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Abstract

Introduction: Urothelial carcinoma (UC) is the tenth most diaggtbcancer in humans
worldwide. Dogs are a robust model for invasive &umor development and progression is
similar in humans and dogs. Recent studies on mningobiota in humans revealed alterations in
microbial diversity and composition in individualsth UC; however, the potential role of
microbiota in UC has yet to be elucidated. Dogdatbe valuable models for this research, but
microbial alterations in dogs with UC have not begaluated.

Objective: The objective of this this pilot study was to quare the urine and fecal microbiota
of dogs with UC (n = 7) and age-, sex-, and breatkzhed healthy controls (n = 7).

Methods: DNA was extracted from mid-stream free-catch uand fecal samples using Qiagen
Bacteremia and PowerFecal kits, respectively. F8$A gene sequencing was performed
followed by sequence processing and analyses (QEMEd R).

Results: Canine urine and fecal samples were dominatedxay gimilar to those found in
humans. Significantly decreased microbial diveréftsuskal-Wallis: Shannorp = 0.048) and
altered bacterial composition were observed irutiree but not feces of dogs with UC
(PERMANOVA: Unweighted UniFraq = 0.011). The relative abundanced-aobacterium

was also increased, although not significantithenurine and feces of dogs with UC.
Conclusion: This study characterizes urine and fecal micraebiotdogs with UC, and it
provides a foundation for future work exploring tioscrobe dynamics in UC carcinogenesis,

prognosis, and treatment.
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1. Introduction
Bladder cancer is the tenth most diagnosed canaddwide [1]. In 2020, the International

Agency for Research on Cancer estimated over 583)6@ bladder cancer diagnoses would be
confirmed worldwide [2]. Urothelial carcinoma (UGJso known as transitional cell carcinoma,
is the most common type of bladder cancer. Agen(bever age 55), race (white), sex (male),
and some heritable mutations [3—10] are establisis&dactors for bladder cancer [11-13].
Bladder cancer is also strongly associated withrenmental exposures such as smoking [14—
17] or occupational exposure to chemicals like ateramines, pesticides, industrial dyes, or
diesel fumes [18,19]. However, not all persons srpdo these chemicals develop urothelial
carcinoma indicating that there are individualipedt-environment interactions that mediate UC
risk.

Clear host-environment (diet) interactions mediatedugh the gut microbiome have
emerged in colorectal carcinogenesis [20,21] amit@mment-microbiome-carcinogenesis links
have also begun emerging in lung cancer [22,23]ekample, diets high in animal fat can
directly or indirectly impact microbial compositidny increasing liver bile acid production and
excretion into the intestines. Bile tolerant miastor microbes that can metabolize primary bile
acids expand in this bile-rich environment, and saithese microbes produce pro-
inflammatory, cytotoxic, or genotoxic secondary atetlites that can contribute to colorectal
carcinogenesis. Work on the gut microbiome hastdignaced and outnumbered studies on the
urine / bladder microbiome; however, it has nowdmee apparent that the urine microbiota play

a key role in host health and may also be influgbiladder cancer development and
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progression [24]. Alterations in urine microbiot@vk been reported in association with multiple
genitourinary diseases including chronic kidnedse [25], chronic prostatitis, chronic pelvic
pain syndrome [26], interstitial cystitis [27], sely transmitted infections [28], urgency urinary
incontinence [29], urinary tract infections [30finary stone disease [31], urogenital
schistosomiasis [32], urogynecologic surgery [3Bl) vaginosis [34]. A few recent studies on
the urine / bladder microbiome have also revealddle but intriguing differences in urine or
bladder tissue microbial diversity and compositwdmdividuals with and without UCT(@ble 1)
[17,35-45], but approaches and results in theskestvary widely. Studies in relevant animal
models could advance this research by offering eeroontrolled environment. Multiple animal
models of UC have been described, with most bedgmt models that have many limitations
[46].

The focus of this study was on invasive UC utiligannaturally-occurring canine model and
comparing the urine and fecal microbiota of dogéaind without UC. While it can be difficult
to produce the collective features of cancer hgteity, molecular features, aggressive cancer
behavior, and host immunocompetence in experimembakels, these features are present in the
canine model [57-59]. In humans, approximatel$26f all UC cases are muscle invasive [44]
while in dogs with UC, over 90 % present with imbediate- to high-grade muscle invasive
bladder cancer [47,48]. Moreover, humans and dioggesnany of the same environmental
exposures, and canine UC, like human UC, has j@deraiologically linked to chemical
exposures including herbicides and pesticides J9[3ogs also exhibit strong heritable (breed-
specific) associations with UC offering unique ogipnities for gene-environment studies [49—

51]. Notably, the human microbiome is more simitathe dog microbiome compared to other
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animal models, such as the rodent microbiome [52king dogs a more suitable model for

studying microbiota in relation to UC.

2. Materials and Methods

2.1 Sample Collection: All dogs were recruited through Purdue Univers§itllege of
Veterinary Medicine between September 2016 andl@ct®019 (Purdue IACUC: 1111000169;
Ohio State University IACUC: 2019A00000005). Uranad fecal samples were initially
collected from 57 dogs with biopsy-confirmed urdidecarcinoma (UC) and 56 age, sex, and
breed-matched healthy controlsdure 1). Dogs with active urinary tract infections were
excluded. We additionally excluded any dog withstdry of chemotherapy (vinblastine,
zebularine, vemurafenib, chlorambucil, mitoxantraared cyclophosphamide) or a history of
antibiotics within the previous 3 weeks due topb&ential effects of these medications on the
microbiome [53-60]. We did not exclude dogs on stereidal anti-inflammatory drugs
(NSAIDs), including piroxicam and deracoxib, whiaie commonly used in dogs with UC.
Healthy dogs underwent physical exams and hadstoriiof antibiotics (within the previous 3
weeks) or indications of gastrointestinal or uragemisease.

In healthy dogs, urine was collected via mid-stréeee catch. In dogs with UC, a variety
of urine collection methods were employed as deetteitally appropriate including: mid-
stream free catch, catheter, or cystoscopy. Freh caine can include bacteria from the bladder,
urethra, periurethral skin, prepuce, or vaginaleviine collected via catheterization or
cystoscopy primarily includes microbes from theddler and limits the presence of genital and
skin microbes [41,61-63]. To determine if collentimethod could potentially influence our

results, we compared samples from dogs with U&ctl via free catch (n = 8) to samples
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collected via non-free catch methods (catheteomatiystoscopy) (n = 11p@pp. Table 1;

Supp. Figures 1,2,3). We observed significant differences in microlmiamposition but not
diversity by collection method (Bray-Curtis PERMAN® rarefied:p = 0.008; non-rarefiech

= 0.005;Supp. Figures, 1f,2f). Moreover,Staphylococcus andStreptococcus — common skin
colonizers - were amongst the top genera in freghaa&ine but not amongst the top genera in
non-free catch urineSipp. Table 2). Based on the compositional differences we oleskby
collection method and on other studies that haperted differences in urine microbiota due to
collection method [41,61-65], we opted to limit tlieenainder of our analyses to samples
collected via free catch only. This allowed us donpare microbiota in urine from healthy dogs
and dogs with UC without introducing collection imadl as a potential confounder.

As such, after exclusions, urine samples froma tbtlogs with UC and 7 age, sex, and
breed-matched healthy controls were compared snstiidy Table 2). Fecal microbiota from a
subset of these 14 dogs for which we had fecal Enfp dogs with UC and 6 healthy controls)
were also compared [30,66,67]. All urine and staohples were placed on ice immediately after
collection and then transferred into a*8dreezer. Samples were transported on dry ice from
Purdue (West Lafayette, IN, USA) to the Ohio Staméversity (Columbus, OH, USA), where

they were stored in at -80 until extraction.

2.2 DNA extraction and quantification: Urine samples were extracted using QIA&mp
BiOstic® Bacteremia DNA Isolation Kit (Qiagen, Hilden, Gemy) as described previously
[68]. Fecal samples were extracted using the QIAaRgwerFecdl DNA Kit (Qiagen, Hilden,
Germany) following the manufacturer’s instructioNegative (no sample) controls were run

with each kit used for extraction. DNA concentratiavere measured using a QBilit0
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Fluorometer (Invitrogen, Thermo Fisher ScientificCarlsbad, CA, USA) and purity was

assessed using Nanodrop One (Thermo Fisher Sm&ftiCarlsbad, CA, USA).

2.3 16SrRNA sequencing and sequence processing: Library preparation, PCR amplification,
and amplicon sequencing was performed at Argonri@iNg Laboratory (DuPage County,
lllinois). Likewise, negative controls underwene thull extraction, library preparation, and
sequencing process. We amplified Yeregion of the 16S rRNA gene using primers 515é a
806R, and PCR and sequencing were performed aslspreviously (2 x 250bp paired-end
reads, on an lllumina Miseq (Lemont, IL, USA)) [6®}. Raw, paired-end sequence reads were
processed using QIIMEZ2 v. 2020.11 and DADA2 [71,72xonomy was assigned in QIIME2
using the Silva 132 99% database and the 515FR 8@&sifier [73,74]. In the analysis
comparing urine collection method in dogs with W&, excluded samples with fewer than 1,000
reads and analyzed the data with rarefaction (&@0lreads) and without rarefaction. We
included both analyses because rarefaction, edlyemtidow read counts, can increase type 1
errors and mask potential differentially abundamatbetween samples [75]. In the analyses
comparing urine and fecal microbiota from dogs vaitid without UC, samples with fewer than
7,000 reads were excluded; this cutoff allowedou®tain all but two urine samples while
excluding all negative control&igure 1). Urine samples from dogs with and without UC were
rarefied at 7,000 reads; fecal samples were rarati®,233 reads, which included all fecal

samples. Sequencing data for this project is availm SRA BioProject PRINA76392.

2.4 Urine and fecal sequence data processing: Prior to analyses, we first removed singletons

(Amplicon Sequence Variants (ASVs) with only onadén the dataset). ASVs are roughly
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161 equivalent to a microbial species or strain. Weattygplied the R package decontam to identify
162 and filter out putative contaminant ASVs basedtmirtfrequency and prevalence (0.5 threshold)
163 as compared to negative controls (R package, vQ).[16]. In total, we identified and removed
164 13 putative contaminant ASVs from the urine samplas$ 8 from the fecal samplesupp.

165 Table 3). We also removed sequences aligned to chloraplaskaryotes, mammalia, and

166 mitochondria. In addition, in the urine samples,removed taxa within the phylum

167 Cyanobacteria and the class Chloroflexia. All sgative controls, which contained fewer than
168 7000 reads, were then removed from subsequentsasaly

169

170 2.5. Statistical analyses: Data were tested for normality using the Shapirtk\Mormality Test
171 in R version 3.5.2 [77]. We then compared DNA caonicgions and read numbers between
172 groups using Wilcoxon Rank Sum tests and two-samasts, respectively. All alpha and beta
173 diversity metrics were assessed using the R pagiageseq with a p-value cutoff of 0.05

174 adjusted using the Benjamini & Hochberg False Discp Rates [78]. Alpha-diversity metrics
175 included Shannon, Simpson, and Observed Featuteséd by Kruskal-Wallis Rank Sum

176 Tests to compare metrics by group. Beta-diversiyrics included Bray-Curtis, Unweighted
177 UniFrac, and Weighted UniFrac. Permutational Mailtiate Analysis of Variance

178 (PERMANOVA) were implemented in QIIMEZ2 v. 2020.1d dompare bacterial community
179 composition by group. An Analysis of CompositionMitrobiome (ANCOM) was used to

180 identify differentially abundant taxa by group.

181

182 3. Results
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3.1 Urine microbiota in dogswith UC: We compared the urine microbiota of 7 dogs with UC
to 7 age, sex, and breed-matched healthy confrbéstotal number of reads across all samples
ranged from 7,232 — 36,692 with a mean of 20,0Z(829 reads. Urine samples contained a
total of 21 bacterial phyla, 308 genera, and 1&¢igs. Urine DNA concentrations were
significantly higher in dogs with UC as comparedhéalthy dogsKigur e 2a: Wilcoxon Rank
Sum testp = 0.002), but there was no significant differencéhe number of 16S reads between
dogs with and without UCHjgure 2b: two-sample t-tesp = 0.99).

Dogs with UC had significantly lower urine micrabdiversity compared to healthy dogs
as measured by the Shannon diversity index andr@ab&eatures but not by the Simpson
diversity index (Kruskal-Wallis: Shannop~= 0.048; Observed Featurgss 0.025; Simpsomq
= 0.133;Figure 3a, Supp. Figure 4a,b). Dogs with UC also had significantly different urine
microbial composition than healthy dogs based obmaneighted UniFrac distance matrix
(Figure 3b; PERMANOVA, p = 0.011); although, no significant differences evebserved by
Bray Curtis p = 0.888) or Weighted UniFrap € 0.168) distance matriceSupp. Figure 4c,d).

At the phylum level, Firmicutes (healthy: 61.1 %C179.5 %) Proteobacteria (healthy: 18.0 %;
UC: 15.6 %), and Actinobacteria (healthy: 12.5 %3:4.26 %) were the three most abundant
phyla in the urine of healthy dogs and dogs with (Bigur e 4a). At the family level,
Staphylococcaceae (healthy 42.6%; UC 48.6%) areptitoccaceae (healthy 5.99 %; UC
14.8%) were amongst the most abundant teigu( e 4b; Forgenus and order level taxa see
Supp. Figure5). Interestingly Fusobacterium was present in the urine of dogs with UC but not
in the urine of healthy dogs (relative abundanceusbbacteriumin healthy dogs: 0 %; in dogs
with UC: 0.167 %). There were no differentially aldant taxa between healthy dogs and dogs

with UC at the phylum, genus, or ASV levels.
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3.2 Fecal microbiota in dogswith UC: We compared the fecal microbiota of a subset osdog
from the urine analyses for which we also had feaatples: four dogs with and six dogs
without UC. The total number of reads across alhfsamples ranged from 9,233 — 28,345 with
a mean of 19,196 6,100 reads. Fecal samples contained a totabat&rial phyla, 92 genera,
and 45 species. There was no significant differeméecal DNA concentrations or number of
16S reads in dogs with UC as compared to healtgg;ddthough, DNA concentrations were
greater in dogs with UC (DNA concentration: WilcoxBank Sum Tesp = 0.136; 16S reads:
Two-sample t-tesp = 0.322;Figureb).

Fecal microbial diversity and composition did dofer significantly in dogs with and
without UC (Kruskal-Wallis: Shannop,= 0.67; Unweighted UniFrac PERMANOVA,=
0.252;Figure 6, Supp. Figure 6). The top three most abundant phyla across al feamples
were Firmicutes (healthy: 72.6 %; UC: 32.9 %), Ragidetes (healthy: 10.6 %, UC 31.9 %) and
Fusobacteria (healthy: 11.3 %, UC: 31.1 %p(re 7; Supp. Figure 7). At the family and
genera levels, Fusobacterieacea (healthy: 11.4@563W.7 %) andFusobacterium (healthy: 12.0
%, UC: 33.1 %) were the most abundant taxa in Uhbuhealthy samples, respectively;
although, these differences were not statisticdwpificant. Only ond3acteroides spp. was
significantly increased in relative abundance iggwith UC compared to healthy dogs
(ANCOM, W = 25).

To determine how results from this subset of feeahples compared to a larger sample
set, we then analyzed the fecal microbiota of 3fsdeith UC and 30 sex, age, and breed-
matched healthy controlSpp. Table 4). Fecal DNA concentrations, 16S reads, and fecal

microbial diversity and microbial composition agdid not differ significantly between groups
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(DNA concentration: Wilcoxon Rank Sum tgsts 0.515; 16S reads: two-sample t-test,
0.0697;Supp. Figure 8; Supp. Table5). Firmicutes, Bacteroidetes, and Fusobacteria also
remained the most abundant phyla across both grangsnterestingly, Fusobacteriaceae
(healthy: 17.4 %; UC: 28 %) arkusobacterium (healthy: 18.5 %; UC: 29.2%) were still the
most abundant family and genus in the fecal samgdldsgs with UC $upp. Figure 9);

although, this difference was still not significaint fact, no taxa were differentially abundant at
the phylum, genus, or ASV levels between groughenarger sample sesfpp. Table5),
suggesting that th&acteroides spp. identified as differentially abundant in the subsas likely

an artifact of small sample size.

3.3 Microbiota identified in both fecal and urine samples. As the gut can be a source for
microbes in the urinary tract [30,67], we then caml urine and fecal data to determine what
ASVs were present in both urine and fecal samplesre were a total of 1,204 ASVs across all
urine and fecal samples combined. Sixty-six ASVsewdentified in both urine and fecal
samples from any do@(pp. Table 6). The most common taxa found in both urine andlfec
samples included taxa in the gen8iraeptococcus andBlautia. Notably, Fusobacterium spp.,
Porphyromonas spp., Campylobacter spp., Helicobacter spp., andClostridiodes difficile were

also found in both urine and fecal samples. Furtmae ASVs were identified in urine and fecal
samples from the same do@sifp. Table 7). These ASVs included twiescherichia or Shigella
Spp., two Streptococcus spp., aClostridium sensu stricto 1 spp., Actinomyces coleocanis,

Streptococcus minor, anEnterococcus spp., and an uncultureeptocl ostridium spp.

4. Discussion
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The purpose of our study was to characterize time @nd fecal microbiota in a naturally-
occurring canine model of UC. We report a decrease@ microbial diversity and altered urine
microbial composition in dogs with UC compared &alhy controls. We did not detect
significant differences in fecal microbiota betwamygs with and without UC; although,
Fusobacterium was increased in dogs with UC. These results decaifoundation for further

exploring the role of microbes in UC in a highlyeneant animal model.

Urine and fecal microbiota associated with UC

The higher concentrations of DNA found in urinenfrdogs with UC is likely host DNA from
epithelial or tumor cells being sloughed into th@ae. Notably, urine microbial read numbers did
not differ significantly between dogs with and vath UC indicating similar amplicon
sequencing depths despite differences in DNA canatons. (Notably, efforts to remove host
DNA from UC urine samples prior to sequencing maybneficial in future microbiome studies
employing shotgun metagenomics to ensure thatthmémot overwhelmed with host
sequences.)

Besides DNA concentrations, we also observed sogmf differences in urine microbial
diversity (Shannon) and composition (UnweightedRdac) between dogs with and without UC.
In this study, urine microbial diversity was gredtehealthy dogs as compared to dogs with UC,
a finding that aligns with several studies on unmerobiota in humans with UC [37,39].
However, there are also studies in humans thattrapalifferences in microbial diversity or
decreased diversity in urine from healthy individuas compared to those with UC
[17,35,36,38,42,44,79]. Differences in microbiatmaosition (Unweighted UniFrac) have also

been reported in previous human studies on UC 8463344]. In this study, the four most
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abundant phyla in urine were Firmicutes, Actinobdeat Bacteroides, and Proteobacteria. These
phyla also dominate the urine microbiota in hun{ais36,38,40,44,45] and have been reported
in previous studies on healthy dog urine [80,81hlimans, taxa associated with UC vary
widely across studies, bAtinetobacter andActinomyces have been found at increased
abundances in patients with UC across at least stralies [35,42,44]. In this study, we did not
seeAcinetobacter or Actinomyces spp. increased in relation to UC, which may be duemals
sample sizes and reduced power to detect diffalgnéibundant taxa, or differences between
human and canine urine microbiota, or lack of a tink between these taxa and UC.

In relation to fecal microbiota, we did not obseargy significant differences in dogs
with and without UC. However, intriguingl¥usobacterium was increased in relative abundance
(although not significantly) in urine and fecal sdes of dogs with UC. One previous study on
bladder cancer also reported increaSaesbbacteriumin the urine of individuals (human) with
UC [38]. Importantly, taxa in the phyla Fusoba@arie considered normal inhabitants of the
canine gastrointestinal tract [82]; although, taey more typically associated with disease in
humans. Studies in colorectal cancer have demoedtdirect links between Fusobacteria
(Fusobacterium nucleatum) and carcinogenesis. Specificaljysobacterium nucleatum Fap2
protein can bind to host factor Gal-GalNAc whicloierexpressed on tumor cells [83] - thereby
localizing to tumors where Fap2 can impair host-mmhor immunity [83].Fusobacterium
nucleatum can also induce the host Wnt / beta-catenin patmesulting in upregulated host
cellular proliferation [84]. Future studies are dee to elucidate the potential role of

Fusobacterium in bladder cancer.

Microbiota present in both urine and fecal samples
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Communication and migration of microbes betweengtiteand bladder can increase a host’s
risk of UTIs and bacteriuria [30]. Microbes may maitg and ascend into the urogenital tract
externally from the rectum / anus, or internallg the blood stream [85,86]. In this study, 66
ASVs were shared between urine and fecal sampiesektingly, ~ 59 % of those ASVs (39 /
66) are likely spore-formers (Bacilli, Clostrididegativicutes) suggesting that spore formation
may more readily enable exchange of microbes betwedy niches [87,88]. Among the
microbes (ASVs) found in both urine and fecal saapthere were multiple potentially
pathogenic taxaCampylobacter spp., Helicobacter canis, Clostridiodes difficile, Clostridium
baratii, Escherichia / Shigella spp., and Enterococcus spp. There were also a few taxa that have
been associated with tumors or directly linked wittmor development or progression in
gastrointestinal, oral, and genital canc&tgsobacterium spp. andPorphyromonas spp. [89-94].
The shared presence of twasobacterium ASVs between urine and fecal samples is partityular
of interest given the role ¢fusobacteriumin colorectal cancer.

This pilot study is a novel investigation of uriamed fecal microbiota in a canine model
of UC. The dominant microbial taxa identified imgze urine and fecal samples were similar to
those reported in humans. Also, as in humans ealtericrobial diversity and composition were
observed in dogs with UC as compared to healthyrolsn This supports the idea that the
microbiota may play a role in UC development, pesgion, prognosis, or response to treatment,
as has been observed in other cancers. Moreeussbacterium was increased — albeit not
significantly - in both urine and fecal sampleslofys with UC Fusobacterium ASVs were also
shared between urine and fecal samples. Takerh&gdhese results provide support for the use

of dogs as a model in UC microbiome studies. Adddily, these findings suggest that future
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320 work evaluating the role dfusobacteriumin UC, and the gut as a potential source of this
321 Fusobacterium, may be warranted.
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695 Tablel: Key findingsin 13 publications about the urine/ tissue microbiota and urothelial
696 carcinoma. MIBC = Muscle Invasive Bladder Cancer; NMIBC =iNbluscle Invasive Bladder
697 Cancer; PD-L1 = Programmed Cell Death 1 Ligand @;#JJrothelial Carcinoma.
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Category Healthy uC
Sex, n (%)

Females 5 (71.4 %) 5 (71.4 %)
spayed 4 4
non-spayed 1 1

Males 2 (28.6 %) 2 (28.6 %)
neutered 2 2
non-neutered 0 0

Age (mean + SD) 10.1+1 10.1+0.7

Table 2: Demographics of dogswith and without urothelial carcinoma (UC). Urine samples
were collected and analyzed from all dogs. Stowipdas were collected and analyzed from a

subset of these dogs including 6 healthy (4 fem&lesales), and 4 with UC (3 females, 1 male).
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733
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or recent antibiotics
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»  History of antibiotics
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734  Figurel: Experimental design
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740 Figure2: DNA concentrationsand number of 16Sreadsin the urine samples of dogswith
741 and without urothelial carcinoma (UC). (a) DNA concentrations were significantly greater in
742  dogs with UC than in healthy dogs (Wilcoxon RanknSest,p = 0.002). b) The number of 16
743 reads did not differ significantly between groupeotsample t-tes) = 0.99). Error bars denote
744  standard error. Statistical significance is repné=g by stars: * < 0.05, ** < 0.001, *** < 0.0001
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754  Figure3: Microbial diversty and composition in the urine of dogswith and without UC.
755 (@) Healthy dogs had a significantly higher microlaadersity compared to dogs with UC as
756 measured by the Shannon diversity index (Kruskalligyag = 0.048). b) Microbial compositia
757 between healthy dogs and dogs with UC also diffsrgdificantly (Unweighted UniFrac,
758 PERMANOVA, p = 0.011). Error bars denote standard error. Sitalssignificance is

759 represented by stars: * < 0.05, ** < 0.001, *** 0001
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769 Figure4: Phyla and family taxa bar plots of urine samplesin dogswith and without UC.
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771 each sample is shown individually to demonstragevtiriability across urine samples.
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Figure 5: DNA concentrationsand number of 16Sreadsin the fecal samples of dogswith
and without UC. (a) DNA concentrations were greater (but not sigaifitty) in dogs with UC
as compared to healthy dogs (Wilcoxon Rank Sum, pes0.136). b) The number of 16S
reads did not differ significantly between groupgo-sample t-tesp = 0.322). Error bars

denote standard error.
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Figure 6: Microbial diversity and composition of fecal samplesin dogswith and without

UC. (a) Fecal microbial diversity did not differ signifiatly between dogs with and without UC
(Kruskal-Wallis,p = 0.67). b) Microbial composition also did not differ sigraéintly between
healthy dogs and dogs with UC (Unweighted UniFREERMANOVA, p = 0.252). Error bars

denote standard error.
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Supplemental Material:

Category Free Catch Non-Free Catch
Sex, n (%)

Females 5 (62.5 %) 7 (62.6 %)
spayed 4 6
non-spayed 1 1

Males 3 (37.5 %) 4 (36.4 %)
neutered 3 4
non-neutered 0 0

Age (meant SD) 10.1+2 9.6+1.8

Supplemental Table 1. Demographics of dogswith urine samples collected via free catch

and non-free catch methods. All dogs had urothelial carcinoma. Eight dogs hedeaicollected

via mid-stream free catch while eleven dogs wengpdad via non-free catch methods including

cystoscopy or catheterization.
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830
Free Catch Urine Non-free Catch Urine
Phylum
Firmicutes 70.3 % Firmicutes 33 %
Proteobacteria 20.1 %Tenericutes 26.7 %
Bacteroidetes 5.98 %Proteobacteria 26.7 %
Genera
Saphylococcus 43.2 %| Mycoplasma 18.3 %
Sreptococcus 12.6 %| Escherichia-Shigella 18.1 %
831 Pantoea 11.4 %, Enterococcus 9.73%

832 Supplemental Table 2: Dominant taxa in urine from dogswith UC by collection method.
833 Relative abundance of the top three taxa in fréehcand non-free catch urine at the phylum and
834 genera levels. All urine was collected from dogghvdC.

835
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836
Putative urine contaminants (ASVs)
D_1 Tenericutes;D_2__Mollicutes RF39;D_4 _unceliuprokaryote;D_5 _uncultured
prokaryote;D_6__ uncultured prokaryote
D 1 Deinococcus-Thermus;D 2 Deinococci;D 3 ThéemD 4 Thermaceae;D 5 Thermus
D 1 Actinobacteria;D_2 Actinobacteria;D_3 Microcales;D 4 Micrococcaceae;D 5 Microcogccus
D_1 Proteobacteria,D_2 Gammaproteobacteria;D_@tapBoteobacteriales;D_4  Burkholderiaceag;
D 5 Cupriavidus
D 1 Proteobacteria;D_2 Gammaproteobacteria;D_&taploteobacteriales;D_4 Burkholderiaceae
D_1 Bacteroidetes;D_2 Bacteroidia;D_3 Bactereg]® 4 __Prevotellaceae;D_5 Prevotella9;
D 6 uncultured bacterium
D_1 Kiritimatiellaeota;D_2  Kiritimatiellae;D_3  ®@HB1-41;D_4 uncultured rumen
bacterium;D_5 uncultured rumen bacterium;D_6_ lined rumen bacterium
D 1 Bacteroidetes;D 2 Bacteroidia;D_3 Bacteteigj@ 4 Prevotellaceae
D 1 Firmicutes;D 2 Bacilli;D_3 Lactobacillales® Lactobacillaceae;D_5 Lactobacillus;
D 6 Lactobacillus iners AB-1
D 1 Firmicutes;D 2 Bacilli;D_3 Lactobacillales® Lactobacillaceae;D 5 Cytophaga
D_1 Verrucomicrobia;D_2__Verrucomicrobiae;D_3_tOigiceae;D_4__ Opitutaceae;
D 5 Lacunisphaera;D 6 Opitutus sp. WS3(2011)
D 1 Bacteroidetes;D 2 Bacteroidia;D 3 Bactetegjp 4 Prevotellaceae;D 5 Prevotella 9
D_1 Proteobacteria;D_2__Alphaproteobacteria;D_3iizdbiales;D_4__ Xanthobacteraceae;
D_5 Bradyrhizobium
Putative fecal contaminants (ASVs)
D_0__ Bacteria
D_1 Firmicutes;D 2 Negativicutes;D_3__SelenomalesiD_4 Veillonellaceae;D_5_ Veillonella
D 1 Firmicutes;D 2 Bacteoridia;D_3 Bacteroid&led; Prevoteliceae;D 5 Prevotella 9
D 1 Firmicutes;D 2 Bacilli;D_3 Bacillales;D 4 taghylococcaceae;D 5 Staphylococcus
D_1 Actinobacteria;D_2__Coriobacteriia;D_3__Cosdcteriales;D_4 Atopobiaceae;
D 5 Coriobacteriaceae UCG-002
D_1 Proteobacteria;D_2_Gammaproteobacteria;D_t®erébacteriales;D_4 Enterobacteriaceae
D_1 Actinobacteria;D_2 Coriobacteriia;D_3 _Codcteriales;D_4 Atopobiaceae;
D 5 Coriobacteriaceae UCG-002

837

838 Supplemental Table 3: Contaminant ASVs. Using the frequency and prevalence methods
839 (threshold value of 0.5) in the R package decontdani0.0, putative contaminant ASVs were
840 identified and bioinformatically removed prior tarther analyses.

841

842
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Category Healthy uC
Sex, n (%)

Females 16 (53.3 %) 16 (53.3 %)
spayed 15 15
non-spayed 1 1

Males 14 (46.7 %) 14 (46.7 %)
neutered 11 11
non-neutered 3 3

Age (meant SD) 10+ 1.76 10.4+1.97

Supplemental Table 4: Demographics of larger canine cohort from which fecal samples
wer e collected. Fecal samples were collected from dogs with UC @®)}and age-, sex-, breed-

matched healthy controls (n = 30).
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Fecal samplesfrom
Metric healthy dogsvs.
dogswith UC
Shannon Diversity Index _
Kruskal-Wallis p=0214
Alpha Simpson Diversity Index _
Diversity Kruskal-Wallis p=0.506
Observed Features _
Kruskal-Wallis p=0.336
Bray Curtis _
PERMANOVA p=0.468
. . UnWeighted UniFrac _
Beta Diversity PERMANOVA p=0.134
Weighted UniFrac _
PERMANOVA p=0.0819
Phylum No differentially
ANCOM abundant taxa
D}iﬁﬁggﬁ'tly Genus No differentially
ANCOM abundant taxa
Taxa
ASV No differentially
ANCOM abundant taxa

849

850 Supplemental Table5. Microbial diversity and composition of fecal samples from healthy

851 dogsand dogswith UC. There were no significance differences in micrbbigersity or

852 composition between dogs with UC (n = 30) and s&ge;, and breed-matched healthy controls
853 (n =30). ANCOM — Analysis of Composition of Micnaimne.

854
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ASVsin both urineand

fecal samples Taxa

07124e5371867ec3421 | D_1_ Firmicutes;D_2_ Clostridia;D_3__ Clostridial2s4 _Lachnospirace:
b740707a0de D_5__ Lachnoclostridium

1345b73795b14ab033C | D_1 Firmicutes;| 2 Clostridia;D_3 Clostridiales;D_4 Lachnospsicse
ffb81b5h4aa D 5 Blautia

181065d22563c4b1f591¢

D_1 Actinobacteria;D_2__ Actinobacteria;D_3__ Actmaetales

6D_4 Actinomycetaceae;D_5 Actinomyces;D_6__Actipoas sp. canine oral

abbbee7355 taxon 374

1905e4715e57ce205d« | D_1 Firmicutes;D_2 Bacilli;D_3 _Lactobacillales® Streptococcace:
05fla5c5d67 D 5 Streptococcus;D_6 Streptococcus minor
1b3a2h9873a54f01302¢ | D_1__ Firmicutes;D_2__Clostridia;D_3 _Clostridial2s4 _Lachnospirace:
9406b52aa9 D 5 Blautia

1cd1e7291e9803c9cdfe | D_1_ Firmicutes;D_2__ Clostridia;D_3__ Clostridial2s4 Ruminococcace:
a15309e043 D_5__ Ruminiclostridium 5;D_6__uncultured organism
27046d59617e724675k | D_1 Firmicutes;| 2 Bacilli;D_3 Lactobacillales;D_4 Streptocoezse
185aeb33d4a D 5 Streptococcus

2a39faablcf27e5068efé
794a3d1bl

D_1 Actinobacteria;D_2 Actinobacteria;D_3 Miarocales
D_4 Microbacteriaceae

4d74ef18790f690b2acfE

Firmicutes;D_2__Clostridia;D_3__Clostridial2s4 _Lachnospirace

2ch64cfaal3ecebb815( | D_1 Epsilonbacteraeota;D_2 ampylobacteria;D_3__Camplybactera
8e244aa026 D_4 Helicobacteraceae;D 5 Helicobacter;D_6 HBleticter canis
35815582b2cf31eb9866 | D 1  Firmicutes;D_2 Clostridia;D_3 _ Clostridial2s4 Peptostreptococcace
cddcch558c D 5 peptoclostridium;D_6 uncultured bacterium
382cccfof2613e42¢602 | D_1_ Firmicutes;D_2__ Clostridia;D_3__ Clostridial2s4 _Lachnospirace:
2e5efba519 D 5 Blautia
38ad78b86309fa98eaei | D_1 Firmicutes;D_2 Clostridia;D_3__ Clostridialzs4 _ Clostridiacea
bac8579237 1;D_5 Candidatus Arthromitus; D 6 uncultured baate
3acf68a82e28a71226¢¢ | D_1__ Firmicutes;D_2__ Clostridia;D_3__ Clostridial2s4__Lachnospiraces
195277f39a D_5 uncultured;D_6__uncultured organism
3¢4c352e66306770cel( | D_1  Firmicutes;D_2 Bacilli;D_3__ctobacillales;D_4__ Streptococcact
ac128d0ca8 D 5 lactococcus
42aa3a600f30a5267ee: | D_1_ Firmicutes;D_2 Clostridia;D_3 Clostridial2s4 _Lachnospirace:
34d8655853 D_5_ uncultured
4611ef696d9c9f16982f( | D_1__ Firmicutes;D_2__Clostridia;D_3__Closiales;D_4 _Lachnospirace
86174522fe D_5 Epulopiscium
4952ad8a58b2e7d70d: | D_1_ Fusobacteria;D_2__ Fusobacteriia;D_3__ Fusotalets
5ce330442bb D_4 Fusobacteriaceae;D_5 Fusobacterium
4a654a475be76¢c7705C | D_1_ Firmicutes;|_2 Erysipelotrichia;D_3__Erysipelotrichal
lea6a9771d9 D_4 Erysipelotrichiaceae;D 5 Faecalitalea;D_6 baEterium sp. 1-5
D 1 |
D 5

60f89c222

__[Ruminococcus] gauvreauii group

4f1d5517aa4cel79ae9:

d5a5b3796d D_1_ Firmicutes;D_2_ Blg® 3_ Bacillales;D_4 Bacillaceae;D_5_Bacillus
52990f305d65b7df7ded | D_1  Firmicutes;D_2 Negativicutes;D_3 Selenomales

87cc08988f D 4 Velllonellaceae D 5 Megamonas

52ef51c7bec642ab72d. | D_1__ Actinobacteria;D_2__ Actinobacteria;D_3 Miaocales

474821b108 D_4 Micrococcaceae;D_5 Rothia

601426df62ac2005c0a7 | D_1__ Actinobacteria;D_2__ Actinobacteria;D_3__ Actimeetales

be617425a4 D_4 Actinomycetaceae;D 5 Actinomyces;D_6 Actipces coleocanis
6019612a56660d54c571 | D_1__ Firmicutes;D_2__ Erysipelotrichia;D_3__ Eryspigthales

299224759d D_4_ Erysipelotrichaceae;D_5 Catenibacterium

61b2e2fc40303b1f0f19 | D_1_ Firmictes;D_2__Clostridia;D_3 _Clostridiales;D_4 Pep&ggbcoccaces
017f258bac D5 terrlsporobacter D_6__ uncultured bacterium
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D_1_ Firmicutes;D_2__Negativicutes;D_3__Selenomales
2D 4 Acidaminococcaceae;D 5 Phascolarctobactdbiuén; uncultured
Veillonellaceae bacterium

682c96e343759d3583¢ | D_1_ Firmicutes;D_2_ Clostridia;D_3__ Clostridial2s4 Lachnospirace:
293fa4e0160 D_5_ Lachnoclostridium;D_6__Lachnospiraceae bacte@l_1_46FAA
6a081f2b1b45ee5773bk | D_1 Firmicutes;D 2 Clostridia;D_3 Clostridiales;D_#achnospiracea
7h977f5893 D_5 uncultured

6e44l1leble3bc74bb8a5 | D 1 Firmicutes;D_2 Bacilli;D_3 Lactobacillales®D Lactobacillacea
ff24b11147 D 5 Lactobacillus

6fdb8a40fc3f65447a2ea
3c21bbd68

D_1 Bacteridetes;D_2_Bacteroidia;D_3 Bacteroidales;D_4 td3aidaceas
D_5_ Bacteroides;D_6__Bacteroides stercoris ATCI833

730125adfc6eae51053]
e4a29f2bc9

D_1 Firmicutes;D 2 Bacilli;D_3_Lactobacillales® Enterococcace:
D_5 Enterococcus

7439al1dc0a589a4605¢
fd7fccbeb4

D_1_ Actinobacteria;D_2__Coriobacteriia;D_3__Cosicieriales
D_4 Coriobacteriaceae;D_5 Collinsella

7510965009242aaalcde | D_1  Firmicutes;D_2 Clostridia;D_3__ Clostridial2s4 _Lachnospirace:
ala2c1b998 D 5 Blautia;D_6_uncultured Blautia sp.
75300d9701d85567f71 | D_1__ Firmicutes;D_2__Erysipelotrichia;D_3__ Erysgigthales
99e6dc01dce D_4_ Erysipelotrichiaceae;D_5_Faecalitalea;D_6ysigelatoclostridum
76815f71f41950d2e2d4 | D_1_ Firmicutes;| 2__ Clostridia;D_3__Clostridiales;D_4__Ruminocoezs
b6b730f3d8 D_5 Faecalibacterium
777de77e069f708364a(
2b03f8eae9 D 1 Firmicutes;D 2 Bg® 3 Bacillales;D 4 Bacillaceae;D 5 Bacillus
7cd06¢cbcae217263f67€ | D_1__ Firmicutes;D_2__ Bacilli;D_3 Lactobacillales;D_4 _ Streptococcact
482303de07 D_5__Streptococcus
84e088771ladb5cfc2el: | D_1 Firmicutes;D_2 Clostridia;D_3__ Clostridial2s4 Peptostreptococcace
9bad18c76a D_5__ Clostridioides;D_6__ Clostridioides difficile
877d42a21d6e569416. | D_1 Firmicutes;D_2 Clostridia;D_3 _ Clostridial2s4 Ruminococcace:
485ce3dacf8 D_5__Flavonifractor
87a5ae82db511f591c64 | D_1__ Actinobacteria;D_2__ Actinobacteria;D_3__Micamsporale:
9ad67321fc D_4 Micromonosporaceae;D_5 Actinoplanes

D_1_ Firmicutes;D_2__ Erysipelotrichia;D_3__Erysiidgthales
91beca23d467a7chl152b] 7ED_4_Erysipelotrichiaceae;D_5_Allobaculum;D_6_omhculum stercoricanis

f9505e650e

DSM 13633

9d135cd7fd9b670ce5fdc
ce8851183

D_1 Firmicutes;D 2 Clostridia;D_3 Clostridial2s4 Lachnosiraceae
D 5 Blautia

a3000823e9ab005bb35 | D_1  Firmicutes;D_2__ Clostridia;D_3__ Clostridial2s4 _ Clostridiacea
4ele?0eed8 1;D_5 Clostridium sensu stricto 1

a3d3d817d8183e0d741 | D_1 Proteobacteria_2 Gammaproteobacteria;D_3 Pasteurel
edafbhe65409 D 4 Pasteurellaceae;D 5 Pasteurella;D 6 Padtdeurdtocida

a80abf00da9c833chifas
707727dda

D_1_ Firmicutes;D_2__ Bacilli;D_3 _Lactobacillales® _Streptococcacei
D_5 Streptococcus

ab9782e24971a281lc7:
¢33d9ad73d

D_1 Firmicutes;D_2__ Erysipelotrichia;D_3 Erysgigthales
D_4 Erysipelotrichaceae;D 5 Faecalitalea;D_6_b§Eterium] dolichum

b0d75fc101fefcde86c03
cfdb39caf

D_1 Actinobacteria;D_2 Actinobacteria;D_3 _Cohateriales
D 4 Corynebacteriaceae;D 5 Corynebacterium 1

b7095a583ea62033ff918
2187652b27

D_1 Bacteroidetes;D 2 Bacteroidia;D_3 Bacteteg
eD_4  Porphyromonadaceae;D_5 Porphyromonas;D_6phjy@omonas sp. COT-
052 OH4946

bd4017ad4efac59720e: | D_1_ Firmicuts;D_2_ Clostridia;D_3 Clostridiales;D_4__ Clostitkae!
64dalB8aced D_5 Clostridium sensu stricto 1;D_6__ Clostridiuandtii
¢5073cch362bfa533ad€ | D_1  Firmicutes;D_2 Clostridia;D_3__ Clostridial2s4 Lachnospirace:
fac3babb80 D 5 Blautia;D_6 Blautia sp. YHC-4

c6bedd5hb82d0f92872c€ | D_1_ Firmicutes;D_2__ Clostridia;D_3__ Clostridial2s4 Ruminococcace:
d7435al72e D_5 Ruminococceae UCG-014;D 6 uncultured organism
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c8f1df932d5f877f524cd. | D_1__ Actinobacteria;D_2__ Coriobacteriia;D_3 _Cosicierales

16367e721 D_4 Coriobacteriaceae;D_5 Collinsella;D_6_lli@sella stercoris
cc8f83128875d60f9%1d | D_1__ Epsilonbacteraeota;D_2__Campylobacteria;D_amplybacterale
33a207ce81 D_4 Campylobacteraceae;D_5 Campylobacter
d3d0bd88ddd06bf6e49c | D_1 Firmicutes;D_2_ Erysipelotrichia;D_3__ Erysipelofiales

1cdff07e9b D_4 Erysipelotrichaceae;D 5 Erysipelatoclostridiu
dae3d6aa2560755d95¢ | D_1__ Firmicutes;D_2_Bacilli;D_3__ Lactobacillales®D _Streptococcace:
8047492c1f2 D_5__ Streptococcus

€1002cca0084443acl17: | D_1_Firmicutes;D_2_ Clostridia;D_3__ Clostridial2s4 _Lachnospirace:
37d6049d8b D5 [Rumlnococcus] torques group;D_6__ unculturkes@dium sp.
e46e5d3e3462c7351ell | D_1__ Actinobacteria;D_2__ Actinobacteria;D_3__ Ceebacteriale:
2ec42e64cf D 4 Corynebacteriaceae

e49f8561188c9050a9a: | D_1_Bacteroidetes;D_2 Bacteroidia;D_3__Bactelegl® 4 Bacteroidaceae;
af2aa75c24 5 Ba Bacteroides; D6 uncultured bacterium

eelOda4f77alcf2cbf314 | D_1_ Fusobacteria;D_2__Fusobiriia;D_3 Fusobacteriale

f2563a05¢c D 4 | Fusobacteriaceae;D. 5 Fusobacterium;D_6__esigenome
f8b7aef6c94fcbelbd79: | D_1__ Firmicutes;D_2__ Erysipelotrichia;D_3__Erysgigthales

¢3304bfOb D_4_ Erysipelotrichaceae;D_5 Catenibacterium
f8cc743ae9448d9472ef | D_1__ Proteobacteria;D_2__Gammaproteobacteria;D_r&er@bacteriale
3914262cch D_4 Enterobacteriaceae;D_5 Escherichia-Shigella
f957a7c9e0410797ffaaC | D_1__ Actinobacteria;D_2__Coriobacteriia;D_3__Cosicleriales

222cb0085 D_4 Eggerthellaceae;D 5 Slackia

fa0dcff3fde22b426ce94 | D_1__ Firmicutes;D_2__Clostridia;D_3__Clostridial2s4 _Lachnospiraces
c91f56a17 D_5_[Ruminococcus] gnavus group

fa4dd8c953b8a69498d1

3bf15a4190 D 1 Firmicutes;D 2 Clostridia;D_3 sBidiales;D_4 Lachnospiraceae
fe9db134f6a44b3e5ac: | D_1_ Firmicutes;D_2 Bacilli;D_3 Lactobacillales®d Streptococcaceae;D !
1315920582 Streptococcus

ffd03765b364ad4cdcl? | D_1_ Actinobacteria;D_2_Actinobacteria;D_3  Bifidmteriales
ef2611lab72 D_4 Bifidobacteriaceae;D_5 Bifidobacterium

856
857 Supplemental Table 6: ASVsidentified in both urine and fecal samples. There were 66

858 ASVs found in both urine and fecal samples of any.d
859

860
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ASVsin both urine and fecal
samples by dog

Taxa

Dog1-UC

f8cc743ae9448d9472ef8d3914262cch

D_1 Proteobacteria;D_2__Gammaproteobacteria;D_1&er@bacteriales
D_4 Enterobacteriaceae;D_5 Escherichia-Shigella

Dog2-UC

D_1_ Firmicutes;|_2__ Bacilli;D_3__lLactobacillales;D_4__Streptocoazse;
27046d59617e724675b68185aeb33d4dD_5  Streptococcus
Dog 3 - Healthy

D_1 Proteobacteria;D_2_ Gammaproteobacteria;D_1&er@bacteriales
f8cc743a€9448d9472ef8d3914262cch D_4 Enterobacteriaceae;D_5_ Escherichia-Shigella

D_1_ Firmicutes;D_2__ Bacilli;D_3__Lactobacillales® _Streptococcaces
1878459013cf15f2993a81¢14978c980 D_5 Streptococcus

D_1 Firmicutes;D_2__Clostridia;D_3 _Clostridial2s4 _ Clostridiale:
a3000823e9ab005bb353ff4ele20eed8 1;D_5 Clostridium sensu stricto 1

601426df62ac2005c0a78bbe617425a:

D 1 Actinobacteria;D_2 Actinobacteria;D_3__Actinaetales
4D 4 Actinomyceteaceae;D 5 Actinomyces;D 6 Actiyes coleocanis

1905e47315e57ce205d4505f1la5c5d6

D_1_ Firmicutes;|_2__ Bacilli;D_3__lLactobacillales;D_4__Streptocoazse;
7D_5 Streptococcus;D_6__ Streptococcus minor

Dog 4 - Healthy

730125adfc6eae51053161e4a29f2bcY

D_1_ Firmicutes;D_2_ Bacilli;D_3__Lactobacillales® Enterococcacee
D_5 Enterococcus

35815582b2cf31eb986673cddcch558

D 1 Firmicutes;D 2 Clostridia;D_3__ Clostridia
c D_4 Peptostreptococcaceae; D_5 Peptoclostridiué;Duncultured bacteriun

61
62

63

864

8

8

65

66

Supplemental Table 7. ASVsin urine and fecal samplesfrom the same dog. Four dogs

contained ASVs that were found in both their uiane fecal samples.
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Supplemental Figure 1. Urine microbial community diver sity and composition by

collection method in dogswith UC (rarefied data). Dogs with UC were sampled via free catch
(n = 8) and non-free catch (n = 11) methods. Sasnpére rarefied at 1000 reads. There were no
significant differences in microbial diversity beden collection methods as assessedajia (
Shannon (Kruskal-Walligp = 0.62) orb) Simpson diversity indicep & 0.68) or ¢) Observed
Features (richness) € 0.901). The microbial composition of free-catcine did not differ
significantly from non-free catch urine based dhynweighted (PERMANOVAp = 0.328) or

(e) Weighted UniFrac distance matric@s=0.485) but did differ significantly based dij Bray

Curtis p = 0.008). Error bars denote standard error.
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Supplemental Figure 2: Urine microbial community diver sity and composition by
collection method in dogswith UC (unrarefied data). Dogs with UC were sampled via free
catch (n = 8) and non-free catch (n = 11) methDds$a are non-rarefied. There were no
significant differences in alpha diversity betweatiection methods as assessed usingahe (
Shannon (Kruskal-Walligp = 0.68) orb) Simpson diversity indicep & 0.68) or ¢) Observed
Features (richness) € 0.901). The microbial composition of free-catcine did not differ
significantly from non-free catch urine based dhnweighted (PERMANOVAp = 0.342) or
(e) Weighted UniFrac distance matric@s=0.54) but did differ significantly based di Bray

Curtis p = 0.005). Error bars denote standard error.
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916 Supplemental Figure 3: DNA Concentrationsand 16S reads by urine collection method. (a)
917 Urine DNA concentrations ant) 16S reads in dogs with UC sampled via free cataionfree
918 catch methods (cystoscopy, catheterization). DNAceatrations and 16S reads were greater,
919 although not significantly, in mid-stream free ¢atgine samples (DNA concentration:

920 Wilcoxon Testp = 0.778; 16S reads: two-sample t-tgst, 0.067). Error bars denote standard
921 error.
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Supplemental Figure4: Urine microbial diversity and composition in dogswith and

without UC. Dogs with UC had lower microbial diversity compatecealthy dogs based on
(a) Observed Features (richness) and B)eS{mpson diversity index; however, only Observed
Features was statistically significant (Kruskal-W¢alObserved Featureg,= 0.025; Simpsom

= 0.133). Microbial composition did not differ sifjoantly based ond) Bray Curtis or ¢)
Weighted UniFrac distance matrices (PERMANOVA: B€&wrtis,p = 0.888; Weighted
UniFrac,p = 0.168). Error bars denote standard error. $tatlsignificance is represented by

stars: * < 0.05, ** < 0.001, *** < 0.0001
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940 Supplemental Figure5: Taxa bar plotsof urine samplesin dogswith and without UC. (a)
941 Microbial genera andb order relative abundances.
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949 Supplemental Figure 6: Fecal microbial diversity and composition in dogswith and

950 without UC. Fecal microbial diversity did not differ significdyin dogs with (n=4) or without
951 (n=6) UC based oraf Observed Features (richness) and B)eS{mpson diversity index

952 (Kruskal-Wallis: Observed Featurgss= 0.67; Simpsorp = 0.522). Microbial composition also
953 did not differ significantly based oe)(Bray Curtis or §) Weighted UniFrac distance matrices
954 (PERMANOVA: Bray Curtisp = 0.06; Weighted UniFrap = 0.06). Error bars denote stanc

955 error.
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965 Supplemental Figure 8: Fecal microbial diversity and composition. We comparedecal

966 microbiota indogs with UC (n = 30) and sex-, age-, and breed:imeat healthy controls (n =
967 30). There were no significant differences in miab diversity by &) Shannon (Kruskal-Wallis,
968 p=0.214), b) Simpson (Kruskal-Walligy = 0.506), or ¢) Observed Features (Kruskal-Wallis,
969 p=0.336). There were also no significant diffeeso microbial composition byl) Bray

970 Curtis (PERMANOVA,p = 0.468), €) Unweighted UniFrac (PERMANOVA) = 0.134), orf)
971 Weighted UniFrac distance matrices (PERMANOW 0.0819).

972
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973
974  Supplemental Figure 9: Fecal microbial taxa bar plots. Relative abundances of fecal

975 microbiota at thed) phyla and ) family levels fromdogs with UC (n = 30) and age-, sex-, and

976 breed-matched healthy controls (n = 30).
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