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Abstract

Adverse drug reactions (ADRs) are leading causes of death and drug withdrawals and frequently co-
occur with comorbidities. However, systematic studies on the effects of drugs in comorbidities are
lacking. Drug interactions with the cellular protein-protein interaction (PPI) network give rise to
ADRs. We selected 6 comorbid disease pairs, identified the drugs used in the treatment of the
individual diseases*A’ and ‘' B’— 44 drugs in anxiety and depression, 128 in asthma and hypertension,
48 in chronic obstructive pulmonary disease and heart failure, 58 in type 2 diabetes and obesity, 58 in
Parkinson’ s disease and schizophrenia, and 84 in rheumatoid arthritis and osteoporosis—and
categorized them based on whether they aggravate the comorbid condition. We constructed drug
target networks (DTNs) and examined their enrichment among genesin disease A/B PPl networks,
expressed across 53 tissues and involved in ~1000 pathways. To pinpoint the biological features
characterizing the DTNs, we performed principal component analysis and computed the Euclidean
distance between DTN component scores and feature loading values. DTNs of disease A drugs not
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contraindicated in B were affiliated with proteins common to A/B networks or uniquely found in the

B network, similarly regulated common pathways, and disease-B specific pathways and tissues. DTNs
of disease A drugs contraindicated in B were affiliated with common proteins or those uniquely found
in the A network, differentially regulated common pathways, and disease A-specific pathways and
tissues. Hence, DTN enrichment in pathways, tissues, and PPl networks of comorbid diseases will

help identify drugs contraindications in comorbidities.
Keywords: comorbidities, drugs, adverse drug reactions, drug contraindications, drug target networks

1. Introduction

Comorbidity is the phenomenon in which one or more diseases co-exist with aprimary disease in
patients. Comorbidities are the norm rather than exceptions among chronic conditions and pose a
significant threat to the physical and psychosocial wellbeing of patients[1]. Comorbiditiesincrease
with age, and the risk of mortality increases with the number of comorbidities. A longitudinal study
(1992-2006) has shown that the mortality risk increased by 25% in patients with 3-4 chronic
comorbidities and by 80% in those with 5 or more comorbidities, both in comparison with individuals
having no chronic conditions[2]. The prevalence of comorbidities increases from 10% in 0-19 year-
oldsto 78% in individuals aged 80 or more [3]. The prevalence of comorbidity in women of age
groups of 18-44 years, 45-64 years, and >65 years was 68%, 95%, and 99% and in men, it was 72%,
89%, and 97% [4]. As per the US National Comorbidity Survey Replication (NCS-R) survey, 73.8-
98.2% of the respondents reported having at least one comorbid condition along with a primary
condition [1]. The most gtriking finding from this report was that the estimates of individual disease
burden based on the respondents’ perception of their health condition decreased substantially when
adjusted for comorbidity [1]. This effect was particularly magnified for neurologica disorders,
chronic pain, anxiety disorders, major depressive disorder, and diabetes, all of which contribute
immensely to the global disease burden [1]. For example, anxiety disorders collectively affect 284
million people (63% females, 2.5-7% variation by country) around the world, and are among the most
prevalent mental health and neurodevelopmental disorders (WHO and IHME, 2017) [5].

Disease comorbidity may increase the likelihood of experiencing adverse drug reactions [6-8]. Drugs
that are beneficial in the treatment of one disease may aggravate or even cause comorbid conditions,
giving rise to adverse drug reactions, e.g. beta-blockers that treat hypertension and heart disease may
aggravate asthma [6], trimethoprim and sulfamethoxazole to treat AIDS may increase the patient’s
susceptibility to Stevens-Johnson syndrome and toxic epidermal necrolysis[7]; maaria patients with
AIDS and osteoarthritis treated with artemisinin based combination antimalarial therapy were 3
times more likely to experience adverse side effects[8]. Serious adverse drug reactions constitute the
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fourth leading cause of death in the U.S. with 100,000 deaths per year, and about 2 million patientsin
the U.S. experiencing adverse drug reactions per year [9]. Patient fatalities have led to the withdrawal
of 19 drugs from the U.S. market during 1998-2007 [9]. These aspects highlight the importance of re-
examining drug design, and the need to develop drugsin light of disease mechanisms governing

comorbidities.

Network medicineis an integrative framework for examining the mechanistic effects of disease-
associated genes within the context of the human protein-protein interaction (PPI) network (or the
‘interactome’) [10]. The emerging network medicine paradigm in systems biology has prompted
systematic data-driven investigations of the effects of drugs on diseases. It captures the essence of the
Fourth Paradigm, i.e. Data-Intensive Scientific Discovery [11, 12]. This framework allows data
capture and combines theory and computation to facilitate the trandation of biological datainto
biologically insightful and clinically actionable results. The primary applications of this framework
are uncovering disease-associated genes, identifying biomarkers that will improve disease screening,
clinical diagnosis, and patient stratification, and prioritizing drug targets and pathways for therapeutic

intervention [12].

Drugsthat target proteins may perturb the PPl network to elicit the intended therapeutic response or
an unintended adverse event or side effect [ 13]. The extensive interconnectivity of the network
components suggests that perturbations at the genomic or proteomic level that affect PPls may disrupt
cellular functions and affect other proteins in the neighborhood network, posing deeper implications
for several aspects of the disease such as comorbidity and phenotypic responsesto drugs[10].

Although the side effects or adverse events precipitated by drugs in specific diseases have been
invegtigated within the framework of the PPl network [14-19], the effects of multiple drugs and their
contraindications on comorbid conditions remain largely unexplored. Some studies have provided key
insights on the influence of disease-associated PPl networks, biological pathways, and tissues on drug
action. Pairs of drugs used for the same disease have shown significant adverse events when the
network modules of their protein targets overlap with each other or with a network of disease-
associated genes (‘overlapping exposure’, datistical significance p-value < 0.007), e.g. the anti-
hypertensive drug nadroparin increased hyperkalemia, an adverse effect of spironolactone, another
anti-hypertensive drug [20]. The targets of both cancer and non-cancer drugs were enriched by 1.8
folds among tissue-specific proteins (p-value = 2E-06), and this enrichment became magnified to 2.3
folds when the targets of non-cancer drugs were considered alone [21]. Drugsthat are currently in the

market are twice as likely to act on tissue-specific proteins than on housekeeping proteins [22].
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In this study, we attempt to elucidate the mechanisms underlying drug contraindications in pairs of
comorbid diseases. Our findings suggest the relationship between the PPl networks of disease-
associated proteins and drug targets, and the pathway membership and tissue specificity of the drug

target networks as critical biological factors influencing adverse drug reactions in comorbidities.
2. Methods

2.1 Compilation of drugsindicated for specific diseases

The Drug Bank database [23] (version 5.1.8) was used to compile the lists of drugsindicated for each
of the 14 diseases. After compiling these lists, we used the TWOSIDES database [ 24] (version 0.1) —
apublicly available database of drugs and associated adverse events— to categorize these drugs with
respect to their effects on the disease pairs, specificaly, (a) drugs effective in disease A and not
contraindicated in disease B, (b) drugs effective in disease B and not contraindicated in disease A, (c)
drugs effective in disease A and contraindicated in disease B, and (d) drugs effective in disease B and
contraindicated in disease A. Drugs associated with specific adverse effects (belonging to (c) and (d))
were identified using their ‘condition concept names' (descriptions of adverse events). The lists of the
condition concept names used for identifying the drugs belonging to the 4 groups for each of the
disease pairs can be found in Additional File 1: Table S1, and the drug lists can be found in
Additional File2: Table S2.

2.2 Construction of drug target protein-protein interaction (PPI) networks

The proteins targeted by the drugs (Additional File 3: Table S3) belonging to the 4 categories were
retrieved from the Drug Bank database [23] using the DGIdb (drug gene interaction database) web
portal [25]. The PPIs of these drug targets in the human interactome were compiled from Human
Protein Reference Database (HPRD; version 9) [26] and the Biological General Repository for
Interaction Datasets (BioGRID; version 4.3.194) [27] using the Cytoscape plugin, Bisogenet [28]. The
network building options were: organism - Homo sapiens, biorelation type - protein-protein
interaction, data sources - BioGRID and HPRD, method - input nodes and its neighbors upto a

distance of 1.

2.3 Compilation of disease-associated genes

The genes associated with each of the 14 diseases in the 3 non-comorbid pairs and 6 comorbid pairs
were compiled from the DisGeNET database [29] (version 7). The non-comorbid pairs were (1)
Multiple sclerosis (DisGeNET ID: C0026769) — Peroxisomal disorders (C0282528), (11)

Schizophrenia (C0036341) — Rheumatoid arthritis (C0003873), (111) Asthma (C0004096) —
4
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Schizophrenia (C0036341). The comorbid pairs were (IV) Anxiety (C0003467) — Depression
(C0011570), (V) Asthma (C0004096) — Hypertension (C0085580), (V1) Chronic obstructive
pulmonary disorder (COPD) (C0024117) — Heart failure (C0018801), (VII) Type 2 diabetes
(C0011860) — Obesity (C0028754), (VI11) Rheumatoid arthritis (C0003873) — Osteoporosis
(C0029456) and (I1X) Parkinson's disease (C0030567) — Schizophrenia (C0036341) (Additional File
4: Table $4). 100 top-ranking genes associated with each of the diseases were curated based on their
gene-disease association scores (GDA). Although the range of the GDA scores among the 100 top-
ranking genes varied across our selected diseases (multiple sclerosis (0.11-0.5), peroxisomal disorders
(0.01-0.32), schizophrenia (0.43-0.9), rheumatoid arthritis (0.33-0.7), asthma (0.29-0.7), anxiety (0.1-
0.5), mental depression (0.34-0.6), essential hypertension (0.03-0.063), chronic obstructive airway
disease (0.11-0.9), heart failure (0.3-0.6), non-insulin-dependent diabetes mellitus (0.4-1), obesity
(0.4-1), osteoporosis (0.13-0.9) and Parkinson’ s disease (0.23-0.7)), aminimum GDA of > 0.01 was
chosen to ensure that at least one publication has linked the gene in question with the disease. Note
that ‘association’ of a gene with a disease here does not imply causality in most cases and may only
indicate an association with disease susceptibility or an endophenotype.

1.4 Construction of disease protein-protein interaction (PPI) networks

The PPI networks of the proteins encoded by the disease-associated genes were assembled by
extracting their protein interactors from the PPl repositories BioGRID [27] and HPRD [26] using
BisoGenet [28] and the network building options specified before. The input nodes for the
congtruction of each of the disease networks were the 100 top-ranking genes compiled from the
DisGeNET database.

2.5 Calculation of network similarity measures

Matching node ratio (Ny) was measured as the ratio of the total number of common nodes shared
between the two PPl networks of a comorbid pair and the total number of unique nodesin the two
disease networks [30].

__ ApNBy,
AnrUBjp

D

M

A, = Number of nodes in the PPl network of disease A

B, = Number of nodes in the PPl network of disease B
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Matching link ratio (Lw) was measured as theratio of the total number of common links (i.e. edges)
shared between the two PPI networks of a comorbid pair and the total number of unique linksin the

two disease networks [30].

__ AiNB;
Lw =205, 2

A = Number of linksin the PPl network of disease A

B, = Number of links in the PPl network of disease B

The same formula shown above was also used to calculate the matching link ratio for common links
of path length 2 and path length 3. Links of specific path lengths were retrieved using the Cytoscape
application called NetworkAnalyzer [31, 32].

2.6 Calculation of comorbid associations
Relative risk (RRag) measures comorbidity by comparing the observed prevalence of apair of

comorbid diseases (A and B) in the population with the expected number, which is calculated based

on the prevalence of the individual diseases A and B in the population.

RR,p = (©)

Na = Total number of patients diagnosed with disease A

Ng = Total number of patients diagnosed with disease B

Nag = Tota number of patients diagnosed with both disease A and disecase B

N = Total number of patients in the population

For the calculation of relative risks of disease pairs, we downloaded the HuDiNe dataset
(http://shi.upf.edu/data’hudine/) containing processed hospital claims data of 13,039,018 U.S.
individuals who had applied for support from the U.S. Medicare program during 1990-1993 [33].
Comorbidity data was available for five out of our six comorbid disease pairs and two out of the three

non-comorbid pairsin HuDiNe. Specifically, data was not available for Anxiety — Depression and
Multiple sclerosis — Peroxisomal disorders. Hence, N, Ng and Nag Were extracted for seven out of
the nine disease pairs. The diseases were specified in the form of their ICD-9 codes (at three digits
level): asthma (ICD-9: 493), hypertension (ICD-9: 401), type 2 diabetes (ICD-9: 250), obesity (ICD-
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9: 278), chronic obstructive pulmonary disease (ICD-9: 496), heart failure (ICD-9: 428), Parkinson’s
disease (ICD-9: 332), schizophrenia (1CD-9: 295), rheumatoid arthritis (ICD-9: 714) and osteoporosis
(ICD-9: 733). The population size N was considered to be 13,039,018, i.e. the total number of
individuals represented in the HuDiNe dataset.

2.7 Pathway enrichment analysis

WebGedtalt [34] was used to compute the distribution of genesinvolved in specific signalling
pathways in the drug target networks, and compare it with the background distribution of genes
belonging to this pathway among all the genes associated with any pathway in the selected database
(Reactome) [35]. Statistical significance of the enrichment was computed using Fisher's exact test and

corrected using the Benjamini-Hochberg method for multiple test adjustment.

2.8 Gene expression enrichment analysis

The enrichment of the drug target networks in genes expressed in specific tissues was computed using
RNA-sequencing data from 53 postnatal human tissues extracted from GTEXx [36] (version 8). Genes
with high or medium expression (transcripts per million (TPM) > 9) in 53 tissues were included,
provided that they were not housekeeping genes, i.e. genes detected in all the tissues with transcripts
per million > 1, asidentified in the Human Protein Atlas[37]. TPM isametric for quantifying gene
expression; it directly measuresthe relative abundance of transcripts. The GMT files served asinputs
for agene over-representation analysis (GSEA) based on hypergeometric distribution. The following
GWAS datasets were selected in TSEA-DB [38] for identification of disease-specific tissues (trait IDs
are given in parentheses): anxiety (4679), depression (5315), chronic obstructive pulmonary disease
(571), heart failure (5333), asthma (5259), hypertension (169), type 2 diabetes (4628), obesity (1031),
Parkinson’ s disease (4607), schizophrenia (5215), rheumatoid arthritis (4614) and osteoporosis (746).

BaseSpace Correlation Engine (https://covid-19.ce.basespace.illumina.com/c/nexthio.nb) was used to

identify the correlations between the gene expression profile induced by maprotilinein PC3 cells
(Broad Connectivity Map (CMAP 2.0) [39]), the expression profile associated with mgjor depressive
disorder and generalized anxiety disorder (GSE98793 [40]) and the expression profile of adrenal
cortex. The software uses a non-parametric rank-based approach to compute the extent of enrichment

of aparticular set of genes (or ‘bioset’) in another set of genes[41].
2.9 Principal component analysis
Principal component analysis (PCA) was used to capture relationships between the drug target

networks and the disease networks/biological pathways/tissues. For each disease pair, negative log-
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transformed p-values indicating the statistical enrichment of the disease networks/biological
pathways/tissues in the 4 drug target networks were assembled into a data matrix containing disease
networks/biological pathways/tissues as rows and drug target networks as columns; each cell in the
matrix contained a—og;oP value. Following the established approach [42], log transformation was
performed to reduce the influence of extreme values on the obtained PCs. PCA was performed with a
web-based tool called ClustVis (https://biit.cs.ut.ee/clustvis/) [43]. The data matrix was pre-processed

such that 70% missing values were allowed across the rows and columns. The —log,oP valuesin the

matrix were further centred using the unit variance scaling method, in which the values are divided by
standard deviation so that each row or column has a variance of one; this ensures that they assume
equal importance while finding the components. The method called singular value decomposition
(SVD) with imputation was used to extract principal components. In this method, missing values are
predicted and iteratively filled using neighbouring values during SVD computation, until the estimates
of missing values converge. The factor/component loadings corresponding to the disease
networks/pathways/tissues that contributed to the selected principal components were also extracted.
Component loadings are correlation coefficients between the variables in rows and the factors (i.e.
PC1, PC2 etc.). The squared value of a component loading gives the percentage of the variance
explained by a particular original variable, and essentially its contribution to the principal
components. Finally, for each of the disease pairs, the Euclidean distance between the principal
component scores of each of the drug target networks were computed for all the component loading
values pertaining to the particular biological modality. This resulted in alist of the specific disease
protein sets/pathways/tissues that may be closely related to each of the different drug target networks.

2. Reaults

To identify potential mechanisms of adverse drug interactions within comorbid diseases, we
systematically studied pairs of comorbid diseases (‘disease A’ and ‘disease B’) and their FDA-
approved drugs. We separated the drugsinto two groups, namely, disease A drugs that are (a)
contraindicated and (b) not contraindicated in disease B, and disease B drugsthat are ()
contraindicated and (d) not contraindicated in disease A We then constructed the interactomes of the
proteins targeted by these drugs and examined these drug target interactomes in the context of three
biological factors, namely, (i) proteins exclusive to interactomes of diseases A and B and those that
arein their intersection, and (ii) biological pathways and (iii) tissues associated with these drug target
interactomes.

Specifically, we selected three pairs of hon-comorbid diseases as negative controls and six pairs of
comorbid diseases for our analysis. The non-comorbid pairs were: (1) Multiple sclerosis—

Peroxisomal disorders[44], (1) Schizophrenia— Rheumatoid arthritis [45-47], (111) Asthma —
8
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Schizophrenia[48]. The comorbid pairs were (1V) Anxiety — Depression [49], (V) Asthma—
Hypertension [50, 51], (V1) Chronic obstructive pulmonary disorder (COPD) — Heart failure [52,
53], (VI1) Type 2 diabetes— Obesity [54, 55], (VII1) Rheumatoid arthritis — Osteoporosis [56] and
(1X) Parkinson's disease — Schizophrenia [57].

The drugsindicated for use in each of the diseases were retrieved from Drug Bank (version 5.1.8)
[23]. For each pair, we categorized the drugs into the four groups (a-d) mentioned earlier, based on
their clinical activity in the diseases, collected from the TWOSIDES database (version 0.1) [24], a
compendium of drugs and their contraindications (see Additional File 2: Table S2). Drugs
contributing to specific adverse effects were collected by manually selecting relevant *condition
concept names' (Additional File 1. Table S1). For example, to identify the anxiolytic drugs that may
cause depression, the condition concept names, depression, major depression, depressive symptom,
depression suicidal, depression postoperative, postpartum depression, depressive delusion, and
agitated depression, were selected. The list of anxiolytic drugs was then compared with the list of
drugs associated with these condition concept names. The matching drugs were compiled into groups
‘a and ‘c’, for example, “drugs effective in anxiety and contraindicated in depression”. Similarly,
groups ‘b’ and ‘d’ drugs were compiled. The proteins targeted by the drugs belonging to groups aand
b were retrieved by querying the Drug Bank database through the DGIdb drug-genee interaction
database) web portal [25] (see Additional File 3: Table S3). Finally, the protein-protein interaction
(PPI) networks of the drug targets were assembled by extracting their protein interactors from the PP
repositories BioGRID [27] (version 4.3.194) and HPRD [26] (version 9) using a Cytoscape plugin
called BisoGenet [28].

The methodology of our study isillustrated in Fig. 1. To characterize the 4 classes of drug target
networks (DTNSs), we examined 3 types of datathat may reflect their biological profiles, namely (i)
disease PPI networks, (ii) biological pathwaysand (iii,) tissue gene expression. Specifically, we
conducted gene overrepresentation analyses based on hypergeometric distribution to check the
enrichment of the DTNsamong proteins that are unique to/shared between networks of disease A and
disease B, genes showing high/moderate expression in 53 tissues across the human body, and proteins
involved in ~1000 bhiological pathways. Overlaps computed in this manner with each of the 3 types of
biological data were considered to be statistically significant at p-value < 0.05 after multiple test
adjustments with the Benjamini-Hochberg method.

Asafirst sep towards identifying the specific biological data modalities (disease
subnetworks/pathways/tissues) that were relatively more ‘closer’ to each of the different types of

DTNsintermsof Euclidean distance, we generated a data matrix of the DTNs (columns) versusthe
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| drugs belonging to each of the groups
for each disease pair using DGIdb

Constructed drug target networks
(DTNs) for the four drug groups of
each disease pair using BioGRID and
HPRD

+
Conducted gene overrepresentation
| analyses based on hypergeometric
distribution to check DTN enrichment

among various biological data types ¢ 4 J’ r
- ‘ Proteins unique to/shared Genes with high/moderate Proteins
u Performed principal component between networks of expression (TPM z 9) in 53 involved in
analysis (PCA) with the data matrix of disease A/B-associated tissues across the human ~1000
DTNs (columns) versus each biological genes (100 top-ranking body (GTEX), except for biclogical
data type (rows); each cell contained genes based on gene- housekeeping genes pathways
—logy,P values disease association scores in | (detected at TPM = 1 inall (Reactome)
L 10 ‘ DisGeMNET) tissues, as per HPA)
T TSEA-DEB to identify tissues
n Extracted the component loading specific to disease A/B

values of each of the members of the
different biological data types

)
nCalcuiated the Euclidean distance

| between the PC scores of each of the
DTNs and all the component loading Lists of disease subnetworks/top-10 pathways/top-10 tissues
values pertaining to the particular closely related to each of the DTNs

| biological data type

Figure 1. Framework for characterizing the drugs that target comorbid disease pairs. Our
methodology to characterize drug target networks (DTNs) contained seven steps. (a) Retrieval of
the drugs indicated for use against each of the diseases using Drug Bank and their categorization
into four groups based on their clinical activity in the comorbid diseases, namely, disease A
drugs not contraindicated in disease B, disease B drugs not contraindicated in disease A, disease
A drugs contraindicated in disease B and disease B drugs contraindicated in disease A. (b)
Identification of the proteins collectively targeted by the drugs in each of the groups by querying
Drug Bank through DGIdb. (c) Construction of DTNs using the protein targets as input nodes
and assembling their immediate neighbors in the human protein-protein interaction network up to
a digance of 1, based on data from the PPI repositories BioGRID and HPRD. (d) Performing
gene enrichment analysis with the four DTNs (corresponding to each of the disease pairs) in 3
biological data types. (dl) disease protein-protein interaction networks, (d2) tissue gene
expression and (d3) biological pathways. (€) Generation of a data matrix containing the enriched
disease protein sets/tissues/pathways as rows, DTNs as columns and log-transformed p-valuesin
each of the cells, and using the matrix as an input for principal component analysis. (f)
Extraction of component loading values of each of the enriched disease protein
sets/tissues/pathways that correspond to each of the principal components. (g) Calculation of the
Euclidean distance between the principal component scores of each of the DTNs and the
component loading values of the disease protein sets/tissues/pathways. These steps resulted in
the identification of the top disease protein sets, tissues and pathways that were closely
associated with each of the DTNs. Databases. BioGRID (Biological General Repository for
Interaction Datasets), DGldb (Drug Gene Interaction database), DisGeNET (Disease Gene
association NETwork), Drug Bank, GTEx (Genotype-Tissue Expression), HPRD (Human
Protein Reference Database), Reactome, TSEA-DB (Tissue-Specific Enrichment
Analysis DataBase) and TWOSIDES. Abbreviations. DTN — Drug Target Network, PCA —
Princinal Comnonent Analvsis and TPM — Transcrints Per Million.

various members of the biological data modality (rows) (for example, for the data modality ‘ disease

subnetwork’, the members would be ‘common to both the networks', ‘unique to disease A network’
10
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and ‘unique to disease B network’ and for the data modality ‘tissue’, the members would be
‘amygdala’, ‘aorta’, ‘lungs’ etc.). Each cell contained the negative of log-transformed p-values. —0g;o
transformed p-val ues have been used as inputs for PCA in previous studies[58, 59]. Following the
established approach [42], log transformation was performed to reduce the influence of extreme
values on the obtained PCs. Single value decomposition (SV D) with imputation and unit variance
scaling was applied to this matrix to extract principal components that explained the variance
observed with each of the data modalities acrossthe DTNs. Principal component analysis (PCA) has
been applied to matrices containing gene-level association scores in several studies[59]. PCA is
primarily used to capture systematic variations underlying datasets. All the principal components
generated after this analysis were considered for our study, since they may together reveal underlying
clustering patterns among the different DTNs. Following this, we extracted the component loading
values of each of the members of the different data modalities, which correspond to each of the
principal components representing the relationships among the DTNs. Component loadings are values
depicting the correlation of the original variablesin our data matrix — negative log of p-values of
enrichment for specific disease subnetworks/pathways/tissues — with each of the extracted principal
components. Lastly, we calculated the Euclidean distance between the principal component scores of
each of the DTNs specifically in the context of each data modality and all the corresponding
component loading values. Thisyielded alist of the specific disease subnetworks/pathways/tissues
that are presumably closely related to each of the different DTNSs.

3.1 Disease network similarity and comorbid associations

Relative risk isan experiential measure of comorbidity as it compares the observed prevalence of a
pair of comorbid diseases in the population with the expected number, which is calculated based on
the prevalence of the individual diseases in the population. We then explored whether thisinformation
was embedded in the disease networks, i.e., whether the relative risk of comorbidity of the disease
pairs would be reflected in the similarity of the disease networks. For each of the comorbid pairs, we
computed four established network similarity measures, namely, matching node ratio (Ny) for all the
nodes shared between the two disease networks, and the matching link ratio (Ly) [30] for al the (i)
shared links (i.e. edges), (ii) shared links of path length 2 (connecting two nodes viaone intermediate
node) and (iii) shared links of path length 3 (connecting two nodes viatwo intermediate nodes)

between the two disease networks.

We computed the relative risk for each of the disease pairs observed in hospital claims data of
13,039,018 U.S. individuals who had filed for support from the Medicare program during the period
of 1990-1993, made available asthe HuDiNe dataset [33]. The |CD-9 codes corresponding to pairs of
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diseases diagnosed as primary and secondary conditions, along with the number of individuals who
were diagnosed with diseases A or B or both (Na, Ng and Nag, respectively) were available (see

M ethods). Comorbidity data was available for five out of our six comorbid disease pairs (i.e. except
for Anxiety — Depression) and two out of the three non-comorbid pairs (i.e. except for Multiple

sclerosis — Peroxisomal disordersin HuDiNe.

—8—Relative risk —8— Matching node ratio
—8— Matching link ratio —&— Matching link ratio (path length = 2)
—8— Matching link ratio (path length = 3)
5 0.5
45 - - 0.45
4 - 0.4 2_3,
x 337 - 0.35 &
2 5
= 3 4 r03 o
2 3
= 2.3 1 - 0.25 8
T 2 -02 S
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1 - Lot 8
=]
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Asthma - Hypertension
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Hezart failure

Rheumatoid arthritis - Osteoporosis

Parkinson's disease - Schizophrenia
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N
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Figure 2. Comparison of disease network similarity measures and comorbid
associations. The graph shows the relationship between relative risk (black data points) and
four measures of network similarity, namely, matching node ratio (green data points),
matching link ratio of all shared edges (red data points), matching link ratio of all shared

For each of the diseases considered, the top 100 genes associated with the disease were curated from
the DisGeNET database (version 7) [29] based on their gene-disease association (GDA) scores (see
Additional File 4: Table $4). The GDA score rangesfrom 0 to 1 and is computed for a gene based
on the number of publications supporting its association with the disease, and the number and types of

database sources (levels of curation (expert-curated/computationally-predicted) and the model
12
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organisms in which the association was validated). The 100 top-ranking genes collected in this
manner were used as starting points for the construction of disease networks. Here also, the network is
assembled by extracting PPIsfrom BioGRID and HPRD using a Cytoscape plugin BisoGenet, similar
to assembling of DTNs. Then, we systematically conducted network overlap analyses with each of the
9 disease pairs and identified the proteins (a) shared between the two disease networks, (b) unique to
disease A and (c) unique to disease B (Table 1).

Table 1. Overlap of the disease networks. The table shows the statistics of the overlaps shared between the

two diseases in each of the nine disease pairsthat were examined in our study.

Disease pair #Proteins | #Proteins | # p- Odds | % Shared % Shared
indisease | indisease | Share | value | ratio proteinsin proteinsin
A network | B network | d of of disease A disease B

protei | overl | overla | network networ k
ns ap p

Multiple sclerosis 2418 727 284 597E | 29 12% 39%

(A) — Peroxisomal -70

disorders (B)

Schizophrenia (A) — | 2662 2424 918 6.86E | 2.56 34.5% 38%

rheumatoid arthritis -208

(B)

Asthma (A) — 3041 2662 1084 | 1.36E | 241 36% 41%

Schizophrenia (B) -228

Anxiety (A) — 3342 3054 1732 | 1.86E | 3.06 52% 57%

Depression (B) -628

Asthma (A) — 3041 2515 1371 | 1.85E | 3.23 45% 54.50%

Hypertension (B) -500

Chronic obstructive | 3736 2922 1505 | 3.12E | 248 40% 51.50%

pulmonary disease -371

(A) —heart failure

(B)

Type 2 diabetes (A) | 2471 2490 1232 | 3.66E | 3.6 50% 49%

- -503

Obesity (B)

Rheumatoid arthritis | 2424 3681 1206 | 1.30E | 243 50% 33%

(A) — osteoporosis -270

(B)

Parkinson’sdisease | 3200 2662 1232 | 2.88E | 2.6 38.50% 46%

(A) — schizophrenia -310

(B)

Therelative risk between diseases was proportional to the matching node and link ratios (Fig. 2). The
control disease pairs showed low relative risks and smaller disease network overlaps, whereas three
out of five comorbid disease pairs showed high relative risks and larger network overlaps, namely,
Asthma — Hypertension, COPD — Heart failure and Type 2 diabetes — Obesity. However, thistrend
was not seen in the comorbid pairs, Rheumatoid arthritis — Osteoporosis and Parkinson’s disease —
Schizophrenia. Specifically, their higher relative risks (compared with other comorbid pairs), were not
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accompanied by a corresponding increase in the network overlaps. ~85% of the human interactome
awaits experimental discovery [60]. Hence, two factors may have led to the underestimation of the
network overlaps. Firdly, the inherent incompleteness of these disease networks[60]. Secondly, the

tendency of incomplete networksto exhibit small overlaps [60].

3.2 Druggability of disease networks

Next, we tested the potential of each of the disease subnetworksto be acted upon by drugs or their
susceptibility to pharmacological modulation (druggability), by examining their enrichment among a
group of 4,463 proteins deemed to be druggable [61], smilar to the approach followed in a previous
study [62]. These proteins are bound with high affinity at specific binding sites by drugs that follow
the Lipinski's ‘rule-of-five', i.e. orally bioavailable drugs with specific molecular characteristics that
influence their pharmacokinetic ability to enter systemic circulation and act on their target sites
(Table?2) [63].

Table 2: Overlaps of the disease protein setswith druggable tar gets. —og:oP values computed for
each of the nine tested disease pairs using a hypergeometric test. The —og;oP values indicate the
statistical significance of the overlaps shared by each of the disease protein sets (top column headings)
with a group of 4463 druggable proteins. *, ** and *** indicate low, medium and high levels of
statistical significance. 7, ™ and ™ indicate non-significant overrepresentation, non-significant

underrepresentation and significant underrepresentation respectively.

Disease pair s Common to both the | Uniqueto disease Uniqueto disease B
networks A network networ k

Multiple sclerosis (A) — peroxisomal 7.38** 19.52%** 2.09*

disorders (B)

Schizophrenia (A) — Rheumatoid 13.26** 14.36*** 2.4*

arthritis

Asthma (A) — schizophrenia (B) 19.18*** 941 0.89"

Anxiety (A) — Depression (B) 557"* 0.001" 1205~

Asthma (A) — Hypertension (B) 3134 3.19* 9.59**

Chronic obstructive pulmonary disease | 34.73*** 1.06% 9.16**

(A) —heart failure (B)

Type 2 diabetes (A) — Obesity (B) 18.65"** lar 7.05

Rheumatoid arthritis (A) — Osteoporosis | 21.96*** 717+ 1.97*

(B)

Parkinson's disease (A) — Schizophrenia | 19.93*** 0.27° 0.3"

(B)

We found that the proteins shared between the two diseases were the most significantly enriched for

druggable targetsin 5 out of the 6 tested comorbid pairs (Table 2). In case of the sixth pair, namely
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anxiety and depression, the proteins that are exclusive to the depression network were found to be
more enriched for druggable targets. In 2 out of the 5 disease pairsthat shared many common drug
targets, the drug target proteins were significantly enriched in G protein-coupled receptor activity (p-
value <0.05) (Table 3).

Table 3: Enrichment of Gene Ontology molecular functions among druggable targetsand
proteins unique to the depression network. The odds ratio of enrichment of two specific Gene
Ontology molecular functions among druggable proteins, proteins unigque to the depression network
and proteins common to the anxiety and depression networks have been shown. p-values indicating
the gtatistical significance of these enrichments have been shown in parentheses. Note that druggable
proteins show higher enrichment for transmitter-gated channel activity compared to G protein-coupled
peptide receptor activity, in terms of odds ratio of enrichment. The overrepresentation of a more
druggable class (glutamate-gated Ca®* channel activity) among proteins unique to the depression
network (and not among the common proteins) would have altered the enrichment pattern for anxiety

and depression in comparison with other the disease pairs (as shown in Table 2).

4463 druggable proteins | Proteins common to Proteins unique to

Protein sets | — odds ratio (p-value) anxiety and depression depression network —
Gene Ontol networks—odds ratio (p- | odds ratio (p-value)
Molecular Function value)
Transmitter-gated channel 4.2 (< 1E-15) 8.65 (0.037) -
activity
G protein-coupled peptide 3.8 (< 1E-15) 3.6 (6.6E-03) 10.46 (9.3E-07)
receptor activity

Based on these observations and the finding in the previous section that relative risk varies in tandem
with network similarity measures, we speculated that contraindications in comorbidities may arise
from drug action on druggable proteins shared between the networks of comorbid diseases (Table 2).
Thisled to two corollaries: (i) the target networks of the group ‘a’ and ‘¢’ drugs (effective in disease
A and contraindicated in disease B or vice versa) may show the highest enrichment for the
proteing/pathways/tissues shared between the two disease networks and (ii) the target networks of the
groups ‘b’ and ‘d’ drugs (effective in disease A and not contraindicated in disease B or vice versa)

may show the highest enrichment for proteing/pathways/tissues unique to disease A (or B
respectively).
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3.3 Disease networks and drug target networks

To test these corollaries, we systematically computed the overlaps between three groups of disease
proteins, namely, proteins that are (a) common to disease A and disease B networks, (b) unique to
disease A network and (c¢) unique to disease B network, and four classes of DTNs, namely, target
networks of drugs effective in disease A and (@) contraindicated and (b) not contraindicated in disecase
B, and target networks of drugs effective in disease B (c) contraindicated and (d) not contraindicated
in disease A (Table 4); previous studies have examined the overlaps between the PPl networks of
drug targets and disease-associated proteins [20, 64]. For each of the six disease pairs, we created a
data matrix of DTNSs (columns) versus disease subnetworks (rows), which contains -log(p-val ues)
indicating the statistical significance of these enrichments. This data matrix was used asthe input for
PCA.. In order to identify the specific disease subnetworks that were the nearest to each of the DTNS,
we calculated the Euclidean distance between the PC scores of each of the DTNs acrossall the
extracted axes and the corresponding component loading values of all the disease subnetworks across
these axes (following the methodology depicted in Fig. 1). By counting the two disease subnetworks
that were the closest to each of the different DTNs, we identified two predominant patterns.

In 10 out of the 12 cases, the DTNs of drugs used for a specific disease and not contraindicated in a
comorbid condition were found to be closest/second closest to the proteins uniquely found in the
network of the comorbid condition. Additionally, in 9 out of the 12 cases, they were closest/second
closest to the proteins shared between the networks of both the diseases. In contrast, the DTNs of
drugs used for a specific disease and contraindicated in a comorbid condition were found to be
closest/second closest to the proteins uniquely found in the network of the disease for which these
drugs were primarily used in 8 out of the 12 cases. Additionally, in 9 out of the 12 cases, they were

closest/second closest to the proteins shared between the networks of both the diseases.

These observations led usto speculate two scenarios. Firgly, disease A drugsthat are not
contraindicated in disease B may target proteins unique to the disease B subnetwork involved in
mechanisms that are either inconsequential/beneficial for disease B, but whose modulation is certainly
beneficial for the treatment of disease A. Alternatively, they may target common mechanismsthat are
dysregulated in a similar manner in both the diseases and pharmacologically modulate themin a
similar direction. Secondly, disease A drugs may become contraindicated in disease B when they
target either (2) common mechanisms that are pharmacologically oppositely modulated in a manner
that benefits disease A but aggravates disease B or (b) mechanisms unique to disease A that aggravate
disease B. Additionally, we hypothesized that biological processes such as signalling pathways that
function at a higher level than disease subnetworks could be regulating the action of drugs under

comorbid conditions.
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Table 4: Overlaps of the disease protein setswith the four classes of drug target networks—

log,oP values computed for each of the ninetested disease pairs using a hypergeometric test. The—

log,oP values indicate the statistical significance of the overlaps shared between each of the disease

protein sets (top column headings) and the target networks of the four classes of drugs (row headings).

* ** and *** indicate low, medium and high levels of statistical significance. 7, ™ and ™ indicate

non-significant overrepresentation, non-significant underrepresentation and significant

underrepresentation respectively.

MULTIPLE SCLEROSIS(A) Common to multiple Unique to multiple | Unique to

AND PEROXISOMAL sclerosis (A) and <clerosis network peroxisomal

DISORDERS (B) peroxisomal disorders (B) | (A) disorders network
networks (B)

DTN of drugs effective in multiple 113.15** 247.78*** 24.52*

sclerosis (A)

DTN of drugs effectivein 19.56*** 9.78** 1.6*

peroxisomal disorders (B)

RHEUMATOID ARTHRITIS(A) | Common to rheumatoid Unigque to Unique to

AND SCHIZOPHRENIA (B) arthritis (A) and rheumatoid arthritis | schizophrenia
schizophrenia (B) network (A) network (B)
networks

DTN of drugseffectivein 202.91*** 76.56* 82.54**

rheumatoid arthritis (A) and not

contraindicated in schizophrenia (B)

DTN of drugseffectivein 198.8*** 17.71* 120.54**

schizophrenia (B) and not

contraindicated in rheumatoid

arthritis (A)

DTN of drugs effectivein 235.72*** 157.11** 119.54*

rheumatoid arthritis (A) and

contraindicated in schizophrenia (B)

DTN of drugseffectivein 257.06*** 48.54* 207.08**

schizophrenia (B) and

contraindicated in rheumatoid

arthritis (A)

SCHIZOPHRENIA (A) AND Common to asthma (B) Unique to asthma Unique to

ASTHMA (B) and schizophrenia (A) network (B) schizophrenia
networks network (A)

DTN of drugs effectivein 0.71** 0.75" 1.5%**

schizophrenia (A) and not

contraindicated in asthma (B)

DTN of drugs effective in asthma (B) | 6.6%** 0.99** 0.64*

and not contraindicated in

schizophrenia (A)

DTN of drugseffectivein 5.12** 0.32* 7.3%x*

schizophrenia (A) and

contraindicated in ashma (B)

DTN of drugs effective in asthma (B) | 8.98*** 3.2%* 0.250

and contraindicated in schizophrenia

(A)

ANXIETY (A) AND Common to anxiety (A) Unique to anxiety Unique to

DEPRESSION (B)

and depression (B)
networks

network (A)

depression network

(B)
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DTN of drugs effective in anxiety 42 51*** 0.630 10.51*

(A) and not contradicated in

depression (B)

DTN of drugs effective in depression | 221.32*** 0.320 24.98*

(B) and not contraindicated in

anxiety (A)

DTN of drugs effective in anxiety 70.77%** 1.03%0 20.96*

(A) and contraindicated in depression

(B)

DTN of drugs effective in depression | 259.82*** 29.51** 17.05*

(B) and contraindicated in anxiety

(A)

ASTHMA (A) AND Common to asthma (A) Unique to asthma Unique to

HYPERTENSION (B) and hypertension (B) network (A) hypertension
networks network (B)

DTN of drugs effective in asthma 385%** 21.29** 7.93*

(A) and not contradicated in

hypertension (B)

DTN of drugseffectivein 423*** 3.01000 6.77*

hypertension (B) and not

contraindicated in ashma (A)

DTN of drugs effective in asthma 571%** 30.17* 0.450

(A) and contraindicated in

hypertension (B)

DTN of drugs effectivein 351*** 104.14** 58.71*

hypertension (B) and contraindicated
in asthma (A)

CHRONIC OBSTRUCTIVE

Common to chronic

Unique to chronic

Unique to heart

PULMONARY DISEASE (A) obstructive pulmonary obstructive failure network (B)
AND HEART FAILURE (B) disease (A) and heart pulmonary disease
failure (B) networks network (A)
DTN of drugs effective in chronic 279.3%** 17.47* 43.59**
obstructive pulmonary disease (A)
and not contraindicated in heart
failure (B)
DTN of drugs effective in heart 8.03*** 0.630 0.670
failure (B) and not contraindicated in
chronic obstructive pulmonary
disease (A)
DTN of drugs effective in chronic 255,32*** 33.88** 15.83*
obstructive pulmonary disease (A)
and contraindicated in heart failure
(B)
DTN of drugs effective in heart 314*** 8.92* 55.19**
failure (B) and contraindicated in
chronic obstructive pulmonary
disease (A)
TYPE 2 DIABETES(A) AND Common to type 2 Unique to type 2 Unique to obesity
OBESITY (B) diabetes (A) and obesity diabetes network network (B)
(B) networks (A)
DTN of drugs effective in diabetes 140.81*** 11.69* 1.16"
(A) and not contraindicated in
obesity (B)
DTN of drugs effective in obesity 18.56*** 0.730 2.59*
(B) and not contraindicated in
diabetes (A)
DTN of drugs effective in diabetes 232.99*** 27.39** 10.93*
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(A) and contraindicated in obesity

(B)

DTN of drugs effective in obesity 54.79*** 0.3200 21.27*

(B) and contraindicated in diabetes

(A)

RHEUMATOID ARTHRITIS(A) | Common to rheumatoid Unigueto Unique to

AND OSTEOPOROSIS (B) arthritis (A) and rheumatoid arthritis | osteopoross
osteoporosis (B) networks | network (A) network (B)

DTN of drugseffectivein 219.6%** 17.51* 30.9%*

rheumatoid arthritis (A) and not
contradicated in osteoporosis (B)
DTN of drugs effectivein 908* 126.08000 2118***
osteoporosis (B) and not
contraindicated in rheumatoid
arthritis (A)

DTN of drugs effectivein 272.65*** 16.29* 68.31**
rheumatoid arthritis (A) and
contraindicated in osteoporosis (B)
DTN of drugseffectivein 255 5% ** 0.2900 237.99*
osteoporosis (B) and contraindicated
in rheumatoid arthritis (A)

PARKINSON’SDISEASE (A) Common to Parkinson's Unique to Unique to

AND SCHIZOPHRENIA (B) disease (A) and Parkinson'sdisease | schizophrenia
schizophrenia (B) network (A) network (B)
networks

DTN of drugs effectivein 83.25%** 15.5** 6.6*

Parkinson's disease (A) and not
contradicated in schizophrenia (B)
DTN of drugseffectivein 72.82%** 15.97** 6.73*
schizophrenia (B) and not
contraindicated in Parkinson's
disease (A)

DTN of drugseffectivein 25.51*** 4.25%* 4*
Parkinson's disease (A) and
contraindicated in schizophrenia (B)
DTN of drugs effectivein 156.68*** 103.63** 7.87*
schizophrenia (B) and
contraindicated in Parkinson's
disease (A)

3.4 Biological pathways and drug target networks

We identified the pathway associations of the DTNs using the gene set analysis toolkit called
WebGedtalt [34]. WebGestalt computes statistical significance enrichment of afunctional group (e.g.,
a Reactome pathway) in an input gene list using Fisher's exact test using the Benjamini-Hochberg
method for multiple test adjustment. For each of the 6 disease pairs, a data matrix of DTNs (columns)
versus Reactome pathways (rows) containing corresponding enrichments was used as inputs for PCA,
and the Euclidean distance between the PC scores of each of the DTNs across all the extracted axes
and the corresponding component loading values of all the pathways across these axes were
computed. For each of the disease pairs, we retrieved the top-10 pathways closest to each of the DTNs
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out of all the pathways enriched in the DTNs (Additional Files5-10: Figures S1-S6). Confirming
our earlier suspicions, we noted that disease A DTN classes without contraindications in disease B
were nearest to pathways possibly underlying both the diseases or uniquely associated with B, which
are similarly regulated, i.e. upregulated or downregulated together, in the two comorbid diseases. On
the other hand, disease A DTN classes with contraindication in disease B were nearest to pathways
underlying both the diseases or unique to disease A that are differentially regulated, i.e. upregulated in
one disease and downregulated in the other or vice versa
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Figure 3: Pathways associated with the target networks of anxiety and depression
drugs. The component loading values shown in the figure correspond to component scores
of 4 drug target networks (DTNs) of anxiety and depresson along PC1 and PC2, which
explain 41.6% and 33.1% of the total variance respectively. The top-10 pathways that
appeared to be highly related to each of the 4 DTNs, which were obtained after computing
the Euclidean distance between the component loading values and the component scores, are
shown as square-shaped data points for the DTN of drugs effective in anxiety and not
contraindicated in depression, diamond-shaped data points for the DTN of drugs effective in
depression and not contraindicated in anxiety, triangle-shaped data points for the DTN of
drugs effective in anxiety and contraindicated in depression and cross-mark-shaped data
points for the DTN of drugs effective in depression and contraindicated in anxiety. ‘G
a(12/13) signaling events and ‘ muscarinic acetylcholine receptors shown here are among
the top-10 pathways associated with anti-anxiety drugs that are not contraindicated in
depression. The drug maprotiline shown in Fig. 4 corroborates this by showing antagonistic
activity on adrenergic and muscarinic acetylcholine receptors. Similarly, serotonin receptors
are associated with anti-depressants that are not contraindicated in anxiety; flupentixol and
mirtazapine corroborate this by showing antagnostic activity on serotonin receptors.
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Figure 4: Network diagram showing the relationship between the targets of
maprotiline, flupentixol and mirtazapine, and genes associated with anxiety
and depression. The different families of receptors and transporter proteins targeted
by maprotiline, flupentixol and mirtazapine and their interactions with the proteins
encoded by anxiety (disease A) and/or depression (disease B) associated genes have
been shown. Note that maprotiline (an anti-anxiety (disease A) drug not
contraindicated in depression (disease B)) targets a higher number of proteins
associated uniquely with depression in the adrenergic, serotonergic and cholinergic
systems, which is in line with our observation that disease A drugs that are not
contraindicated in disease B are closely associated with proteins uniquely found in
the disease B network (i.e. depression in this specific example). Serotonin receptors
were found to be associated in our analysis with depression drugs not
contraindicated in anxiety; antagonistic activity on serotonin receptors is shown by
two such drugs shown in the diagram (flupentixol and mirtazapine).

G apha (12/13) signalling events' and ‘ muscarinic acetylcholine receptors’ were identified among the
top-10 pathways that were close to anxiety drugs not contraindicated in depression in our study (Fig.
3). Adrenergic receptor signalling could be regulated via G a(12/13); Ga12 and Gal3 have been
shown to mediate alpha-1 adrenergic receptor-induced INK activation in rat cardiomyocytes [65]. The
drug maprotiline was among our list of anxiety drugs without contraindicationsin depression (Fig.
4). Corroborating this, clinical data suggested that the drug is effective in alleviating anxiety
symptoms co-occurring with depression [66]. Maprotiline acts an inhibitor of SLC6A2 (sodium-

dependent noradrenaline transporter) and inhibits noradrenaline reuptake in the brain. It also actsas an
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antagonist to alpha-1 adrenergic receptors (ADRA1A, ADRA1B and ADRA1D) and apha-2
adrenergic autoreceptors and heteroreceptors (ADRA2A, ADRA2B and ADRA2C), and enhances
central noradrenergic and serotonergic functions, which have been linked to alleviation of anxiety and
depression [67]. Maprotiline also acts as a weak antagonist to muscarinic acetylcholine receptors
(CHRM1, CHRM2, CHRM3, CHRM4 and CHRM5); enhanced cholinergic signaling has been linked
to both anxiety and depression [68]. It is notable that maprotiline targets a higher number of proteins
associated uniquely with depression (ADRA2A, HTR2C, SLC6A2 and CHRM?2) in the adrenergic,
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Figure 5: Pathways associated with the target networks of Parkinson's disease and
schizophrenia drugs. The component loading values shown in the figure correspond to
component scores of 4 drug target networks (DTNs) of Parkinson's disease (PD) and
schizophrenia (SCZ) along PC1 and PC2, which explain 47.3% and 38.2% of the total
variance respectively. The top-10 pathways that appeared to be highly related to each of the
4 DTNs, which were obtained after computing the Euclidean distance between the
component loading values and the component scores, are shown as square-shaped data points
for the DTN of drugs effective in PD and not contraindicated in SCZ, diamond-shaped data
points for the DTN of drugs effective in SCZ and not contraindicated in PD, triangle-shaped
data points for the DTN of drugs effective in PD and contraindicated in SCZ and cross-mark-
shaped data points for the DTN of drugs effective in SCZ and contraindicated in PD.
Dopamine receptors are among the top-10 pathways associated with PD drugs
contraindicated in SCZ. Corroborating this, the drugs levodopa and ropinirole shown in Fig.
6 stimulate dopaminergic receptors to alleviate Parkinsonian symptoms, but at the risk of
inducing a hyperdopaminergic state conducive to the SCZ development.

serotonergic and cholinergic systems (Fig. 4). It targets only one receptor associated with both anxiety
and depression (HTR2A), and no gene uniquely associated with anxiety (Fig. 4). These observations
are in line with our findings with the overlap of DTNs with disease subnetworks, i.e. DTNs of disease
A drugsthat are not contraindicated in disease B (e.g. maprotiline) are closely associated with

proteins uniquely found in the disease B network (i.e. depression in this specific example). Since
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maprotiline has been discontinued from usage since 2020 in U.S. [69], note that we are citing this
drug only as a demonstrative example. Drugs acting on the serotonergic system is known to be
effective in both short-term and long-term treatment of patients with major depressive disorder and
anxiety disorders[70]. * Serotonin receptors’ was identified among the top-10 pathways that were
close to depression drugs not contraindicated in anxiety (Fig. 3). This may suggest the broad-
spectrum efficacy of drugs acting on serotonin receptors in both the conditions. Two such drugsin our
study displayed antagonistic activity on serotonin receptors— flupentixol [71] and mirtazapine [72]
(both acting on HTR2A and HTR2C) — and have been used to treat depression accompanied by
anxiety symptoms (Fig. 4).

DRD1
L 4 a
DRD5S - DRD3
- 2
DRD2
DRD4 SLC6A3
A <

/\ Drug target PD-associated gene

|_ Disease-associated gene
¢ Drug target and disease-associated gene PD- and SCZ-associated gene

SCZ-associated gene

Figure 6: Networ k diagram showing the relationship between the targets of levodopa and ropinirole
and genes associated with Parkinson's disease and schizophrenia. The specific dopamine receptors
targeted by levodopa, ropinirole and flupentixol and their interactions with the proteins encoded by
Parkinson’s disease and/or schizophrenia associated genes have been shown. Note that levodopa and
ropinirole are used in the treatment of Parkinson’s disease (disease A), but contraindicated in schizophrenia
(disease B), and flupentixol is used in the treatment of schizophrenia, but contraindicated in Parkinson’s
disease. Note that levodopa and ropinirole target a higher number of dopamine receptors associated
uniquely with Parkinson’s disease, which supports our finding that disease A drugs that are contraindicated
in disease B are closely associated with proteins uniquely found in the disease A network (i.e. Parkinson’s
disease in this snecific examnle)

The pathway ‘ dopamine receptors’ was found to be close to PD drugs contraindicated in SCZ (Fig. 5),
indicating that the enhancement in dopamine levels brought about by PD drugs may in fact induce
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SCZ, which has been linked to a hyperdopaminergic state [57]. The dopamine agonists belonging to
this group of PD drugs have been shown to induce psychosis, namely, levodopa (acting on DRD1,
DRD2, DRD3, DRD4 and DRD5) and ropinirole (DRD2, DRD3 and DRD4) (Fig. 6) [73, 74]. Itis
notable that levodopa and ropinirole target a higher number of dopamine receptors associated
uniquely with Parkinson’s disease (DRD1 and DRD2) (Fig. 6). It targets only one dopamine receptor
(DRD3) uniquely associated with schizophrenia (Fig. 6). These observations are in line with our
findings with the overlap of DTNs with subnetworks, i.e. DTNs of disease A drugsthat are
contraindicated in disease B (e.g. levodopaand ropinirole) are closely associated with proteins

uniquely found in the disease A network (i.e. Parkinson’s disease in this specific example).

3.5 Tissues and drug target networks

Using RNA-sequencing data of 53 postnatal human tissues obtained from GTEXx [36] (version 8), we
attempted to identify whether the four DTN classes showed any tissue-specific patterns. Genes with
high/medium expression (transcripts per million (TPM) > 9) in these 53 tissues, which were not
housekeeping genes (as per the Human Protein Atlas[37]), were considered. For DTNs of each
disease pair, we computed the distribution of genes expressed in a specific tissue among the DTN
genes and compared it with the background distribution of genes expressed in this tissue among all
the genesthat were assayed for expression in any of the 53 tissues. We generated a data matrix of
DTNs (columns) versus tissues (rows) containing the negative of log-transformed p-values and
performed PCA with this matrix as the input. We calculated the Euclidean distance between the PC
scores of each of the DTNs and the component loading values of all the tissues. For each of the
disease pairs, we retrieved the top-10 tissues that were nearest to the four DTNs (Additional Files 11-
16: Figures S7-S13). Following this, we employed the tissue-specific enrichment analysis database
(TSEA-DB)[38] to retrieve the top-3 tissues that may be preferentially affiliated with the diseases in
each of the pairs. TSEA-DB isareference database for information on disease-associated tissues,
specifically, thetissuesin GTEX that show significant enrichment of genes harbouring diseases-
associated variants compiled from the GWAS catalog [38]. We checked whether the top-3 tissues
associated with each of the diseases in a disease pair (according to TSEA-DB) appeared among the
list of tissues identified to be nearest to each of the 4 DTNs pertaining to this disease pair in our
analysis. Out of the 11 tissuesidentified to be closer to the target networks of drugs used for a specific
disease and not contraindicated in a comorbid condition, 6 were found to be associated with the
comorbid condition as per TSEA-DB, whereas 3 were associated with the specific disease for which
the drugs were used and 2 were associated with the disease as well asthe comorbid condition.
Conversely, out of the 9 tissues identified to be closer to the target networks of drugs used for a
specific disease and contraindicated in a comorbid condition, 5 were found to be associated with the
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specific disease, whereas 3 were associated with the comorbid condition in which the drugs were

contraindicated and one was associated with the disease as well as the comorbid condition.
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Figure 7: Tissues associated with the target networ ks of anxiety and depression drugs.
The component loading values shown in the figure correspond to component scores of 4
DTNs of anxiety and depression along PC1 and PC2, which explain 90.7% and 6.5% of the
total variance respectively. The tissues that were exclusively associated with each of the 4
DTNs among the top-ten tissues that were identified to be highly related to the DTNSs, after
computing the Euclidean distance between the component loading values and the component
scores, are shown as square-shaped data points for the DTN of drugs effective in anxiety and
not contraindicated in depression, diamond-shaped data points for the DTN of drugs
effective in depression and not contraindicated in anxiety, triangle-shaped data points for the
DTN of drugs effective in anxiety and contraindicated in depression and cross-mark-shaped
data points for the DTN of drugs effective in depression and contraindicated in anxiety. The
tissues shown in circular and rectangular boxes were also identified to be highly specific to
anxiety and depression respectively by TSEA-DB (due to a significant enrichment of
anxiety/depression-associated variants). Note that adrenal cortex, which was identified to be
associated with anti-anxiety (disease A) drugs that are not contraindicated in depression
(disease B), is a tissue enriched with depression (i.e. disease B) associated variants. This
corroborates our finding that disease A drugs that are not contraindicated in disease B are
affiliated with disease B-specific tissues.

These percentages obtained with a low number of tissues suggest cautious interpretation.
Nevertheless, these results seem to corroborate our previous findings with disease subnetworks and
biological pathways. Specifically, the networks of disease A drugs that are not contraindicated for
disease B seemed to be nearest to tissues preferentially affiliated with disease B. This could indicate
that these tissues could be equally important to the pathophysiology of disease A and its therapeutic
aleviation (asthey might be to these same aspects of disease B), despite showing a high enrichment
for genes harbouring disease B-associated variants. For example, the adrenal gland was detected asa
tissue highly specific to depression by TSEA-DB. In our analysis, thistissue appeared to be nearest to
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the DTN of anxiety drugs that were not contraindicated in depression (Fig. 7), indicating that
targeting of the adrenal gland may be vital to treat anxiety without aggravating comorbid depressive
symptoms. The adrenal gland isan organ in the endocrine system that secretes the cortisol hormone,
following the activation of the hypothalamic-pituitary-adrenal (HPA) axis by psychological stressors
[75]. Several studies support the role of the adrenal gland as a focal point for depression. The adrenal
gland exhibitsa 70% increase in its volume in depressed individuals before successful anti-depressant
treatment as well asin comparison with their matched controls[76, 77]. The cortisol hormone
secreted by the adrenal gland, upon stress-induced activation of the HPA axis, has been linked to
depressive symptoms in humans and monkeys. Increased cortisol levels have been positively
correlated with depressive behaviour in rhesus macagques [ 78]. Enhanced cortisol secretion has been
observed in depressive individuals [ 79], and has been proposed to (a) increase susceptibility to
depression [80] and (b) be correlated with the stress experienced by depressed individuals [81].
Hyperactivation of the HPA axis has been noted in generalized anxiety disorder [82]. Treatment with
selective serotonin reuptake inhibitors (SSRIs) has been shown to reduce HPA hyperactivity in both
depressed patients and patients with generalized anxiety disorder [83-85]. Therefore, it is possible that
anti-anxiety drugsthat do not aggravate depressive symptoms target the adrenal gland, which
produces the cortisol hormone, an effector or ‘endpoint’ of the HPA axisthat seemsto beregulated in
asimilar manner in depression as well as anxiety. We performed comparative transcriptome analysis
of disease-associated, tissue-associated and drug-induced gene expression profiles using the
BaseSpace Correlation Engine to analyse this hypothesis. BaseSpace Correlation Engine software
suite isadataanalysis platform that is used to sudy the effect of diseases and drugs on publicly

available gene expression data [86].

As mentioned in the previous section, maprotiline was found among our list of anti-anxiety drugs that
are not contraindicated in depression; clinical data supportsits utility in the treatment of anxiety
symptoms associated with depression [66]. The differential gene expression (DGE) profile induced by
maprotiline (12.8 uM) in PC3 cells (Broad Connectivity Map (CMAP 2.0) [39]) was negatively
correlated with the profile identified in the blood samples of patients with major depressive disorder
patients (MDD) with generalized anxiety disorder (GAD) versus MDD patients without GAD
(GSE98793 [40]) (Fig. 8a). This negative correlation of maprotiline with MDD/GAD could illustrate
the fact that drugs administered to treat diseases often revert the expression of perturbed disease-
associated genes to their normal levels[87, 88]. Secondly, the MDD/GAD profile was negatively
correlated with the expression profile of adrenal gland cortex (Fig. 8a), indicating that this tissue
could be critical to disease alleviation. Maprotiline-induced DGE profile was positively correlated
with the profile of adrenal gland (Fig. 8a), indicating that maprotiline-mediated MDD/GAD

aleviation may be dependent on adrenal gland, i.e. the reversal of MDD/GAD-associated expression
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profile induced by maprotiline could occur in the adrenal cortex. We then asked whether the genes
differentially expressed in each of these profiles converged on acommon set of biological processes.
Specifically, we identified the top-10 Gene Ontology (GO) biological processes enriched among the
genes differentially expressed in (i) MDD/GAD versus maprotiline (in different directions), (ii)
MDD/GAD versus adrenal cortex (in different directions) and (iii) maprotiline versus adrenal cortex
(in the same direction). We then used the web-based tool called NaviGO [89] to group these 30
enriched biological processes into functionally cohesive networks based on semantic similarity
measures of GO terms. Two such functional networks not only had top-scoring edges between the GO
terms, but also contained GO terms enriched among all the three differential expression profiles (Fig.
8b, ¢). One network contained four GO terms associated with protein folding (Fig. 8b), and another

network contained eleven GO terms representing cell cycle events (Fig. 8c). Interestingly, ‘ protein

a |Geneexpression | MDD/GAD | Maprotiline |Adrenal cortex c
profiles
MDD/GAD

Adrenal cortex

1 Top-10 GO Balogicd Process in
MDDVGAD vs. Mapeotilane
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MDDIGAD ve. Adrensl Cortex

l Top-10 GO Bioiogicsl Process in
Maprotng vs. Adrenal Codes

Figure 8: Relationship between MDD/GAD, maprotiline and adrenal cortex at transcriptomic and
biological process levels. (a) Correlation of differential gene expression profiles associated with a
comorbid condition (major depressive disorder and generalized anxiety disorder), a drug (maprotiline) and
a tissue (adrena cortex). —log;o(p-values) indicating the overlap of the expression profiles have been
shown; red and green colors indicate negative and positive correlations between the profiles respectively.
Significant overlap was found among the genes that are upregulated in patients with both major depressive
disorder (MDD) and generalized anxiety disorder (GAD) and downregulated on treating PC3 cells with
maprotiline (p-value = 7.4E-06), among the genes that are upregulated in MDD/GAD patients and
downregulated in adrenal cortex (p-value = 8.4E-28), and among the genes that are downregulated on
treating PC3 cells with maprotiline and downregulated in adrenal cortex (p-value = 0.034). (b, ¢) The
functional networks of the Gene Ontology biological processes related to (b) protein folding and (c) cell
cycle events that were enriched in the three expression profiles. The GO terms associated with each of the
expression profiles have been shown using different node colors. The thickness of the edges corresponds to
the Resnik semantic similarity score for GO terms (greater the thickness of the edges, greater is the
similarity between the linked GO terms).

folding’, ‘cyclin D associated eventsin G1' and ‘ G1 phase’ were independently retrieved among our
top-10 Reactome pathways found to be nearest (in terms of Euclidean distance) to the DTN of anti-
depressantsthat are not contraindicated in anxiety. Together, these results suggest that adrenal cortex
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may be preferentially targeted by drugs such as maprotiline that produce beneficial effectsin anxiety
aswell asin depression, and that their actions may converge on protein folding and cell cycle
processes. Note that maprotiline has been discontinued from usage [69] and is only being cited here as

ademongtrative example.

On the other hand, the networks of disease A that are contraindicated for disease B seemed to be
nearest to tissues preferentially affiliated with disease A. This could indicate that these disease A-
specific tissues may play arole in producing beneficial effectsin disease A, while producing
deleterious effectsin disease B. For example, spleen was detected as a tissue highly specific to
rheumatoid arthritis. The primary functions of this lymphoid organ are blood filtration, recycling of
iron from old blood cells and generation of adaptive immune responses againgt bacterial, fungal and
viral infections [90]. However, spleen has also been shown to act as areservoir of osteoclast precursor
cells, which upon resorption into bones, differentiate into osteoclasts.[91] Splenomegaly (enlargement
of the spleen) has been noted in 5-10% and 52% of rheumatoid arthritis patients in separate studies
(based on physical examination and imaging studies respectively) [92-94]. Rheumatoid arthritis
patients are also prone to developing spontaneous splenic ruptures [95]. In our analysis, spleen was
identified to be nearest (in terms of Euclidean distance) to the DTN of rheumatoid arthritis drugs that
were contraindicated in osteoporosis (Fig. 9). This seemed to indicate that spleen mediated opposite
effectsin rheumatoid arthritis and osteoporosis. Anecdotal evidence seemed to support this
conjecture. While splenectomy seemed to improve rheumatoid arthritis in a patient [96], it seemed to
inhibit (a) attenuation of osteoporosisin arat model [97] and (b) fracture healing in patients [98].

Table 5 summarizes the general conclusions of our study. We discovered that the DTNs of disease A
drugs that are not contraindicated for adisease B may be nearest (in terms of Euclidean distance) to
(a) proteinsthat are either uniquely found in the PPI network of disease B or shared between the PP
networks of disease A and disease B, (b) biological pathways that are associated with B or are
commonly active in both the diseases, and are regulated in the same direction in both the diseases and
(c) tissues showing a high enrichment of disease-B associated variants and thereby preferential
affiliation with the etiology of disease B, while also being important to the pathophysiology and
treatment of disease A (Table 5). On the other hand, disease A drugs that are contraindicated for a
disease B may be nearest to (@) proteins that are either uniquely found in the PPl network of disease A
or are shared between the PPI networks of disease A and disease B, (b) biological pathways that are
associated with disease A or are commonly active in both the diseases, and are regulated in an
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opposing manner in both the diseases and (c) tissues showing a high enrichment of disease A-
associated variants and thereby preferential affiliation with the etiology of disease A, and mediating
opposing effectsin disease A and disease B (Table 5).
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Figure 9: Tissues associated with the target networ ks of rheumatoid arthritis and osteopor osis dr ugs.
Component loading values of 39 tissues associated with the drug target networks (DTNs) of rheumatoid
arthritis (RA) and osteoporosis to PC1 and PC2 have been plotted along the X and Y axes respectively.
PCA was performed with the p-values of enrichment of the tissues sgnificantly associated (p-value < 0.05)
with the DTNs of RA and osteoporosis. These values were transformed to —log;oP values, which were then
assembled into a data matrix containing tissues as rows and DTNs as columns. Unit variance scaling was
applied across this matrix. Single value decomposition (SVD) with imputation was used to extract the
principal components (PCs). The component |oading values shown in the figure correspond to component
scores of 4 DTNs along PC1 and PC2 that explain 89% and 6% of the total variance respectively. The
tissues that were exclusively associated with each of the 4 DTNs among the top-ten tissues that were
identified to be highly related to the DTNs, after computing the Euclidean distance between the component
loading values and the component scores, are shown as square-shaped data points for the DTN of drugs
effective in RA and not contraindicated in osteoporosis, diamond-shaped data points for the DTN of drugs
effective in osteoporosis and not contraindicated in RA, triangle-shaped data points for the DTN of drugs
effective in RA and contraindicated in osteoporosis and cross-mark-shaped data points for the DTN of
drugs effective in osteoporosis and contraindicated in RA. The tissues shown in circular and rectangular
boxes were also identified to be highly specific to RA and osteoporosis respectively by TSEA-DB (dueto a
significant enrichment of RA/osteoporosis-associated variants). Note that spleen, which was identified to
be associated with rheumatoid arthritis (disease A) drugs that are contraindicated in osteoporosis (disease
B), is a tissue enriched with rheumatoid arthritis (i.e. disease A) associated variants. This corroborates our
finding that disease A drugs that are contraindicated in disease B are affiliated with disease A-specific

Table5: Disease networ k, pathway and tissue-level characterization of drugsthat are

contr aindicated/not contraindicated in comorbid conditions. A B has been used to indicate the
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close effiliation of a specific category of drug target network with specific disease protein sets,

disease-associated pathways and tissues.

Drug target Disease PPI protein sets Pathways Tissues

networks Common | Uniqu | Uniq | Common | Specif | Specif | Common | Specif | Specif
to disease eto ueto | todisease icto icto to disease icto icto
A and diseas | diseas A and diseas | diseas A and diseas | diseas
disease B eA eB disease B eA eB disease B eA eB
Disease A
drugs not
contr aindicate
din Discase B
Disease A
drugs
contr aindicate
d in Disease B

3. Discussion

Despite the increased prevalence of adverse drug reactions in comorbidities, knowledge on the
mechanigtic basis of drug contraindications in such conditions is limited. In our study, we attempted
to characterize the biological profiles of the target networks of drugs used in specific diseasesthat are
either contraindicated or not contraindicated in a comorbid disease. We sought to provide an

integrated interactome, pathway and tissue level view of the drug target networks.

Thefirst key finding in our study was that the relative risk of comorbidity between diseases was
proportional to their network similarity measures (Fig. 2). The four network similarity measures along
with the relative risk were low in the case of our three negative control pairs, namely, Multiple
sclerosis — Peroxisomal disorders, Schizophrenia— Rheumatoid arthritis, and Asthma—
Schizophrenia. This confirmed that these were indeed non-comorbid pairs. The network similarity
measures and relative risk were higher in the case of Anxiety — Depression, Ashma— Hypertension,
Chronic obstructive pulmonary disorder — Heart failure, Type 2 diabetes — Obesity, Rheumatoid
arthritis— Osteoporosis, and Parkinson's disease — Schizophrenia, confirming that they were
comorbidities. However, these measures do not follow the same trend in the case of the comorbid
pairs. The higher relative risks of Rheumatoid arthritis — Osteoporosis and Parkinson's disease —
Schizophrenia (compared with the other comorbid pairs) were not accompanied by a corresponding
increase in the network similarity measures. Several factors may explain these variations in our
analysis. Firdtly, it has been shown that relative risk overestimates the comorbid associations between
rare diseases and underestimates the associations between highly prevalent diseases[43]. The number
of casesin the HuDiNe database for Rheumatoid arthritis — Osteoporosis and Parkinson’s disease —

Schizophrenia are 24629 and 5439 respectively, which can be classified as rare occurrences when
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compared with the other comorbid pairs. Additional File 17: Figure S14 shows the relationship of
the relative risks of the nine pairs of diseases with the individual prevalence of the diseases and the
prevalence of the disease pairs as comorbidities. Secondly, the human interactome is a progressively
developing network with ~85% remaining to be discovered. Therefore, the inherent incompl eteness of
the human PPI network, sampling biases introduced as aresult of the selective discovery of PPIs, and
the tendency of such incomplete networksto exhibit small overlaps[60] could have led to the
underestimation of the network overlaps. Our second key finding was that druggable proteins were
highly enriched among the proteins shared between the networks of two comorbid diseases (Table 2).
Based on these results, we speculated that drug action on targets shared between the two diseases may
give rise to contraindications in comorbidities. Interestingly, this hypothesis was only partially

supported in our study.

The mgjor finding in this respect was that the target network of the drugs used in the treatment of a
specific disease A and contraindicated in a comorbid disease B showed preferential affiliation to
proteins shared between the PPl networks of both the diseases or proteins uniquely found in the PP
network of the disease A, pathways shared by the two diseases or pathways associated with the
disease A and tissues specifically associated with disease A (Table 5). As explained before, thiswas
contrary to our hypothesis that these target networks would be preferentially affiliated with common
mechanisms underlying the two diseases. This hypothesis was based on the assumption that adverse
events ssem from drugs inducing opposite pharmacological effects in comorbid diseases by targeting
effectorsthat are shared between the two diseases. However, our findings indicate that mechanisms
underlying the pathology of disease A may contribute to contraindications in the comorbid disease B.
Although further studies are required to examine the basis of this finding, it seems to indicate that the
possibility of contraindications may be high when disease A drugs are highly specific to disease A in
terms of the targeted PPl network, pathway and tissue. Instead, rational drug development should take
into account the causative and correlational influences of the other comorbid conditions (disease B)

that co-exist with disease A.

Thetarget network of the drugs used in the treatment of a specific disease A and not contraindicated
in acomorbid disease B showed preferential affiliation to proteins shared between the PPI networks
of both the diseases or proteins uniquely found in the PPI network of the comorbid disease B,
pathways shared between the two diseases or pathways associated with the comorbid disease B and
tissues specifically associated with the comorbid disease B (Table 5). This was contrary to our
expectation that these target networks would be preferentially affiliated with biological modalities
pertaining to disease A. This conjecture was based on the assumption that for adrug to be specifically

active against a pecific disease A without aggravating acomorbid disease B, it had to reverse the
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phenotypes specifically associated with disease A. In this model, phenotypes of disease B were
considered as ‘ off-targets’ in line with the principles of conventional pharmacology, in which
unintended effects of the drugs were attributed to interaction with pathways that may not be
consequential to the pathology of disease A (i.e. pathways relevant to disease B) [13]. Our findings on
the contrary indicate that the mechanisms underlying the pathology of the comorbid disease B may
contribute to the therapeutic alleviation of disease A. Although further investigations may be
necessary to dissect the basis for this observation, it is possible that an etiological association between
the two diseases may cause their emergence or development to be interdependent. Specifically, future
studies should concentrate on 3 etiological models of comorbidity [99], namely, the direct causation
model, the associated risk factors model and the heterogeneity model. Disease B could be directly
responsible for causing disease A in the ‘ disease causation model’ . The comorbidity of disease A and
disease B may arise from the correlation of the risk factors of disease B with the risk factors of disease
A in the ‘associated risk factors model’. On the other hand, comorbidity in the ‘ heterogeneity model’
may arise not from the correlation of the risk factors associated with disease A and disease B, but
from the capacity of therisk factors of disease A to cause disease B and vice versa. On applying the
disease causation model to our findings, one may speculate that drugs targeting the proteins uniquely
found in the disease B PPI network, and the pathways and tissues associated with disease B may
aleviate disease A without aggravating disease B. The associated risk factors and heterogeneity
modelsin this scenario would imply that the risk factors of disease B would influence the
development of disease A directly, or through correlation with the risk factors of disease A. This
model can be illustrated for genetic risk factors of disease B with the capacity to influence disease A.
For example, the alterationsin such genes would have led to pathway perturbations in specific tissues,

which if counteracted by the drugs, may lead to alleviation of disease A.

Despite disease A drugs contraindicated in disease B and disease A drugs not contraindicated in
disease B showing preferential affiliation with disease A and disease B respectively, it was clear, at
least in the case of the drug target and disease network analysis, that both these categories also
showed affiliation with proteins shared between the two diseases (Table 5). Thisisin line with the
speculation that both beneficial and adverse outcomes of drug treatment may arise from shared
effectors and pathways, and that it may be difficult to delineate the separate mechanisms underlying
the two outcomes [13]. Future analysis should focus on biological variables with the potential to
differentially affect the functions of such shared proteins, specifically their cellular, pathway and

tissue landscapes.

Our current approach has some limitations. Firstly, our study isbased on 6 pairs of diseases that were

selected based on literature survey. Ideally, future studies must be expanded to include all the known
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pairs of comorbid disorders. Secondly, our analysis did not take the overlaps among the drug target
networks into account; this would have allowed usto identify the network configurations of disease A
—disease B — disease A drug not contraindicated in disease B — disease B drug not contraindicated in
disease A. Secondly, although we were able to support our findings by citing evidence based on the
known clinical activity of specific drugs, further investigations with the six comorbid disease pairs are
essential to confirm the validity of our findings. These should focus on large-scale analysis of patient
treatment data collected from observationa studiesand functional assays in animal models of human

comorbidities.

In summary, our findings suggest that studies driven by biological modalities that influence
comorbidities, such as disease PPl networks, pathways and tissue-specificity, are essential for rational
drug development and minimization of adverse events. The results from our study have therapeutic
applications and may directly benefit future assessments of drug contraindications in individuals with

comorbidities.

4. Conclusions

We observed that the target networks of disease A drugs that were not contraindicated in disease B
were mostly affiliated with the disease B network, and pathways and tissues associated with disease
B. On the other hand, the target networks of disease A drugsthat were contraindicated in disease B
were affiliated with the disease A network, and pathways and tissues associated with disease A. This
could indicate that etiological associations between the two diseases could play an active role in their
therapeutic alleviation. In summary, our findings suggest that the enrichment patterns of drug target
networks in pathways, tissues and the PPl networks of comorbid diseases will help identify drugs
with/without contraindications in comorbidities.
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