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Abstract

Dimension reduction and (spatial) clustering is usually performed sequentially; how-
ever, the low-dimensional embeddings estimated in the dimension-reduction step may
not be relevant to the class labels inferred in the clustering step. We therefore devel-
oped a computation method, Dimension-Reduction Spatial-Clustering (DR-SC), that
can simultaneously perform dimension reduction and (spatial) clustering within a uni-
fied framework. Joint analysis by DR-SC produces accurate (spatial) clustering results
and ensures the effective extraction of biologically informative low-dimensional features.
DR-SC is applicable to spatial clustering in spatial transcriptomics that characterizes
the spatial organization of the tissue by segregating it into multiple tissue structures.
Here, DR-SC relies on a latent hidden Markov random field model to encourage the
spatial smoothness of the detected spatial cluster boundaries. Underlying DR-SC is an
efficient expectation-maximization algorithm based on an iterative conditional mode. As
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such, DR-SC is scalable to large sample sizes and can optimize the spatial smoothness
parameter in a data-driven manner. With comprehensive simulations and real data ap-
plications, we show that DR-SC outperforms existing clustering and spatial clustering
methods: it extracts more biologically relevant features than conventional dimension
reduction methods, improves clustering performance, and offers improved trajectory in-
ference and visualization for downstream trajectory inference analyses.

Keywords: dimension reduction; clustering; expectation-maximization algorithm hidden
Markov random field; spatial transcriptomics; scRNA-Seq

1 Introduction

Single-cell RNA sequencing (scRNA-seq) studies encompass a set of widely applied technolo-
gies that profile the transcriptome of individual cells on a large scale and can reveal cell
subpopulations within a tissue [1, 2]. Spatial transcriptomics studies, on the other hand,
involve a series of recently developed technologies that allow for the simultaneous character-
ization of the expression profiles of multiple tissue locations while retaining their locational
information. scRNA-seq technologies include full-length transcript sequencing approaches (e.g.,
Smart-seq2 [3] and MATQ-seq [4]) and 3/5"-end transcript sequencing technologies (e.g., Drop-
seq [5] and STRT-seq [6]). While spatial transcriptomics technologies include earlier fluores-
cence in situ hybridization (FISH)-based approaches (e.g., seqFISH [7] and MERFISH [8])
and sequencing-based techniques (e.g., 10x Visium [9] and Slide-seq [10]) among others. Both
scRNA-seq and spatial transcriptomic technologies have provided unprecedented new oppor-
tunities to characterize the cell type heterogeneity within a tissue, investigate the spatial gene
expression patterns [11, 12], explore the transcriptomic landscape of the tissue, identify spa-
tial trajectories on the tissue [13], and characterize the spatial distribution of cell types within
tissues and across multiple tissue types [14-16].

In the analysis of both scRNA-seq and spatial transcriptomics datasets, dimension reduc-
tion and (spatial) clustering are two key analytical steps that are critical for many downstream
analyses such as cell lineage analysis and differential expression analysis. Specifically, due to
the curse of dimensionality, dimension-reduction methods are usually applied to the transfor-
mation of the original noisy expression matrix in either scRNA-seq or spatial transcriptomics
into a low-dimensional representation before performing (spatial) clustering analysis [13, 17—
19]. The existing literature describes many dimension-reduction methods that have been
developed and common methods include principal component analysis (PCA), weighted PCA
(WPCA) [20], t-distributed stochastic neighbor embedding (tSNE) [21], uniform manifold ap-
proximation and projection (UMAP) [22], etc. PCA is a well-recognized approach that is
routinely used in many software packages used for both scRNA-seq and spatial transcrip-
tomics analyses [17, 23] and has many desirable features such as simplicity, computational
efficiency, and relative accuracy. For example, Seurat [24], SpaGCN [25], BayesSpace [26] and
SC-MEB [27] all first extract the top principal components (PCs) from the high-dimensional
expression matrix and then perform (spatial) clustering analysis. WPCA is a variation of
PCA that imposes different weights on different genes to upweight the potentially informative
genes [20] in the presence of heteroscedastic noises. SpatialPCA is another variation of PCA
that incorporates spatial localization information to encourage neighborhood similarity in the
PC space [13]. While fitting PCA, WPCA and SpatialPCA is generally automatic and does
not rely on parameter tuning, the other two widely used nonlinear dimension-reduction meth-
ods tSNE and UMAP rely relatively heavily on the manual tuning of parameters for optimized
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performance [19, 23]. In addition to these generic methods, several dimension-reduction meth-
ods have been developed that account for either the count nature and/or dropout events of
scRNA-seq data, e.g., zero-inflated factor analysis (ZIFA) [28] zero-inflated negative binomial-
based wanted variation extraction (ZINB-WaVE) [29], and single-cell variational inference
tools (scVI) [30].

After obtaining a low-dimensional representation with dimension reduction, (spatial) clus-
tering analyses are then carried out. Clustering of scRNA-seq data aims to identify cell types
and cluster cells into the distinct cell categories. Spatial clustering in spatial transcriptomics
aims to use spatial transcriptomic information to cluster tissue locations into multiple spatial
clusters, effectively segmenting the entire tissue into multiple tissue structures or domains.
Cell-type clustering facilitates our understanding of the cellular composition of tissues with
potentially heterogeneous cell types, whereas spatial clustering facilitates the characterization
of the tissue structure and is a key step towards understanding the spatial and functional or-
ganization of tissue. Common clustering methods for scRNAseq analysis include k-means [31]
and the Gaussian mixture model (GMM) [32]. Common spatial clustering methods for spa-
tial transcriptomics analysis include the graph convolutional network (GCN)-based approach
SpaGCN [25], the hidden Markov random field model (HMRF) implemented in the Giotto
package [33], BayesSpace [26], SC-MEB [27], and SpatialPCA [13], all of which promote the
smoothness of cluster assignments in neighboring tissue locations. By performing dimension re-
duction and (spatial) clustering sequentially, the estimated low-dimensional embeddings and
class labels can be used for many types of downstream analyses, such as cell lineage anal-
ysis [34-37], spatial trajectory inference on the tissue [13], and differential gene expression
(DGE) analysis [38].

The majority of existing methods for dimension reduction and (spatial) clustering have
been used in a tandem analysis by first performing dimension reduction on expression matrix
followed by (spatial) clustering analysis of the estimated low-dimensional embeddings [19], as
shown in Fig. la. Performing dimension reduction and (spatial) clustering as two sequential
analytical steps is not ideal for two important reasons. First, these tandem methods optimize
distinet loss functions for dimension reduction and (spatial) clustering separately, and the two
loss functions may not be consistent with each other when aiming to achieve optimal (spatial)
cluster allocation [39]. PCA aims to retain as much variance as possible in as few PCs as pos-
sible, whereas spatial clustering aims to either minimize within-cluster variances or maximize
between-cluster variances. Second, the dimension-reduction step in the tandem methods does
not consider uncertainty in obtaining low-dimensional features. Consequently, the extracted
low-dimensional components are effectively treated as error-free in the spatial clustering anal-
ysis, which is not desirable. To address these two drawbacks of tandem analysis, several recent
methods have been developed in other research areas to perform joint dimension reduction
and clustering analysis. For example, an ad-hoc remedy would perform two analytical steps
iteratively: estimating the low-dimensional embeddings by applying supervised dimension re-
duction together with the inferred latent class labels (the Dimension-Reduction step;DR), and
inferring class labels using estimated embeddings, and using, if necessary, spatial information
(the Spatial-Clustering step;SC). These simple procedures echo some recent explorations of
self-supervised learning [40, 41], in which deep neural networks were combined with simple
classifiers to perform unsupervised clustering of image data. To some extent, joint methods
employ self-learning to classify all spots and obtain latent features iteratively. However, it
is still challenging to unify the existing methods and combine both DR and SC steps in a
self-learning manner.

Here, we propose a unified and principled method to both estimate low-dimensional em-
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beddings relevant to latent class labels and, in the case of spatial transcriptomics analysis,
further leverage these embeddings with spatial information to perform spatial clustering using
an HMRF'. The proposed method was built on a hierarchical model with two layers, as shown
in Fig. 1b: the first layer relates gene expression to low-dimensional embeddings and represents
the DR step; while the second layer relates the latent embeddings to the cluster labels, and, if
necessary, spatial information and thus represents the SC step. These two layers are unified in
DR-SC such that the relevant features are estimated while simultaneously performing spatial
clustering. We developed an efficient expectation-maximization (EM) algorithm based on an
iterative conditional mode (ICM) [42, 43]. DR-SC is not only computationally efficient and
scalable to large sample sizes but is also capable of optimizing the smoothness parameter in
the spatial clustering component. Importantly, when the smoothness parameter is set to zero,
DR-SC directly performs clustering for scRNA-seq data with no spatial information. Unlike
existing spatial clustering approaches, DC-SR can determine the number of clusters in an auto-
matic fashion using modified Bayesian information criteria (MBIC) [44]. Using 16 benchmark
scRNA-seq datasets, we demonstrated that the low-dimensional embeddings and the class la-
bels estimated from DR-SC lead to better performance in the downstream lineage analysis
using Slingshot [36]. We further illustrated, using both CITE-seq and spatial transcriptomics
(10x Visium and Slide-seqV2) datasets, that DR-SC achieves higher (spatial) clustering accu-
racy and resolves low-dimensional representations with improved visualization. To exemplify
the utility of the estimated low-dimensional embeddings from DR-SC, we performed analy-
sis to infer cell lineages using a seqFISH mouse embryonic dataset. The R package DR.SC
is available on CRAN (https://CRAN.R-project.org/package=DR.SC), with functions
implemented for standalone analysis and Seurat based [45] pipeline analyses.

[Figure 1 about here.]

2 Materials and Methods

2.1 Model Specification

We proposed the use of DR-SC to estimate low-dimensional latent features while improving
clustering performance via a unified statistically principled method. DR-SC relates to a two-
layer hierarchical model that simultaneously performs dimension reduction via a probabilistic
PCA model and promotes spatial clustering using an HMRF based on empirical Bayes. With
spatial transcriptomics datasets, we observe a p-dimensional log-normalized expression vector
x; = (i1, -+ ,xip)" for each spot, s; € R? on square or hexagonal lattices, while its class
label, y; € {1,---, K}, and ¢-dimensional embeddings, z;’s, are unavailable. Without loss
of generality, we assume that x; is centered and DR-SC models the centered log-normalized
expression vector x;, with its latent low-dimensional feature, z;, and class label, y;, as

X; :Wzi+€i7€i NN(O,A), (1)
Zi|yi =k~ N(:ukv Zk)7 (2)
where A = diag(Aq,---,A,) is a diagonal matrix for residual variance, W € RP*? is a loading

matrix that transforms the p-dimensional expression vector into g-dimensional embeddings,
and p, € R?! and ¥), € R are the mean vector and covariance matrix for the kth class,
respectively. Eqn. (1) relates to the high-dimensional expression vector (x;) in p genes with a
low-dimensional feature (z;) via a probabilistic PCA model while Eqn. (2) is a GMM for this
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latent feature among all n spots. When spatial coordinates (s;) are available, we assume each
latent class label, y;, is interconnected with the class labels of its neighborhoods via a Markov
random field. To promote spatial smoothness within spot neighborhoods, we assume that the
hidden Markov random field y = (y1,- -+ ,y,)? takes the following Potts model [46],

Pr(y) = C(5) " exp{—3 3° 3 61— (3w}, Q

i 'EN;

where ¢ is a Dirac function, C'(5) is a normalization constant that does not have a closed form,
N; is the neighborhood of spot i, and [ is the smoothing parameter that controls the similarity
among the neighboring labels, in other words, the degree of spatial smoothness. When this
smoothing parameter [ goes to zero, the spatial-clustering step in DR-SC, Eqn. (2) and (3),
is reduced to a latent GMM with no spatial information.

DR-SC unifies both models for dimension reduction and (spatial) clustering (Fig. 1b). By
combining the latent GMM in Eqn. (2) and the Potts model in Eqn. (3), DR-SC performs the
spatial clustering on low-dimensional embeddings obtained from the probabilistic PCA model
in Eqn. (1). Conventionally, the embeddings obtained using unsupervised dimension reduc-
tion methods, such as PCA, UMAP, or tSNE, reflect variations caused by different sources,
including batch effects and microenvironments among the observed cells/spots, etc., other
than cell-type differences. Thus, embeddings from unsupervised dimension reduction analyses
may distort the downstream clustering used for cell typing [47]. In contrast, DR-SC performs
dimension reduction in a self-learning manner, where the embeddings, z;’s, are estimated un-
der the supervision of the estimated latent labels for each spot (Fig. 1b). Thus, the obtained
embeddings capture information with regards to biological differences, e.g., cell-type or cell-
state differences, which in turn improve the spatial clustering for cell typing. When no spatial
information is available, as in scRNA-seq, we can simply apply a latent GMM (2) without
considering the Potts model (3).

2.2 Compared methods

We conducted comprehensive simulations and real data analysis by comparing the dimension
reduction and clustering performance of DR-SC with those of existing methods. In detail,
we considered the following eight dimension-reduction methods to compare the dimension-
reduction performance: (1) PCA implemented in the R package stats; (2) WPCA [48] imple-
mented in the R package DR.SC; (3) factorial k-means (FKM) [39] implemented in the R
package clustrd; (4) tSNE; (5) UMAP, in which tSNE and UMAP were implemented in the
R package scater; (6) ZIFA implemented in the Python module ZIFA; (7) ZINB-WaVE imple-
mented in the R package zinbwave; and (8) scVI implemented in the Python module scvi. As
the last three methods, ZIFA, ZINB-WaVE, and scVI, can be applied to only raw count data,
we compared their performance with that of DR-SC in Simulation 2 with the count matrix for
expression levels and real datasets.

We considered the following 10 clustering methods when comparing clustering perfor-
mances. (1) BayesSpace [49] implemented in the R package BayesSpace; (2) Giotto [33] imple-
mented in the R package Giotto; (3) SC-MEB [27] implemented in the R package SC.MEDB,
(4) SpaGCN [25] implemented in the Python module SpaGCN; (5) Louvain [50] implemented
in the R package igraph; (6) Leiden [51] implemented in the R package leiden; (7) GMM
implemented in the R package mclust; (8) k-means implemented in the R package stats; (9)
FKM [39] implemented in the R package clustrd; and (10) subspace clustering based on ar-
bitrarily oriented projected cluster generation (ORCLUS) [52] implemented in the R package
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orclus. In tandem analysis, we used BayesSpace, Giotto, SC-MEB, and SpaGCN, which were
recently developed to perform spatial clustering, and Louvain, Ledien, GMM, and k-means,
which are conventional non-spatial clustering algorithms. We also applied FKM and ORCLUS
to perform joint dimension reduction and clustering analysis.

2.3 Simulations

We performed two sets of simulations as follows. Simulation 1 involved log-normalized gene
expression data. In this simulation, we generated non-spatial/spatial log-normalized gene
expressions. In detail, we generated the class label, y;, for each i = 1,--- ,n in a rectangular
70 x 70 lattice from a K-state (K'=7) Potts model with smoothing parameter § = 0 or 1
using function sampler.mrf in R package GiRaF. Then we generated latent low-dimensional
features, z;, from the conditional Gaussian, such that z;|y; = k ~ (g, Xg), where z; € R?
with ¢ = 10 and structures for u; and ¥j; are shown in Supplementary Table S1. Next, we
generated W= (wij,1 < p,j < q) with each w;; ESh N(0,1), to perform a QR decomposition
on W such that W = @E, and assigned W = @, i.e., a column orthogonal matrix. Finally,
we generated a high-dimensional expression matrix using x; = Wz; + €;,&; ~ N(0,A), where
A = diag()\;),7 = 1,...,p. In the case of homoscedasticity, A\; = 9,Vj, while in the case of
heteroscedasticity, \; = 2 + 4|q,|, a; S N(0,9).

Simulation 2 involved raw gene expression data. In this simulation, we generated non-
spatial /spatial raw gene expressions. The method used to generate the class label, y;, loading
matrix, w, and latent features, z;’s, was the same as in Simulation 1, except that pu; had
a different value (see Supplementary Table S1). The difference involved the generation of
log-normalized gene expression, x;, using x; = Wz; + 7+ €;,7; ~ N(0,1),e; ~ N(0,A)
and raw gene expression, X;, using X;; ~ Poisson(x;;), where 7; is the j-th element of 7,
A = diag(};),j = 1,---,p. To ensure a proper signal, we set A\; = 1,Vj, in the case of
homoscedasticity and A\; = 0.1 + |a;], a; KN (0,1) in the case of heteroscedasticity. In this
simulation, we only observed raw gene expression Z;; of gene j and cell ¢ for non-spatial settings
and the raw gene expression Z;; of gene j and spot ¢ and spatial coordinates s; for spot <.

2.4 Real datasets

2.4.1 Human dorsolateral prefrontal cortex datasets.

We downloaded spatial transcriptomics obtained on the 10x Visium platform for human dor-
solateral prefrontal cortex (DLPFC) from https://github.com/LieberInstitute/spa
tialLIBD. This dataset is a collection of data from 12 human postmortem DLPFC tissue
sections from three independent neurotypical adult donors and the raw data for each sam-
ple includes 33,538 genes. We first selected genes with spatial variation using SPARK [11]
without adjusting for any covariates. In detail, we selected spatially variable genes (SVGs),
either those with adjusted p-values of less than 0.05 or the top 2,000 SVGs (Supplementary
Table S2), then we performed log-normalization using library size. Detailed information on
the 12 samples is given in Supplementary Table S2. Taking the manual annotations based
on cytoarchitecture as benchmarks, we were able to evaluate the clustering performance of
DR-SC and other methods. In the tandem analysis, we first obtained the top 15 PCs from
either PCA or WPCA, then applied other clustering methods using the top 15 PCs [26]. We
further performed spatial variation analysis (SVA) to identify SVGs adjusted for cell-type-
relevant covariates using SPARK and compared them with SVGs that were not adjusted for
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these covariates. We then performed DGE analysis using the function FindAllMarkers in the
R package Seurat to identify differentially expressed genes based on cell type labels estimated
using DR-SC. Finally, we performed functional enrichment analysis using g:profiler [53] based
on the SVGs with adjustment.

2.4.2 Mouse olfactory bulb and mouse E15 neocortex data.

We downloaded mouse olfactory bulb or mouse E15 neocortex data from https://singlece
11.broadinstitute.org/single cell/data/public/SCP815/sensitive-spatial-gen
ome-wide-expression-profiling-at-cellular-resolution#study-summary. We first
selected the top 2,000 genes with spatial variation using SPARK [11] without adjusting for
any covariates. Then we performed log-normalization of these SVGs using library size and
obtained the top 15 PCs based on PCA. Because BayesSpace and SC-MEB are both based on
tandem analysis, the top PCs obtained from PCA were used as inputs. SpaGCN is also based
on tandem analysis but it used its internally embedded PCA algorithm.

For the joint method, DR-SC was applied to the 2,000 SVGs, and we clustered all spots
from the mouse olfactory bulb data into 12 clusters and all spots from the mouse E15 neocortex
data into 15 clusters. Using the estimated class labels for the clusters from the DR-SC, we
performed DGE analysis using the function FindAllMarkersin the R package Seurat to identify
the marker genes for each cluster. Next, we performed cell typing using the PanglaoDB
database [54]. Finally, we performed trajectory inference by Slingshot method based on the
extracted features and cell classes estimated by DR-SC and detected the differentially expressed
genes along the inferred cell pseudotime using the function testPseudotime in the R package
TSCAN.

2.4.3 Mouse embryo datasets.

We downloaded a mouse embryo dataset [16] from https://content.cruk.cam.ac.uk/]
mlab/SpatialMouseAtlas2020/ that was collated using a sequential fluorescence in situ
hybridization (seqFISH) platform. This dataset contained 23,194 cells, 351 genes, and two-
dimensional spatial coordinates. Cell types were annotated based on their nearest neighbors
on an existing scRNA-seq atlas (Gastrulation atlas) [16]. Taking these manual annotations as
the benchmark, we compared the clustering performance of DR-SC with that of other spatial
clustering methods. We performed log-normalization with library size of the gene-expression
matrix. In the tandem analysis, we first obtained the top 15 PCs [26] from either PCA or
WPCA and then applied other spatial clustering methods using these topc 15 PCs. We further
restricted our analysis to the cells manually annotated as “forebrain/midbrain/hindbrain” and
performed downstream trajectory analysis. By applying DR-SC, we obtained six subclusters
for the brain region. Then, we performed DGE analysis using the function FindAllMarkers in
the R package Seurat to identify differentially expressed genes among the estimated clusters
and further mapped six clusters to either four cortical regions or four cell types using the
PanglaoDB database [54]. To visualize the clustering results, we applied tSNE to reduce the
15-dimensional embeddings obtained via different methods to a 2-dimensional representation.
Finally, we applied Slingshot to conduct trajectory inference based on the features and clusters
from DR-SC and detected differentially expressed genes along the inferred cell pseudotime
using the function testPseudotime in the R package TSCAN.
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2.4.4 Benchmark datasets in trajectory inference.

We downloaded 16 benchmark datasets with linear trajectory information from the website
https://zenodo.org/record/1443566#.XNV25Y5KhaR [55]. These datasets consisted of
single-cell gene-expression measurements in the form of raw read counts. Detailed information
on these datasets is given in Supplementary Table S3, including the species, number of cells,
number of genes, platform, etc. We first pre-processed the raw count data using Seruat, which
included selecting the top 2,000 most variable genes and log normalized the data using library
size [56] for methods based on normalized expression, except ZINB-WaVE and scVI. After
normalization, we estimated the low-dimensional embeddings and class labels using both joint
and tandem methods. For the joint analysis, we considered the proposed DR-SC and FKM
while in tandem analysis, we performed dimension reduction using other methods followed by
clustering analysis using the GMM. The number of clusters was chosen using modified BIC
and regular BIC by default for DR-SC and GMM, respectively. Because FKM does not select
the number of clusters automatically, the number of clusters selected for DR-SC was used for
FKM. To further perform lineage development analysis, we applied Slingshot implemented in
the R package slingshot with default values for parameters using the estimated embeddings
and class labels as input. Analysis details and results are deferred to the Supplementary Text
(Supplementary Fig. S1 - S3).

2.4.5 Cord blood mononuclear cell datasets.

We obtained a cord blood mononuclear cell (CBMC) dataset from NCBI https://www.ncbi
.nlm.nih.gov/geo/query/acc.cgi?acc=GSE100866 under the accession number GSE100866.
This dataset contains 8,167 CBMCs measured using CITE-Seq technology [57] from two species
(human and mouse). In addition to genome-wide expression measurements of 20,511 genes
in the form of read counts, this dataset also contains data on the protein levels of 13 cell-
surface markers. We first performed preprocessing to retrieve the top 2,000 most variable
genes and lognormalized these based on library size [56]. Following the vignette at https:
//satijalab.org/seurat/archive/v3.1/multimodal vignette.html [57], we ignored
three cell-surface markers and performed clustering analysis with the remaining 10 markers
using the FindClusters function in the R package Seurat. Taking the class labels from the nine
clusters estimated using these 10 surface markers as the benchmark, we evaluated the clustering
performance of DR-SC and other methods using the adjusted Rand index (ARI) values. We
used DR-SC and FKM to simultaneously estimate the embeddings and class labels, while
other methods were applied for tandem analyses. Using the estimated class labels for the 11
clusters from DR-SC, we performed DGE analysis using the R package BPSC [38] on human
cells. Next, we performed cell typing using the PanglaoDB database [54]. For each cell type,
we further performed functional enrichment analysis by selecting the significant genes with
adjusted p-values of less than 0.05 and a log fold-change greater than 0.5. Analysis details and
results are deferred to the Supplementary Text (Supplementary Fig. S4 - S8 and Table S4).

2.5 Evaluation metric for dimension reduction and (spatial) cluster-
ing

We evaluated the performance of DR-SC from four aspects: feature extraction, clustering
performance, selection of the number of clusters, and computational efficiency. Here, we
briefly present the evaluation metrics for the feature extraction and clustering performance.
For details on the other two aspects, please refer to the Supplementary Text.
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In the simulations, we used two metrics to assess the performance of the feature extraction
including both the canonical correlations between the estimated features and the underlying
true ones and the conditional correlation between gene expression, x;, and cell type label, y;,
given the estimated latent features. Canonical correlation measures the similarity between
two sets of random variables. Thus, a larger canonical correlation coefficient value suggests a
better estimation of z;. For optimal performance, we aimed to obtain the estimated features,
z;, that contain all information on cell types, in other words, y;1x;|z; with the smaller the
conditional correlation the better.

To compare clustering performance, we evaluated both ARI [58] and normalized mutual
information (NMI) [59]. ARI [58] is a corrected version of the Rand index (RI) [60] that avoids
some of its drawbacks [58]. The ARI is used to measure the similarity between two different
partitions and lies between —1 and 1. The larger the value of ARI, the higher the similarity
between two partitions. When the two partitions are equal up to a permutation, the ARI takes
a value of 1. NMI is a way of correcting the mutual information (MI) so the NMI value falls
between zero and one. MI quantifies the “amount of information” obtained on one random
variable in units such as Shannons (bits) by observing another random variable. MI intuitively
measures the information that two random variables x and yx share. If x and y do not share
information and are independent, then MI(x,y) = 0. At the other extreme, if y = z, then
MI(x,y) = H(z), where H(x) is the marginal entropy of x. This indicates that MI does not
take values between zero and one. Thus, some normalized versions have been proposed and
we used one of these versions (NMI).

3 Results

3.1 DR-SC method overview

Here, we provide a brief overview of DR-SC, and further details are available in the Supple-
mentary Text. The proposed method involves simultaneous dimension reduction and (spatial)
clustering built on a hierarchical model with two layers, as shown in Fig. 1b. The first layer,
the DR step, relates the gene expression to the latent low-dimensional embeddings, while
the second layer, the SC step, relates the latent embeddings along with spatial coordinates
if necessary to the cluster labels. Unifying the DR and SC steps not only produces relevant
low-dimensional embeddings, improving the visualization of the clusters on the tSNE plots,
but also enhances the (spatial) clustering performance.

In later sections, we show the improved clustering performance with spatial transcriptomics
datasets from different platforms. In the Supplementary Text, we show how DR-SC improved
the clustering performance for single-cell datasets. Aside from improving the (spatial) clus-
tering performance, DR-SC estimates low-dimensional embeddings that can also be used in
different types of downstream analyses (Fig. 1c). First, the estimated embeddings can be used
to better visualize clustering among cells/spots. Second, the performance of the trajectory in-
ference can be improved, as the reduced dimensional space from DR-SC possesses more relevant
information on cell clusters. Third, by taking these estimated embeddings as covariates, we can
perform hypothesis testing to identify genes with pure spatial variation but not due to cell-type
differences. These gene expression differences may be related to a specific cell morphology or
tissue type rather than being related to cell type. In the Supplementary Text, we compare the
accuracy of the downstream lineage inference using the estimated embeddings and cell-type
labels from DR-SC with those from other unsupervised dimension-reduction methods applied
to 16 benchmark scRNA-seq datasets. In later sections and in the Supplementary Text, we
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also show the improvements to clustering performance and cluster visualization provided by
DR-SC for both non-spatial (CITE-seq) and spatial transcriptomics (10x Visium, Slide-seqV2,
and seqFISH) datasets. The basic information (number of spots/cell/genes and platforms)
on the selected spatial transcriptomics datasets are shown in Supplementary Table S5. By
applying DR-SC to several spatial transcriptomics datasets, we further show the utility of
using the low-dimensional embeddings obtained from DR-SC to identify genes related to cell
morphology and tissue type.

3.2 DR-SC improves clustering and estimation of low-dimensional
features in simulations

We conducted simulation studies to evaluate the performance of DR-SC in comparison with
existing dimension reduction and clustering methods. First, we simulated data with both non-
spatial (f = 0) and spatial (8 = 1) patterns and with both homogeneous and heterogeneous
residual variance \; (see Materials and Methods). Two simulation settings were considered. In
Simulation 1, log-normalized and centered gene expression data were generated from Eqn. (1)
— (3). In Simulation 2, we first generated a count matrix using Poisson distribution with
over-dispersion, which more effectively mimics the count nature of scRNA-seq and 10x Visium
datasets (see Methods). Then, we log-transformed the raw count matrix using library size [56].
In all simulations, we set p = 1,000 and ran 50 replicates. The details of the simulation
settings are provided in the Materials and Methods.

We compared the clustering performance of DR-SC with two groups of spatial /non-spatial
clustering methods. The first group used tandem analysis using PCs from either PCA or
WPCA in the DR step, and using SpaGCN [25], BayesSpace [49], SC-MEB [27], Giotto [33],
Louvain [50], Leiden [51], GMM, and k-means in the clustering step. Among these, SpaGCN
software used the log-normalized expression matrix as the input and its internally embedded
PCA algorithm to obtain PCs, and could only be applied to spatial clustering. The second
group was a joint analysis with ORCLUS [52] and FKM [39]. By setting the smoothing param-
eter to zero, BayesSpace, SC-MEB, and Giotto could be applied to cluster non-spatial data.
On the other hand, to evaluate the estimation accuracy of low-dimensional embeddings, we
compared DR-SC with eight dimension-reduction methods in all simulation settings, includ-
ing PCA, WPCA [20], FKM [39], tSNE [21], UMAP [22], ZIFA [28], ZINB-WaVE [29], and
scVI [30].

We first compared the clustering performances of each method. For tandem analysis in
Simulation 1, we applied both PCA and WPCA to obtain low-dimensional embeddings, de-
noted as suffix -O and -W, respectively in Fig. 2 and Supplementary Fig. S9. In Simulation
2 (Supplementary Fig. S10), besides PCA and WPCA, we also applied ZINB-WaVE to ob-
tain low-dimensional embeddings as the input for different clustering methods in the tandem
analysis. Since Giotto, k-means, FKM, and ORCLUS do not provide a data-driven way to
select the number of clusters, K, we evaluated their clustering performances using the true
cluster number. DR-SC achieved the best clustering performance and was the most robust
to both homogeneous and heterogeneous residual variances among the methods that used the
true cluster number (Fig. 2a and Supplementary Fig. S9a and S10a ). To select the num-
ber of clusters, K, DR-SC and SC-MEB used MBIC [44, 61], GMM used BIC, BayesSpace
adopted the average loglikelihood-maximization-based method in early iterations, Leiden and
Louvain used a community-modularity-maximzing rule [50], and SpaGCN applied Louvain
initialization [25]. DR-SC also achieved the best clustering performance among the methods
that selected the number of clusters automatically (Fig. 2b, Supplementary Fig. S9b and
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S10b). Meanwhile, DR-SC selected the true number of clusters consistently (Fig. 2c and Sup-
plementary Fig. S11b). Conventional PCA is unable to recover the underlying features in the
presence of heteroscedastic noise, while WPCA can give less informative genes less weight [20].
Thus, when heterogeneous errors appeared, the clustering performance of the tandem analysis
using conventional PCA was worse than that using WPCA. In all settings, the clustering per-
formance of DR-SC was robust in both homogeneous and heterogeneous cases. Importantly,
DR-SC achieved the highest ARI values among all the methods trialed. Moreover, we observed
that only DR-SC correctly chose the number of clusters. In constrast, BayesSpace tended to
overestimate the cluster number in non-spatial cases and underestimate them in spatial cases;
this is because BayesSpace fixed the smoothing parameter rather than updating it in a data-
driven manner. Thus, the selection of the number of clusters for BayesSpace was sensitive to
the choice of smoothing parameter (Supplementary Fig. S11c). The other methods tended to
show similar patterns across both non-spatial and spatial cases.

Next, we evaluated the performance of DR-SC in estimating the low-dimensional embed-
dings. For the average canonical correlation between the estimated embeddings, z;, and the
true latent features, z;, DR-SC had the highest canonical correlation coefficients (Fig. 2d and
Supplementary Fig. Slla), suggesting that the estimated embeddings were more accurate.
Pearson correlation coefficients between observed expressions, x;, and the estimated cell-type
labels, y;, conditioned on embeddings from DR-SC were much smaller than those from other
methods (Supplementary Fig. S9c and Fig. Slla), suggesting that DR-SC captures more
relevant information regarding cell types and, thus, facilitates the downstream analysis.

In addition, we evaluated the corresponding computational time for each method in all
simulation settings, as shown in Supplementary Fig. S9a, S9b and Fig. S10 (bottom panel).
Louvain and SpaGCN were computational the fastest, while BayesSpace was the slowest. More-
over, DR-SC was computationally efficient and scalable to large sample sizes, only taking
around 15 mins to analyze a data with 1,000 genes and 100,000 spots (Supplementary Fig.
S9d).

[Figure 2 about here.|

3.3 Human dorsolateral prefrontal cortex data

As an emerging spatial transcriptomics technology, the 10x Visium assay represents improve-
ments in both resolution and the time needed to run the protocol [62]. Maynard et al. [14]
used this technology to generate spatial maps of gene expression matrices for the six-layered
DLPFC of the adult human brain and manually annotated Visium spots based on the cytoar-
chitecture. In this dataset, there were 12 tissue sections from three adult donors with a median
depth of 291 million reads for each sample, a median of 3,844 spots per tissue section and a
mean of 1,734 genes per spot. The raw gene expression count matrices were log-transformed
and normalized using library size [56].

In this analysis, we considered both joint and tandem methods for dimension reduction
and clustering. To apply the joint methods, we took the log-transformed raw count matrix
using the library size as input, and in the tandem analysis, we obtained the top 15 PCs from
either PCA or WPCA as input for the different clustering methods. As Giotto, k-means, FKM,
and ORCLUS cannot choose the number of clusters, K, we fixed the number of clusters using
manual annotations to make comparisons with DR-SC. When the cluster number, K, was
fixed, the methods with spatial clustering, i.e., DR-SC and Giotto, outperformed those that
did not consider spatial information, and DR-SC performed much better than Giotto (Fig. 3a).
For all methods that were capable of selecting the number of clusters, we also observed that the
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spatial clustering methods, such as DR-SC, SpaGCN, SC-MEB, and BayesSpace, outperformed
the non-spatial ones such as GMM, Leiden, and Louvain (Fig. 3b.). Note, there were only
minor differences in the DR-SC when we used either the fixed K or the chosen K. We also
evaluated the clustering performance using the NMI (Supplementary Fig. S12a) and similar
patterns were observed. A heatmap of cell types from the manual annotations, and heatmaps
of cluster assignments across spatial and non-spatial clustering methods for sample ID151510
are provided in Fig. 3c. The results for other 11 samples are provided in Supplementary Fig.
S13a - S23a . In addition, Fig. 3d and Supplementary Fig. S13b - S23b show the tSNE plots for
DR-SC and the other three dimension reduction methods (PCA, WPCA, UMAP), for which
tSNE PCs were obtained from the estimated 15-dimensional features of each method with the
class labels estimated in DR-SC. We observed better separation of tSNE PCs with DR-SC.
Moreover, we evaluated the computational efficiency of DR-SC and compared it with that of
other methods (Supplementary Fig. S12b) and found that DR-SC was about 10 times faster
than FKM, ORCLUS, and BayesSpace.

We further performed conditional analysis to investigate the roles of SVGs beyond simple
cell-type differences. Using SPARK [11], we performed spatial variation analysis (SVA) with
the embeddings estimated by DR-SC as covariates. The detailed gene list identified at a false
discovery rate (FDR) of 1% is given in Supplementary Table S6. Compared with the list of
1,583 SVGs identified by SVA without using covariates, the number of SVGs dramatically
decreased to 113 at an FDR of 1% on average over 12 tissues after adjusting for covariates.
Without adjusting for cell-type-relevant covariates, the gene expression variations identified
by SVA could simply reflect cell-type differences. A Venn diagram of the links between SVGs
obtained without adjusting for cell-type-relevant covariates and differentially expressed genes in
different cell types (Supplementary Fig. S24a) showed that the majority of genes differentially
expressed according to cell type were also identified as SVGs without adjusting for covaraites.
Supplementary Fig. S24b and ¢ show bar plots for the proportion of differentially expressed
genes overlapping with SVGs without or with adjusting for covariates. The proportion of
overlap was substantially reduced after we performed conditional spatial variation analysis,
suggesting these genes were genuinely spatially expressed and not merely the result of variations
between cell types.

Next, we performed functional enrichment analysis of SVGs adjusted for cell-type-relevant
covariates. A total of 82 terms from Gene Ontology (GO), Kyoto Encyclopedia of Genes and
Genomes (KEGG), and Human Protein Atlas (HPA) were enriched with adjusted p-values of
less than 0.05 in at least three DLPFC tissue sections. Supplementary Fig. S25 shows the
top five pathways among all 12 DLPFC tissue sections, in which many common terms could
be identified after controlling for cell-type-relevant covariates. These results suggested that
SVGs adjusted for cell-type-relevant covariates shared common spatial patterns in the brain
tissue. For example, the same set of highly significant HPA terms were identified in 8 out
of 12 tissue samples, including processes in white matter, processes in granular layer, and
cytoplasm/membrane (Supplementary Fig. S25). Nearly all the most significant KEGG path-
ways were identified in all 12 samples, including Huntington’s disease, Alzheimer’s disease, and
Parkinson’s disease, etc. Several studies [63, 64] reported the distribution of abnormal proteins
across the brain causes damage in Alzheimer’s disease, Parkinson’s disease, Huntington’s dis-
ease, and other neurodegenerative diseases. Additionally, many common significant GO terms
were identified in all 12 samples, such as electron transfer activity, structural molecule activity,
structural constituents of the cytoskeleton, oxidative phosphorylation, endocytic vesicle lumen,
and respiratory chain complex. Details of the top five pathways for all 12 tissue samples are
presented in Supplementary Table S7.
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[Figure 3 about here.|

3.4 Mouse olfactory bulb data

Slide-seq is a spatial transcriptomics technology that simultaneously decouples imaging from
molecular sampling and quantifies expression across the genome with 10-um spatial resolu-
tion [10]. To further improve the sensitivity magnitude and enable the more efficient recovery
of gene expression, Slide-seqV2 was recently introduced [65] to generate two datasets each from
mouse olfactory bulb and mouse cortex. We present our analysis of the mouse olfactory bulb
dataset in this section and that of the mouse cortex dataset in the next one. The olfactory
bulb contained 21,041 spots and 37,329 genes with a median of 494 unique molecular identifiers
per bead. The raw gene expression count matrices were log-transformed and normalized using
library size.

In the analysis, we applied the spatial clustering methods BayesSpace, SC-MEB, SpaGCN
and DR-SC, all of which, except for DR-SC, were based on tandem analysis. Thus, BayesSpace
and SC-MEB took the top 15 PCs from the normalized expression matrix of SVGs as input
(see Materials and Methods), while the SpaGCN package took the normalized expression
matrix as input and used its internally embedded PCA algorithm to obtain the PCs. In a
joint method, DR-SC used the normalized expression matrix of SVGs as input. A spatial
heatmap of the cluster assignments across the four methods is provided in Fig. 4a, while the
tSNE plots for these four methods is shown in Fig. 4b, where the tSNE PCs of DR-SC were
obtained from its estimated 15-dimensional latent features while tSNE PCs of BayesSpace-O,
SC-MEB-O, and SpaGCN were based on 15 PCs using the ordinary PCA, denoted as suffix
-O. We obtained a clearer visualization of the cell types using tSNE PCs from DR-SC. We also
compared the running time of these methods (Supplementary Fig. S26a) and found DR-SC
and BayesSpace respectively took 1,042 and 13,193 secs to complete the analysis for all 21,041
spots. To further compare the visualizations of the different dimension-reduction methods,
we first applied the other eight dimension-reduction methods to extract latent features and
obtained two-dimensional tSNE PCs based on each estimated latent one. We visualized the two-
dimensional tSNE PCs derived from the different dimension-reduction methods with cluster
labels estimated in DR-SC (Fig. 4c¢ and Supplementary Fig. S26b), and the tSNE PCs from
DR-SC were more distinguishable than those from other methods.

Using the cluster labels estimated in DR-SC, we performed DGE analysis to identify the
marker genes for each cluster. The heatmap of differentially expressed genes for each cell type
(Fig. 4d) showed good separation across the different cell clusters. By checking PanglaoDB [54]
for the identified marker genes, we were able to identify seven cell types in the heatmap (Fig.
4d), including two major neuron cell types: Purkinje neurons and interneurons consisting of
52% and 10% spots, respectively. The primary output signal for Purkinje cells was the modu-
lated discharge of simple spikes while interneurons potentially contributed to the modulation
of simple spikes [66].

We then performed spatial variational analysis using SPARK by controlling for the 15-
dimensional embeddings estimated by DR-SC. In total, 518 SVGs were identified at an FDR
of 1%, and the identified genes are listed in Supplementary Table S8. Next, we performed
functional enrichment analysis of these SVGs and 385 GO terms were found to be enriched
with adjusted p-values of less than 0.05. A bubble plot for this functional enrichment (Fig. 4e)
showed that the nervous-system-development-related pathways were enriched in the olfactory
bulb.

We additionally applied Slingshot [36] to perform cell lineage analysis using low-dimensional
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embeddings and the cluster labels estimated by DR-SC. Srivatsan et al. [67] reported that the
neuron cells differentiate after glia cells. To check this, we focused on studying neuron cells
(Purkinje neurons and interneurons) and glia cells (astrocytes and oligodendrocytes) to infer
their differentiation trajectory. The inferred trajectory shown in Supplementary Fig. S26¢ led
us to conclude that Purkinje neurons differentiated after oligodendrocytes, while interneurons
differentiated after astrocytes. Supplementary Fig. S26¢ also provides a heatmap of the ex-
pression levels of the top 20 most significant genes presenting dynamic expression patterns over
pseudotime. In this analysis, some genes presented interesting dynamic expression patterns,
varying from high to low levels and back to high levels, such as Camk2b and Malat1.

[Figure 4 about here.|

3.5 Mouse E15 neocortex data

The mouse E15 neocortex data from the Slide-seqV2 platform contains 33,611 spots and 22,683
genes resolved spatially according to their expression in E15 embryo section. Similarly, we
performed spatial clustering by DR-SC and compared it with the BayesSpace, SC-MEB, and
SpaGCN results. For BayesSpace and SC-MEB, the top 15 PCs from the normalized expression
matrix of SVGs were used as input (see Materials and Methods), while for SpaGCN and DR-
SC, the normalized expression matrix was the input. SC-MEB-O and DR-SC shared similar
spatial patterns, whereas BayesSpace-O assigned a large proportion of spots (78%) to a single
cluster (Fig. 5a). We also gained a better visualization of clusters using tSNE PCs from
DR-SC compared to PCA (Fig. 5b). We also compared the running time of these methods
(Supplementary Fig. S27a), and DR-SC and BayesSpace respectively took 1,218 and 18,740
secs to analyze all 33,611 spots. To further compare the visualizations obtained via the different
dimension-reduction methods, we first applied the other eight dimension reduction methods to
extract latent features and obtained two-dimensional tSNE PCs based on each estimated latent
one. We visualized the two-dimensional tSNE PCs from the different dimension reduction-
methods with cluster labels estimated in DR-SC (Fig 5¢ and Supplementary Fig. S27b),
which indicated DR-SC provided the best visualization.

Based on the cluster labels estimated in DR-SC, we performed DGE analysis to identify
marker genes for each cluster. A heatmap of the findings showed good separation of the
differentially expressed genes across different cell types (Fig. 5d). By checking PanglaoDB [54]
for the identified marker genes, we were able to identify five cell types, including two major
neuron-related cell types: neurons and neural stem /precursor cells consisting of 40% and 29%
spots, respectively.

Next, we applied Slingshot [36] to infer the differentiation lineages of E15 neocortex cells
based on the low-dimensional features and cluster labels estimated by DR-SC. The inferred de-
velopment trajectory of different types of cells and a heatmap of the top 20 significant dynamic
expressed genes along the trajectory were plotted (Fig. 5e). We also observed the differen-
tiation of neuron cells (neurons and neural stem/precursor cells) after glia cells (astrocytes,
oligodendrocytes and oligodendrocyte progenitor cells). For example, a portion of the neurons
and all neural stem /precursor cells differentiated after the astrocytes, and the remainder of the
neurons differentiated after oligodendrocytes and oligodendrocyte progenitor cells. According
to the heatmap, some genes presented interesting dynamic patterns of expression. For instance,
the gene Ttr had low expression levels at the early stage before substantially increasing later.
In contrast, the expression levels of Nfib, Sox11, Nnat and Map1b changed from low to high,
then back to low. Steele-Perkins et al. [68] reported that the transcription factor gene Nfib
is essential for mouse brain development. Jankowski et al. [69] found that expression of the
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transcription factor gene Sox1l modulates peripheral nerve regeneration in mice. Nnat was
reported the spatial expression pattern during mouse eye development [70]. Map1b is required
for axon guidance and is involved in the development of the central and peripheral nervous
systems [71].

[Figure 5 about here.|

3.6 Mouse embryo data

We applied DR-SC to analyze a large seqFISH dataset of mouse organogenesis [16] that con-
tained 23,194 cells. In this dataset, the expression of a panel of 351 genes was resolved spatially
within multiple 8- to 12-somite-stage mouse embryo sections using the seqFISH platform. Cell
labels were accurately annotated across the embryo [16] based on their nearest neighbors within
an existing scRNA-seq atlas (Gastrulation atlas) [72].

We first performed clustering analysis using DR-SC and other existing spatial-clustering
methods, SpaGCN, BayesSpace, SC-MEB and Giotto. Taking the above manually annotated
cell types as reference, we compared the clustering performance of DR-SC with that of the
other methods. As the other methods involved tandem analyses, we obtained the top 15
PCs [26] using either PCA or WPCA from all 351 genes for use as input in these, except for
SpaGCN. DR-SC provided better clustering performance than the other clustering methods
in terms of the ARI values (Supplementary Fig. S28a). A heatmap of cell types according to
the mannual annotations is provided in Supplementary Fig. S28b, while heatmaps of the cell
types inferred by DR-SC, SC-MEB, and BayesSpace are provided in Supplementary Fig. S28c.
The cell labels estimated by DR-SC and SC-MEB, but not BayesSpace, were in agreement
with those in the manual annotations. BayesSpace incorrectly clustered many of the cells as
"low quality” cells.

To refine the analysis of the brain regions, we first collected cells manually annotated
as “forebrain, midbrain, or hindbrain”, then we applied DR-SC to estimate low-dimensional
embeddings and provide labels for cells in the three brain regions (Fig. 6a). DR-SC identified
a total of six clusters. By checking PanglaoDB [54] for the marker genes identified via DGE
analysis, we were able to identify four cell types (astrocytes, microglia cells, neurons 1/2, and
ependymal cells 1/2; Fig. 6b) and four cortical regions (forebrain, hindbrain 1/2/3, midbrain,
and microglia; Fig. 6¢). Details of the cell typing are provided in Supplementary Table S9. Note
that neuron cells were found in both forebrain and hindbrain regions, while glia (astrocytes,
microglia) cells were from both the midbrain and microglia regions. A recent study [67]
reported that neurons and glia cells can be distributed over different brain regions. The tSNE
plot for the regions and cell types in Fig. 6d shows that DR-SC effectively separated the
different clusters.

To further investigate the development and differentiation of these brain cells, we calculated
the pseudotime using Slingshot based on the 15-dimensional embeddings and cluster labels
estimated using DR-SC. We identified three lineages that were consistent with the findings
in a previous study [67]. A plot of the inferred lineages with pseudotime (Fig. 6e) provided
an ilustration of the dynamic trajectory from glia cells to neurons. Following Srivatsan et
al. [67], we used Allen Brain Reference Atlases (http://atlas.brain-map.org/) as guides to check
how these trajectories were distributed over brain segments. The cells and trajectories from
each cluster overwhelmingly occupied different brain regions (Fig. 6d and e). While combing
pseudotime and region spatial information, we observed that cells in the early differentiation
stage were clustered in the microglia and midbrain regions. Later, cells with differentiated
transcriptomes emerged in more distant regions, i.e., the hindbrain and forebrain. According
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to the inferred pseudotime, we identified differentially expressed genes along cell pseudotime
using the method described by Ji et al. [34]. The heatmap of the expression of the top 20
most significant genes (Fig. 6f) suggested the occurance of some interesting dynamic expression
patterns over pseudotime. The genes Foxal, Shh, and Foxa?2 had higher expression levels at the
early stage, but later their expression levels decreased substantially. In contrast, the expression
levels of the genes Fgfr2 and Fgfr3 changed from low to high and then returned to low. We
observed the pattern of expression of Enl changed from high to low then to high along the
inferred trajectory. In humans, the Enl gene codes for the homeobox protein engrailed (EN)
family of transcription factors. A recent study [73] reported that Eni shows a transcriptional
dependency in triple negative breast cancer associated with brain metastasis. Carratala-Marco
et al. [74] found that EN plays an important role in the regionalization of the neural tube and
EN’s distribution regulates cerebellum and midbrain morphogenesis, as well as retinotectal
synaptogenesis.

[Figure 6 about here.]

4 Discussion

In this paper, we have proposed a joint DR-SC for analyzing high-dimensional scRNA-seq and
spatial transcriptomics data using a hierarchical model. In contrast to most existing methods
that perform dimensional reduction and (spatial) clustering sequentially, DR-SC unifies low-
dimensional feature extraction with (spatial) clustering in the same, joint modeling framework,
and provides an improved estimation for cell-type-relevant low-dimensional embeddings and
enhanced clustering performance for both scRNA-seq and spatial transcriptomic data from dif-
ferent platforms. With simulation studies and benchmark dataset analyses, we demonstrated
that DR-SC can improve clustering performance while effectively estimating low-dimensional
embeddings.

DR-SC relies on a hidden Markov random field model with a smoothing parameter to per-
form spatial clustering. The probabilistic framework of DR-SC allows us to adaptively update
the spatial smoothing parameter that promotes similar cluster assignments for neighboring tis-
sue locations in a data-driven manner. When the smoothness parameter is set to zero, DR-SC
performs clustering for scRNA-seq data without spatial information. We developed an efficient
EM algorithm based on iterative conditional mode and expectation-maximization (ICM-EM),
making DR-SC computationally efficient and scalable to large sample sizes.

In-depth analyses using scRNA-seq and spatial transcriptomic data from different plat-
forms showed that the estimated clusters and embeddings from DR-SC effectively facilitated
the downstream analysis. First, we applied DR-SC to a 10x Visium dataset for DLPFC to
demonstrate the improved spatial clustering performance of DR-SC and further carried out
conditional SVA to identify genes with pure spatial variations but not cell-type differences.
The majority of genes identified in SVA without adjustment for cell-type-relevant covariates
simply reflected cell-type differences. Functional enrichment analysis showed that the genes
identified in SVA with adjustment for covariates were enriched in pathways related to the
DLPFC tissue. For example, the most significant KEGG pathways including Huntington’s
disease and Alzheimer’s disease were identified in all 12 LIBD samples. Second, we applied
DR-SC to analyze two Slide-seqV2 datasets and found it outperformed both existing dimension
reduction methods in terms of visualization and existing spatial clustering methods in terms
of separation, as well as its usefulness in cell trajectory inference. In the mouse olfactory bulb
data, we identified some genes with interesting dynamic expression patterns, such as Camk2b
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and Malat1. Kiiry et al. [75] reported that Camk2b was important for learning and synaptic
plasticity in mice, while Zhang et al. [76] reported a potential cis-regulatory role of Malatl
gene transcription in mice. Third, we applied DR-SC to analyze a seqFISH dataset and show-
cased its ability to infer cell lineages based on the reduced-dimensionality space estimated
by DR-SC. Among the identified genes with interesting dynamic patterns over pseudotime,
transcription factors Fozal and Foza?2 are crucial in maintaining key cellular and functional
features of dopaminergic neurons in the brain [77] while Fgfr2 and Fgfr3 play important roles
during early neural development [78, 79]. Fourth, we demonstrated both the higher Kendall’s
and Spearman’s rank correlation coefficients between the true and inferred pseudotime using
DR-SC among 16 benchmark scRNA-seq datasets (Supplementary Text). Finally, using a
CITE-seq dataset for CBMC, we demonstrated that analysis using DR-SC can improve clus-
tering performance while facilitating the identification of differentially expressed genes among
the different cell types in the analysis of scRNA-seq data (Supplementary Text).

There are several potential extensions that can be applied to DR-SC. First, in the current
study, we considered single transcriptional profiles. The framework of DR-SC could be natu-
rally extended to perform joint-clustering analyses of multiple samples by properly removing
their batch effects. Second, the fast-evolving technology of single-cell omics provides opportu-
nities to integrate omics profiles from different modalities for the same individuals. Extending
DR-SC by integrating multiple different omics techniques, such as through the canonical corre-
lation analysis framework [80] which is a nature extension of PCA towards multiple modality
analysis, will also likely achieve higher statistical performance. Third, DR-SC essentially per-
forms unsupervised clustering, but with the availability of labels for some cells/spots, it would
be interesting to perform semi-supervised clustering of those data. We will investigate these
issues in future work.

Availability of data and materials

All codes in this paper are publicly available at https://github.com/feiyoung/DR-S
C.Analysis. The source code is released under the GNU general public license. The 16
benchmark datasets with linear trajectory information are available at https://zenodo.org
/record/1443566#.XNV25Y5KhaR. The cord blood mononuclear cells datasets are available
at https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE100866 via the accession
number GSE100866. The human dorsolateral prefrontal cortex datasets on the 10x Visium
platform are accessible at https://github.com/LieberInstitute/spatiallLIBD. The mouse
olfactory bulb data and mouse E15 neocortex data on the Slide-seqV2 platform are available
at https://singlecell.broadinstitute.org/single cell/data/public/SCP815. The
mouse embryo dataset on the seqFISH platform is accessible at https://content.cruk.cam
.ac.uk/jmlab/SpatialMouseAtlas2020/.
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Figure 1: Workflows for both tandem analysis (a) and DR-SC (b) and potential applications
of DR-SC in downstream analysis (¢). a & b. Compared with tandem analysis, DR-SC
iteratively performed dimension reduction and (spatial) clustering with improved estimation
for both clustering and low-dimensional embeddings. c¢. DR-SC can be used to cluster cell
types, with the number of clusters selected in a data-driven manner. The estimated cell types
can be used to perform differential gene expression analysis. The estimated low-dimensional
embeddings from DR-SC can be used for visualization, trajectory inference, and detection of
gene expression with spatial variations by controlling cell-type-relevant covariates.
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Figure 2: Comparisons of log-normalized gene expressions in Simulation 1. For tandem anal-
ysis, we used either PCA or WPCA to obtain PCs and named the analysis as method-O or
method-W. a & b. Comparison of the clustering performance using the true number of clus-
ters and with automatically selected cluster number, respectively. The clustering performance
is evaluated using ARI. ¢. Comparison of the cluster-number selection performance of 12
methods that can choose the number of clusters. d. Comparison of the dimension-reduction
performance of six methods using the average canonical correlation coefficients.
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Figure 3: Analysis of human dorsolateral prefrontal cortex data. a. Violin plot of ARI values
across 12 samples for DR-SC and other methods that cannot choose the number of clusters.
The number of clusters in the analysis was fixed by manual annotations. b. Violin plot of ARI
values across 12 samples for DR-SC and other methods that can choose the number of clusters.
c. Spatial heatmaps of cluster assignments for sample ID151510 using DR-SC and other spatial
and non-spatial clustering methods. Left bottom corner denotes cell assignment from manual
annotation; upper panel corresponds to the cell assignment from spatial clustering methods,

and the rest
methods. d.

of lower panel corresponds to the cell assignment from non-spatial clustering
Visualization of the cluster labels for sample ID151510 from DR-SC given the

annotated number of clusters based on two-dimensional tSNE embeddings from four different
DR methods including DR-SC, PCA, WPCA and UMAP.
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Figure 4: Analysis of mouse olfactory bulb data. a. Spatial heatmap of clusters from four
spatial-clustering methods. b. tSNE plots for these four methods, where tSNE PCs of DR-SC
were obtained based on the extracted 15-dimensional features, while tSNE PCs of BayesSpace-
0O, SC-MEB-O and SpaGCN were based on 15 PCs from PCA. c. Visualization of the cluster
labels from DR-SC based on two-dimensional tSNE embeddings from four different DR meth-
ods, PCA, WPCA, UMAP, and scVI. d. Heatmap of differentially expressed genes for each
cell type identified by DR-SC. e. Bubble plot of —logl0(p—values) for pathway enrichment
analysis of 518 SVGs with adjusted p-values of less than 0.05. Dashed line represents a p-value
cutoff of 0.05. Gene sets are colored by category: GO biological process (BP, blue), and GO
cellular component (CC, yellow), GO molecular function (MF, brown).
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Figure 5: Analysis of mouse E15 neocortex data. a. Spatial heatmap of clusters from four
spatial-clustering methods: BayesSpace-O, SC-MEB-O, SpaGCN, and DR-SC. b. tSNE plots
for these four methods, where tSNE PCs of DR-SC were obtained based on the extracted 15-
dimensional features while tSNE PCs of BayesSpace-O, SC-MEB-0O, and SpaGCN were based
on 15 PCs from PCA. c. Visualization of the cluster labels estimated by DR-SC based on
two-dimensional tSNE embeddings from four different DR methods: PCA, WPCA, UMAP,
and scVI. d. Heatmap of differentially expressed genes for each cell type identified by DR-SC.
e. Heatmap of gene expression levels of the top 20 genes with significant changes with respect
to the Slingshot pseudotime. Each column represents a spot that is mapped to this path and
is ordered by its pseudotime value. Each row denotes the most significantly changed gene
expression.
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Figure 6: Analysis of mouse embryo data. a. Spatial heatmap of brain regions and other
areas. b. Spatial heatmap of cell types based on clusters identified by DR-SC. c¢. Spatial
heatmap of cortical region identified by DR-SC. d. tSNE plot of cell types and corresponding
cortical regions, where the tSNE projection was evaluated based on estimated low-dimensional
embeddings using DR-SC. Note, the cortical regions and cell types are well separated. e. tSNE
plot of inferred pseudotime using Slingshot based on the estimated low-dimensional embeddings
and cluster labels for the cortical region from DR-SC. f. Heatmap of gene expression levels
for the top 20 genes with significant changes with respect to the Slingshot pseudotime. Each
column represents a spot that is mapped to this path and is ordered by its pseudotime value.
Each row denotes the most significantly changed gene expression.
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