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Abstract 

Droplet-based experimental platforms allow researchers to perform massive parallelization and high-

throughput studies, such as single-cell experiments. Even though there are various options of image 

analysis software to evaluate the experiment, selecting the right tools require experience and is time 

consuming. Experts and sophisticated workflow are required to perform the analysis, especially to 

detect the droplets and analyze their content. There is need for user-friendly droplet analysis pipelines 

that can be adapted in laboratories with minimum learning curve. Here, we provide a user-friendly 

workflow for image-based droplet analysis. The workflow comprises of a) CellProfiler-based image-

analysis pipeline and b) accompanied with web application that simplifies the analysis and visualization 

of the droplet-based experiment. We construct necessary modules in CellProfiler (CP) to detect droplets 

and export the results into our web application. Using the web application, we are able to process and 

provide basic profiles of the droplet experiment (droplet sizes, droplet signals, sizes-signals plot, and 

strip plot for each label/condition). We also add a specific module for growth heterogeneity studies in 

bacteria populations that includes single cell viability analysis and probability distribution of minimum 

inhibition concentration (MIC) values in population. Our pipeline is usable for both poly- and 

monodisperse droplet emulsions.  

  

Background 

[Water-in-oil droplet emulsions have become common tools for high-throughput chemical or biological 

analysis over the last decades]. In general, droplet emulsions enable massive parallelization with small 

amount of reagents1 and miniaturization of laboratory2. Droplets with different sizes, usually called as 

polydisperse droplets, have been used for advanced parallel studies, e.g., for nucleic acid 

amplification3,4. This method allows an absolute quantification in digital droplet polymerase chain 

reaction (ddPCR) 5,6. The technology not only eases the complexity of massive experiments but also 

improves the accuracy of the detection or quantification7. However, polydisperse droplet formation is 

usually avoided due to bias which arise and affect the quantification8. Moreover, it requires 

sophisticated software or experts to perform the droplets detection or the statistical correction for its 

analysis3. On the other hand, microfluidics technology is able to generate monodisperse droplets and  
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make analysis easier9. Since the early 2000s, droplet microfluidics has been developed in wide range of 

research10. Recent studies show that droplet applications allow wide range of microbial studies11, 

including massive parallel experiments for microbial community studies12, and investigating 

heteroresistance in antimicrobial resistance13. Unfortunately, droplet microfluidic requires delicate 

integrative equipment and setup to perform such experiments14. Nevertheless, droplet-based 

technology requires detection methods to analyze the results. For example, the droplet detection can be 

performed using image-based methods15 and signal-based detection16. In this article, we focus on the 

image-based method. 

[Imaging or image-based method is often used for the analysis of both mono- and polydisperse 

droplets]. Imaging is usually performed with microscopes using wide range of techniques17, from 

fluorescent microscopy16 up to high resolution electron microscopy17. Some people also use smartphone 

technology to capture or preserve their object of interest into image data18 . In principle, the signals 

from the object of interest will be converted into pixels as the smallest units in image data19. From the 

pixels, image data can be processed to acquire the necessary information20. Image data can be used for 

various type of analysis, e.g. protein expression21, bacterial counting22, cell profiling23,  seeds analysis24, 

single cell analysis25, etc.  In droplet-based experiment, imaging has been used both in mono- and 

polydisperse droplets. For instance, image analysis has been used to quantify droplet as a carrier26, 

determine a concentration of metals in single droplet size27, droplet identification in crystallization 

trials28, nucleic acid amplification4, and antibiotic susceptibility test in droplet assays29. However, these 

methods require either scripted programs, or specific pipeline that only work for their object of interest. 

Some software are only available commercially. 

[There is a need for accessible and user-friendly image analysis and data visualization tools that can be 

used for both mono- and polydisperse droplets]. Some imaging tools come as a package with the 

microscope equipment and its software, e.g., Zen Imaging30 or NIS-Elements31. Unfortunately, these 

kinds of bundle are not accessible in every laboratory. In our previous study, we have reviewed some 

popular freely available open-source software which can be used for the image data analysis32, e.g., 

CellProfilerTM (CP) 33, ImageJ34, Ilastik35, and QuPath36. We also explored each of the software’s pipeline 

to detect droplets and found that each of the software has different name or option but host the same 

principle32. Despite of the mentioned tools, there are some other software which can be used to process 

image data and perform the analysis afterward, e.g., Python29,37, C++38, MATLAB39, or R40,41. Yet, these 

software require programming skills while not every lab has the experts for implementing the available 

library or scripted code. In our recent studies, we used CP and CellProfiler Analyst (CPA) to detect and 

analyze monodisperse droplets 29,30. Nonetheless, there are some limitations to process the data, e.g., to 

implement a specific-case formula or calculation. This requires other software for data management or 

visualization, such as Excel42, Libre office43,  Tableu44, and Looker45. Notwithstanding, it takes a lot of 

computing power to process high-throughput data and they are mostly not freely available. Moreover, 

each of the software require some experience to be used optimally.  

[Herein, we provide user-friendly droplet analysis workflow that is universally usable for detecting 

droplets and visualizing the results]. The workflow consists of two parts which can work independently 

(Fig. 1). Each part is modular and can be substituted with other software to generate suitable output. In 
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brief, the first part is for image-based droplet analysis or detection. We use CP to detect droplets and 

generate the data. For the second part, we have built a web application consists of necessary Python 

libraries for processing the data and visualize the results in figures. The web app also hosts modules 

which can be used for multipurpose analysis. This workflow will lower the boundary for individuals with 

no programming skill to analyze and visualize their data. 

 

Figure 1. Pipeline structure of our image-based droplet detection and web application for the analysis. 

Data is obtained from images which processed in CP or any other software. There are three data which 

now our web app can process, Size, Label, and Average Pixels’ Intensity. Since our web app is 

independent, the source data is not limited from image-based data but is required for having three 

group of data mentioned previously. In the web application, there are basic module which can be used 

to visualize general information from the uploaded data. For the specific module, we tested our 

previous experiment data to analyze bacterial growth in polydisperse droplets and its heteroresistance 

profile. 

Result and Discussions 
[Adaptive Otsu thresholding and eccentricity filter improve the polydisperse droplets detection pipeline] 

We generate polydisperse droplets by vortexing oil, surfactant, and bacteria in Luria-Bertani broth 

together in a tube. The encapsulation method is adopted from Byrnes et al.4 For obtaining the data, we 

image the droplets under confocal microscope and detect the droplets in CellProfilerTM (CP) using the 

pipeline which is illustrated in Fig. 2. We perform optimization due to complications, such as different 

sizes and overlayed droplets in polydisperse droplets image data. These situations result in additional 

variables which need to be added in the pipeline, such as the typical droplets’ shape. In this experiment, 
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we use CP to detect droplets with available modules and generate the data which consists of labels, 

sizes (volume is recommended), and average pixel intensities. This can be generated with any available 

software as long as it generates mentioned data with comma separated value (.csv) or Microsoft Excel 

(.xlsx) file type. We have demonstrated the first part in our previous article 46 and add additional 

necessary modules to analyze polydisperse droplets in this article.  

 

Figure 2. CellProfilerTM provides modules for constructing image-based droplet detection pipeline. We 

use fluorescent image from microscopy as an input. We test the available thresholding strategy, e.g., 

Global/Adaptive with different algorithm, e.g., Manual, Otsu, Savuola, Robust  Background (RB), 

Minimum Cross Entropy (MCE). We also find the optimal threshold correction at 0.9 within the 0-1 scale. 

For improving the droplet detection, we filter the object using eccentricity, solidity, and form factor. 

 

Pipeline for image analysis is composed of modular components, in a puzzle-like fashion47,48.  In CP, we 

construct the modular components to detect droplets. We also test different thresholding strategies, 

including between Global (Manual, Otsu, Minimum Cross-Entropy, and Robust Background) and 

Adaptive (Savuola, Otsu, Minimum Cross-Entropy, and Robust background). The difference between two 

thresholding strategies are that Global will consider all pixels when implementing the settings (including 

threshold, size range, etc.), while in Adaptive, the setting corresponds to the spatial variations in 

illuminations within a specific size of window49. We also test different threshold correction in each of the 

thresholding strategies and found that 0.9 works best in our detection (Suppl. Table 1). Since the 

detection including the irregular typical shape of droplets, we implement filter module to find the 

similar shape of droplets with measurable parameter. This includes eccentricity (conic section), solidity 

(overall concavity), and form factor (ratio between the object’s area and circumscribed circle)50,51. We 

put the specific range between 0-0.5 or 0.5-1 for each of the filter to help us finding the best setting for 

droplets detection (Supp. Table 1). Based on the optimization, the best setting for our droplet detection 

is using Adaptive Otsu with 0.9 threshold correction with 0-0.5 eccentricity filter. Using the setting, we 

detect the droplets and obtain the result in .csv format. 

[We have built the web application with multipurpose modules for visualization of basic droplet data 

and specific experimental case]. In the web application, there are 1) basic and 2) specific modules (Fig. 

3).  At the moment, the data should contain three variables for maximizing the feature in our web 

application. This web application consists of necessary Python libraries that help users to visualize their 

data. In the web application, three variables (labels, sizes and signals) can be processed with a basic 
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visualization profile (e.g., plot of size distribution, fluorescent signals, comparison between sizes and the 

signals, and condition/label-based variable) and specific experiment profile in growth heterogeneity (e.g. 

Gompertz fitting, single cell viability, and minimum inhibition concentration probability density). 

Furthermore, each of the profile or visualization is also independent for each other and ease user to 

select the necessary profile.  

This application will lower the boundary for individuals with no programming skill to analyze and 

visualize their data. The web application will automatically treat the data as the best fit, e.g., size 

calculation will be performed automatically with maximum and minimum Ferret Diameter. The basic 

module can visualize the droplet sizes, droplet signals, sizes-signals plot, and plot data based on 

conditions or labels. In specific module, we currently have heteroresistance module which can generate 

the Gompertz fitting, single cell viability and minimum inhibition concentration (MIC) probability 

density. These modules can be run once the .csv or .xlsx data is uploaded into the application. To 

demonstrate the functionality, we use the platform to visualize our recent experiment in bacteria 

heteroresistance. We conduct an experiment with 10 different label or condition (nine different 

antibiotic concentrations with one control). We test some thresholds ranging from 0.067-0.076 to 

generate average classification value between two types of droplets in the population (Supp. Table 2). 

We use this value to generate the results in growth heterogeneity module. We also need to include the 

antibiotic concentration’s range in the web application to run the growth heterogeneity module.  

Heteroresistance is a type of antibiotic resistance in isogenic bacteria within sub-population level52,53. 

Wrong treatment toward this phenomenon results a treatment failure and death54. In 2019, Centers for 

Disease Control and Prevention (CDC) reported that more than 2,8 million individuals have been 

infected by antibiotic resistant bacteria and more than 35.000 deaths are caused by it each year55. The 

heteroresistance can be observed through disc diffusion, E-test methods and population analysis 

profile56. However, these methods are tedious and not feasible for clinical use because of complexity 

and long duration54. Droplet-based experiments can accommodate such analysis with massive 

parallelization and high-throughput results57. Using polydisperse droplets, we perform an experiment 

with nine different antibiotic concentrations and produce 1451 images for the analysis. We perform the 

droplet detection using the modules in the CP and upload the result (in .csv) in the web application. 
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Figure 3. Basic module in the web application depicts (A) droplet sizes distribution, (B) whole droplet 

signals, (C) fluorescent distribution in different sizes, and (D) individual experiment profile. Each of the 

plot can be generated independently. 

 

[Growth heterogeneity module analyzes microbial growth at single cell level in response to antimicrobial 

exposure conditions]. The growth heterogeneity module provides single cell viability graph (Fig. 4A) 

which utilize Gompertz fitting. Usually, this fitting is used to explain the nature of the phenomenon, 

specifically the correlation between time series or particular variable in sigmoid function58,59. We also 

provide the minimum inhibition concentration (MIC) probability density plot (Fig. 4B) to show the 

probability distribution of bacteria proliferation at a given antibiotic concentration. 

 

Figure 4. Heteroresistance module gives the option to produce fitting using (A) Gompertz model where 

it shows the decremental in sigmoid curve towards high antibiotic concentration. We also provide the 

partial derivative of the fitting and add error propagation calculation to find the best fit for single cell 

viability. For finding the MIC probability density, we use the negative numerical derivative from the 

fitting parameter from (B) with negative derivative of the fitting to define the error. The calculation is 

adopted from Scheler et al.57 
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With our web application, we can generate all the necessary analysis results after uploading the output 

from image analysis software. When building this module, we also found that the numerical derivative 

of the single cell viability57 not always can be useful to determine MIC probability density. It happens 

when the measured cell viability has a non-monotonic dependence on antibiotic concentration. This 

correlates with the threshold that is used to generate the graph. Since we use ten thresholds to estimate 

the error, the variance can be observed from the averaging. We do not discuss this error here in depth 

as we focus on the presentation of the web application. Alternatively, we provide the Gompertz fitting 

function to show how it fits without considering the non-monotonical results in the growth 

heterogeneity module. We also have tested the software using our previous published data with 

monodisperse droplets in Bartkova et al.46 (Supp. Fig. 4). For now, the web application can host three 

variables that contain the necessary data from CP or other software. We envisage to provide a more 

general visualization setup with other specific modules in near future.  

Conclusion 

We have implemented a user-friendly pipeline for image-based droplet analysis with two independent 

parts: image analysis software and our web application for visualizing the results. We simplify the data 

visualization by removing the demand of programming skills to run it. This will accommodate non-

experts or researchers with no programming skill to perform droplet-based research and use image data 

for the analysis. For the image analysis part, we discuss the detailed settings to optimize the droplet 

detection using CellProfiler. The visualization web application is available online, and it is not limited to 

the user’s computer power. Our app can be upgraded with new specific modules depending on the 

experimental data of the user. The pipeline can potentially be used not only for droplet-based analysis, 

but for any object analysis research in biotechnology and bioengineering or similar fields where data 

visualization application is needed. 

 

Materials and Methods 

Web application program construction 

Basis script of our web application is written in Python60 under libraries dependency, including 

Matplotlib61 and Seaborn62 for plotting and visualization, Numpy63 for working with arrays, Pandas64 to 

play with dataframe, Math65 and Statistics66 for embedding the formula, Re67 for regular expression, and 

SessionState68 to link each of the session within the program. The application is streamed using 

Streamlit library69 and the Python script is adjusted accordingly. For hosting the application online, we 

use Heroku server (https://easy-flow.herokuapp.com/) and will be hosted in local server in Tallinn 

University of Technology. The full script will be provided and will be available in our GitHub on request. 

Polydisperse droplet generation and imaging 

Droplets generation is performed using the vortexing method from Byrnes et al.3 Surfactant 

(perfluoropolyether (PFPE)–poly(ethylene glycol) (PEG)–PFPE triblock surfactant), Novec HFE 7500 

fluorocarbon oil, bacteria (Escherichia coli JEK 1036 with a chromosome- incorporated gene encoding 

the green fluorescence protein (GFP) and medium (Luria broth mixed with Dextran, Alexa FluorTM 647) 

are vortexed at the 1,5 mL tube for 5s. Once droplets are formed, we put the droplets on the CountessTM 

slide (Invitrogen) for imaging. We use LSM 510 Laser Scanning Microscope (Zeiss, Germany) running on 
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Zen 2009 software with the following settings: Plan-Apochromat 10X/0.45 objective, Argon/2 and 

HeNe633 lasers, Transmission light (Bright Field), pinhole size 452. We obtain 1451 images and convert 

them into grayscale TIF format before processing the data. 

CellProfiler pipeline construction 

We process the grayscale images in CellProfilerTM (version 4.2.1) using our constructed pipeline. The 

pipeline consists of IdentifyPrimaryObjects, MeasureObjectSizeShape, FilterObjects, 

MeasureObjectIntensity, another MeasureObjectIntensity, and ExportToSpreadsheet. For 

IdentifyPrimaryObjects, we set the range of diameter is between 20- and 350-pixel units. We test the 

Global and Adaptive thresholding strategies with different thresholding algorithm (Manual, Otsu, 

Savuola, Minimum Cross-Entropy, and Robust Background). For best detection pipeline, we use Adaptive 

thresholding strategy with three classes Otsu algorithm and 350 size of adaptive window with 0.9 

threshold correction factor. The rest of the setting follows the default. The first ExportToSpreadsheet 

module provide measurement for the detected droplets. The FilterObjects module allow us to select 

droplets which have specific shape as spherical or spheroid. We use the range of 0-0.5 eccentricity for 

filtering the droplets. We put MeasureObjectIntensity and second MeasureObjectIntensity modules to 

obtain the mean pixel’s intensity and droplets’ size for the analysis. For making the output can be 

processed in our web application, we export the data as .csv using ExportToSpreadsheet. For a brief 

explanation of the module construction, we have described it as well in our previous work46. 

Web application visualization workflow 

1. Our web app works after uploading the .csv or .xlxs in the app by dragging the file or browsing 

the file on the available box. 

 
2. Once the file is uploaded, there will be a table for showing the uploaded files. 

 
3. Depending on the uploaded data, here, we provide an example using CellProfiler as our image-

based detection first part of the workflow. Therefore, the interface will show the tabs below. 
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4. For droplet’s classification, we use threshold to define both positive/negative droplets. We put 

0.067 for the thresholding.  

 
5. Once the tabs are filled, there will be Data Visualization tab with the available modules and 

visualization options. 

 
6. For basic module, there are four options that are available. 

 

7. For Growth heterogeneity, we put two options, Gompertz fitting and Single Cell Viability + MIC 

Probability Density. The MIC Probability Density plot requires scViability to run, therefore, we 

put both scViability and MIC Probability Density in one option to avoid the confusion. 
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8. To make the Growth heterogeneity to run, antibiotic concentrations are needed. We provide 

example in the important note tab. 

 
9. We also provide the raw data which used to perform the Growth heterogeneity module. 
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