

1
2
3
4 **Urine and Fecal Microbiota in a Canine Model of Bladder
5 Cancer**

6 Ryan Mrofchak¹, Christopher Madden¹, Morgan V. Evans^{1,2}, William C. Kisseberth, Deepika
7 Dhawan³, Deborah W. Knapp^{3,4}, and Vanessa L. Hale^{1*}

8
9 ¹Department of Veterinary Preventive Medicine, Ohio State University College of Veterinary
10 Medicine, Columbus, Ohio, United States of America

11 ²Divison of Environmental Health Sciences, Ohio State University College of Public Health,
12 Columbus, Ohio, United States of America

13 ³Department of Veterinary Clinical Sciences, Purdue University College of Veterinary Medicine,
14 West Lafayette, Indiana, United States of America

15 ⁴Purdue University Center for Cancer Research, Purdue University, West Lafayette, Indiana,
16 United States of America

17
18 Conflicts of Interest: Ryan Mrofchak, Christopher Madden, Morgan V. Evans, William C.
19 Kisseberth, Deepika Dhawan, and Vanessa L. Hale have no conflicts of interest to report.

20 Deborah W. Knapp is an Editorial Board member of this journal, but was not involved in the
21 peer-review process nor had access to any information regarding its peer-review.

22

23 *Corresponding Author:

24 Email: hale.502@osu.edu

25 Abstract

26

27 **Introduction:** Urothelial carcinoma (UC) is the tenth most diagnosed cancer in humans
28 worldwide. Dogs are a robust model for invasive UC as tumor development and progression is
29 similar in humans and dogs. Recent studies on urine microbiota in humans revealed alterations in
30 microbial diversity and composition in individuals with UC; however, the potential role of
31 microbiota in UC has yet to be elucidated. Dogs could be valuable models for this research, but
32 microbial alterations in dogs with UC have not been evaluated.

33 **Objective:** The objective of this this pilot study was to compare the urine and fecal microbiota
34 of dogs with UC (n = 7) and age-, sex-, and breed-matched healthy controls (n = 7).

35 **Methods:** DNA was extracted from mid-stream free-catch urine and fecal samples using Qiagen
36 Bacteremia and PowerFecal kits, respectively. 16S rRNA gene sequencing was performed
37 followed by sequence processing and analyses (QIIME 2 and R).

38 **Results:** Canine urine and fecal samples were dominated by taxa similar to those found in
39 humans. Significantly decreased microbial diversity (Kruskal-Wallis: Shannon, $p = 0.048$) and
40 altered bacterial composition were observed in the urine but not feces of dogs with UC
41 (PERMANOVA: Unweighted UniFrac, $p = 0.011$). The relative abundances of *Fusobacterium*
42 was also increased, although not significantly, in the urine and feces of dogs with UC.

43 **Conclusion:** This study characterizes urine and fecal microbiota in dogs with UC, and it
44 provides a foundation for future work exploring host-microbe dynamics in UC carcinogenesis,
45 prognosis, and treatment.

46

47 **Key words:** Bladder Cancer, Urine, Feces, Dogs, Gastrointestinal Microbiome, Microbiota, Pilot
48 Study

49 1. Introduction

50 Bladder cancer is the tenth most diagnosed cancer worldwide [1]. In 2020, the International
51 Agency for Research on Cancer estimated over 573,000 new bladder cancer diagnoses would be
52 confirmed worldwide [2]. Urothelial carcinoma (UC), also known as transitional cell carcinoma,
53 is the most common type of bladder cancer. Age (being over age 55), race (white), sex (male),
54 and some heritable mutations [3–10] are established risk factors for bladder cancer [11–13].
55 Bladder cancer is also strongly associated with environmental exposures such as smoking [14–
56 17] or occupational exposure to chemicals like aromatic amines, pesticides, industrial dyes, or
57 diesel fumes [18,19]. However, not all persons exposed to these chemicals develop urothelial
58 carcinoma indicating that there are individualized host-environment interactions that mediate UC
59 risk.

60 Clear host-environment (diet) interactions mediated through the gut microbiome have
61 emerged in colorectal carcinogenesis [20,21] and environment-microbiome-carcinogenesis links
62 have also begun emerging in lung cancer [22,23]. For example, diets high in animal fat can
63 directly or indirectly impact microbial composition by increasing liver bile acid production and
64 excretion into the intestines. Bile tolerant microbes or microbes that can metabolize primary bile
65 acids expand in this bile-rich environment, and some of these microbes produce pro-
66 inflammatory, cytotoxic, or genotoxic secondary metabolites that can contribute to colorectal
67 carcinogenesis. Work on the gut microbiome has far outpaced and outnumbered studies on the
68 urine / bladder microbiome; however, it has now become apparent that the urine microbiota play
69 a key role in host health and may also be influencing bladder cancer development and

70 progression [24]. Alterations in urine microbiota have been reported in association with multiple
71 genitourinary diseases including chronic kidney disease [25], chronic prostatitis, chronic pelvic
72 pain syndrome [26], interstitial cystitis [27], sexually transmitted infections [28], urgency urinary
73 incontinence [29], urinary tract infections [30], urinary stone disease [31], urogenital
74 schistosomiasis [32], urogynecologic surgery [33], and vaginosis [34]. A few recent studies on
75 the urine / bladder microbiome have also revealed subtle but intriguing differences in urine or
76 bladder tissue microbial diversity and composition of individuals with and without UC (**Table 1**)
77 [17,35–45], but approaches and results in these studies vary widely. Studies in relevant animal
78 models could advance this research by offering a more controlled environment. Multiple animal
79 models of UC have been described, with most being rodent models that have many limitations
80 [46].

81 The focus of this study was on invasive UC utilizing a naturally-occurring canine model and
82 comparing the urine and fecal microbiota of dogs with and without UC. While it can be difficult
83 to produce the collective features of cancer heterogeneity, molecular features, aggressive cancer
84 behavior, and host immunocompetence in experimental models, these features are present in the
85 canine model [57-59]. In humans, approximately 25 % of all UC cases are muscle invasive [44]
86 while in dogs with UC, over 90 % present with intermediate- to high-grade muscle invasive
87 bladder cancer [47,48]. Moreover, humans and dogs share many of the same environmental
88 exposures, and canine UC, like human UC, has been epidemiologically linked to chemical
89 exposures including herbicides and pesticides [49,50]. Dogs also exhibit strong heritable (breed-
90 specific) associations with UC offering unique opportunities for gene-environment studies [49–
91 51]. Notably, the human microbiome is more similar to the dog microbiome compared to other

92 animal models, such as the rodent microbiome [52], making dogs a more suitable model for
93 studying microbiota in relation to UC.

94

95 **2. Materials and Methods**

96 **2.1 Sample Collection:** All dogs were recruited through Purdue University College of
97 Veterinary Medicine between September 2016 and October 2019 (Purdue IACUC: 1111000169;
98 Ohio State University IACUC: 2019A00000005). Urine and fecal samples were initially
99 collected from 57 dogs with biopsy-confirmed urothelial carcinoma (UC) and 56 age, sex, and
100 breed-matched healthy controls (**Figure 1**). Dogs with active urinary tract infections were
101 excluded. We additionally excluded any dog with a history of chemotherapy (vinblastine,
102 zebularine, vemurafenib, chlorambucil, mitoxantrone, and cyclophosphamide) or a history of
103 antibiotics within the previous 3 weeks due to the potential effects of these medications on the
104 microbiome [53–60]. We did not exclude dogs on non-steroidal anti-inflammatory drugs
105 (NSAIDs), including piroxicam and deracoxib, which are commonly used in dogs with UC.
106 Healthy dogs underwent physical exams and had no history of antibiotics (within the previous 3
107 weeks) or indications of gastrointestinal or urogenital disease.

108 In healthy dogs, urine was collected via mid-stream free catch. In dogs with UC, a variety
109 of urine collection methods were employed as deemed clinically appropriate including: mid-
110 stream free catch, catheter, or cystoscopy. Free catch urine can include bacteria from the bladder,
111 urethra, periurethral skin, prepuce, or vagina, while urine collected via catheterization or
112 cystoscopy primarily includes microbes from the bladder and limits the presence of genital and
113 skin microbes [41,61–63]. To determine if collection method could potentially influence our
114 results, we compared samples from dogs with UC collected via free catch (n = 8) to samples

115 collected via non-free catch methods (catheterization, cystoscopy) (n = 11) (**Supp. Table 1**;
116 **Supp. Figures 1,2,3**). We observed significant differences in microbial composition but not
117 diversity by collection method (Bray-Curtis PERMANOVA rarefied: $p = 0.008$; non-rarefied: p
118 = 0.005; **Supp. Figures, 1f,2f**). Moreover, *Staphylococcus* and *Streptococcus* – common skin
119 colonizers - were amongst the top genera in free catch urine but not amongst the top genera in
120 non-free catch urine (**Supp. Table 2**). Based on the compositional differences we observed by
121 collection method and on other studies that have reported differences in urine microbiota due to
122 collection method [41,61–65], we opted to limit the remainder of our analyses to samples
123 collected via free catch only. This allowed us to compare microbiota in urine from healthy dogs
124 and dogs with UC without introducing collection method as a potential confounder.

125 As such, after exclusions, urine samples from a total 7 dogs with UC and 7 age, sex, and
126 breed-matched healthy controls were compared in this study (**Table 2**). Fecal microbiota from a
127 subset of these 14 dogs for which we had fecal samples (4 dogs with UC and 6 healthy controls)
128 were also compared [30,66,67]. All urine and stool samples were placed on ice immediately after
129 collection and then transferred into a -80°C freezer. Samples were transported on dry ice from
130 Purdue (West Lafayette, IN, USA) to the Ohio State University (Columbus, OH, USA), where
131 they were stored in at -80°C until extraction.

132

133 **2.2 DNA extraction and quantification:** Urine samples were extracted using QIAamp®
134 BiOstic® Bacteremia DNA Isolation Kit (Qiagen, Hilden, Germany) as described previously
135 [68]. Fecal samples were extracted using the QIAamp® PowerFecal® DNA Kit (Qiagen, Hilden,
136 Germany) following the manufacturer's instructions. Negative (no sample) controls were run
137 with each kit used for extraction. DNA concentrations were measured using a Qubit® 4.0

138 Fluorometer (Invitrogen, Thermo Fisher ScientificTM, Carlsbad, CA, USA) and purity was
139 assessed using Nanodrop One (Thermo Fisher ScientificTM, Carlsbad, CA, USA).

140
141 **2.3 16S rRNA sequencing and sequence processing:** Library preparation, PCR amplification,
142 and amplicon sequencing was performed at Argonne National Laboratory (DuPage County,
143 Illinois). Likewise, negative controls underwent the full extraction, library preparation, and
144 sequencing process. We amplified the V4 region of the 16S rRNA gene using primers 515F and
145 806R, and PCR and sequencing were performed as described previously (2 x 250bp paired-end
146 reads, on an Illumina Miseq (Lemont, IL, USA)) [68–70]. Raw, paired-end sequence reads were
147 processed using QIIME2 v. 2020.11 and DADA2 [71,72]. Taxonomy was assigned in QIIME2
148 using the Silva 132 99% database and the 515F / 806R classifier [73,74]. In the analysis
149 comparing urine collection method in dogs with UC, we excluded samples with fewer than 1,000
150 reads and analyzed the data with rarefaction (at 1,000 reads) and without rarefaction. We
151 included both analyses because rarefaction, especially at low read counts, can increase type 1
152 errors and mask potential differentially abundant taxa between samples [75]. In the analyses
153 comparing urine and fecal microbiota from dogs with and without UC, samples with fewer than
154 7,000 reads were excluded; this cutoff allowed us to retain all but two urine samples while
155 excluding all negative controls (**Figure 1**). Urine samples from dogs with and without UC were
156 rarefied at 7,000 reads; fecal samples were rarefied at 9,233 reads, which included all fecal
157 samples. Sequencing data for this project is available in SRA BioProject PRJNA76392.

158
159 **2.4 Urine and fecal sequence data processing:** Prior to analyses, we first removed singletons
160 (Amplicon Sequence Variants (ASVs) with only one read in the dataset). ASVs are roughly

161 equivalent to a microbial species or strain. We then applied the R package decontam to identify
162 and filter out putative contaminant ASVs based on their frequency and prevalence (0.5 threshold)
163 as compared to negative controls (R package, v.1.10.0) [76]. In total, we identified and removed
164 13 putative contaminant ASVs from the urine samples and 8 from the fecal samples (**Supp.**
165 **Table 3**). We also removed sequences aligned to chloroplasts, eukaryotes, mammalia, and
166 mitochondria. In addition, in the urine samples, we removed taxa within the phylum
167 Cyanobacteria and the class Chloroflexia. All six negative controls, which contained fewer than
168 7000 reads, were then removed from subsequent analyses.

169

170 **2.5. Statistical analyses:** Data were tested for normality using the Shapiro Wilk Normality Test
171 in R version 3.5.2 [77]. We then compared DNA concentrations and read numbers between
172 groups using Wilcoxon Rank Sum tests and two-sample t-tests, respectively. All alpha and beta
173 diversity metrics were assessed using the R package phyloseq with a p-value cutoff of 0.05
174 adjusted using the Benjamini & Hochberg False Discovery Rates [78]. Alpha-diversity metrics
175 included Shannon, Simpson, and Observed Features followed by Kruskal-Wallis Rank Sum
176 Tests to compare metrics by group. Beta-diversity metrics included Bray-Curtis, Unweighted
177 UniFrac, and Weighted UniFrac. Permutational Multivariate Analysis of Variance
178 (PERMANOVA) were implemented in QIIME2 v. 2020.11 to compare bacterial community
179 composition by group. An Analysis of Composition of Microbiome (ANCOM) was used to
180 identify differentially abundant taxa by group.

181

182 3. Results

183 **3.1 Urine microbiota in dogs with UC:** We compared the urine microbiota of 7 dogs with UC
184 to 7 age, sex, and breed-matched healthy controls. The total number of reads across all samples
185 ranged from 7,232 – 36,692 with a mean of $20,010 \pm 7,329$ reads. Urine samples contained a
186 total of 21 bacterial phyla, 308 genera, and 187 species. Urine DNA concentrations were
187 significantly higher in dogs with UC as compared to healthy dogs (**Figure 2a:** Wilcoxon Rank
188 Sum test, $p = 0.002$), but there was no significant difference in the number of 16S reads between
189 dogs with and without UC (**Figure 2b:** two-sample t-test, $p = 0.99$).

190 Dogs with UC had significantly lower urine microbial diversity compared to healthy dogs
191 as measured by the Shannon diversity index and Observed Features but not by the Simpson
192 diversity index (Kruskal-Wallis: Shannon, $p = 0.048$; Observed Features, $p = 0.025$; Simpson, p
193 = 0.133; **Figure 3a, Supp. Figure 4a,b**). Dogs with UC also had significantly different urine
194 microbial composition than healthy dogs based on an Unweighted UniFrac distance matrix
195 (**Figure 3b:** PERMANOVA, $p = 0.011$); although, no significant differences were observed by
196 Bray Curtis ($p = 0.888$) or Weighted UniFrac ($p = 0.168$) distance matrices (**Supp. Figure 4c,d**).
197 At the phylum level, Firmicutes (healthy: 61.1 %; UC: 79.5 %) Proteobacteria (healthy: 18.0 %;
198 UC: 15.6 %), and Actinobacteria (healthy: 12.5 %; UC: 4.26 %) were the three most abundant
199 phyla in the urine of healthy dogs and dogs with UC (**Figure 4a**). At the family level,
200 Staphylococcaceae (healthy 42.6%; UC 48.6%) and Streptococcaceae (healthy 5.99 %; UC
201 14.8%) were amongst the most abundant taxa (**Figure 4b**; For genus and order level taxa see
202 **Supp. Figure 5**). Interestingly, *Fusobacterium* was present in the urine of dogs with UC but not
203 in the urine of healthy dogs (relative abundance of *Fusobacterium* in healthy dogs: 0 %; in dogs
204 with UC: 0.167 %). There were no differentially abundant taxa between healthy dogs and dogs
205 with UC at the phylum, genus, or ASV levels.

206

207 **3.2 Fecal microbiota in dogs with UC:** We compared the fecal microbiota of a subset of dogs
208 from the urine analyses for which we also had fecal samples: four dogs with and six dogs
209 without UC. The total number of reads across all fecal samples ranged from 9,233 – 28,345 with
210 a mean of $19,196 \pm 6,100$ reads. Fecal samples contained a total of 8 bacterial phyla, 92 genera,
211 and 45 species. There was no significant difference in fecal DNA concentrations or number of
212 16S reads in dogs with UC as compared to healthy dogs; although, DNA concentrations were
213 greater in dogs with UC (DNA concentration: Wilcoxon Rank Sum Test, $p = 0.136$; 16S reads:
214 Two-sample t-test, $p = 0.322$; **Figure 5**).

215 Fecal microbial diversity and composition did not differ significantly in dogs with and
216 without UC (Kruskal-Wallis: Shannon, $p = 0.67$; Unweighted UniFrac PERMANOVA, $p =$
217 0.252; **Figure 6, Supp. Figure 6**). The top three most abundant phyla across all fecal samples
218 were Firmicutes (healthy: 72.6 %; UC: 32.9 %), Bacteroidetes (healthy: 10.6 %, UC 31.9 %) and
219 Fusobacteria (healthy: 11.3 %, UC: 31.1 %) (**Figure 7; Supp. Figure 7**). At the family and
220 genera levels, Fusobacteriaceae (healthy: 11.4 %, UC: 31.7 %) and *Fusobacterium* (healthy: 12.0
221 %, UC: 33.1 %) were the most abundant taxa in UC but not healthy samples, respectively;
222 although, these differences were not statistically significant. Only one *Bacteroides* spp. was
223 significantly increased in relative abundance in dogs with UC compared to healthy dogs
224 (ANCOM, $W = 25$).

225 To determine how results from this subset of fecal samples compared to a larger sample
226 set, we then analyzed the fecal microbiota of 30 dogs with UC and 30 sex, age, and breed-
227 matched healthy controls (**Supp. Table 4**). Fecal DNA concentrations, 16S reads, and fecal
228 microbial diversity and microbial composition again did not differ significantly between groups

229 (DNA concentration: Wilcoxon Rank Sum test, $p = 0.515$; 16S reads: two-sample t-test, $p =$
230 0.0697; **Supp. Figure 8; Supp. Table 5**). Firmicutes, Bacteroidetes, and Fusobacteria also
231 remained the most abundant phyla across both groups, and interestingly, Fusobacteriaceae
232 (healthy: 17.4 %; UC: 28 %) and *Fusobacterium* (healthy: 18.5 %; UC: 29.2%) were still the
233 most abundant family and genus in the fecal samples of dogs with UC (**Supp. Figure 9**);
234 although, this difference was still not significant. In fact, no taxa were differentially abundant at
235 the phylum, genus, or ASV levels between groups in the larger sample set (**Supp. Table 5**),
236 suggesting that that *Bacteroides* spp. identified as differentially abundant in the subset was likely
237 an artifact of small sample size.

238

239 **3.3 Microbiota identified in both fecal and urine samples:** As the gut can be a source for
240 microbes in the urinary tract [30,67], we then combined urine and fecal data to determine what
241 ASVs were present in both urine and fecal samples. There were a total of 1,204 ASVs across all
242 urine and fecal samples combined. Sixty-six ASVs were identified in both urine and fecal
243 samples from any dog (**Supp. Table 6**). The most common taxa found in both urine and fecal
244 samples included taxa in the genera *Streptococcus* and *Blautia*. Notably, *Fusobacterium* spp.,
245 *Porphyromonas* spp., *Campylobacter* spp., *Helicobacter* spp., and *Clostridioides difficile* were
246 also found in both urine and fecal samples. Further, nine ASVs were identified in urine and fecal
247 samples from the same dogs (**Supp. Table 7**). These ASVs included two *Escherichia* or *Shigella*
248 spp., two *Streptococcus* spp., a *Clostridium sensu stricto 1* spp., *Actinomyces coleocanis*,
249 *Streptococcus minor*, an *Enterococcus* spp., and an uncultured *Peptoclostridium* spp.

250

251 4. Discussion

252 The purpose of our study was to characterize the urine and fecal microbiota in a naturally-
253 occurring canine model of UC. We report a decreased urine microbial diversity and altered urine
254 microbial composition in dogs with UC compared to healthy controls. We did not detect
255 significant differences in fecal microbiota between dogs with and without UC; although,
256 *Fusobacterium* was increased in dogs with UC. These results provide a foundation for further
257 exploring the role of microbes in UC in a highly relevant animal model.

258

259 **Urine and fecal microbiota associated with UC**

260 The higher concentrations of DNA found in urine from dogs with UC is likely host DNA from
261 epithelial or tumor cells being sloughed into the urine. Notably, urine microbial read numbers did
262 not differ significantly between dogs with and without UC indicating similar amplicon
263 sequencing depths despite differences in DNA concentrations. (Notably, efforts to remove host
264 DNA from UC urine samples prior to sequencing may be beneficial in future microbiome studies
265 employing shotgun metagenomics to ensure that the run is not overwhelmed with host
266 sequences.)

267 Besides DNA concentrations, we also observed significant differences in urine microbial
268 diversity (Shannon) and composition (Unweighted UniFrac) between dogs with and without UC.
269 In this study, urine microbial diversity was greater in healthy dogs as compared to dogs with UC,
270 a finding that aligns with several studies on urine microbiota in humans with UC [37,39].
271 However, there are also studies in humans that report no differences in microbial diversity or
272 decreased diversity in urine from healthy individuals as compared to those with UC
273 [17,35,36,38,42,44,79]. Differences in microbial composition (Unweighted UniFrac) have also
274 been reported in previous human studies on UC [36,38,43,44]. In this study, the four most

275 abundant phyla in urine were Firmicutes, Actinobacteria, Bacteroides, and Proteobacteria. These
276 phyla also dominate the urine microbiota in humans [17,36,38,40,44,45] and have been reported
277 in previous studies on healthy dog urine [80,81]. In humans, taxa associated with UC vary
278 widely across studies, but *Acinetobacter* and *Actinomyces* have been found at increased
279 abundances in patients with UC across at least three studies [35,42,44]. In this study, we did not
280 see *Acinetobacter* or *Actinomyces spp.* increased in relation to UC, which may be due to small
281 sample sizes and reduced power to detect differentially abundant taxa, or differences between
282 human and canine urine microbiota, or lack of a true link between these taxa and UC.

283 In relation to fecal microbiota, we did not observe any significant differences in dogs
284 with and without UC. However, intriguingly, *Fusobacterium* was increased in relative abundance
285 (although not significantly) in urine and fecal samples of dogs with UC. One previous study on
286 bladder cancer also reported increased *Fusobacterium* in the urine of individuals (human) with
287 UC [38]. Importantly, taxa in the phyla Fusobacteria are considered normal inhabitants of the
288 canine gastrointestinal tract [82]; although, they are more typically associated with disease in
289 humans. Studies in colorectal cancer have demonstrated direct links between Fusobacteria
290 (*Fusobacterium nucleatum*) and carcinogenesis. Specifically, *Fusobacterium nucleatum* Fap2
291 protein can bind to host factor Gal-GalNAc which is overexpressed on tumor cells [83] - thereby
292 localizing to tumors where Fap2 can impair host anti-tumor immunity [83]. *Fusobacterium*
293 *nucleatum* can also induce the host Wnt / beta-catenin pathway resulting in upregulated host
294 cellular proliferation [84]. Future studies are needed to elucidate the potential role of
295 *Fusobacterium* in bladder cancer.

296

297 **Microbiota present in both urine and fecal samples**

298 Communication and migration of microbes between the gut and bladder can increase a host's
299 risk of UTIs and bacteriuria [30]. Microbes may migrate and ascend into the urogenital tract
300 externally from the rectum / anus, or internally via the blood stream [85,86]. In this study, 66
301 ASVs were shared between urine and fecal samples. Interestingly, ~ 59 % of those ASVs (39 /
302 66) are likely spore-formers (Bacilli, Clostridia, Negativicutes) suggesting that spore formation
303 may more readily enable exchange of microbes between body niches [87,88]. Among the
304 microbes (ASVs) found in both urine and fecal samples, there were multiple potentially
305 pathogenic taxa: *Campylobacter spp.*, *Helicobacter canis*, *Clostridioides difficile*, *Clostridium*
306 *barattii*, *Escherichia / Shigella spp.*, and *Enterococcus spp.* There were also a few taxa that have
307 been associated with tumors or directly linked with tumor development or progression in
308 gastrointestinal, oral, and genital cancers: *Fusobacterium spp.* and *Porphyromonas spp.* [89–94].
309 The shared presence of two *Fusobacterium* ASVs between urine and fecal samples is particularly
310 of interest given the role of *Fusobacterium* in colorectal cancer.

311 This pilot study is a novel investigation of urine and fecal microbiota in a canine model
312 of UC. The dominant microbial taxa identified in canine urine and fecal samples were similar to
313 those reported in humans. Also, as in humans, altered microbial diversity and composition were
314 observed in dogs with UC as compared to healthy controls. This supports the idea that the
315 microbiota may play a role in UC development, progression, prognosis, or response to treatment,
316 as has been observed in other cancers. Moreover, *Fusobacterium* was increased – albeit not
317 significantly - in both urine and fecal samples of dogs with UC. *Fusobacterium* ASVs were also
318 shared between urine and fecal samples. Taken together, these results provide support for the use
319 of dogs as a model in UC microbiome studies. Additionally, these findings suggest that future

320 work evaluating the role of *Fusobacterium* in UC, and the gut as a potential source of this
321 *Fusobacterium*, may be warranted.

322

323 **Funding and Acknowledgements:**

324 We are grateful to all individuals involved in sample collection at Purdue University
325 College of Veterinary Medicine (West Lafayette, IN, USA) and to the dogs and dog owners who
326 participated in this study. We also acknowledge the Ohio Supercomputer Center (Columbus,
327 Ohio, USA, established 1987) for computing resources used in this study.

328 Funding for this project was provided by the Ohio State University College of Veterinary
329 Medicine Department of Veterinary Preventive Medicine (VLH, RM, CM), the Ohio State
330 University Infectious Diseases Institute (VLH, RM, CM), the Ohio State University College of
331 Veterinary Medicine Canine Funds (VLH, WK, DK), and the Ohio State University College of
332 Public Health Collaborative Postdoctoral Research Program Award (MVE).

333

334 **Author Contributions:**

335 **Conceptualization:** Vanessa L. Hale, Deborah W. Knapp, and William C. Kisseberth

336 **Clinical sample collection, clinical care / monitoring, clinical data extraction:** Deborah W.
337 Knapp, Deepika Dhawan, and William C. Kisseberth

338 **DNA extraction:** Chris Madden, Ryan Mrofchak, and Morgan V. Evans

339 **Data processing, analysis:** Ryan Mrofchak, Morgan, V. Evans, Chris Madden, and Deborah W.
340 Knapp

341 **Data interpretation and conclusions:** Ryan Mrofchak, Vanessa L. Hale, Chris Madden, and
342 Deborah W. Knapp

343 **Manuscript writing:** Ryan Mrofchak, Vanessa L. Hale, and Chris Madden

344 **Manuscript editing:** Chris Madden, Deepika Dhawan, Deborah W. Knapp, and William C.

345 Kisseberth

346

347 References

348

349 1. World Bladder Cancer Patient Coalition. GLOBOCAN 2020: Bladder cancer 10th most

350 common diagnosed worldwide [Internet]. Lyon, France; 2020. Available from:

351 [https://worldbladdercancer.org/news_events/globocan-2020-bladder-cancer-10th-most-](https://worldbladdercancer.org/news_events/globocan-2020-bladder-cancer-10th-most-commonly-diagnosed-worldwide/)

352 [commonly-diagnosed-worldwide/](https://worldbladdercancer.org/news_events/globocan-2020-bladder-cancer-10th-most-commonly-diagnosed-worldwide/)

353 2. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global

354 Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for

355 36 Cancers in 185 Countries. *CA Cancer J Clin.* 2021 May 4;71(3):209–49. Available

356 from: <https://onlinelibrary.wiley.com/doi/10.3322/caac.21660>

357 3. Randi G, Pelucchi C, Negri E, Talamini R, Galeone C, Franceschi S, et al. Family history

358 of urogenital cancers in patients with bladder, renal cell and prostate cancers. *Int J Cancer.*

359 2007 Dec 15;121(12):2748–52. Available from: <http://doi.wiley.com/10.1002/ijc.23037>

360 4. Aben KKH, Witjes JA, Schoenberg MP, Hulsbergen-van de Kaa C, Verbeek ALM,

361 Kiemeney LALM. Familial aggregation of urothelial cell carcinoma. *Int J Cancer.* 2002

362 Mar 10;98(2):274–8. Available from: <http://doi.wiley.com/10.1002/ijc.10191>

363 5. Murta-Nascimento C, Silverman DT, Kogevinas M, García-Closas M, Rothman N,

364 Tardón A, et al. Risk of Bladder Cancer Associated with Family History of Cancer: Do

365 Low-Penetrance Polymorphisms Account for the Increase in Risk? *Cancer Epidemiol*

366 *Biomarkers Prev.* 2007 Aug;16(8):1595–600. Available from:

367 <http://cebp.aacrjournals.org/lookup/doi/10.1158/1055-9965.EPI-06-0743>

368 6. Mueller CM, Caporaso N, Greene MH. Familial and genetic risk of transitional cell

369 carcinoma of the urinary tract. *Urol Oncol Semin Orig Investig.* 2008 Sep;26(5):451–64.

370 Available from: <https://linkinghub.elsevier.com/retrieve/pii/S1078143908000665>

371 7. Chu H, Wang M, Zhang Z. Bladder cancer epidemiology and genetic susceptibility. *J*
372 *Biomed Res.* 2013 May 30;27(3):170–8. Available from: <http://www.jbr-pub.org.cn/en/article/doi/10.7555/JBR.27.20130026>

373 8. Mucci LA, Hjelmborg JB, Harris JR, Czene K, Havelick DJ, Scheike T, et al. Familial
374 Risk and Heritability of Cancer Among Twins in Nordic Countries. *JAMA*. 2016 Jan
375 5;315(1):68. Available from:
376 <http://jama.jamanetwork.com/article.aspx?doi=10.1001/jama.2015.17703>

377 9. Martin C, Leiser CL, O’Neil B, Gupta S, Lowrance WT, Kohlmann W, et al. Familial
378 Cancer Clustering in Urothelial Cancer: A Population-Based Case–Control Study. *JNCI J*
379 *Natl Cancer Inst.* 2018 May 1;110(5):527–33. Available from:
380 <https://academic.oup.com/jnci/article/110/5/527/4698132>

381 10. Aveyard JS, Skilleter A, Habuchi T, Knowles MA. Somatic mutation of PTEN in bladder
382 carcinoma. *Br J Cancer*. 1999 May 23;80(5–6):904–8. Available from:
383 <http://www.nature.com/articles/6690439>

384 11. Antoni S, Ferlay J, Soerjomataram I, Znaor A, Jemal A, Bray F. Bladder Cancer Incidence
385 and Mortality: A Global Overview and Recent Trends. *Eur Urol*. 2017 Jan;71(1):96–108.
386 Available from: <https://linkinghub.elsevier.com/retrieve/pii/S0302283816302809>

387 12. American Cancer Society. Key Statistics for Bladder Cancer [Internet]. 2021. Available
388 from: <https://www.cancer.org/cancer/bladder-cancer/about/key-statistics.html>

389 13. Wang Y, Chang Q, Li Y. Racial differences in Urinary Bladder Cancer in the United
390 States. *Sci Rep.* 2018 Dec 21;8(1):12521. Available from:
391 <http://www.nature.com/articles/s41598-018-29987-2>

392 14. Cumberbatch MG, Rota M, Catto JWF, La Vecchia C. The Role of Tobacco Smoke in

394 Bladder and Kidney Carcinogenesis: A Comparison of Exposures and Meta-analysis of
395 Incidence and Mortality Risks. *Eur Urol.* 2016 Sep;70(3):458–66. Available from:
396 <https://linkinghub.elsevier.com/retrieve/pii/S0302283815005485>

397 15. Alguacil J, Kogevinas M, Silverman DT, Malats N, Real FX, García-Closas M, et al.
398 Urinary pH, cigarette smoking and bladder cancer risk. *Carcinogenesis.* 2011
399 Jun;32(6):843–7. Available from: <https://academic.oup.com/carcin/article-lookup/doi/10.1093/carcin/bgr048>

400 16. Burger M, Catto JWF, Dalbagni G, Grossman HB, Herr H, Karakiewicz P, et al.
401 Epidemiology and Risk Factors of Urothelial Bladder Cancer. *Eur Urol.* 2013
402 Feb;63(2):234–41. Available from:
403 <https://linkinghub.elsevier.com/retrieve/pii/S0302283817306620>

404 17. Wu P, Zhang G, Zhao J, Chen J, Chen Y, Huang W, et al. Profiling the Urinary
405 Microbiota in Male Patients With Bladder Cancer in China. *Front Cell Infect Microbiol.*
406 2018 May 31;8(167). Available from:
407 <https://www.frontiersin.org/article/10.3389/fcimb.2018.00167/full>

408 18. Pesch B, Taeger D, Johnen G, Gawrych K, Bonberg N, Schwentner C, et al. Screening for
409 bladder cancer with urinary tumor markers in chemical workers with exposure to aromatic
410 amines. *Int Arch Occup Environ Health.* 2014 Oct 16;87(7):715–24. Available from:
411 <http://link.springer.com/10.1007/s00420-013-0916-3>

412 19. Koutros S, Silverman DT, Alavanja MC, Andreotti G, Lerro CC, Heltshe S, et al.
413 Occupational exposure to pesticides and bladder cancer risk. *Int J Epidemiol.* 2016
414 Jun;45(3):792–805. Available from: <https://academic.oup.com/ije/article-lookup/doi/10.1093/ije/dyv195>

417 20. O'Keefe SJD. Diet, microorganisms and their metabolites, and colon cancer. *Nat Rev Gastroenterol Hepatol.* 2016 Dec 16;13(12):691–706. Available from: <http://www.nature.com/articles/nrgastro.2016.165>

418 21. Sears CL, Garrett WS. Microbes, Microbiota, and Colon Cancer. *Cell Host Microbe.* 2014 Mar;15(3):317–28. Available from: <https://linkinghub.elsevier.com/retrieve/pii/S1931312814000651>

419 22. Mao Q, Jiang F, Yin R, Wang J, Xia W, Dong G, et al. Interplay between the lung microbiome and lung cancer. *Cancer Lett.* 2018 Feb;415:40–8. Available from: <https://linkinghub.elsevier.com/retrieve/pii/S0304383517307607>

420 23. Ramírez-Labrada AG, Isla D, Artal A, Arias M, Rezusta A, Pardo J, et al. The Influence of Lung Microbiota on Lung Carcinogenesis, Immunity, and Immunotherapy. *Trends in Cancer.* 2020 Feb;6(2):86–97. Available from: <https://linkinghub.elsevier.com/retrieve/pii/S2405803319302651>

421 24. Aragón IM, Herrera-Imbroda B, Queipo-Ortuño MI, Castillo E, Del Moral JSG, Gómez-Millán J, et al. The Urinary Tract Microbiome in Health and Disease. *Eur Urol Focus.* 2018;4(1):128–38.

422 25. Kramer H, Kuffel G, Thomas-White K, Wolfe AJ, Vellanki K, Leehey DJ, et al. Diversity of the midstream urine microbiome in adults with chronic kidney disease. *Int Urol Nephrol.* 2018 Jun 12 [cited 2019 Sep 23];50(6):1123–30. Available from: <http://www.ncbi.nlm.nih.gov/pubmed/29651696>

423 26. Shoskes DA, Altemus J, Polackwich AS, Tucky B, Wang H, Eng C. The urinary microbiome differs significantly between patients with chronic prostatitis/chronic pelvic pain syndrome and controls as well as between patients with different clinical phenotypes.

440 Urology. 2016;92:26–32.

441 27. Siddiqui H, Lagesen K, Nederbragt AJ, Jeansson SL, Jakobsen KS. Alterations of
442 microbiota in urine from women with interstitial cystitis. BMC Microbiol.
443 2012;13(12):205.

444 28. Nelson DE, van der Pol B, Dong Q, Revanna K V., Fan B, Easwaran S, et al.
445 Characteristic male urine microbiomes associate with asymptomatic sexually transmitted
446 infection. PLoS One. 2010;5(11).

447 29. Pearce MM, Hilt EE, Rosenfeld AB, Zilliox MJ, Thomas-White K, Fok C, et al. The
448 female urinary microbiome: A comparison of women with and without urgency urinary
449 incontinence. MBio. 2014;5(4):e01283-14.

450 30. Magruder M, Sholi AN, Gong C, Zhang L, Edusei E, Huang J, et al. Gut uropathogen
451 abundance is a risk factor for development of bacteriuria and urinary tract infection. Nat
452 Commun. 2019 Dec 4;10(1):5521. Available from:
453 <http://www.nature.com/articles/s41467-019-13467-w>

454 31. Zampini A, Nguyen AH, Rose E, Monga M, Miller AW. Defining Dysbiosis in Patients
455 with Urolithiasis. Sci Rep. 2019 Dec 1;9(1):5425. Available from:
456 <http://www.nature.com/articles/s41598-019-41977-6>

457 32. Adebayo AS, Survayanshi M, Bhute S, Agunloye AM, Isokpehi RD, Anumudu CI, et al.
458 The microbiome in urogenital schistosomiasis and induced bladder pathologies. PLoS
459 Negl Trop Dis. 2017;11(11).

460 33. Fok CS, Gao X, Lin H, Thomas-White KJ, Mueller ER, Wolfe AJ, et al. Urinary
461 symptoms are associated with certain urinary microbes in urogynecologic surgical
462 patients. Int Urogynecol J. 2018 Dec 16;29(12):1765–71. Available from:

463 http://link.springer.com/10.1007/s00192-018-3732-1

464 34. Gottschick C, Deng ZL, Vital M, Masur C, Abels C, Pieper DH, et al. The urinary
465 microbiota of men and women and its changes in women during bacterial vaginosis and
466 antibiotic treatment. *Microbiome*. 2017;55(1):99.

467 35. Bi H, Tian Y, Song C, Li J, Liu T, Chen Z, et al. Urinary microbiota – a potential
468 biomarker and therapeutic target for bladder cancer. *J Med Microbiol*. 2019 Oct
469 1;68(10):1471–8. Available from:
470 <https://www.microbiologyresearch.org/content/journal/jmm/10.1099/jmm.0.001058>

471 36. Pederzoli F, Ferrarese R, Amato V, Locatelli I, Alchera E, Lucianò R, et al. Sex-specific
472 Alterations in the Urinary and Tissue Microbiome in Therapy-naïve Urothelial Bladder
473 Cancer Patients. *Eur Urol Oncol*. 2020;3(6):784–8.

474 37. Liu F, Liu A, Lu X, Zhang Z, Xue Y, Xu J, et al. Dysbiosis signatures of the microbial
475 profile in tissue from bladder cancer. *Cancer Med*. 2019;8(16):6904–14.

476 38. Bučević Popović V, Šitum M, Chow CET, Chan LS, Roje B, Terzić J. The urinary
477 microbiome associated with bladder cancer. *Sci Rep*. 2018;8(12157).

478 39. Chipollini J, Wright JR, Nwanosike H, Kepler CY, Batai K, Lee BR, et al.
479 Characterization of urinary microbiome in patients with bladder cancer: Results from a
480 single-institution, feasibility study. *Urol Oncol Semin Orig Investig*. 2020 Jul;38(7):615–
481 21. Available from: <https://linkinghub.elsevier.com/retrieve/pii/S1078143920301393>

482 40. Mai G, Chen L, Li R, Liu Q, Zhang H, Ma Y. Common Core Bacterial Biomarkers of
483 Bladder Cancer Based on Multiple Datasets. *Biomed Res Int*. 2019 Jun 19;2019:1–8.
484 Available from: <https://www.hindawi.com/journals/bmri/2019/4824909/>

485 41. Oresta B, Braga D, Lazzeri M, Frego N, Saita A, Faccani C, et al. The Microbiome of

486 Catheter Collected Urine in Males with Bladder Cancer According to Disease Stage. J
487 Urol. 2021 Jan;205(1):86–93. Available from:
488 <http://www.jurology.com/doi/10.1097/JU.0000000000001336>

489 42. Xu W, Yang L, Lee P, Huang WC, Nossa C, Ma Y, et al. Mini-review: perspective of the
490 microbiome in the pathogenesis of urothelial carcinoma. Am J Clin Exp Urol.
491 2014;2(1):57–61.

492 43. Chen C, Huang Z, Huang P, Li K, Zeng J, Wen Y, et al. Profiling the Urinary Microbiota
493 in Men with Positive versus Negative PD-L1 Expression for Non-muscle Invasive Bladder
494 Cancer. Res Sq. 2021;

495 44. Hussein AA, Elsayed AS, Durrani M, Jing Z, Iqbal U, Gomez EC, et al. Investigating the
496 association between the urinary microbiome and bladder cancer: An exploratory study.
497 Urol Oncol Semin Orig Investig. 2021;S1078-1439.

498 45. Mansour B, Monyók Á, Makra N, Gajdács M, Vadnay I, Ligeti B, et al. Bladder cancer-
499 related microbiota: examining differences in urine and tissue samples. Sci Rep. 2020 Dec
500 6;10:11042. Available from: <http://www.nature.com/articles/s41598-020-67443-2>

501 46. Ding J, Xu D, Pan C, Ye M, Kang J, Bai Q, et al. Current animal models of bladder
502 cancer: Awareness of translatability (Review). Exp Ther Med. 2014 Sep;8(3):691–9.
503 Available from: <https://www.spandidos-publications.com/10.3892/etm.2014.1837>

504 47. Patrick DJ, Fitzgerald SD, Sesterhenn IA, Davis CJ, Kiupel M. Classification of Canine
505 Urinary Bladder Urothelial Tumours Based on the World Health
506 Organization/International Society of Urological Pathology Consensus Classification. J
507 Comp Pathol. 2006 Nov;135(4):190–9. Available from:
508 <https://linkinghub.elsevier.com/retrieve/pii/S0021997506000673>

509 48. Valli VE, Norris A, Jacobs RM, Laing E, Withrow S, Macy D, et al. Pathology of canine
510 bladder and urethral cancer and correlation with tumour progression and survival. *J Comp
511 Pathol.* 1995 Aug;113(2):113–30. Available from:
512 <https://linkinghub.elsevier.com/retrieve/pii/S0021997505800271>

513 49. de Brot S, Robinson B, Scase T, Grau Roma L, Wilkinson E, Boorjian S, et al. The dog
514 as an animal model for bladder and urethral urothelial carcinoma: Comparative
515 epidemiology and histology. *Oncol Lett.* 2018 May 30;16:1641–9. Available from:
516 <http://www.spandidos-publications.com/10.3892/ol.2018.8837>

517 50. Glickman LT, Raghavan M, Knapp DW, Bonney PL, Dawson MH. Herbicide exposure
518 and the risk of transitional cell carcinoma of the urinary bladder in Scottish Terriers. *J AM
519 Vet Med Assoc.* 2004;224(8):1290–7.

520 51. Decker B, Parker HG, Dhawan D, Kwon EM, Karlins E, Davis BW, et al. Homologous
521 mutation to human BRAF V600E is common in naturally occurring canine bladder
522 cancer-evidence for a relevant model system and urine-based diagnostic test. *Mol Cancer
523 Res.* 2015;13(6):993–1002.

524 52. Coelho LP, Kultima JR, Costea PI, Fournier C, Pan Y, Czarnecki-Maulden G, et al.
525 Similarity of the dog and human gut microbiomes in gene content and response to diet.
526 *Microbiome.* 2018 Dec 19;6(1):72. Available from:
527 <https://microbiomejournal.biomedcentral.com/articles/10.1186/s40168-018-0450-3>

528 53. Montassier E, Gastinne T, Vangay P, Al-Ghalith GA, Bruley des Varannes S, Massart S,
529 et al. Chemotherapy-driven dysbiosis in the intestinal microbiome. *Aliment Pharmacol
530 Ther.* 2015 Sep;42(5):515–28. Available from: <http://doi.wiley.com/10.1111/apt.13302>

531 54. Stringer AM, Al-Dasooqi N, Bowen JM, Tan TH, Radzuan M, Logan RM, et al.

532 Biomarkers of chemotherapy-induced diarrhoea: a clinical study of intestinal microbiome
533 alterations, inflammation and circulating matrix metalloproteinases. *Support Care Cancer*.
534 2013 Jul 10;21(7):1843–52. Available from: <http://link.springer.com/10.1007/s00520-013-1741-7>

535

536 55. Stewardson AJ, Gaïa N, François P, Malhotra-Kumar S, Delémont C, Martinez de Tejada
537 B, et al. Collateral damage from oral ciprofloxacin versus nitrofurantoin in outpatients
538 with urinary tract infections: a culture-free analysis of gut microbiota. *Clin Microbiol
539 Infect*. 2015 Apr;21(4):344.e1-344.e11. Available from:
540 <https://linkinghub.elsevier.com/retrieve/pii/S1198743X14001025>

541 56. Suchodolski JS, Dowd SE, Westermarck E, Steiner JM, Wolcott RD, Spillmann T, et al.
542 The effect of the macrolide antibiotic tylosin on microbial diversity in the canine small
543 intestine as demonstrated by massive parallel 16S rRNA gene sequencing. *BMC
544 Microbiol*. 2009;9(1):210. Available from:
545 <http://bmcmicrobiol.biomedcentral.com/articles/10.1186/1471-2180-9-210>

546 57. Connelly S, Fanelli B, A. Hasan N, R. Colwell R, Kaleko M. Low dose oral beta-
547 lactamase protects the gut microbiome from oral beta-lactam-mediated damage in dogs.
548 *AIMS Public Heal*. 2019;6(4):477–87. Available from:
549 <http://www.aimspress.com/article/10.3934/publichealth.2019.4.477>

550 58. Pilla R, Gaschen FP, Barr JW, Olson E, Honneffer J, Guard BC, et al. Effects of
551 metronidazole on the fecal microbiome and metabolome in healthy dogs. *J Vet Intern
552 Med*. 2020 Sep 28;34(5):1853–66. Available from:
553 <https://onlinelibrary.wiley.com/doi/10.1111/jvim.15871>

554 59. Chaitman J, Ziese A-L, Pilla R, Minamoto Y, Blake AB, Guard BC, et al. Fecal Microbial

555 and Metabolic Profiles in Dogs With Acute Diarrhea Receiving Either Fecal Microbiota
556 Transplantation or Oral Metronidazole. *Front Vet Sci.* 2020 Apr 16;7. Available from:
557 <https://www.frontiersin.org/article/10.3389/fvets.2020.00192/full>

558 60. Manchester AC, Webb CB, Blake AB, Sarwar F, Lidbury JA, Steiner JM, et al.
559 Long□term impact of tylosin on fecal microbiota and fecal bile acids of healthy dogs. *J
560 Vet Intern Med.* 2019 Nov;33(6):2605–17. Available from:
561 <https://onlinelibrary.wiley.com/doi/10.1111/jvim.15635>

562 61. Wolfe AJ, Toh E, Shibata N, Rong R, Kenton K, FitzGerald MP, et al. Evidence of
563 uncultivated bacteria in the adult female bladder. *J Clin Microbiol.* 2012;50(4):1376–83.

564 62. Bajic P, Van Kuiken ME, Burge BK, Kirshenbaum EJ, Joyce CJ, Wolfe AJ, et al. Male
565 Bladder Microbiome Relates to Lower Urinary Tract Symptoms. *Eur Urol Focus.*
566 2020;6(2):376–82.

567 63. Hourigan SK, Zhu W, Wong SWW, Clemency NC, Provenzano M, Vilboux T, et al.
568 Studying the urine microbiome in superficial bladder cancer: Samples obtained by
569 midstream voiding versus cystoscopy. *BMC Urol.* 2020;20(5).

570 64. Pohl HG, Groah SL, Pérez-Losada M, Ljungberg I, Sprague BM, Chandal N, et al. The
571 Urine Microbiome of Healthy Men and Women Differs by Urine Collection Method. *Int
572 Neurol J.* 2020;24(1):41–51.

573 65. Chen YB, Hochstedler B, Pham TT, Alvarez MA, Mueller ER, Wolfe AJ. The Urethral
574 Microbiota: A Missing Link in the Female Urinary Microbiota. *J Urol.* 2020
575 Aug;204(2):303–9. Available from:
576 <http://www.jurology.com/doi/10.1097/JU.0000000000000910>

577 66. Flores-Mireles AL, Walker JN, Caparon M, Hultgren SJ. Urinary tract infections:

578 epidemiology, mechanisms of infection and treatment options. *Nat Rev Microbiol.* 2015

579 May 8;13(5):269–84. Available from: <http://www.nature.com/articles/nrmicro3432>

580 67. Paalanne N, Husso A, Salo J, Pieviläinen O, Tejesvi M V., Koivusaari P, et al. Intestinal

581 microbiome as a risk factor for urinary tract infections in children. *Eur J Clin Microbiol*

582 *Infect Dis.* 2018 Oct 13;37(10):1881–91. Available from:

583 <http://link.springer.com/10.1007/s10096-018-3322-7>

584 68. Mrofchak R, Madden C, Evans M V, Hale VL. Evaluating extraction methods to study

585 canine urine microbiota. *PLoS One.* 2021 Jul 9;16(7):e0253989. Available from:

586 <https://dx.plos.org/10.1371/journal.pone.0253989>

587 69. Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Huntley J, Fierer N, et al. Ultra-

588 high-throughput microbial community analysis on the Illumina HiSeq and MiSeq

589 platforms. *ISME J.* 2012;6:1621–1624.

590 70. Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Lozupone CA, Turnbaugh PJ, et

591 al. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample.

592 *Proc Natl Acad Sci U S A.* 2011;18(Supplement 1):4516–22.

593 71. Boylen E, Ram Rideout J, Dillon MR, Bokulich NA, Abnet CC, Al-Ghalith GA, et al.

594 Reproducible, interactive, scalable and extensible microbiome data science using QIIME

595 2. *Nat Biotechnol.* 2019;37(8):852–7.

596 72. Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP. DADA2:

597 High-resolution sample inference from Illumina amplicon data. *Nat Methods.*

598 2016;13:581–583.

599 73. Yilmaz P, Parfrey LW, Yarza P, Gerken J, Pruesse E, Quast C, et al. The SILVA and “all-

600 species Living Tree Project (LTP)” taxonomic frameworks. *Nucleic Acids Res.*

601 2014;42(Database Issue):D643–8.

602 74. Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, et al. The SILVA ribosomal
603 RNA gene database project: Improved data processing and web-based tools. *Nucleic
604 Acids Res.* 2013;41(Database Issue):D590-596.

605 75. McMurdie PJ, Holmes S. Waste Not, Want Not: Why Rarefying Microbiome Data Is
606 Inadmissible. *PLoS Comput Biol.* 2014;10(4).

607 76. Davis NM, Proctor DM, Holmes SP, Relman DA, Callahan BJ. Simple statistical
608 identification and removal of contaminant sequences in marker-gene and metagenomics
609 data. *Microbiome.* 2018 Dec 17;6(1):226. Available from:
610 <https://microbiomejournal.biomedcentral.com/articles/10.1186/s40168-018-0605-2>

611 77. R Core Team. R: a language and environment for statistical computing. R foundation for
612 Statistical Computing. Vienna, Austria; 2018.

613 78. McMurdie PJ, Holmes S. phyloseq: An R Package for Reproducible Interactive Analysis
614 and Graphics of Microbiome Census Data. *PLoS One.* 2013;8(4).

615 79. Zeng J, Zhang G, Chen C, Li K, Wen Y, Zhao J, et al. Alterations in Urobiome in Patients
616 With Bladder Cancer and Implications for Clinical Outcome: A Single-Institution Study.
617 *Front Cell Infect Microbiol.* 2020 Dec 15;10. Available from:
618 <https://www.frontiersin.org/articles/10.3389/fcimb.2020.555508/full>

619 80. Burton EN, Cohn LA, Reinero CN, Rindt H, Moore SG, Ericsson AC. Characterization of
620 the urinary microbiome in healthy dogs. *PLoS One.* 2017;12(5):e0177783.

621 81. Melgarejo T, Oakley BB, Krumbeck JA, Tang S, Krantz A, Linde A. Assessment of
622 bacterial and fungal populations in urine from clinically healthy dogs using
623 next-generation sequencing. *J Vet Intern Med.* 2021 Mar 19;jvim.16104. Available from:

624 https://onlinelibrary.wiley.com/doi/10.1111/jvim.16104

625 82. Pilla R, Suchodolski JS. The Role of the Canine Gut Microbiome and Metabolome in
626 Health and Gastrointestinal Disease. *Frontiers in Veterinary Science*. 2020.

627 83. Abed J, Emgård JEM, Zamir G, Faroja M, Almogy G, Grenov A, et al. Fap2 Mediates
628 *Fusobacterium nucleatum* Colorectal Adenocarcinoma Enrichment by Binding to Tumor-
629 Expressed Gal-GalNAc. *Cell Host Microbe*. 2016 Aug;20(2):215–25. Available from:
630 <https://linkinghub.elsevier.com/retrieve/pii/S1931312816303055>

631 84. Rubinstein MR, Baik JE, Lagana SM, Han RP, Raab WJ, Sahoo D, et al. *Fusobacterium*
632 *nucleatum* promotes colorectal cancer by inducing Wnt/β-catenin modulator Annexin
633 A1. *EMBO Rep.* 2019 Apr 4;20(4). Available from:
634 <https://onlinelibrary.wiley.com/doi/10.15252/embr.201847638>

635 85. Meštrović T, Matijašić M, Perić M, Čipčić Paljetak H, Barešić A, Verbanac D. The Role
636 of Gut, Vaginal, and Urinary Microbiome in Urinary Tract Infections: From Bench to
637 Bedside. *Diagnostics*. 2020 Dec 22;11(1):7. Available from: <https://www.mdpi.com/2075-4418/11/1/7>

639 86. Łaniewski P, İlhan ZE, Herbst-Kralovetz MM. The microbiome and gynaecological
640 cancer development, prevention and therapy. *Nat Rev Urol.* 2020 Apr 18;17(4):232–50.
641 Available from: <http://www.nature.com/articles/s41585-020-0286-z>

642 87. Galperin MY. Genome Diversity of Spore-Forming Firmicutes. Driks A, Eichenberger P,
643 editors. *Microbiol Spectr*. 2013 Dec 13;1(2). Available from:
644 <https://journals.asm.org/doi/10.1128/microbiolspectrum.TBS-0015-2012>

645 88. Tetz G, Tetz V. Introducing the sporobiota and sporobiome. *Gut Pathog.* 2017 Dec
646 30;9(1):38. Available from:

647 http://gutpathogens.biomedcentral.com/articles/10.1186/s13099-017-0187-8

648 89. Kostic AD, Chun E, Robertson L, Glickman JN, Gallini CA, Michaud M, et al.

649 Fusobacterium nucleatum Potentiates Intestinal Tumorigenesis and Modulates the Tumor-

650 Immune Microenvironment. *Cell Host Microbe*. 2013 Aug;14(2):207–15. Available from:

651 <https://linkinghub.elsevier.com/retrieve/pii/S1931312813002552>

652 90. Hale VL, Jeraldo P, Chen J, Mundy M, Yao J, Priya S, et al. Distinct microbes,

653 metabolites, and ecologies define the microbiome in deficient and proficient mismatch

654 repair colorectal cancers. *Genome Med*. 2018 Dec 31;10(1):78. Available from:

655 <https://genomemedicine.biomedcentral.com/articles/10.1186/s13073-018-0586-6>

656 91. Mitsuhashi K, Noshio K, Sukawa Y, Matsunaga Y, Ito M, Kurihara H, et al. Association of

657 Fusobacterium species in pancreatic cancer tissues with molecular features and prognosis.

658 *Oncotarget*. 2015 Mar 30;6(9):7209–20. Available from:

659 <https://www.oncotarget.com/lookup/doi/10.18632/oncotarget.3109>

660 92. Ha NH, Woo BH, Kim DJ, Ha ES, Choi J Il, Kim SJ, et al. Prolonged and repetitive

661 exposure to *Porphyromonas gingivalis* increases aggressiveness of oral cancer cells by

662 promoting acquisition of cancer stem cell properties. *Tumor Biol*. 2015 Dec

663 16;36(12):9947–60. Available from: <http://link.springer.com/10.1007/s13277-015-3764-9>

664 93. Atanasova KR, Yilmaz Ö. Looking in the *Porphyromonas gingivalis* cabinet of curiosities:

665 the microbiome, the host and cancer association. *Mol Oral Microbiol*. 2014 Apr;29(2):55–

666 66. Available from: <https://onlinelibrary.wiley.com/doi/10.1111/omi.12047>

667 94. Walther-António MRS, Chen J, Multinu F, Hokenstad A, Distad TJ, Cheek EH, et al.

668 Potential contribution of the uterine microbiome in the development of endometrial

669 cancer. *Genome Med*. 2016 Dec 25;8(1):122. Available from:

670 http://genomemedicine.biomedcentral.com/articles/10.1186/s13073-016-0368-y
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693

Author	Year	Sample Size	Collection Method	Microbial Diversity (α-diversity)	Microbial Composition (β-diversity)	Most Abundant Taxa
Xu et al.	2014	Healthy (n = 6) UC (n = 8)	not described	Increased number of genera in UC (statistical significance not indicated)	not described	<i>Acinetobacter</i> abundant in both healthy and UC groups Increased in UC: <i>Streptococcus</i> , <i>Pseudomonas</i> , and <i>Enterococcus</i>
Bradević Popović et al.	2018	Healthy (n = 11 men), UC (n = 12 men)	mid-stream free catch	no differences detected	Bray-Curtis: microbial composition did not differ by age but differed between UC and healthy groups	Increased in UC: <i>Fusobacterium</i> , <i>Actinobaculum</i> , <i>Facklamia</i> , <i>Campylobacter</i> , <i>Subdoligranulum</i> , <i>Ruminococcaceae UCG-002</i> , <i>Campylobacter hominis</i> , <i>Actinobaculum massiliense</i> , and <i>Longuetella anthropic</i> Increased in Healthy: <i>Veillonella</i> , <i>Streptococcus</i> , and <i>Corynebacterium</i>
Wu et al.	2018	Healthy (n = 18) UC (n = 31), MIBC (n = 5), NMIBC (n = 26)	mid-stream free catch	Observed Species, Chao1, and Ace indices: cancer > healthy	Bray-Curtis: Unweighted UniFrac and Weighted UniFrac: microbial composition differed between UC and healthy groups	Phyla dominant across all urine samples: Proteobacteria, Actinobacteria, Firmicutes, and Bacteroidetes Genera increased in UC: <i>Acinetobacter</i> , <i>Anaerococcus</i> , <i>Rubrobacter</i> , <i>Sphingobacterium</i> , <i>Atopostipes</i> , and <i>Geobacillus</i> Genera increased in healthy: <i>Sorata</i> , <i>Proteus</i> , <i>Roseomonas</i> , <i>Ruminococcaceum-6</i> , <i>Edacobacterium-symplophilum</i> , and <i>Lactococcus</i> Genera associated with UC recurrence: <i>Herbaspirillum</i> , <i>Gemella</i> , <i>Rodococcus</i> , <i>Porphyrobacter</i> , <i>Faecalbacterium</i> , and <i>Aeromonas</i> Genera associated with UC progression: <i>Herbaspirillum</i> , <i>Porphyrobacter</i> , <i>Bacteroides</i> , and <i>Marmoricola</i>
Bi et al.	2019	Healthy (n = 26; men = 15, women = 11) UC (n = 29, men = 20, women = 9)	mid-stream free catch	UC > healthy (metric not specified)	Bray-Curtis: microbial composition differed between UC and healthy groups	Phyla increased in UC: Tenericutes and Proteobacteria Genera increased in healthy: <i>Streptococcus</i> , <i>Bifidobacterium</i> , <i>Lactobacillus</i> , and <i>Veillonella</i> Genera increased in UC: <i>Actinomyces</i>
Liu et al.	2019	UC tissue (n = 22) adjacent normal tissue (n = 12)	intraoperative tissue collection	Shannon: normal > UC tissue, Evenness: normal > UC tissue	Weighted UniFrac: microbial composition differed between UC and normal tissue groups	Phyla increased in UC tissue: Proteobacteria and Actinobacteria Phyla decreased in UC tissue: Firmicutes and Bacteroidetes Genera increased in UC tissue: <i>Cupivibrio</i> spp., Unclassified <i>Brucellaceae</i> , <i>Acinetobacter</i> , <i>Escherichia-Shigella</i> , <i>Sphingomonas</i> , <i>Pelomonas</i> , <i>Ralstonia</i> , and <i>Anoxybacillus</i> Genera increased in normal tissue: <i>Lactobacillus</i> , <i>Prevotella</i> 9, and <i>Ruminococcaceae</i>
Mai et al.	2019	UC (n = 24, men = 18, women = 6)	mid-stream free catch	not described	not described	Most abundant phyla: Proteobacteria, Firmicutes, Actinobacteria, Tenericutes, and Bacteroidetes Most abundant Classes: Gammaproteobacteria, Bacilli, Actinobacteria, Mollicutes, Bacteroidia, Bacteroidia, and Chlamydiales Most abundant Orders: Enterobacteriales, Lactobacillales, Mycoplasmatales, Actinomycetales, Xanthomonadales, Chlorobiiales, Bacteroidales, and Pasteuillales Most abundant Families: Enterobacteriaceae, Lactobacillaceae, Streptococcaceae, Mycoplasmataceae, Xanthomonadaceae, Corynebacteriaceae Most abundant Genus: unidentified Enterobacteriaceae genus, <i>Streptococcus</i> , <i>Lactobacillus</i> , <i>Ureaplasma</i> , <i>Corynebacterium</i> , <i>Stenotrophomonas</i> , <i>Enterococcus</i> , and <i>Sphingoloboccus</i> Increased in UC (based on comparison to previously published healthy controls): <i>Acinetobacter</i> , <i>Rubrobacter</i> , <i>Geobacillus</i> , and <i>Rhizobiales</i>
Chipollini et al.	2020	Healthy (n = 10) UC (n = 27), MIBC, n = 15, NMIBC, n = 12)	mid-stream free catch	Evenness: healthy	Weighted UniFrac: microbial composition did not differ between UC and healthy groups	Increased in MIBC: Bacteroides and Faecalibacterium Increased in Healthy: Bacteroides, Lactobacillium, and Burkholderiaceae
Mansour et al.	2020	UC urine (n = 10) UC tissue (n = 14)	urine = collected directly from bladder during surgery tissue = removed during transurethral resection	Shannon and Richness: male > female	No similarities in microbial composition between tissue and urine samples from same individual	Phyla dominant across all urine and tissue samples: Firmicutes, Actinobacteria, Proteobacteria, Bacteroidetes, and Cyanobacteria Most abundant genera in all urine: <i>Lactobacillus</i> , <i>Corynebacterium</i> , <i>Streptococcus</i> , and <i>Staphylococcus</i> Most abundant genera in tissue: <i>Bacteroides</i> , <i>Akkermansia</i> , <i>Klebsiella</i> , and <i>Clostridium sensu stricto</i> Genera increased in tissue compared to urine: <i>Bacteroides</i> , <i>Akkermansia</i> , <i>Klebsiella</i> , <i>Clostridium Sensu Stricto</i> , and <i>Enterobacter</i>
Pederzoli et al.	2020	Healthy (n = 59; men = 24, women = 25) UC (n = 49, men = 36, women = 13)	mid-stream free catch UC and healthy adjacent tissue collected at surgery	Richness: no difference between UC and healthy urine UC urine > UC tissue and healthy tissue Tissue samples differed by sex UC vs. healthy groups: Tissue samples differed by sex but not UC	Weighted UniFrac: microbial composition in urine samples differed by sex and UC vs. healthy groups. Tissue samples differed by sex but not UC	Most abundant Phyla in urine samples: Proteobacteria, Firmicutes, and Bacteroidetes Taxa increased in UC urine (men): <i>Actinobacteria</i> -6, <i>Oiphilales</i> , <i>Oiphilaceae</i> Taxa increased in UC urine (women): <i>Escherichia</i> Top 5 taxa increased in healthy urine (men): <i>Tissierellaceae</i> , <i>Alphaproteobacteria</i> , <i>Rhizobiales</i> , <i>Sphingomonadales</i> , <i>Pasteuillales</i> , <i>Pseudomonadales</i> , <i>Comamonadaceae</i> , <i>Moraxellaceae</i> Top 5 taxa increased in healthy urine (women): <i>Betaproteobacteria</i> , <i>Burkholderiales</i> , <i>Pseudomonadales</i> , <i>Comamonadaceae</i> , <i>Moraxellaceae</i> Taxa increased in UC tissue: <i>Burkholderia</i>
Zeng et al.	2020	Healthy (n = 19) UC: 62 + 40 NMIBC	mid-stream free catch	Observed Species, Chao1 and Ace indices: cancer > healthy Shannon: no difference Simpson: no difference	Bray-Curtis: microbial composition differed between UC and healthy groups	Phyla dominant across all urine samples: Firmicutes, Proteobacteria, Actinobacteria Genera associated with UC recurrence: <i>Anoxybacillus</i> , <i>Massilia</i> , <i>Thermomonas</i> , <i>Brachybacterium</i> , <i>Micrococcus</i> , <i>Nocardioides</i> , <i>Larkinella</i> , <i>Jeotgalibacillus</i> , and <i>Geomicromyobacter</i>
Chen et al.	2021	UC (n = 28; PD-L1 positive, n = 19; PD-L1 negative, n = 9)	mid-stream free catch	Ace index and Observed Species, Chao1 and Ace indices: cancer > healthy Shannon: no difference Simpson: no difference	Weighted and Unweighted UniFrac: microbial composition was distinct between PD-L1 positive and PD-L1 negative groups	Increased in PD-L1 positive: <i>Leptorhizus</i> Increased in PD-L1 negative: Bacteroidetes, Bacteroidia, Bacteroidales, Prevotellaceae, and <i>Prevotella</i>
Hussein et al.	2021	Healthy (n = 10) UC (n = 43)	healthy: mid-stream free catch; UC: transurethral catheterization	Observed index, Chao1, Shannon, Simpson: no difference between UC and healthy or MIBC and MIBC	Bray-Curtis: microbial composition did not differ between UC and healthy groups	Phyla most abundant in UC: Actinobacteria and Proteobacteria Phyla most abundant in Healthy: Firmicutes and <i>Demonoccus-Thermus</i> Genera most abundant in UC: <i>Actinomyces</i> , <i>Achromobacter</i> , <i>Brevibacterium</i> , <i>Brucella</i> , and <i>Thermomonas</i> Genera most abundant in Healthy: <i>Sphaerotilus</i> , <i>Jeotgalicoccus</i> , <i>Escherichia-Shigella</i> , <i>Fusobacterium</i> , and <i>Lactobacillus</i> Taxa most abundant in MIBC: Firmicutes, <i>Homophillus</i> , and <i>Veillonella</i> Taxa most abundant in NMIBC: Proteobacteria and <i>Coprievibacter</i>
Oresta et al.	2021	Healthy (n = 10 men) UC (n = 51 men)	catheter, mid-stream free catch, bladder washout	Evenness: cancer > healthy Richness: Chao1, Shannon, Simpson: no difference	Bray-Curtis: microbial composition did not differ between UC and healthy groups Midstream vs. catheter washout groups did not differ	Genera increased in UC: <i>Veillonella</i> and <i>Corynebacterium</i> Genera decreased in UC: <i>Ruminococcus</i>

695 **Table 1: Key findings in 13 publications about the urine / tissue microbiota and urothelial**
696 **carcinoma.** MIBC = Muscle Invasive Bladder Cancer; NMIBC = Non-Muscle Invasive Bladder
697 Cancer; PD-L1 = Programmed Cell Death 1 Ligand 1; UC = Urothelial Carcinoma.
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717

718

Category	Healthy	UC
Sex, n (%)		
Females	5 (71.4 %)	5 (71.4 %)
spayed	4	4
non-spayed	1	1
Males	2 (28.6 %)	2 (28.6 %)
neutered	2	2
non-neutered	0	0
Age (mean \pm SD)	10.1 \pm 1	10.1 \pm 0.7

719

720 **Table 2: Demographics of dogs with and without urothelial carcinoma (UC).** Urine samples
721 were collected and analyzed from all dogs. Stool samples were collected and analyzed from a
722 subset of these dogs including 6 healthy (4 females, 2 males), and 4 with UC (3 females, 1 male).
723

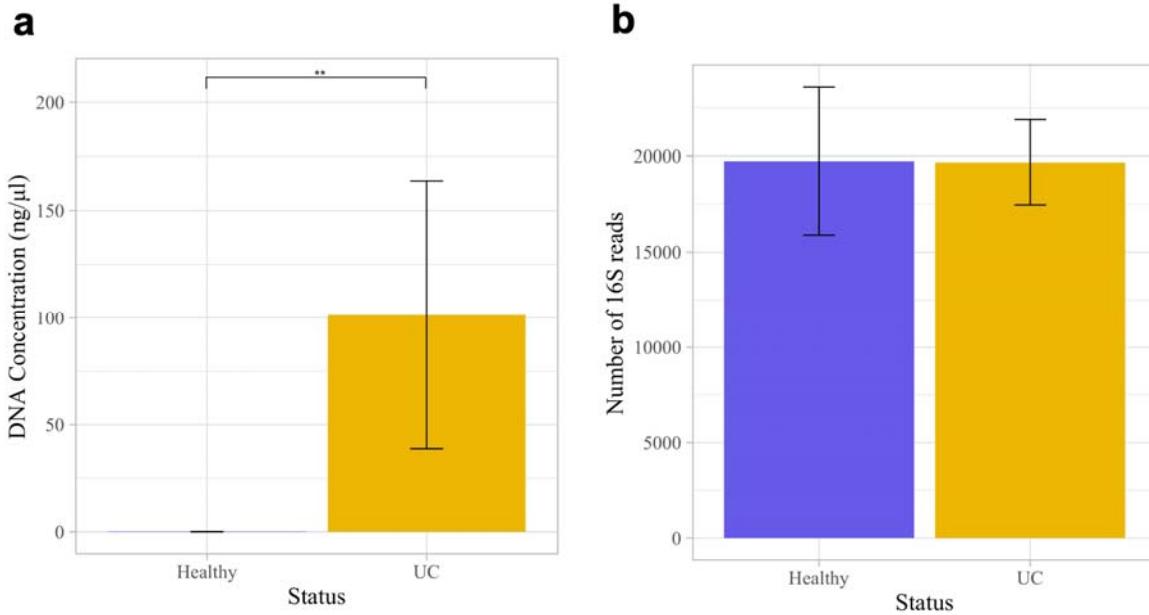
724

725

726

727


728


729

730

731

732

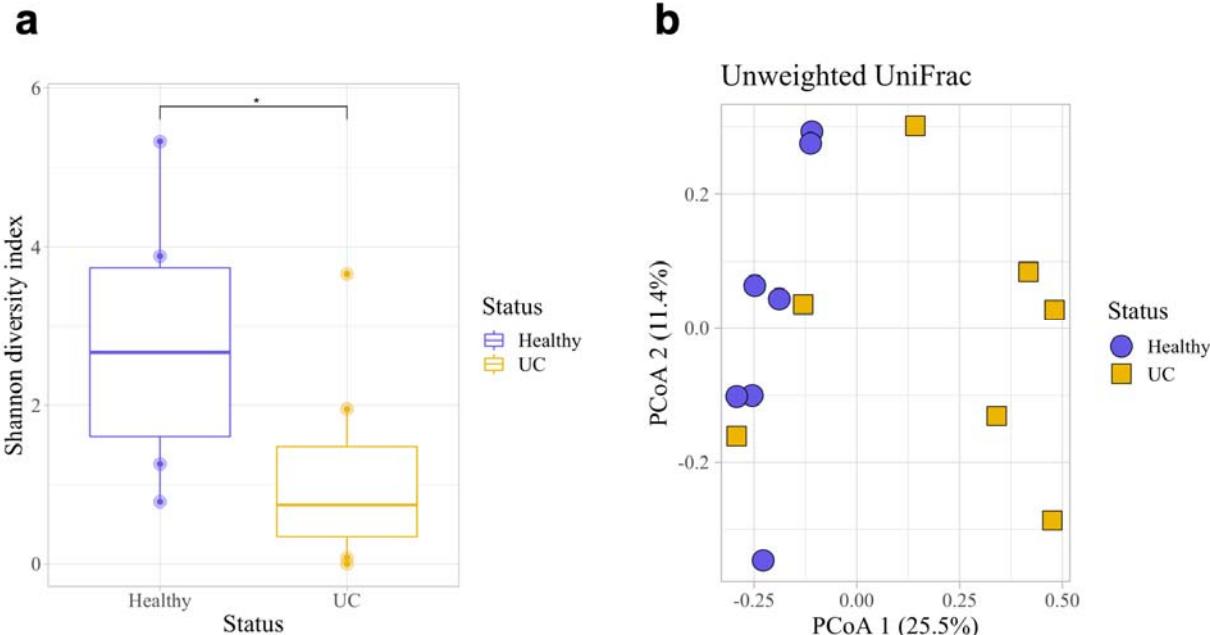
739

740 **Figure 2: DNA concentrations and number of 16S reads in the urine samples of dogs with**
741 **and without urothelial carcinoma (UC). (a)** DNA concentrations were significantly greater in
742 dogs with UC than in healthy dogs (Wilcoxon Rank Sum test, $p = 0.002$). **(b)** The number of 16S
743 reads did not differ significantly between groups (two-sample t-test, $p = 0.99$). Error bars denote
744 standard error. Statistical significance is represented by stars: * < 0.05 , ** < 0.001 , *** < 0.0001

745

746

747


748

749

750

751

752

753

754 **Figure 3: Microbial diversity and composition in the urine of dogs with and without UC.**

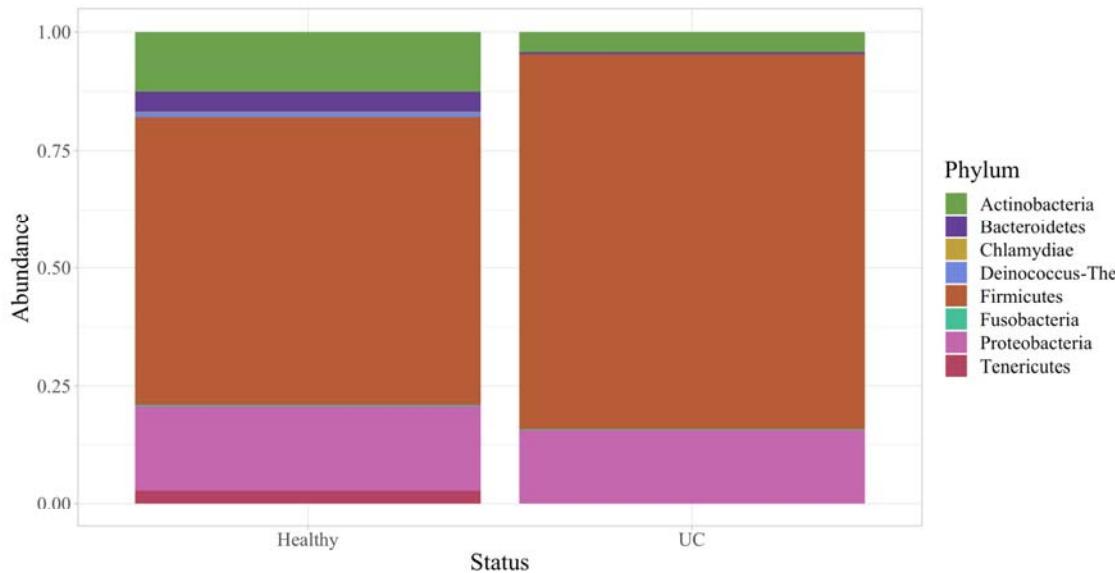
755 (a) Healthy dogs had a significantly higher microbial diversity compared to dogs with UC as
756 measured by the Shannon diversity index (Kruskal-Wallis, $p = 0.048$). (b) Microbial composition
757 between healthy dogs and dogs with UC also differed significantly (Unweighted UniFrac,
758 PERMANOVA, $p = 0.011$). Error bars denote standard error. Statistical significance is
759 represented by stars: * < 0.05 , ** < 0.001 , *** < 0.0001

760

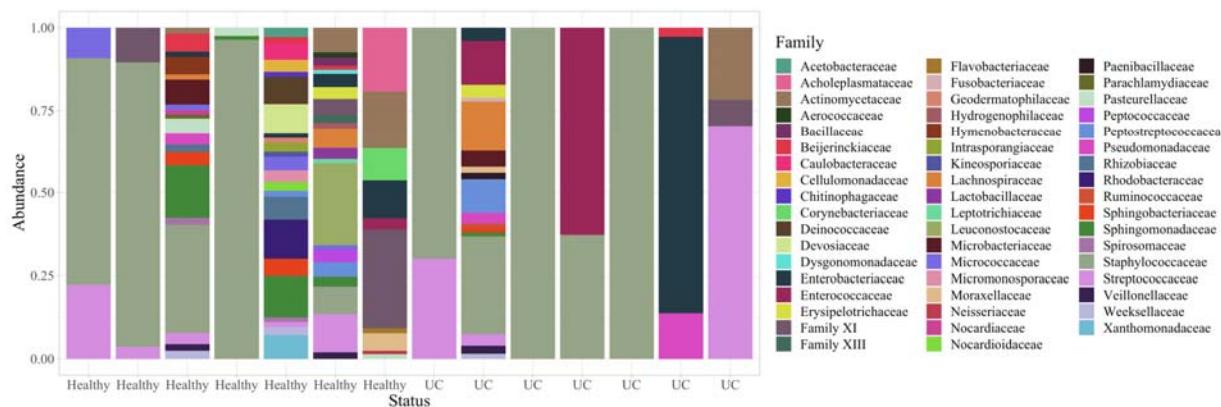
761

762

763


764

765


766

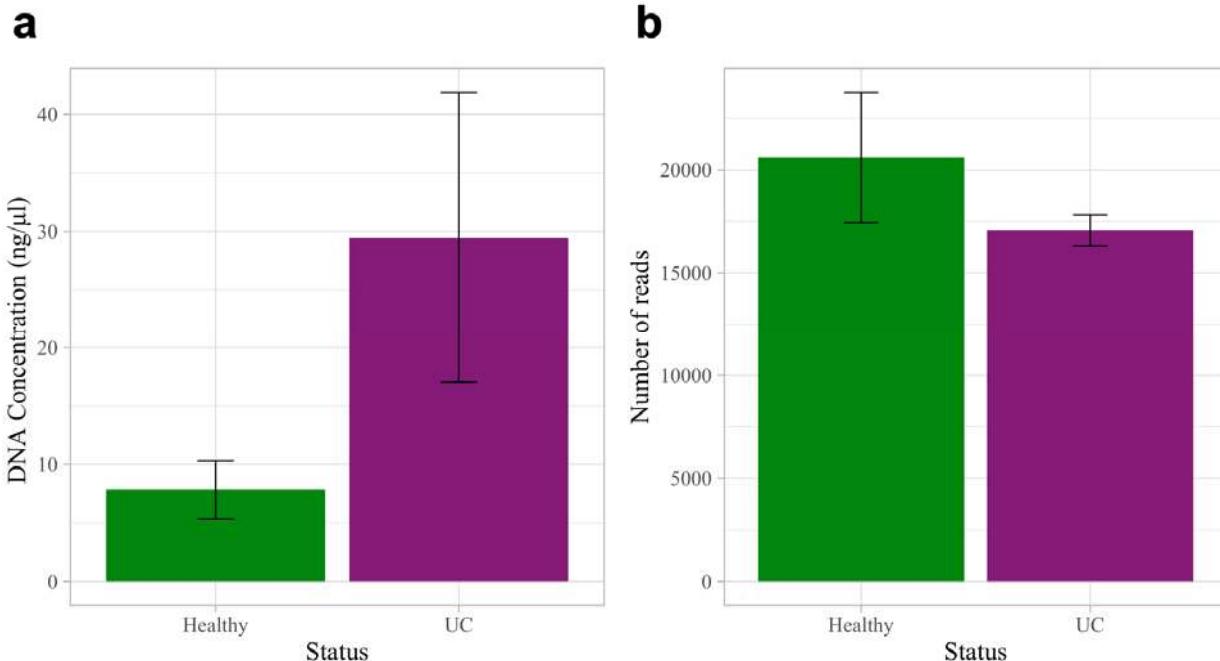
767

a

b

768

769 **Figure 4: Phyla and family taxa bar plots of urine samples in dogs with and without UC.**


770 **(a)** Phyla and **(b)** family relative abundances. At the family level, the taxonomic composition of
771 each sample is shown individually to demonstrate the variability across urine samples.

772

773

774

775

776

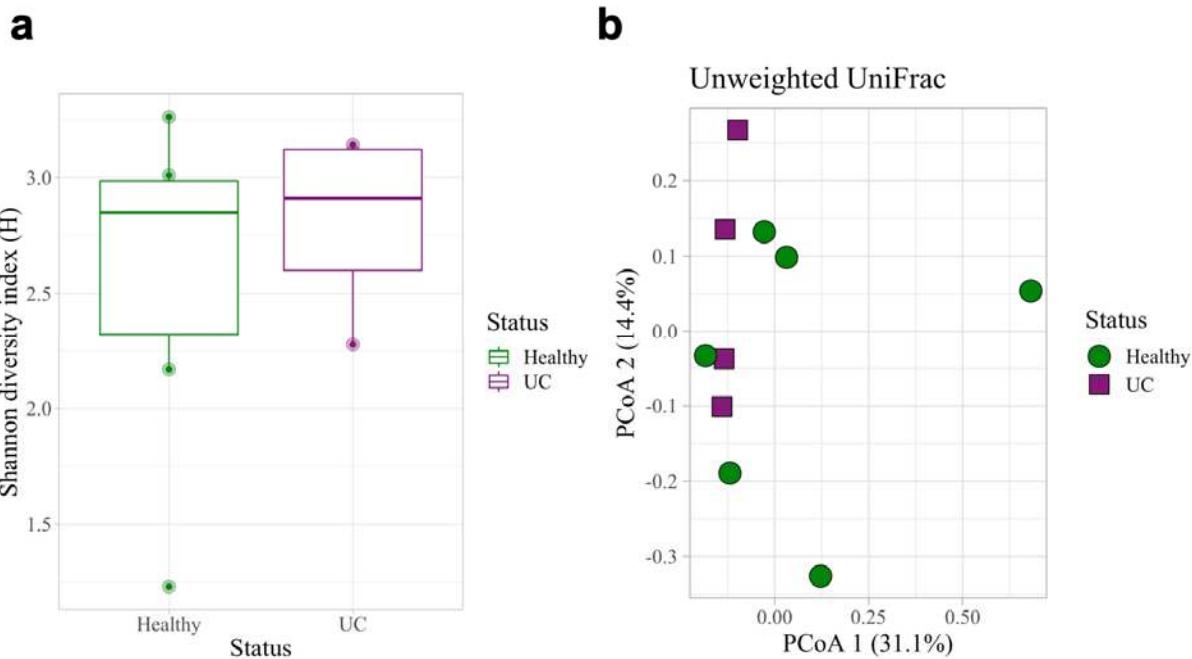
777 **Figure 5: DNA concentrations and number of 16S reads in the fecal samples of dogs with**
778 **and without UC. (a)** DNA concentrations were greater (but not significantly) in dogs with UC
779 as compared to healthy dogs (Wilcoxon Rank Sum Test, $p = 0.136$). **(b)** The number of 16S
780 reads did not differ significantly between groups (two-sample t-test, $p = 0.322$). Error bars
781 denote standard error.

782

783

784

785


786

787

788

789

790

791

792 **Figure 6: Microbial diversity and composition of fecal samples in dogs with and without**
793 **UC. (a)** Fecal microbial diversity did not differ significantly between dogs with and without UC
794 (Kruskal-Wallis, $p = 0.67$). **(b)** Microbial composition also did not differ significantly between
795 healthy dogs and dogs with UC (Unweighted UniFrac, PERMANOVA, $p = 0.252$). Error bars
796 denote standard error.

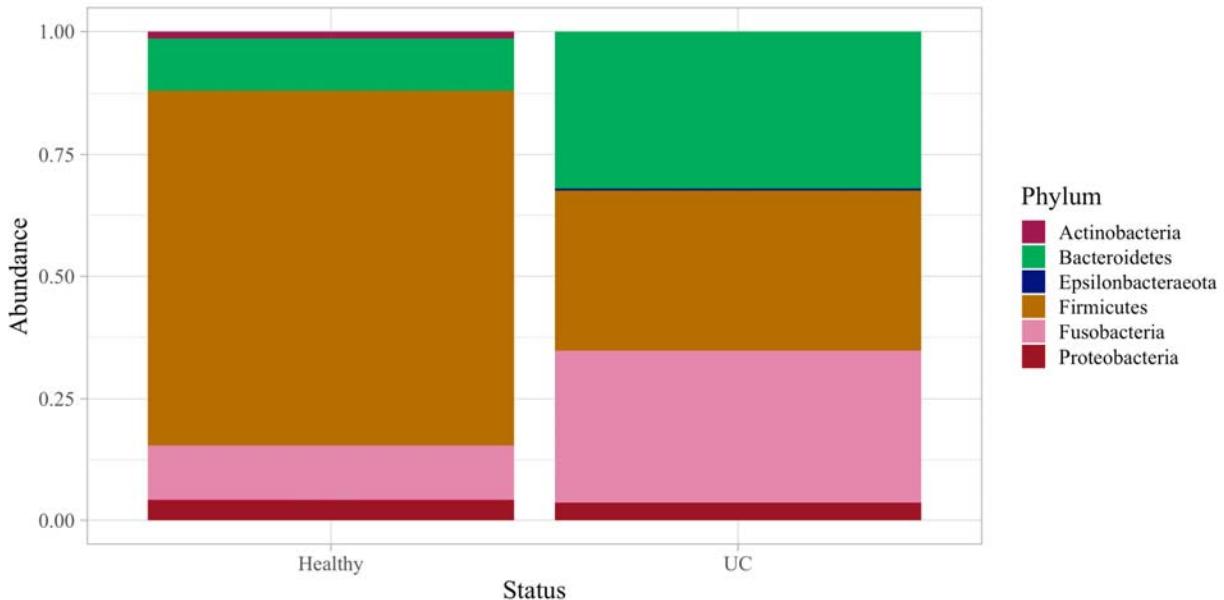
797

798

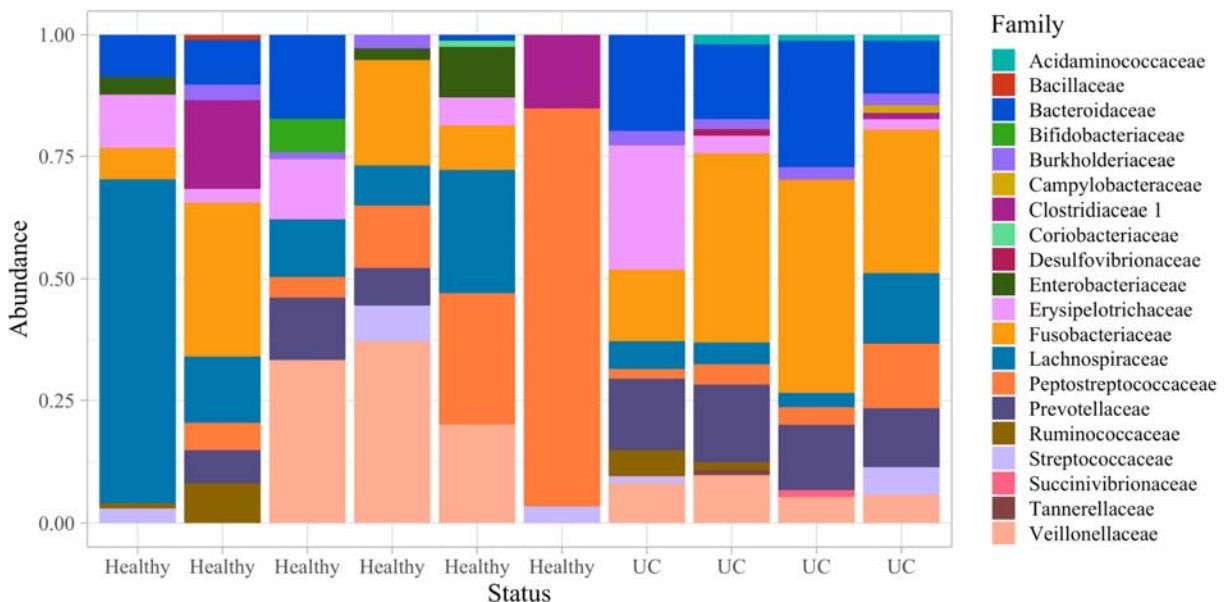
799

800

801


802

803


804

805

a

b

806

807 **Figure 7: Taxa bar plots of fecal samples in dogs with and without UC. (a) Microbial phyla**
808 **and (b) family relative abundances.**

809

810

811 Supplemental Material:

812

Category	Free Catch	Non-Free Catch
Sex, n (%)		
Females	5 (62.5 %)	7 (62.6 %)
spayed	4	6
non-spayed	1	1
Males	3 (37.5 %)	4 (36.4 %)
neutered	3	4
non-neutered	0	0
Age (mean \pm SD)	10.1 \pm 2	9.6 \pm 1.8

813

814 **Supplemental Table 1: Demographics of dogs with urine samples collected via free catch**

815 **and non-free catch methods.** All dogs had urothelial carcinoma. Eight dogs had urine collected
816 via mid-stream free catch while eleven dogs were sampled via non-free catch methods including
817 cystoscopy or catheterization.

818

819

820

821

822

823

824

825

826

827

828

829

830

Free Catch Urine		Non-free Catch Urine	
Phylum			
Firmicutes	70.3 %	Firmicutes	33 %
Proteobacteria	20.1 %	Tenericutes	26.7 %
Bacteroidetes	5.98 %	Proteobacteria	26.7 %
Genera			
<i>Staphylococcus</i>	43.2 %	<i>Mycoplasma</i>	18.3 %
<i>Streptococcus</i>	12.6 %	<i>Escherichia-Shigella</i>	18.1 %
<i>Pantoea</i>	11.4 %	<i>Enterococcus</i>	9.73 %

831

832 **Supplemental Table 2: Dominant taxa in urine from dogs with UC by collection method.**

833 Relative abundance of the top three taxa in free catch and non-free catch urine at the phylum and
834 genera levels. All urine was collected from dogs with UC.

835

836

Putative urine contaminants (ASVs)
D_1_Tenericutes;D_2_Mollicutes RF39;D_4_ uncultured prokaryote;D_5_ uncultured prokaryote;D_6_ uncultured prokaryote
D_1_Deinococcus-Thermus;D_2_Deinococci;D_3_Thermales;D_4_Thermaceae;D_5_Thermus
D_1_Actinobacteria;D_2_Actinobacteria;D_3_Micrococcales;D_4_Micrococcaceae;D_5_Micrococcus
D_1_Proteobacteria;D_2_Gammaproteobacteria;D_3_Betaproteobacteriales;D_4_Burkholderiaceae;D_5_Cupriavidus
D_1_Proteobacteria;D_2_Gammaproteobacteria;D_3_Betaproteobacteriales;D_4_Burkholderiaceae
D_1_Bacteroidetes;D_2_Bacteroidia;D_3_Bacteroidales;D_4_Prevotellaceae;D_5_Prevotella9;D_6_ uncultured bacterium
D_1_Kiritimatiellaeota;D_2_Kiritimatiellae;D_3_WCHB1-41;D_4_ uncultured rumen bacterium;D_5_ uncultured rumen bacterium;D_6_ uncultured rumen bacterium
D_1_Bacteroidetes;D_2_Bacteroidia;D_3_Bacteroidales;D_4_Prevotellaceae
D_1_Firmicutes;D_2_Bacilli;D_3_Lactobacillales;D_4_Lactobacillaceae;D_5_Lactobacillus;D_6_Lactobacillus iners AB-1
D_1_Firmicutes;D_2_Bacilli;D_3_Lactobacillales;D_4_Lactobacillaceae;D_5_Cytophaga
D_1_Verrucomicrobia;D_2_Verrucomicrobiae;D_3_Opitutaceae;D_4_Opitutaceae;D_5_Lacunisphaera;D_6_Opitutus sp. WS3(2011)
D_1_Bacteroidetes;D_2_Bacteroidia;D_3_Bacteroidales;D_4_Prevotellaceae;D_5_Prevotella 9
D_1_Proteobacteria;D_2_Alphaproteobacteria;D_3_Rhizobiales;D_4_Xanthobacteraceae;D_5_Bradyrhizobium

Putative fecal contaminants (ASVs)

D_0_Bacteria
D_1_Firmicutes;D_2_Negativicutes;D_3_Selenomonadales;D_4_Veillonellaceae;D_5_Veillonella
D_1_Firmicutes;D_2_Bacteroidia;D_3_Bacteroidales;D_4_Prevotellaceae;D_5_Prevotella 9
D_1_Firmicutes;D_2_Bacilli;D_3_Bacillales;D_4_Staphylococcaceae;D_5_Staphylococcus
D_1_Actinobacteria;D_2_Coriobacteriia;D_3_Coriobacteriales;D_4_Atopobiaceae;D_5_Coriobacteriaceae UCG-002
D_1_Proteobacteria;D_2_Gammaproteobacteria;D_3_Enterobacteriales;D_4_Enterobacteriaceae
D_1_Actinobacteria;D_2_Coriobacteriia;D_3_Coriobacteriales;D_4_Atopobiaceae;D_5_Coriobacteriaceae UCG-002

837

838 **Supplemental Table 3: Contaminant ASVs.** Using the frequency and prevalence methods
839 (threshold value of 0.5) in the R package decontam v.1.10.0, putative contaminant ASVs were
840 identified and bioinformatically removed prior to further analyses.

841

842

Category	Healthy	UC
Sex, n (%)		
Females	16 (53.3 %)	16 (53.3 %)
spayed	15	15
non-spayed	1	1
Males	14 (46.7 %)	14 (46.7 %)
neutered	11	11
non-neutered	3	3
Age (mean \pm SD)	10 \pm 1.76	10.4 \pm 1.97

843

844 **Supplemental Table 4: Demographics of larger canine cohort from which fecal samples**

845 **were collected.** Fecal samples were collected from dogs with UC (n = 30) and age-, sex-, breed-
846 matched healthy controls (n = 30).

847

848

	Metric	Fecal samples from healthy dogs vs. dogs with UC
Alpha Diversity	Shannon Diversity Index Kruskal-Wallis	$p = 0.214$
	Simpson Diversity Index Kruskal-Wallis	$p = 0.506$
	Observed Features Kruskal-Wallis	$p = 0.336$
Beta Diversity	Bray Curtis PERMANOVA	$p = 0.468$
	UnWeighted UniFrac PERMANOVA	$p = 0.134$
	Weighted UniFrac PERMANOVA	$p = 0.0819$
Differentially Abundant Taxa	Phylum ANCOM	No differentially abundant taxa
	Genus ANCOM	No differentially abundant taxa
	ASV ANCOM	No differentially abundant taxa

849

850 **Supplemental Table 5. Microbial diversity and composition of fecal samples from healthy**

851 **dogs and dogs with UC.** There were no significance differences in microbial diversity or

852 composition between dogs with UC (n = 30) and sex-, age-, and breed-matched healthy controls

853 (n = 30). ANCOM – Analysis of Composition of Microbiome.

854

ASVs in both urine and fecal samples	Taxa
07124e5371867ec34213e b740707a0de	D_1_Firmicutes;D_2_Clostridia;D_3_Clostridiales;D_4_Lachnospiraceae; D_5_Lachnoclostridium
1345b73795b14ab0330b8 ffb81b5b4aa	D_1_Firmicutes;D_2_Clostridia;D_3_Clostridiales;D_4_Lachnospiraceae; D_5_Blautia
181065d22563c4b1f591c6 a5bbe7355	D_1_Actinobacteria;D_2_Actinobacteria;D_3_Actinomycetales; D_4_Actinomycetaceae;D_5_Actinomyces;D_6_Actinomyces sp. canine oral taxon 374
1905e47315e57ce205d45 05f1a5c5d67	D_1_Firmicutes;D_2_Bacilli;D_3_Lactobacillales;D_4_Streptococcaceae; D_5_Streptococcus;D_6_Streptococcus minor
1b3a2b9873a54f01302d62 9406b52aa9	D_1_Firmicutes;D_2_Clostridia;D_3_Clostridiales;D_4_Lachnospiraceae; D_5_Blautia
1cd1e7291e9803c9cdfe24 a15309e043	D_1_Firmicutes;D_2_Clostridia;D_3_Clostridiales;D_4_Ruminococcaceae; D_5_Ruminiclostridium 5;D_6_uncultured organism
27046d59617e724675b68 185aeb33d4a	D_1_Firmicutes;D_2_Bacilli;D_3_Lactobacillales;D_4_Streptococcaceae; D_5_Streptococcus
2a39faab1cf27e5068ef885 794a3d1b1	D_1_Actinobacteria;D_2_Actinobacteria;D_3_Micrococcales; D_4_Microbacteriaceae
2cb64cfaa13ecebb815069 8e244aa026	D_1_Epsilonbacteraeota;D_2_Campylobacteria;D_3_Camplybacterales; D_4_Helicobacteraceae;D_5_Helicobacter;D_6_Helicobacter canis
35815582b2cf31eb986673 cdccb558c	D_1_Firmicutes;D_2_Clostridia;D_3_Clostridiales;D_4_Peptostreptococcaceae; D_5_peptoclostridium;D_6_uncultured bacterium
382cccf9f2613e42c60288 2e5efba519	D_1_Firmicutes;D_2_Clostridia;D_3_Clostridiales;D_4_Lachnospiraceae; D_5_Blautia
38ad78b86309fa98eaea53 bac8579237	D_1_Firmicutes;D_2_Clostridia;D_3_Clostridiales;D_4_Clostridiaceae 1;D_5_Candidatus Arthromitus;D_6_uncultured bacterium
3acf68a82e28a71226cc15 195277f39a	D_1_Firmicutes;D_2_Clostridia;D_3_Clostridiales;D_4_Lachnospiraceae; D_5_uncultured;D_6_uncultured organism
3c4c352e66306770ce10d3 ac128d0ca8	D_1_Firmicutes;D_2_Bacilli;D_3_Lactobacillales;D_4_Streptococcaceae; D_5_Lactococcus
42aa3a600f30a5267eea5a 34d8655853	D_1_Firmicutes;D_2_Clostridia;D_3_Clostridiales;D_4_Lachnospiraceae; D_5_uncultured
4611ef696d9c9f16982f08 86174522fe	D_1_Firmicutes;D_2_Clostridia;D_3_Clostridiales;D_4_Lachnospiraceae; D_5_Epulopiscium
4952ad8a58b2e7d70d531 5ce330442bb	D_1_Fusobacteria;D_2_Fusobacteriia;D_3_Fusobacteriales; D_4_Fusobacteriaceae;D_5_Fusobacterium
4a654a475be76c770508d 1ea6a9771d9	D_1_Firmicutes;D_2_Erysipelotrichia;D_3_Erysipelotrichales; D_4_Erysipelotrichiaceae;D_5_Faecalitalea;D_6_Eubacterium sp. 1-5
4d74ef18790f690b2acf5fc 60f89c222	D_1_Firmicutes;D_2_Clostridia;D_3_Clostridiales;D_4_Lachnospiraceae; D_5_[Ruminococcus] gauvreauii group
4f1d5517aa4ce179ae9241 d5a5b3796d	D_1_Firmicutes;D_2_Bacilli;D_3_Bacillales;D_4_Bacillaceae;D_5_Bacillus
52990f305d65b7df7dedd8 87cc08988f	D_1_Firmicutes;D_2_Negativicutes;D_3_Selenomonadales; D_4_Veillonellaceae;D_5_Megamonas
52ef51c7bec642ab72d7ce 474821b108	D_1_Actinobacteria;D_2_Actinobacteria;D_3_Micrococcales; D_4_Micrococcaceae;D_5_Rothia
601426df62ac2005c0a78b be617425a4	D_1_Actinobacteria;D_2_Actinobacteria;D_3_Actinomycetales; D_4_Actinomycetaceae;D_5_Actinomyces;D_6_Actinomyces coleocanis
6019612a56660d54c57f12 299224759d	D_1_Firmicutes;D_2_Erysipelotrichia;D_3_Erysipelotrichales; D_4_Erysipelotrichaceae;D_5_Catenibacterium
61b2e2fc40303b1f0f19c1 017f258bac	D_1_Firmicutes;D_2_Clostridia;D_3_Clostridiales;D_4_Peptostreptococcaceae; D_5_terrisporobacter;D_6_uncultured bacterium

674e202dd30eab31fd826255caec43e1	D_1_Firmicutes;D_2_Negativicutes;D_3_Selenomonadales;D_4_Acidaminococcaceae;D_5_Phascolarctobacterium;D_6_uncultured Veillonellaceae bacterium
682c96e343759d3583a2a293fa4e0160	D_1_Firmicutes;D_2_Clostridia;D_3_Clostridiales;D_4_Lachnospiraceae;D_5_Lachnoclostridium;D_6_Lachnospiraceae bacterium 2_1_46FAA
6a081f2b1b45ee5773bb947b977f5893	D_1_Firmicutes;D_2_Clostridia;D_3_Clostridiales;D_4_Lachnospiraceae;D_5_uncultured
6e441eb1e3bc74bb8a5ec4ff24b11147	D_1_Firmicutes;D_2_Bacilli;D_3_Lactobacillales;D_4_Lactobacillaceae;D_5_Lactobacillus
6fdb8a40fc3f65447a2ea0b3c21bbd68	D_1_Bacteroidetes;D_2_Bacteroidia;D_3_Bacteroidales;D_4_Bacteroidaceae;D_5_Bacteroides;D_6_Bacteroides stercoris ATCC 43183
730125adfc6eae51053161e4a29f2bc9	D_1_Firmicutes;D_2_Bacilli;D_3_Lactobacillales;D_4_Enterococcaceae;D_5_Enterococcus
7439a1dc0a2e589a4605cef7fcc6cb4	D_1_Actinobacteria;D_2_Coriobacteriia;D_3_Coriobacteriales;D_4_Coriobacteriaceae;D_5_Collinsella
7510965009242aaa1cde47a1a2c1b998	D_1_Firmicutes;D_2_Clostridia;D_3_Clostridiales;D_4_Lachnospiraceae;D_5_Blautia;D_6_uncultured Blautia sp.
75300d9701d85567f711799e6dc01dce	D_1_Firmicutes;D_2_Erysipelotrichia;D_3_Erysipelotrichales;D_4_Erysipelotrichiaceae;D_5_Faecalitalea;D_6_Erysipelaclotrostridum
76815f71f41950d2e2d481b6b730f3d8	D_1_Firmicutes;D_2_Clostridia;D_3_Clostridiales;D_4_Ruminococcaceae;D_5_Faecalibacterium
777de77e069f708364a08b2b03f8eae9	D_1_Firmicutes;D_2_Bacilli;D_3_Bacillales;D_4_Bacillaceae;D_5_Bacillus
7cd06cbc217263f67621482303de07	D_1_Firmicutes;D_2_Bacilli;D_3_Lactobacillales;D_4_Streptococcaceae;D_5_Streptococcus
84e088771adb5fc2e134c9bad18c76a	D_1_Firmicutes;D_2_Clostridia;D_3_Clostridiales;D_4_Peptostreptococcaceae;D_5_Clostridioides;D_6_Clostridioides difficile
877d42a21d6e5694161ea485ce3dacf8	D_1_Firmicutes;D_2_Clostridia;D_3_Clostridiales;D_4_Ruminococcaceae;D_5_Flavonifractor
87a5ae82db511f591c640d9ad67321fc	D_1_Actinobacteria;D_2_Actinobacteria;D_3_Micromonosporales;D_4_Micromonosporaceae;D_5_Actinoplanes
91beca23d467a7cb152b78f9505e650e	D_1_Firmicutes;D_2_Erysipelotrichia;D_3_Erysipelotrichales;D_4_Erysipelotrichiaceae;D_5_Allobaculum;D_6_Allobaculum stercoricanis DSM 13633
9d135cd7fd9b670ce5fdccfce8851183	D_1_Firmicutes;D_2_Clostridia;D_3_Clostridiales;D_4_Lachnospiraceae;D_5_Blautia
a3000823e9ab005bb353ff4e1e20eed8	D_1_Firmicutes;D_2_Clostridia;D_3_Clostridiales;D_4_Clostridiaceae 1;D_5_Clostridium sensu stricto 1
a3d3d817d8183e0d74175e4afbe65409	D_1_Proteobacteria;D_2_Gammaproteobacteria;D_3_Pasteurellales;D_4_Pasteurellaceae;D_5_Pasteurella;D_6_Pasteurella multocida
a80abf00da9c833cb1faaa9707727dda	D_1_Firmicutes;D_2_Bacilli;D_3_Lactobacillales;D_4_Streptococcaceae;D_5_Streptococcus
ab9782e24971a281bf5c73c33d9ad73d	D_1_Firmicutes;D_2_Erysipelotrichia;D_3_Erysipelotrichales;D_4_Erysipelotrichaceae;D_5_Faecalitalea;D_6_[Eubacterium] dolichum
b0d75fc101fefcde86c03b7cfdb39caf	D_1_Actinobacteria;D_2_Actinobacteria;D_3_Corynebacteriales;D_4_Corynebacteriaceae;D_5_Corynebacterium 1
b7095a583ea62033ff918e2187652b27	D_1_Bacteroidetes;D_2_Bacteroidia;D_3_Bacteroidales;D_4_Porphyromonadaceae;D_5_Porphyromonas;D_6_Porphyromonas sp. COT-052 OH4946
bd4017ad4efac59720e2d164da18ace4	D_1_Firmicutes;D_2_Clostridia;D_3_Clostridiales;D_4_Clostridiaceae 1;D_5_Clostridium sensu stricto 1;D_6_Clostridium baratii
c5073ccb362bfa533ad671fac3bab80	D_1_Firmicutes;D_2_Clostridia;D_3_Clostridiales;D_4_Lachnospiraceae;D_5_Blautia;D_6_Blautia sp. YHC-4
c6bedd5b82d0f92872c6e9d7435a172e	D_1_Firmicutes;D_2_Clostridia;D_3_Clostridiales;D_4_Ruminococcaceae;D_5_Ruminococceae UCG-014;D_6_uncultured organism

c8f1df932d5f877f524cd2c 16367e721	D_1_Actinobacteria;D_2_Coriobacteriia;D_3_Coriobacteriales; D_4_Coriobacteriaceae;D_5_Collinsella;D_6_Collinsella stercoris
cc8f83128875d60f9e1de4 33a207ce81	D_1_Epsilonbacteraeota;D_2_Campylobacteria;D_3_Camplybacterales; D_4_Campylobacteraceae;D_5_Campylobacter
d3d0bd88ddd06bf6e49cde 1cdff07e9b	D_1_Firmicutes;D_2_Erysipelotrichia;D_3_Erysipelotrichales; D_4_Erysipelotrichaceae;D_5_Erysipelatoclostridium
dae3d6aa2560755d95861 8047492c1f2	D_1_Firmicutes;D_2_Bacilli;D_3_Lactobacillales;D_4_Streptococcaceae; D_5_Streptococcus
e1002cca0084443ac173b0 37d6049d8b	D_1_Firmicutes;D_2_Clostridia;D_3_Clostridiales;D_4_Lachnospiraceae; D_5_[Ruminococcus] torques group;D_6_uncultured Clostridium sp.
e46e5d3e3462c7351e1dc5 2ec42e64cf	D_1_Actinobacteria;D_2_Actinobacteria;D_3_Corynebacteriales; D_4_Corynebacteriaceae
e49f8561188c9050a9a3e3 af2aa75c24	D_1_Bacteroidetes;D_2_Bacteroidia;D_3_Bacteroidales;D_4_Bacteroidaceae;D_5_Bacteroides;D_6_uncultured bacterium
ee10da4f77a1cf2cbf3146a f2563a05c	D_1_Fusobacteria;D_2_Fusobacteriia;D_3_Fusobacteriales; D_4_Fusobacteriaceae;D_5_Fusobacterium;D_6_gut metagenome
f8b7aef6c94fcbe1b4793ff c3304bf0b	D_1_Firmicutes;D_2_Erysipelotrichia;D_3_Erysipelotrichales; D_4_Erysipelotrichaceae;D_5_Catenibacterium
f8cc743ae9448d9472ef8d 3914262ccb	D_1_Proteobacteria;D_2_Gammaproteobacteria;D_3_Enterobacteriales; D_4_Enterobacteriaceae;D_5_Escherichia-Shigella
f957a7c9e0410797ffaa0be 222cb0085	D_1_Actinobacteria;D_2_Coriobacteriia;D_3_Coriobacteriales; D_4_Eggerthellaceae;D_5_Slackia
fa0dcff3fde22b426ce94d8 c91f56a17	D_1_Firmicutes;D_2_Clostridia;D_3_Clostridiales;D_4_Lachnospiraceae; D_5_[Ruminococcus] gnavus group
fa4dd8c953b8a69498d154 3bf15a4190	D_1_Firmicutes;D_2_Clostridia;D_3_Clostridiales;D_4_Lachnospiraceae
fe9db134f6a44b3e5ac3ed 1315920582	D_1_Firmicutes;D_2_Bacilli;D_3_Lactobacillales;D_4_Streptococcaceae;D_5_Streptococcus
ffd03765b364ad4cdc17eb ef2611ab72	D_1_Actinobacteria;D_2_Actinobacteria;D_3_Bifidobacteriales; D_4_Bifidobacteriaceae;D_5_Bifidobacterium

856

857 **Supplemental Table 6: ASVs identified in both urine and fecal samples.** There were 66

858 ASVs found in both urine and fecal samples of any dog.

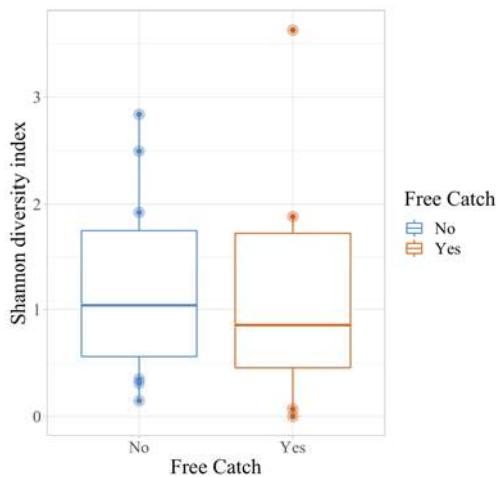
859

860

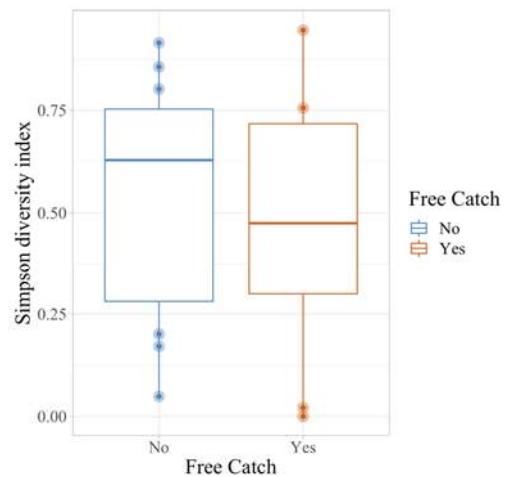
ASVs in both urine and fecal samples by dog	Taxa
Dog 1 - UC	
f8cc743ae9448d9472ef8d3914262ccb	D_1_Proteobacteria;D_2_Gammaproteobacteria;D_3_Enterobacteriales; D_4_Enterobacteriaceae;D_5_Escherichia-Shigella
Dog 2 - UC	
27046d59617e724675b68185aeb33d4a	D_1_Firmicutes;D_2_Bacilli;D_3_Lactobacillales;D_4_Streptococcaceae; D_5_Streptococcus
Dog 3 - Healthy	
f8cc743ae9448d9472ef8d3914262ccb	D_1_Proteobacteria;D_2_Gammaproteobacteria;D_3_Enterobacteriales; D_4_Enterobacteriaceae;D_5_Escherichia-Shigella
1878459013cf15f2993a81c14978c980	D_1_Firmicutes;D_2_Bacilli;D_3_Lactobacillales;D_4_Streptococcaceae; D_5_Streptococcus
a3000823e9ab005bb353ff4e1e20eed8	D_1_Firmicutes;D_2_Clostridia;D_3_Clostridiales;D_4_Clostridiales 1;D_5_Clostridium sensu stricto 1
601426df62ac2005c0a78bbe617425a4	D_1_Actinobacteria;D_2_Actinobacteria;D_3_Actinomycetales; D_4_Actinomyceteaceae;D_5_Actinomyces;D_6_Actinomyces coleocanis
1905e47315e57ce205d4505f1a5c5d67	D_1_Firmicutes;D_2_Bacilli;D_3_Lactobacillales;D_4_Streptococcaceae; D_5_Streptococcus;D_6_Streptococcus minor
Dog 4 - Healthy	
730125adfc6eae51053161e4a29f2bc9	D_1_Firmicutes;D_2_Bacilli;D_3_Lactobacillales;D_4_Enterococcaceae; D_5_Enterococcus
35815582b2cf31eb986673cddccb558c	D_1_Firmicutes;D_2_Clostridia;D_3_Clostridiales; D_4_Peptostreptococcaceae; D_5_Peptoclostridium;D_6_uncultured bacterium

861

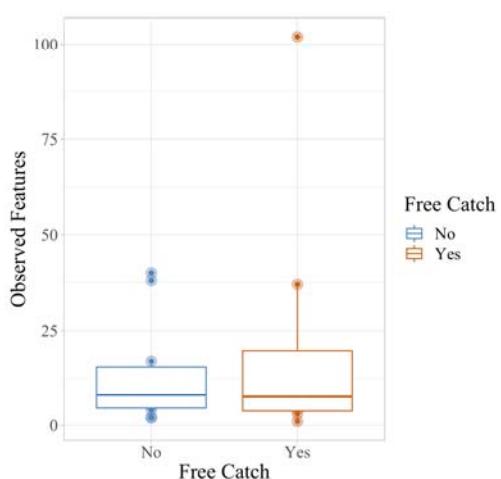
862 **Supplemental Table 7: ASVs in urine and fecal samples from the same dog.** Four dogs


863 contained ASVs that were found in both their urine and fecal samples.

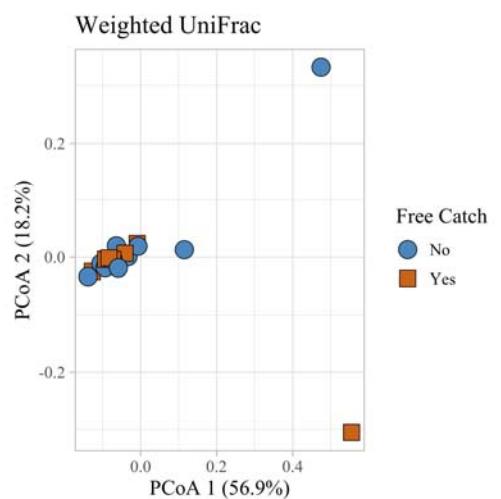
864

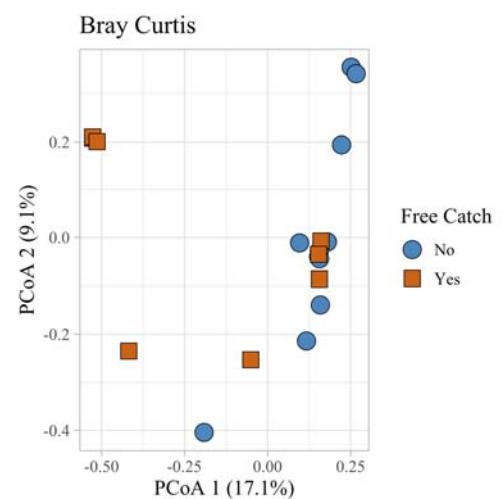

865

866


a


b


c


d

e

f

868 **Supplemental Figure 1: Urine microbial community diversity and composition by**
869 **collection method in dogs with UC (rarefied data).** Dogs with UC were sampled via free catch
870 (n = 8) and non-free catch (n = 11) methods. Samples were rarefied at 1000 reads. There were no
871 significant differences in microbial diversity between collection methods as assessed via **(a)**
872 Shannon (Kruskal-Wallis: $p = 0.62$) or **b)** Simpson diversity indices ($p = 0.68$) or **(c)** Observed
873 Features (richness) ($p = 0.901$). The microbial composition of free-catch urine did not differ
874 significantly from non-free catch urine based on **(d)** Unweighted (PERMANOVA, $p = 0.328$) or
875 **(e)** Weighted UniFrac distance matrices ($p = 0.485$) but did differ significantly based on **(f)** Bray
876 Curtis ($p = 0.008$). Error bars denote standard error.

877

878

879

880

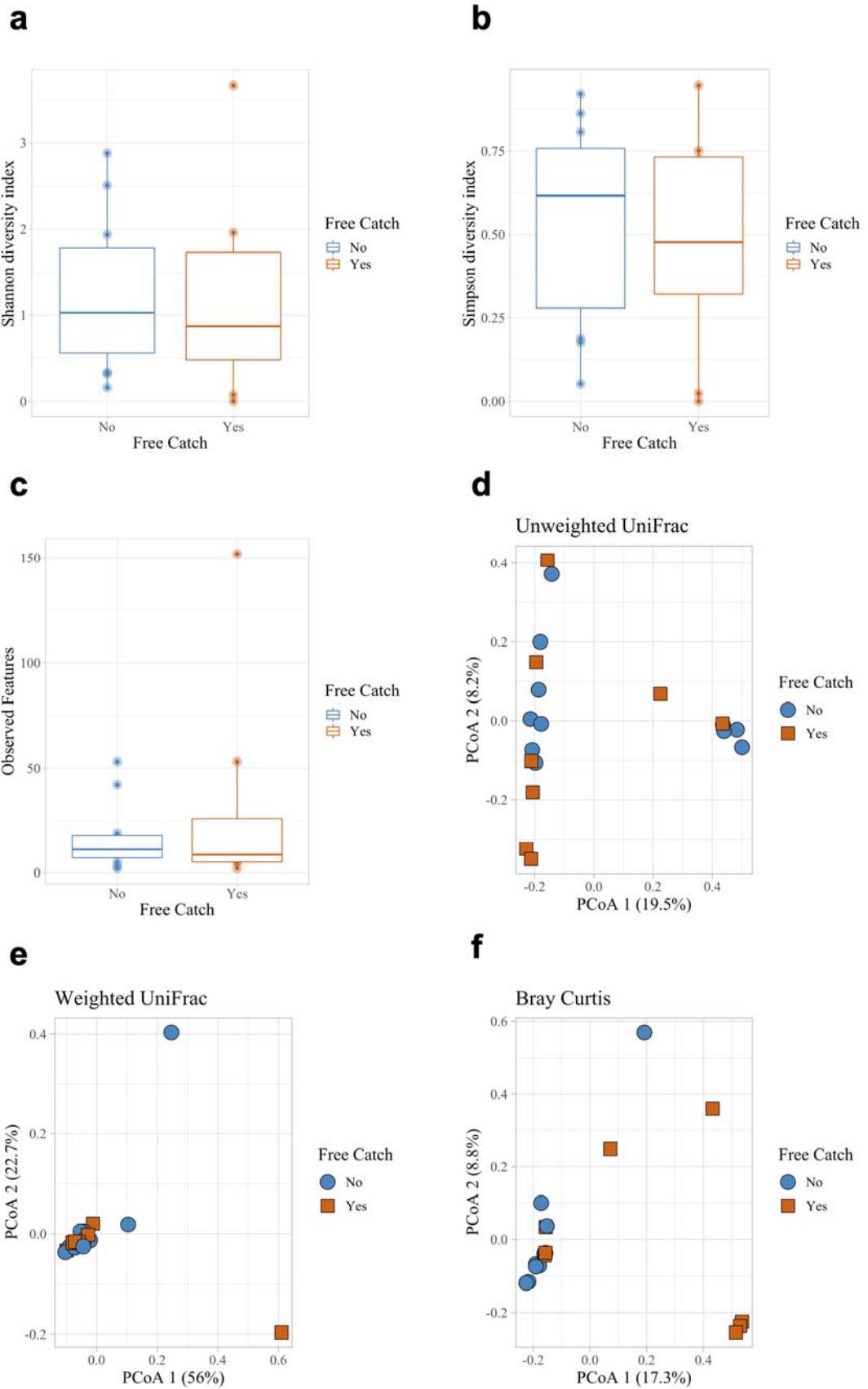
881

882

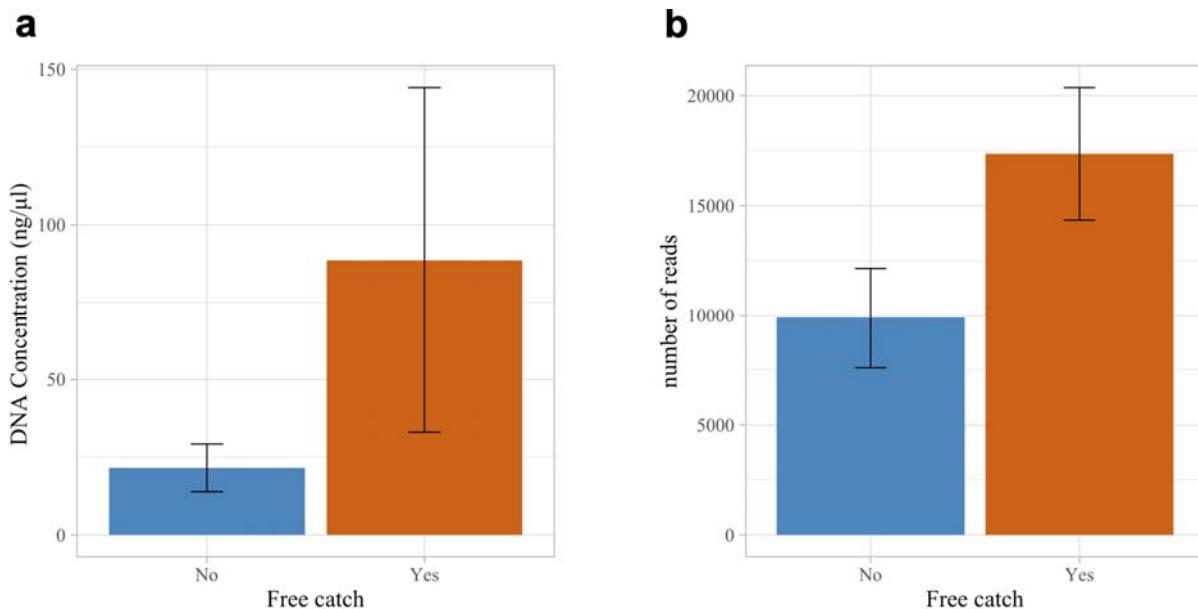
883

884

885


886

887


888

889

890

892 **Supplemental Figure 2: Urine microbial community diversity and composition by**
893 **collection method in dogs with UC (unrarefied data).** Dogs with UC were sampled via free
894 catch ($n = 8$) and non-free catch ($n = 11$) methods. Data are non-rarefied. There were no
895 significant differences in alpha diversity between collection methods as assessed using the **(a)**
896 Shannon (Kruskal-Wallis: $p = 0.68$) or **b)** Simpson diversity indices ($p = 0.68$) or **(c)** Observed
897 Features (richness) ($p = 0.901$). The microbial composition of free-catch urine did not differ
898 significantly from non-free catch urine based on **(d)** Unweighted (PERMANOVA, $p = 0.342$) or
899 **(e)** Weighted UniFrac distance matrices ($p = 0.54$) but did differ significantly based on **(f)** Bray
900 Curtis ($p = 0.005$). Error bars denote standard error.
901
902
903
904
905
906
907
908
909
910
911
912
913
914

915

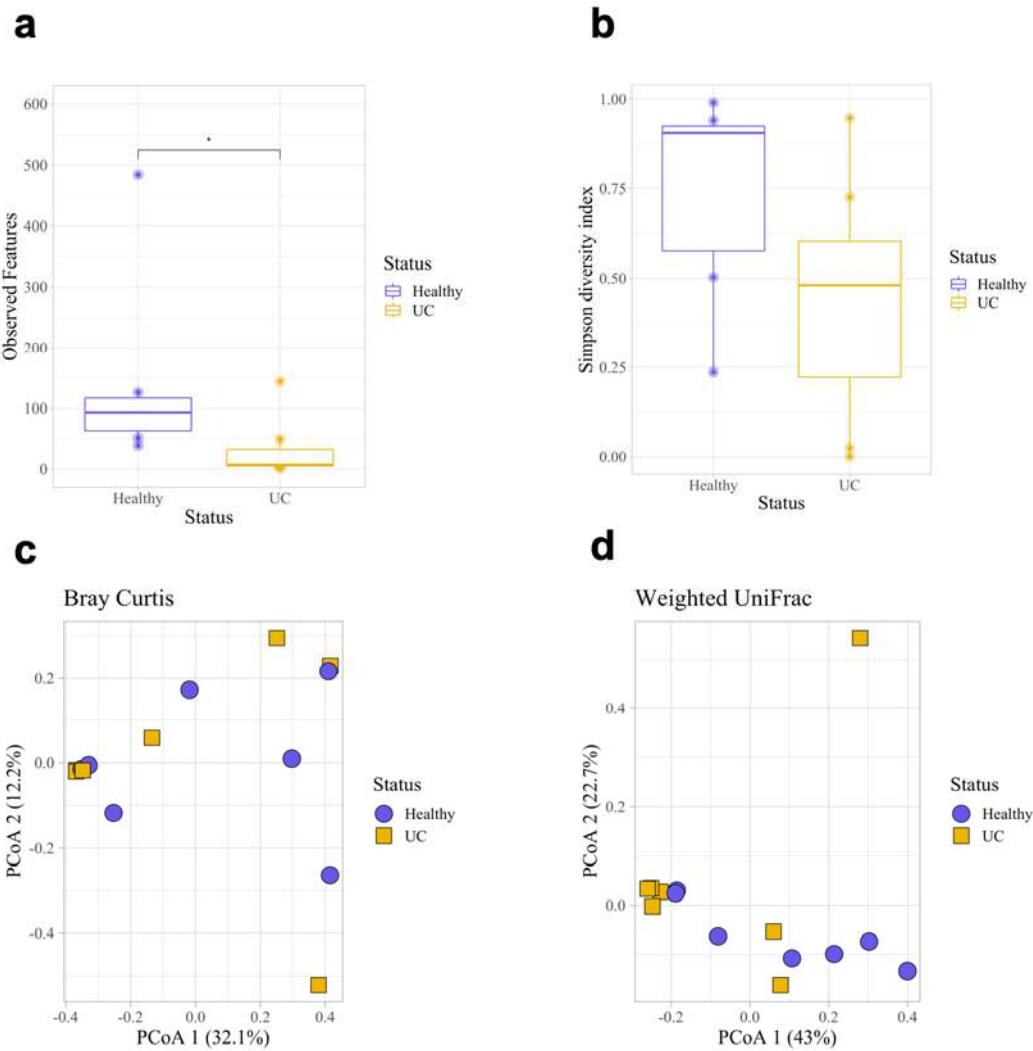
916 **Supplemental Figure 3: DNA Concentrations and 16S reads by urine collection method. (a)**

917 Urine DNA concentrations and (b) 16S reads in dogs with UC sampled via free catch or non-free
918 catch methods (cystoscopy, catheterization). DNA concentrations and 16S reads were greater,
919 although not significantly, in mid-stream free catch urine samples (DNA concentration:
920 Wilcoxon Test, $p = 0.778$; 16S reads: two-sample t-test, $p = 0.067$). Error bars denote standard
921 error.

922

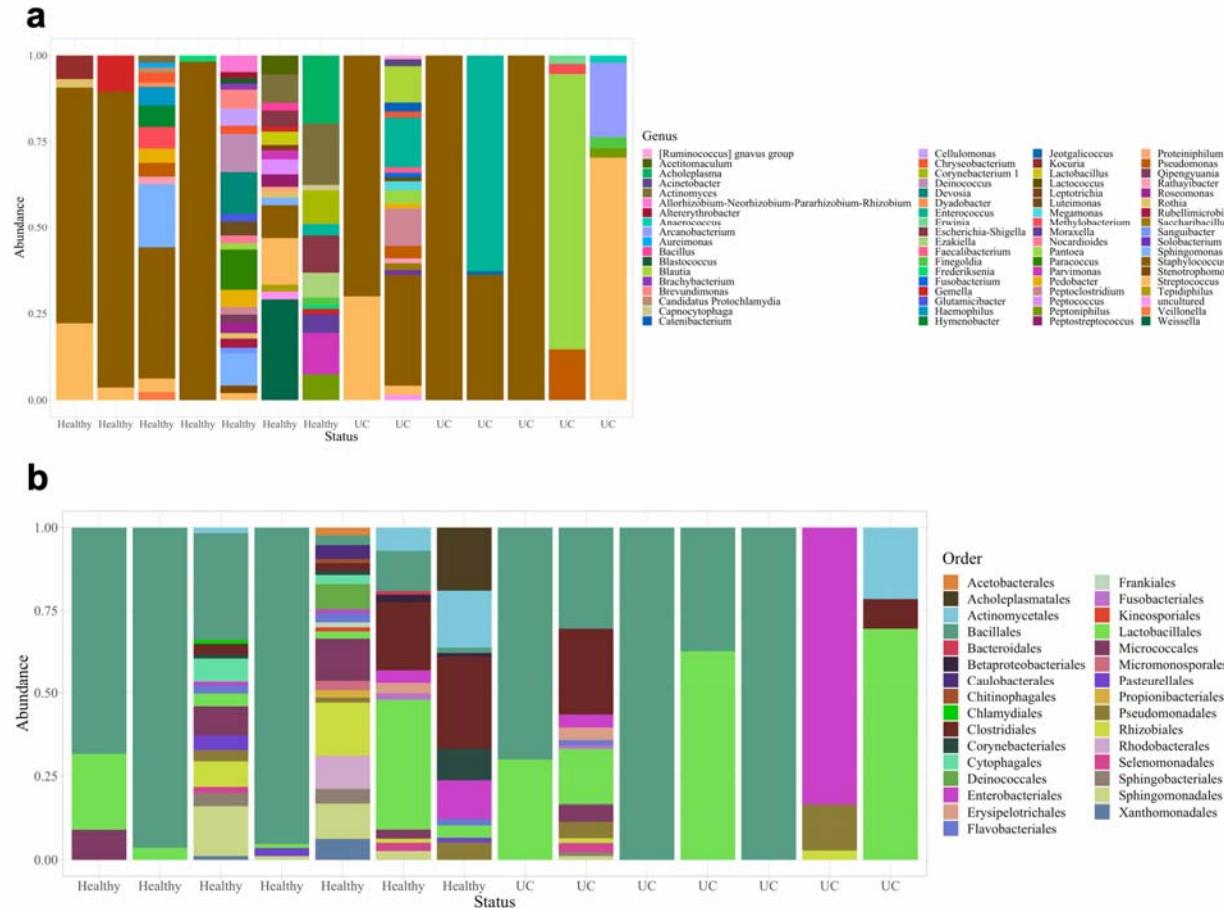
923

924


925

926

927


928

929

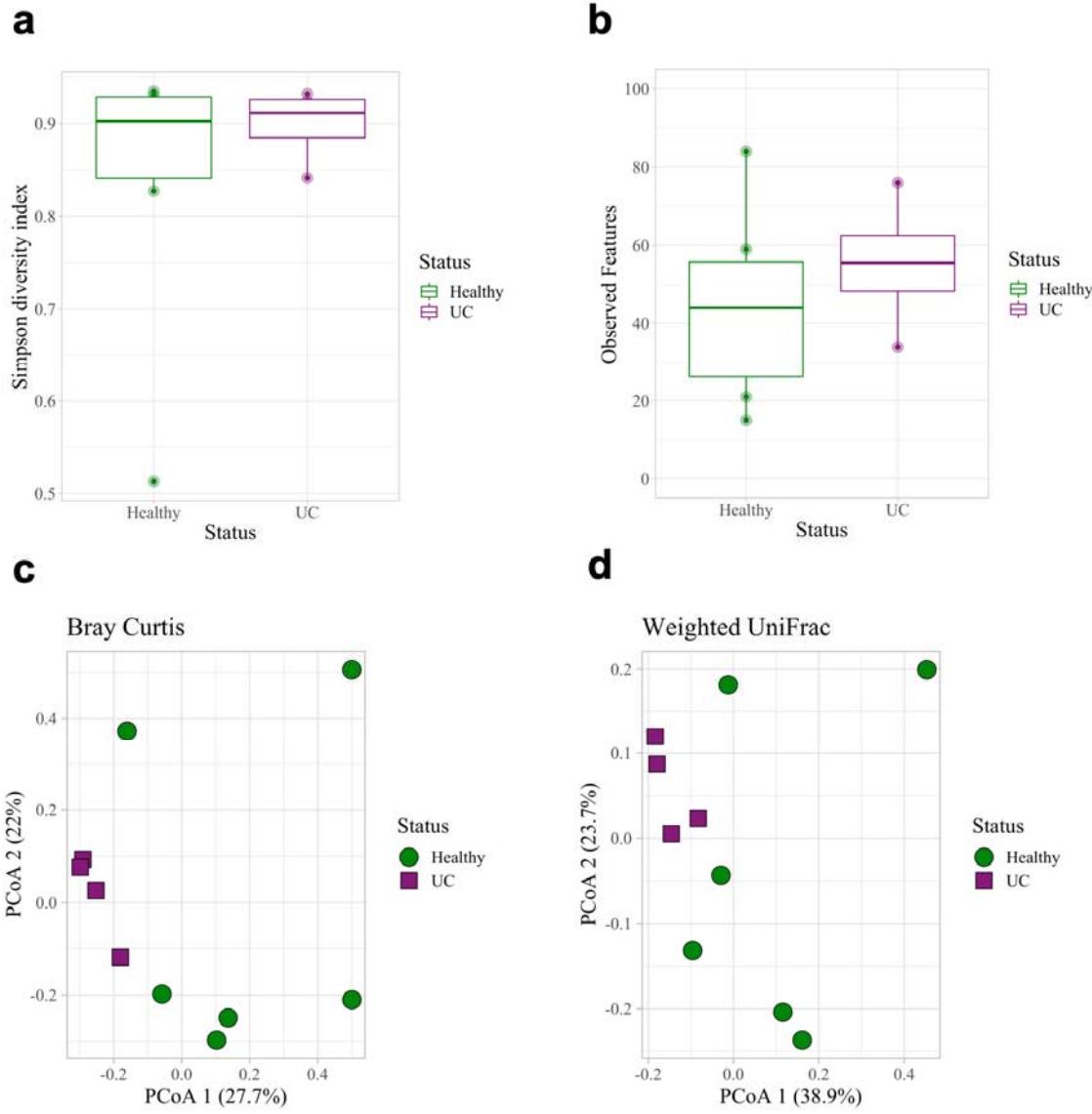
930

931 **Supplemental Figure 4: Urine microbial diversity and composition in dogs with and**
932 **without UC.** Dogs with UC had lower microbial diversity compared to healthy dogs based on
933 (a) Observed Features (richness) and the (b) Simpson diversity index; however, only Observed
934 Features was statistically significant (Kruskal-Wallis: Observed Features, $p = 0.025$; Simpson, p
935 $= 0.133$). Microbial composition did not differ significantly based on (c) Bray Curtis or (d)
936 Weighted UniFrac distance matrices (PERMANOVA: Bray Curtis, $p = 0.888$; Weighted
937 UniFrac, $p = 0.168$). Error bars denote standard error. Statistical significance is represented by
938 stars: * < 0.05 , ** < 0.001 , *** < 0.0001

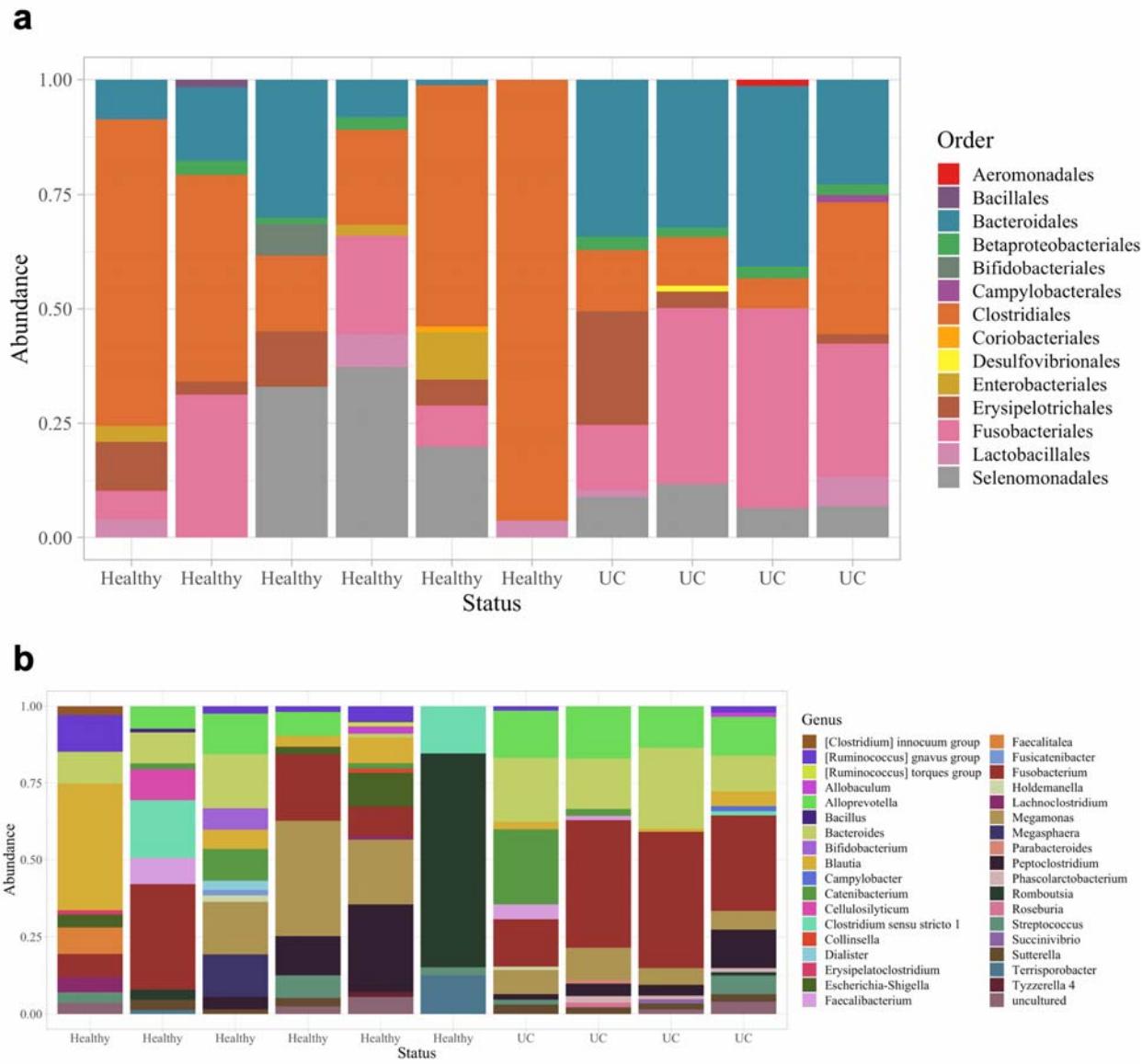
939

940 Supplemental Figure 5: Taxa bar plots of urine samples in dogs with and without UC. (a)

941 Microbial genera and (b) order relative abundances.


942

943


944

945

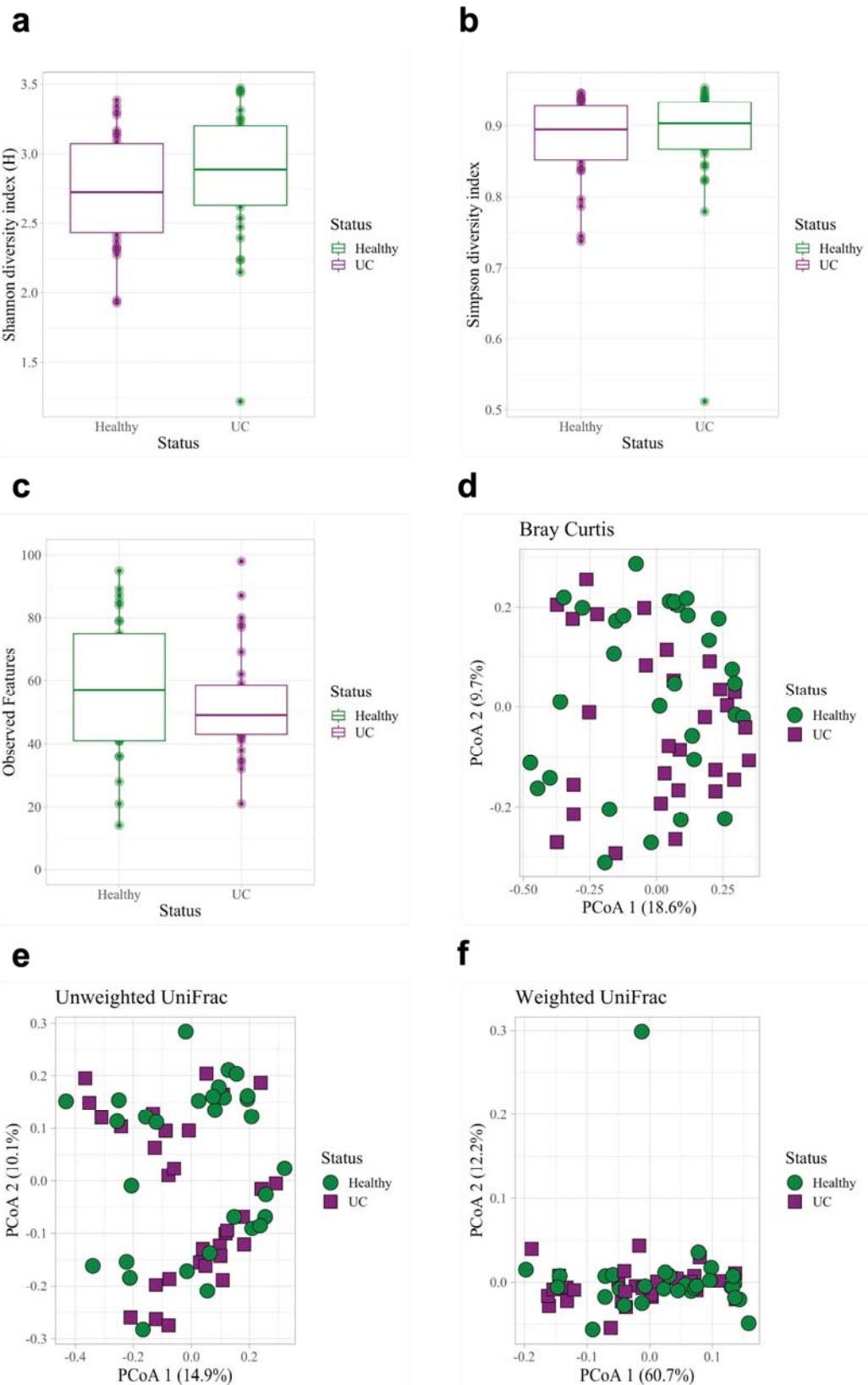
046

949 **Supplemental Figure 6: Fecal microbial diversity and composition in dogs with and**
950 **without UC.** Fecal microbial diversity did not differ significantly in dogs with (n=4) or without
951 (n=6) UC based on **(a)** Observed Features (richness) and the **(b)** Simpson diversity index
952 (Kruskal-Wallis: Observed Features, $p = 0.67$; Simpson, $p = 0.522$). Microbial composition also
953 did not differ significantly based on **(c)** Bray Curtis or **(d)** Weighted UniFrac distance matrices
954 (PERMANOVA: Bray Curtis, $p = 0.06$; Weighted UniFrac, $p = 0.06$). Error bars denote standard
955 error.

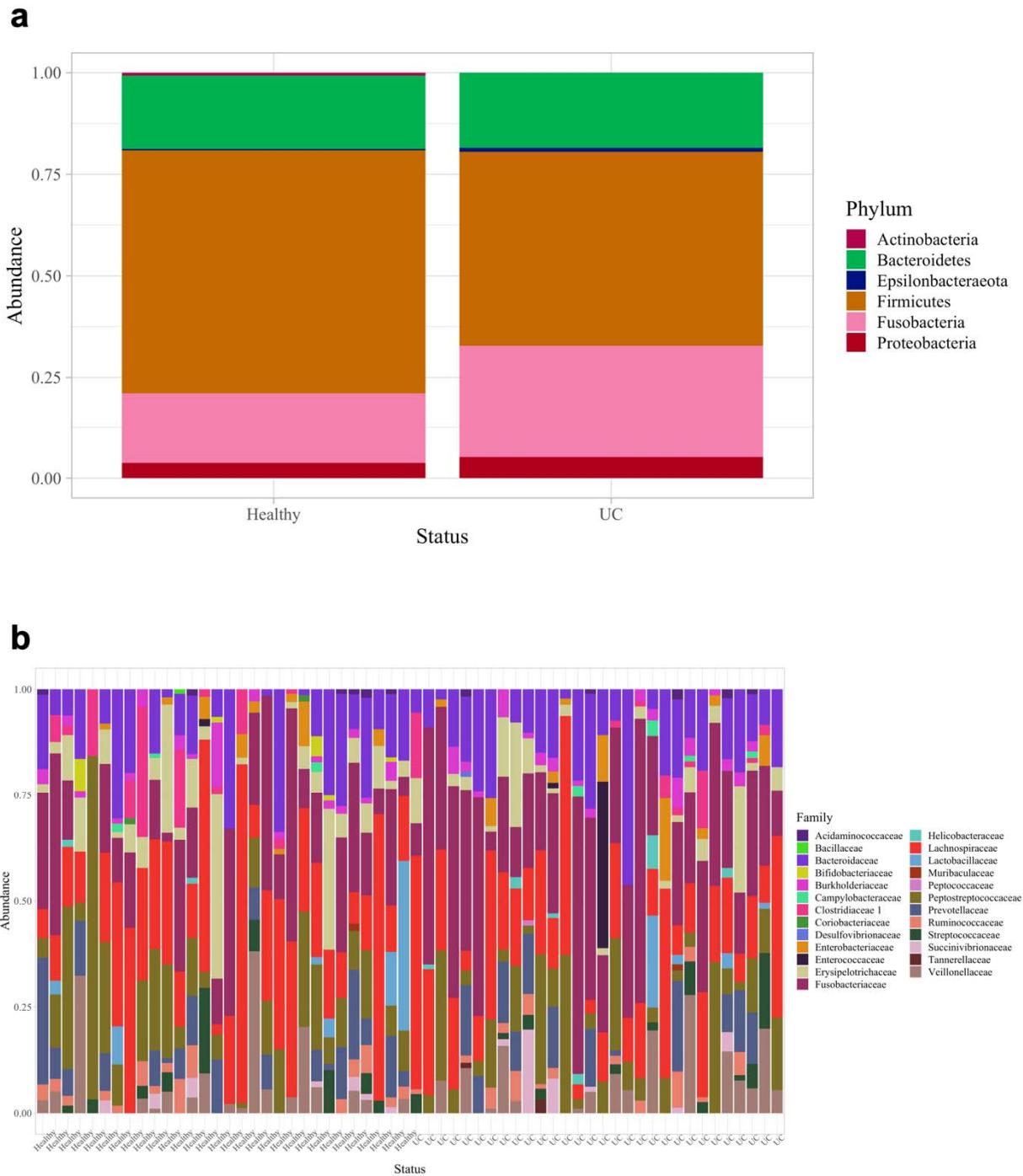
956

957 **Supplemental Figure 7: Taxa bar plots of fecal samples. (a) Microbial order and (b) genera**

958 relative abundances in dogs with (n=4) and without UC (n=6).


959

960


961

962

963

965 **Supplemental Figure 8: Fecal microbial diversity and composition.** We compared fecal
966 microbiota in dogs with UC ($n = 30$) and sex-, age-, and breed-matched healthy controls ($n =$
967 30). There were no significant differences in microbial diversity by (a) Shannon (Kruskal-Wallis,
968 $p = 0.214$), (b) Simpson (Kruskal-Wallis, $p = 0.506$), or (c) Observed Features (Kruskal-Wallis,
969 $p = 0.336$). There were also no significant differences in microbial composition by (d) Bray
970 Curtis (PERMANOVA, $p = 0.468$), (e) Unweighted UniFrac (PERMANOVA, $p = 0.134$), or (f)
971 Weighted UniFrac distance matrices (PERMANOVA, $p = 0.0819$).
972

973

974 **Supplemental Figure 9: Fecal microbial taxa bar plots.** Relative abundances of fecal
975 microbiota at the **(a)** phyla and **(b)** family levels from dogs with UC (n = 30) and age-, sex-, and
976 breed-matched healthy controls (n = 30).