

1 **Interferon lambda signals in maternal tissues to exert protective and pathologic effects in**
2 **a gestational-stage dependent manner**

3

4 Running Title: IFN-λ signaling at the maternal-fetal interface

5

6 Rebecca L. Casazza^a, Drake T. Philip^a, Helen M. Lazear^{a, #}

7

8 ^aDepartment of Microbiology & Immunology, University of North Carolina at Chapel Hill

9

10 #Corresponding author: helen.lazear@med.unc.edu

11

12 Word count (Abstract): 194

13 Word count (Text): 5821

14

15 **ABSTRACT**

16 Interferon lambda (IFN- λ , type III IFN) is constitutively secreted from human placental cells in
17 culture and reduces Zika virus (ZIKV) transplacental transmission in mice. However, the roles of
18 IFN- λ during healthy pregnancy and in restricting congenital infection remain unclear. Here we
19 used mice lacking the IFN- λ receptor (*Ifnlr1*^{-/-}) to generate pregnancies lacking either maternal or
20 fetal IFN- λ responsiveness and found that the antiviral effect of IFN- λ resulted from signaling
21 exclusively in maternal tissues. This protective effect depended on gestational stage, as infection
22 earlier in pregnancy (E7 rather than E9) resulted in enhanced transplacental transmission of ZIKV.
23 In *Ifnar1*^{-/-} dams, which sustain robust ZIKV infection, maternal IFN- λ signaling caused fetal
24 resorption and intrauterine growth restriction. Pregnancy pathology elicited by poly(I:C) treatment
25 also was mediated by maternal IFN- λ signaling, specifically in maternal leukocytes, and also
26 occurred in a gestational stage-dependent manner. These findings identify an unexpected effect
27 of IFN- λ signaling specifically in maternal (rather than placental or fetal) tissues, which is distinct
28 from the pathogenic effects of IFN- $\alpha\beta$ (type I IFN) during pregnancy. These results highlight the
29 complexity of immune signaling at the maternal-fetal interface, where disparate outcomes can
30 result from signaling at different gestational stages.

31

32 **IMPORTANCE**

33 Pregnancy is an immunologically complex situation, which must balance protecting the fetus from
34 maternal pathogens with preventing maternal immune rejection of non-self fetal and placental
35 tissue. Cytokines, such as interferon lambda (IFN- λ), contribute to antiviral immunity at the
36 maternal-fetal interface. We found in a mouse model of congenital Zika virus infection that IFN- λ
37 can have either a protective antiviral effect or cause immune-mediated pathology, depending on
38 the stage of gestation when IFN- λ signaling occurs. Remarkably, both the protective and
39 pathologic effects of IFN- λ occurred through signaling exclusively in maternal immune cells, rather

40 than in fetal or placental tissues, or in other maternal cell types, identifying a new role for IFN- λ at
41 the maternal-fetal interface.

42

43 INTRODUCTION

44 Immune regulation at the maternal-fetal interface is complex due to conflicting immunological
45 objectives: protection of the fetus from maternal pathogens, and prevention of immune-mediated
46 rejection of the semi-allogeneic fetus and placenta. The few pathogens able to surmount the
47 placental barrier and cause congenital infections include Zika virus (ZIKV), rubella virus (RUBV),
48 and human cytomegalovirus (1). The mechanisms by which pathogens are excluded from the
49 fetal compartment are not fully understood, and it is unclear how antiviral activity at the maternal-
50 fetal interface affects tolerogenic immunity. Moreover, pregnancy encompasses multiple
51 developmental stages including implantation, fetal growth, and parturition, each with unique
52 immunologic requirements (2–4). Because the physiology and immunology of the placenta
53 change over gestation, there likely are distinct antiviral mechanisms at each stage of pregnancy.

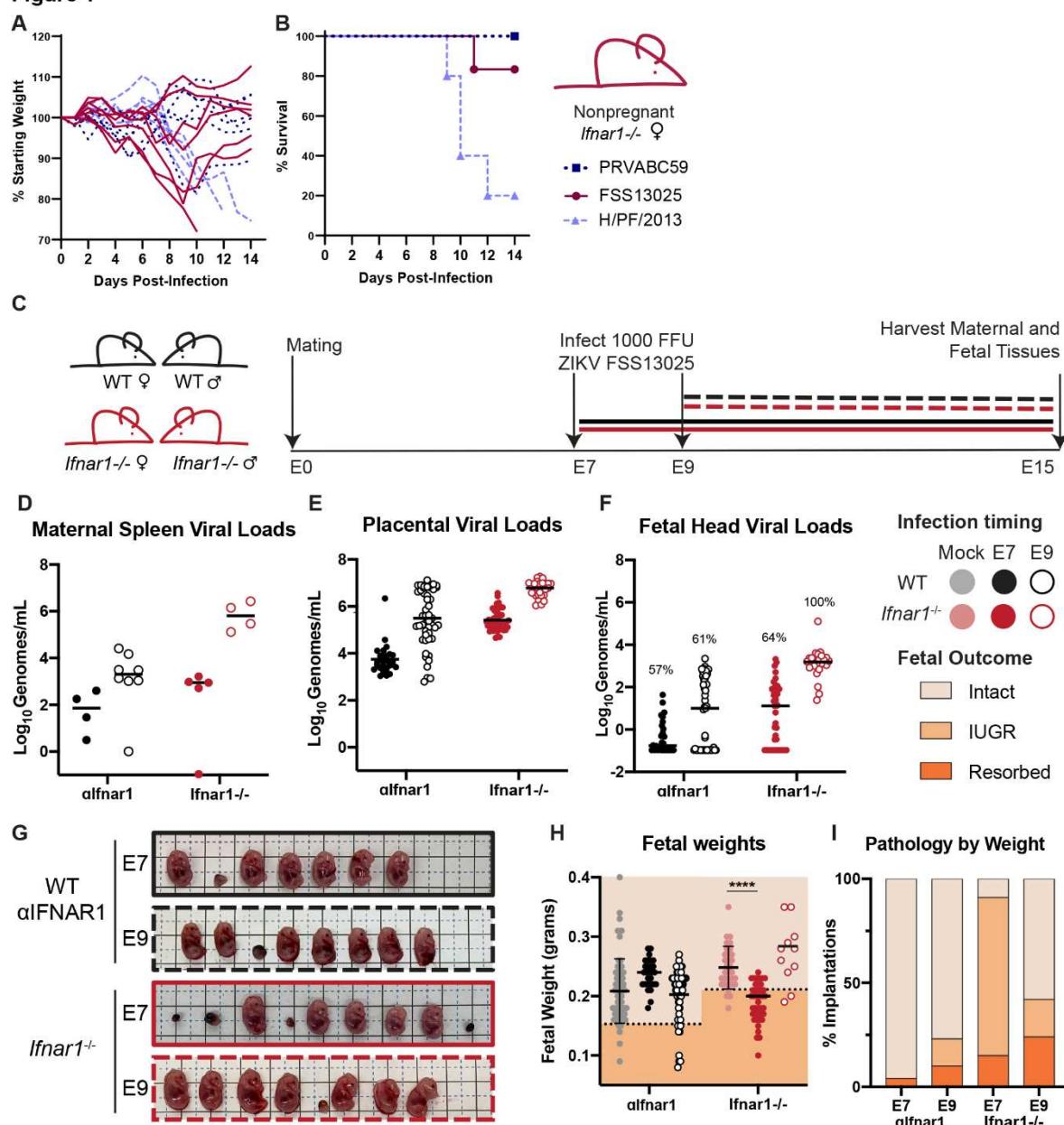
54 The need to balance protective and pathogenic immunity is not unique to the maternal-
55 fetal interface: epithelial surfaces such as the gastrointestinal and respiratory tracts encounter
56 microbes and must provide protection from pathogens without inflicting inflammatory damage.
57 Interferon lambda (IFN- λ , type III IFN) is a cytokine that elicits a similar antiviral transcriptional
58 response as type I IFNs (IFN- $\alpha\beta$), but signals through a distinct heterodimeric receptor comprised
59 of IFNLR1 and IL10RB. (5). The IFN- λ receptor is predominantly expressed on epithelial cells and
60 consequently confers antiviral protection at barrier surfaces including the gastrointestinal and
61 respiratory tracts. IFN- λ is secreted constitutively from human mid-gestation and term placental
62 explants and trophoblasts cultured ex vivo, human trophoblast organoids, and in human placental
63 cell lines syncytialized in culture (6–8). In a mouse model of congenital ZIKV infection, IFN- λ
64 restricted transplacental transmission, as fetuses from *Ifnlr1*^{-/-} pregnancies (*Ifnlr1*^{-/-} x *Ifnlr1*^{-/-})
65 sustained higher fetal and placental viral loads than those from wild-type pregnancies (9).

66 However, the mechanism by which IFN-λ protects against viral infection at the maternal-fetal
67 interface has not been defined.

68 The 2015-2016 ZIKV outbreak throughout Latin America and the Caribbean revealed that
69 ZIKV infection during pregnancy can produce a spectrum of adverse fetal and neonatal outcomes
70 (collectively referred to as congenital Zika syndrome) including microcephaly, intrauterine growth
71 restriction (IUGR), placental insufficiency, vision and hearing loss, as well as miscarriage and
72 stillbirth (10, 11). Infants born without overt congenital Zika syndrome also can have cognitive or
73 functional deficits that become evident later in infancy or childhood (12–14). Mouse models of
74 ZIKV congenital infection have been developed to test vaccines and antivirals as well as to define
75 ZIKV pathogenic mechanisms and antiviral immunity at the maternal-fetal interface (15–17).
76 Aspects of ZIKV fetal pathogenesis are recapitulated in mouse models and include fetal loss,
77 IUGR, fetal brain infection, placental pathology, and neurologic defects. The outcomes of
78 congenital ZIKV infection usually are more severe when infection occurs earlier in gestation in
79 both mice (9, 15, 18) and humans (Brady et al., 2019; Hoen et al., 2018; Honein et al., 2017;
80 Ospina et al., 2020). Although there are differences between mouse and human pregnancy (23),
81 mice provide a genetically tractable system to study antiviral and placental immunity at distinct
82 gestational timepoints.

83 Here we used mouse models of congenital ZIKV infection to determine the targets of IFN-
84 λ signaling by infecting pregnancies that lacked IFN-λ signaling (*Ifnlr1*^{-/-}) in maternal and/or fetal
85 tissues. When we infected at embryonic day 9 (E9), we observed that IFN-λ signaling in maternal
86 tissues protected against transplacental ZIKV transmission. Surprisingly, IFN-λ had a deleterious
87 effect when pregnancies were infected two days earlier at E7, with IFN-λ responsive dams
88 exhibiting higher rates of ZIKV transmission as well as overt pathology and fetal resorption. This
89 effect was not specific to ZIKV as we also found that maternal IFN-λ signaling increased rates of
90 fetal loss after poly(I:C) treatment and that this pathology similarly was dependent on gestational
91 age at the time of administration. These findings identify an unexpected effect of IFN-λ signaling

92 specifically in maternal (rather than placental or fetal) tissues and highlight the complexity of
93 immune signaling at the maternal-fetal interface, where disparate outcomes can result from
94 signaling at different gestational stages.


95

96 RESULTS

97 *ZIKV congenital infection is exacerbated earlier in pregnancy and in *Ifnar1*^{-/-} dams*

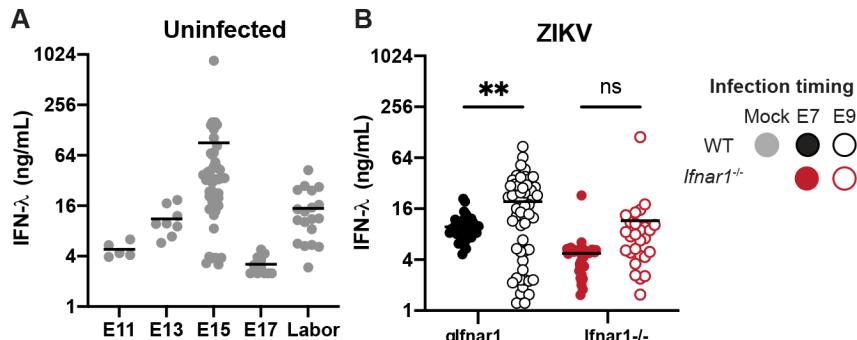
98 ZIKV replication in mice is restricted by the IFN response because ZIKV is unable to antagonize
99 mouse STAT2 (24, 25). Thus, mouse models of ZIKV pathogenesis typically employ mice lacking
100 IFN- $\alpha\beta$ signaling, usually through genetic loss of the IFN- $\alpha\beta$ receptor (*Ifnar1*^{-/-}) alone or in
101 combination with the IFN- γ receptor (*Ifnar1*^{-/-} *Ifngr1*^{-/-} DKO), or by treatment of wild-type mice with
102 an IFNAR1-blocking monoclonal antibody (MAR1-5A3) (26). Congenital ZIKV pathogenesis has
103 been studied in many different mouse models that vary in mouse genetic background, IFN
104 responsiveness, ZIKV strain, inoculation route, duration of infection, and gestational stage at
105 infection and harvest (27). To better define the conditions that produce transplacental
106 transmission and pathology, we evaluated gross pathology and fetal viral loads in pregnant *Ifnar1*^{-/-}
107 dams or wild-type dams treated with 2mg of MAR1-5A3 1 day prior to infection. To exclude fetal
108 pathology resulting from severe maternal morbidity, we first compared the virulence of three
109 Asian-lineage ZIKV strains in non-pregnant female 8-10 week-old *Ifnar1*^{-/-} mice infected with 1000
110 FFU of ZIKV by subcutaneous inoculation in the footpad (Figure 1A and B). We found that strain
111 H/PF/2013 was the most virulent, causing 80% lethality, whereas strain FSS13025 caused
112 modest weight loss in some mice and only 20% lethality, and strain PRVABC59 caused no weight
113 loss or lethality, altogether consistent with prior

Figure 1

Figure 1. Infection earlier in gestation corresponds to enhanced fetal pathology in mouse models of congenital ZIKV infection. **A-B.** Non-pregnant 8-10 week old female *Ifnar1*^{-/-} mice (5-6 mice per group) were infected with 1000 FFU of ZIKV strain PRVABC59, FSS13025, or H/PF/2013; weights and survival were measured daily for 14 days. Each line represents an individual mouse. **C-K.** Dams from WT x WT or *Ifnar1*^{-/-} x *Ifnar1*^{-/-} crosses (6 to 8 WT or 4 to 5 *Ifnar1*^{-/-} dams per group) were infected at day 7 or 9 post-mating (E7, E9) with ZIKV FSS13025 by subcutaneous inoculation in the footpad. WT dams were given 2mg of anti-IFNAR1 blocking mAb intraperitoneally one day prior to infection. Tissues were harvested at E15 (8 or 6dpi). **D-F.** ZIKV viral loads in the maternal spleen, placenta, and fetal head were measured by qRT-PCR. Each data point represents one dam (D) or fetus (E-F). The percent of ZIKV-positive fetal heads is indicated above each group. **G.** Representative images of fetuses/resorptions from one pregnancy from each cross. **H.** Intact fetuses (i.e. not resorbed) were weighed. Fetuses <1 standard deviation from the mean of mock-infected (below dotted line) were classified as having intrauterine growth restriction (IUGR). Intact fetuses with weights significantly different from mock pregnancies (calculated by ANOVA) are indicated, **** P<0.0001. **I.** Proportions of fetuses exhibiting IUGR or resorption.

115 studies reporting the relative virulence of these strains in *Ifnar1^{-/-}* mice of various ages and
116 inoculation routes (Carbaugh et al., 2020; Lazear et al., 2016; Tripathi et al., 2017). We chose to
117 use strain FSS13025 for further experiments to achieve robust maternal infection without severe
118 maternal morbidity and because of its use in studies from other groups evaluating the role of IFN
119 signaling in congenital ZIKV infection (29). We infected pregnant dams with 1000 FFU of ZIKV
120 FSS13025 by subcutaneous inoculation in the footpad at E7 or E9 (Figure 1C) and measured
121 viral loads in the maternal spleen, placentas, and fetal heads at E15 (8 or 6 days post-infection
122 (dpi)), (Figure 1D-F). We observed higher viral loads in *Ifnar1^{-/-}* dams compared to WT dams
123 treated with MAR1-5A3, and viral loads were higher after infection at E9 (6 dpi) compared to
124 infection at E7 (8 dpi). Placental and fetal viral loads corresponded to maternal spleen viral loads,
125 suggesting that fetal infection increases with the severity of maternal infection. Rates of
126 transplacental transmission (measured by proportion of fetal heads that were ZIKV-positive) were
127 higher in *Ifnar1^{-/-}* dams compared to MAR1-5A3-treated dams (64% vs. 57% at E7, 100% vs. 61%
128 at E9). All fetuses that were intact (not resorbed) were photographed and weighed (Figure 1G-
129 I). Fetuses smaller than one standard deviation below the mean of uninfected pregnancies were
130 classified as having IUGR. *Ifnar1^{-/-}* dams exhibited significantly higher resorption rates compared
131 to uninfected controls. In contrast to fetal viral loads, which were higher in dams infected at E9,
132 fetal pathology was greater in dams infected at E7, suggesting higher placental/fetal susceptibility
133 early in pregnancy or that pathology increases with longer infection times. The results were the
134 same when we assessed pathology by crown-rump length (CRL) rather than fetal weight (Figure
135 S1A-B). These results indicate that there are significant differences in adverse pregnancy
136 outcomes when infections occur at different gestational stages, and that fetal pathologic outcomes
137 and viral loads are more severe in the context of high maternal infection (*Ifnar1^{-/-}*).

138 To determine if we could observe similar pregnancy pathology with another virus that
139 causes congenital infections in humans, we sought to generate a RUBV mouse model, as small
140 animal models to study RUBV pathogenesis are not available and experimental RUBV infections


141 in knockout mice have not been reported. We first infected 8-week-old non-pregnant wild-type,
142 *Ifnar1*^{-/-}, and *Ifnlr1*^{-/-} mice with 1000 FFU and 5-week-old *Ifnar1*^{-/-} mice with 1x10⁵ FFU of RUBV
143 (strain M33) by intranasal inoculation or subcutaneous inoculation in the footpad but observed no
144 weight loss or disease signs (Figure S2A-B). To determine whether mice supported any RUBV
145 infection, we inoculated *Ifnar1*^{-/-} *Ifngr1*^{-/-} DKO mice intravenously with 1x10⁵ FFU of RUBV and
146 measured viral RNA by qRT-PCR from blood and serum at 2, 4, and 7 dpi and from spleen, lung,
147 and kidney at 7 dpi (Figure S2C-D). Although in humans RUBV targets a variety of tissues and
148 produces viremia (30), we found very low or undetectable viral loads in *Ifnar1*^{-/-} *Ifngr1*^{-/-} DKO mice
149 even though these mice are highly susceptible to many viral infections. Since human congenital
150 rubella syndrome requires maternal viremia, we concluded that this mouse model would not be
151 suitable for assessing transplacental transmission of RUBV and limited our further studies to
152 ZIKV.

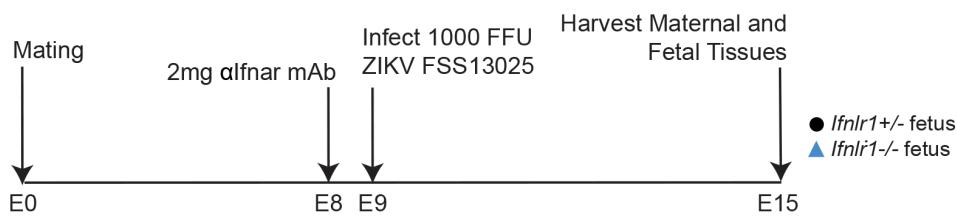
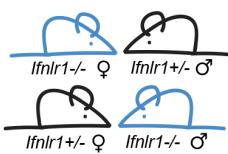
153

154 *Mid-gestation mouse placentas produce IFN-λ in the presence and absence of infection*
155 IFN-λ is secreted constitutively from human primary trophoblasts cultured *ex vivo*, trophoblast
156 organoids, and placental cell lines grown in 3D culture (6–8). Although IFN-λ has antiviral activity
157 at the murine maternal-fetal interface (9), it was unknown if IFN-λ was secreted constitutively from
158 the mouse placenta. To evaluate IFN-λ activity in the absence of infection, we measured IFN-λ
159 activity from placentas harvested from mid-to-late gestation (E11 to labor). In uninfected mice we
160 found that placental IFN-λ activity varied considerably over the course of gestation, increasing
161 from E11 to E15 then dropping at E17 (Figure 2A). IFN-λ activity rose again in placentas taken
162 from dams in active labor, consistent with the cytokine response that triggers parturition. We also
163 detected IFN-λ in the placentas of ZIKV-infected dams harvested at E15 (Figure 2B). Placentas
164 from MAR1-5A3-treated WT dams infected at E7 had significantly higher IFN-λ activity than
165 placentas from dams infected at E9, but there was no effect of infection timing in *Ifnar1*^{-/-} dams.
166 Unexpectedly, IFN-λ activity in placentas from ZIKV-infected dams was reduced compared to

167 uninfected WT dams harvested at E15. These results indicate that IFN- λ is constitutively
168 expressed during mouse pregnancy, and also is present during congenital ZIKV infection.

Figure 2

Figure 2. IFN- λ is produced at the maternal-fetal interface. A. Placentas were harvested from uninfected pregnant dams at E11 (1 dam), E13 (1 dam), E15 (5 dams), E17 (3 dams), and during labor (3 dams). Placentas were homogenized in PBS, and IFN- λ activity in placental homogenate was determined using a reporter cell line. **B.** Pregnant WT dams (treated with an anti-IFNAR1 blocking mAb, 6 or 8 dams per group) or pregnant *Ifnar1*^{-/-} dams (4 or 5 dams per group) were infected at either E7 or E9 with ZIKV FSS13025. Placentas were homogenized in PBS, and IFN- λ activity in placental homogenate was determined using a reporter cell line.



170 *Maternal IFN- λ signaling restricts ZIKV transplacental transmission in a gestational stage-
171 dependent manner*

172 Prior studies found that IFN- λ signaling reduces ZIKV transplacental transmission in mice (9) but
173 the cells and tissues responding to IFN- λ were not identified. To determine the targets of IFN- λ
174 signaling at the maternal-fetal interface we first assessed whether the protective effects of IFN- λ
175 were mediated by signaling in maternal or fetal tissues. To generate pregnancies with distinct
176 maternal and fetal IFN- λ responsiveness, we crossed *Ifnlr1*^{+/+} dams by *Ifnlr1*^{-/-} sires, or the reverse,
177 producing litters comprising *Ifnlr1*^{+/+} and *Ifnlr1*^{-/-} fetuses within dams that either retained IFN- λ
178 signaling (*Ifnlr1*^{+/+}) or lacked it (*Ifnlr1*^{-/-}) (Figure 3A). We infected mice with 1000 FFU of ZIKV
179 FSS13025 by subcutaneous inoculation in the footpad at E9, 1 day following administration of
180 2mg of MAR1-5A3. At 6 dpi (E15), we harvested maternal and fetal tissues and determined fetal

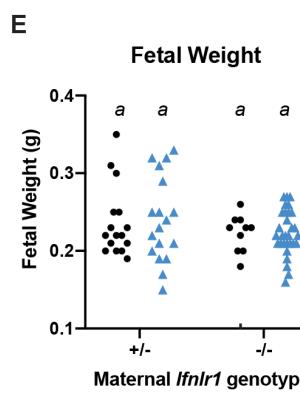
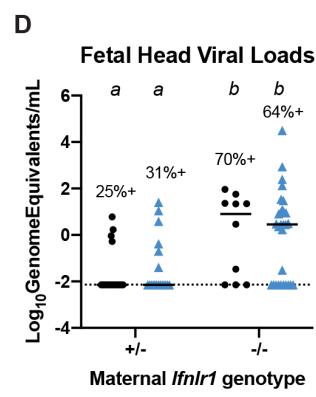
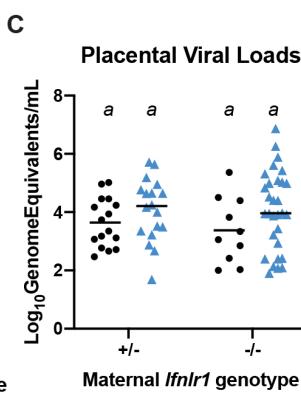
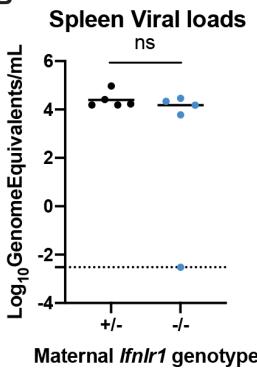
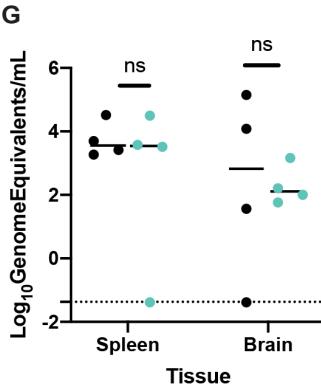
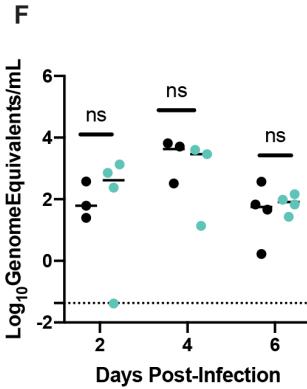
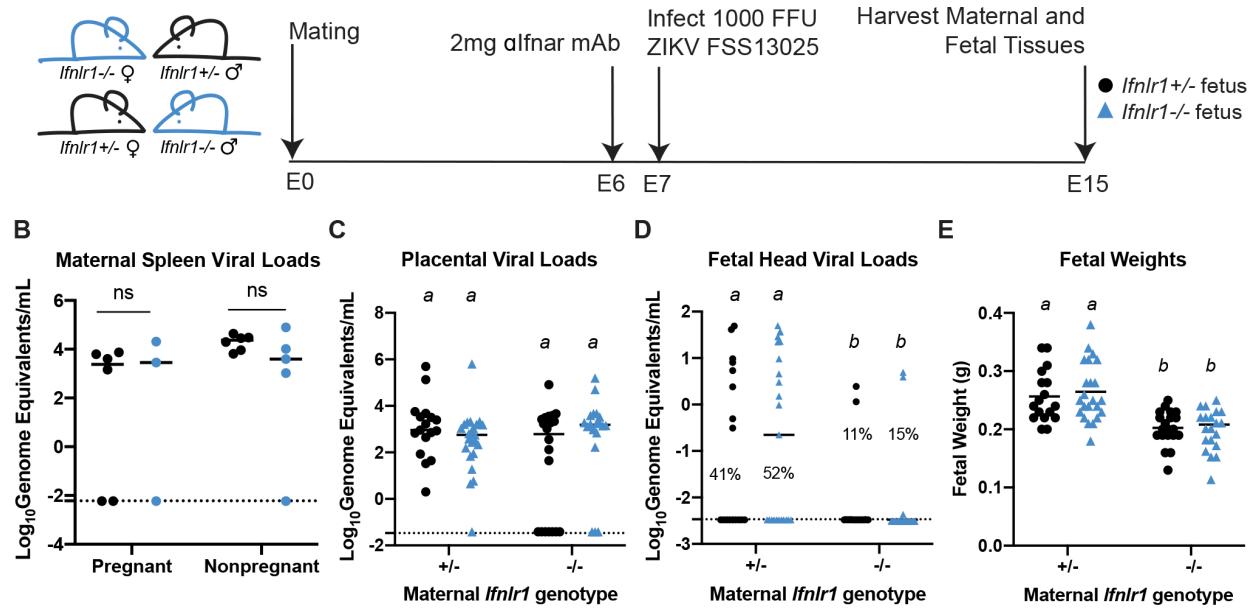




181 *Ifnlr1* genotype by PCR, and viral loads by qRT-PCR. We found no difference in maternal or
 182 placental viral loads based on maternal or fetal *Ifnlr1* genotype (Figure 3B-C). In contrast, we
 183 found higher rates of ZIKV transplacental transmission in dams lacking IFN-λ signaling (*Ifnlr1*^{-/-}),
 184 regardless of fetal genotype (67% vs 28%) and viral loads were significantly higher in fetuses

Figure 3



A

B

Non-pregnant ♀
 1000 FFU
 ZIKV FSS13025
 ● *Ifnlr1*^{+/−}
 ● *Ifnlr1*^{−/−}


Figure 3. IFN-λ restricts ZIKV transplacental transmission by signaling to maternal tissues. A. Mating and infection timeline. *Ifnlr1*^{+/−} dam x *Ifnlr1*^{−/−} sire and *Ifnlr1*^{−/−} dam x *Ifnlr1*^{+/−} sire crosses were used to generate pregnancies with IFN-λ responsive (*Ifnlr1*^{+/−}) and non-responsive (*Ifnlr1*^{−/−}) fetuses. **B-E.** Pregnant dams were treated with 2mg of IFNAR1 blocking antibody at E8 and infected at E9 with 1000 FFU of ZIKV FSS13025 by subcutaneous inoculation in the footpad. Fetuses and their associated placentas were harvested at E15. ZIKV RNA was measured by qRT-PCR in maternal spleen (**B**), placenta (**C**), and fetal head (**D**) and fetuses were weighed (**E**). The percent of fetuses with detectable ZIKV is noted (**D**). Data are combined from 5 or 6 dams per group; each data point represents a single dam (**B**) or fetus (**C-E**). Groups were compared by ANOVA (**B, C, E**) or Mann-Whitney (**D**); italicized letters indicate groups that are significantly different each other ($P < 0.05$). **F and G.** Non-pregnant, 8-week old *Ifnlr1*^{−/−} and *Ifnlr1*^{+/−} females were infected with 1000 FFU of ZIKV FSS13025. Viremia was measured from serum at 2, 4, and 6 dpi by qRT-PCR. Spleens and brains were harvested 6 dpi, and viral loads were measured by qRT-PCR. Groups were not significantly different (ns) by ANOVA.

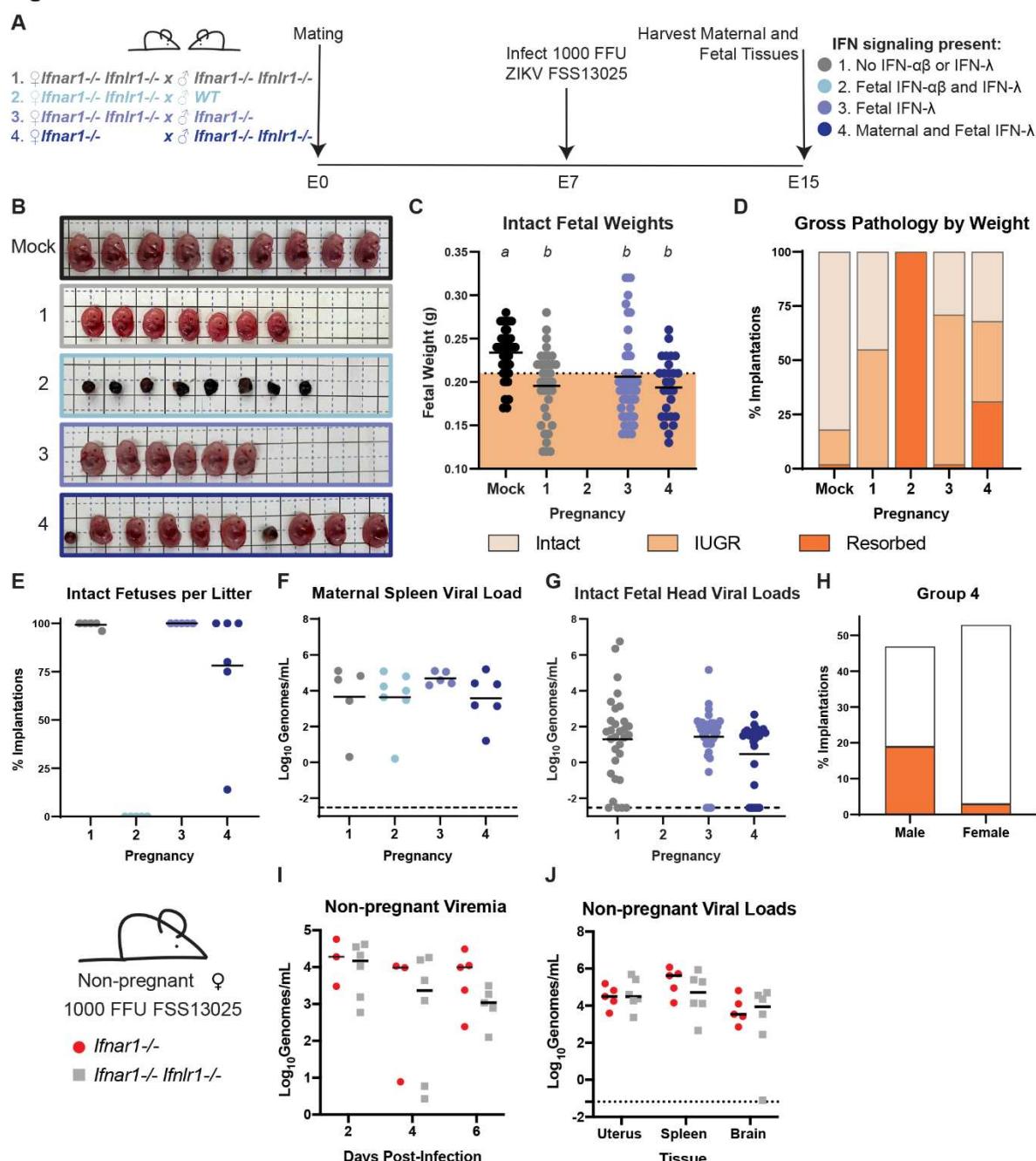
185 from in *Ifnlr1*^{-/-} dams compared to *Ifnlr1*^{+/+} dams, regardless of fetal genotype ($P < .0001$) (Figure
186 3D). Higher viral loads were not accompanied by overt pathology in this model as there was no
187 difference in fetal weights (Figure 3E) based on either maternal or fetal *Ifnlr1* genotype. Our
188 observation of higher viral loads in the fetuses of *Ifnlr1*^{-/-} dams, regardless of fetal *Ifnlr1* genotype,
189 provides strong evidence that IFN-λ signaling protects against transplacental transmission of
190 ZIKV via signaling exclusively in maternal tissues. This is specific to tissues at the maternal fetal-
191 interface, as non-pregnant female *Ifnlr1*^{-/-} and *Ifnlr1*^{+/+} mice exhibited no differences in viremia or
192 tissue viral loads following infection (Figure 3F-G).

193 In mice placental differentiation is complete around E10.5 (31) so mice infected at E9 are
194 expected to have a fully-formed placenta by the time ZIKV reaches the placenta from maternal
195 circulation. Since pregnancy pathology depends on gestational stage at the time of infection
196 (Figure 1) (9, 29), and IFN-λ antiviral effects vary with gestational time (Jagger et al., 2017) we
197 next assessed the effects of IFN-λ signaling in maternal and fetal tissues following ZIKV infection
198 two days earlier, at E7. At this earlier infection time, maternal viremia is expected to be established
199 prior to complete placentation. We again crossed *Ifnlr1*^{+/+} and *Ifnlr1*^{-/-} mice to generate pregnancies
200 with mixed IFN-λ responsiveness within dams that could or could not respond to IFN-λ (Figure
201 4A). We infected pregnant dams with 1000 FFU of ZIKV FSS13025 by subcutaneous inoculation
202 in the footpad at E7, 1 day following administration of 2mg of MAR1-5A3. At 8 dpi (E15), we
203 harvested maternal and fetal tissues and determined *Ifnlr1* genotype by PCR and viral loads by
204 qRT-PCR. Similar to infection at E9, we found no difference in maternal spleen or placental viral
205 load in *Ifnlr1*^{-/-} compared to *Ifnlr1*^{+/+} dams (Figure 4B-C). However, in contrast to the protective
206 effect of maternal IFN-λ signaling after E9 infection, with E7 infection we found higher rates of
207 transplacental transmission in *Ifnlr1*^{+/+} dams compared to *Ifnlr1*^{-/-} (47% versus 13%, $P = .0006$)
208 (Figure 4D). Moreover, fetuses from *Ifnlr1*^{+/+} dams had significantly higher viral burdens than those
209 from *Ifnlr1*^{-/-} dams, regardless of fetal genotype (Figure 4D). Although we found significant
210 differences in fetal weights from *Ifnlr1*^{+/+} and *Ifnlr1*^{-/-} dams ($P < 0.0001$), the difference results from

Figure 4

A

Figure 4. IFN-λ enhances fetal infection early in gestation through signaling to maternal tissues. A. Mating and infection timeline. *Ifnlr1^{+/+}* dam x *Ifnlr1^{-/-}* sire and *Ifnlr1^{-/-}* dam x *Ifnlr1^{+/+}* sire crosses were treated with 2mg of anti-IFNAR1 mAb at E6 and infected at E7 with 1000 FFU of ZIKV FSS13025 by subcutaneous inoculation in the footpad. Fetuses and their associated placentas were harvested at E15. **B-D.** ZIKV RNA in the maternal spleens, placenta, and fetal head were measured by qRT-PCR. **E.** Gross fetal pathology was measured by fetal weight. Significant differences are denoted by italicized letters, calculated by ANOVA (B, C, E) or Mann-Whitney (D). Data are combined from 5 or 6 dams per group; each data point represents a single dam (B) or fetus (C-E).

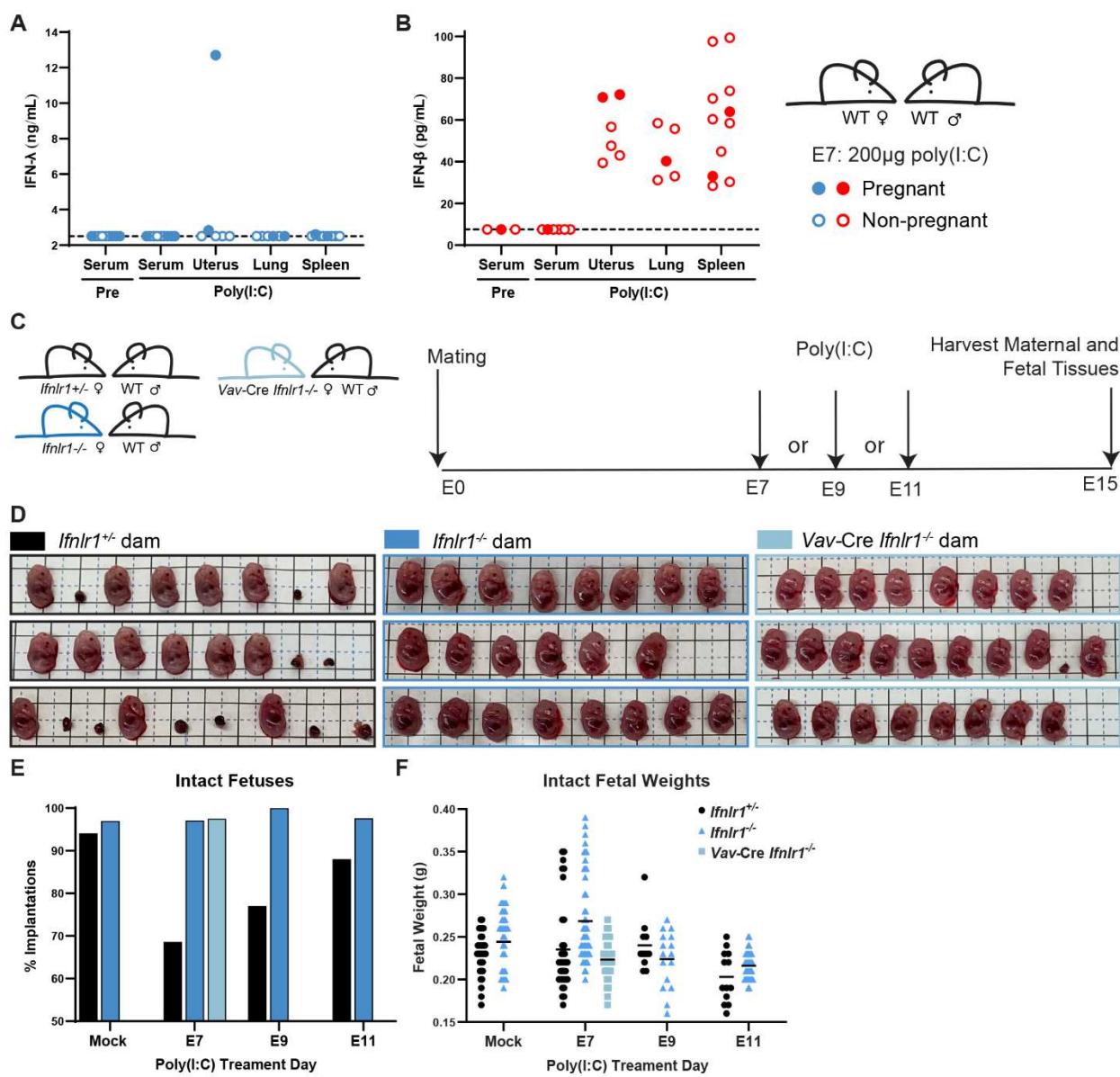

211 an increase in fetal weights from *Ifnlr1^{+/+}* pregnancies and *Ifnlr1^{-/-}* fetal weights fell within the range
 212 of uninfected pregnancies (Figure 1 I-J). Altogether these results show that IFN-λ signaling exerts
 213 a gestational stage-specific effect on ZIKV transplacental transmission, where earlier in gestation
 214 IFN-λ signaling facilitates ZIKV transplacental transmission in contrast to later stages where IFN-
 215 λ inhibits transplacental transmission. Importantly, at either stage, the effects of IFN-λ signaling
 216 were mediated through signaling in maternal tissues, rather than through signaling in the placenta
 217 or fetus, as only maternal *Ifnlr1* genotype influenced ZIKV transmission, not fetal *Ifnlr1* genotype.
 218

219 *Maternal IFN-λ signaling exacerbates fetal pathology early in gestation*

220 Since maternal IFN-λ signaling enhanced rather than limited ZIKV transmission at E7, we next
 221 assessed the effects of IFN-λ signaling on fetal pathology at this early gestational stage. These
 222 experiments used mice that retained or lacked IFN-λ signaling on an *Ifnar1^{-/-}* background, as we

223 did not observe overt pathology in IFNAR1-intact mice (Figure 1G-J). We crossed wild-type,
224 *Ifnar1*^{-/-}, and *Ifnar1*^{-/-}/*Ifnlr1*^{-/-} dams and sires to generate pregnancies in which IFN-λ signaling was
225 present or absent on both or either side of the maternal-fetal interface (Figure 5A). Pregnant dams
226 were infected with ZIKV FSS13025 at E7, and tissues were harvested 8 dpi (E15). Pregnancies
227 that lacked both IFN- $\alpha\beta$ and IFN-λ signaling on both sides of the maternal-fetal interface exhibited
228 significant growth restriction compared to uninfected pregnancies (Figure 5B-D, group 1). Fetal
229 IFN- $\alpha\beta$ signaling previously has been shown to be pathogenic during congenital ZIKV infection
230 in mice (29) and accordingly we found that all fetuses were resorbed in pregnancies that retained
231 IFN- $\alpha\beta$ and IFN-λ signaling exclusively on the fetal side of the interface (Figure 5B-D, group 2).
232 This pathology was mediated by fetal IFN- $\alpha\beta$ signaling because when fetal IFN-λ signaling was
233 restored in the absence of fetal IFN- $\alpha\beta$ signaling, we found no resorptions (Figure 5B-D, group
234 3). In contrast, when IFN-λ signaling was restored on both the fetal and maternal side, 30% of the
235 fetuses were resorbed and the remaining intact fetuses were significantly smaller than those from
236 uninfected pregnancies (Figure 5B-D, group 4). Moreover, pregnancies with maternal IFN-λ
237 signaling had variable fetal outcomes (Figure 5D), both within and between pregnancies (Figure
238 5E). There were no differences in maternal spleen viral loads or transplacental transmission as
239 determined by qRT-PCR (Figure 5F-G). Since pregnancies with maternal IFN-λ signaling
240 exhibited variable pathologic outcomes within litters, we asked whether this was influenced by
241 fetal sex. We determined fetal sex by PCR genotyping for *Sry*, a gene found on the Y
242 chromosome, and found that 40% of male fetuses were resorbed (20% of total implantations)
243 compared to 6% of female fetuses (3% of implantations) (Figure 5H). This raises the possibility
244 that IFN-λ mediated outcomes could be driven by maternal immune rejection, as only male
245 fetuses are genetically distinct from the mother in congenic mouse pregnancies. Since

Figure 5


Figure 5. Maternal IFN-λ signaling induces fetal pathology. **A.** Mating and infection timeline. Wild-type, *Ifnar1*^{-/-}, and *Ifnar1*^{-/-} *Ifnlr1*^{-/-} DKO mice were crossed to create pregnancies with differing IFN-λ responsiveness in maternal and fetal tissues, within dams lacking IFN-αβ signaling. Pregnant dams were infected at E7 with 1000 FFU of ZIKV FSS13025 by subcutaneous inoculation in the footpad. Data are combined from 5 to 7 dams per group. **B.** Representative images of the fetuses/resorptions from each cross. **C.** Intact fetuses (not resorbed) were weighed. Fetuses with weights below one standard deviation of uninfected pregnancies were classified as having IUGR. Significant differences between fetal groups are indicated by italicized letters and were calculated by ANOVA. **D.** The percent of resorptions and IUGR in each pregnancy group. **E.** The percent of intact fetuses in individual litters. **F** and **G**. ZIKV viral loads in fetal head and maternal spleen were measured by qRT-PCR. **H.** The sex of resorptions and intact fetuses was determined by PCR. **I** and **J**. 10-week-old non-pregnant females were infected with 1000 FFU of ZIKV FSS13025 by subcutaneous inoculation in the footpad. Viral loads in serum (2, 4, 6 dpi) and tissues (6 dpi) were determined by qRT-PCR.

247 results and prior studies (29) showed that IFN signaling can be pathogenic in the context of
248 congenital ZIKV infection, we considered whether IFN signaling might be detrimental during
249 pregnancy more generally. However, in analyzing ~17 months of breeding records from WT,
250 *Ifnar1*^{-/-}, *Ifnlr1*^{-/-}, and *Ifnar1*^{-/-} *Ifnlr1*^{-/-} mice in our colony (>275 litters from >40 breeder cages) we
251 found no significant difference in litter size between the lines, supporting the idea that IFN
252 signaling during pregnancy is not detrimental outside an infection or other inflammatory context.
253 We found no difference in viremia or tissue viral loads between *Ifnar1*^{-/-} and *Ifnar1*^{-/-} *Ifnlr1*^{-/-} non-
254 pregnant females (Figure 5I-J), altogether indicating that the pathogenic effects of IFN- λ at the
255 maternal-fetal interface are distinct from restricting viral replication systemically in the dam.

256

257 *IFN- λ pathogenic effects are mediated by leukocytes and decrease over gestational time*
258 To determine whether IFN- λ -mediated fetal pathology was specific to ZIKV infection, we assessed
259 the pathogenic effect of IFN- λ signaling stimulated by poly(I:C). To determine which tissues
260 produced IFN in response to poly(I:C) treatment, we measured IFN- λ and IFN- β in serum, uterus,
261 lung, and spleen 24 hours post poly(I:C) treatment in pregnant and non-pregnant WT mice. We
262 detected IFN- λ activity only in uteruses from pregnant mice (Figure 6A), while IFN- β was detected
263 in tissues but not serum (Figure 6B), confirming that poly(I:C) treatment can induce IFN- λ and
264 IFN- $\alpha\beta$ at the maternal-fetal interface. We next assessed the effect of poly(I:C)-treatment on fetal
265 pathology in *Ifnlr1*^{+//-} and *Ifnlr1*^{-/-} dams mated to WT sires. To investigate the possibility that IFN- λ
266 mediated pathology resulted from maternal immune signaling, we also included dams lacking
267 IFN- λ signaling in hemopoietic cells (*Vav-Cre Ifnlr1*^{-/-}, Figure S3) mated to WT sires. We
268 administered 200 μ g of poly(I:C) by intraperitoneal injection to dams at E7, E9, or E11 and
269 assessed fetal outcome at E15 (Figure 6C). Consistent with our observations in ZIKV-infected
270 *Ifnar1*^{-/-} dams, *Ifnlr1*^{+//-} dams exhibited a 7.5-fold higher resorption rate compared to *Ifnlr1*^{-/-} dams
271 after poly(I:C) administration at E7 (31% vs 3%, Figure 6D-E). *Vav-Cre Ifnlr1*^{-/-} dams also had low

Figure 6

Figure 6. IFN- λ mediates fetal pathology through signaling in maternal leukocytes. **A** and **B**. WT dams were mated to WT sires and treated with 200 μ g of poly(I:C) at E7. Serum was collected by submandibular bleed pre-treatment. 24 hours post-treatment, the uterus, spleen, and lung were harvested from pregnant and non-pregnant mice. IFN- λ activity was measured in a reporter cell assay and IFN- β concentration by ELISA. Filled circles represent pregnant mice. **C**. Experiment timeline. *Ifnlr1^{+/−}*, *Ifnlr1^{−/−}*, and leukocyte *Ifnlr1^{−/−}* (Vav-Cre *Ifnlr1^{−/−}*) dams were mated to WT sires. Pregnant dams were administered 200 μ g of poly(I:C) by intraperitoneal injection at E7, E9, or E11 and fetuses were harvested at E15. **D**. Representative litters from E7-treated pregnancies. Resorptions were counted (**E**) and intact fetuses were weighed (**F**).

272

273 rates of fetal resorption (3%), indicating that IFN- λ mediated pregnancy pathology acts through
274 maternal immune cells. Accordingly, we found that decidualized human endometrial cells

275 supported replication of ZIKV and RUBV and responded to IFN- β treatment but did not respond
276 to IFN- λ treatment (Figure S4). Although IFN- λ signaling induced resorptions, the weights of intact
277 fetuses were no different in poly(I:C)-treated dams compared to mock-treated, indicating that
278 poly(I:C) treatment does not induce an IUGR phenotype (Figure 6F). We also observed IFN- λ
279 induced resorptions following poly(I:C) administration at E9 and E11 (Figure 6E), but the effect
280 was less pronounced compared to treatment at E7, consistent with a model where the pathogenic
281 effects of maternal IFN- λ signaling are most severe earlier in gestation.

282

283 **DISCUSSION**

284 Our results show that IFN- λ can have both protective and pathogenic effects during pregnancy
285 depending on gestational stage, but that both effects occur via signaling in maternal tissues. This
286 identifies a distinct role for IFN- λ compared to IFN- $\alpha\beta$ at the maternal-fetal interface as the
287 pathologic effects of IFN- $\alpha\beta$ act through signaling in fetal tissues in similar ZIKV congenital
288 infection models (29). The contrasting effects of maternal IFN- λ signaling at different gestational
289 stages likely derive from differences in the physiology of the maternal-fetal interface over the
290 course of gestation, producing distinct outcomes when ZIKV infects the maternal-fetal interface
291 prior to placentation (maternal inoculation at E7) or after the placenta has formed (E9 inoculation).
292 We further showed that IFN- λ mediated pathology is mediated by leukocytes after poly(I:C)
293 treatment. Because the maternal immune landscape varies over gestation, IFN- λ may signal to a
294 leukocyte population that diminishes or changes as pregnancy progresses.

295 Since IFN- λ is constitutively secreted from human trophoblasts and these cells are
296 refractory to replication by a wide array of viruses and other infectious agents (32–34), we had
297 expected IFN- λ to restrict ZIKV transplacental transmission by signaling on placental trophoblasts
298 and inducing a cell-intrinsic antiviral response. Instead, we found that IFN- λ antiviral activity was
299 mediated through signaling in maternal tissues. Importantly, pregnant and non-pregnant *Ifnlr1*^{-/-}
300 mice showed no differences in viral loads in peripheral tissues (serum, spleen), consistent with

301 prior studies with other flaviviruses (35, 36) and excluding that enhanced ZIKV transplacental
302 transmission is due to enhanced viral replication and spread in maternal tissues. The mechanism
303 by which maternal IFN-λ signaling restricts ZIKV transplacental transmission remains unclear, but
304 could include antiviral activity in the uterine decidua, or immunomodulatory effects on maternal
305 leukocytes, such as decidual NK cells, Tregs, neutrophils or dendritic cells. We did not observe
306 IFN-λ responsiveness in a human decidualized endometrial cell line, but decidual cells respond
307 to IFN-λ in other human cell culture models, including explants and organoids (8, 9). Differences
308 in decidual responsiveness have been noted from cell models taken at different times in gestation
309 (37) and could explain the lack of IFN-λ responsiveness we observed in a decidual cell line.
310 Although we did not find a role for fetal IFN-λ signaling, human placental models do respond to
311 IFN-λ in culture. Differences in placental IFN-λ responsiveness could be due to variations in the
312 mouse and human placentas. Although both are discoid and hemochorionic, mouse and human
313 placentas have distinct trophoblast lineages which include trophoblast giant cells and a second
314 layer of syncytiotrophoblasts in mice and extravillous trophoblasts in humans (31).

315 In contrast to the protective effect of IFN-λ that we observed later in gestation, IFN-λ
316 signaling enhanced transplacental transmission in mice infected at E7. We attribute this enhanced
317 transmission to pathogenic effects of IFN-λ signaling on the placental barrier which is not yet fully
318 formed at this stage of gestation. Remarkably, these pathogenic effects were mediated
319 exclusively by IFN-λ signaling in maternal tissues, similar to the protective effects of IFN-λ.
320 Interestingly, the pathogenic effects of IFN-λ did not require ZIKV infection, as we could elicit a
321 similar phenotype by treating pregnant dams with poly(I:C). We found that rates of IFN-λ mediated
322 pathology decreased when poly(I:C) was administered later in gestation. Congenital viral
323 infections also produce fetal pathology with gestational stage-dependent effects in humans:
324 congenital rubella syndrome almost entirely results from infection in the first trimester and ZIKV
325 and human cytomegalovirus (HCMV) infections early in pregnancy likewise produce the most
326 severe outcomes, although ZIKV and HCMV can be deleterious throughout pregnancy (1). Our

327 findings emphasize the importance of studying congenital infections and immune responses at
328 different gestational stages. One limitation of this study is that it does not include infections at
329 time points following placentation, so it remains to be determined how IFN-λ affects pregnancies
330 late in gestation. Furthermore, congenital infections can result from both transplacental spread
331 and ascending infection from the vagina. The immunologic and anatomical barriers to ascending
332 infection are different from those to transplacental infection, so IFN-λ could have distinct effect
333 based on the route of infection.

334 We found that fetuses were protected from resorption when IFN-λ signaling was ablated
335 only in hematopoietic cells, indicating that IFN-λ pathogenic effects result from signaling in
336 maternal leukocytes. Since IFN-λ mediated pathology depends on gestational stage, IFN-λ may
337 act through particular leukocytes present earlier in gestation that diminish over time. Early in
338 gestation, 40% of the maternal decidua is made up of leukocytes including NK cells,
339 macrophages, and Tregs (2). These populations change over the course of gestation and play a
340 critical role in mediating placental invasion and spiral artery formation. IFN-λ signals to several of
341 these cell types in contexts outside of pregnancy (38) and potentially could disturb the immune
342 balance necessary for proper placentation. Multiple distinct subsets of macrophages have been
343 identified in the maternal decidua, and imbalance between macrophages subtypes is associated
344 with adverse pregnancy outcomes (39, 40). IFN-λ changes the transcriptional profile and
345 increases pro-inflammatory phenotypes of monocytes differentiated into macrophages in culture
346 (41, 42). Macrophages skew towards a M2 phenotype as pregnancy progresses and IFN-λ could
347 increase proportions of M1 macrophages, potentially leading to inflammation and fetal rejection.
348 Placentas harvested from ZIKV-infected rhesus macaques have more monocytes and
349 macrophages than those from uninfected animals, as well as changes in the proportions of
350 monocyte subsets (43). Although a function for neutrophils at the maternal-fetal interface has not
351 been well defined, mouse neutrophils do respond to IFN-λ. However, IFN-λ has anti-inflammatory
352 activity in these contexts and is associated with reductions in inflammatory pathology during

353 influenza infection as well as rheumatoid arthritis (44, 45). Further research focusing on identifying
354 the specific maternal cell types that respond to IFN-λ signaling will enhance our understanding of
355 the mechanisms underlying IFN-λ-mediated fetal pathology.

356 We found a striking sex difference in IFN-λ mediated pathology, with male fetuses
357 exhibiting significantly higher resorption rates than female fetuses. This observation is consistent
358 with immune-mediated rejection, as only male fetuses are genetically distinct from the dam in
359 these congenic pregnancies. Immunity at the maternal-fetal interface is carefully regulated to
360 prevent non-self-rejection of the fetus, and includes mechanisms that downregulate NK cell
361 cytotoxicity and recognition of non-self-tissues (2). Modeling congenital infection in semi-
362 allogeneic pregnancies will provide further insight into the role of IFN-λ signaling in changes to
363 maternal immune tolerance.

364 Although IFN-λ is best-characterized for its protective activity in the context of viral
365 infections, particularly in the respiratory and gastrointestinal tracts (5), IFN-λ signaling also is
366 associated with deleterious effects in some other contexts. IFN-λ contributes to impaired tissue
367 repair following respiratory and gastrointestinal infections in mice (46–48). In humans, multiple
368 polymorphisms in the IFN-λ locus are associated with clinical outcomes from hepatitis C virus
369 (HCV) infection (49). Among these, a frameshift mutation in the promoter of *IFNL4* results in the
370 loss of IFN-λ4 production and concomitant improved clearance of HCV as well as other
371 gastrointestinal and respiratory infections though the mechanism by which the loss of an IFN
372 results in an improved antiviral response remains unclear (50, 51). The pseudogenization of IFN-
373 λ4, along with selection for lower-potency variants, suggest IFN-λ4 signaling has been deleterious
374 during human evolution (52, 53). In mice, the IFN-λ family consists only of IFN-λ2 and IFN-λ3 as
375 IFN-λ1 is a pseudogene and the genomic region encoding IFN-λ4 is absent (54, 55), which limits
376 some comparisons of the effects of IFN-λ in mice and humans.

377 Our observations of a pathogenic effect of IFN-λ signaling at the maternal-fetal interface
378 bear some similarity to the pathogenic effects of IFN-αβ in pregnancy, though notably in mouse

379 models of congenital ZIKV infection IFN- $\alpha\beta$ is pathogenic when it signals to fetal tissues (29)
380 whereas we find that IFN- λ acts through signaling in maternal tissues. Women with dysregulated
381 IFN- $\alpha\beta$ signaling (sustained IFN production or impaired receptor downregulation) exhibit poor
382 pregnancy outcomes including pre-eclampsia as well as neurodevelopmental defects similar to
383 those induced by congenital infection, consistent with a role for dysregulated IFN- $\alpha\beta$ responses
384 in placental damage (56–60). Whether dysregulated IFN- λ signaling exerts similar effects during
385 human pregnancy remains to be determined.

386 Altogether, these findings identify an unexpected effect of IFN- λ signaling specifically in
387 maternal (rather than placental or fetal) tissues, which is distinct from the pathogenic effects of
388 IFN- $\alpha\beta$ during pregnancy. These results highlight the complexity of immune signaling at the
389 maternal-fetal interface, where disparate outcomes can result from signaling at different
390 gestational stages.

391

392 **MATERIALS AND METHODS**

393 **Viruses**

394 Virus stocks were grown in Vero cells in Dulbecco's modified Eagle medium (DMEM) containing
395 5% fetal bovine serum (FBS), L-glutamine, and HEPES at 37°C with 5% CO₂. ZIKV strain
396 FSS13025 (Cambodia 2010) was obtained from the World Reference Center for Emerging
397 Viruses and Arboviruses (61). ZIKV strains PRVABC59 (Puerto Rico 2015) and H/PF/2013
398 (French Polynesia 2013) were obtained from U.S. CDC (62, 63). Rubella virus strain M33 was
399 obtained from Dr. Michael Rossmann, Purdue University (64). DENV4 (TVP-360) was obtained
400 from Dr. Aravinda DeSilva, UNC Chapel Hill. Virus stock titer was quantified by focus-forming
401 assay on Vero cells (65). Viral foci were detected using 500 ng/mL of anti-flavivirus mouse
402 monoclonal antibody E60 (66) or 1:1000 dilution of goat anti-RUBV antibody (Lifespan
403 Biosciences LC-C103273/39321), 1:5000 dilution of an HRP conjugated goat anti-mouse IgG
404 (Sigma #A8924) or 1:5000 dilution of an HRP conjugated rabbit anti-goat (Sigma #A5420), and

405 TrueBlue peroxidase substrate (KPL). Antibody incubations were performed overnight at 4°C.
406 Foci were counted on a CTL Immunospot analyzer.

407 **Mice**

408 All experiments and husbandry were performed under the approval of the University of North
409 Carolina at Chapel Hill Institutional Animal Care and Use Committee. Experiments used 8–20-
410 week-old female mice on a C57BL/6 background. Wild-type mice were obtained commercially
411 (Jackson labs 000664) or bred in-house. *Ifnar1*^{-/-} and *Ifnar1*^{-/-}/*Ifngr1*^{-/-} mice were obtained from Dr.
412 Jason Whitmire (UNC) then bred in-house. *Ifnlr1*^{-/-} mice were provided by Dr. Herbert Virgin
413 (Washington University in St. Louis), generated by crossing *Ifnlr1*^{fl/fl} mice with mice constitutively
414 expressing Cre recombinase under a CMV promoter (67); these mice were then bred in-house
415 as knockout x knockout (36); *Ifnar1*^{-/-} *Ifnlr1*^{-/-} DKO mice were generated by crossing *Ifnlr1*^{-/-} and
416 *Ifnar1*^{-/-} mice. *Ifnlr1*^{+/+} mice were generated by crossing *Ifnlr1*^{-/-} and wild-type mice. Vav-Cre *Ifnlr1*^{-/-}
417 mice were generated by crossing *Ifnlr1*^{fl/fl} mice with mice expressing Cre recombinase under the
418 Vav promoter (Jackson labs 008610) and bred as Cre hemizygotes with Cre maintained on the
419 female breeder.

420 **Mouse Experiments**

421 Timed pregnancies were set up by exposing females to soiled male cage bedding for 3 days to
422 promote estrus, then housing single pairs of male and female mice overnight (E0), and separating
423 males and females the next morning (E1). Mice were infected by a subcutaneous route in the
424 footpad with 1000 FFU of ZIKV in 50µL. Wild-type, *Ifnlr1*^{+/+}, and *Ifnlr1*^{-/-} mice were administered 2
425 mg of anti-IFNAR1-blocking antibody MAR1-5A3 by intraperitoneal injection (26). For viral load
426 experiments in non-pregnant mice, blood was collected at 2 or 4 days post-infection (dpi) by
427 submandibular bleed, or at 6 dpi by cardiac puncture into serum separator tubes (BD) and serum
428 was separated by centrifugation in a microfuge at 8,000 RPM for 5 minutes. Spleen, brain, and
429 uterus were collected 6 dpi following perfusion with 20 mL of PBS. For weight loss and survival
430 experiments, mice were weighed each day following infection. Pregnant mice were sacrificed at

431 E15 (6 or 8 dpi). Maternal blood was collected by cardiac puncture in serum separator tubes (BD),
432 and serum was separated by centrifugation in a microfuge at 8,000 RPM for 5 minutes. Dams
433 were perfused with 20 mL of PBS then fetal heads, fetal bodies, and their associated placentas,
434 as well as maternal spleen and brain were collected. Fetal tissues were weighed, and total fetal
435 weight was determined by combining fetal head and body weights. Photographs of fetuses and
436 uteruses were taken at time of harvest, and crown rump length was measured using ImageJ (68).
437 For poly(I:C) experiments, 200 µg of low molecular weight poly(I:C) (InvivoGen t1rl-picw) was
438 administered by intraperitoneal injection at the indicated days following mating. At E15, pregnant
439 dams were sacrificed, whole fetuses and their associated placentas were collected and weighed.
440 Implantations with no discernable placentas or fetuses were classified as resorptions.

441 **RUBV mouse experiments**

442 *Ifnar1^{-/-}*, *Ifnlr1^{-/-}*, *Ifnar1^{-/-} Ifngr1^{-/-}* DKO, and wild-type mice were inoculated with 1,000 or 1x10⁵ FFU
443 of RUBV by subcutaneous injection in the footpad or intranasal administration. Weights were
444 monitored for 14 dpi. For viral load experiments, serum and whole blood were harvested 2, 4, and
445 7 dpi by submandibular bleed into serum separator tubes (BD) and serum was separated by
446 centrifugation in a microfuge at 8,000 RPM for 5 minutes. Mice were sacrificed at 7 dpi, perfused
447 with 20 mL of PBS, then spleens, lung, and brains were harvested.

448 **Viral Loads**

449 Tissues were homogenized in 600 µL of PBS using a MagNA Lyser (Roche), then 150 µL of
450 homogenate was added to an equal volume of buffer RLT (Qiagen) for RNA extraction. Viral RNA
451 was extracted using a Qiagen RNeasy kit (tissues) or Qiagen viral RNAmini kit (serum). ZIKV
452 RNA was detected by Taqman one-step qRT-PCR using primer probe set: forward-
453 CCGCTGCCAACACAAG; reverse CCACTAACGTTCTTGCAGACAT; probe56-
454 FAM/AGCCTACCT/ZEN/TGACAAGCAATCAGACACTCAA/3IABkFQ on a BioRad (CFX96)
455 using standard cycling conditions. ZIKV genome copies/mL were determined compared to a ZIKV
456 standard curve of 100-fold dilutions of ZIKV-A plasmid (69), or 100 fold dilutions of RNA extracted

457 from viral stock. RUBV viral loads were determined compared to a standard curve made from
458 100-fold dilutions of RNA isolated from virus stock.

459 **IFN-λ activity assay**

460 Tissue homogenates and serum were diluted 1:4 in PBS and 20µL was added to 96 well plates.
461 HEK-Blue IFN-λ reporter cells (InvivoGen) were then suspended at a concentration of 2.8×10^5
462 cells/mL in DMEM supplemented with 1µg/mL Puromycin, 10µg/mL Blasticidin, and 100µg/mL
463 Zeocin. The HEK-Blue IFN-λ cell suspension was then added to each well of diluted tissue
464 samples and incubated at 37C° for 24h. Then 20µL of the culture media was added to QUANTI-
465 Blue substrate (InvivoGen) for 1.5hr and absorbance was measured at 620nm (bio-tek, epoch).
466 Absorbance readings were converted to concentration using a standard curve of 10-fold serial
467 dilutions of hIFN-λ2 (PBL11820-1) starting at 2500ng/mL, which was run concurrently with tissue
468 samples.

469 **IFN-β ELISA**

470 Tissues were homogenized in 600µL of PBS using a MagNA Lyser (Roche). Tissue and serum
471 samples were loaded directly onto ELISA plates according to protocol (Biolegend 439407 Legend
472 Max Mouse IFN-B ELISA kit). Absorbance was read at 450nm (bio-tek, epoch).

473 **Genotyping**

474 *Ifnlr1* and *Sry* (fetal sex) genotypes were determined by PCR on fetal head RNA samples (which
475 contain co-purified genomic DNA), or on DNA extracted from maternal blood and tail samples
476 using the Quantabio supermix and previously described primers: *Ifnlr1* F₁5-
477 AGGAAGCCAAGGGATGGC-3, R₁5-AGTGCGCTGAGGACAGGA-3, R₂5-
478 GGCTCTGGACCTACGCGCTG-3 (67), *Sry* F5-TTGCTAGAGAGCATGGAGGGCCAT-3 and
479 R5-CCACTCCTCTGTGAC ACTTTAGGCCCT-3' (70).

480 **Viral replication and IFN response assays**

481 Human endometrial stromal cells (HESC-T) were obtained from Dr. David Aronoff (Vanderbilt
482 University). HESC-T were decidualized by culturing cells with 0.5 mM 8-Bromo-cAMP (Sigma

483 B5386), 1 μ M medroxyprogesterone acetate (MPA, Sigma M1629), 10 nM 17b-estradiol-acetate
484 (estrogen E2, Sigma E7879) for 5 days as originally described (71). Cells were plated at 500,000
485 cells/well in 6 well plates and infected at an MOI of 1 with ZIKV (H/PF/2013), DENV4 (TVP-360),
486 or RUBV (M33) in 300 μ L/well. Supernatant was collected at 4, 24, 48, and 72 hours post-infection,
487 and titered by focus forming assay as described above. A549, JEG3, HTR8, and decidualized
488 HESC-Ts were treated with 50ng/mL IFN- λ (PBL11820-1) or 5ng/mL IFN- β (PBL11420-1), or
489 infected with ZIKV (H/PF/2013) or DENV4 (TVP-360) at an MOI of 1. After 24 hours, RNA was
490 extracted from cell lysates (Qiagen RNeasy kit) and *IFIT1* expression was measured by qRT-PCR
491 (IDT Assay ID Hs.PT.561.20769090.g).

492 **Statistics**

493 All statistics were performed using GraphPad Prism. Significant differences in fetal weights, viral
494 loads with standard distributions (maternal spleens, placentas), and placental IFN- λ levels were
495 assessed by ANOVA. Significant differences in fetal-head viral loads were calculated by Mann-
496 Whitney.

497

498 **ACKNOWLEDGEMENTS**

499 This work was supported by R01 AI139512 (H.M.L.) and start-up funds from UNC Chapel Hill
500 Department of Microbiology & Immunology and the Lineberger Comprehensive Cancer Center.
501 R.L.C. and D.T.P. were supported by T32 AI007419; R.L.C. was supported by a UNC dissertation
502 completion fellowship.

503

504 **REFERENCES**

- 505 1. Megli CJ, Coyne CB. 2021. Infections at the maternal–fetal interface: an overview of
506 pathogenesis and defence. *Nat Rev Microbiol* 2021 1–16.
- 507 2. Mor G, Aldo P, Alvero AB. 2017. The unique immunological and microbial aspects of
508 pregnancy. *Nat Rev Immunol* 17:469–482.

509 3. Zhou JZ, Way SS, Chen K. 2018. Immunology of Uterine and Vaginal Mucosae: (Trends
510 in Immunology 39, 302–314, 2018). Trends Immunol 39:355.

511 4. Murphy SP, Tayade C, Ashkar AA, Hatta K, Zhang J, Croy BA. 2009. Interferon Gamma
512 in Successful Pregnancies. Biol Reprod 80:848–859.

513 5. Lazear HM, Schoggins JW, Diamond MS. 2019. Shared and Distinct Functions of Type I
514 and Type III Interferons. Immunity 50:907–923.

515 6. Bayer A, Lennemann NJ, Ouyang Y, Bramley JC, Morosky S, Marques ETDA, Cherry S,
516 Sadovsky Y, Coyne CB. 2016. Type III Interferons Produced by Human Placental
517 Trophoblasts Confer Protection against Zika Virus Infection. Cell Host Microbe 19:705–
518 712.

519 7. Corry J, Arora N, Good CA, Sadovsky Y, Coyne CB. 2017. Organotypic models of type III
520 interferon-mediated protection from Zika virus infections at the maternal–fetal interface.
521 Proc Natl Acad Sci 114:9433–9438.

522 8. Yang L, Megli C, Coyne CB. 2021. Innate immune signaling in trophoblast and decidua
523 organoids defines differential antiviral defenses at the maternal-fetal interface. bioRxiv
524 2021.03.29.437467.

525 9. Jagger BW, Miner JJ, Cao B, Arora N, Smith AM, Kovacs A, Mysorekar IU, Coyne CB,
526 Diamond MS. 2017. Gestational Stage and IFN-λ Signaling Regulate ZIKV Infection In
527 Utero. Cell Host Microbe 22:366-376.e3.

528 10. Pierson TC, Diamond MS. 2018. The emergence of Zika virus and its new clinical
529 syndromes. Nature 560:573–581.

530 11. Platt DJ, Miner JJ. 2017. Consequences of congenital Zika virus infection. Curr Opin Virol
531 27:1–7.

532 12. Mulkey SB, Arroyave-Wessel M, Peyton C, Bulas DI, Fourzali Y, Jiang J, Russo S,
533 McCarter R, Msall ME, Du Plessis AJ, Debiasi RL, Cure C. 2020. Neurodevelopmental
534 Abnormalities in Children with in Utero Zika Virus Exposure Without Congenital Zika

535 Syndrome. *JAMA Pediatr* 174:269–276.

536 13. Valdes V, Zorrilla CD, Gabard-Durnam L, Muler-Mendez N, Rahman ZI, Rivera D, Nelson
537 CA. 2019. Cognitive Development of Infants Exposed to the Zika Virus in Puerto Rico.
538 *JAMA Netw open* 2:e1914061.

539 14. Stringer EM, Martinez E, Blette B, Toval Ruiz CE, Boivin M, Zepeda O, Stringer JSA,
540 Morales M, Ortiz-Pujols S, Familiar I, Collins M, Chavarria M, Goldman B, Bowman N, De
541 Silva A, Westreich D, Hudgens M, Becker-Dreps S, Bucardo F. 2021.
542 Neurodevelopmental Outcomes of Children following in Utero Exposure to Zika in
543 Nicaragua. *Clin Infect Dis* 72:E146–E153.

544 15. Yockey LJ, Varela L, Rakib T, Khoury-Hanold W, Fink SL, Stutz B, Szigeti-Buck K, Van
545 den Pol A, Lindenbach BD, Horvath TL, Iwasaki A. 2016. Vaginal Exposure to Zika Virus
546 during Pregnancy Leads to Fetal Brain Infection. *Cell* 166:1247-1256.e4.

547 16. Miner JJ, Cao B, Govero J, Smith AM, Fernandez E, Cabrera OH, Garber C, Noll M,
548 Klein RS, Noguchi KK, Mysorekar IU, Diamond MS. 2016. Zika Virus Infection during
549 Pregnancy in Mice Causes Placental Damage and Fetal Demise. *Cell* 165:1081–1091.

550 17. Narasimhan H, Chudnovets A, Burd I, Pekosz A, Klein SL. 2020. Animal models of
551 congenital zika syndrome provide mechanistic insight into viral pathogenesis during
552 pregnancy. *PLoS Negl Trop Dis*. Public Library of Science.

553 18. Vermillion MS, Lei J, Shabi Y, Baxter VK, Crilly NP, McLane M, Griffin DE, Pekosz A,
554 Klein SL, Burd I. 2017. Intrauterine Zika virus infection of pregnant immunocompetent
555 mice models transplacental transmission and adverse perinatal outcomes. *Nat Commun*
556 8:14575.

557 19. Honein MA, Dawson AL, Petersen EE, Jones AM, Lee EH, Yazdy MM, Ahmad N,
558 Macdonald J, Evert N, Bingham A, Ellington SR, Shapiro-Mendoza CK, Oduyebo T, Fine
559 AD, Brown CM, Sommer JN, Gupta J, Cavicchia P, Slavinski S, White JL, Owen SM,
560 Petersen LR, Boyle C, Meaney-Delman D, Jamieson DJ. 2017. Birth defects among

561 fetuses and infants of US women with evidence of possible zika virus infection during
562 pregnancy. *JAMA - J Am Med Assoc* 317:59–68.

563 20. Brady OJ, Osgood-Zimmerman A, Kassebaum NJ, Ray SE, De Araújo VEM, Da Nóbrega
564 AA, Frutuoso LCV, Lecca RCR, Stevens A, De Oliveira BZ, De Lima JM, Bogoch II,
565 Mayaud P, Jaenisch T, Mokdad AH, Murray CJL, Hay SI, Reiner RC, Marinho F. 2019.
566 The association between zika virus infectionand microcephaly in brazil 2015–2017:
567 Anobservational analysis of over 4 million births. *PLoS Med* 16.

568 21. Hoen B, Schaub B, Funk AL, Ardillon V, Boullard M, Cabié A, Callier C, Carles G,
569 Cassadou S, Césaire R, Douine M, Herrmann-Storck C, Kadhel P, Laouénan C, Madec
570 Y, Monthieux A, Nacher M, Najiullah F, Rousset D, Ryan C, Schepers K, Stegmann-
571 Planchard S, Tressières B, Voluménie J-L, Yassinguezo S, Janky E, Fontanet A. 2018.
572 Pregnancy Outcomes after ZIKV Infection in French Territories in the Americas. *N Engl J
573 Med* 378:985–994.

574 22. Ospina ML, Tong VT, Gonzalez M, Valencia D, Mercado M, Gilboa SM, Rodriguez AJ,
575 Tinker SC, Rico A, Winfield CM, Pardo L, Thomas JD, Avila G, Villanueva JM, Gomez S,
576 Jamieson DJ, Prieto F, Meaney-Delman D, Pacheco O, Honein MA. 2020. Zika Virus
577 Disease and Pregnancy Outcomes in Colombia. *N Engl J Med* 383:537–545.

578 23. Ander SE, Diamond MS, Coyne CB. 2019. Immune responses at the maternal-fetal
579 interface. *Sci Immunol* 4:eaat6114.

580 24. Grant A, Ponia SS, Tripathi S, Balasubramaniam V, Miorin L, Sourisseau M, Schwarz
581 MC, Sánchez-Seco MP, Evans MJ, Best SM, García-Sastre A. 2016. Zika Virus Targets
582 Human STAT2 to Inhibit Type I Interferon Signaling. *Cell Host Microbe* 19:882–90.

583 25. Tripathi S, Balasubramaniam VRMT, Brown JA, Mena I, Grant A, Bardina S V., Maringer
584 K, Schwarz MC, Maestre AM, Sourisseau M, Albrecht RA, Krammer F, Evans MJ,
585 Fernandez-Sesma A, Lim JK, García-Sastre A. 2017. A novel Zika virus mouse model
586 reveals strain specific differences in virus pathogenesis and host inflammatory immune

587 responses. PLoS Pathog 13.

588 26. Lazear HM, Govero J, Smith AM, Platt DJ, Fernandez E, Miner JJ, Diamond MS. 2016. A
589 Mouse Model of Zika Virus Pathogenesis. Cell Host Microbe 19:720–30.

590 27. Caine E, Jagger B, Diamond M. 2018. Animal Models of Zika Virus Infection during
591 Pregnancy. Viruses 10:598.

592 28. Carbaugh DL, Zhou S, Sanders W, Moorman NJ, Swanstrom R, Lazear HM. 2020. Two
593 Genetic Differences between Closely Related Zika Virus Strains Determine Pathogenic
594 Outcome in Mice. J Virol 94.

595 29. Yockey LJ, Jurado KA, Arora N, Millet A, Rakib T, Milano KM, Hastings AK, Fikrig E,
596 Kong Y, Horvath TL, Weatherbee S, Kliman HK, Coyne CB, Iwasaki A. 2017. Type I
597 interferons instigate fetal demise after Zika virus infection. Sci Immunol.

598 30. Banatvala JE, Brown DWG. 2004. Rubella, p. 1127–1137. *In* Lancet. Lancet.

599 31. Hemberger M, Hanna CW, Dean W. 2019. Mechanisms of early placental development in
600 mouse and humans. Nat Rev Genet 2019 211 21:27–43.

601 32. Delorme-Axford E, Donker RB, Mouillet J-F, Chu T, Bayer A, Ouyang Y, Wang T, Stolz
602 DB, Sarkar SN, Morelli AE, Sadovsky Y, Coyne CB. 2013. Human placental trophoblasts
603 confer viral resistance to recipient cells. Proc Natl Acad Sci U S A 110:12048–53.

604 33. Bayer A, Delorme-Axford E, Sleigher C, Frey TK, Trobaugh DW, Klimstra WB, Emert-
605 Sedlak LA, Smithgall TE, Kinchington PR, Vadia S, Seveau S, Boyle JP, Coyne CB,
606 Sadovsky Y. 2015. Human trophoblasts confer resistance to viruses implicated in
607 perinatal infection. Am J Obstet Gynecol 212:71.e1-71.e8.

608 34. Ander SE, Rudzki EN, Arora N, Sadovsky Y, Coyne CB, Boyle JP. 2018. Human
609 placental syncytiotrophoblasts restrict toxoplasma gondii attachment and replication and
610 respond to infection by producing immunomodulatory chemokines. MBio 9.

611 35. Douam F, Soto Albrecht YE, Hrebikova G, Sadimin E, Davidson C, Kotenko S V., Ploss
612 A. 2017. Type III Interferon-Mediated Signaling Is Critical for Controlling Live Attenuated

613 Yellow Fever Virus Infection *In Vivo*. MBio 8:e00819-17.

614 36. Lazear HM, Daniels BP, Pinto AK, Huang AC, Vick SC, Doyle SE, Gale M, Klein RS,
615 Diamond MS. 2015. Interferon-λ restricts West Nile virus neuroinvasion by tightening the
616 blood-brain barrier. Sci Transl Med 7:284ra57.

617 37. Guzeloglu-Kayisli O, Guo X, Tang Z, Semerci N, Ozmen A, Larsen K, Mutluay D, Guller
618 S, Schatz F, Kayisli UA, Lockwood CJ. 2020. Zika Virus-Infected Decidual Cells Elicit a
619 Gestational Age-Dependent Innate Immune Response and Exaggerate Trophoblast Zika
620 Permissiveness: Implication for Vertical Transmission. J Immunol 205:3083–3094.

621 38. Zanoni I, Granucci F, Broggi A. 2017. Interferon (IFN)-λ takes the helm:
622 Immunomodulatory roles of type III IFNs. Front Immunol. Front Immunol.

623 39. Jiang X, Du M-R, Li M, Wang H. 2018. Three macrophage subsets are identified in the
624 uterus during early human pregnancy. Cell Mol Immunol 2018 1512 15:1027–1037.

625 40. Ning F, Liu H, Lash GE. 2016. The Role of Decidual Macrophages During Normal and
626 Pathological Pregnancy. Am J Reprod Immunol 75:298–309.

627 41. De M, Bhushan A, Chinnaswamy S. 2021. Monocytes differentiated into macrophages
628 and dendritic cells in the presence of human IFN-λ3 or IFN-λ4 show distinct phenotypes.
629 J Leukoc Biol 110:357.

630 42. Read SA, Wijaya R, Ramezani-Moghadam M, Tay E, Schibeci S, Liddle C, Lam VWT,
631 Yuen L, Douglas MW, Booth D, George J, Ahlenstiel G. 2019. Macrophage Coordination
632 of the Interferon Lambda Immune Response. Front Immunol 10.

633 43. Hirsch AJ, Roberts VHJ, Grigsby PL, Haese N, Schabel MC, Wang X, Lo JO, Liu Z,
634 Kroenke CD, Smith JL, Kelleher M, Broeckel R, Kreklywich CN, Parkins CJ, Denton M,
635 Smith P, DeFilippis V, Messer W, Nelson JA, Hennebold JD, Gafe M, Colgin L, Lewis A,
636 Ducore R, Swanson T, Legasse AW, Axthelm MK, MacAllister R, Moses A V., Morgan
637 TK, Frias AE, Streblow DN. 2018. Zika virus infection in pregnant rhesus macaques
638 causes placental dysfunction and immunopathology. Nat Commun 9:263.

639 44. Galani IE, Triantafyllia V, Eleminiadou E-E, Koltsida O, Stavropoulos A, Manioudaki M,
640 Thanos D, Doyle SE, Kotenko S V., Thanopoulou K, Andreakos E. 2017. Interferon-λ
641 Mediates Non-redundant Front-Line Antiviral Protection against Influenza Virus Infection
642 without Compromising Host Fitness. *Immunity* 46:875-890.e6.

643 45. Goel RR, Kotenko S V., Kaplan MJ. 2021. Interferon lambda in inflammation and
644 autoimmune rheumatic diseases. *Nat Rev Rheumatol* 2021 176 17:349–362.

645 46. Major J, Crotta S, Llorian M, McCabe TM, Gad HH, Priestnall SL, Hartmann R, Wack A.
646 2020. Type I and III interferons disrupt lung epithelial repair during recovery from viral
647 infection. *Science* (80-) 369:712–717.

648 47. Broggi A, Ghosh S, Sposito B, Spreafico R, Balzarini F, Lo Cascio A, Clementi N, de
649 Santis M, Mancini N, Granucci F, Zanoni I. 2020. Type III interferons disrupt the lung
650 epithelial barrier upon viral recognition. *Science* (80-) 369:706–712.

651 48. McElrath C, Espinosa V, Lin J-D, Peng J, Sridhar R, Dutta O, Tseng H-C, Smirnov S V.,
652 Risman H, Sandoval MJ, Davra V, Chang Y-J, Pollack BP, Birge RB, Galan M, Rivera A,
653 Durbin JE, Kotenko S V. 2021. Critical role of interferons in gastrointestinal injury repair.
654 *Nat Commun* 12:2624.

655 49. Griffiths SJ, Dunnigan CM, Russell CD, Haas JG. 2015. The role of interferon-λ locus
656 polymorphisms in Hepatitis C and other infectious diseases. *J Innate Immun.* S. Karger
657 AG.

658 50. Prokunina-Olsson L, Morrison RD, Obajemu A, Mahamar A, Kim S, Attaher O, Florez-
659 Vargas O, Sidibe Y, Onabajo OO, Hutchinson AA, Manning M, Kwan J, Brand N, Dicko
660 A, Fried M, Albert PS, Mbulaiteye SM, Duffy PE. 2021. IFN-λ4 is associated with
661 increased risk and earlier occurrence of several common infections in African children.
662 *Genes Immun* 22.

663 51. Prokunina-Olsson L, Muchmore B, Tang W, Pfeiffer RM, Park H, Dickensheets H, Hergott
664 D, Porter-Gill P, Mumy A, Kohaar I, Chen S, Brand N, Tarway M, Liu L, Sheikh F,

665 Astemborski J, Bonkovsky HL, Edlin BR, Howell CD, Morgan TR, Thomas DL,
666 Rehermann B, Donnelly RP, O'Brien TR. 2013. A variant upstream of IFNL3 (IL28B)
667 creating a new interferon gene IFNL4 is associated with impaired clearance of hepatitis C
668 virus. *Nat Genet* 45:164–171.

669 52. Key FM, Peter B, Dennis MY, Huerta-Sánchez E, Tang W, Prokunina-Olsson L, Nielsen
670 R, Andrés AM. 2014. Selection on a Variant Associated with Improved Viral Clearance
671 Drives Local, Adaptive Pseudogenization of Interferon Lambda 4 (IFNL4). *PLoS Genet*
672 10.

673 53. Bamford CGG, Aranday-Cortes E, Filipe IC, Sukumar S, Mair D, Filipe A da S, Mendoza
674 JL, Garcia KC, Fan S, Tishkoff SA, McLauchlan J. 2018. A polymorphic residue that
675 attenuates the antiviral potential of interferon lambda 4 in hominid lineages. *PLoS Pathog*
676 14.

677 54. Kotenko S V., Durbin JE. 2017. Contribution of type III interferons to antiviral immunity:
678 Location, location, location. *J Biol Chem*. American Society for Biochemistry and
679 Molecular Biology Inc.

680 55. Wack A, Terczyńska-Dyla E, Hartmann R. 2015. Guarding the frontiers: The biology of
681 type III interferons. *Nat Immunol*. Nature Publishing Group.

682 56. Andrade D, Kim M, Blanco LP, Karumanchi SA, Koo GC, Redecha P, Kirou K, Alvarez
683 AM, Mulla MJ, Crow MK, Abrahams VM, Kaplan MJ, Salmon JE. 2015. Interferon- α and
684 angiogenic dysregulation in pregnant lupus patients who develop preeclampsia. *Arthritis*
685 *Rheumatol* (Hoboken, NJ) 67:977–87.

686 57. Crow YJ, Manel N. 2015. Aicardi–Goutières syndrome and the type I interferonopathies.
687 *Nat Rev Immunol* 15:429–440.

688 58. Meuwissen MEC, Schot R, Buta S, Oudesluys G, Tinschert S, Speer SD, Li Z, van Unen
689 L, Heijmans D, Goldmann T, Lequin MH, Kros JM, Stam W, Hermann M, Willemse R,
690 Brouwer RWW, Van IJcken WFJ, Martin-Fernandez M, de Coo I, Dudink J, de Vries FAT,

691 Bertoli Avella A, Prinz M, Crow YJ, Verheijen FW, Pellegrini S, Bogunovic D, Mancini
692 GMS. 2016. Human USP18 deficiency underlies type 1 interferonopathy leading to
693 severe pseudo-TORCH syndrome. *J Exp Med* 213:1163–1174.

694 59. Sanchis A, Cerveró L, Bataller A, Tortajada JL, Huguet J, Crow YJ, Ali M, Higuet LJ,
695 Martínez-Frías ML. 2005. Genetic syndromes mimic congenital infections. *J Pediatr*
696 146:701–705.

697 60. Casazza RL, Lazear HM, Miner JJ. 2020. Protective and Pathogenic Effects of Interferon
698 Signaling during Pregnancy. *Viral Immunol*. Mary Ann Liebert Inc.

699 61. Heang V, Yasuda CY, Sovann L, Haddow AD, da Rosa APT, Tesh RB, Kasper MR.
700 2012. Zika virus infection, Cambodia, 2010. *Emerg Infect Dis*. *Emerg Infect Dis*.

701 62. Lanciotti RS, Lambert AJ, Holodniy M, Saavedra S, del Carmen Castillo Signor L. 2016.
702 Phylogeny of zika virus in western Hemisphere, 2015. *Emerg Infect Dis*. Centers for
703 Disease Control and Prevention (CDC).

704 63. Baronti C, Piorkowski G, Charrel RN, Boubis L, Leparc-Goffart I, Lamballerie X de. 2014.
705 Complete Coding Sequence of Zika Virus from a French Polynesia Outbreak in 2013.
706 *Genome Announc* 2:500–514.

707 64. Mangala Prasad V, Klose T, Rossmann MG. 2017. Assembly, maturation and three-
708 dimensional helical structure of the teratogenic rubella virus. *PLoS Pathog* 13.

709 65. Brien JD, Hassert M, Stone ET, Geerling E, Cruz-Orengo L, Pinto AK. 2019. Isolation and
710 quantification of zika virus from multiple organs in a mouse. *J Vis Exp* 2019.

711 66. Oliphant T, Nybakken GE, Engle M, Xu Q, Nelson CA, Sukupolvi-Petty S, Marri A,
712 Lachmi B-E, Olshevsky U, Fremont DH, Pierson TC, Diamond MS. 2006. Antibody
713 Recognition and Neutralization Determinants on Domains I and II of West Nile Virus
714 Envelope Protein. *J Virol* 80:12149–12159.

715 67. Baldridge MT, Lee S, Brown JJ, McAllister N, Urbanek K, Dermody TS, Nice TJ, Virgin
716 HW. 2017. Expression of Ifnlr1 on Intestinal Epithelial Cells Is Critical to the Antiviral

717 Effects of Interferon Lambda against Norovirus and Reovirus. *J Virol* 91.

718 68. Schneider CA, Rasband WS, Eliceiri KW. 2012. NIH Image to ImageJ: 25 years of image
719 analysis. *Nat Methods* 2012 97 9:671–675.

720 69. Widman DG, Young E, Yount BL, Plante KS, Galichotte EN, Carbaugh DL, Peck KM,
721 Plante J, Swanstrom J, Heise MT, Lazear HM, Baric RS. 2017. A Reverse Genetics
722 Platform That Spans the Zika Virus Family Tree. *MBio* 8:e02014-16.

723 70. Deeney S, Powers KN, Crombleholme TM. 2016. A comparison of sexing methods in
724 fetal mice. *Lab Anim (NY)* 45:380–384.

725 71. G K, G M, A A, S G, F S, E S, M R, R C, M Q, CJ L. 2004. A novel immortalized human
726 endometrial stromal cell line with normal progestational response. *Endocrinology*
727 145:2291–2296.

728

729 **FIGURE LEGENDS**

730 **Figure 1. Infection earlier in gestation corresponds to enhanced fetal pathology in mouse**
731 **models of congenital ZIKV infection. A-B.** Non-pregnant 8-10 week old female *Ifnar1^{-/-}* mice
732 (5-6 mice per group) were infected with 1000 FFU of ZIKV strain PRVABC59, FSS13025, or
733 H/PF/2013; weights and survival were measured daily for 14 days. Each line represents an
734 individual mouse. **C-K.** Dams from WT x WT or *Ifnar1^{-/-}* x *Ifnar1^{-/-}* crosses (6 to 8 WT or 4 to 5
735 *Ifnar1^{-/-}* dams per group) were infected at day 7 or 9 post-mating (E7, E9) with ZIKV FSS13025
736 by subcutaneous inoculation in the footpad. WT dams were given 2mg of anti-IFNAR1 blocking
737 mAb intraperitoneally one day prior to infection. Tissues were harvested at E15 (8 or 6dpi). **D-F.**
738 ZIKV viral loads in the maternal spleen, placenta, and fetal head were measured by qRT-PCR.
739 Each data point represents one dam (**D**) or fetus (**E-F**). The percent of ZIKV-positive fetal heads
740 is indicated above each group. **G.** Representative images of fetuses/resorptions from one
741 pregnancy from each cross. **H.** Intact fetuses (i.e. not resorbed) were weighed. Fetuses <1
742 standard deviation from the mean of mock-infected (below dotted line) were classified as having

743 intrauterine growth restriction (IUGR). Intact fetuses with weights significantly different from mock
744 pregnancies (calculated by ANOVA) are indicated, **** P<0.0001. **I.** Proportions of fetuses
745 exhibiting IUGR or resorption.

746

747 **Figure 2. IFN-λ is produced at the maternal-fetal interface.** **A.** Placentas were harvested from
748 uninfected pregnant dams at E11 (1 dam), E13 (1 dams), E15 (5 dams), E17 (3 dams), and during
749 labor (3 dams). Placentas were homogenized in PBS, and IFN-λ activity in placental homogenate
750 was determined using a reporter cell line. **B.** Pregnant WT dams (treated with an anti-IFNAR1
751 blocking mAb, 6 or 8 dams per group) or pregnant *Ifnar1*^{-/-} dams (4 or 5 dams per group) were
752 infected at either E7 or E9 with ZIKV FSS13025. Placentas were homogenized in PBS, and IFN-
753 λ activity in placental homogenate was determined using a reporter cell line.

754

755 **Figure 3. IFN-λ restricts ZIKV transplacental transmission by signaling to maternal tissues.**
756 **A.** Mating and infection timeline. *Ifnlr1*^{+/+} dam x *Ifnlr1*^{-/-} sire and *Ifnlr1*^{-/-} dam x *Ifnlr1*^{+/+} sire crosses
757 were used to generate pregnancies with IFN-λ responsive (*Ifnlr1*^{+/+}) and non-responsive (*Ifnlr1*^{-/-})
758 fetuses. **B-E.** Pregnant dams were treated with 2mg of IFNAR1 blocking antibody at E8 and
759 infected at E9 with 1000 FFU of ZIKV FSS13025 by subcutaneous inoculation in the footpad.
760 Fetuses and their associated placentas were harvested at E15. ZIKV RNA was measured by qRT-
761 PCR in maternal spleen (**B**), placenta (**C**), and fetal head (**D**) and fetuses were weighed (**E**). The
762 percent of fetuses with detectable ZIKV is noted (**D**). Data are combined from 5 or 6 dams per
763 group; each data point represents a single dam (**B**) or fetus (**C-E**). Groups were compared by
764 ANOVA (**B, C, E**) or Mann-Whitney (**D**); italicized letters indicate groups that are significantly
765 different each other (P < 0.05). **F** and **G.** Non-pregnant, 8-week old *Ifnlr1*^{-/-} and *Ifnlr1*^{+/+} females
766 were infected with 1000 FFU of ZIKV FSS13025. Viremia was measured from serum at 2, 4, and
767 6 dpi by qRT-PCR. Spleens and brains were harvested 6 dpi, and viral loads were measured by
768 qRT-PCR. Groups were not significantly different (ns) by ANOVA.

769

770 **Figure 4. IFN-λ enhances fetal infection early in gestation through signaling to maternal**
771 **tissues. A.** Mating and infection timeline. *Ifnlr1^{+/−}* dam x *Ifnlr1^{−/−}* sire and *Ifnlr1^{−/−}* dam x *Ifnlr1^{+/−}* sire
772 crosses were treated with 2mg of anti-IFNAR1 mAb at E6 and infected at E7 with 1000 FFU of
773 ZIKV FSS13025 by subcutaneous inoculation in the footpad. Fetuses and their associated
774 placentas were harvested at E15. **B-D.** ZIKV RNA in the maternal spleens, placenta, and fetal
775 head were measured by qRT-PCR. **E.** Gross fetal pathology was measured by fetal weight.
776 Significant differences are denoted by italicized letters, calculated by ANOVA (**B, C, E**) or Mann-
777 Whitney (**D**). Data are combined from 5 or 6 dams per group; each data point represents a single
778 dam (**B**) or fetus (**C-E**).

779

780 **Figure 5. Maternal IFN-λ signaling induces fetal pathology. A.** Mating and infection timeline.
781 Wild-type, *Ifnar1^{−/−}*, and *Ifnar1^{−/−}Ifnlr1^{−/−}* DKO mice were crossed to create pregnancies with differing
782 IFN-λ responsiveness in maternal and fetal tissues, within dams lacking IFN- $\alpha\beta$ signaling.
783 Pregnant dams were infected at E7 with 1000 FFU of ZIKV FSS13025 by subcutaneous
784 inoculation in the footpad. Data are combined from 5 to 7 dams per group. **B.** Representative
785 images of the fetuses/resorptions from each cross. **C.** Intact fetuses (not resorbed) were weighed.
786 Fetuses with weights below one standard deviation of uninfected pregnancies were classified as
787 having IUGR. Significant differences between fetal groups are indicated by italicized letters and
788 were calculated by ANOVA. **D.** The percent of resorptions and IUGR in each pregnancy group.
789 **E.** The percent of intact fetuses in individual litters. **F** and **G.** ZIKV viral loads in fetal head and
790 maternal spleen were measured by qRT-PCR. **H.** The sex of resorptions and intact fetuses was
791 determined by PCR. **I** and **J.** 10-week-old non-pregnant females were infected with 1000 FFU of
792 ZIKV FSS13025 by subcutaneous inoculation in the footpad. Viral loads in serum (2, 4, 6 dpi) and
793 tissues (6 dpi) were determined by qRT-PCR.

794

795 **Figure 6. IFN-λ mediates fetal pathology through signaling in maternal leukocytes. A and**
796 **B.** WT dams were mated to WT sires and treated with 200 µg of poly(I:C) at E7. Serum was
797 collected by submandibular bleed pre-treatment. 24 hours post-treatment, the uterus, spleen, and
798 lung were harvested from pregnant and non-pregnant mice. IFN-λ activity was measured in a
799 reporter cell assay and IFN-β concentration by ELISA. Filled circles represent pregnant mice. **C.**
800 Experiment timeline. *Ifnlr1^{+/−}*, *Ifnlr1^{−/−}*, and leukocyte *Ifnlr1^{−/−}* (*Vav-Cre Ifnlr1^{−/−}*) dams were mated to
801 WT sires. Pregnant dams were administered 200µg of poly(I:C) by intraperitoneal injection at E7,
802 E9, or E11 and fetuses were harvested at E15. **D.** Representative litters from E7-treated
803 pregnancies. Resorptions were counted (**E**) and intact fetuses were weighed (**F**).
804

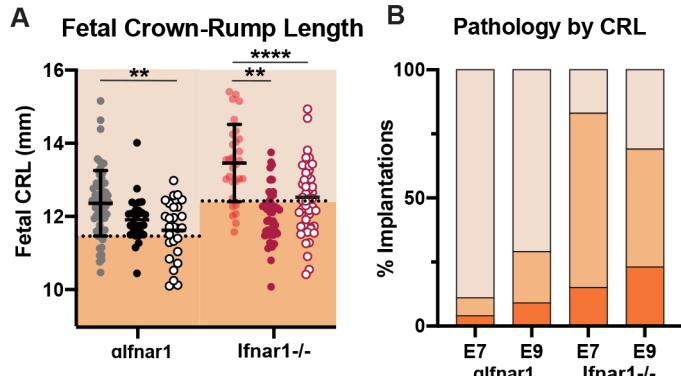
805 **SUPPLEMENTAL DATA**

806

807 **Supplemental Figure 1. Fetal pathology as assessed by crown-rump length. A.** Crown-rump
808 length (CRL) of intact fetuses (i.e. not resorbed) from Figure 1 was measured using ImageJ.
809 Fetuses <1 standard deviation from the mean of mock-infected (below dotted line) were classified
810 as having intrauterine growth restriction (IUGR). Intact fetuses with CRLs significantly different
811 from mock pregnancies (calculated by ANOVA) are indicated **** P<0.0001, ** P<0.01 **B.**
812 Proportions of fetuses exhibiting IUGR or resorption.
813

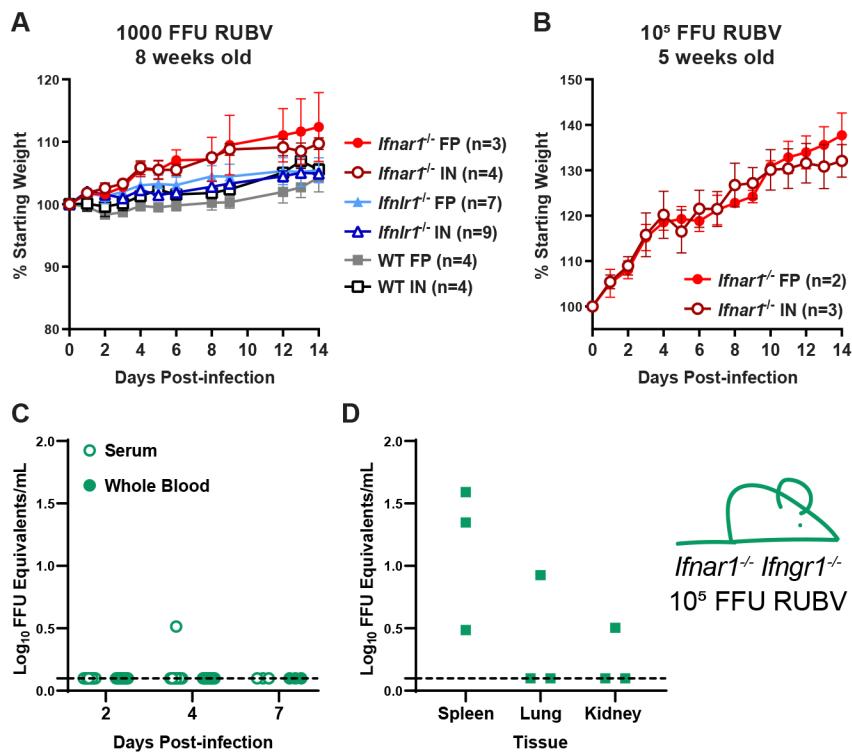
814 **Supplemental Figure 2. Rubella virus does not cause pathology in mice. A and B.** 8- or 5-
815 week-old male and female WT, *Ifnlr1^{−/−}*, or *Ifnar1^{−/−}* mice were infected with 1000 FFU or 100,000
816 FFU of RUBV by subcutaneous inoculation in the footpad (FP) or intranasal inoculation (IN).
817 Weight was monitored for 14 days post-infection and is shown as the mean ± SEM of the indicated
818 number of mice per group. **C** and **D.** 5-week-old *Ifnar1^{−/−} Ifngr1^{−/−}* DKO mice were infected
819 intravenously with 100,000 FFU of RUBV. Whole blood and serum were collected 2, 4, and 7 dpi
820 and tissues were harvested 7 dpi. Viral loads were determined by qRT-PCR.

821


822 **Supplemental Figure 3. Validation of Vav-cre conditional knockouts.** Tails and whole blood
823 were collected from *Ifnlr1*^{f/f}, *Ifnlr1*^{−/−}, and Vav-Cre *Ifnlr1*^{−/−} mice and *Ifnlr1* genotype determined by
824 PCR. Knockout band: 564bp, floxed band: 415bp.

825

826 **Supplemental Figure 4. Decidual cell lines are permissive to viral infection, but do not**
827 **respond to IFN-λ.** **A.** Immortalized human endometrial stromal cells (T-HESC) were decidualized
828 (+) or left undifferentiated (-). Decidualized and non-decidualized cells were infected with DENV-
829 4, ZIKV (strain H/PF/2013), or RUBV at an MOI of 1. Supernatants were harvested at 4, 24, 48,
830 and 72hpi and titered by FFA. **B.** Lung epithelial (A549), placental (JEG3, HTR8), and
831 decidualized human endometrial stromal cells (T-HESC) were treated with IFN-λ (50 ng/mL) or
832 IFN-β (5 ng/mL), or infected with ZIKV (strain H/PF/2013) or RUBV at an MOI of 1. RNA was
833 isolated from cells 24 hours after treatment, and *IFIT1* induction was measured by qRT-PCR.


834

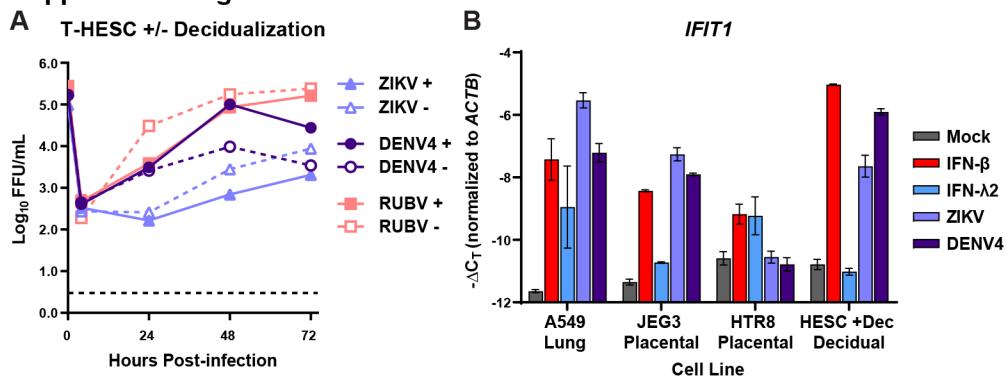
Supplemental Figure 1

Supplemental Figure 1. Fetal pathology as assessed by crown-rump length. A. Crown-rump length (CRL) of intact fetuses (i.e. not resorbed) from Figure 1 was measured using ImageJ. Fetuses <1 standard deviation from the mean of mock-infected (below dotted line) were classified as having intrauterine growth restriction (IUGR). Intact fetuses with CRLs significantly different from mock pregnancies (calculated by ANOVA) are indicated **** $P<0.0001$, ** $P<0.01$ **B.** Proportions of fetuses exhibiting IUGR or resorption.

Supplemental Figure 2

Supplemental Figure 2. Rubella virus does not cause pathology in mice. **A** and **B.** 8- or 5-week-old male and female WT, *Ifnlr1^{-/-}*, or *Ifnar1^{-/-}* mice were infected with 1000 FFU or 100,000 FFU of RUBV by subcutaneous inoculation in the footpad (FP) or intranasal inoculation (IN). Weight was monitored for 14 days post-infection and is shown as the mean \pm SEM of the indicated number of mice per group. **C** and **D.** 5-week-old *Ifnar1^{-/-} Ifngr1^{-/-}* DKO mice were infected intravenously with 100,000 FFU of RUBV. Whole blood and serum were collected 2, 4, and 7 dpi and tissues were harvested 7 dpi. Viral loads were determined by qRT-PCR.

Supplemental Figure 3



Supplemental Figure 3. Validation of Vav-cre conditional knockouts.

Tails and whole blood were collected from *Ifnlr1*^{fl/fl}, *Ifnlr1*^{-/-}, and Vav-Cre *Ifnlr1*^{-/-} mice and *Ifnlr1* genotype determined by PCR. Knockout band: 564bp, floxed band: 415bp.

838

Supplemental Figure 4

Supplemental Figure 4. Decidual cell lines are permissive to viral infection, but do not respond to IFN-λ. **A.** Immortalized human endometrial stromal cells (T-HESC) were decidualized (+) or left undifferentiated (-). Decidualized and non-decidualized cells were infected with DENV-4, ZIKV (strain H/PF/2013), or RUBV at an MOI of 1. Supernatants were harvested at 4, 24, 48, and 72hpi and titered by FFA. **B.** Lung epithelial (A549), placental (JEG3, HTR8), and decidualized human endometrial stromal cells (T-HESC) were treated with IFN-λ (50 ng/mL) or IFN-β (5 ng/mL), or infected with ZIKV (strain H/PF/2013) or RUBV at an MOI of 1. RNA was isolated from cells 24 hours after treatment, and *IFIT1* induction was measured by qRT-PCR.