 includes epidermis, dermis and the underlying soft connective tissues, were sampled for each
417 fish (Figure 1). The sampled snout tissues for each individual were placed into separate tubes
418 containing RNAlater (Qiagen) and stored at -20 C°. The sacrificing of fish followed the

419 guidelines of the Federal Ministry of Science, Research and Economy of Austria according to
420 the regulations of the BMFWF.

421

422 **RNA extraction and cDNA synthesis**

423 Total RNA was extracted from 20 dissected snout tissue samples (5 biological replicates per
424 species) following the TRIzol method (Thermo Fischer Scientific). Each dissected sample
425 included epidermis, dermis, and the underlying fibrous/connective tissues of the specified
426 nose regions (Figure 1). Tissue samples were placed into tubes containing 1 ml of TRIzol
427 with a ceramic bead (1.4mm) and homogenized using a FastPrep-24 Instrument (MP
428 Biomedicals, CA, USA). RNA extraction followed the protocol of TRIzol RNA extraction
429 from Thermo Fischer Scientific. A DNA removal step with DNase followed the extraction
430 (invitrogen). The total RNAs were dissolved in 50 μ l nuclease-free water and their
431 concentrations were quantified through a Nanophotometer (IMPLEN GmbH, Munich,
432 Germany). We measured the quality of RNAs with the R6K ScreenTape System using an
433 Agilent 2200 TapeStation (Agilent Technologies) and RNA integrity numbers (RIN) above 7
434 were aimed at for all samples. To synthesize cDNA for qPCR analysis, we used 500 ng of the
435 total RNA per sample and followed the manufacturer's protocol of the High Capacity cDNA
436 Reverse Transcription kit (Applied Biosystems), and the resulted cDNAs were diluted 1:4 to
437 be used for the qPCR reaction.

438

439 **RNA-seq library preparation and gene expression quantification**

440 To attain transcriptome data of the snout tissues, we conducted RNA-seq library preparation
441 with 1000 ng of total RNA per tissue sample as input and following the protocol of the
442 Standard TruSeq Stranded mRNA Sample Prep Kit (Illumina) with indexing adapters. The
443 library qualities were assessed using D1000 ScreenTape and reagents (Agilent) on a

444 TapeStation 2200 machine (Agilent). In order to reach an optimal quantity recommended for
445 sequencing, we diluted the libraries and pooled them with equal molar concentration for each
446 library. The RNA-sequencing was conducted in the NGS Facility at Vienna Biocenter Core
447 Facilities (VBCF, Austria) on an Illumina HiSeq2500 and generated between 6.7 and 15.8
448 million paired-end reads with 125bp length per sample (Supplementary File S1). Raw reads
449 were de-multiplexed based on unique barcodes by the same facility. The quality of the reads
450 was assessed with FastQC (v0.11.8) (Andrews 2012), and reads were filtered for a quality >
451 28 and a minimum length of 70 bp with Trimmomatic (v0.3.9) (Bolger et al. 2014). Reads
452 were aligned to the *O. niloticus* reference genome (Conte et al. 2017) of the University of
453 Maryland using RNAsstar (v2.7.3.a) (Dobin et al. 2013). To check the mapping statistics, we
454 used samtools idxstats (v1.9) (Danecek et al. 2021) and further merged the single files for
455 species and Lake with picard (v2.21.7) (Picard Toolkit. 2019. Broad Institute, GitHub
456 Repository. <https://broadinstitute.github.io/picard/>). We used StringTie (v.2.0.6) (Pertea et al.
457 2015) to assemble the alignments into potential transcripts without a reference. This step was
458 conducted separately for single files (per biological replicate) and the merged files (per
459 species and per Lake). The single files per biological replicate were further merged into
460 species. This process of repeated merging steps was implemented to reduce the probability of
461 false positives. To assess the accuracy of the mapping we used gffcompare (v0.11.2) (Pertea
462 & Pertea 2020) to compare our annotations to the reference annotation. Subsequently we
463 filtered for monoexonic transcripts that were not contained in our reference and the
464 transcripts assigned the class code 'possible polymerase run-on' by gffcompare. As the
465 maximum intron length of the *O. niloticus* reference is 200000 bp, we also filtered for that in
466 the produced annotation. The expression estimates for each transcript were based on these
467 annotations and generated with StringTie (v.2.0.6) with no multimapping allowed. The final
468 raw count matrices were produced from the expression estimates with a Perl script from the

469 griffith lab

470 (https://github.com/griffithlab/rnaseq_tutorial/blob/master/scripts/stringtie_expression_matrix
471 .pl) and the code used in this analysis is available at this github repository
472 (https://github.com/annaduenser/snout_flap_RNAseq).

473

474 Differential expression analysis was conducted using DESeq2 (Love et al. 2014) in R (R
475 Core Team 2017) running comparisons for each Lake separately. DESeq2 estimates variance-
476 mean dependence based on a model using negative binomial distribution using the raw counts
477 (Love et al. 2014). A false discovery rate of $p < 0.05$ was chosen as the cutoff. For the
478 downstream analysis, an enrichment step for gene ontology (GO) terms of biological
479 processes was conducted using the intersection list of DE genes between the Lakes and
480 Manteia, a free online tool for data mining of vertebrate genes (Tassy & Pourquié 2014). In
481 addition, we investigated the functional interactions between the products of DE genes
482 through STRING v10 (<http://string-db.org/>), a knowledge based interaction prediction tool,
483 and zebrafish databases for protein interactomes (Szklarczyk et al. 2017).

484

485 **Primer design and qPCR**

486 We designed the qPCR primers on conserved regions of the selected candidate genes by
487 aligning their assembled sequences to their already available homologous mRNA sequences
488 from *Ophthalmotilapia ventralis* (Böhne et al. 2014), *Metriaclima zebra*, *Pundamilia*
489 *nyererei*, *Neolamprologus brichardi* and *Astatotilapia burtoni* (Brawand et al. 2014), as well
490 as *Oreochromis niloticus*. After aligning the conserved sequence regions across the
491 abovementioned East African cichlids, we identified the exon junctions (using CLC Genomic
492 Workbench, CLC Bio, Denmark, and annotated genome of *Astatotilapia burtoni* in the
493 Ensembl database, <http://www.ensembl.org>). The primer designing steps were conducted as

494 described previously (Pashay Ahi & Sefc 2018; Ahi et al. 2019) using Primer Express 3.0
495 (Applied Biosystems, CA, USA) (Supplementary file S3). The qPCR was performed based
496 on the protocol provided by Maxima SYBR Green/ROX qPCR Master Mix (2X) (Thermo
497 Fisher Scientific, Germany) following the guidelines for optimal experimental set-up for each
498 qPCR run (Hellemans et al. 2007). The qPCR program was set for 2 min at 50°C, 10 min at
499 95°C, 40 cycles of 15 sec at 95°C and 1 min at 60°C, followed by an additional step of
500 dissociation at 60°C – 95°C. The primer efficiency (E values) for each gene was calculated
501 through standard curves generated by serial dilutions of pooled cDNA samples. The standard
502 curves were run in triplicates and calculated using the following formula: $E = 10[-1/\text{slope}]$
503 (Supplementary file S3).

504 In order to select stably expressed candidate reference genes, we filtered for genes with a low
505 log₂ fold change and subsequently ranked the remaining genes according to low coefficient
506 of variation. The top six most stable genes shared across the transcriptome comparisons were
507 selected as candidate reference genes. After qPCR expression analysis of the six genes across
508 all samples, we ranked them based on their expression stability by three different algorithms:
509 BestKeeper (Pfaffl et al. 2004), NormFinder (Andersen et al. 2004) and geNorm
510 (Vandesompele et al. 2002). We used the C_q values of the top most stable reference genes to
511 normalize C_q values of target genes in each sample ($\Delta C_q \text{ target} = C_q \text{ target} - C_q \text{ reference}$).
512 The relative expression levels (RQ) were calculated by $2^{-\Delta\Delta C_q}$ method (Pfaffl 2001) and the
513 log-transformed RQ values were used for t-tests to calculate the statistical differences.

514

515 **Acknowledgements**

516 The authors thank Holger Zimmermann and Stephan Koblmüller for sharing their precious
517 knowledge on cichlid fishes of Lake Tanganyika, Sylvia Schäffer for sharing her experience
518 on RNA-seq library preparation, and Martin Grube and his lab for technical assistance and

519 access to their real-time PCR System. The authors acknowledge the financial support by the
520 University of Graz.

521

522 **Author Contributions**

523 EPA, CA and CS conceived the project. WG contributed to fish husbandry and photography,
524 and EPA and AD conducted the sampling and tissue dissection. AD, EPA and LL conducted
525 the RNA lab work. AD, PS, LL, EPA contributed to the analyses and all authors to
526 manuscript writing. CS and EPA contributed to funding. This work was supported by the
527 Austrian Science Fund [project number P29838] awarded to CS. All authors approved the
528 final version of the manuscript.

529

530 **Competing financial interests**

531 The authors declare no competing interests.

532

533 **Ethical approval**

534 No experiments were conducted on the fish prior to sampling, so an ethics approval is not
535 required according to the Austrian animal welfare law. Fish keeping and sacrifice was carried
536 out in our certified aquarium facility in accordance with the Austrian animal welfare law.

537

538 **Data availability**

539 The data underlying this article are available in the Sequencing Read Archive (SRA) of NCBI
540 at <https://www.ncbi.nlm.nih.gov/> and can be accessed with PRJNA770252.

541

542

543

544

545 References

546 Ahi E. 2016. Signalling pathways in trophic skeletal development and morphogenesis:
547 Insights from studies on teleost fish. *Dev. Biol.* 420:11–31. doi:
548 <http://dx.doi.org/10.1016/j.ydbio.2016.10.003>.

549 Ahi Ehsan Pashay et al. 2020. Expression levels of the tetratricopeptide repeat protein gene
550 ttc39b covary with carotenoid-based skin colour in cichlid fish. *Biol. Lett.* doi:
551 10.1098/rsbl.2020.0629.

552 Ahi Ehsan P., Duenser A, Singh P, Gessl W, Sturmbauer C. 2020. Appetite regulating genes
553 may contribute to herbivory versus carnivory trophic divergence in haplochromine cichlids.
554 *PeerJ*. 8:e8375. doi: 10.7717/peerj.8375.

555 Ahi EP, Richter F, Lecaudey LA, Sefc KM. 2019. Gene expression profiling suggests
556 differences in molecular mechanisms of fin elongation between cichlid species. *Sci. Rep.* 9.
557 doi: 10.1038/s41598-019-45599-w.

558 Ahi EP, Richter F, Sefc KM. 2017. A gene expression study of ornamental fin shape in
559 *Neolamprologus brichardi*, an African cichlid species. *Sci. Rep.* doi: 10.1038/s41598-017-
560 17778-0.

561 Alazami AM et al. 2016. Expanding the clinical and genetic heterogeneity of hereditary
562 disorders of connective tissue. *Hum. Genet.* 135:525–540. doi: 10.1007/s00439-016-1660-z.

563 Albertson RC, Streelman JT, Kocher TD, Yellick PC. 2005. Integration and evolution of the
564 cichlid mandible: the molecular basis of alternate feeding strategies. *Proc. Natl. Acad. Sci. U.*
565 *S. A.* 102:16287–92. doi: 10.1073/pnas.0506649102.

566 Alhamoudi KM et al. 2020. A Missense Mutation in the UGDH Gene Is Associated With
567 Developmental Delay and Axial Hypotonia. *Front. Pediatr.* 8. doi: 10.3389/fped.2020.00071.

568 Alwadei AH et al. 2016. Loss-of-function mutation in *RUSC2* causes intellectual disability
569 and secondary microcephaly. *Dev. Med. Child Neurol.* 58:1317–1322. doi:
570 10.1111/dmcn.13250.

571 Andersen CL, Jensen JL, Ørntoft TF. 2004. Normalization of real-time quantitative reverse
572 transcription-PCR data: a model-based variance estimation approach to identify genes suited
573 for normalization, applied to bladder and colon cancer data sets. *Cancer Res.* 64:5245–50.
574 doi: 10.1158/0008-5472.CAN-04-0496.

575 Andrews S. 2012. FastQC: a quality control tool for high throughput sequence data.
576 <http://www.bioinformatics.babraham.ac.uk/projects/fastqc>.

577 Arnold CP, Benham-Pyle BW, Lange JJ, Wood CJ, Sánchez Alvarado A. 2019. Wnt and
578 TGF β coordinate growth and patterning to regulate size-dependent behaviour. *Nature*.
579 572:655–659. doi: 10.1038/s41586-019-1478-7.

580 Attisano L, Labbé E. 2004. TGF β and Wnt pathway cross-talk. *Cancer Metastasis Rev.*
581 23:53–61. doi: 10.1023/A:1025811012690.

582 Bailey TL et al. 2009. MEME SUITE: tools for motif discovery and searching. *Nucleic Acids*
583 *Res.* 37:W202–8. doi: 10.1093/nar/gkp335.

584 Barrionuevo MG, Aybar MJ, Tríbulo C. 2014. Two different vestigial like 4 genes are
585 differentially expressed during *Xenopus laevis* development. *Int. J. Dev. Biol.* 58:369–377.
586 doi: 10.1387/ijdb.130353ct.

587 Baumgarten L, Machado-Schiaffino G, Henning F, Meyer A. 2015. What big lips are good
588 for: On the adaptive function of repeatedly evolved hypertrophied lips of cichlid fishes. *Biol.*
589 *J. Linn. Soc.* 115:448–455. doi: 10.1111/bij.12502.

590 Baumgartner MR, Valle D, Dionisi-Vici C. 2016. Disorders of Ornithine and Proline
591 Metabolism. In: *Inborn Metabolic Diseases*. Springer Berlin Heidelberg pp. 321–331. doi:
592 10.1007/978-3-662-49771-5_21.

593 Böhne A, Sengstag T, Salzburger W. 2014. Comparative transcriptomics in East African
594 cichlids reveals sex- and species-specific expression and new candidates for sex
595 differentiation in fishes. *Genome Biol. Evol.* 6:2567–2585. doi: 10.1093/gbe/evu200.

596 Bolger AM, Lohse M, Usadel B. 2014. Trimmomatic: a flexible trimmer for Illumina
597 sequence data. *Bioinformatics*. 30:2114–2120. doi: 10.1093/bioinformatics/btu170.

598 Bonaglia MC et al. 2005. A 2.3 Mb duplication of chromosome 8q24.3 associated with
599 severe mental retardation and epilepsy detected by standard karyotype. *Eur. J. Hum. Genet.*
600 13:586–591. doi: 10.1038/sj.ejhg.5201369.

601 Brawand D et al. 2014. The genomic substrate for adaptive radiation in African cichlid fish.
602 *Nature*. 513:375–381. doi: 10.1038/nature13726.

603 Brugmann SA et al. 2007. Wnt signaling mediates regional specification in the vertebrate
604 face. *Development*. 134:3283–95. doi: 10.1242/dev.005132.

605 Brugmann SA, Cordero DR, Helms JA. 2010. Craniofacial ciliopathies: A new classification
606 for craniofacial disorders. *Am. J. Med. Genet. Part A*. 152A:2995–3006. doi:
607 10.1002/ajmg.a.33727.

608 Chen CP, Ko TM, Chen YY, Su JW, Wang W. 2013. Prenatal diagnosis and molecular
609 cytogenetic characterization of mosaicism for a small supernumerary marker chromosome
610 derived from chromosome 22 associated with cat eye syndrome. *Gene*. 527:384–388. doi:
611 10.1016/j.gene.2013.05.061.

612 Chesnutt C, Burrus LW, Brown AMC, Niswander L. 2004. Coordinate regulation of neural
613 tube patterning and proliferation by TGF β and WNT activity. *Dev. Biol.* 274:334–347. doi:
614 10.1016/j.ydbio.2004.07.019.

615 Colombo M et al. 2013. The ecological and genetic basis of convergent thick-lipped
616 phenotypes in cichlid fishes. *Mol. Ecol.* 22:670–684. doi: 10.1111/mec.12029.

617 Concannon MR, Albertson RC. 2015. The genetic and developmental basis of an exaggerated
618 craniofacial trait in East African cichlids. *J. Exp. Zool. B. Mol. Dev. Evol.* 324:662–70. doi:
619 10.1002/jez.b.22641.

620 Conith MR et al. 2018. Genetic and developmental origins of a unique foraging adaptation in
621 a Lake Malawi cichlid genus. *Proc. Natl. Acad. Sci.* 115:7063–7068. doi:
622 10.1073/PNAS.1719798115.

623 Conith MR, Conith AJ, Albertson RC. 2019. Evolution of a soft-tissue foraging adaptation in
624 African cichlids: Roles for novelty, convergence, and constraint. *Evolution (N. Y.)*. 73:2072–
625 2084. doi: 10.1111/evo.13824.

626 Conte MA, Gammerdinger WJ, Bartie KL, Penman DJ, Kocher TD. 2017. A high quality
627 assembly of the Nile Tilapia (*Oreochromis niloticus*) genome reveals the structure of two sex
628 determination regions. *BMC Genomics*. 18:341. doi: 10.1186/s12864-017-3723-5.

629 Czeschik JC et al. 2014. A patient with a de-novo deletion 3p25.3 and features overlapping
630 with Rubinstein–Taybi syndrome. *Clin. Dysmorphol.* 23:67–70. doi:
631 10.1097/MCD.0000000000000035.

632 Danecek P et al. 2021. Twelve years of SAMtools and BCFtools. *Gigascience*. 10. doi:
633 10.1093/gigascience/giab008.

634 Dell’Edera D et al. 2018. 16p11.2 microdeletion syndrome: A case report. *J. Med. Case Rep.*
635 12:1–6. doi: 10.1186/s13256-018-1587-1.

636 Dines JN et al. 2019. Expanding phenotype with severe midline brain anomalies and
637 missense variant supports a causal role for *FOXA2* in 20p11.2 deletion syndrome. *Am. J.*
638 *Med. Genet. Part A*. 179:ajmg.a.61281. doi: 10.1002/ajmg.a.61281.

639 Dobin A et al. 2013. STAR: ultrafast universal RNA-seq aligner. *Bioinformatics*. 29:15–21.
640 doi: 10.1093/bioinformatics/bts635.

641 Ehret JK et al. 2015. Microdeletions in 9q33.3-q34.11 in five patients with intellectual
642 disability, microcephaly, and seizures of incomplete penetrance: Is STXBP1 not the only
643 causative gene? *Mol. Cytogenet.* 8:1–14. doi: 10.1186/s13039-015-0178-8.

644 Fryssira H et al. 2011. Severe Developmental Delay in a Patient with 7p21.1–p14.3
645 Microdeletion Spanning the <i>TWIST</i> Gene and the
646 <i>HOXA</i> Gene Cluster. *Mol. Syndromol.* 2:45–49. doi: 10.1159/000334313.

647 Gervasini C et al. 2007. High frequency of mosaic CREBBP deletions in Rubinstein-Taybi
648 syndrome patients and mapping of somatic and germ-line breakpoints. *Genomics*. 90:567–
649 573. doi: 10.1016/j.ygeno.2007.07.012.

650 Giannikou K et al. 2012. Further delineation of novel 1p36 rearrangements by array-CGH
651 analysis: Narrowing the breakpoints and clarifying the ‘extended’ phenotype. *Gene*. 506:360–
652 368. doi: 10.1016/j.gene.2012.06.060.

653 Guilmatré A et al. 2010. Type I hyperprolinemia: genotype/phenotype correlations. *Hum.*
654 *Mutat.* 31:961–965. doi: 10.1002/humu.21296.

655 Gunter HM et al. 2013. Shaping development through mechanical strain: the transcriptional
656 basis of diet-induced phenotypic plasticity in a cichlid fish. *Mol. Ecol.* 22:4516–4531. doi:
657 10.1111/mec.12417.

658 Haldeman-Englert CR et al. 2009. A 3.1-Mb microdeletion of 3p21.31 associated with
659 cortical blindness, cleft lip, CNS abnormalities, and developmental delay. *Eur. J. Med. Genet.*
660 52:265–268. doi: 10.1016/j.ejmg.2008.11.005.

661 Hanssens M, Snoeks J, Verheyen E. 1999. A morphometric revision of the genus
662 Ophthalmotilapia (Teleostei, Cichlidae) from Lake Tanganyika (East Africa). *Zool. J. Linn.*
663 Soc. 125:487–512. doi: 10.1111/j.1096-3642.1999.tb00602.x.

664 Hellemans J, Mortier G, De Paepe A, Speleman F, Vandesompele J. 2007. qBase relative
665 quantification framework and software for management and automated analysis of real-time
666 quantitative PCR data. *Genome Biol.* 8:R19. doi: 10.1186/gb-2007-8-2-r19.

667 Henning F, Machado-Schiaffino G, Baumgarten L, Meyer A. 2017. Genetic dissection of
668 adaptive form and function in rapidly speciating cichlid fishes. *Evolution (N. Y.)*. 71:1297–
669 1312. doi: 10.1111/evo.13206.

670 Hill CR et al. 2012. BMP2 signals loss of epithelial character in epicardial cells but requires

671 the Type III TGF β receptor to promote invasion. *Cell. Signal.* 24:1012–1022. doi:
672 10.1016/j.cellsig.2011.12.022.

673 Holder JL, Lotze TE, Bacino C, Cheung S-W. 2012. A child with an inherited 0.31 Mb
674 microdeletion of chromosome 14q32.33: Further delineation of a critical region for the 14q32
675 deletion syndrome. *Am. J. Med. Genet. Part A.* 158A:1962–1966. doi:
676 10.1002/ajmg.a.35289.

677 Hosono K et al. 2020. A case of childhood glaucoma with a combined partial monosomy
678 6p25 and partial trisomy 18p11 due to an unbalanced translocation. *Ophthalmic Genet.*
679 41:175–182. doi: 10.1080/13816810.2020.1744019.

680 Hufnagel RB et al. 2016. A new frontonasal dysplasia syndrome associated with deletion of
681 the *SIX2* gene. *Am. J. Med. Genet. Part A.* 170:487–491. doi: 10.1002/ajmg.a.37441.

682 Hulsey CD, Fraser GJ, Meyer A. 2016. Biting into the genome to genome map:
683 Developmental genetic modularity of cichlid fish dentitions. In: *Integrative and Comparative*
684 *Biology*. Vol. 56 Oxford University Press pp. 373–388. doi: 10.1093/icb/icw059.

685 Hüning I et al. 2013. Exon 2 duplication of the *MID1* gene in a patient with a mild phenotype
686 of Opitz G/BBB syndrome. *Eur. J. Med. Genet.* 56:188–191. doi:
687 10.1016/j.ejmg.2013.01.004.

688 Irisarri I et al. 2018. Phylogenomics uncovers early hybridization and adaptive loci shaping
689 the radiation of Lake Tanganyika cichlid fishes. *Nat. Commun.* 9:1–12. doi: 10.1038/s41467-
690 018-05479-9.

691 Jain S, Yang P, Farrell SA. 2010. A case of 8q22.1 microdeletion without the Nablus mask-
692 like facial syndrome phenotype. *Eur. J. Med. Genet.* 53:108–110. doi:
693 10.1016/j.ejmg.2009.12.006.

694 Javitt G et al. 2019. *cis* -Proline mutants of quiescin sulfhydryl oxidase 1 with altered redox
695 properties undermine extracellular matrix integrity and cell adhesion in fibroblast cultures.
696 *Protein Sci.* 28:228–238. doi: 10.1002/pro.3537.

697 De Jong DS et al. 2004. Regulation of Notch signaling genes during BMP2-induced
698 differentiation of osteoblast precursor cells. *Biochem. Biophys. Res. Commun.* 320:100–107.
699 doi: 10.1016/j.bbrc.2004.05.150.

700 Kariminejad A et al. 2015. Intellectual disability, muscle weakness and characteristic face in
701 three siblings: A newly described recessive syndrome mapping to 3p24.3-p25.3. *Am. J. Med.*
702 *Genet. Part A.* 167:2508–2515. doi: 10.1002/ajmg.a.37248.

703 Karna E, Szoka L, Huynh TYL, Palka JA. 2020. Proline-dependent regulation of collagen
704 metabolism. *Cell. Mol. Life Sci.* 77:1911–1918. doi: 10.1007/s00018-019-03363-3.

705 Kiratli H, Satılmış M. 1998. Prolidase deficiency associated with pathologic myopia.
706 *Ophthalmic Genet.* 19:49–53. doi: 10.1076/opge.19.1.49.2180.

707 Klüppel M, Wrana JL. 2005. Turning it up a Notch: cross-talk between TGF β and Notch
708 signaling. *BioEssays.* 27:115–118. doi: 10.1002/bies.20187.

709 Kocher TD, Conroy JA, McKaye KR, Stauffer JR. 1993. Similar morphologies of cichlid fish
710 in lakes tanganyika and malawi are due to convergence. *Mol. Phylogenetic Evol.* 2:158–165.
711 doi: 10.1006/mpev.1993.1016.

712 Kondratyeva LG et al. 2016. Downregulation of expression of master genes SOX9, FOXA2,

713 and GATA4 in pancreatic cancer cells stimulated with TGF β 1 epithelial–mesenchymal
714 transition. *Dokl. Biochem. Biophys.* 469:257–259. doi: 10.1134/S1607672916040062.

715 Konings A. 2007. *Malawi cichlids in their natural habitat 4th Edition*. 4th ed. Cichlid Press.
716 El Paso, Texas, USA.: El Paso, Texas, USA.

717 Kosho T et al. 2008. De-novo balanced translocation between 7q31 and 10p14 in a girl with
718 central precocious puberty, moderate mental retardation, and severe speech impairment. *Clin.*
719 *Dysmorphol.* 17:31–34. doi: 10.1097/MCD.0b013e3282f17688.

720 Kretz R et al. 2011. Defect in proline synthesis: Pyrroline-5-carboxylate reductase 1
721 deficiency leads to a complex clinical phenotype with collagen and elastin abnormalities. *J.*
722 *Inherit. Metab. Dis.* 34:731–739. doi: 10.1007/s10545-011-9319-3.

723 Kubista M et al. 2006. The real-time polymerase chain reaction. *Mol. Aspects Med.* 27:95–
724 125. doi: 10.1016/j.mam.2005.12.007.

725 Kucharczyk M et al. 2014. The first case of a patient with de novo partial distal 16q
726 tetrasomy and a data's review. *Am. J. Med. Genet. Part A.* 164:2541–2550. doi:
727 10.1002/ajmg.a.36686.

728 Lecaudey LA et al. 2021. Transcriptomics unravels molecular players shaping dorsal lip
729 hypertrophy in the vacuum cleaner cichlid, *Gnathochromis permaxillaris*. *BMC Genomics.*
730 22:506. doi: 10.1186/s12864-021-07775-z.

731 Lecaudey LA, Sturmbauer C, Singh P, Ahi EP. 2019. Molecular mechanisms underlying
732 nuchal hump formation in dolphin cichlid, *Cyrtocara moorii*. *Sci. Rep.* doi: 10.1038/s41598-
733 019-56771-7.

734 Li Y, Hibbs MA, Gard AL, Shylo NA, Yun K. 2012. Genome-Wide Analysis of
735 N1ICD/RBPJ Targets In Vivo Reveals Direct Transcriptional Regulation of Wnt, SHH, and
736 Hippo Pathway Effectors by Notch1. *Stem Cells.* 30:741–752. doi: 10.1002/stem.1030.

737 Liu M et al. 2012. IKK α Activation of NOTCH Links Tumorigenesis via FOXA2
738 Suppression. *Mol. Cell.* 45:171–184. doi: 10.1016/j.molcel.2011.11.018.

739 Lopes F et al. 2019. Genomic imbalances defining novel intellectual disability associated
740 loci. *Orphanet J. Rare Dis.* 14:1–13. doi: 10.1186/s13023-019-1135-0.

741 Losos JB, Jackman TR, Larson A, De Queiroz K, Rodríguez-Schettino L. 1998. Contingency
742 and determinism in replicated adaptive radiations of island lizards. *Science (80-.).* 279:2115–
743 2118. doi: 10.1126/science.279.5359.2115.

744 Love MI, Huber W, Anders S. 2014. Moderated estimation of fold change and dispersion for
745 RNA-seq data with DESeq2. *Genome Biol.* 15:550. doi: 10.1186/s13059-014-0550-8.

746 Machado-Schiaffino G, Henning F, Meyer A. 2014. Species-specific differences in adaptive
747 phenotypic plasticity in an ecologically relevant trophic trait: hypertrophic lips in Midas
748 cichlid fishes. *Evolution (N. Y.).* 68:2086–2091. doi: 10.1111/evo.12367.

749 Manousaki T et al. 2013. Parsing parallel evolution: ecological divergence and differential
750 gene expression in the adaptive radiations of thick-lipped Midas cichlid fishes from
751 Nicaragua. *Mol. Ecol.* 22:650–69. doi: 10.1111/mec.12034.

752 Martinez-Glez V et al. 2007. Clinical presentation of a variant of Axenfeld-Rieger syndrome
753 associated with subtelomeric 6p deletion. *Eur. J. Med. Genet.* 50:120–127. doi:
754 10.1016/j.ejmg.2006.10.005.

755 McLachlan E et al. 2005. Functional Characterization of Oculodentodigital Dysplasia-
756 Associated Cx43 Mutants. *Cell Commun. Adhes.* 12:279–292. doi:
757 10.1080/15419060500514143.

758 Miller ND et al. 2009. Molecular (SNP) analyses of overlapping hemizygous deletions of
759 10q25.3 to 10qter in four patients: Evidence for HMX2 and HMX3 as candidate genes in
760 hearing and vestibular function. *Am. J. Med. Genet. Part A.* 149A:669–680. doi:
761 10.1002/ajmg.a.32705.

762 Mitteldorf C et al. 2018. Deceptively bland cutaneous angiosarcoma on the nose mimicking
763 hemangioma-A clinicopathologic and immunohistochemical analysis. *J. Cutan. Pathol.*
764 45:652–658. doi: 10.1111/cup.13275.

765 Mordaunt D et al. 2015. 8q13.1-q13.2 deletion associated with inferior cerebellar vermian
766 hypoplasia and digital anomalies: A new syndrome? *Pediatr. Neurol.* 52:230-234.e1. doi:
767 10.1016/j.pediatrneurol.2014.09.002.

768 Mucha BE et al. 2019. A new microdeletion syndrome involving TBC1D24, ATP6V0C, and
769 PDPK1 causes epilepsy, microcephaly, and developmental delay. *Genet. Med.* 21:1058–
770 1064. doi: 10.1038/s41436-018-0290-3.

771 Nakayama T et al. 2014. RBPJ is disrupted in a case of proximal 4p deletion syndrome with
772 epilepsy. *Brain Dev.* 36:532–536. doi: 10.1016/j.braindev.2013.07.009.

773 Nimmagadda S et al. 2015. Identification and functional analysis of novel facial patterning
774 genes in the duplicated beak chicken embryo. *Dev. Biol.* 407:275–288. doi:
775 10.1016/j.ydbio.2015.09.007.

776 Noguchi Y, Iwasaki Y, Ueda M, Kakinoki S. 2020. Surfaces immobilized with oligo-prolines
777 prevent protein adsorption and cell adhesion. *J. Mater. Chem. B.* 8:2233–2237. doi:
778 10.1039/d0tb00051e.

779 Okello DO et al. 2017. Six2 Plays an Intrinsic Role in Regulating Proliferation of
780 Mesenchymal Cells in the Developing Palate. *Front. Physiol.* 8:955. doi:
781 10.3389/fphys.2017.00955.

782 Pakvasa M et al. 2020. Notch signaling: Its essential roles in bone and craniofacial
783 development. *Genes Dis.* doi: 10.1016/j.gendis.2020.04.006.

784 Pashay Ahi E, Sefc KM. 2018. Towards a gene regulatory network shaping the fins of the
785 Princess cichlid. *Sci. Rep.* 8:9602. doi: 10.1038/s41598-018-27977-y.

786 De Pater JM et al. 2005. Striking Facial Dysmorphisms and Restricted Thymic Development
787 in a Fetus with a 6-Megabase Deletion of Chromosome 14q. *Pediatr. Dev. Pathol.* 8:497–503.
788 doi: 10.1007/s10024-005-0041-8.

789 Penton AL, Leonard LD, Spinner NB. 2012. Notch signaling in human development and
790 disease. *Semin. Cell Dev. Biol.* 23:450–457. doi: 10.1016/j.semcd.2012.01.010.

791 Pertea G, Pertea M. 2020. GFF Utilities: GffRead and GffCompare. *F1000Research.* 9. doi:
792 10.12688/f1000research.23297.2.

793 Pertea M et al. 2015. StringTie enables improved reconstruction of a transcriptome from
794 RNA-seq reads. *Nat. Biotechnol.* 33:290–295. doi: 10.1038/nbt.3122.

795 Pfaffl MW. 2001. A new mathematical model for relative quantification in real-time RT-
796 PCR. *Nucleic Acids Res.* 29:e45.

797 <http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4008322/> (Accessed July 31, 2014).

798

799 Pfaffl MW, Tichopad A, Prgomet C, Neuvians TP. 2004. Determination of stable
800 housekeeping genes, differentially regulated target genes and sample integrity: BestKeeper--
801 Excel-based tool using pair-wise correlations. *Biotechnol. Lett.* 26:509–15.
802 <http://www.ncbi.nlm.nih.gov/pubmed/15127793> (Accessed June 12, 2015).

803 Piard J et al. 2015. *TCF12* microdeletion in a 72-year-old woman with intellectual disability.
804 *Am. J. Med. Genet. Part A.* 167:1897–1901. doi: 10.1002/ajmg.a.37083.

805 Pillai NR et al. 2019. Novel deletion of 6p21.31p21.1 associated with laryngeal cleft,
806 developmental delay, dysmorphic features and vascular anomaly. *Eur. J. Med. Genet.*
807 62:103531. doi: 10.1016/j.ejmg.2018.08.012.

808 Powder KE, Albertson RC. 2016. Cichlid fishes as a model to understand normal and clinical
809 craniofacial variation. *Dev. Biol.* 415:338–346. doi: 10.1016/j.ydbio.2015.12.018.

810 Preiksaitiene E et al. 2015. R368X mutation in MID1 among recurrent mutations in patients
811 with X-linked Opitz G/BBB syndrome. *Clin. Dysmorphol.* 24:7–12. doi:
812 10.1097/MCD.0000000000000059.

813 Quigley DI, Kaiser-Rogers K, Aylsworth AS, Rao KW. 2004. Submicroscopic deletion
814 9(q34.4) and duplication 19(p13.3): Identified by subtelomere specific FISH probes. *Am. J.*
815 *Med. Genet.* 125A:67–72. doi: 10.1002/ajmg.a.20457.

816 R Core Team. 2017. *R: A Language and Environment for Statistical Computing*. doi:
817 10.1007/978-3-540-74686-7.

818 Reijnders MRF et al. 2017. RAC1 Missense Mutations in Developmental Disorders with
819 Diverse Phenotypes. *Am. J. Hum. Genet.* 101:466–477. doi: 10.1016/j.ajhg.2017.08.007.

820 Rivera-Pedroza CI et al. 2017. Chromosome 1p31.1p31.3 Deletion in a Patient with
821 Craniostenosis, Central Nervous System and Renal Malformation: Case Report and
822 Review of the Literature. *Mol. Syndromol.* 8:30–35. doi: 10.1159/000452609.

823 Rüber L, Verheyen E, Meyer A. 1999. Replicated evolution of trophic specializations in an
824 endemic cichlid fish lineage from Lake Tanganyika. *Proc. Natl. Acad. Sci. U. S. A.*
825 96:10230–10235. doi: 10.1073/pnas.96.18.10230.

826 Rundle HD, Nagel L, Boughman JW, Schluter D. 2000. Natural selection and parallel
827 speciation in sympatric sticklebacks. *Science* (80-.). 287:306–308. doi:
828 10.1126/science.287.5451.306.

829 Sansone A, Syed AS, Tantalaki E, Korschning SI, Manzini I. 2014. *Trpc2* is expressed in two
830 olfactory subsystems, the main and the vomeronasal system of larval *Xenopus laevis*. *J. Exp.*
831 *Biol.* 217:2235–2238. doi: 10.1242/jeb.103465.

832 Sawyer JR, Binz RL, Swanson CM, Lim C. 2007. De novo proximal duplication of
833 1(q12q22) in a female infant with multiple congenital anomalies. *Am. J. Med. Genet. Part A.*
834 143A:338–342. doi: 10.1002/ajmg.a.31604.

835 Schluter D, Nagel LM. 1995. Parallel speciation by natural selection. *Am. Nat.* 146:292–301.
836 doi: 10.1086/285799.

837 Schulz S, Volleth M, Muschke P, Wieland I, Wieacker P. 2008. Greig cephalopolysyndactyly
838 (GCPs) contiguous gene syndrome in a boy with a 14 Mb deletion in region 7p13-14 caused

839 by a paternal balanced insertion (5; 7). *Appl. Clin. Genet.* 1:19–22. doi: 10.2147/tacg.s4401.

840 Schwörer S et al. 2020. Proline biosynthesis is a vent for TGF β -induced mitochondrial redox
841 stress. *EMBO J.* 39. doi: 10.15252/embj.2019103334.

842 Selenti N et al. 2015. An interstitial deletion at 8q23.1-q24.12 associated with Langer-
843 Giedion syndrome/Trichorhinophalangeal syndrome (TRPS) type II and Cornelia de Lange
844 syndrome 4. *Mol. Cytogenet.* 8:64. doi: 10.1186/s13039-015-0169-9.

845 Sharma VP et al. 2013. Mutations in TCF12, encoding a basic helix-loop-helix partner of
846 TWIST1, are a frequent cause of coronal craniosynostosis. *Nat. Genet.* 45:304–307. doi:
847 10.1038/ng.2531.

848 Sipila KH et al. 2018. Proline hydroxylation in collagen supports integrin binding by two
849 distinct mechanisms. *J. Biol. Chem.* 293:7645–7658. doi: 10.1074/jbc.RA118.002200.

850 Sofos E et al. 2012. A novel familial 11p15.4 microduplication associated with intellectual
851 disability, dysmorphic features, and obesity with involvement of the ZNF214 gene. *Am. J.*
852 *Med. Genet. Part A.* 158A:50–58. doi: 10.1002/ajmg.a.34290.

853 Starkovich M, Lalani SR, Mercer CL, Scott DA. 2016. Chromosome 5q33 deletions
854 associated with congenital heart defects. *Am. J. Med. Genet. Part A.* 170:3338–3342. doi:
855 10.1002/ajmg.a.37957.

856 Szklarczyk D et al. 2017. The STRING database in 2017: quality-controlled protein–protein
857 association networks, made broadly accessible. *Nucleic Acids Res.* 45:D362–D368. doi:
858 10.1093/nar/gkw937.

859 Tan TY et al. 2017. Monoallelic BMP2 Variants Predicted to Result in Haploinsufficiency
860 Cause Craniofacial, Skeletal, and Cardiac Features Overlapping Those of 20p12 Deletions.
861 *Am. J. Hum. Genet.* 101:985–994. doi: 10.1016/j.ajhg.2017.10.006.

862 Tanigaki K et al. 2002. Notch-RBP-J signaling is involved in cell fate determination of
863 marginal zone B cells. *Nat. Immunol.* 3:443–450. doi: 10.1038/ni793.

864 Tassy O, Pourquié O. 2014. Manteia, a predictive data mining system for vertebrate genes
865 and its applications to human genetic diseases. *Nucleic Acids Res.* 42:D882-91. doi:
866 10.1093/nar/gkt807.

867 Thomas PS, Kim J, Nunez S, Glogauer M, Kaartinen V. 2010. Neural crest cell-specific
868 deletion of Rac1 results in defective cell-matrix interactions and severe craniofacial and
869 cardiovascular malformations. *Dev. Biol.* 340:613–625. doi: 10.1016/j.ydbio.2010.02.021.

870 Tinker RJ et al. 2021. Haploinsufficiency of *ATP6V0C* possibly underlies
871 16p13.3 deletions that cause microcephaly, seizures, and neurodevelopmental disorder. *Am.*
872 *J. Med. Genet. Part A.* 185:196–202. doi: 10.1002/ajmg.a.61905.

873 Tomkins DJ, Gitelman BJ, Roberts MH. 1983. Confirmation of a de novo duplication,
874 dup(10) (q24→q26), by GOT1 gene dosage studies. *Hum. Genet.* 63:369–373. doi:
875 10.1007/BF00274764.

876 Tuțulan-Cuniță AC et al. 2012. 3p interstitial deletion: Novel case report and review. *J. Child*
877 *Neurol.* 27:1062–1066. doi: 10.1177/0883073811431016.

878 Valdez JM et al. 2012. Notch and TGF β form a reciprocal positive regulatory loop that
879 suppresses murine prostate basal stem/progenitor cell activity. *Cell Stem Cell.* 11:676–688.
880 doi: 10.1016/j.stem.2012.07.003.

881 Vandesompele J et al. 2002. Accurate normalization of real-time quantitative RT-PCR data
882 by geometric averaging of multiple internal control genes. *Genome Biol.*
883 3:RESEARCH0034.
884 http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=126239&tool=pmcentrez&render_type=abstract (Accessed July 27, 2014).

886 Velez DO et al. 2019. 3D collagen architecture regulates cell adhesion through degradability,
887 thereby controlling metabolic and oxidative stress. *Integr. Biol.* 11:221–234. doi:
888 10.1093/intbio/zyz019.

889 Wang Y, Song L, Zhou CJ. 2011. The canonical Wnt/β-catenin signaling pathway regulates
890 Fgf signaling for early facial development. *Dev. Biol.* 349:250–260. doi:
891 10.1016/j.ydbio.2010.11.004.

892 Wieacker P, Volleth M. 2007. <i>WNT4</i> and <i>RSPO1</i> Are
893 Not Involved in a Case of Male-to-Female Sex Reversal with Partial Duplication of 1p. *Sex.*
894 *Dev.* 1:111–113. doi: 10.1159/000100032.

895 Wong MM-K, Joyson SM, Hermeking H, Chiu SK. 2021. Transcription Factor AP4 Mediates
896 Cell Fate Decisions: To Divide, Age, or Die. *Cancers (Basel)*. 13:676. doi:
897 10.3390/cancers13040676.

898 Xinjie L et al. 2001. Evaluation of the role of proline residues flanking the RGD motif of
899 dendroaspin, an inhibitor of platelet aggregation and cell adhesion. *Biochem. J.* 355:633–
900 638. doi: 10.1042/bj3550633.

901 Yakut S et al. 2015. A familial interstitial 4q35 deletion with no discernible clinical effects.
902 *Am. J. Med. Genet. Part A.* 167:1836–1841. doi: 10.1002/ajmg.a.37097.

903 Zaki MS et al. 2016. *PYCR2* Mutations cause a lethal syndrome of microcephaly and failure
904 to thrive. *Ann. Neurol.* 80:59–70. doi: 10.1002/ana.24678.

905 Zhang P, Yang C, Delay RJ. 2010. Odors activate dual pathways, a TRPC2 and a AA-
906 dependent pathway, in mouse vomeronasal neurons. *Am. J. Physiol. Physiol.* 298:C1253–
907 C1264. doi: 10.1152/ajpcell.00271.2009.

908 Zlotina A et al. 2016. Ring chromosome 18 in combination with 18q12.1 (DTNA) interstitial
909 microdeletion in a patient with multiple congenital defects. *Mol. Cytogenet.* 9:1–7. doi:
910 10.1186/s13039-016-0229-9.

911