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Abstract 

Substance abuse and addiction represent a significant public health problem that impacts multiple 

dimensions of society, including healthcare, the economy, and the workforce. In 2021, over 100,000 

drug overdose deaths were reported in the US, with an alarming increase in fatalities related to opioids 

and psychostimulants. Understanding the fundamental gene regulatory mechanisms underlying 

addiction and related behaviors could facilitate more effective treatments. To explore how repeated 

drug exposure alters gene regulatory networks in the brain, we combined capped small (cs)RNA-seq, 

which accurately captures nascent-like initiating transcripts from total RNA, with Hi-C and single 

nuclei (sn)ATAC-seq. We profiled initiating transcripts in two addiction-related brain regions, the 

prefrontal cortex (PFC) and the nucleus accumbens (NAc), from rats that were never exposed to drugs 

or were subjected to prolonged abstinence after oxycodone or cocaine intravenous self-administration 

(IVSA). Interrogating over 100,000 active transcription start regions (TSRs) revealed that most TSRs 

had hallmarks of bonafide enhancers and highlighted the KLF/SP1, RFX, and AP1 transcription 

factors families as central to establishing brain-specific gene regulatory programs. Analysis of rats with 

addiction-like behaviors versus controls identified addiction-associated repression of transcription at 

regulatory enhancers recognized by nuclear receptor subfamily 3 group C (NR3C) factors, which 

include glucocorticoid receptors. Cell-type deconvolution analysis using snATAC-seq uncovered a 

potential role of glial cells in driving the gene regulatory programs associated with addiction-related 

phenotypes. These findings highlight the power of advanced transcriptomics methods to provide 

insight into how addiction perturbs gene regulatory programs in the brain. 

Introduction 

Drug addiction and related health problems impact millions of lives in the United States and impose an 

enormous medical, social, and economic burden on society (Fan et al., 2019). Addiction is a chronic 

relapsing disorder characterized by diminished control over drug-seeking, compulsive consumption 

despite negative consequences resulting from drug use, and relapse to drug-taking even after years of 

abstinence. These enduring effects suggest that chronic drug exposure causes persistent changes in the 

brain that underlie the development of addiction-related behaviors. The transition from recreational to 

compulsive drug-seeking is associated with the recruitment of brain reward and stress systems (Koob 

et al., 2014), including the corticostriatal circuitry that involves the prefrontal cortex (PFC) and the 

nucleus accumbens (NAc) (Koob and Volkow, 2016). This transition is a critical step in the emergence 

of compulsivity, which leads to loss of inhibitory control over drug use by recruitment of neuronal 

populations in the prefrontal cortex (PFC) (Koob and Volkow, 2016).  

Numerous studies have demonstrated that long-lasting changes in gene expression patterns in brain 

regions of the reward pathway are a critical mechanism by which substances of abuse lead to persistent 

drug-induced neuroadaptations (Russo et al., 2010; Gipson et al., 2014). These neuroadaptations 

manifest as changes in excitability, synaptic function, and structure, which ultimately contribute to the 

increased risk of relapse after prolonged abstinence (Dong et al., 2017). It is well known that different 

drugs of abuse act through distinct receptors but engage convergent pathways that activate or repress 

the activity of transcriptional factors (TFs) or epigenetic regulators, which in turn drive changes in 

gene expression patterns (Pierce et al., 2018; Hamilton and Nestler, 2019; Teague and Nestler, 2021; 

Werner et al., 2021). Numerous studies have elucidated the role of crucial TFs in regulating gene 

expression patterns altered by repeated exposure to addictive drugs, including opioids and cocaine. 

These TFs include AMP response element-binding protein (CREB), �FOSB, nuclear factor »B 

(NF»B), early growth response protein 3 (EGR3), and nuclear receptor subfamily 4 group a member 1 

(NR4A1) (Hope et al., 1994; Carlezon et al., 1998; Barrot et al., 2002; McClung and Nestler, 2003; 
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Zachariou et al., 2006; Chandra et al., 2015; Carpenter et al., 2020). In parallel, numerous studies have 

begun to uncover chromatin-mediated mechanisms that contribute to behavioral responses to addictive 

drugs, such as drug-induced post-translational modification of histone proteins (Stewart et al., 2021). 

Despite this knowledge, remarkably little is known about the gene regulatory mechanisms responsible 

for driving these changes. Mammalian gene expression programs are orchestrated by the collective 

action of tens or even hundreds of thousands of regulatory elements, most of which are annotated as 

putative enhancers and located in regions far from the promoter regions of genes (Sheffield et al., 

2013). Enhancers recruit key TFs and other cofactors to influence the transcription of nearby genes, are 

usually cell type- and stimulus-specific (Ong and Corces, 2011; Heinz et al., 2015), and play an 

essential role in brain development and function (Carullo and Day, 2019). While the mapping of open 

chromatin by DNase/ATAC-seq or the epigenetic landscape (e.g., H3K4me1, H3K27ac) by ChIP-seq 

have provided a wealth of information about potential enhancers (Ernst et al., 2011), discerning their 

activity or function in different contexts remains challenging.  

To improve our understanding of gene regulation underlying addiction-related behaviors, we profiled 

the activity of regulatory elements in the brains of rats exhibiting addiction-like behaviors using a 

recently developed technique called capped small(cs)RNA-seq (Duttke et al., 2019). csRNA-seq 

captures short initiating (20-60 nt) RNAs with a 59 cap structure synthesized during the earliest stages 

of transcription initiation by RNAP II. The method reveals the genome-wide transcription start sites 

(TSSs) of both stable and unstable transcripts and, thus, all active regulatory elements, including 

promoters and enhancers, which we will collectively refer to as transcription start regions (TSRs). 

Since changes in enhancer RNA transcription serve as one of the most reliable markers for nearby gene 

regulation (Mikhaylichenko et al., 2018), csRNA-seq profiles can provide critical information about 

the state of regulatory networks in the cell (Duttke et al., 2019; Lim et al., 2021). Furthermore, the 

single-nucleotide resolution of csRNA-seq data provides a high-resolution mapping of regulatory 

elements and can reveal spacing relationships between individual transcription start sites (TSS) and TF 

binding sites (Duttke et al., 2019).  

Here, we compared transcription initiation profiles by csRNA-seq using brain tissues isolated from rats 

that were not exposed to drugs or were subjected to a well-validated extended access model of 

intravenous self-administration (IVSA) of oxycodone or cocaine (Ahmed and Koob, 1998; Ahmed et 

al., 2000, 2002; George et al., 2008; Chen et al., 2013; Koob et al., 2014; de Guglielmo et al., 2019; 

Carrette et al., 2021). Tissues were collected after five weeks of prolonged abstinence to study the 

long-term effects of voluntary drug intake and were obtained from a tissue repository (Carrette et al., 

2021). We selected NAc for its role in mediating the reinforcing effects of substances of abuse and the 

prefrontal cortex (PFC) for its role in inhibitory control behavior altered in addiction (Everitt, 2014). 

We integrated active TSR profiles with bulk and single-cell epigenomic data from rat brains to 

characterize active regulatory elements genome-wide. By comparing drug-exposed versus control 

samples, we identified potential TFs binding sites differentially transcribed at key enhancer elements in 

rats with a history of addiction-like behavior. Overall, these findings show the advantage of profiling 

initiating transcripts to facilitate the identification of upstream regulators of addiction-like phenotypes. 

Materials and Methods 

Brain samples 

Brain samples from male heterogeneous stock (HS) rats (2 naive, 2 cocaine, 2 oxycodone) were 

obtained from the cocaine oxycodone (www.oxycodonebiobank.org) and (www.cocainebiobank.org) 
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tissue repositories at UCSD and are part of an extensive and ongoing study of addiction that uses 

outbred HS rats (www.ratgenes.org) (Solberg Woods and Palmer, 2019). We selected samples 

collected during prolonged abstinence after the last session of extended access to oxycodone or cocaine 

IVSA (Carrette et al., 2021). In this model, male Heterogenous Stock (HS) rats were trained to self-

administer drugs in short access conditions (2 h/day for 4 days for oxycodone or 2 h/day for 10 days 

for cocaine) followed by long access conditions (12 h/day for oxycodone and 6 h /day for cocaine) for 

14 days to develop escalation of drug intake. Following the escalation phase, the rats from the 

oxycodone cohort were characterized for motivation (progressive ratio responding), withdrawal-

induced hyperalgesia (mechanical nociception, von Frey test), and development of tolerance to the 

analgesic effect of opioids (tail immersion test). For the cocaine cohorts, rats were characterized for 

motivation (progressive ratio responding), compulsive-responding for drug use (contingent footshock), 

and irritability-like behavior (bottle-brush test). An Addiction Index was computed by integrating all 

the behavioral measures (Kallupi et al., 2020; Carrette et al., 2021; Sedighim et al., 2021). HS rats 

classified as having a high Addiction Index were used for this study. Age-matched naive male rats that 

were not exposed to any drug were used as control. Lastly, brain punches of PFC and NAc tissues were 

collected after 5 weeks of abstinence. Brain tissue was extracted and snap-frozen (at -30°C). 

Cryosections of approximately 500 microns were used to dissect PFC and NAc punches on a 320°C 

frozen stage. Bregma for PFC: 4.20-2.76 mm, and for NAc: 2.28-0.72 mm (3 sections were combined 

for each). 

csRNA-seq library preparation 

We extracted total RNA from PFC and NAc tissues dissected from 6 rat brains using Trizol Reagent 

(Invitrogen, Cat, num. 15596018) and Zirconium Beads RNase Free (Next Advance, Cat. num. 

ZrOB05-RNA 0.5 mm) with the Bullet Blender Blue (Next Advance, Model. num. BBX24B) at speed 

6 for 1 min. The RNA was purified according to the manufacturer9s instructions (Invitrogen).  

csRNA-seq was performed as described previously (Duttke et al., 2019). Briefly, small RNAs of ~153

60 nt were size selected from 0.331.0 microgram of total RNA by denaturing gel electrophoresis. A 

10% input sample was taken aside, and the remainder enriched for 59-capped RNAs. 

Monophosphorylated RNAs were selectively degraded by Terminator 59-phosphate-dependent 

exonuclease (Lucigen). Subsequent 59 dephosphorylation by quickCIP (NEB) followed by decapping 

with RppH (NEB) augments Cap-specific 59 adapter ligation by T4 RNA ligase 1 (NEB)(Hetzel et al., 

2016). Thermostable quickCIP was used instead of rSAP, and hence the bead clean-up step was 

skipped before heat denaturation before the second round of CIP treatment. The 39 adapter was ligated 

using truncated T4 RNA ligase 2 (NEB) before 39 repair to select against degraded RNA fragments. 

Following cDNA synthesis, libraries were amplified for 11314 cycles and sequenced SE75 on the 

Illumina NextSeq 500 sequencer. 

Hi-C library preparation 

One adult SHR/OlaIpcv naive rat was used to generate the Hi-C data. This rat was bred at the 

University of Tennessee Health Science Center using breeders provided by the Hybrid Rat Diversity 

Program at the Medical College of Wisconsin. The animal was fully anesthetized by using isoflurane 

before brains were removed. Brain tissue was extracted and rapidly frozen. Cryosections of 

approximately 120 microns were obtained in a cryostat set at -11°C. PFC punches were dissected on a 

320°C frozen stage.  Tissues were then pulverized in liquid nitrogen. The Arima-Hi-C kit was used to 

construct the Hi-C libraries (#A410231, Arima Genomics). Sequencing of the libraries was conducted 
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on an Illumina Novaseq S4 instrument by Novogen Inc.  The use of rodents was approved by UTHSC 

IACUC.  

Single nuclei ATAC-seq library preparation 

PFC brain tissue from one naive male HS rat was used to generate a single-nuclei ATAC-seq library. 

Nuclei were isolated from brain tissue as previously described (Corces et al., 2018). Briefly, frozen 

tissue was homogenized using a 2 ml glass dounce with 1 ml cold 1x Homogenization Buffer (HB). 

Cell suspension was filtered using a 70 µm Flowmi strainer (BAH136800070, Millipore Sigma) and 

centrifuged at 350g for 5 min at 4°C. Nuclei were isolated by iodixanol (D1556, Millipore Sigma) 

density gradient. The nuclei iodixanol solution (25%) was layered on top of 40% and 30% iodixanol 

solutions. Samples were centrifuged in a swinging bucket centrifuge at 3,000g for 20 min at 4°C. 

Nuclei were isolated from the 30%-40% interface. Library preparation targeting the capture of ~6000 

nuclei was carried out as detailed in the Chromium Next GEM Single Cell ATAC v1.1 manual (10x 

Genomics). Library sequencing was performed using the Illumina NovaSeq.  

csRNA-seq analysis 

Sequencing reads were trimmed for 39 adapter sequences using HOMER (<homerTools trim 23 

AGATCGGAAGAGCACACGTCT -mis 2 -minMatchLength 4 -min 20=) and aligned to the rat 

mRatBN7.2/rn7 genome assembly using STAR (Dobin et al., 2013) with default parameters. 

Sequencing statistics are included in Table S1. Only reads with a single, unique alignment (MAPQ 

>=10) were considered in the downstream analysis. Furthermore, reads with spliced or soft clipped 

alignments were discarded (the latter often removes erroneous alignments from abundant snRNA 

species). Transcription Start Regions (TSRs), representing 150 bp sized loci with significant 

transcription initiation activity (i.e. 8peaks9 in csRNA-seq), were defined using HOMER9s findPeaks 

tool using the 8-style tss9 option, which uses short input RNA-seq to eliminate loci with csRNA-seq 

signal arising from non-initiating, high abundance RNAs that nonetheless are captured and sequenced 

by the method (full description is available in Duttke et al. (Duttke et al., 2019)). To lessen the impact 

of outlier samples across the data collected for this study, csRNA-seq samples were first pooled into a 

single META-experiment per brain tissue region to identify TSRs in each tissue collectively. The 

resulting TSRs were then quantified in all samples by counting the 59 ends of reads aligned at each 

TSR on the correct strand. The raw read count table was then normalized using DESeq29s rlog 

variance stabilization method (Love et al., 2014).  

The resulting normalized data was used for all downstream analyses. Normalized genome browser 

visualization tracks were generated using HOMER9s makeMultiWigHub.pl tool (Heinz et al., 2010). 

TSR genomic DNA extraction, nucleotide frequency analysis relative to the primary TSS, general 

annotation, and other general analysis tasks were performed using HOMER9s annotatePeaks.pl 

function. Overlaps between TSRs and other genomic features (including peaks from published studies 

and annotation to the 59 promoter using RefSeq defined transcripts), was performed using HOMER9s 

mergePeaks tool. Functional enrichment analysis of regulated regions was performed using GREAT 

(McLean et al., 2010) by identifying homologous regions for each TSR in the mouse genome (mm10) 

using UCSC Genome Browser9s liftOver tool and running GREAT using the mm10 database. 

To identify differential TSRs between brain regions or conditions (naive vs. cocaine or oxycodone), we 

used DESeq2 with FDR < 10% PFC vs. NAc, Naive vs. Oxycodone, Naive vs. Cocaine, or Oxycodone 

vs. Cocaine. 
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Analysis of previously published ChIP-seq and ATAC-seq data 

Raw FASTQ files associated with public ChIP-seq and ATAC-seq datasets were downloaded from 

NCBI9s Short Read Archive and processed in a consistent manner to ensure differences in data 

processing were minimized for downstream analysis. Reads from ChIP-seq or ATAC-seq datasets 

were analyzed in a consistent manner. Reads were first trimmed for adapter sequences and then aligned 

to the rat genome using STAR (Dobin et al., 2013) with default parameters. Only reads with a single, 

unique alignment (MAPQ >=10) were considered in the downstream analysis. ChIP/ATAC-seq peaks 

were identified using HOMER9s findPeaks tool using <-style factor= and <-style atac=, respectively. 

Normalized genome browser tracks were generated using HOMER9s makeMultiWigHub.pl tool. Peak 

annotations and normalized read density counts were calculated using HOMER9s annotatePeaks.pl 

tool. Overlapping peaks were determined using HOMER9s mergePeaks. 

Datasets used in the study include GR ChIP-seq GSE160806 from the rat hippocampus (Buurstede et 

al., 2021);. ATAC-seq GSE134935 from rat PFC (Scherma et al., 2020); histone marks and TF ChIP-

seqs GSE127793 from rat hippocampal neurons (Brigidi et al., 2019). 

Hi-C Analysis 

Hi-C reads were first trimmed for sequences downstream of the restriction/ligation site 

(<GATCGATC=) and aligned to the rat genome using STAR with default parameters. Normalized 

interaction contact maps were then generated using HOMER. PCA compartment analysis and 

topological domain (TAD) calls were generated using HOMER9s runPCAhic.pl and 

findTADsAndLoops.pl scripts (Heinz et al., 2018). The significant association of A compartment (PC 

> 1) with ATAC-seq peaks and/or TSRs was calculated using the Mann-Whitney non-parametric 

Ranksum test. 

DNA motif analysis 

Known motif enrichment and de novo motif discovery of TSRs were performed using HOMER9s 

findMotifsGenome.pl tool using 200 bp sequences centered on [-150,+50] relative to TSR primary 

initiation sites (e.g., strongest TSS in the region) or from -100,100 relative to the center of ATAC-seq 

peaks (Heinz et al., 2010). When performing de novo motif discovery, sequences were compared to a 

background set of 50,000 random genomic regions matched for overall GC-content. Nucleotide 

frequency and motif density plots were created using HOMER9s annotatePeaks.pl tool (Heinz et al., 

2010). When analyzing ATAC-seq peaks from cell types identified by snATAC-seq, the top 25,000 

peaks were selected from each cell type to avoid comparing motif enrichment from sets with large 

differences in the number of regions that can impact the absolute enrichment levels. 

To analyze motif enrichment associated with changes in transcription levels, we analyzed regulated 

TSRs with MEIRLOP (Delos Santos et al., 2020). Sequences were scored based on their shrunken log2 

fold change between treatment conditions (e.g., naive vs. cocaine or oxycodone exposed) and analyzed 

with MEIRLOP using HOMER9s known transcription factor motif library. The top 3 motifs associated 

with up- and down-regulation based on their regression coefficients are reported for each comparison 

(adj. p-values < 0.05). 

Furthermore, we provide the BigWig track with the map of transcription factor binding site predictions 

in the rat genome (rn7), which can be uploaded as a custom track on the UCSC browser as follow: 
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track type=bigBed name="HOMER Known Motifs rn7 (210922)" description="HOMER Known 

Motifs rn7 (210922)" 

bigDataUrl=http://homer.ucsd.edu/homer/data/motifs/homer.KnownMotifs.rn7.210922.bigBed 

visibility=3 

Single nuclei ATAC-seq analysis 

Sequencing reads were processed using Cell Ranger ATAC 2.0 with a custom reference for Rattus 

norvegicus, built from the Ensembl Rnor 6.0 release 103 genome and annotation. The filtered results 

were subsequently analyzed using Signac 1.4.0 (Stuart et al., 2021). Only peaks present in at least 10 

cells and cells with at least 200 peaks were considered. Further filtering was performed to retain only 

cells with between 3,000 and 25,000 fragments, at least 30% of reads in peaks, a blacklist ratio less 

than 0.05, nucleosome signal less than 4, and TSS enrichment of at least 2.5. Normalization and linear 

dimensionality reduction were performed using TFIDF, identifying top features with no minimum 

cutoff and SVD. Nonlinear dimensionality reduction with UMAP and neighbor finding used LSI 

components 2 through 30, and clustering was performed with the SLM algorithm (Blondel et al., 

2008). Cell types were assigned using inferred gene activity. The following cell marker genes were 

used: Slc17a for excitatory neurons, Gad2 for inhibitory neurons, Gjai for astrocytes, C1qa for 

microglia, Mobp for oligodendrocytes, Pdgfra for oligodendrocytes precursor cells (OPC), Flt1 for 

endothelial cells. Pseudo bulk peak positions for each cell type were identified using MACS2 (Zhang 

et al., 2008). Per-cell TSR enrichment significance was calculated using a one-tailed hypergeometric 

test and corrected for multiple hypothesis testing using the Bonferroni-Hochberg method.  

Results  

Identification of Transcribed Regulatory Elements in the Rat Brain  

To probe if substance abuse can alter gene regulatory programs in the brain, we comprehensively 

profiled active regulatory elements in two brain regions implicated in addiction: the prefrontal cortex 

(PFC) and nucleus accumbens (NAc, Fig. 1A). Samples from six animals were obtained from a tissue 

repository (Carrette et al., 2021), including two naive rats, two rats subjected to oxycodone intravenous 

self-administration (IVSA), and two rats subjected to cocaine IVSA(Arnold et al., 2019; Adhikary et 

al., 2021; Carrette et al., 2021). We further generated total small RNA-seq libraries that were used as 

input in csRNA-seq peak calling to mitigate the identification of false TSS from potential RNA 

degradation-related biases or other high abundance short RNA species. Except for one of the libraries 

prepared from the NAc of a rat exposed to oxycodone, which failed QC and was discarded from the 

analysis, csRNA-seq worked as expected by enriching 59-capped initiating short transcripts (Table S1, 

Fig. S1). As such, the methodological advance of csRNA-seq allowed us to define actively transcribed 

enhancer RNAs from the banked tissues, which enabled us to explore changes in gene regulatory 

networks associated with addiction-like behavior.  

Across 11 csRNA-seq libraries, we identified 131,647 and 96,563 genomic regions in the PFC and 

NAc, respectively, with one or more transcription, start sites (TSSs), which we refer to as 

Transcriptional Start Regions (TSRs). While 15.7% TSRs (20,693 total) in PFC and 19.5% TSRs 

(18,878 total) in NAc were within or proximate to annotated gene promoter regions, the majority were 

at promoter-distal sites within introns and intergenic regions of the genome (61% in PFC and 57% in 

NAc; Fig. S2A). These promoter-distal TSRs commonly overlapped with markers of active enhancers 

from available rat epigenetic data (Fig. S2B), as exemplified for the Nr4a1 locus (Fig. 1B). Notably, as 

seen for the Nr4a1 locus, distal TSRs were largely bidirectionally transcribed, a common enhancer 
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feature (Fig. 1B)(De Santa et al., 2010; Kim et al., 2010; Telese et al., 2015). Analysis of all TSRs 

genome-wide displayed an architecture typical for vertebrates, with the summit of open chromatin just 

upstream of the TSSs where the strongest transcription factor ChIP-seq signals can be found (Fig. 1C). 

At the same time, H3K27ac modified nucleosomes were distributed just downstream or upstream of 

the regulatory region (Fig. 1C). Together these data show that csRNA-seq captures active promoters 

and distal enhancers with high fidelity and accuracy.  

Figure 1: Identification of 

Transcriptional Start Regions 

(TSRs) by csRNA-seq in rat 

brain tissues. (A) Diagram of 

study design. (B) An example 
of csRNA-seq data generated 

from naive, cocaine-, and 

oxycodone-exposed rat brains 

at the Nr4a1 locus (top) 

showing overlap with 

previously published 

transcriptomic and epi-genomic 

data from rat hippocampal 

neurons (bottom). (C) 

Distribution of various histone 

marks and TFs from primary rat 
hippocampal neurons with 

respect to TSRs identified by 

csRNA-seq in rat brains. Re-

gions are aligned to the primary 

transcription start site (TSS) in 

the TSR. (D) Genome browser 

tracks from a representative 

region of chr1 showing (from 

top to bottom) A/B chromatin 

compartments (PC1 from Hi-

C), TSRs (csRNA-seq), open 

chromatin regions (ATAC-seq), 
and the corresponding contact 

map of chromatin interactions 

(Hi-C) from rat PFC tissues. 

Ihskb = interactions per hun-

dred square kilobases per bil-

lion mapped reads. (E) Histo-

gram showing the distribution 

of TSRs, H3K27Ac, and 

ATAC-seq peaks around TAD 

regions identified by Hi-C. (F) 

Relationship between ATAC 
and csRNA motif enrichment 

for known TF motifs. Motifs 

recognized by key TFs sharing 

common DNA binding domains 

are highlighted. 
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The three-dimensional (3D) genome organization 

can be an essential factor in gene regulation 

(Andrey et al., 2013; Benabdallah and Bickmore, 

2015). To place our identified TSRs in the context 

of chromatin structure, we generated Hi-C data 

for the PFC of one rat. 83% of TSRs overlapped 

with A compartments (PC>0), which define the 

active region of the genome (Fig. 1C) 

(Lieberman-Aiden et al., 2009). Notably, the 

association with A compartment was significantly 

stronger (p <1e-16) for transcribed accessible 

regions (n=91323 ATAC-seq peaks that 

overlapped a TSR) compared to those that were 

not transcribed (n=45389 ATAC-seq peaks that 

did not overlap a TSR, Fig. S2C). TSRs also 

overlapped with the enrichment of H3K27Ac and 

ATAC-seq peaks at topological domains (TAD) 

boundaries (Fig. 1D, E), which supports the role 

of promoters and enhancers in defining the 

boundaries genome-wide (Dixon et al., 2012). 

Contrasting transcribed and untranscribed open 

chromatin regions revealed the enrichment of 

CTCF or helix-loop-helix (bHLH) TFs (e.g., 

NEUROD1 or OLIG2) in regions with little or no 

transcription (Fig. 1F, Fig. S2D). At the same 

time, KLF/SP1, RFX, and AP1 motifs were 

highly enriched in actively transcribed ones (Fig. 

1F, Fig. S2D), suggesting that these TFs may act 

as critical activators of brain transcriptional 

programs. Together, these data emphasize the 

advantage of capturing enhancer RNAs through 

methods such as csRNA-seq to define active 

enhancers over a more basic definition of 

enhancers simply based on open chromatin or 

ATAC-seq peaks.  

Brain Region Specificity of TSRs 

Enhancers play a critical role in regulating 

tissue-specific gene expression (Levine, 

2010). To identify specific transcriptional 

signatures for each brain region, we 

therefore compared TSRs from PFC and 

NAc, which identified 2,967 PFC-specific 

and 5,991 NAC-specific TSRs (>2-fold 

difference, FDR < 10%). Differential TSRs 

were commonly found near genes typically 

expressed in the specific brain region. For 

example, TSRs at the Neurod6 gene locus 

Figure 2: Brain region specificity of Transcriptional Start Site 

Regions (TSRs). (A) Neurod6 (left) and Drd1 (right) gene loci are 

visualized, including (top to bottom) Hi-C contact matrix, TAD 

positions, genome browser tracks showing tissue-specific TSRs 

(csRNA-seq), chromatin accessibility (ATAC-seq), active histone 

mark (H3K27Ac), and A/B compartments (Hi-C PC1). Ihskb = 
interactions per hundred square kilobases per billion mapped reads. 

(B) Functional annotations associated with the genes near tissue-

specific TSRs for PFC (top) and NAc (bottom) as determined by 

GREAT using mouse genome annotations (see methods). (C) 

Dotplot showing the enrichment scores of known TF motifs in 

TSRs from PFC and NAc. Size and color of the dots represent the -

log adjusted p-value as determined by HOMER. 
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were highly transcribed in the PFC but not in the NAc, while the dopamine receptor-1 (Drd1) gene 

locus was highly transcribed in the NAc but not in the PFC (Fig. 2A). These results are consistent with 

the known cellular composition of these brain regions, with the PFC enriched in NEUROD6-

expressing glutamatergic excitatory neurons and the NAc enriched in DRD1-expressing medium spiny 

projection neurons. In addition, this analysis showed that the tissue-specific TSRs are often located 

adjacent to one another and map within the same TAD (Fig. 2A), suggesting that distal TSRs might 

preferentially function within a TAD.  

These results were corroborated by pathway analysis of genes found in the vicinity of tissue-specific 

TSRs. TSRs specifically regulated in PFC were enriched near genes involved in glutamate receptor 

signaling and learning and memory, supporting the known function of cortical areas in cognitive 

functions (Fig. 2B, upper panel). On the other hand, the TSRs specifically regulated in NAc were 

enriched near genes in the dopamine receptor signaling pathway and response to psychostimulants, 

which support the role of NAc in mediating the rewarding effects of substances of abuse (Fig. 2B, 

bottom panel). 

The tissue specificity of TSRs was also confirmed by the motif enrichment analysis (Fig. 2C). In both 

regions, TSRs were highly enriched in motifs recognized by general TFs, including the KLF/EGR/SP1 

family TFs, basic leucine-zipper (bZIP) TFs (e.g., CREB and AP1 family members) as well as more 

brain-specific TFs such as MADS-box TFs (e.g., MEF2 family members), and RFX family members 

(Di Bella et al., 2021; Li et al., 2021; Yao et al., 2021; Zhang et al., 2021; Ziffra et al., 2021). 

However, these results differed slightly between PFC and NAc. Specifically, PFC-specific TSRs were 

enriched preferentially for ETS and ISRE motifs, while NAc-specific TSRs were enriched 

preferentially for RFX, SOX, and Homeobox motifs (Fig. 2C).  

Taken together, these results show that TSRs profiling from repository tissue is a valid approach to 

decode tissue-specific regulatory networks, which may be crucial to identify the TFs driving addiction-

related transcriptional programs in a brain region-specific manner.  

Comparison of Oxycodone/Cocaine/Naive Rats Reveals Activated and Repressed Regulatory 

Programs Associated with Addiction-like Behaviors 

We next sought to identify regulatory elements associated with a history of addiction-like behavior. 

Because normalized csRNA-seq read counts across all samples segregated most strongly based on their 

brain region of origin (Fig. S3A), we limited our analysis to comparing conditions within the same 

brain regions. Using a statistical threshold of > 2-fold difference and FDR < 10%, we identified 317 

and 90 differentially regulated TSRs associated with addiction-like behavior in NAc and PFC, 

respectively (Fig. 3A, S3B-C). Notably, oxycodone IVSA resulted in a larger number of differential 

TSRs than cocaine IVSA in both regions (Fig. 3A, S3B-C). Some TSRs were regulated in multiple 

comparisons, including several near Hif3a and Fkbp5 loci. Moreover, differential TSRs were also 

enriched near genes that have been previously linked to addiction processes (Foxo3 (Ferguson et al., 

2015), Tlr4 (Wu and Li, 2020)) or addiction vulnerability (Nat1 (Comings et al., 2000), Ppm1k (Carr et 

al., 2007; Liang et al., 2010), Pknox2 (Zuo et al., 2014)).  

To gain insights into the TFs that may mediate changes in gene expression networks in response to a 

history of substance abuse, we identified TF motifs enriched in TSRs regulated by oxycodone or 

cocaine exposure in each brain region. To do so, we used MEIRLOP (Brigidi et al., 2019; Delos 

Santos et al., 2020), a DNA motif analysis approach that associates motifs with the magnitude of 

regulation at TSRs across conditions based on a logistic regression. This analysis identified a strong 
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and consistent association between the glucocorticoid response element (GRE) and TSRs down-

regulated in brain tissue from rats with addiction-like phenotypes versus controls (Fig. 3B). Our 

identification of GRE-binding TFs as potential key regulators of addiction-related reprogramming of 

gene regulatory networks is consistent with the well-established role of glucocorticoid signaling in 

addiction (Srinivasan et al., 2013; Koob et al., 2014). Furthermore, our analysis identified bZIP motifs 

for AP1 family members (e.g., CREB, JUN, FOS) as enriched in TSRs up-regulated in both brain 

regions from rats exposed to cocaine compared to naive rats (Fig. 3B), which is consistent with 

previous findings showing activation of members of the AP1 family in addiction-related processes, 

such as �FOSB or CREB (Teague and Nestler, 2021).  

Figure 3: Differentially 

regulated 

Transcriptional Start 

Sites (TSRs) in naïve 

versus cocaine or 

oxycodone exposed rat 

brains. (A) Heatmap of 

transcription initiation 

levels from differential 

TSRs in PFC naïve, 
oxycodone- and cocaine-

exposed rats based on 

mean-centered log2 

ratios; each row shows 

the closest gene and the 

TSR position relative to 

that gene9s annotated 

TSS. (B) Barplot of 

significant logistic 

regression MEIRLOP 

coefficients for top-

ranked motifs associated 
with regulated TSRs 

between naïve and 

oxycodone or cocaine 

conditions in PFC and 

NAc. (C) Example of 

regulation at the Fkbp5 

gene locus, including (top 

to bottom) Hi-C contact 

matrix with TAD 

positions, genome 

browser tracks showing 
regulated TSRs (csRNA-

seq), GR binding (ChIP-

seq), chromatin 

accessibility (ATAC-

seq), and GRE motif 

location. Ihskb = 

interactions per hundred 

square kilobases per 

billion mapped reads.  
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To validate the motif enrichment predictions, we next overlapped regulated TSRs with GR binding 

sites previously identified in the rat hippocampal neurons (Buurstede et al., 2021). We found that 12 of 

the 32 TSRs down-regulated in oxycodone-exposed PFC were within 1 kb of a GR ChIP-seq peak (p < 

0.0002). To further support GR9s potential role in regulating these TSRs, several downregulated TSRs 

were found in the intergenic region upstream of Fkbp5 (Fig. 3C), a well-known GR target gene. 

Analysis of Hi-C data in this region identified a TAD that encompasses the Fkbp5 locus and includes 

the cluster of regulated TSRs associated with addiction-like behavior (Fig. 3C), which provides 

evidence for GR binding and GRE motifs in the nearby regulatory DNA.  

Together, the unbiased discovery of TSRs, combined with motif analysis, uncovered TF-driven gene 

regulatory programs associated with addiction-like phenotypes in rats.  

Cell Type Specificity of TSRs Associated with Addiction-like Behaviors  

Enhancers often function in a highly cell type-specific manner (Levine, 2010). Understanding the 

specific cell types of the brain in which enhancers are active may be critical to unlocking important  

 

 

 

Figure 4 Cell-type assignment of active 

regulatory elements (TSRs). (A) UMAP 

clustering of cells based on snATAC-seq 

of the PFC. Clusters are colored based on 

cell types inferred from the accessibility 

patterns near known marker genes. (B) 

Genome browser tracks of pseudo bulk 
ATAC-seq read densities showing genes 

with cell-type-specific snATAC-seq 

profiles and csRNA-seq from bulk tissue. 

(C) TF motif enrichment across 

accessible regions from specific cell types 

in the snATAC-seq data. (D) UMAP 

visualization of oxycodone-associated 

repressed TSRs enriched in individual 

cells identified by snATAC-zseq in PFC 

and NAc, showing consistent enrichment 

in astrocyte, microglia, and 

oligodendrocyte populations 

 

 

 

 

regulatory mechanisms underlying addiction-like behavior. To this aim, we used a cell type-specific 

reference of chromatin accessibility sites that we generated by snATAC-seq using the PFC of a naive 

rat (Fig. 4A). First, we annotated different classes of brain cell types based on the chromatin 
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accessibility of known cell markers, including excitatory and inhibitory neurons, astrocytes, 

oligodendrocytes, oligodendrocytes precursor cells, microglia, and endothelial cells, showing that this 

dataset successfully captured known cell types of the rat PFC. In support of this result, motif 

enrichment analysis with HOMER (Fig. 4B) showed that motifs for lineage-specific TFs are enriched 

in their expected cell types (e.g., AP1/MEF2C/TBR1 in neurons, PU.1 in microglia, SOX10 in 

oligodendrocytes). By cross-referencing TSRs with the snATAC-seq, we assigned expressed genes and 

their active regulatory elements identified by csRNA-seq to specific cell types (Fig. 4C). For example, 

regulatory elements at gene loci of known cell type-specific markers (e.g., Olig2, Ctss, Slc32a1, 

Neurod6) showed accessible chromatin exclusively in the expected cell types that directly overlapped 

TSRs identified in the bulk csRNA-seq experiments (Fig. 4B).  

To address the cell-type specificity of the gene regulatory networks associated with addiction-like 

behavior, we sought to map the addiction-regulated TSRs to the different cell types identified by 

snATAC-seq. To this aim, we analyzed the oxycodone-repressed TSRs in the PFC and NAc, which 

were strongly enriched in GRE motifs (Fig. 3B). This analysis revealed that the downregulated TSRs 

overlapped accessible regions enriched in non-neuronal cells, such as astrocytes, microglia, and 

oligodendrocytes (Fig. 4D), suggesting the involvement of glial cells in the regulatory programs 

underlying addiction-like behaviors. Given that the repressed TSR were enriched in GRE motifs, this 

result also suggests a role of GR in regulating transcriptional responses to opioids, specifically in glial 

cells.  

These results highlight the advantage of integrating csRNA-seq with snATAC-seq data to probe the 

cellular specificity of gene regulatory mechanisms and highlight the role of glial cells in modulating 

addiction-related behavior.  

Discussion 

Here we report the active transcriptional landscape of the PFC and NAc from rats with a history of 

addiction-like behaviors. By integrating transcriptional initiation (csRNA-seq) with genome structure 

(HiC) and single-cell epigenomic data (snATAC-seq), the analysis of the regulatory landscape not only 

provided a comprehensive catalog of eRNAs but also identified TFs that are likely to play important 

regulatory roles. Using this approach, we discovered that GR-bound enhancers are strongly down-

regulated during prolonged abstinence from oxycodone or cocaine IVSA, specifically in glial cells.  

There is strong evidence supporting the role of cell type- or stimulus-specific enhancers in the gene 

regulation (Heinz et al., 2015), but determining whether an enhancer is active in specific cellular or 

biological states remains a significant challenge in the field. Recent studies using nascent 

transcriptional profiling suggest that the transcriptional states of enhancers are better predictors of 

active chromatin states than open chromatin or histone modifications (Danko et al., 2021). However, 

many nascent transcriptional methods have technical limitations, including the requirement of intact 

nuclei and large numbers of cells. csRNA-seq overcomes these limitations by quantifying the level of 

transcription initiation at regulatory elements, such as enhancers, from total RNA, which can be easily 

obtained from frozen tissues (e.g., samples from a tissue repository). Using csRNA-seq on < 1 µg of 

total RNA isolated from repository brain tissues, we identified > 100k TSRs across PFC and NAc from 

naive rats or rats with addiction-like behavior following oxycodone or cocaine IVSA (Carrette et al., 

2021). Most TSRs represent eRNAs as they initiate transcripts in regions associated with known 

features of enhancer elements, including open chromatin, histones harboring the H3K27ac mark, and 

bidirectional transcription. Although the function of eRNAs is still controversial(Li et al., 2016), 

converging lines of evidence show that their abundance is highly correlated with the expression of 
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proximal genes and precedes stimulus-dependent transcription of the mRNA of these genes 

(Kaikkonen et al., 2013; Arnold et al., 2019). Thus, identifying active enhancers is likely important to 

decipher the gene regulatory basis of addiction. Furthermore, combining csRNA-seq with TF motif 

discovery provides different and complementary information than traditional transcriptomic or 

epigenetic data (e.g., ATAC-seq). As such, it can be used as an unbiased functional assay for TF 

activity.  

The major finding of this study is the identification of TF-regulatory networks associated with a 

history of addiction-like behavior. The analysis of drug-altered TSRs revealed that GR-regulated 

enhancers were consistently repressed in PFC and NAc from rats with a history of oxycodone and 

cocaine addiction-like behavior compared to controls. This result is consistent with converging 

evidence that the brain stress system involving glucocorticoid signaling plays a critical role in the 

development of addiction-like behavior (George and Koob, 2010; Koob et al., 2014). The cell-type 

deconvolution analysis also showed that repressed TSRs in the PFC and NAc were enriched in glial 

cells, which is consistent with findings suggesting that alterations of neuroimmune mechanisms such 

as neuroinflammation or synaptic remodeling by glial cells can contribute to the liability of addiction 

(Lacagnina et al., 2017). Furthermore, a recent single-cell transcriptomic study found a robust 

transcriptional response to acute morphine treatment in oligodendrocytes and astrocytes of the mouse 

NAc (Avey et al., 2018). Several morphine-induced genes identified in this study were GR targets, 

supporting a role of GR in regulating transcriptional responses to opioids. In line with this notion, GR 

has been shown to modulate opioid reward processing by regulating genes essential for astrocytic 

metabolism (Slezak et al., 2013; Skupio et al., 2020). However, our results show an opposite direction 

of transcriptional regulation that the different treatment protocols may explain (acute versus chronic 

exposure), or it may reflect negative feedback mechanisms of glucocorticoid signaling during stress 

responses associated with addiction-related phenotypes (prolonged abstinence vs. acute 

withdrawal)(Srinivasan et al., 2013). It is also important to note that our results do not entirely 

preclude the involvement of different TFs that recognize similar motifs, including mineralocorticoid, 

androgen, or progesterone receptors. Further experiments targeting GR or its targets in specific cell-

types of rodent models of addiction will be necessary to validate the role of GR in different addiction-

like behaviors.  

Our study has several limitations. First, we used a limited number of samples (n=2/condition), which 

may lead to a low statistical power to detect differentially expressed TSRs and could explain why, 

despite identifying over 100,000 TSRs across two brain regions, we only detected a relatively small 

number of differentially regulated TSRs in both PFC and NAc. A study with a larger cohort of rats 

would be ideal for confirmation. Secondly, the control animals used in this study are rats that were 

never exposed to drugs; thus, our study design does not consider environmental factors associated with 

the behavioral protocol (e.g., surgery, foot-shock, pharmacokinetics factors). Including rats with a low 

addiction index subjected to the same behavioral protocol but do not develop addiction-like 

phenotypes would serve as important control to provide more substantial evidence that the differences 

we observe reflect molecular changes associated with addiction-related processes rather than other 

phenomena. Lastly, our study only includes male rats, which precludes the analysis of sex differences 

in regulatory networks associated with the known sexual dimorphism of addiction-like behaviors 

(Fattore and Melis, 2016).  

In summary, we used an unbiased and highly sensitive method to identify active enhancers by 

measuring levels of initiating transcripts from brain tissues of rats with addiction-like phenotypes. We 

identified TF-centered regulatory mechanisms implicated in addiction, including those regulated by 

GR in glial cells. Overall, our study demonstrates that transcriptional initiation profiling has the 
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potential to dissect the gene regulatory mechanisms driving addiction-related phenotypes in an 

unbiased and quantitative manner.  

Supplementary Figures and Legends 

  

Supplementary Figure 1: csRNA-seq data in rat brain tissues. (A) Variation in csRNA-seq levels 

at each Transcriptional Start Site Region (TSR) between tissues (NAc vs. PFC) or between replicates 

(PFC r1 vs. r2) in samples from naive rat brains. (B) Read length distribution for input libraries (left) 

and csRNA-seq libraries (right). Input libraries show a strong spike at 21 nt corresponding to mature 

miRNA. (C) Nucleotide frequencies at csRNA-seq reads shown for the PFC naive-r1 library. (D) Read 

counts at the annotated promoters (59 end of transcripts -/+ 200bp) with blue dots indicating miRNA 

transcripts, red dots mRNA transcripts, and grey dots other transcripts (snRNAs, snoRNAs, etc.). 

csRNA-seq and input data corresponding to the PFC naive-r1 sample is shown. 
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Supplementary Figure 2: Identification and characterization of Transcriptional Start Sites 

(TSRs) from csRNA-seq data. (A) Pie charts showing the distribution of TSRs in different genomic 

regions. (B) Fraction (%) of TSRs that overlap peaks identified from ATAC-seq or ChIP-seq for 

several histone marks. The number of peaks analyzed is reported. (C) Violin plot showing the 

distribution of Hi-C PC1 values for ATAC-seq peaks that are not transcribed or overlapping a TSR. 

(D) Location of several TFs motifs with respect to the primary TSS from csRNA-seq TSRs and the 

center of ATAC peaks genome-wide. 
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Supplementary Figure 3: Differentially regulated Transcriptional Start Sites (TSRs) in naïve 

versus cocaine- or oxycodone- exposed rat brains. (A) Hierarchical clustering of csRNA-seq 

samples shows segregation based on brain regions. (B) Heatmap of differential TSRs in NAc naïve, 

oxycodone- and cocaine-exposed rats based on log2 ratios relative to the mean; each row showing the 

closest gene, TSR position relative to TSS, and chromosomal coordinates. (C) Number of differentially 

regulated TSRs (>2 fold, FDR < 10%) across naïve and drug-exposed conditions. 
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