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Abstract

Droplet-based experimental platforms allow researchers to perform massive parallelization and high-
throughput studies, such as single-cell experiments. Even though there are various options of image
analysis software to evaluate the experiment, selecting the right tools require experience and is time
consuming. Experts and sophisticated workflow are required to perform the analysis, especially to
detect the droplets and analyze their content. There is need for user-friendly droplet analysis pipelines
that can be adapted in laboratories with minimum learning curve. Here, we provide a user-friendly
workflow for image-based droplet analysis. The workflow comprises of a) CellProfiler-based image-
analysis pipeline and b) accompanied with web application that simplifies the analysis and visualization
of the droplet-based experiment. We construct necessary modules in CellProfiler (CP) to detect droplets
and export the results into our web application. Using the web application, we are able to process and
provide basic profiles of the droplet experiment (droplet sizes, droplet signals, sizes-signals plot, and
strip plot for each label/condition). We also add a specific module for growth heterogeneity studies in
bacteria populations that includes single cell viability analysis and probability distribution of minimum
inhibition concentration (MIC) values in population. Our pipeline is usable for both poly- and

monodisperse droplet emulsions.

Background

[Water-in-oil droplet emulsions have become common tools for high-throughput chemical or biological
analysis over the last decades]. In general, droplet emulsions enable massive parallelization with small
amount of reagents! and miniaturization of laboratory?. Droplets with different sizes, usually called as
polydisperse droplets, have been used for advanced parallel studies, e.g., for nucleic acid
amplification®*. This method allows an absolute quantification in digital droplet polymerase chain
reaction (ddPCR) >®. The technology not only eases the complexity of massive experiments but also
improves the accuracy of the detection or quantification’. However, polydisperse droplet formation is
usually avoided due to bias which arise and affect the quantification®. Moreover, it requires
sophisticated software or experts to perform the droplets detection or the statistical correction for its

analysis®. On the other hand, microfluidics technology is able to generate monodisperse droplets and
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make analysis easier®. Since the early 2000s, droplet microfluidics has been developed in wide range of
research’®. Recent studies show that droplet applications allow wide range of microbial studies'?,
including massive parallel experiments for microbial community studies'?, and investigating
heteroresistance in antimicrobial resistance®. Unfortunately, droplet microfluidic requires delicate
integrative equipment and setup to perform such experiments®. Nevertheless, droplet-based
technology requires detection methods to analyze the results. For example, the droplet detection can be
performed using image-based methods® and signal-based detection®®. In this article, we focus on the

image-based method.

[Imaging or image-based method is often used for the analysis of both mono- and polydisperse
droplets]. Imaging is usually performed with microscopes using wide range of techniques?’, from
fluorescent microscopy*® up to high resolution electron microscopy?’. Some people also use smartphone
technology to capture or preserve their object of interest into image data®® . In principle, the signals
from the object of interest will be converted into pixels as the smallest units in image data®®. From the
pixels, image data can be processed to acquire the necessary information?°. Image data can be used for
various type of analysis, e.g. protein expression?, bacterial counting??, cell profiling?®, seeds analysis®*,
single cell analysis®, etc. In droplet-based experiment, imaging has been used both in mono- and
polydisperse droplets. For instance, image analysis has been used to quantify droplet as a carrier?,
determine a concentration of metals in single droplet size?’, droplet identification in crystallization
trials®®, nucleic acid amplification?® and antibiotic susceptibility test in droplet assays®°. However, these
methods require either scripted programs, or specific pipeline that only work for their object of interest.
Some software are only available commercially.

[There is a need for accessible and user-friendly image analysis and data visualization tools that can be
used for both mono- and polydisperse droplets]. Some imaging tools come as a package with the
microscope equipment and its software, e.g., Zen Imaging® or NIS-Elements3!. Unfortunately, these
kinds of bundle are not accessible in every laboratory. In our previous study, we have reviewed some
popular freely available open-source software which can be used for the image data analysis®?, e.g.,
CellProfiler™ (CP) 33, ImagelJ®*, llastik®®, and QuPath3®. We also explored each of the software’s pipeline
to detect droplets and found that each of the software has different name or option but host the same
principle®2. Despite of the mentioned tools, there are some other software which can be used to process
image data and perform the analysis afterward, e.g., Python?>%7, C++38, MATLAB, or R, Yet, these
software require programming skills while not every lab has the experts for implementing the available
library or scripted code. In our recent studies, we used CP and CellProfiler Analyst (CPA) to detect and
analyze monodisperse droplets 2>, Nonetheless, there are some limitations to process the data, e.g., to
implement a specific-case formula or calculation. This requires other software for data management or
visualization, such as Excel®?, Libre office*®, Tableu**, and Looker*. Notwithstanding, it takes a lot of
computing power to process high-throughput data and they are mostly not freely available. Moreover,
each of the software require some experience to be used optimally.

[Herein, we provide user-friendly droplet analysis workflow that is universally usable for detecting
droplets and visualizing the results]. The workflow consists of two parts which can work independently
(Fig. 1). Each part is modular and can be substituted with other software to generate suitable output. In
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brief, the first part is for image-based droplet analysis or detection. We use CP to detect droplets and
generate the data. For the second part, we have built a web application consists of necessary Python
libraries for processing the data and visualize the results in figures. The web app also hosts modules
which can be used for multipurpose analysis. This workflow will lower the boundary for individuals with
no programming skill to analyze and visualize their data.
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Figure 1. Pipeline structure of our image-based droplet detection and web application for the analysis.
Data is obtained from images which processed in CP or any other software. There are three data which
now our web app can process, Size, Label, and Average Pixels’ Intensity. Since our web app is
independent, the source data is not limited from image-based data but is required for having three
group of data mentioned previously. In the web application, there are basic module which can be used
to visualize general information from the uploaded data. For the specific module, we tested our
previous experiment data to analyze bacterial growth in polydisperse droplets and its heteroresistance
profile.

Result and Discussions
[Adaptive Otsu thresholding and eccentricity filter improve the polydisperse droplets detection pipeline]

We generate polydisperse droplets by vortexing oil, surfactant, and bacteria in Luria-Bertani broth
together in a tube. The encapsulation method is adopted from Byrnes et al.* For obtaining the data, we
image the droplets under confocal microscope and detect the droplets in CellProfiler™ (CP) using the
pipeline which is illustrated in Fig. 2. We perform optimization due to complications, such as different
sizes and overlayed droplets in polydisperse droplets image data. These situations result in additional
variables which need to be added in the pipeline, such as the typical droplets’ shape. In this experiment,
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we use CP to detect droplets with available modules and generate the data which consists of labels,
sizes (volume is recommended), and average pixel intensities. This can be generated with any available
software as long as it generates mentioned data with comma separated value (.csv) or Microsoft Excel
(.xlsx) file type. We have demonstrated the first part in our previous article *® and add additional
necessary modules to analyze polydisperse droplets in this article.
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Figure 2. CellProfiler™ provides modules for constructing image-based droplet detection pipeline. We
use fluorescent image from microscopy as an input. We test the available thresholding strategy, e.g.,
Global/Adaptive with different algorithm, e.g., Manual, Otsu, Savuola, Robust Background (RB),
Minimum Cross Entropy (MCE). We also find the optimal threshold correction at 0.9 within the 0-1 scale.
For improving the droplet detection, we filter the object using eccentricity, solidity, and form factor.

Pipeline for image analysis is composed of modular components, in a puzzle-like fashion*”#%, In CP, we
construct the modular components to detect droplets. We also test different thresholding strategies,
including between Global (Manual, Otsu, Minimum Cross-Entropy, and Robust Background) and
Adaptive (Savuola, Otsu, Minimum Cross-Entropy, and Robust background). The difference between two
thresholding strategies are that Global will consider all pixels when implementing the settings (including
threshold, size range, etc.), while in Adaptive, the setting corresponds to the spatial variations in
illuminations within a specific size of window®. We also test different threshold correction in each of the
thresholding strategies and found that 0.9 works best in our detection (Suppl. Table 1). Since the
detection including the irregular typical shape of droplets, we implement filter module to find the
similar shape of droplets with measurable parameter. This includes eccentricity (conic section), solidity
(overall concavity), and form factor (ratio between the object’s area and circumscribed circle)®*°!. We
put the specific range between 0-0.5 or 0.5-1 for each of the filter to help us finding the best setting for
droplets detection (Supp. Table 1). Based on the optimization, the best setting for our droplet detection
is using Adaptive Otsu with 0.9 threshold correction with 0-0.5 eccentricity filter. Using the setting, we
detect the droplets and obtain the result in .csv format.

[We have built the web application with multipurpose modules for visualization of basic droplet data
and specific experimental case]. In the web application, there are 1) basic and 2) specific modules (Fig.
3). At the moment, the data should contain three variables for maximizing the feature in our web
application. This web application consists of necessary Python libraries that help users to visualize their
data. In the web application, three variables (labels, sizes and signals) can be processed with a basic
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visualization profile (e.g., plot of size distribution, fluorescent signals, comparison between sizes and the
signals, and condition/label-based variable) and specific experiment profile in growth heterogeneity (e.g.
Gompertz fitting, single cell viability, and minimum inhibition concentration probability density).
Furthermore, each of the profile or visualization is also independent for each other and ease user to
select the necessary profile.

This application will lower the boundary for individuals with no programming skill to analyze and
visualize their data. The web application will automatically treat the data as the best fit, e.g., size
calculation will be performed automatically with maximum and minimum Ferret Diameter. The basic
module can visualize the droplet sizes, droplet signals, sizes-signals plot, and plot data based on
conditions or labels. In specific module, we currently have heteroresistance module which can generate
the Gompertz fitting, single cell viability and minimum inhibition concentration (MIC) probability
density. These modules can be run once the .csv or .xIsx data is uploaded into the application. To
demonstrate the functionality, we use the platform to visualize our recent experiment in bacteria
heteroresistance. We conduct an experiment with 10 different label or condition (nine different
antibiotic concentrations with one control). We test some thresholds ranging from 0.067-0.076 to
generate average classification value between two types of droplets in the population (Supp. Table 2).
We use this value to generate the results in growth heterogeneity module. We also need to include the
antibiotic concentration’s range in the web application to run the growth heterogeneity module.

Heteroresistance is a type of antibiotic resistance in isogenic bacteria within sub-population level®>3,
Wrong treatment toward this phenomenon results a treatment failure and death®*. In 2019, Centers for
Disease Control and Prevention (CDC) reported that more than 2,8 million individuals have been
infected by antibiotic resistant bacteria and more than 35.000 deaths are caused by it each year®. The
heteroresistance can be observed through disc diffusion, E-test methods and population analysis
profile®. However, these methods are tedious and not feasible for clinical use because of complexity
and long duration®®. Droplet-based experiments can accommodate such analysis with massive
parallelization and high-throughput results®. Using polydisperse droplets, we perform an experiment
with nine different antibiotic concentrations and produce 1451 images for the analysis. We perform the
droplet detection using the modules in the CP and upload the result (in .csv) in the web application.


https://doi.org/10.1101/2021.12.21.473684
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.12.21.473684; this version posted December 23, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

Droplet Sizes Plot Droplet signals plot

8000
103

Count (Polydisperse)
] 3
o o
o o
Number of pixels (in log)

[N)
S
=3
S

0.002 0.004 0.008 0.016 0.03 0.06 0.125 025 0.5 1 2 4 0.0 ‘ 0.1 0.2 0.3 04 0.5
bins Average Pixels' Intensity
Sizes and signals plot Label/Condition-based plot
u.D 0.5

Classification
Positive

o

IS
[=]
>

"

S

Q

So.

gl Negative 5

@ ‘@

50.3 50'3

£ £

c

©0.2 §0A2

El s

z

£01 0.1

c

2

£0.0l - . . . . I 0.0 .
0.0 0.5 1.0 15 2.0 2.5 0.009 0.011 0.014 0.016 0.02 0.023 0.029 0.034 0.042 Control

Volume Condition (AB Concentration)

Figure 3. Basic module in the web application depicts (A) droplet sizes distribution, (B) whole droplet
signals, (C) fluorescent distribution in different sizes, and (D) individual experiment profile. Each of the
plot can be generated independently.

[Growth heterogeneity module analyzes microbial growth at single cell level in response to antimicrobial
exposure conditions]. The growth heterogeneity module provides single cell viability graph (Fig. 4A)
which utilize Gompertz fitting. Usually, this fitting is used to explain the nature of the phenomenon,
specifically the correlation between time series or particular variable in sigmoid function®®>°, We also
provide the minimum inhibition concentration (MIC) probability density plot (Fig. 4B) to show the
probability distribution of bacteria proliferation at a given antibiotic concentration.
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Figure 4. Heteroresistance module gives the option to produce fitting using (A) Gompertz model where
it shows the decremental in sigmoid curve towards high antibiotic concentration. We also provide the
partial derivative of the fitting and add error propagation calculation to find the best fit for single cell
viability. For finding the MIC probability density, we use the negative numerical derivative from the
fitting parameter from (B) with negative derivative of the fitting to define the error. The calculation is
adopted from Scheler et al.s
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With our web application, we can generate all the necessary analysis results after uploading the output
from image analysis software. When building this module, we also found that the numerical derivative
of the single cell viabilitys” not always can be useful to determine MIC probability density. It happens
when the measured cell viability has a non-monotonic dependence on antibiotic concentration. This
correlates with the threshold that is used to generate the graph. Since we use ten thresholds to estimate
the error, the variance can be observed from the averaging. We do not discuss this error here in depth
as we focus on the presentation of the web application. Alternatively, we provide the Gompertz fitting
function to show how it fits without considering the non-monotonical results in the growth
heterogeneity module. We also have tested the software using our previous published data with
monodisperse droplets in Bartkova et al.*® (Supp. Fig. 4). For now, the web application can host three
variables that contain the necessary data from CP or other software. We envisage to provide a more
general visualization setup with other specific modules in near future.

Conclusion

We have implemented a user-friendly pipeline for image-based droplet analysis with two independent
parts: image analysis software and our web application for visualizing the results. We simplify the data
visualization by removing the demand of programming skills to run it. This will accommodate non-
experts or researchers with no programming skill to perform droplet-based research and use image data
for the analysis. For the image analysis part, we discuss the detailed settings to optimize the droplet
detection using CellProfiler. The visualization web application is available online, and it is not limited to
the user’s computer power. Our app can be upgraded with new specific modules depending on the
experimental data of the user. The pipeline can potentially be used not only for droplet-based analysis,
but for any object analysis research in biotechnology and bioengineering or similar fields where data
visualization application is needed.

Materials and Methods
Web application program construction

Basis script of our web application is written in Python®® under libraries dependency, including
Matplotlib®® and Seaborn® for plotting and visualization, Numpy®® for working with arrays, Pandas®* to
play with dataframe, Math®® and Statistics®® for embedding the formula, Re®’ for regular expression, and
SessionState®® to link each of the session within the program. The application is streamed using
Streamlit library®® and the Python script is adjusted accordingly. For hosting the application online, we
use Heroku server (https://easy-flow.herokuapp.com/) and will be hosted in local server in Tallinn
University of Technology. The full script will be provided and will be available in our GitHub on request.

Polydisperse droplet generation and imaging

Droplets generation is performed using the vortexing method from Byrnes et al.® Surfactant
(perfluoropolyether (PFPE)—poly(ethylene glycol) (PEG)—PFPE triblock surfactant), Novec HFE 7500
fluorocarbon oil, bacteria (Escherichia coli JEK 1036 with a chromosome- incorporated gene encoding
the green fluorescence protein (GFP) and medium (Luria broth mixed with Dextran, Alexa FluorTM 647)
are vortexed at the 1,5 mL tube for 5s. Once droplets are formed, we put the droplets on the Countess™
slide (Invitrogen) for imaging. We use LSM 510 Laser Scanning Microscope (Zeiss, Germany) running on
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Zen 2009 software with the following settings: Plan-Apochromat 10X/0.45 objective, Argon/2 and
HeNe633 lasers, Transmission light (Bright Field), pinhole size 452. We obtain 1451 images and convert
them into grayscale TIF format before processing the data.

CellProfiler pipeline construction

We process the grayscale images in CellProfiler™ (version 4.2.1) using our constructed pipeline. The
pipeline consists of IdentifyPrimaryObjects, MeasureObjectSizeShape, FilterObjects,
MeasureObjectIntensity, another MeasureObjectintensity, and ExportToSpreadsheet. For
IdentifyPrimaryObjects, we set the range of diameter is between 20- and 350-pixel units. We test the
Global and Adaptive thresholding strategies with different thresholding algorithm (Manual, Otsu,
Savuola, Minimum Cross-Entropy, and Robust Background). For best detection pipeline, we use Adaptive
thresholding strategy with three classes Otsu algorithm and 350 size of adaptive window with 0.9
threshold correction factor. The rest of the setting follows the default. The first ExportToSpreadsheet
module provide measurement for the detected droplets. The FilterObjects module allow us to select
droplets which have specific shape as spherical or spheroid. We use the range of 0-0.5 eccentricity for
filtering the droplets. We put MeasureObjectIntensity and second MeasureObjectintensity modules to
obtain the mean pixel’s intensity and droplets’ size for the analysis. For making the output can be
processed in our web application, we export the data as .csv using ExportToSpreadsheet. For a brief
explanation of the module construction, we have described it as well in our previous work?*®.

Web application visualization workflow

1. Our web app works after uploading the .csv or .xlIxs in the app by dragging the file or browsing
the file on the available box.
This platform processes data from image-based droplet experiment.

Current version hosts:
* Basic Module: This module generates plots for sizes, signals, comparison between sizes and signals with threshold classification and condition/label-based data.

* Microbial Heterogeneity Module: This module provides Gompertz fitting of serial conditions/labels in a experiment. This module also generates the Single Cell Viability and Minimium Inhibition

Concentration (MIC) Probability Density

You can use the .CSV or XLSX filetype in this platform.

Drag and drop file here
- ot ! Browse files

2. Once the file is uploaded, there will be a table for showing the uploaded files.

fromCP2.csv 1.5MB
Tube AreaShape_MaxFeretDiameter AreaShape_MinFeretDiameter Intensity_Meanintensity_Droplet
0  Tube0l 123.4382 110.9539 0.0673
1 Tube0l 100.6578 85.4427 0.0629
2 Tube01 98.5089 86.1700 0.0697
3 Tube0l 122.5765 109.5837 0.0615
4 Tube0l 165.1303 142.4778 0.2224

3. Depending on the uploaded data, here, we provide an example using CellProfiler as our image-
based detection first part of the workflow. Therefore, the interface will show the tabs below.
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This data is from:

Select one of the options

CellProfiler v

From the table, you have:

If you use CellProfiler, your size will be calculated automatically and you can just select 'Volume' for the size. The volume can be found at the bottom of the choices.

For label For signal For size

Tube - Intensity_MeanIntensity_Droplet - Volume

Put threshold to define positive/negative droplets:
0.0000 = +

If you want define your bins for sizes plot, put it here:

0, 0.001953125, 0.00390625, 0.0078125, 0.015625, 0.03125, 0.0625, 0.125, 0.25, 0.5, 1, 2, 4

4. For droplet’s classification, we use threshold to define both positive/negative droplets. We put
0.067 for the thresholding.

Put threshold to define positive/negative droplets:

0.0670 - +

5. Once the tabs are filled, there will be Data Visualization tab with the available modules and
visualization options.
Data Visualization

What module do you want to visualize?

Basic module

What kind of visualization?

Signals plot

6. For basic module, there are four options that are available.

What kind of visualization?

Signals plot

Signals plot
Sizes plot
Sizes-Signals Plot

Label-based Plot

7. For Growth heterogeneity, we put two options, Gompertz fitting and Single Cell Viability + MIC
Probability Density. The MIC Probability Density plot requires scViability to run, therefore, we
put both scViability and MIC Probability Density in one option to avoid the confusion.
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What kind of visualization?

Gompertz fitting -

Gompertz fitting
Single cell viability and MIC probability density

8. To make the Growth heterogeneity to run, antibiotic concentrations are needed. We provide
example in the important note tab.

Requirement for Microbial Heterogeneity Module

Since the range of antibiotic concentration is needed, gives the antibiotic concentration range with comma here

IMPORTANT NOTE: Writ e antibiotic con ration sepa d with col a a ut ( 1 ; 1e list corresponds to the 'Lab 1 sted 1 T oL

If there is no range of antibiotics in the required column, the results will not be generated.

9. We also provide the raw data which used to perform the Growth heterogeneity module.

See the raw data?

abel Average Volume (nL Negative Positive Total Fraction Positive Occupancy Viability
TubeOl 0.4144 2160 1383 3543 0.3903 0.3232 1.1093
1 Tube02 0.3826 2533 1267 3800 0.3334 0.2835 0.9475
2 Tube03 0.3040 2034 673 2707 0.2486 0.2201 0.7065
3 Tube04 0.3254 1895 552 2447 0.2256 0.2019 0.6411
4 Tube05 0.3272 3123 1062 4185 0.2538 0.2241 0.7211
5 Tube06 0.2776 2891 253 3144 0.0805 0.0773 0.2287
Tube0T 0.1802 5898 173 6071 0.0285 0.0281 0.0810
7 Tube08 0.2481 4598 99 4697 0.0211 0.0209 0.0599
8 Tube09 0.3096 4172 18 4190 0.0043 0.0043 0.0122
Control 0.5243 1630 885 2515 0.3519 0.2966 1.0000

Press to Download
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