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Abstract 

Adverse drug reactions (ADRs) are leading causes of death and drug withdrawals and frequently co-

occur with comorbidities. However, systematic studies on the effects of drugs in comorbidities are 

lacking. Drug interactions with the cellular protein-protein interaction (PPI) network give rise to 

ADRs. We selected 6 comorbid disease pairs, identified the drugs used in the treatment of the 

individual diseases ‘A’ and ‘B’– 44 drugs in anxiety and depression, 128 in asthma and hypertension, 

48 in chronic obstructive pulmonary disease and heart failure, 58 in type 2 diabetes and obesity, 58 in 

Parkinson’s disease and schizophrenia, and 84 in rheumatoid arthritis and osteoporosis – and 

categorized them based on whether they aggravate the comorbid condition. We constructed drug 

target networks (DTNs) and examined their enrichment among genes in disease A/B PPI networks, 

expressed across 53 tissues and involved in ~1000 pathways. To pinpoint the biological features 

characterizing the DTNs, we performed principal component analysis and computed the Euclidean 

distance between DTN component scores and feature loading values. DTNs of disease A drugs not 
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contraindicated in B were affiliated with proteins common to A/B networks or uniquely found in the 

B network, similarly regulated common pathways, and disease-B specific pathways and tissues. DTNs 

of disease A drugs contraindicated in B were affiliated with common proteins or those uniquely found 

in the A network, differentially regulated common pathways, and disease A-specific pathways and 

tissues. Hence, DTN enrichment in pathways, tissues, and PPI networks of comorbid diseases will 

help identify drugs contraindications in comorbidities. 

Keywords: comorbidities, drugs, adverse drug reactions, drug contraindications, drug target networks 

1. Introduction 

Comorbidity is the phenomenon in which one or more diseases co-exist with a primary disease in 

patients. Comorbidities are the norm rather than exceptions among chronic conditions and pose a 

significant threat to the physical and psychosocial wellbeing of patients [1]. Comorbidities increase 

with age, and the risk of mortality increases with the number of comorbidities. A longitudinal study 

(1992-2006) has shown that the mortality risk increased by 25% in patients with 3-4 chronic 

comorbidities and by 80% in those with 5 or more comorbidities, both in comparison with individuals 

having no chronic conditions [2]. The prevalence of comorbidities increases from 10% in 0-19 year-

olds to 78% in individuals aged 80 or more [3]. The prevalence of comorbidity in women of age 

groups of 18-44 years, 45-64 years, and ≥65 years was 68%, 95%, and 99% and in men, it was 72%, 

89%, and 97% [4]. As per the US National Comorbidity Survey Replication (NCS-R) survey, 73.8-

98.2% of the respondents reported having at least one comorbid condition along with a primary 

condition [1]. The most striking finding from this report was that the estimates of individual disease 

burden based on the respondents’ perception of their health condition decreased substantially when 

adjusted for comorbidity [1]. This effect was particularly magnified for neurological disorders, 

chronic pain, anxiety disorders, major depressive disorder, and diabetes, all of which contribute 

immensely to the global disease burden [1]. For example, anxiety disorders collectively affect 284 

million people (63% females, 2.5-7% variation by country) around the world, and are among the most 

prevalent mental health and neurodevelopmental disorders (WHO and IHME, 2017) [5].  

Disease comorbidity may increase the likelihood of experiencing adverse drug reactions [6-8]. Drugs 

that are beneficial in the treatment of one disease may aggravate or even cause comorbid conditions, 

giving rise to adverse drug reactions, e.g. beta-blockers that treat hypertension and heart disease may 

aggravate asthma [6], trimethoprim and sulfamethoxazole to treat AIDS may increase the patient’s 

susceptibility to Stevens-Johnson syndrome and toxic epidermal necrolysis [7]; malaria patients with 

AIDS and osteoarthritis treated with artemisinin�based combination antimalarial therapy were 3 

times more likely to experience adverse side effects [8]. Serious adverse drug reactions constitute the 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 15, 2022. ; https://doi.org/10.1101/2022.01.11.475465doi: bioRxiv preprint 

https://doi.org/10.1101/2022.01.11.475465
http://creativecommons.org/licenses/by-nc-nd/4.0/


3 

 

 

fourth leading cause of death in the U.S. with 100,000 deaths per year, and about 2 million patients in 

the U.S. experiencing adverse drug reactions per year [9]. Patient fatalities have led to the withdrawal 

of 19 drugs from the U.S. market during 1998-2007 [9]. These aspects highlight the importance of re-

examining drug design, and the need to develop drugs in light of disease mechanisms governing 

comorbidities. 

Network medicine is an integrative framework for examining the mechanistic effects of disease-

associated genes within the context of the human protein-protein interaction (PPI) network (or the 

‘interactome’) [10]. The emerging network medicine paradigm in systems biology has prompted 

systematic data-driven investigations of the effects of drugs on diseases. It captures the essence of the 

Fourth Paradigm, i.e. Data-Intensive Scientific Discovery [11, 12]. This framework allows data 

capture and combines theory and computation to facilitate the translation of biological data into 

biologically insightful and clinically actionable results. The primary applications of this framework 

are uncovering disease-associated genes, identifying biomarkers that will improve disease screening, 

clinical diagnosis, and patient stratification, and prioritizing drug targets and pathways for therapeutic 

intervention [12].   

Drugs that target proteins may perturb the PPI network to elicit the intended therapeutic response or 

an unintended adverse event or side effect [13]. The extensive interconnectivity of the network 

components suggests that perturbations at the genomic or proteomic level that affect PPIs may disrupt 

cellular functions and affect other proteins in the neighborhood network, posing deeper implications 

for several aspects of the disease such as comorbidity and phenotypic responses to drugs [10].  

Although the side effects or adverse events precipitated by drugs in specific diseases have been 

investigated within the framework of the PPI network [14-19], the effects of multiple drugs and their 

contraindications on comorbid conditions remain largely unexplored. Some studies have provided key 

insights on the influence of disease-associated PPI networks, biological pathways, and tissues on drug 

action. Pairs of drugs used for the same disease have shown significant adverse events when the 

network modules of their protein targets overlap with each other or with a  network of disease-

associated genes (‘overlapping exposure’, statistical significance p-value ≤ 0.007), e.g. the anti-

hypertensive drug nadroparin increased hyperkalemia, an adverse effect of spironolactone, another 

anti-hypertensive drug [20]. The targets of both cancer and non-cancer drugs were enriched by 1.8 

folds among tissue-specific proteins (p-value = 2E-06), and this enrichment became magnified to 2.3 

folds when the targets of non-cancer drugs were considered alone [21]. Drugs that are currently in the 

market are twice as likely to act on tissue-specific proteins than on housekeeping proteins [22].  
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In this study, we attempt to elucidate the mechanisms underlying drug contraindications in pairs of 

comorbid diseases. Our findings suggest the relationship between the PPI networks of disease-

associated proteins and drug targets, and the pathway membership and tissue specificity of the drug 

target networks as critical biological factors influencing adverse drug reactions in comorbidities. 

2. Methods 

2.1 Compilation of drugs indicated for specific diseases 

The Drug Bank database [23] (version 5.1.8) was used to compile the lists of drugs indicated for each 

of the 14 diseases. After compiling these lists, we used the TWOSIDES database [24] (version 0.1) – 

a publicly available database of drugs and associated adverse events – to categorize these drugs with 

respect to their effects on the disease pairs, specifically, (a) drugs effective in disease A and not 

contraindicated in disease B, (b) drugs effective in disease B and not contraindicated in disease A, (c) 

drugs effective in disease A and contraindicated in disease B, and (d) drugs effective in disease B and 

contraindicated in disease A. Drugs associated with specific adverse effects (belonging to (c) and (d)) 

were identified using their ‘condition concept names’ (descriptions of adverse events). The lists of the 

condition concept names used for identifying the drugs belonging to the 4 groups for each of the 

disease pairs can be found in Additional File 1: Table S1, and the drug lists can be found in 

Additional File 2: Table S2. 

2.2 Construction of drug target protein-protein interaction (PPI) networks 

The proteins targeted by the drugs (Additional File 3: Table S3) belonging to the 4 categories were 

retrieved from the Drug Bank database [23] using the DGIdb (drug gene interaction database) web 

portal [25]. The PPIs of these drug targets in the human interactome were compiled from Human 

Protein Reference Database (HPRD; version 9) [26] and the Biological General Repository for 

Interaction Datasets (BioGRID; version 4.3.194) [27] using the Cytoscape plugin, Bisogenet [28]. The 

network building options were: organism - Homo sapiens, biorelation type - protein-protein 

interaction, data sources - BioGRID and HPRD, method - input nodes and its neighbors upto a 

distance of 1.  

2.3 Compilation of disease-associated genes 

The genes associated with each of the 14 diseases in the 3 non-comorbid pairs and 6 comorbid pairs 

were compiled from the DisGeNET database [29] (version 7). The non-comorbid pairs were (I) 

Multiple sclerosis (DisGeNET ID: C0026769) – Peroxisomal disorders (C0282528), (II) 

Schizophrenia (C0036341) – Rheumatoid arthritis (C0003873), (III) Asthma (C0004096) – 
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Schizophrenia (C0036341). The comorbid pairs were (IV) Anxiety (C0003467) – Depression 

(C0011570), (V) Asthma (C0004096) – Hypertension (C0085580), (VI) Chronic obstructive 

pulmonary disorder (COPD) (C0024117) – Heart failure (C0018801), (VII) Type 2 diabetes 

(C0011860) – Obesity (C0028754), (VIII) Rheumatoid arthritis (C0003873) – Osteoporosis 

(C0029456) and (IX) Parkinson's disease (C0030567) – Schizophrenia (C0036341) (Additional File 

4: Table S4). 100 top-ranking genes associated with each of the diseases were curated based on their 

gene-disease association scores (GDA). Although the range of the GDA scores among the 100 top-

ranking genes varied across our selected diseases (multiple sclerosis (0.11-0.5), peroxisomal disorders 

(0.01-0.32), schizophrenia (0.43-0.9), rheumatoid arthritis (0.33-0.7), asthma (0.29-0.7),  anxiety (0.1-

0.5), mental depression (0.34-0.6), essential hypertension (0.03-0.063), chronic obstructive airway 

disease (0.11-0.9), heart failure (0.3-0.6), non-insulin-dependent diabetes mellitus (0.4-1), obesity 

(0.4-1), osteoporosis (0.13-0.9) and Parkinson’s disease (0.23-0.7)), a minimum GDA of ≥ 0.01 was 

chosen to ensure that at least one publication has linked the gene in question with the disease. Note 

that ‘association’ of a gene with a disease here does not imply causality in most cases and may only 

indicate an association with disease susceptibility or an endophenotype. 

1.4 Construction of disease protein-protein interaction (PPI) networks 

The PPI networks of the proteins encoded by the disease-associated genes were assembled by 

extracting their protein interactors from the PPI repositories BioGRID [27] and HPRD [26] using 

BisoGenet [28] and the network building options specified before. The input nodes for the 

construction of each of the disease networks were the 100 top-ranking genes compiled from the 

DisGeNET database.  

2.5 Calculation of network similarity measures  

Matching node ratio (NM) was measured as the ratio of the total number of common nodes shared 

between the two PPI networks of a comorbid pair and the total number of unique nodes in the two 

disease networks [30]. 

�� �
�����

�����

                                                                     (1) 

An = Number of nodes in the PPI network of disease A 

Bn = Number of nodes in the PPI network of disease B 
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Matching link ratio (LM) was measured as the ratio of the total number of common links (i.e. edges) 

shared between the two PPI networks of a comorbid pair and the total number of unique links in the 

two disease networks [30].  

�� �
�����

�����

                                                                      (2) 

Al = Number of links in the PPI network of disease A 

Bl = Number of links in the PPI network of disease B 

The same formula shown above was also used to calculate the matching link ratio for common links 

of path length 2 and path length 3. Links of specific path lengths were retrieved using the Cytoscape 

application called NetworkAnalyzer [31, 32]. 

2.6 Calculation of comorbid associations 

Relative risk (RRAB) measures comorbidity by comparing the observed prevalence of a pair of 

comorbid diseases (A and B) in the population with the expected number, which is calculated based 

on the prevalence of the individual diseases A and B in the population.  

���� �
����

����

                                                              (3) 

NA = Total number of patients diagnosed with disease A 

NB = Total number of patients diagnosed with disease B 

NAB = Total number of patients diagnosed with both disease A and disease B 

N = Total number of patients in the population 

For the calculation of relative risks of disease pairs, we downloaded the HuDiNe dataset 

(http://sbi.upf.edu/data/hudine/) containing processed hospital claims data of 13,039,018 U.S. 

individuals who had applied for support from the U.S. Medicare program during 1990-1993 [33]. 

Comorbidity data was available for five out of our six comorbid disease pairs and two out of the three 

non-comorbid pairs in HuDiNe. Specifically, data was not available for Anxiety – Depression and 

Multiple sclerosis – Peroxisomal disorders. Hence, NA, NB and NAB were extracted for seven out of 

the nine disease pairs. The diseases were specified in the form of their ICD-9 codes (at three digits 

level): asthma (ICD-9: 493), hypertension (ICD-9: 401), type 2 diabetes (ICD-9: 250), obesity (ICD-

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 15, 2022. ; https://doi.org/10.1101/2022.01.11.475465doi: bioRxiv preprint 

https://doi.org/10.1101/2022.01.11.475465
http://creativecommons.org/licenses/by-nc-nd/4.0/


7 

 

 

9: 278), chronic obstructive pulmonary disease (ICD-9: 496), heart failure (ICD-9: 428), Parkinson’s 

disease (ICD-9: 332), schizophrenia (ICD-9: 295), rheumatoid arthritis (ICD-9: 714) and osteoporosis 

(ICD-9: 733). The population size N was considered to be 13,039,018, i.e. the total number of 

individuals represented in the HuDiNe dataset. 

2.7 Pathway enrichment analysis 

WebGestalt [34] was used to compute the distribution of genes involved in specific signalling 

pathways in the drug target networks, and compare it with the background distribution of genes 

belonging to this pathway among all the genes associated with any pathway in the selected database 

(Reactome) [35]. Statistical significance of the enrichment was computed using Fisher's exact test and 

corrected using the Benjamini-Hochberg method for multiple test adjustment. 

2.8 Gene expression enrichment analysis 

The enrichment of the drug target networks in genes expressed in specific tissues was computed using 

RNA-sequencing data from 53 postnatal human tissues extracted from GTEx [36] (version 8). Genes 

with high or medium expression (transcripts per million (TPM) ≥ 9) in 53 tissues were included, 

provided that they were not housekeeping genes, i.e. genes detected in all the tissues with transcripts 

per million  ≥ 1, as identified in the Human Protein Atlas [37]. TPM is a metric for quantifying gene 

expression; it directly measures the relative abundance of transcripts. The GMT files served as inputs 

for a gene over-representation analysis (GSEA) based on hypergeometric distribution. The following 

GWAS datasets were selected in TSEA-DB [38] for identification of disease-specific tissues (trait IDs 

are given in parentheses): anxiety (4679), depression (5315), chronic obstructive pulmonary disease 

(571), heart failure (5333), asthma (5259), hypertension (169), type 2 diabetes (4628), obesity (1031), 

Parkinson’s disease (4607), schizophrenia (5215), rheumatoid arthritis (4614) and osteoporosis (746). 

BaseSpace Correlation Engine (https://covid-19.ce.basespace.illumina.com/c/nextbio.nb) was used to 

identify the correlations between the gene expression profile induced by maprotiline in PC3 cells 

(Broad Connectivity Map (CMAP 2.0) [39]), the expression profile associated with major depressive 

disorder and generalized anxiety disorder (GSE98793 [40]) and the expression profile of adrenal 

cortex. The software uses a non-parametric rank-based approach to compute the extent of enrichment 

of a particular set of genes (or ‘bioset’) in another set of genes [41]. 

2.9 Principal component analysis  

Principal component analysis (PCA) was used to capture relationships between the drug target 

networks and the disease networks/biological pathways/tissues. For each disease pair, negative log-
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transformed p-values indicating the statistical enrichment of the disease networks/biological 

pathways/tissues in the 4 drug target networks were assembled into a data matrix containing disease 

networks/biological pathways/tissues as rows and drug target networks as columns; each cell in the 

matrix contained a –log10P value. Following the established approach [42], log transformation was 

performed to reduce the influence of extreme values on the obtained PCs. PCA was performed with a 

web-based tool called ClustVis (https://biit.cs.ut.ee/clustvis/) [43]. The data matrix was pre-processed 

such that 70% missing values were allowed across the rows and columns. The –log10P values in the 

matrix were further centred using the unit variance scaling method, in which the values are divided by 

standard deviation so that each row or column has a variance of one; this ensures that they assume 

equal importance while finding the components. The method called singular value decomposition 

(SVD) with imputation was used to extract principal components. In this method, missing values are 

predicted and iteratively filled using neighbouring values during SVD computation, until the estimates 

of missing values converge. The factor/component loadings corresponding to the disease 

networks/pathways/tissues that contributed to the selected principal components were also extracted. 

Component loadings are correlation coefficients between the variables in rows and the factors (i.e. 

PC1, PC2 etc.). The squared value of a component loading gives the percentage of the variance 

explained by a particular original variable, and essentially its contribution to the principal 

components. Finally, for each of the disease pairs, the Euclidean distance between the principal 

component scores of each of the drug target networks were computed for all the component loading 

values pertaining to the particular biological modality. This resulted in a list of the specific disease 

protein sets/pathways/tissues that may be closely related to each of the different drug target networks. 

2. Results 

To identify potential mechanisms of adverse drug interactions within comorbid diseases, we 

systematically studied pairs of comorbid diseases (‘disease A’ and ‘disease B’) and their FDA-

approved drugs. We separated the drugs into two groups, namely, disease A drugs that are (a) 

contraindicated and (b) not contraindicated in disease B, and disease B drugs that are (c) 

contraindicated and (d) not contraindicated in disease A We then constructed the interactomes of the 

proteins targeted by these drugs and examined these drug target interactomes in the context of three 

biological factors, namely, (i) proteins exclusive to interactomes of diseases A and B and those that 

are in their intersection, and (ii) biological pathways and (iii) tissues associated with these drug target 

interactomes.  

Specifically, we selected three pairs of non-comorbid diseases as negative controls and six pairs of 

comorbid diseases for our analysis. The non-comorbid pairs were: (I) Multiple sclerosis – 

Peroxisomal disorders [44], (II) Schizophrenia – Rheumatoid arthritis [45-47], (III) Asthma – 
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Schizophrenia [48]. The comorbid pairs were (IV) Anxiety – Depression [49], (V) Asthma – 

Hypertension [50, 51], (VI) Chronic obstructive pulmonary disorder (COPD) – Heart failure [52, 

53], (VII) Type 2 diabetes – Obesity [54, 55], (VIII) Rheumatoid arthritis – Osteoporosis [56] and 

(IX) Parkinson's disease – Schizophrenia [57].  

The drugs indicated for use in each of the diseases were retrieved from Drug Bank (version 5.1.8) 

[23]. For each pair, we categorized the drugs into the four groups (a-d) mentioned earlier, based on 

their clinical activity in the diseases, collected from the TWOSIDES database (version 0.1) [24], a 

compendium of drugs and their contraindications (see Additional File 2: Table S2). Drugs 

contributing to specific adverse effects were collected by manually selecting relevant ‘condition 

concept names’ (Additional File 1: Table S1). For example, to identify the anxiolytic drugs that may 

cause depression, the condition concept names, depression, major depression, depressive symptom, 

depression suicidal, depression postoperative, postpartum depression, depressive delusion, and 

agitated depression, were selected. The list of anxiolytic drugs was then compared with the list of 

drugs associated with these condition concept names. The matching drugs were compiled into groups 

‘a’ and ‘c’, for example, “drugs effective in anxiety and contraindicated in depression”. Similarly, 

groups ‘b’ and ‘d’ drugs were compiled. The proteins targeted by the drugs belonging to groups a and 

b were retrieved by querying the Drug Bank database through the DGIdb drug-genee interaction 

database) web portal [25] (see Additional File 3: Table S3). Finally, the protein-protein interaction 

(PPI) networks of the drug targets were assembled by extracting their protein interactors from the PPI 

repositories BioGRID [27] (version 4.3.194)  and HPRD [26] (version 9) using a Cytoscape plugin 

called BisoGenet [28]. 

The methodology of our study is illustrated in Fig. 1. To characterize the 4 classes of drug target 

networks (DTNs), we examined 3 types of data that may reflect their biological profiles, namely (i) 

disease PPI networks, (ii) biological pathways and (iii,) tissue gene expression. Specifically, we 

conducted gene overrepresentation analyses based on hypergeometric distribution to check the 

enrichment of the DTNs among proteins that are unique to/shared between networks of disease A and 

disease B, genes showing high/moderate expression in 53 tissues across the human body, and proteins 

involved in ~1000 biological pathways. Overlaps computed in this manner with each of the 3 types of 

biological data were considered to be statistically significant at p-value < 0.05 after multiple test 

adjustments with the Benjamini-Hochberg method. 

As a first step towards identifying the specific biological data modalities (disease 

subnetworks/pathways/tissues) that were relatively more ‘closer’ to each of the different types of 

DTNs in terms of Euclidean distance, we generated a data matrix of the DTNs (columns) versus the 
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various members of the biological data modality (rows) (for example, for the data modality ‘disease 

subnetwork’, the members would be ‘common to both the networks’, ‘unique to disease A network’ 

Figure 1: Framework for characterizing the drugs that target comorbid disease pairs. Our 
methodology to characterize drug target networks (DTNs) contained seven steps: (a) Retrieval of 
the drugs indicated for use against each of the diseases using Drug Bank and their categorization 
into four groups based on their clinical activity in the comorbid diseases, namely, disease A 
drugs not contraindicated in disease B, disease B drugs not contraindicated in disease A, disease 
A drugs contraindicated in disease B and disease B drugs contraindicated in disease A. (b) 
Identification of the proteins collectively targeted by the drugs in each of the groups by querying 
Drug Bank through DGIdb. (c) Construction of DTNs using the protein targets as input nodes 
and assembling their immediate neighbors in the human protein-protein interaction network up to 
a distance of 1, based on data from the PPI repositories BioGRID and HPRD. (d) Performing 
gene enrichment analysis with the four DTNs (corresponding to each of the disease pairs) in 3 
biological data types: (d1) disease protein-protein interaction networks, (d2) tissue gene 
expression and (d3) biological pathways. (e) Generation of a data matrix containing the enriched 
disease protein sets/tissues/pathways as rows, DTNs as columns and log-transformed p-values in 
each of the cells, and using the matrix as an input for principal component analysis. (f) 
Extraction of component loading values of each of the enriched disease protein 
sets/tissues/pathways that correspond to each of the principal components. (g) Calculation of the 
Euclidean distance between the principal component scores of each of the DTNs and the 
component loading values of the disease protein sets/tissues/pathways. These steps resulted in 
the identification of the top disease protein sets, tissues and pathways that were closely 
associated with each of the DTNs. Databases: BioGRID (Biological General Repository for 
Interaction Datasets), DGIdb (Drug Gene Interaction database), DisGeNET (Disease Gene 
association NETwork), Drug Bank, GTEx (Genotype-Tissue Expression), HPRD (Human 
Protein Reference Database), Reactome, TSEA-DB (Tissue-Specific Enrichment 
Analysis DataBase) and TWOSIDES. Abbreviations: DTN – Drug Target Network, PCA – 
Principal Component Analysis and TPM – Transcripts Per Million. 
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and ‘unique to disease B network’ and for the data modality ‘tissue’, the members would be 

‘amygdala’, ‘aorta’, ‘lungs’ etc.). Each cell contained the negative of log-transformed p-values. –log10 

transformed p-values have been used as inputs for PCA in previous studies [58, 59]. Following the 

established approach [42], log transformation was performed to reduce the influence of extreme 

values on the obtained PCs. Single value decomposition (SVD) with imputation and unit variance 

scaling was applied to this matrix to extract principal components that explained the variance 

observed with each of the data modalities across the DTNs. Principal component analysis (PCA) has 

been applied to matrices containing gene-level association scores in several studies [59]. PCA is 

primarily used to capture systematic variations underlying datasets. All the principal components 

generated after this analysis were considered for our study, since they may together reveal underlying 

clustering patterns among the different DTNs. Following this, we extracted the component loading 

values of each of the members of the different data modalities, which correspond to each of the 

principal components representing the relationships among the DTNs. Component loadings are values 

depicting the correlation of the original variables in our data matrix — negative log of p-values of 

enrichment for specific disease subnetworks/pathways/tissues — with each of the extracted principal 

components. Lastly, we calculated the Euclidean distance between the principal component scores of 

each of the DTNs specifically in the context of each data modality and all the corresponding 

component loading values. This yielded a list of the specific disease subnetworks/pathways/tissues 

that are presumably closely related to each of the different DTNs.  

3.1 Disease network similarity and comorbid associations 

Relative risk is an experiential measure of comorbidity as it compares the observed prevalence of a 

pair of comorbid diseases in the population with the expected number, which is calculated based on 

the prevalence of the individual diseases in the population. We then explored whether this information 

was embedded in the disease networks, i.e., whether the relative risk of comorbidity of the disease 

pairs would be reflected in the similarity of the disease networks. For each of the comorbid pairs, we 

computed four established network similarity measures, namely, matching node ratio (NM) for all the 

nodes shared between the two disease networks, and the matching link ratio (LM) [30] for all the (i) 

shared links (i.e. edges), (ii) shared links of path length 2 (connecting two nodes via one intermediate 

node) and (iii) shared links of path length 3 (connecting two nodes via two intermediate nodes) 

between the two disease networks. 

We computed the relative risk for each of the disease pairs observed in hospital claims data of 

13,039,018 U.S. individuals who had filed for support from the Medicare program during the period 

of 1990-1993, made available as the HuDiNe dataset [33]. The ICD-9 codes corresponding to pairs of 
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diseases diagnosed as primary and secondary conditions, along with the number of individuals who 

were diagnosed with diseases A or B or both (NA, NB and NAB, respectively) were available (see 

Methods). Comorbidity data was available for five out of our six comorbid disease pairs (i.e. except 

for Anxiety – Depression) and two out of the three non-comorbid pairs (i.e. except for Multiple 

sclerosis – Peroxisomal disorders in HuDiNe. 

 

For each of the diseases considered, the top 100 genes associated with the disease were curated from 

the DisGeNET database (version 7) [29] based on their gene-disease association (GDA) scores (see 

Additional File 4: Table S4). The GDA score ranges from 0 to 1 and is computed for a gene based 

on the number of publications supporting its association with the disease, and the number and types of 

database sources (levels of curation (expert-curated/computationally-predicted) and the model 

Figure 2: Comparison of disease network similarity measures and comorbid 

associations. The graph shows the relationship between relative risk (black data points) and 

four measures of network similarity, namely, matching node ratio (green data points), 

matching link ratio of all shared edges (red data points), matching link ratio of all shared 
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organisms in which the association was validated). The 100 top-ranking genes collected in this 

manner were used as starting points for the construction of disease networks. Here also, the network is 

assembled by extracting PPIs from BioGRID and HPRD using a Cytoscape plugin BisoGenet, similar 

to assembling of DTNs. Then, we systematically conducted network overlap analyses with each of the 

9 disease pairs and identified the proteins (a) shared between the two disease networks, (b) unique to 

disease A and (c) unique to disease B (Table 1).  

Table 1: Overlap of the disease networks. The table shows the statistics of the overlaps shared between the 

two diseases in each of the nine disease pairs that were examined in our study.  

Disease pair # Proteins 
in disease 
A network 

# Proteins 
in disease 
B network 

# 
Share
d 
protei
ns  

p-
value 
of 
overl
ap 

Odds 
ratio 
of 
overla
p 

% Shared 
proteins in 
disease A 
network 

% Shared 
proteins in 
disease B 
network 

Multiple sclerosis 
(A) – Peroxisomal 
disorders (B) 

2418 727 284 5.97E
-70 

2.9 12% 39% 

Schizophrenia (A) – 
rheumatoid arthritis 
(B) 

2662 2424 918 6.86E
-208 

2.56 34.5% 38% 

Asthma (A) –  
Schizophrenia (B)  

3041 2662 1084 1.36E
-228 

2.41 36% 41% 

Anxiety (A) – 
Depression (B) 

3342 3054 1732 1.86E
-628 

3.06 52% 57% 

Asthma (A) – 
Hypertension (B) 

3041 2515 1371 1.85E
-500 

3.23 45% 54.50% 

Chronic obstructive 
pulmonary disease 
(A) –heart failure 
(B) 

3736 2922 1505 3.12E
-371 

2.48 40% 51.50% 

Type 2 diabetes (A) 
– 
Obesity (B) 

2471 2490 1232 3.66E
-503 

3.6 50% 49% 

Rheumatoid arthritis 
(A) –  osteoporosis 
(B) 

2424 3681 1206 1.30E
-270 

2.43 50% 33% 

Parkinson’s disease 
(A) – schizophrenia 
(B)  

3200 2662 1232 2.88E
-310 

2.6 38.50% 46% 

 

The relative risk between diseases was proportional to the matching node and link ratios (Fig. 2). The 

control disease pairs showed low relative risks and smaller disease network overlaps, whereas three 

out of five comorbid disease pairs showed high relative risks and larger network overlaps, namely, 

Asthma – Hypertension, COPD – Heart failure and Type 2 diabetes – Obesity. However, this trend 

was not seen in the comorbid pairs, Rheumatoid arthritis – Osteoporosis and Parkinson’s disease – 

Schizophrenia. Specifically, their higher relative risks (compared with other comorbid pairs), were not 
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accompanied by a corresponding increase in the network overlaps. ~85% of the human interactome 

awaits experimental discovery [60]. Hence, two factors may have led to the underestimation of the 

network overlaps. Firstly, the inherent incompleteness of these disease networks [60]. Secondly, the 

tendency of incomplete networks to exhibit small overlaps [60]. 

3.2 Druggability of disease networks  

Next, we tested the potential of each of the disease subnetworks to be acted upon by drugs or their 

susceptibility to pharmacological modulation (druggability), by examining their enrichment among a 

group of 4,463 proteins deemed to be druggable [61], similar to the approach followed in a previous 

study [62]. These proteins are bound with high affinity at specific binding sites by drugs that follow 

the Lipinski's ‘rule-of-five’, i.e. orally bioavailable drugs with specific molecular characteristics that 

influence their pharmacokinetic ability to enter systemic circulation and act on their target sites 

(Table 2) [63]. 

Table 2: Overlaps of the disease protein sets with druggable targets. –log10P values computed for 

each of the nine tested disease pairs using a hypergeometric test. The –log10P values indicate the 

statistical significance of the overlaps shared by each of the disease protein sets (top column headings) 

with a group of 4463 druggable proteins. *, ** and *** indicate low, medium and high levels of 

statistical significance. �, �� and ��� indicate non-significant overrepresentation, non-significant 

underrepresentation and significant underrepresentation respectively.  

Disease pairs Common to both the 
networks 

Unique to disease 
A network 

Unique to disease B 
network 

Multiple sclerosis (A) – peroxisomal 
disorders (B) 

7.38** 19.52*** 2.09* 

Schizophrenia (A) – Rheumatoid 
arthritis 

13.26** 14.36*** 2.4* 

Asthma (A) – schizophrenia (B) 19.18*** 9.41** 0.89� 

Anxiety (A) – Depression (B) 5.57** 0.001��� 12.05*** 

Asthma (A) – Hypertension (B) 31.34*** 3.19* 9.59** 

Chronic obstructive pulmonary disease 
(A) – heart failure (B) 

34.73*** 1.06�� 9.16** 

Type 2 diabetes (A) – Obesity (B) 18.65*** 1.47* 7.05** 

Rheumatoid arthritis (A) – Osteoporosis 
(B) 

21.96*** 7.17** 1.97* 

Parkinson's disease (A) – Schizophrenia 
(B) 

19.93*** 0.27� 0.3� 

 

We found that the proteins shared between the two diseases were the most significantly enriched for 

druggable targets in 5 out of the 6 tested comorbid pairs (Table 2). In case of the sixth pair, namely 
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anxiety and depression, the proteins that are exclusive to the depression network were found to be 

more enriched for druggable targets. In 2 out of the 5 disease pairs that shared many common drug 

targets, the drug target proteins were significantly enriched in G protein-coupled receptor activity (p-

value <0.05) (Table 3).  

Table 3: Enrichment of Gene Ontology molecular functions among druggable targets and 

proteins unique to the depression network. The odds ratio of enrichment of two specific Gene 

Ontology molecular functions among druggable proteins, proteins unique to the depression network 

and proteins common to the anxiety and depression networks have been shown. p-values indicating 

the statistical significance of these enrichments have been shown in parentheses. Note that druggable 

proteins show higher enrichment for transmitter-gated channel activity compared to G protein-coupled 

peptide receptor activity, in terms of odds ratio of enrichment. The overrepresentation of a more 

druggable class (glutamate-gated Ca2+ channel activity) among proteins unique to the depression 

network (and not among the common proteins) would have altered the enrichment pattern for anxiety 

and depression in comparison with other the disease pairs (as shown in Table 2). 

   

Protein sets   

 Gene Ontology 

Molecular Function 

4463 druggable proteins 

– odds ratio (p-value) 

Proteins common to 

anxiety and depression 

networks – odds ratio (p-

value) 

Proteins unique to 

depression network – 

odds ratio (p-value) 

Transmitter-gated channel 

activity 

4.2 (< 1E-15) 8.65 (0.037)  -  

G protein-coupled peptide 

receptor activity 

3.8 (< 1E-15) 3.6 (6.6E-03) 10.46 (9.3E-07) 

 

Based on these observations and the finding in the previous section that relative risk varies in tandem 

with network similarity measures, we speculated that contraindications in comorbidities may arise 

from drug action on druggable proteins shared between the networks of comorbid diseases (Table 2). 

This led to two corollaries: (i) the target networks of the group ‘a’ and ‘c’ drugs (effective in disease 

A and contraindicated in disease B or vice versa) may show the highest enrichment for the 

proteins/pathways/tissues shared between the two disease networks and (ii) the target networks of the 

groups ‘b’ and ‘d’ drugs (effective in disease A and not contraindicated in disease B or vice versa) 

may show the highest enrichment for proteins/pathways/tissues unique to disease A (or B 

respectively).  
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3.3 Disease networks and drug target networks 

To test these corollaries, we systematically computed the overlaps between three groups of disease 

proteins, namely, proteins that are (a) common to disease A and disease B networks, (b) unique to 

disease A network and (c) unique to disease B network, and four classes of DTNs, namely, target 

networks of drugs effective in disease A and (a) contraindicated and (b) not contraindicated in disease 

B, and target networks of drugs effective in disease B (c) contraindicated and (d) not contraindicated 

in disease A (Table 4); previous studies have examined the overlaps between the PPI networks of 

drug targets and disease-associated proteins [20, 64]. For each of the six disease pairs, we created a 

data matrix of DTNs (columns) versus disease subnetworks (rows), which contains -log(p-values) 

indicating the statistical significance of these enrichments. This data matrix was used as the input for 

PCA. In order to identify the specific disease subnetworks that were the nearest to each of the DTNs, 

we calculated the Euclidean distance between the PC scores of each of the DTNs across all the 

extracted axes and the corresponding component loading values of all the disease subnetworks across 

these axes (following the methodology depicted in Fig. 1). By counting the two disease subnetworks 

that were the closest to each of the different DTNs, we identified two predominant patterns.  

In 10 out of the 12 cases, the DTNs of drugs used for a specific disease and not contraindicated in a 

comorbid condition were found to be closest/second closest to the proteins uniquely found in the 

network of the comorbid condition. Additionally, in 9 out of the 12 cases, they were closest/second 

closest to the proteins shared between the networks of both the diseases. In contrast, the DTNs of 

drugs used for a specific disease and contraindicated in a comorbid condition were found to be 

closest/second closest to the proteins uniquely found in the network of the disease for which these 

drugs were primarily used in 8 out of the 12 cases. Additionally, in 9 out of the 12 cases, they were 

closest/second closest to the proteins shared between the networks of both the diseases.  

These observations led us to speculate two scenarios. Firstly, disease A drugs that are not 

contraindicated in disease B may target proteins unique to the disease B subnetwork involved in 

mechanisms that are either inconsequential/beneficial for disease B, but whose modulation is certainly 

beneficial for the treatment of disease A. Alternatively, they may target common mechanisms that are 

dysregulated in a similar manner in both the diseases and pharmacologically modulate them in a 

similar direction. Secondly, disease A drugs may become contraindicated in disease B when they 

target either (a) common mechanisms that are pharmacologically oppositely modulated in a manner 

that benefits disease A but aggravates disease B or (b) mechanisms unique to disease A that aggravate 

disease B. Additionally, we hypothesized that biological processes such as signalling pathways that 

function at a higher level than disease subnetworks could be regulating the action of drugs under 

comorbid conditions. 
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Table 4: Overlaps of the disease protein sets with the four classes of drug target networks.–

log10P values computed for each of the nine tested disease pairs using a hypergeometric test. The –

log10P values indicate the statistical significance of the overlaps shared between each of the disease 

protein sets (top column headings) and the target networks of the four classes of drugs (row headings). 

*, ** and *** indicate low, medium and high levels of statistical significance. �, �� and ��� indicate 

non-significant overrepresentation, non-significant underrepresentation and significant 

underrepresentation respectively.  

MULTIPLE SCLEROSIS (A) 
AND PEROXISOMAL 
DISORDERS (B) 

Common to multiple 
sclerosis (A) and 
peroxisomal disorders (B) 
networks 

Unique to multiple 
sclerosis network 
(A) 

Unique to 
peroxisomal 
disorders network 
(B) 

DTN of drugs effective in multiple 
sclerosis (A) 

113.15**  247.78*** 24.52* 

DTN of drugs effective in 
peroxisomal disorders (B) 

19.56*** 9.78**  1.6* 

RHEUMATOID ARTHRITIS (A) 
AND SCHIZOPHRENIA (B)  

Common to rheumatoid 
arthritis (A) and 
schizophrenia (B) 
networks 

Unique to 
rheumatoid arthritis 
network (A) 

Unique to 
schizophrenia 
network (B) 

DTN of drugs effective in 
rheumatoid arthritis (A) and not 
contraindicated in schizophrenia (B) 

202.91*** 76.56* 82.54**  

DTN of drugs effective in 
schizophrenia (B) and not 
contraindicated in rheumatoid 
arthritis (A) 

198.8*** 17.71* 120.54**  

DTN of drugs effective in 
rheumatoid arthritis (A) and 
contraindicated in schizophrenia (B) 

235.72*** 157.11**  119.54* 

DTN of drugs effective in 
schizophrenia (B) and 
contraindicated in rheumatoid 
arthritis (A) 

257.06*** 48.54* 207.08**  

SCHIZOPHRENIA (A) AND 
ASTHMA (B) 

Common to asthma (B) 
and schizophrenia (A) 
networks 

Unique to asthma 
network (B) 

Unique to 
schizophrenia 
network (A) 

DTN of drugs effective in 
schizophrenia (A) and not 
contraindicated in asthma (B) 

0.71** 0.75� 1.5*** 

DTN of drugs effective in asthma (B) 
and not contraindicated in 
schizophrenia (A) 

6.6*** 0.99** 0.64* 

DTN of drugs effective in 
schizophrenia  (A) and 
contraindicated in asthma (B) 

5.12** 0.32* 7.3*** 

DTN of drugs effective in asthma (B) 
and contraindicated in schizophrenia 
(A) 

8.98*** 3.2** 0.25� 

ANXIETY (A) AND 
DEPRESSION (B) 

Common to anxiety (A) 
and depression (B) 
networks 

Unique to anxiety 
network (A) 

Unique to 
depression network 
(B) 
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DTN of drugs effective in anxiety 
(A) and not contradicated in 
depression (B) 

42.51*** 0.63� 10.51* 

DTN of drugs effective in depression 
(B) and not contraindicated in 
anxiety (A) 

221.32*** 0.32� 24.98* 

DTN of drugs effective in anxiety 
(A) and contraindicated in depression 
(B) 

70.77*** 1.03�� 20.96* 

DTN of drugs effective in depression 
(B) and contraindicated in anxiety 
(A) 

259.82*** 29.51** 17.05* 

ASTHMA (A) AND 
HYPERTENSION (B) 

Common to asthma (A) 
and hypertension (B) 
networks 

Unique to asthma 
network (A) 

Unique to 
hypertension 
network (B) 

DTN of drugs effective in asthma 
(A) and not contradicated in 
hypertension (B) 

385*** 21.29** 7.93* 

DTN of drugs effective in 
hypertension (B) and not 
contraindicated in asthma (A) 

423*** 3.01��� 6.77* 

DTN of drugs effective in asthma 
(A) and contraindicated in 
hypertension (B) 

571*** 30.17* 0.45� 

DTN of drugs effective in 
hypertension (B) and contraindicated 
in asthma (A) 

351*** 104.14** 58.71* 

CHRONIC OBSTRUCTIVE 
PULMONARY DISEASE (A) 
AND HEART FAILURE (B) 

Common to chronic 
obstructive pulmonary 
disease (A) and heart 
failure (B) networks 

Unique to chronic 
obstructive 
pulmonary disease 
network (A) 

Unique to heart 
failure network (B) 

DTN of drugs effective in chronic 
obstructive pulmonary disease (A) 
and not contraindicated in heart 
failure (B) 

279.3*** 17.47* 43.59** 

DTN of drugs effective in heart 
failure (B) and not contraindicated in 
chronic obstructive pulmonary 
disease (A) 

8.03*** 0.63� 0.67� 

DTN of drugs effective in chronic 
obstructive pulmonary disease (A) 
and contraindicated in heart failure 
(B) 

255.32*** 33.88** 15.83* 

DTN of drugs effective in heart 
failure (B) and contraindicated in 
chronic obstructive pulmonary 
disease (A) 

314*** 8.92* 55.19** 

TYPE 2 DIABETES (A) AND 
OBESITY (B)                                       

Common to type 2 
diabetes (A) and obesity 
(B) networks 

Unique to type 2 
diabetes network 
(A) 

Unique to obesity 
network (B) 

DTN of drugs effective in diabetes 
(A) and not contraindicated in 
obesity (B) 

140.81*** 11.69* 1.16� 

DTN of drugs effective in obesity 
(B) and not contraindicated in 
diabetes (A) 

18.56*** 0.73� 2.59* 

DTN of drugs effective in diabetes 232.99*** 27.39** 10.93* 
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(A) and contraindicated in obesity 
(B) 
DTN of drugs effective in obesity 
(B) and contraindicated in diabetes 
(A) 

54.79*** 0.32�� 21.27* 

RHEUMATOID ARTHRITIS (A) 
AND OSTEOPOROSIS (B) 

Common to rheumatoid 
arthritis (A) and 
osteoporosis (B) networks 

Unique to 
rheumatoid arthritis 
network (A) 

Unique to 
osteoporosis 
network (B) 

DTN of drugs effective in 
rheumatoid arthritis (A) and not 
contradicated in osteoporosis (B) 

219.6*** 17.51* 30.9** 

DTN of drugs effective in 
osteoporosis (B) and not 
contraindicated in rheumatoid 
arthritis (A) 

908* 126.08��� 2118*** 

DTN of drugs effective in 
rheumatoid arthritis (A) and 
contraindicated in osteoporosis (B) 

272.65*** 16.29* 68.31** 

DTN of drugs effective in 
osteoporosis (B) and contraindicated 
in rheumatoid arthritis (A) 

255.5*** 0.29�� 237.99* 

PARKINSON’S DISEASE (A) 
AND SCHIZOPHRENIA (B)              

Common to Parkinson's 
disease (A) and 
schizophrenia (B) 
networks 

Unique to 
Parkinson's disease 
network (A) 

Unique to 
schizophrenia 
network (B) 

DTN of drugs effective in 
Parkinson's disease (A) and not 
contradicated in schizophrenia (B) 

83.25*** 15.5** 6.6* 

DTN of drugs effective in 
schizophrenia (B) and not 
contraindicated in Parkinson's 
disease (A) 

72.82*** 15.97** 6.73* 

DTN of drugs effective in 
Parkinson's disease (A) and 
contraindicated in schizophrenia (B) 

25.51*** 4.25** 4* 

DTN of drugs effective in 
schizophrenia  (B) and 
contraindicated in Parkinson's 
disease (A) 

156.68*** 103.63** 7.87* 

 

3.4 Biological pathways and drug target networks 

We identified the pathway associations of the DTNs using the gene set analysis toolkit called 

WebGestalt [34]. WebGestalt computes statistical significance enrichment of a functional group (e.g., 

a Reactome pathway) in an input gene list using Fisher's exact test using the Benjamini-Hochberg 

method for multiple test adjustment. For each of the 6 disease pairs, a data matrix of DTNs (columns) 

versus Reactome pathways (rows) containing corresponding enrichments was used as inputs for PCA, 

and the Euclidean distance between the PC scores of each of the DTNs across all the extracted axes 

and the corresponding component loading values of all the pathways across these axes were 

computed. For each of the disease pairs, we retrieved the top-10 pathways closest to each of the DTNs 
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out of all the pathways enriched in the DTNs (Additional Files 5-10: Figures S1-S6). Confirming 

our earlier suspicions, we noted that disease A DTN classes without contraindications in disease B 

were nearest to pathways possibly underlying both the diseases or uniquely associated with B, which 

are similarly regulated, i.e. upregulated or downregulated together, in the two comorbid diseases. On 

the other hand, disease A DTN classes with contraindication in disease B were nearest to pathways 

underlying both the diseases or unique to disease A that are differentially regulated, i.e. upregulated in 

one disease and downregulated in the other or vice versa.  

 

 

Figure 3: Pathways associated with the target networks of anxiety and depression 
drugs. The component loading values shown in the figure correspond to component scores 
of 4 drug target networks (DTNs) of anxiety and depression  along PC1 and PC2, which 
explain 41.6% and 33.1% of the total variance respectively. The top-10 pathways that 
appeared to be highly related to each of the 4 DTNs, which were obtained after computing 
the Euclidean distance between the component loading values and the component scores, are 
shown as square-shaped data points for the DTN of drugs effective in anxiety and not 
contraindicated in depression, diamond-shaped data points for the DTN of drugs effective in 
depression and not contraindicated in anxiety, triangle-shaped data points for the DTN of 
drugs effective in anxiety and contraindicated in depression and cross-mark-shaped data 
points for the DTN of drugs effective in depression and contraindicated in anxiety. ‘G 
α(12/13) signaling events’ and ‘muscarinic acetylcholine receptors’ shown here are among 
the top-10 pathways associated with anti-anxiety drugs that are not contraindicated in 
depression. The drug maprotiline shown in Fig. 4 corroborates this by showing antagonistic 
activity on adrenergic and muscarinic acetylcholine receptors. Similarly, serotonin receptors 
are associated with anti-depressants that are not contraindicated in anxiety; flupentixol and 
mirtazapine corroborate this by showing antagnostic activity on serotonin receptors. 
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G alpha (12/13) signalling events’ and ‘muscarinic acetylcholine receptors’ were identified among the 

top-10 pathways that were close to anxiety drugs not contraindicated in depression in our study (Fig. 

3). Adrenergic receptor signalling could be regulated via G α(12/13); Gα12 and Gα13 have been 

shown to mediate alpha-1 adrenergic receptor-induced JNK activation in rat cardiomyocytes [65]. The 

drug maprotiline was among our list of anxiety drugs without contraindications in depression   (Fig. 

4). Corroborating this, clinical data suggested that the drug is effective in alleviating anxiety 

symptoms co-occurring with depression [66]. Maprotiline acts an inhibitor of SLC6A2 (sodium-

dependent noradrenaline transporter) and inhibits noradrenaline reuptake in the brain. It also acts as an 

Figure 4: Network diagram showing the relationship between the targets of 
maprotiline, flupentixol and mirtazapine, and genes associated with anxiety 
and depression. The different families of receptors and transporter proteins targeted 
by maprotiline, flupentixol and mirtazapine and their interactions with the proteins 
encoded by anxiety (disease A) and/or depression (disease B) associated genes have 
been shown. Note that maprotiline (an anti-anxiety (disease A) drug not 
contraindicated in depression (disease B)) targets a higher number of proteins 
associated uniquely with depression in the adrenergic, serotonergic and cholinergic 
systems, which is in line with our observation that disease A drugs that are not 
contraindicated in disease B are closely associated with proteins uniquely found in 
the disease B network (i.e. depression in this specific example). Serotonin receptors 
were found to be associated in our analysis with depression drugs not 
contraindicated in anxiety; antagonistic activity on serotonin receptors is shown by 
two such drugs shown in the diagram (flupentixol and mirtazapine).  
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antagonist to alpha-1 adrenergic receptors (ADRA1A, ADRA1B and ADRA1D) and alpha-2 

adrenergic autoreceptors and heteroreceptors (ADRA2A, ADRA2B and ADRA2C), and enhances 

central noradrenergic and serotonergic functions, which have been linked to alleviation of anxiety and 

depression [67]. Maprotiline also acts as a weak antagonist to muscarinic acetylcholine receptors 

(CHRM1, CHRM2, CHRM3, CHRM4 and CHRM5); enhanced cholinergic signaling has been linked 

to both anxiety and depression [68]. It is notable that maprotiline targets a higher number of proteins 

associated uniquely with depression (ADRA2A, HTR2C, SLC6A2 and CHRM2) in the adrenergic, 

 

serotonergic and cholinergic systems (Fig. 4). It targets only one receptor associated with both anxiety 

and depression (HTR2A), and no gene uniquely associated with anxiety (Fig. 4). These observations 

are in line with our findings with the overlap of DTNs with disease subnetworks, i.e. DTNs of disease 

A drugs that are not contraindicated in disease B (e.g. maprotiline) are closely associated with 

proteins uniquely found in the disease B network (i.e. depression in this specific example). Since 

Figure 5: Pathways associated with the target networks of Parkinson’s disease and 
schizophrenia drugs. The component loading values shown in the figure correspond to 
component scores of 4 drug target networks (DTNs) of Parkinson’s disease (PD) and 
schizophrenia (SCZ) along PC1 and PC2, which explain 47.3% and 38.2% of the total 
variance respectively. The top-10 pathways that appeared to be highly related to each of the 
4 DTNs, which were obtained after computing the Euclidean distance between the 
component loading values and the component scores, are shown as square-shaped data points 
for the DTN of drugs effective in PD and not contraindicated in SCZ, diamond-shaped data 
points for the DTN of drugs effective in SCZ and not contraindicated in PD, triangle-shaped 
data points for the DTN of drugs effective in PD and contraindicated in SCZ and cross-mark-
shaped data points for the DTN of drugs effective in SCZ and contraindicated in PD. 
Dopamine receptors are among the top-10 pathways associated with PD drugs 
contraindicated in SCZ. Corroborating this, the drugs levodopa and ropinirole shown in Fig. 
6 stimulate dopaminergic receptors to alleviate Parkinsonian symptoms, but at the risk of 
inducing a hyperdopaminergic state conducive to the SCZ development. 
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maprotiline has been discontinued from usage since 2020 in U.S. [69], note that we are citing this 

drug only as a demonstrative example. Drugs acting on the serotonergic system is known to be 

effective in both short-term and long-term treatment of patients with major depressive disorder and 

anxiety disorders [70]. ‘Serotonin receptors’ was identified among the top-10 pathways that were 

close to depression drugs not contraindicated in anxiety (Fig. 3). This may suggest the broad-

spectrum efficacy of drugs acting on serotonin receptors in both the conditions. Two such drugs in our 

study displayed antagonistic activity on serotonin receptors – flupentixol [71] and mirtazapine [72] 

(both acting on HTR2A and HTR2C) – and have been used to treat depression accompanied by 

anxiety symptoms (Fig. 4).  

 

The pathway ‘dopamine receptors’ was found to be close to PD drugs contraindicated in SCZ (Fig. 5), 

indicating that the enhancement in dopamine levels brought about by PD drugs may in fact induce 

Figure 6: Network diagram showing the relationship between the targets of levodopa and ropinirole 
and genes associated with Parkinson’s disease and schizophrenia. The specific dopamine receptors 
targeted by levodopa, ropinirole and flupentixol and their interactions with the proteins encoded by 
Parkinson’s disease and/or schizophrenia associated genes have been shown. Note that levodopa and 
ropinirole are used in the treatment of Parkinson’s disease (disease A), but contraindicated in schizophrenia 
(disease B), and flupentixol is used in the treatment of schizophrenia, but contraindicated in Parkinson’s 
disease. Note that levodopa and ropinirole target a higher number of dopamine receptors associated 
uniquely with Parkinson’s disease, which supports our finding that disease A drugs that are contraindicated 
in disease B are closely associated with proteins uniquely found in the disease A network (i.e. Parkinson’s 
disease in this specific example). 
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SCZ, which has been linked to a hyperdopaminergic state [57]. The dopamine agonists belonging to 

this group of PD drugs have been shown to induce psychosis, namely, levodopa (acting on DRD1, 

DRD2, DRD3, DRD4 and DRD5) and ropinirole (DRD2, DRD3 and DRD4) (Fig. 6) [73, 74]. It is 

notable that levodopa and ropinirole target a higher number of dopamine receptors associated 

uniquely with Parkinson’s disease (DRD1 and DRD2) (Fig. 6). It targets only one dopamine receptor 

(DRD3) uniquely associated with schizophrenia (Fig. 6). These observations are in line with our 

findings with the overlap of DTNs with subnetworks, i.e. DTNs of disease A drugs that are 

contraindicated in disease B (e.g. levodopa and ropinirole) are closely associated with proteins 

uniquely found in the disease A network (i.e. Parkinson’s disease in this specific example). 

3.5 Tissues and drug target networks 

Using RNA-sequencing data of 53 postnatal human tissues obtained from GTEx [36] (version 8), we 

attempted to identify whether the four DTN classes showed any tissue-specific patterns. Genes with 

high/medium expression (transcripts per million (TPM) ≥ 9) in these 53 tissues, which were not 

housekeeping genes (as per the Human Protein Atlas [37]), were considered. For DTNs of each 

disease pair, we computed the distribution of genes expressed in a specific tissue among the DTN 

genes and compared it with the background distribution of genes expressed in this tissue among all 

the genes that were assayed for expression in any of the 53 tissues. We generated a data matrix of 

DTNs (columns) versus tissues (rows) containing the negative of log-transformed p-values and 

performed PCA with this matrix as the input. We calculated the Euclidean distance between the PC 

scores of each of the DTNs and the component loading values of all the tissues. For each of the 

disease pairs, we retrieved the top-10 tissues that were nearest to the four DTNs (Additional Files 11-

16: Figures S7-S13). Following this, we employed the tissue-specific enrichment analysis database 

(TSEA-DB)[38] to retrieve the top-3 tissues that may be preferentially affiliated with the diseases in 

each of the pairs. TSEA-DB is a reference database for information on disease-associated tissues, 

specifically, the tissues in GTEx that show significant enrichment of genes harbouring diseases-

associated variants compiled from the GWAS catalog [38]. We checked whether the top-3 tissues 

associated with each of the diseases in a disease pair (according to TSEA-DB) appeared among the 

list of tissues identified to be nearest to each of the 4 DTNs pertaining to this disease pair in our 

analysis. Out of the 11 tissues identified to be closer to the target networks of drugs used for a specific 

disease and not contraindicated in a comorbid condition, 6 were found to be associated with the 

comorbid condition as per TSEA-DB, whereas 3 were associated with the specific disease for which 

the drugs were used and 2 were associated with the disease as well as the comorbid condition. 

Conversely, out of the 9 tissues identified to be closer to the target networks of drugs used for a 

specific disease and contraindicated in a comorbid condition, 5 were found to be associated with the 
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specific disease, whereas 3 were associated with the comorbid condition in which the drugs were 

contraindicated and one was associated with the disease as well as the comorbid condition. 

 

These percentages obtained with a low number of tissues suggest cautious interpretation. 

Nevertheless, these results seem to corroborate our previous findings with disease subnetworks and 

biological pathways. Specifically, the networks of disease A drugs that are not contraindicated for 

disease B seemed to be nearest to tissues preferentially affiliated with disease B. This could indicate 

that these tissues could be equally important to the pathophysiology of disease A and its therapeutic 

alleviation (as they might be to these same aspects of disease B), despite showing a high enrichment 

for genes harbouring disease B-associated variants. For example, the adrenal gland was detected as a 

tissue highly specific to depression by TSEA-DB. In our analysis, this tissue appeared to be nearest to 

Figure 7: Tissues associated with the target networks of anxiety and depression drugs. 
The component loading values shown in the figure correspond to component scores of 4 
DTNs of anxiety and depression along PC1 and PC2, which explain 90.7% and 6.5% of the 
total variance respectively. The tissues that were exclusively associated with each of the 4 
DTNs among the top-ten tissues that were identified to be highly related to the DTNs, after 
computing the Euclidean distance between the component loading values and the component 
scores, are shown as square-shaped data points for the DTN of drugs effective in anxiety and 
not contraindicated in depression, diamond-shaped data points for the DTN of drugs 
effective in depression and not contraindicated in anxiety, triangle-shaped data points for the 
DTN of drugs effective in anxiety and contraindicated in depression and cross-mark-shaped 
data points for the DTN of drugs effective in depression and contraindicated in anxiety. The 
tissues shown in circular and rectangular boxes were also identified to be highly specific to 
anxiety and depression respectively by TSEA-DB (due to a significant enrichment of 
anxiety/depression-associated variants). Note that adrenal cortex, which was identified to be 
associated with anti-anxiety (disease A) drugs that are not contraindicated in depression 
(disease B), is a tissue enriched with depression (i.e. disease B) associated variants. This 
corroborates our finding that disease A drugs that are not contraindicated in disease B are 
affiliated with disease B-specific tissues. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 15, 2022. ; https://doi.org/10.1101/2022.01.11.475465doi: bioRxiv preprint 

https://doi.org/10.1101/2022.01.11.475465
http://creativecommons.org/licenses/by-nc-nd/4.0/


26 

 

 

the DTN of anxiety drugs that were not contraindicated in depression (Fig. 7), indicating that 

targeting of the adrenal gland may be vital to treat anxiety without aggravating comorbid depressive 

symptoms. The adrenal gland is an organ in the endocrine system that secretes the cortisol hormone, 

following the activation of the hypothalamic-pituitary-adrenal (HPA) axis by psychological stressors 

[75]. Several studies support the role of the adrenal gland as a focal point for depression. The adrenal 

gland exhibits a 70% increase in its volume in depressed individuals before successful anti-depressant 

treatment as well as in comparison with their matched controls [76, 77]. The cortisol hormone 

secreted by the adrenal gland, upon stress-induced activation of the HPA axis, has been linked to 

depressive symptoms in humans and monkeys. Increased cortisol levels have been positively 

correlated with depressive behaviour in rhesus macaques [78]. Enhanced cortisol secretion has been 

observed in depressive individuals [79], and has been proposed to (a) increase susceptibility to 

depression [80] and (b) be correlated with the stress experienced by depressed individuals [81]. 

Hyperactivation of the HPA axis has been noted in generalized anxiety disorder [82]. Treatment with 

selective serotonin reuptake inhibitors (SSRIs) has been shown to reduce HPA hyperactivity in both 

depressed patients and patients with generalized anxiety disorder [83-85]. Therefore, it is possible that 

anti-anxiety drugs that do not aggravate depressive symptoms target the adrenal gland, which 

produces the cortisol hormone, an effector or ‘endpoint’ of the HPA axis that seems to be regulated in 

a similar manner in depression as well as anxiety. We performed comparative transcriptome analysis 

of disease-associated, tissue-associated and drug-induced gene expression profiles using the 

BaseSpace Correlation Engine to analyse this hypothesis. BaseSpace Correlation Engine software 

suite is a data analysis platform that is used to study the effect of diseases and drugs on publicly 

available gene expression data [86].  

As mentioned in the previous section, maprotiline was found among our list of anti-anxiety drugs that 

are not contraindicated in depression; clinical data supports its utility in the treatment of anxiety 

symptoms associated with depression [66]. The differential gene expression (DGE) profile induced by 

maprotiline (12.8 µM) in PC3 cells (Broad Connectivity Map (CMAP 2.0) [39]) was negatively 

correlated with the profile identified in the blood samples of patients with major depressive disorder 

patients (MDD) with generalized anxiety disorder (GAD) versus MDD patients without GAD 

(GSE98793 [40]) (Fig. 8a). This negative correlation of maprotiline with MDD/GAD could illustrate 

the fact that drugs administered to treat diseases often revert the expression of perturbed disease-

associated genes to their normal levels [87, 88]. Secondly, the MDD/GAD profile was negatively 

correlated with the expression profile of adrenal gland cortex (Fig. 8a), indicating that this tissue 

could be critical to disease alleviation. Maprotiline-induced DGE profile was positively correlated 

with the profile of adrenal gland (Fig. 8a), indicating that maprotiline-mediated MDD/GAD 

alleviation may be dependent on adrenal gland, i.e. the reversal of MDD/GAD-associated expression 
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profile induced by maprotiline could occur in the adrenal cortex. We then asked whether the genes 

differentially expressed in each of these profiles converged on a common set of biological processes. 

Specifically, we identified the top-10 Gene Ontology (GO) biological processes enriched among the 

genes differentially expressed in (i) MDD/GAD versus maprotiline (in different directions), (ii) 

MDD/GAD versus adrenal cortex (in different directions) and (iii) maprotiline versus adrenal cortex 

(in the same direction). We then used the web-based tool called NaviGO [89] to group these 30 

enriched biological processes into functionally cohesive networks based on semantic similarity 

measures of GO terms. Two such functional networks not only had top-scoring edges between the GO 

terms, but also contained GO terms enriched among all the three differential expression profiles (Fig. 

8b, c). One network contained four GO terms associated with protein folding (Fig. 8b), and another 

network contained eleven GO terms representing cell cycle events (Fig. 8c). Interestingly, ‘protein 

folding’, ‘cyclin D associated events in G1’ and ‘G1 phase’ were independently retrieved among our 

top-10 Reactome pathways found to be nearest (in terms of Euclidean distance) to the DTN of anti-

depressants that are not contraindicated in anxiety. Together, these results suggest that adrenal cortex 

Figure 8: Relationship between MDD/GAD, maprotiline and adrenal cortex at transcriptomic and 
biological process levels. (a) Correlation of differential gene expression profiles associated with a 
comorbid condition (major depressive disorder and generalized anxiety disorder), a drug (maprotiline) and 
a tissue (adrenal cortex). –log10(p-values) indicating the overlap of the expression profiles have been 
shown; red and green colors indicate negative and positive correlations between the profiles respectively. 
Significant overlap was found among the genes that are upregulated in patients with both major depressive 
disorder (MDD) and generalized anxiety disorder (GAD) and downregulated on treating PC3 cells with 
maprotiline (p-value = 7.4E-06), among the genes that are upregulated in MDD/GAD patients and 
downregulated in adrenal cortex (p-value = 8.4E-28), and among the genes that are downregulated on 
treating PC3 cells with maprotiline and downregulated in adrenal cortex (p-value = 0.034). (b, c) The 
functional networks of the Gene Ontology biological processes related to (b) protein folding and (c) cell 
cycle events that were enriched in the three expression profiles. The GO terms associated with each of the 
expression profiles have been shown using different node colors. The thickness of the edges corresponds to 
the Resnik semantic similarity score for GO terms (greater the thickness of the edges, greater is the 
similarity between the linked GO terms). 
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may be preferentially targeted by drugs such as maprotiline that produce beneficial effects in anxiety 

as well as in depression, and that their actions may converge on protein folding and cell cycle 

processes. Note that maprotiline has been discontinued from usage [69] and is only being cited here as 

a demonstrative example. 

On the other hand, the networks of disease A that are contraindicated for disease B seemed to be 

nearest to tissues preferentially affiliated with disease A. This could indicate that these disease A-

specific tissues may play a role in producing beneficial effects in disease A, while producing 

deleterious effects in disease B. For example, spleen was detected as a tissue highly specific to 

rheumatoid arthritis. The primary functions of this lymphoid organ are blood filtration, recycling of 

iron from old blood cells and generation of adaptive immune responses against bacterial, fungal and 

viral infections [90]. However, spleen has also been shown to act as a reservoir of osteoclast precursor 

cells, which upon resorption into bones, differentiate into osteoclasts.[91] Splenomegaly (enlargement 

of the spleen) has been noted in 5-10% and 52% of rheumatoid arthritis patients in separate studies 

(based on physical examination and imaging studies respectively) [92-94]. Rheumatoid arthritis 

patients are also prone to developing spontaneous splenic ruptures [95]. In our analysis, spleen was 

identified to be nearest (in terms of Euclidean distance) to the DTN of rheumatoid arthritis drugs that 

were contraindicated in osteoporosis (Fig. 9). This seemed to indicate that spleen mediated opposite 

effects in rheumatoid arthritis and osteoporosis. Anecdotal evidence seemed to support this 

conjecture. While splenectomy seemed to improve rheumatoid arthritis in a patient [96], it seemed to 

inhibit (a) attenuation of osteoporosis in a rat model [97] and (b) fracture healing in patients [98].   

 

 

Table 5 summarizes the general conclusions of our study. We discovered that the DTNs of disease A 

drugs that are not contraindicated for a disease B may be nearest (in terms of Euclidean distance) to 

(a) proteins that are either uniquely found in the PPI network of disease B or shared between the PPI 

networks of disease A and disease B, (b) biological pathways that are associated with B or are 

commonly active in both the diseases, and are regulated in the same direction in both the diseases and 

(c) tissues showing a high enrichment of disease-B associated variants and thereby preferential 

affiliation with the etiology of disease B, while also being important to the pathophysiology and 

treatment of disease A (Table 5). On the other hand, disease A drugs that are contraindicated for a 

disease B may be nearest to (a) proteins that are either uniquely found in the PPI network of disease A 

or are shared between the PPI networks of disease A and disease B, (b) biological pathways that are 

associated with disease A or are commonly active in both the diseases, and are regulated in an 
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opposing manner in both the diseases and (c) tissues showing a high enrichment of disease A-

associated variants and thereby preferential affiliation with the etiology of disease A, and mediating 

opposing effects in disease A and disease B (Table 5). 

 

 

Table 5: Disease network, pathway and tissue-level characterization of drugs that are 

contraindicated/not contraindicated in comorbid conditions. A � has been used to indicate the 

Figure 9: Tissues associated with the target networks of rheumatoid arthritis and osteoporosis drugs. 
Component loading values of 39 tissues associated with the drug target networks (DTNs) of rheumatoid 
arthritis (RA) and osteoporosis to PC1 and PC2 have been plotted along the X and Y axes respectively. 
PCA was performed with the p-values of enrichment of the tissues significantly associated (p-value < 0.05) 
with the DTNs of RA and osteoporosis. These values were transformed to –log10P values, which were then 
assembled into a data matrix containing tissues as rows and DTNs as columns. Unit variance scaling was 
applied across this matrix. Single value decomposition (SVD) with imputation was used to extract the 
principal components (PCs). The component loading values shown in the figure correspond to component 
scores of 4 DTNs along PC1 and PC2 that explain 89% and 6% of the total variance respectively. The 
tissues that were exclusively associated with each of the 4 DTNs among the top-ten tissues that were 
identified to be highly related to the DTNs, after computing the Euclidean distance between the component 
loading values and the component scores, are shown as square-shaped data points for the DTN of drugs 
effective in RA and not contraindicated in osteoporosis, diamond-shaped data points for the DTN of drugs 
effective in osteoporosis and not contraindicated in RA, triangle-shaped data points for the DTN of drugs 
effective in RA and contraindicated in osteoporosis and cross-mark-shaped data points for the DTN of 
drugs effective in osteoporosis and contraindicated in RA. The tissues shown in circular and rectangular 
boxes were also identified to be highly specific to RA and osteoporosis respectively by TSEA-DB (due to a 
significant enrichment of RA/osteoporosis-associated variants). Note that spleen, which was identified to 
be associated with rheumatoid arthritis (disease A) drugs that are contraindicated in osteoporosis (disease 
B), is a tissue enriched with rheumatoid arthritis (i.e. disease A) associated variants. This corroborates our 
finding that disease A drugs that are contraindicated in disease B are affiliated with disease A-specific 
tissues. 
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close affiliation of a specific category of drug target network with specific disease protein sets, 

disease-associated pathways and tissues. 

Drug target 
networks 

Disease PPI protein sets Pathways Tissues 

Common 
to disease 

A and 
disease B 

Uniqu
e to 

diseas
e A 

Uniq
ue to 
diseas

e B 
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to disease 

A and 
disease B 

Specif
ic to 

diseas
e A 

Specif
ic to 

diseas
e B 

Common 
to disease 

A and 
disease B 

Specif
ic to 

diseas
e A 

Specif
ic to 

diseas
e B 

Disease A 
drugs not 

contraindicate
d in Disease B 

�  � �  � �  � 

Disease A 
drugs 

contraindicate
d in Disease B 

� �  � �  � �  

 

3. Discussion 

Despite the increased prevalence of adverse drug reactions in comorbidities, knowledge on the 

mechanistic basis of drug contraindications in such conditions is limited. In our study, we attempted 

to characterize the biological profiles of the target networks of drugs used in specific diseases that are 

either contraindicated or not contraindicated in a comorbid disease. We sought to provide an 

integrated interactome, pathway and tissue level view of the drug target networks.  

The first key finding in our study was that the relative risk of comorbidity between diseases was 

proportional to their network similarity measures (Fig. 2). The four network similarity measures along 

with the relative risk were low in the case of our three negative control pairs, namely, Multiple 

sclerosis – Peroxisomal disorders, Schizophrenia – Rheumatoid arthritis, and Asthma – 

Schizophrenia. This confirmed that these were indeed non-comorbid pairs. The network similarity 

measures and relative risk were higher in the case of Anxiety – Depression, Asthma – Hypertension, 

Chronic obstructive pulmonary disorder – Heart failure, Type 2 diabetes – Obesity, Rheumatoid 

arthritis – Osteoporosis, and Parkinson's disease – Schizophrenia, confirming that they were 

comorbidities. However, these measures do not follow the same trend in the case of the comorbid 

pairs. The higher relative risks of Rheumatoid arthritis – Osteoporosis and Parkinson's disease – 

Schizophrenia (compared with the other comorbid pairs) were not accompanied by a corresponding 

increase in the network similarity measures. Several factors may explain these variations in our 

analysis. Firstly, it has been shown that relative risk overestimates the comorbid associations between 

rare diseases and underestimates the associations between highly prevalent diseases [43]. The number 

of cases in the HuDiNe database for Rheumatoid arthritis – Osteoporosis and Parkinson’s disease – 

Schizophrenia are 24629 and 5439 respectively, which can be classified as rare occurrences when 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 15, 2022. ; https://doi.org/10.1101/2022.01.11.475465doi: bioRxiv preprint 

https://doi.org/10.1101/2022.01.11.475465
http://creativecommons.org/licenses/by-nc-nd/4.0/


31 

 

 

compared with the other comorbid pairs. Additional File 17: Figure S14 shows the relationship of 

the relative risks of the nine pairs of diseases with the individual prevalence of the diseases and the 

prevalence of the disease pairs as comorbidities. Secondly, the human interactome is a progressively 

developing network with ~85% remaining to be discovered. Therefore, the inherent incompleteness of 

the human PPI network, sampling biases introduced as a result of the selective discovery of PPIs, and 

the tendency of such incomplete networks to exhibit small overlaps [60] could have led to the 

underestimation of the network overlaps. Our second key finding was that druggable proteins were 

highly enriched among the proteins shared between the networks of two comorbid diseases (Table 2). 

Based on these results, we speculated that drug action on targets shared between the two diseases may 

give rise to contraindications in comorbidities. Interestingly, this hypothesis was only partially 

supported in our study. 

The major finding in this respect was that the target network of the drugs used in the treatment of a 

specific disease A and contraindicated in a comorbid disease B showed preferential affiliation to 

proteins shared between the PPI networks of both the diseases or proteins uniquely found in the PPI 

network of the disease A, pathways shared by the two diseases or pathways associated with the 

disease A and tissues specifically associated with disease A (Table 5). As explained before, this was 

contrary to our hypothesis that these target networks would be preferentially affiliated with common 

mechanisms underlying the two diseases. This hypothesis was based on the assumption that adverse 

events stem from drugs inducing opposite pharmacological effects in comorbid diseases by targeting 

effectors that are shared between the two diseases. However, our findings indicate that mechanisms 

underlying the pathology of disease A may contribute to contraindications in the comorbid disease B. 

Although further studies are required to examine the basis of this finding, it seems to indicate that the 

possibility of contraindications may be high when disease A drugs are highly specific to disease A in 

terms of the targeted PPI network, pathway and tissue. Instead, rational drug development should take 

into account the causative and correlational influences of the other comorbid conditions (disease B) 

that co-exist with disease A. 

The target network of the drugs used in the treatment of a specific disease A and not contraindicated 

in a comorbid disease B showed preferential affiliation to proteins shared between the PPI networks 

of both the diseases or proteins uniquely found in the PPI network of the comorbid disease B, 

pathways shared between the two diseases or pathways associated with the comorbid disease B and 

tissues specifically associated with the comorbid disease B (Table 5). This was contrary to our 

expectation that these target networks would be preferentially affiliated with biological modalities 

pertaining to disease A. This conjecture was based on the assumption that for a drug to be specifically 

active against a specific disease A without aggravating a comorbid disease B, it had to reverse the 
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phenotypes specifically associated with disease A. In this model, phenotypes of disease B were 

considered as ‘off-targets’ in line with the principles of conventional pharmacology, in which 

unintended effects of the drugs were attributed to interaction with pathways that may not be 

consequential to the pathology of disease A (i.e. pathways relevant to disease B) [13]. Our findings on 

the contrary indicate that the mechanisms underlying the pathology of the comorbid disease B may 

contribute to the therapeutic alleviation of disease A. Although further investigations may be 

necessary to dissect the basis for this observation, it is possible that an etiological association between 

the two diseases may cause their emergence or development to be interdependent. Specifically, future 

studies should concentrate on 3 etiological models of comorbidity [99], namely, the direct causation 

model, the associated risk factors model and the heterogeneity model. Disease B could be directly 

responsible for causing disease A in the ‘disease causation model’. The comorbidity of disease A and 

disease B may arise from the correlation of the risk factors of disease B with the risk factors of disease 

A in the ‘associated risk factors model’. On the other hand, comorbidity in the ‘heterogeneity model’ 

may arise not from the correlation of the risk factors associated with disease A and disease B, but 

from the capacity of the risk factors of disease A to cause disease B and vice versa. On applying the 

disease causation model to our findings, one may speculate that drugs targeting the proteins uniquely 

found in the disease B PPI network, and the pathways and tissues associated with disease B may 

alleviate disease A without aggravating disease B. The associated risk factors and heterogeneity 

models in this scenario would imply that the risk factors of disease B would influence the 

development of disease A directly, or through correlation with the risk factors of disease A. This 

model can be illustrated for genetic risk factors of disease B with the capacity to influence disease A. 

For example, the alterations in such genes would have led to pathway perturbations in specific tissues, 

which if counteracted by the drugs, may lead to alleviation of disease A. 

Despite disease A drugs contraindicated in disease B and disease A drugs not contraindicated in 

disease B showing preferential affiliation with disease A and disease B respectively, it was clear, at 

least in the case of the drug target and disease network analysis, that both these categories also 

showed affiliation with proteins shared between the two diseases (Table 5). This is in line with the 

speculation that both beneficial and adverse outcomes of drug treatment may arise from shared 

effectors and pathways, and that it may be difficult to delineate the separate mechanisms underlying 

the two outcomes [13]. Future analysis should focus on biological variables with the potential to 

differentially affect the functions of such shared proteins, specifically their cellular, pathway and 

tissue landscapes. 

Our current approach has some limitations. Firstly, our study is based on 6 pairs of diseases that were 

selected based on literature survey. Ideally, future studies must be expanded to include all the known 
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pairs of comorbid disorders. Secondly, our analysis did not take the overlaps among the drug target 

networks into account; this would have allowed us to identify the network configurations of disease A 

– disease B – disease A drug not contraindicated in disease B – disease B drug not contraindicated in 

disease A. Secondly, although we were able to support our findings by citing evidence based on the 

known clinical activity of specific drugs, further investigations with the six comorbid disease pairs are 

essential to confirm the validity of our findings. These should focus on large-scale analysis of patient 

treatment data collected from observational studies and functional assays in animal models of human 

comorbidities.  

In summary, our findings suggest that studies driven by biological modalities that influence 

comorbidities, such as disease PPI networks, pathways and tissue-specificity, are essential for rational 

drug development and minimization of adverse events. The results from our study have therapeutic 

applications and may directly benefit future assessments of drug contraindications in individuals with 

comorbidities. 

4. Conclusions 

We observed that the target networks of disease A drugs that were not contraindicated in disease B 

were mostly affiliated with the disease B network, and pathways and tissues associated with disease 

B. On the other hand, the target networks of disease A drugs that were contraindicated in disease B 

were affiliated with the disease A network, and pathways and tissues associated with disease A. This 

could indicate that etiological associations between the two diseases could play an active role in their 

therapeutic alleviation. In summary, our findings suggest that the enrichment patterns of drug target 

networks in pathways, tissues and the PPI networks of comorbid diseases will help identify drugs 

with/without contraindications in comorbidities. 
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