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ABSTRACT

Interferon lambda (IFN-A, type Ill IFN) is constitutively secreted from human placental cells in
culture and reduces Zika virus (ZIKV) transplacental transmission in mice. However, the roles of
IFN-A during healthy pregnancy and in restricting congenital infection remain unclear. Here we
used mice lacking the IFN-A receptor (Ifnlr17-) to generate pregnancies lacking either maternal or
fetal IFN-A responsiveness and found that the antiviral effect of IFN-A resulted from signaling
exclusively in maternal tissues. This protective effect depended on gestational stage, as infection
earlier in pregnancy (E7 rather than E9) resulted in enhanced transplacental transmission of ZIKV.
In Ifnar1”- dams, which sustain robust ZIKV infection, maternal IFN-A signaling caused fetal
resorption and intrauterine growth restriction. Pregnancy pathology elicited by poly(l:C) treatment
also was mediated by maternal IFN-A signaling, specifically in maternal leukocytes, and also
occurred in a gestational stage-dependent manner. These findings identify an unexpected effect
of IFN-A signaling specifically in maternal (rather than placental or fetal) tissues, which is distinct
from the pathogenic effects of IFN-af3 (type | IFN) during pregnancy. These results highlight the
complexity of immune signaling at the maternal-fetal interface, where disparate outcomes can

result from signaling at different gestational stages.

IMPORTANCE

Pregnancy is an immunologically complex situation, which must balance protecting the fetus from
maternal pathogens with preventing maternal immune rejection of non-self fetal and placental
tissue. Cytokines, such as interferon lambda (IFN-A), contribute to antiviral immunity at the
maternal-fetal interface. We found in a mouse model of congenital Zika virus infection that IFN-A
can have either a protective antiviral effect or cause immune-mediated pathology, depending on
the stage of gestation when IFN-A signaling occurs. Remarkably, both the protective and

pathologic effects of IFN-A occurred through signaling exclusively in maternal immune cells, rather
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than in fetal or placental tissues, or in other maternal cell types, identifying a new role for IFN-A at

the maternal-fetal interface.

INTRODUCTION
Immune regulation at the maternal-fetal interface is complex due to conflicting immunological
objectives: protection of the fetus from maternal pathogens, and prevention of immune-mediated
rejection of the semi-allogeneic fetus and placenta. The few pathogens able to surmount the
placental barrier and cause congenital infections include Zika virus (ZIKV), rubella virus (RUBV),
and human cytomegalovirus (1). The mechanisms by which pathogens are excluded from the
fetal compartment are not fully understood, and it is unclear how antiviral activity at the maternal-
fetal interface affects tolerogenic immunity. Moreover, pregnancy encompasses multiple
developmental stages including implantation, fetal growth, and parturition, each with unique
immunologic requirements (2—4). Because the physiology and immunology of the placenta
change over gestation, there likely are distinct antiviral mechanisms at each stage of pregnancy.
The need to balance protective and pathogenic immunity is not unique to the maternal-
fetal interface: epithelial surfaces such as the gastrointestinal and respiratory tracts encounter
microbes and must provide protection from pathogens without inflicting inflammatory damage.
Interferon lambda (IFN-A, type Ill IFN) is a cytokine that elicits a similar antiviral transcriptional
response as type | IFNs (IFN-af), but signals through a distinct heterodimeric receptor comprised
of IFNLR1 and IL10Rb. (5). The IFN-A receptor is predominantly expressed on epithelial cells and
consequently confers antiviral protection at barrier surfaces including the gastrointestinal and
respiratory tracts. IFN-A is secreted constitutively from human mid-gestation and term placental
explants and trophoblasts cultured ex vivo, human trophoblast organoids, and in human placental
cell lines syncytialized in culture (6—8). In a mouse model of congenital ZIKV infection, IFN-A
restricted transplacental transmission, as fetuses from Ifnlr1” pregnancies (Ifnlr1” x Ifnir1”)

sustained higher fetal and placental viral loads than those from wild-type pregnancies (9).
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However, the mechanism by which IFN-A protects against viral infection at the maternal-fetal
interface has not been defined.

The 2015-2016 ZIKV outbreak throughout Latin America and the Caribbean revealed that
ZIKV infection during pregnancy can produce a spectrum of adverse fetal and neonatal outcomes
(collectively referred to as congenital Zika syndrome) including microcephaly, intrauterine growth
restriction (IUGR), placental insufficiency, vision and hearing loss, as well as miscarriage and
stillbirth (10, 11). Infants born without overt congenital Zika syndrome also can have cognitive or
functional deficits that become evident later in infancy or childhood (12—-14). Mouse models of
ZIKV congenital infection have been developed to test vaccines and antivirals as well as to define
ZIKV pathogenic mechanisms and antiviral immunity at the maternal-fetal interface (15-17).
Aspects of ZIKV fetal pathogenesis are recapitulated in mouse models and include fetal loss,
IUGR, fetal brain infection, placental pathology, and neurologic defects. The outcomes of
congenital ZIKV infection usually are more severe when infection occurs earlier in gestation in
both mice (9, 15, 18) and humans (Brady et al., 2019; Hoen et al., 2018; Honein et al., 2017;
Ospina et al., 2020). Although there are differences between mouse and human pregnancy (23),
mice provide a genetically tractable system to study antiviral and placental immunity at distinct
gestational timepoints.

Here we used mouse models of congenital ZIKV infection to determine the targets of IFN-
A signaling by infecting pregnancies that lacked IFN-A signaling (/fnir1”") in maternal and/or fetal
tissues. When we infected at embryonic day 9 (E9), we observed that IFN-A signaling in maternal
tissues protected against transplacental ZIKV transmission. Surprisingly, IFN-A had a deleterious
effect when pregnancies were infected two days earlier at E7, with IFN-A responsive dams
exhibiting higher rates of ZIKV transmission as well as overt pathology and fetal resorption. This
effect was not specific to ZIKV as we also found that maternal IFN-A signaling increased rates of
fetal loss after poly(l:C) treatment and that this pathology similarly was dependent on gestational

age at the time of administration. These findings identify an unexpected effect of IFN-A signaling
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92 specifically in maternal (rather than placental or fetal) tissues and highlight the complexity of

93 immune signaling at the maternal-fetal interface, where disparate outcomes can result from

94  signaling at different gestational stages.

95

96 RESULTS

97  ZIKV congenital infection is exacerbated earlier in pregnancy and in Ifnar1” dams

98 ZIKV replication in mice is restricted by the IFN response because ZIKV is unable to antagonize

99 mouse STATZ2 (24, 25). Thus, mouse models of ZIKV pathogenesis typically employ mice lacking
100 IFN-oB signaling, usually through genetic loss of the IFN-af receptor (Ifnar1”) alone or in
101  combination with the IFN-y receptor (Ifnar1” Ifngr1”- DKO), or by treatment of wild-type mice with
102  an IFNAR1-blocking monoclonal antibody (MAR1-5A3) (26). Congenital ZIKV pathogenesis has
103  been studied in many different mouse models that vary in mouse genetic background, IFN
104 responsiveness, ZIKV strain, inoculation route, duration of infection, and gestational stage at
105 infection and harvest (27). To better define the conditions that produce transplacental
106 transmission and pathology, we evaluated gross pathology and fetal viral loads in pregnant Ifnar1
107  ” dams or wild-type dams treated with 2mg of MAR1-5A3 1 day prior to infection. To exclude fetal
108 pathology resulting from severe maternal morbidity, we first compared the virulence of three
109  Asian-lineage ZIKV strains in non-pregnant female 8-10 week-old /fnar1”- mice infected with 1000
110  FFU of ZIKV by subcutaneous inoculation in the footpad (Figure 1A and B). We found that strain
111 H/PF/2013 was the most virulent, causing 80% lethality, whereas strain FSS13025 caused
112 modest weight loss in some mice and only 20% lethality, and strain PRVABCS59 caused no weight

113  loss or lethality, altogether consistent with prior
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Figure 1. Infection earlier in gestation corresponds to enhanced fetal pathology in mouse models of
congenital ZIKV infection. A-B. Non-pregnant 8-10 week old female /fnar1”- mice (5-6 mice per group) were
infected with 1000 FFU of ZIKV strain PRVABC59, FSS13025, or H/PF/2013; weights and survival were
measured daily for 14 days. Each line represents an individual mouse. C-K. Dams from WT x WT or lfnar1- x
Ifnar1”- crosses (6 to 8 WT or 4 to 5 Ifnar1- dams per group) were infected at day 7 or 9 post-mating (E7, E9)
with ZIKV FSS13025 by subcutaneous inoculation in the footpad. WT dams were given 2mg of anti-IFNAR1
blocking mAb intraperitoneally one day prior to infection. Tissues were harvested at E15 (8 or 6dpi). D-F. ZIKV
viral loads in the maternal spleen, placenta, and fetal head were measured by qRT-PCR. Each data point
represents one dam (D) or fetus (E-F). The percent of ZIKV-positive fetal heads is indicated above each group.
G. Representative images of fetuses/resorptions from one pregnancy from each cross. H. Intact fetuses (i.e. not
resorbed) were weighed. Fetuses <1 standard deviation from the mean of mock-infected (below dotted line)
were classified as having intrauterine growth restriction (IUGR). Intact fetuses with weights significantly different
from mock pregnancies (calculated by ANOVA) are indicated, **** P<0.0001. I. Proportions of fetuses exhibiting
IUGR or resorption.
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115 studies reporting the relative virulence of these strains in Ifnar1” mice of various ages and
116  inoculation routes (Carbaugh et al., 2020; Lazear et al., 2016; Tripathi et al., 2017). We chose to
117  use strain FSS13025 for further experiments to achieve robust maternal infection without severe
118 maternal morbidity and because of its use in studies from other groups evaluating the role of IFN
119  signaling in congenital ZIKV infection (29). We infected pregnant dams with 1000 FFU of ZIKV
120 FSS13025 by subcutaneous inoculation in the footpad at E7 or E9 (Figure 1C) and measured
121 viral loads in the maternal spleen, placentas, and fetal heads at E15 (8 or 6 days post-infection
122 (dpi)), (Figure 1D-F). We observed higher viral loads in /fnar1”- dams compared to WT dams
123 treated with MAR1-5A3, and viral loads were higher after infection at E9 (6 dpi) compared to
124  infection at E7 (8 dpi). Placental and fetal viral loads corresponded to maternal spleen viral loads,
125  suggesting that fetal infection increases with the severity of maternal infection. Rates of
126  transplacental transmission (measured by proportion of fetal heads that were ZIKV-positive) were
127  higher in Ifnar1”-dams compared to MAR1-5A3-treated dams (64% vs. 57% at E7, 100% vs. 61%
128 at E9). All fetuses that were intact (not resorbed) were photographed and weighed (Figure 1G-
129 |). Fetuses smaller than one standard deviation below the mean of uninfected pregnancies were
130 classified as having IUGR. Ifnar1’- dams exhibited significantly higher resorption rates compared
131  to uninfected controls. In contrast to fetal viral loads, which were higher in dams infected at E9,
132  fetal pathology was greater in dams infected at E7, suggesting higher placental/fetal susceptibility
133  early in pregnancy or that pathology increases with longer infection times. The results were the
134  same when we assessed pathology by crown-rump length (CRL) rather than fetal weight (Figure
135 S1A-B). These results indicate that there are significant differences in adverse pregnancy
136  outcomes when infections occur at different gestational stages, and that fetal pathologic outcomes
137  and viral loads are more severe in the context of high maternal infection (Ifnar1™).

138 To determine if we could observe similar pregnancy pathology with another virus that
139 causes congenital infections in humans, we sought to generate a RUBV mouse model, as small

140  animal models to study RUBV pathogenesis are not available and experimental RUBV infections
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141  in knockout mice have not been reported. We first infected 8-week-old non-pregnant wild-type,
142 Ifnar1”, and Ifnir1”- mice with 1000 FFU and 5-week-old /fnar1” mice with 1x10% FFU of RUBV
143 (strain M33) by intranasal inoculation or subcutaneous inoculation in the footpad but observed no
144  weight loss or disease signs (Figure S2A-B). To determine whether mice supported any RUBV
145 infection, we inoculated Ifnar1” Ifngr1”- DKO mice intravenously with 1x10° FFU of RUBV and
146  measured viral RNA by qRT-PCR from blood and serum at 2, 4, and 7 dpi and from spleen, lung,
147  and kidney at 7 dpi (Figure S2C-D). Although in humans RUBYV targets a variety of tissues and
148  produces viremia (30), we found very low or undetectable viral loads in Ifnar1” Ifngr1”- DKO mice
149  even though these mice are highly susceptible to many viral infections. Since human congenital
150 rubella syndrome requires maternal viremia, we concluded that this mouse model would not be
151  suitable for assessing transplacental transmission of RUBV and limited our further studies to
152 ZIKV.

153

154  Mid-gestation mouse placentas produce IFN-A in the presence and absence of infection

155  IFN-A is secreted constitutively from human primary trophoblasts cultured ex vivo, trophoblast
156  organoids, and placental cell lines grown in 3D culture (6—8). Although IFN-A has antiviral activity
157  atthe murine maternal-fetal interface (9), it was unknown if IFN-A was secreted constitutively from
158 the mouse placenta. To evaluate IFN-A activity in the absence of infection, we measured IFN-A
159  activity from placentas harvested from mid-to-late gestation (E11 to labor). In uninfected mice we
160 found that placental IFN-A activity varied considerably over the course of gestation, increasing
161 from E11 to E15 then dropping at E17 (Figure 2A). IFN-A activity rose again in placentas taken
162  from dams in active labor, consistent with the cytokine response that triggers parturition. We also
163  detected IFN-A in the placentas of ZIKV-infected dams harvested at E15 (Figure 2B). Placentas
164 from MAR1-5A3-treated WT dams infected at E7 had significantly higher IFN-A activity than
165 placentas from dams infected at E9, but there was no effect of infection timing in /fnar1”- dams.

166  Unexpectedly, IFN-A activity in placentas from ZIKV-infected dams was reduced compared to
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167 uninfected WT dams harvested at E15. These results indicate that IFN-A is constitutively

168  expressed during mouse pregnancy, and also is present during congenital ZIKV infection.

Figure 2
A Uninfected B ZIKV
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Figure 2. IFN-A is produced at the maternal-fetal interface. A.
Placentas were harvested from uninfected pregnant dams at E11 (1
dam), E13 (1 dam), E15 (5 dams), E17 (3 dams), and during labor (3
dams). Placentas were homogenized in PBS, and IFN-A activity in
placental homogenate was determined using a reporter cell line. B.
Pregnant WT dams (treated with an anti-IFNAR1 blocking mAb, 6 or 8
dams per group) or pregnant /fnar1”- dams (4 or 5 dams per group) were
infected at either E7 or E9 with ZIKV FSS13025. Placentas were
homogenized in PBS, and IFN-A activity in placental homogenate was
determined using a reporter cell line.

170  Maternal IFN-A signaling restricts ZIKV transplacental transmission in a gestational stage-
171  dependent manner

172  Prior studies found that IFN-A signaling reduces ZIKV transplacental transmission in mice (9) but
173  the cells and tissues responding to IFN-A were not identified. To determine the targets of IFN-A
174  signaling at the maternal-fetal interface we first assessed whether the protective effects of IFN-A
175  were mediated by signaling in maternal or fetal tissues. To generate pregnancies with distinct
176  maternal and fetal IFN-A responsiveness, we crossed Ifnlr1*- dams by Ifnir1”- sires, or the reverse,
177  producing litters comprising Ifnir1™- and Ifnir1”" fetuses within dams that either retained IFN-A
178  signaling (Ifnir1*") or lacked it (/fnir1”) (Figure 3A). We infected mice with 1000 FFU of ZIKV
179 FSS13025 by subcutaneous inoculation in the footpad at E9, 1 day following administration of

180 2mg of MAR1-5A3. At 6 dpi (E15), we harvested maternal and fetal tissues and determined fetal
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181  Ifnir1 genotype by PCR, and viral loads by gRT-PCR. We found no difference in maternal or
182  placental viral loads based on maternal or fetal Ifnir1 genotype (Figure 3B-C). In contrast, we
183  found higher rates of ZIKV transplacental transmission in dams lacking IFN-A signaling (/fnir1”),
184  regardless of fetal genotype (67% vs 28%) and viral loads were significantly higher in fetuses

Figure 3
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Figure 3. IFN-A restricts ZIKV transplacental transmission by signaling to maternal tissues. A. Mating
and infection timeline. Ifnir1*- dam x Ifnir1”- sire and Ifnlr1"- dam x Ifnir1*- sire crosses were used to generate
pregnancies with IFN-A responsive (Ifnlr1*-) and non-responsive (Ifnir1--) fetuses. B-E. Pregnant dams were
treated with 2mg of IFNAR1 blocking antibody at E8 and infected at E9 with 1000 FFU of ZIKV FSS13025 by
subcutaneous inoculation in the footpad. Fetuses and their associated placentas were harvested at E15. ZIKV
RNA was measured by qRT-PCR in maternal spleen (B), placenta (C), and fetal head (D) and fetuses were
weighed (E). The percent of fetuses with detectable ZIKV is noted (D). Data are combined from 5 or 6 dams per
group; each data point represents a single dam (B) or fetus (C-E). Groups were compared by ANOVA (B, C, E)
or Mann-Whitney (D); italicized letters indicate groups that are significantly different each other (P < 0.05). F and
G. Non-pregnant, 8-week old Ifnir1”- and Ifnir1*- females were infected with 1000 FFU of ZIKV FSS13025.
Viremia was measured from serum at 2, 4, and 6 dpi by qRT-PCR. Spleens and brains were harvested 6 dpi,
and viral loads were measured by qRT-PCR. Groups were not significantly different (ns) by ANOVA.
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185  from in Ifnir1’- dams compared to Ifnir1*- dams, regardless of fetal genotype (P<.0001) (Figure
186  3D). Higher viral loads were not accompanied by overt pathology in this model as there was no
187  difference in fetal weights (Figure 3E) based on either maternal or fetal Ifnir1 genotype. Our
188  observation of higher viral loads in the fetuses of /fnir1”- dams, regardless of fetal I/fnir1 genotype,
189  provides strong evidence that IFN-A signaling protects against transplacental transmission of
190 ZIKV via signaling exclusively in maternal tissues. This is specific to tissues at the maternal fetal-
191 interface, as non-pregnant female Ifnir1”" and Ifnir1*” mice exhibited no differences in viremia or
192  tissue viral loads following infection (Figure 3F-G).

193 In mice placental differentiation is complete around E10.5 (31) so mice infected at E9 are
194  expected to have a fully-formed placenta by the time ZIKV reaches the placenta from maternal
195 circulation. Since pregnancy pathology depends on gestational stage at the time of infection
196  (Figure 1) (9, 29), and IFN-A antiviral effects vary with gestational time (Jagger et al., 2017) we
197 next assessed the effects of IFN-A signaling in maternal and fetal tissues following ZIKV infection
198 two days earlier, at E7. At this earlier infection time, maternal viremia is expected to be established
199  prior to complete placentation. We again crossed /fnir1*"- and Ifnir1”- mice to generate pregnancies
200  with mixed IFN-A responsiveness within dams that could or could not respond to IFN-A (Figure
201  4A). We infected pregnant dams with 1000 FFU of ZIKV FSS13025 by subcutaneous inoculation
202 in the footpad at E7, 1 day following administration of 2mg of MAR1-5A3. At 8 dpi (E15), we
203  harvested maternal and fetal tissues and determined Ifnir1 genotype by PCR and viral loads by
204 gRT-PCR. Similar to infection at E9, we found no difference in maternal spleen or placental viral
205 load in Ifnlr1’- compared to Ifnir1*- dams (Figure 4B-C). However, in contrast to the protective
206 effect of maternal IFN-A signaling after E9 infection, with E7 infection we found higher rates of
207 transplacental transmission in /fnlr1*- dams compared to Ifnir1"- (47% versus 13%, P =.0006)
208  (Figure 4D). Moreover, fetuses from Ifnir1*- dams had significantly higher viral burdens than those
209 from Ifnir1’- dams, regardless of fetal genotype (Figure 4D). Although we found significant

210 differences in fetal weights from Ifnir1*-and Ifnir1’-dams (P < 0.0001), the difference results from
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Figure 4. IFN-A enhances fetal infection early in gestation through signaling to maternal tissues. A.
Mating and infection timeline. Ifnir1*- dam x Ifnir1”- sire and Ifnir1"- dam x Ifnlr1*- sire crosses were treated with
2mg of anti-IFNAR1 mAb at E6 and infected at E7 with 1000 FFU of ZIKV FSS13025 by subcutaneous
inoculation in the footpad. Fetuses and their associated placentas were harvested at E15. B-D. ZIKV RNA in the
maternal spleens, placenta, and fetal head were measured by qRT-PCR. E. Gross fetal pathology was
measured by fetal weight. Significant differences are denoted by italicized letters, calculated by ANOVA (B, C,
E) or Mann-Whitney (D). Data are combined from 5 or 6 dams per group; each data point represents a single
dam (B) or fetus (C-E).
211  anincrease in fetal weights from Ifnir1*" pregnancies and Ifnir1” fetal weights fell within the range
212 of uninfected pregnancies (Figure 1 |-J). Altogether these results show that IFN-A signaling exerts
213  a gestational stage-specific effect on ZIKV transplacental transmission, where earlier in gestation
214  IFN-A signaling facilitates ZIKV transplacental transmission in contrast to later stages where IFN-
215 Ainhibits transplacental transmission. Importantly, at either stage, the effects of IFN-A signaling
216  were mediated through signaling in maternal tissues, rather than through signaling in the placenta
217  or fetus, as only maternal Ifnilr1 genotype influenced ZIKV transmission, not fetal /fnilr1 genotype.
218
219  Maternal IFN-A signaling exacerbates fetal pathology early in gestation
220  Since maternal IFN-A signaling enhanced rather than limited ZIKV transmission at E7, we next

221  assessed the effects of IFN-A signaling on fetal pathology at this early gestational stage. These

222  experiments used mice that retained or lacked IFN-A signaling on an Ifnar1”- background, as we
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223  did not observe overt pathology in IFNAR1-intact mice (Figure 1G-J). We crossed wild-type,
224  Ifnar1”, and Ifnar1”Ifnir1” dams and sires to generate pregnancies in which IFN-A signaling was
225  present or absent on both or either side of the maternal-fetal interface (Figure 5A). Pregnant dams
226  were infected with ZIKV FSS13025 at E7, and tissues were harvested 8 dpi (E15). Pregnancies
227  thatlacked both IFN-aB and IFN-A signaling on both sides of the maternal-fetal interface exhibited
228  significant growth restriction compared to uninfected pregnancies (Figure 5B-D, group 1). Fetal
229 IFN-af signaling previously has been shown to be pathogenic during congenital ZIKV infection
230 in mice (29) and accordingly we found that all fetuses were resorbed in pregnancies that retained
231  IFN-apB and IFN-A signaling exclusively on the fetal side of the interface (Figure 5B-D, group 2).
232  This pathology was mediated by fetal IFN-a8 signaling because when fetal IFN-A signaling was
233  restored in the absence of fetal IFN-af3 signaling, we found no resorptions (Figure 5B-D, group
234  3). In contrast, when IFN-A signaling was restored on both the fetal and maternal side, 30% of the
235 fetuses were resorbed and the remaining intact fetuses were significantly smaller than those from
236  uninfected pregnancies (Figure 5B-D, group 4). Moreover, pregnancies with maternal IFN-A
237  signaling had variable fetal outcomes (Figure 5D), both within and between pregnancies (Figure
238 5E). There were no differences in maternal spleen viral loads or transplacental transmission as
239  determined by qRT-PCR (Figure 5F-G). Since pregnancies with maternal IFN-A signaling
240 exhibited variable pathologic outcomes within litters, we asked whether this was influenced by
241  fetal sex. We determined fetal sex by PCR genotyping for Sry, a gene found on the Y
242  chromosome, and found that 40% of male fetuses were resorbed (20% of total implantations)
243  compared to 6% of female fetuses (3% of implantations) (Figure 5H). This raises the possibility
244  that IFN-A mediated outcomes could be driven by maternal immune rejection, as only male

245 fetuses are genetically distinct from the mother in congenic mouse pregnancies. Since
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Figure 5. Maternal IFN-A signaling induces fetal pathology. A. Mating and infection timeline. Wild-type,
Ifnar1”, and Ifnar1™ Ifnir1"- DKO mice were crossed to create pregnancies with differing IFN-A responsiveness
in maternal and fetal tissues, within dams lacking IFN-ap signaling. Pregnant dams were infected at E7 with
1000 FFU of ZIKV FSS13025 by subcutaneous inoculation in the footpad. Data are combined from 5 to 7 dams
per group. B. Representative images of the fetuses/resorptions from each cross. C. Intact fetuses (not resorbed)
were weighed. Fetuses with weights below one standard deviation of uninfected pregnancies were classified as
having IUGR. Significant differences between fetal groups are indicated by italicized letters and were calculated
by ANOVA. D. The percent of resorptions and IUGR in each pregnancy group. E. The percent of intact fetuses
in individual litters. F and G. ZIKV viral loads in fetal head and maternal spleen were measured by gRT-PCR. H.
The sex of resorptions and intact fetuses was determined by PCR. | and J. 10-week-old non-pregnant females
were infected with 1000 FFU of ZIKV FSS13025 by subcutaneous inoculation in the footpad. Viral loads in

serum (2, 4, 6 dpi) and tissues (6 dpi) were determined by qRT-PCR.

246 our
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247  results and prior studies (29) showed that IFN signaling can be pathogenic in the context of
248  congenital ZIKV infection, we considered whether IFN signaling might be detrimental during
249  pregnancy more generally. However, in analyzing ~17 months of breeding records from WT,
250  Ifnar1™, Ifnir1”-, and Ifnar1™ Ifnir1’- mice in our colony (>275 litters from >40 breeder cages) we
251 found no significant difference in litter size between the lines, supporting the idea that IFN
252  signaling during pregnancy is not detrimental outside an infection or other inflammatory context.
253  We found no difference in viremia or tissue viral loads between Ifnar1” and Ifnar1" Ifnlr1”- non-
254  pregnant females (Figure 5I-J), altogether indicating that the pathogenic effects of IFN-A at the
255  maternal-fetal interface are distinct from restricting viral replication systemically in the dam.

256

257  IFN-A pathogenic effects are mediated by leukocytes and decrease over gestational time

258 To determine whether IFN-A-mediated fetal pathology was specific to ZIKV infection, we assessed
259 the pathogenic effect of IFN-A signaling stimulated by poly(l:C). To determine which tissues
260  produced IFN in response to poly(l:C) treatment, we measured IFN-A and IFN- in serum, uterus,
261 lung, and spleen 24 hours post poly(l:C) treatment in pregnant and non-pregnant WT mice. We
262  detected IFN-A activity only in uteruses from pregnant mice (Figure 6A), while IFN- was detected
263 in tissues but not serum (Figure 6B), confirming that poly(l:C) treatment can induce IFN-A and
264  IFN-ap at the maternal-fetal interface. We next assessed the effect of poly(l:C)-treatment on fetal
265  pathology in Ifnir1*- and Ifnir1”- dams mated to WT sires. To investigate the possibility that IFN-A
266 mediated pathology resulted from maternal immune signaling, we also included dams lacking
267 IFN-A signaling in hemopoietic cells (Vav-Cre Ifnir1”, Figure S3) mated to WT sires. We
268 administered 200 ug of poly(l:C) by intraperitoneal injection to dams at E7, E9, or E11 and
269 assessed fetal outcome at E15 (Figure 6C). Consistent with our observations in ZIKV-infected
270  Ifnar1” dams, Ifnir1*- dams exhibited a 7.5-fold higher resorption rate compared to /fnir1”- dams

271  after poly(l:C) administration at E7 (31% vs 3%, Figure 6D-E). Vav-Cre Ifnir1” dams also had low
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Figure 6. IFN-A mediates fetal pathology through signaling in maternal leukocytes. A and B. WT dams
were mated to WT sires and treated with 200 pg of poly(l:C) at E7. Serum was collected by submandibular
bleed pre-treatment. 24 hours post-treatment, the uterus, spleen, and lung were harvested from pregnant and
non-pregnant mice. IFN-A activity was measured in a reporter cell assay and IFN- concentration by ELISA.
Filled circles represent pregnant mice. C. Experiment timeline. Ifnir1*-, Ifnlr1*, and leukocyte Ifnir1"- (Vav-Cre
Ifnir1-) dams were mated to WT sires. Pregnant dams were administered 200ug of poly(l:C) by intraperitoneal
injection at E7, E9, or E11 and fetuses were harvested at E15. D. Representative litters from E7-treated
pregnancies. Resorptions were counted (E) and intact fetuses were weighed (F).

272
273  rates of fetal resorption (3%), indicating that IFN-A mediated pregnancy pathology acts through

274  maternal immune cells. Accordingly, we found that decidualized human endometrial cells
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275  supported replication of ZIKV and RUBV and responded to IFN-B treatment but did not respond
276  to IFN-A treatment (Figure S4). Although IFN-A signaling induced resorptions, the weights of intact
277  fetuses were no different in poly(l:C)-treated dams compared to mock-treated, indicating that
278  poly(l:C) treatment does not induce an IUGR phenotype (Figure 6F). We also observed IFN-A
279  induced resorptions following poly(l:C) administration at E9 and E11 (Figure 6E), but the effect
280  was less pronounced compared to treatment at E7, consistent with a model where the pathogenic
281  effects of maternal IFN-A signaling are most severe earlier in gestation.

282

283 DISCUSSION

284  Our results show that IFN-A can have both protective and pathogenic effects during pregnancy
285 depending on gestational stage, but that both effects occur via signaling in maternal tissues. This
286 identifies a distinct role for IFN-A compared to IFN-a at the maternal-fetal interface as the
287  pathologic effects of IFN-aff act through signaling in fetal tissues in similar ZIKV congenital
288 infection models (29). The contrasting effects of maternal IFN-A signaling at different gestational
289  stages likely derive from differences in the physiology of the maternal-fetal interface over the
290 course of gestation, producing distinct outcomes when ZIKV infects the maternal-fetal interface
291  prior to placentation (maternal inoculation at E7) or after the placenta has formed (E9 inoculation).
292  We further showed that IFN-A mediated pathology is mediated by leukocytes after poly(l:C)
293  treatment. Because the maternal immune landscape varies over gestation, IFN-A may signal to a
294  leukocyte population that diminishes or changes as pregnancy progresses.

295 Since IFN-A is constitutively secreted from human trophoblasts and these cells are
296 refractory to replication by a wide array of viruses and other infectious agents (32-34), we had
297  expected IFN-A to restrict ZIKV transplacental transmission by signaling on placental trophoblasts
298 and inducing a cell-intrinsic antiviral response. Instead, we found that IFN-A antiviral activity was
299  mediated through signaling in maternal tissues. Importantly, pregnant and non-pregnant Ifnir1"-

300 mice showed no differences in viral loads in peripheral tissues (serum, spleen), consistent with
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301 prior studies with other flaviviruses (35, 36) and excluding that enhanced ZIKV transplacental
302 transmission is due to enhanced viral replication and spread in maternal tissues. The mechanism
303 by which maternal IFN-A signaling restricts ZIKV transplacental transmission remains unclear, but
304 could include antiviral activity in the uterine decidua, or immunomodulatory effects on maternal
305 leukocytes, such as decidual NK cells, Tregs, neutrophils or dendritic cells. We did not observe
306 IFN-A responsiveness in a human decidualized endometrial cell line, but decidual cells respond
307 to IFN-A in other human cell culture models, including explants and organoids (8, 9). Differences
308 indecidual responsiveness have been noted from cell models taken at different times in gestation
309 (37) and could explain the lack of IFN-A responsiveness we observed in a decidual cell line.
310 Although we did not find a role for fetal IFN-A signaling, human placental models do respond to
311 IFN-Ain culture. Differences in placental IFN-A responsiveness could be due to variations in the
312 mouse and human placentas. Although both are discoid and hemochorial, mouse and human
313 placentas have distinct trophoblast lineages which include trophoblast giant cells and a second
314  layer of syncytiotrophoblasts in mice and extravillous trophoblasts in humans (31).

315 In contrast to the protective effect of IFN-A that we observed later in gestation, IFN-A
316 signaling enhanced transplacental transmission in mice infected at E7. We attribute this enhanced
317 transmission to pathogenic effects of IFN-A signaling on the placental barrier which is not yet fully
318 formed at this stage of gestation. Remarkably, these pathogenic effects were mediated
319 exclusively by IFN-A signaling in maternal tissues, similar to the protective effects of IFN-A.
320 Interestingly, the pathogenic effects of IFN-A did not require ZIKV infection, as we could elicit a
321  similar phenotype by treating pregnant dams with poly(l:C). We found that rates of IFN-A mediated
322 pathology decreased when poly(l:C) was administered later in gestation. Congenital viral
323 infections also produce fetal pathology with gestational stage-dependent effects in humans:
324  congenital rubella syndrome almost entirely results from infection in the first trimester and ZIKV
325 and human cytomegalovirus (HCMV) infections early in pregnancy likewise produce the most

326  severe outcomes, although ZIKV and HCMV can be deleterious throughout pregnancy (1). Our
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327 findings emphasize the importance of studying congenital infections and immune responses at
328  different gestational stages. One limitation of this study is that it does not include infections at
329 time points following placentation, so it remains to be determined how IFN-A affects pregnancies
330 late in gestation. Furthermore, congenital infections can result from both transplacental spread
331 and ascending infection from the vagina. The immunologic and anatomical barriers to ascending
332 infection are different from those to transplacental infection, so IFN-A could have distinct effect
333  based on the route of infection.

334 We found that fetuses were protected from resorption when IFN-A signaling was ablated
335 only in hematopoietic cells, indicating that IFN-A pathogenic effects result from signaling in
336 maternal leukocytes. Since IFN-A mediated pathology depends on gestational stage, IFN-A may
337 act through particular leukocytes present earlier in gestation that diminish over time. Early in
338 gestation, 40% of the maternal decidua is made up of leukocytes including NK cells,
339 macrophages, and Tregs (2). These populations change over the course of gestation and play a
340 critical role in mediating placental invasion and spiral artery formation. IFN-A signals to several of
341 these cell types in contexts outside of pregnancy (38) and potentially could disturb the immune
342  balance necessary for proper placentation. Multiple distinct subsets of macrophages have been
343 identified in the maternal decidua, and imbalance between macrophages subtypes is associated
344  with adverse pregnancy outcomes (39, 40). IFN-A changes the transcriptional profile and
345 increases pro-inflammatory phenotypes of monocytes differentiated into macrophages in culture
346 (41, 42). Macrophages skew towards a M2 phenotype as pregnancy progresses and IFN-A could
347 increase proportions of M1 macrophages, potentially leading to inflammation and fetal rejection.
348 Placentas harvested from ZIKV-infected rhesus macaques have more monocytes and
349 macrophages than those from uninfected animals, as well as changes in the proportions of
350 monocyte subsets (43). Although a function for neutrophils at the maternal-fetal interface has not
351  been well defined, mouse neutrophils do respond to IFN-A. However, IFN-A has anti-inflammatory

352  activity in these contexts and is associated with reductions in inflammatory pathology during
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353 influenza infection as well as rheumatoid arthritis (44, 45). Further research focusing on identifying
354 the specific maternal cell types that respond to IFN-A signaling will enhance our understanding of
355 the mechanisms underlying IFN-A-mediated fetal pathology.

356 We found a striking sex difference in IFN-A mediated pathology, with male fetuses
357  exhibiting significantly higher resorption rates than female fetuses. This observation is consistent
358 with immune-mediated rejection, as only male fetuses are genetically distinct from the dam in
359 these congenic pregnancies. Immunity at the maternal-fetal interface is carefully regulated to
360 prevent non-self-rejection of the fetus, and includes mechanisms that downregulate NK cell
361 cytotoxicity and recognition of non-self-tissues (2). Modeling congenital infection in semi-
362 allogeneic pregnancies will provide further insight into the role of IFN-A signaling in changes to
363 maternal immune tolerance.

364 Although IFN-A is best-characterized for its protective activity in the context of viral
365 infections, particularly in the respiratory and gastrointestinal tracts (5), IFN-A signaling also is
366 associated with deleterious effects in some other contexts. IFN-A contributes to impaired tissue
367 repair following respiratory and gastrointestinal infections in mice (46—48). In humans, multiple
368 polymorphisms in the IFN-A locus are associated with clinical outcomes from hepatitis C virus
369 (HCV) infection (49). Among these, a frameshift mutation in the promoter of IFNL4 results in the
370 loss of IFN-AM4 production and concomitant improved clearance of HCV as well as other
371  gastrointestinal and respiratory infections though the mechanism by which the loss of an IFN
372  results in an improved antiviral response remains unclear (50, 51). The pseudogenization of IFN-
373 M, along with selection for lower-potency variants, suggest IFN-A4 signaling has been deleterious
374  during human evolution (52, 53). In mice, the IFN-A family consists only of IFN-A2 and IFN-A3 as
375 IFN-A is a pseudogene and the genomic region encoding IFN-A4 is absent (54, 55), which limits
376  some comparisons of the effects of IFN-A in mice and humans.

377 Our observations of a pathogenic effect of IFN-A signaling at the maternal-fetal interface

378 bear some similarity to the pathogenic effects of IFN-af in pregnancy, though notably in mouse
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379 models of congenital ZIKV infection IFN-af is pathogenic when it signals to fetal tissues (29)
380 whereas we find that IFN-A acts through signaling in maternal tissues. Women with dysregulated
381 IFN-af signaling (sustained IFN production or impaired receptor downregulation) exhibit poor
382  pregnancy outcomes including pre-eclampsia as well as neurodevelopmental defects similar to
383 those induced by congenital infection, consistent with a role for dysregulated IFN-af3 responses
384 in placental damage (56—60). Whether dysregulated IFN-A signaling exerts similar effects during
385 human pregnancy remains to be determined.

386 Altogether, these findings identify an unexpected effect of IFN-A signaling specifically in
387 maternal (rather than placental or fetal) tissues, which is distinct from the pathogenic effects of
388 IFN-af during pregnancy. These results highlight the complexity of immune signaling at the
389 maternal-fetal interface, where disparate outcomes can result from signaling at different
390 gestational stages.

391

392 MATERIALS AND METHODS

393 Viruses

394  Virus stocks were grown in Vero cells in Dulbecco’s modified Eagle medium (DMEM) containing
395 5% fetal bovine serum (FBS), L-glutamine, and HEPES at 37°C with 5% CO,. ZIKV strain
396 FSS13025 (Cambodia 2010) was obtained from the World Reference Center for Emerging
397 Viruses and Arboviruses (61). ZIKV strains PRVABCS59 (Puerto Rico 2015) and H/PF/2013
398 (French Polynesia 2013) were obtained from U.S. CDC (62, 63). Rubella virus strain M33 was
399 obtained from Dr. Michael Rossmann, Purdue University (64). DENV4 (TVP-360) was obtained
400 from Dr. Aravinda DeSilva, UNC Chapel Hill. Virus stock titer was quantified by focus-forming
401 assay on Vero cells (65). Viral foci were detected using 500 ng/mL of anti-flavivirus mouse
402 monoclonal antibody E60 (66) or 1:1000 dilution of goat anti-RUBV antibody (Lifespan
403  Biosciences LC-C103273/39321), 1:5000 dilution of an HRP conjugated goat anti-mouse IgG

404  (Sigma #A8924) or 1:5000 dilution of an HRP conjugated rabbit anti-goat (Sigma #A5420), and
21
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405 TrueBlue peroxidase substrate (KPL). Antibody incubations were performed overnight at 4°C.
406  Foci were counted on a CTL Immunospot analyzer.

407 Mice

408  All experiments and husbandry were performed under the approval of the University of North
409  Carolina at Chapel Hill Institutional Animal Care and Use Committee. Experiments used 8-20-
410 week-old female mice on a C57BL/6 background. Wild-type mice were obtained commercially
411  (Jackson labs 000664) or bred in-house. Ifnar1”- and Ifnar1”Ifngr1”- mice were obtained from Dr.
412  Jason Whitmire (UNC) then bred in-house. Ifnir1’- mice were provided by Dr. Herbert Virgin
413  (Washington University in St. Louis), generated by crossing /fnir1"" mice with mice constitutively
414  expressing Cre recombinase under a CMV promoter (67); these mice were then bred in-house
415  as knockout x knockout (36);. Ifnar1”’- Ifnir1’- DKO mice were generated by crossing /fnir1”- and
416  Ifnar1’ mice. Ifnir1*- mice were generated by crossing /fnir1"- and wild-type mice. Vav-Cre Ifnir1-
417  ” mice were generated by crossing /fnlr1"" mice with mice expressing Cre recombinase under the
418  Vav promoter (Jackson labs 008610) and bred as Cre hemizygotes with Cre maintained on the
419 female breeder.

420 Mouse Experiments

421 Timed pregnancies were set up by exposing females to soiled male cage bedding for 3 days to
422  promote estrus, then housing single pairs of male and female mice overnight (EQ), and separating
423  males and females the next morning (E1). Mice were infected by a subcutaneous route in the
424  footpad with 1000 FFU of ZIKV in 50uL. Wild-type, Ifnlr1*", and Ifnlr1”- mice were administered 2
425 mg of anti-IFNAR1-blocking antibody MAR1-5A3 by intraperitoneal injection (26). For viral load
426  experiments in non-pregnant mice, blood was collected at 2 or 4 days post-infection (dpi) by
427  submandibular bleed, or at 6 dpi by cardiac puncture into serum separator tubes (BD) and serum
428 was separated by centrifugation in a microfuge at 8,000 RPM for 5 minutes. Spleen, brain, and
429  uterus were collected 6 dpi following perfusion with 20 mL of PBS. For weight loss and survival

430 experiments, mice were weighed each day following infection. Pregnant mice were sacrificed at
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431  E15 (6 or 8 dpi). Maternal blood was collected by cardiac puncture in serum separator tubes (BD),
432  and serum was separated by centrifugation in a microfuge at 8,000 RPM for 5 minutes. Dams
433  were perfused with 20 mL of PBS then fetal heads, fetal bodies, and their associated placentas,
434  as well as maternal spleen and brain were collected. Fetal tissues were weighed, and total fetal
435  weight was determined by combining fetal head and body weights. Photographs of fetuses and
436  uteruses were taken at time of harvest, and crown rump length was measured using ImageJ (68).
437  For poly(l:C) experiments, 200 pg of low molecular weight poly(I:C) (InvivoGen tirl-picw) was
438 administered by intraperitoneal injection at the indicated days following mating. At E15, pregnant
439  dams were sacrificed, whole fetuses and their associated placentas were collected and weighed.
440 Implantations with no discernable placentas or fetuses were classified as resorptions.

441 RUBV mouse experiments

442  Ifnar1™”, Ifnir1”, Ifnar1” Ifngr1”- DKO, and wild-type mice were inoculated with 1,000 or 1x10° FFU
443  of RUBV by subcutaneous injection in the footpad or intranasal administration. Weights were
444  monitored for 14 dpi. For viral load experiments, serum and whole blood were harvested 2, 4, and
445 7 dpi by submandibular bleed into serum separator tubes (BD) and serum was separated by
446  centrifugation in a microfuge at 8,000 RPM for 5 minutes. Mice were sacrificed at 7 dpi, perfused
447  with 20 mL of PBS, then spleens, lung, and brains were harvested.

448  Viral Loads

449  Tissues were homogenized in 600 uL of PBS using a MagNA Lyser (Roche), then 150 uL of
450 homogenate was added to an equal volume of buffer RLT (Qiagen) for RNA extraction. Viral RNA
451  was extracted using a Qiagen RNeasy kit (tissues) or Qiagen viral RNAmini kit (serum). ZIKV
452 RNA was detected by Tagman one-step qRT-PCR using primer probe set: forward-
453 CCGCTGCCCAACACAAG; reverse CCACTAACGTTCTTTTGCAGACAT; probe56-
454 FAM/AGCCTACCT/ZEN/TGACAAGCAATCAGACACTCAA/3IABKFQ on a BioRad (CFX96)
455  using standard cycling conditions. ZIKV genome copies/mL were determined compared to a ZIKV

456  standard curve of 100-fold dilutions of ZIKV-A plasmid (69), or 100 fold dilutions of RNA extracted
23
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457  from viral stock. RUBV viral loads were determined compared to a standard curve made from
458  100-fold dilutions of RNA isolated from virus stock.

459  IFN-A activity assay

460 Tissue homogenates and serum were diluted 1:4 in PBS and 20uL was added to 96 well plates.
461 HEK-Blue IFN-A reporter cells (InvivoGen) were then suspended at a concentration of 2.8x10°
462  cells/mL in DMEM supplemented with 1ug/mL Puromycin, 10ug/mL Blasticidin, and 100ug/mL
463  Zeocin. The HEK-Blue IFN-A cell suspension was then added to each well of diluted tissue
464  samples and incubated at 37C° for 24h. Then 20uL of the culture media was added to QUANTI-
465  Blue substrate (InvivoGen) for 1.5hr and absorbance was measured at 620nm (bio-tek, epoch).
466  Absorbance readings were converted to concentration using a standard curve of 10-fold serial
467  dilutions of hIFN-A2 (PBL11820-1) starting at 2500ng/mL, which was run concurrently with tissue
468 samples.

469 IFN-B ELISA

470  Tissues were homogenized in 600uL of PBS using a MagNA Lyser (Roche). Tissue and serum
471  samples were loaded directly onto ELISA plates according to protocol (Biolegend 439407 Legend
472  Max Mouse IFN-B ELISA kit). Absorbance was read at 450nm (bio-tek, epoch).

473  Genotyping

474  Ifnir1 and Sry (fetal sex) genotypes were determined by PCR on fetal head RNA samples (which
475  contain co-purified genomic DNA), or on DNA extracted from maternal blood and tail samples
476 using the Quantabio supermix and previously described primers: Ifnlr1  F45-
477 AGGGAAGCCAAGGGGATGGC-3, R15-AGTGCCTGCTGAGGACCAGGA-3, R25-
478 GGCTCTGGACCTACGCGCTG-3) (67), Sry F5-TTGTCTAGAGAGCATGGAGGGCCAT-3 and
479 R5-CCACTCCTCTGTGAC ACTTTAGCCCT-3' (70).

480 Viral replication and IFN response assays

481 Human endometrial stromal cells (HESC-T) were obtained from Dr. David Aronoff (Vanderbilt

482  University). HESC-T were decidualized by culturing cells with 0.5 mM 8-Bromo-cAMP (Sigma
24
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483 B5386), 1 uM medroxyprogesterone acetate (MPA, Sigma M1629), 10 nM 17b-estradiol-acetate
484  (estrogen E2, Sigma E7879) for 5 days as originally described (71). Cells were plated at 500,000
485  cells/well in 6 well plates and infected at an MOI of 1 with ZIKV (H/PF/2013), DENV4 (TVP-360),
486  or RUBV (M33) in 300uL/well. Supernatant was collected at 4, 24, 48, and 72 hours post-infection,
487  and titered by focus forming assay as described above. A549, JEG3, HTR8, and decidualized
488 HESC-Ts were treated with 50ng/mL IFN-A (PBL11820-1) or 5ng/mL IFN-B (PBL11420-1), or
489 infected with ZIKV (H/PF/2013) or DENV4 (TVP-360) at an MOI of 1. After 24 hours, RNA was
490 extracted from cell lysates (Qiagen RNeasy kit) and IFIT1 expression was measured by gqRT-PCR
491  (IDT Assay ID Hs.PT.561.20769090.9).

492  Statistics

493  All statistics were performed using GraphPad Prism. Significant differences in fetal weights, viral
494  loads with standard distributions (maternal spleens, placentas), and placental IFN-A levels were
495 assessed by ANOVA. Significant differences in fetal-head viral loads were calculated by Mann-
496  Whitney.
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729 FIGURE LEGENDS

730  Figure 1. Infection earlier in gestation corresponds to enhanced fetal pathology in mouse
731 models of congenital ZIKV infection. A-B. Non-pregnant 8-10 week old female Ifnar1’- mice
732 (5-6 mice per group) were infected with 1000 FFU of ZIKV strain PRVABC59, FSS13025, or
733  H/PF/2013; weights and survival were measured daily for 14 days. Each line represents an
734  individual mouse. C-K. Dams from WT x WT or Ifnar1” x Ifnar1’- crosses (6 to 8 WT or 4 to 5
735  Ifnar1’ dams per group) were infected at day 7 or 9 post-mating (E7, E9) with ZIKV FSS13025
736 by subcutaneous inoculation in the footpad. WT dams were given 2mg of anti-IFNAR1 blocking
737  mAb intraperitoneally one day prior to infection. Tissues were harvested at E15 (8 or 6dpi). D-F.
738  ZIKV viral loads in the maternal spleen, placenta, and fetal head were measured by qRT-PCR.
739  Each data point represents one dam (D) or fetus (E-F). The percent of ZIKV-positive fetal heads
740 is indicated above each group. G. Representative images of fetuses/resorptions from one
741  pregnancy from each cross. H. Intact fetuses (i.e. not resorbed) were weighed. Fetuses <1

742  standard deviation from the mean of mock-infected (below dotted line) were classified as having
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743  intrauterine growth restriction (IUGR). Intact fetuses with weights significantly different from mock
744  pregnancies (calculated by ANOVA) are indicated, **** P<0.0001. I. Proportions of fetuses
745  exhibiting IUGR or resorption.

746

747  Figure 2. IFN-A is produced at the maternal-fetal interface. A. Placentas were harvested from
748  uninfected pregnant dams at E11 (1 dam), E13 (1 dams), E15 (5 dams), E17 (3 dams), and during
749  labor (3 dams). Placentas were homogenized in PBS, and IFN-A activity in placental homogenate
750 was determined using a reporter cell line. B. Pregnant WT dams (treated with an anti-IFNAR1
751  blocking mAb, 6 or 8 dams per group) or pregnant /fnar1’- dams (4 or 5 dams per group) were
752 infected at either E7 or E9 with ZIKV FSS13025. Placentas were homogenized in PBS, and IFN-
753 A activity in placental homogenate was determined using a reporter cell line.

754

755  Figure 3. IFN-A restricts ZIKV transplacental transmission by signaling to maternal tissues.
756  A. Mating and infection timeline. Ifnlr1*- dam x Ifnir1"- sire and Ifnlr1"- dam x Ifnilr1*" sire crosses
757  were used to generate pregnancies with IFN-A responsive (/fnlr1*"-) and non-responsive (/fnir17)
758 fetuses. B-E. Pregnant dams were treated with 2mg of IFNAR1 blocking antibody at E8 and
759 infected at E9 with 1000 FFU of ZIKV FSS13025 by subcutaneous inoculation in the footpad.
760  Fetuses and their associated placentas were harvested at E15. ZIKV RNA was measured by qRT-
761 PCR in maternal spleen (B), placenta (C), and fetal head (D) and fetuses were weighed (E). The
762  percent of fetuses with detectable ZIKV is noted (D). Data are combined from 5 or 6 dams per
763  group; each data point represents a single dam (B) or fetus (C-E). Groups were compared by
764  ANOVA (B, C, E) or Mann-Whitney (D); italicized letters indicate groups that are significantly
765  different each other (P < 0.05). F and G. Non-pregnant, 8-week old I/fnir1’- and Ifnir1*- females
766  were infected with 1000 FFU of ZIKV FSS13025. Viremia was measured from serum at 2, 4, and
767 6 dpi by gqRT-PCR. Spleens and brains were harvested 6 dpi, and viral loads were measured by

768 qRT-PCR. Groups were not significantly different (ns) by ANOVA.
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769

770  Figure 4. IFN-A enhances fetal infection early in gestation through signaling to maternal
771  tissues. A. Mating and infection timeline. Ifnir1*- dam x Ifnlr1’- sire and Ifnir1”- dam x Ifnir1*" sire
772  crosses were treated with 2mg of anti-IFNAR1 mAb at E6 and infected at E7 with 1000 FFU of
773  ZIKV FSS13025 by subcutaneous inoculation in the footpad. Fetuses and their associated
774  placentas were harvested at E15. B-D. ZIKV RNA in the maternal spleens, placenta, and fetal
775 head were measured by qRT-PCR. E. Gross fetal pathology was measured by fetal weight.
776  Significant differences are denoted by italicized letters, calculated by ANOVA (B, C, E) or Mann-
777  Whitney (D). Data are combined from 5 or 6 dams per group; each data point represents a single
778 dam (B) or fetus (C-E).

779

780  Figure 5. Maternal IFN-A signaling induces fetal pathology. A. Mating and infection timeline.
781  Wild-type, Ifnar1”, and Ifnar1” Ifnir1”- DKO mice were crossed to create pregnancies with differing
782  IFN-A responsiveness in maternal and fetal tissues, within dams lacking IFN-af3 signaling.
783  Pregnant dams were infected at E7 with 1000 FFU of ZIKV FSS13025 by subcutaneous
784  inoculation in the footpad. Data are combined from 5 to 7 dams per group. B. Representative
785  images of the fetuses/resorptions from each cross. C. Intact fetuses (not resorbed) were weighed.
786  Fetuses with weights below one standard deviation of uninfected pregnancies were classified as
787  having IUGR. Significant differences between fetal groups are indicated by italicized letters and
788  were calculated by ANOVA. D. The percent of resorptions and IUGR in each pregnancy group.
789  E. The percent of intact fetuses in individual litters. F and G. ZIKV viral loads in fetal head and
790 maternal spleen were measured by qRT-PCR. H. The sex of resorptions and intact fetuses was
791  determined by PCR. I and J. 10-week-old non-pregnant females were infected with 1000 FFU of
792  ZIKV FSS13025 by subcutaneous inoculation in the footpad. Viral loads in serum (2, 4, 6 dpi) and
793  tissues (6 dpi) were determined by qRT-PCR.

794
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795  Figure 6. IFN-A mediates fetal pathology through signaling in maternal leukocytes. A and
796 B. WT dams were mated to WT sires and treated with 200 pg of poly(l:C) at E7. Serum was
797  collected by submandibular bleed pre-treatment. 24 hours post-treatment, the uterus, spleen, and
798 lung were harvested from pregnant and non-pregnant mice. IFN-A activity was measured in a
799 reporter cell assay and IFN-f3 concentration by ELISA. Filled circles represent pregnant mice. C.
800  Experiment timeline. Ifnir1™”, Ifnlr1”, and leukocyte Ifnir1” (Vav-Cre Ifnlr1”") dams were mated to
801  WT sires. Pregnant dams were administered 200ug of poly(l:C) by intraperitoneal injection at E7,
802 E9, or E11 and fetuses were harvested at E15. D. Representative litters from E7-treated
803 pregnancies. Resorptions were counted (E) and intact fetuses were weighed (F).

804

805 SUPPLEMENTAL DATA

806

807 Supplemental Figure 1. Fetal pathology as assessed by crown-rump length. A. Crown-rump
808 length (CRL) of intact fetuses (i.e. not resorbed) from Figure 1 was measured using ImageJ.
809 Fetuses <1 standard deviation from the mean of mock-infected (below dotted line) were classified
810 as having intrauterine growth restriction (IUGR). Intact fetuses with CRLs significantly different
811 from mock pregnancies (calculated by ANOVA) are indicated **** P<0.0001, ** P<0.01 B.
812  Proportions of fetuses exhibiting IUGR or resorption.

813

814  Supplemental Figure 2. Rubella virus does not cause pathology in mice. A and B. 8- or 5-
815  week-old male and female WT, Ifnir1”, or Ifnar1” mice were infected with 1000 FFU or 100,000
816 FFU of RUBV by subcutaneous inoculation in the footpad (FP) or intranasal inoculation (IN).
817  Weight was monitored for 14 days post-infection and is shown as the mean + SEM of the indicated
818 number of mice per group. C and D. 5-week-old Ifnar1” Ifngr1”- DKO mice were infected
819 intravenously with 100,000 FFU of RUBV. Whole blood and serum were collected 2, 4, and 7 dpi

820 and tissues were harvested 7 dpi. Viral loads were determined by qRT-PCR.
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Supplemental Figure 3. Validation of Vav-cre conditional knockouts. Tails and whole blood
were collected from Ifnir1™ Ifnir1”", and Vav-Cre Ifnir1”-mice and Ifnir1 genotype determined by

PCR. Knockout band: 564bp, floxed band: 415bp.

Supplemental Figure 4. Decidual cell lines are permissive to viral infection, but do not
respond to IFN-A. A. Immortalized human endometrial stromal cells (T-HESC) were decidualized
(+) or left undifferentiated (-). Decidualized and non-decidualized cells were infected with DENV-
4, ZIKV (strain H/PF/2013), or RUBV at an MOI of 1. Supernatants were harvested at 4, 24, 48,
and 72hpi and titered by FFA. B. Lung epithelial (A549), placental (JEG3, HTR8), and
decidualized human endometrial stromal cells (T-HESC) were treated with IFN-A (50 ng/mL) or
IFN-B (5 ng/mL), or infected with ZIKV (strain H/PF/2013) or RUBV at an MOI of 1. RNA was

isolated from cells 24 hours after treatment, and /IF/T1 induction was measured by qRT-PCR.
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Supplemental Figure 1
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Supplemental Figure 1. Fetal pathology as assessed
by crown-rump length. A. Crown-rump length (CRL) of
intact fetuses (i.e. not resorbed) from Figure 1 was
measured using Imaged. Fetuses <1 standard deviation
from the mean of mock-infected (below dotted line) were
classified as having intrauterine growth restriction
(IUGR). Intact fetuses with CRLs significantly different
from mock pregnancies (calculated by ANOVA) are
indicated **** P<0.0001, ** P<0.01 B. Proportions of
fetuses exhibiting IUGR or resorption.
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Supplemental Figure 2. Rubella virus does not cause pathology in
mice. A and B. 8- or 5-week-old male and female WT, Ifnir1*, or Ifnar1--
mice were infected with 1000 FFU or 100,000 FFU of RUBV by
subcutaneous inoculation in the footpad (FP) or intranasal inoculation
(IN). Weight was monitored for 14 days post-infection and is shown as
the mean £ SEM of the indicated number of mice per group. C and D.
5-week-old Ifnar1” Ifngr1- DKO mice were infected intravenously with
100,000 FFU of RUBV. Whole blood and serum were collected 2, 4, and
7 dpi and tissues were harvested 7 dpi. Viral loads were determined by
gRT-PCR.
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Supplemental Figure 3. Validation of Vav-cre conditional knockouts.
Tails and whole blood were collected from Ifnir1™, Ifnir1", and Vav-Cre
Ifnirt* mice and Ifnir1 genotype determined by PCR. Knockout band:
564bp, floxed band: 415bp.
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Supplemental Figure 4. Decidual cell lines are permissive to viral infection, but
do not respond to IFN-A. A. Immortalized human endometrial stromal cells
(T-HESC) were decidualized (+) or left undifferentiated (-). Decidualized and
non-decidualized cells were infected with DENV-4, ZIKV (strain H/PF/2013), or
RUBV at an MOI of 1. Supernatants were harvested at 4, 24, 48, and 72hpi and
titered by FFA. B. Lung epithelial (A549), placental (JEG3, HTR8), and decidualized
human endometrial stromal cells (T-HESC) were treated with IFN-A (50 ng/mL) or
IFN-B (5 ng/mL), or infected with ZIKV (strain H/PF/2013) or RUBV at an MOI of 1.
RNA was isolated from cells 24 hours after treatment, and /FIT1 induction was
measured by qRT-PCR.
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