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Abstract 
We analysed DNA methylation data from 30 datasets comprising 3,474 individuals, 19 tissues and 8 

ethnicities at CpGs covered by the Illumina450K array. We identified 4,143 hypervariable CpGs (“hvCpGs”) 

with methylation in the top 5% most variable sites across multiple tissues and ethnicities. hvCpG methylation 

was influenced but not determined by genetic variation, and was not linked to probe reliability, epigenetic 

drift, age, sex or cell heterogeneity effects.  hvCpG methylation tended to covary across tissues derived from 

different germ-layers and hvCpGs were enriched for associations with periconceptional environment, 

proximity to ERV1 and ERVK retrovirus elements and parent-of-origin-specific methylation. They also showed 

distinctive methylation signatures in monozygotic twins. Together, these properties position hvCpGs as 

strong candidates for studying how stochastic and/or environmentally influenced DNA methylation states 

which are established in the early embryo and maintained stably thereafter can influence life-long health and 

disease.  
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Introduction 

DNA methylation (DNAm) plays a critical role in mammalian development, underpinning X-chromosome 

inactivation, genomic imprinting, silencing of repetitive regions and cell differentiation1. DNAm states that 

vary between individuals have been a focus of Epigenome-Wide Association Studies (EWAS) due to their 

potential to drive phenotypic variation2,3. Factors influencing interindividual methylation differences include 

genetic variation4,5, cell heterogeneity effects6,7, sex8,9, age10,11, and pre- and post- natal environment12–14. 

Growing evidence from studies investigating DNAm patterns in multiple tissues suggests that these factors 

have both shared and tissue-specific influences on DNAm variation12,15–18.   

In this study, we sought to identify loci with high interindividual methylation variability in multiple tissues 

and ethnicities, and to gain insights into the biological mechanisms influencing methylation variation. By 

using a large number of diverse sample types, we reasoned that identified loci would be robust to tissue-

specific drivers of methylation variability such as those mentioned above, and to dataset-specific technical 

artefacts, including batch effects and poorly performing probes19–22. We began by characterising 

hypervariable CpGs (‘hvCpGs’) covered on the widely used Illumina HumanMethylation450K (hereafter 

‘Illumina450K’) array23 that showed high interindividual variability across multiple datasets covering 19 

different tissue/cell types and 8 ethnicities spanning a wide range of ages. We next investigated the influence 

of genetic variation, sex, age and probe reliability on methylation variability at hvCpGs. We additionally 

determined whether methylation states at hvCpGs covary across tissues by exploring their overlap with loci 

at which methylation varies between individuals but is correlated across tissues within a given individual, 

termed systemic interindividual variation or ‘SIV’. Since loci showing SIV have been linked to variable 

methylation establishment before germ-layer differentiation24–27, we further explored evidence for early 

embryo methylation at hvCpGs by determining their overlap with loci that show unique methylation patterns 

in MZ twins25,28 and with loci that show sensitivity to the periconceptional environment29. We assessed the 

genomic context of hvCpGs by exploring their association with multi-tissue histone marks and their proximity 

to transposable elements and regions of parent-of-origin-specific methylation. Finally, we probed putative 

functional roles of hvCpGs by interrogating EWAS trait associations and by performing gene ontology 

enrichment analysis.  

 

Our curated list of hvCpGs show evidence of establishment in the early embryo and of correlation across 

tissues. They therefore serve as a useful resource for studying the influence of early environmental and/or 

stochastic effects on DNAm in diverse tissues and ethnicities, and for studying the impact of DNAm 

differences on life-long health and disease.  
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Materials and Methods 

Methylation data used for identifying hvCpGs  

Publicly available methylation data were downloaded from The Cancer Genome Atlas (TCGA) 

(https://www.cancer.gov/tcga) and the Gene Expression Omnibus (GEO)30 databases as methylation Beta 

matrices (Supplementary Tables 1 and 2). TCGA methylation data were downloaded using the TCGAbiolinks 

(v2.18.0) R package31–33, selecting only samples annotated as ‘Solid Tissue Normal’. Of the 33 TCGA datasets, 

10 were selected for our study as these had methylation data in at least 20 samples. GEO methylation Beta 

matrices were downloaded from 11 unique accessions using the GEOquery (v2.58.0) R package34. Where 

available, detection p-values (measuring signal intensity), and metadata on age, sex, and disease status were 

also downloaded.  We split GEO beta matrices into separate groups based on ethnicity and tissue/cell type 

and refer to the resulting 17 separated groups as ‘datasets’. Non-public datasets internal to this study include 

IlluminaEPIC35 array data from whole blood samples from Gambian 8-9-year olds (ISRCTN1426677136) and 

Illumina450K data from Bornean and Kenyan saliva samples37 (Supplementary Table 3). For IlluminaEPIC 

datasets we selected probes covered on the Illumina450K array. In total, we analysed 30 datasets (3 internal, 

10 TCGA and 17 GEO) that covered 8 ethnicities and 19 different tissue/cell types (Supplementary Table 4). 

Methylation data processing 

For each methylation dataset used in our main analysis, we used the ChAMP (v2.20.1) R package38  to remove: 

i) probes with a detection p-value > 0.01 in > 5% samples (where detection p-values were available), ii) probes 

mapping to multiple genomic positions39, iii) probes mapping to the X and Y chromosomes, and iv) single 

nucleotide polymorphism (SNP)-related probes identified by Zhou et al.39  that contain SNPs (MAF > 1%) 

within 5 bp of the CpG interrogation site and/or SNPs effecting probe hybridisation. Where ethnicity 

information was available, we removed probes with population-specific SNPs identified by Zhou et al. using 

1000 Genomes populations (MAF > 1%), otherwise we removed the General Recommended Probes40. Probes 

that had a missing value in any of the samples in a specific dataset were removed from that dataset. To 

reduce technical biases introduced by differing type I and type II probe designs on the Illumina450K and 

IlluminaEPIC arrays, we applied Beta Mixture Quantile normalisation (BMIQ)41 to all datasets using the 

champ.norm() function from the ChAMP R package. All datasets were adjusted for the first 10 principal 

components (PCs) of variation to account for methylation variability driven by known and/or unknown 

technical artefacts (such as plate and array position) and cell heterogeneity. Methylation values were 

adjusted for these 10 PCs, age (where available) and sex by taking the residuals from a linear regression on 

methylation M values, where M is defined as log2(beta/1-beta). Finally, for each probe, we removed outlier 

methylation values, defined according to Tukey’s outer fences (Q1 – 3*IQR and Q3 + 3*IQR). The hg19 

reference genome was used throughout all relevant analyses as the Illumina450K array metadata manifest 

uses this version. 
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Identification of hvCpGs 

For each dataset, we identified CpGs within the top i% of CpGs by methylation Beta variance in  ≥ j% of 

datasets in which the CpG was covered,  for increasing values of i and j. We additionally required that selected 

CpGs were covered in a minimum of 15 datasets (Supplementary Fig. 1A). To define the ethnicity- and tissue-

independent hypervariable CpGs (hvCpGs) explored in this paper, we set the threshold at i, j = 5,65 

(Supplementary Fig. 1B).  

 

Probe reliability 

Technically unreliable probes were identified by examining intra-class correlation coefficients (ICCs) from two 

studies. The first study compared methylation consistency between the Illumina450K and IlluminaEPIC 

platforms using 365 blood DNA samples, defining poor quality probes as those with ICC ≤ 0.422. The second 

study examined methylation reliability between technical replicates from 265 African American peripheral 

blood leukocyte samples on the Illumina450K platform, defining poor quality probes as those with ICC ≤ 

0.3742. We defined technically unreliable probes as those reported as being poor quality in at least one of 

these two studies (Supplementary Table 5). 

Methylation quantitative trait locus (mQTL) analysis 

mQTL summary statistics from the Genetics of DNA Methylation Consortium (GoDMC), a meta-GWAS of 36 

European blood cohorts (N = 27,750) generated using imputed genotype data (~10 million SNPs) and 

~420,000 CpGs43 were used for this analysis. Significance thresholds of p < 1x10-8 and p < 1x 10-14 were applied 

for cis and trans mQTLs respectively43, giving 271,724 significant SNP-CpG associations comprising 190,102 

CpGs and 224,648 SNPs. The variance in DNA methylation explained by a given mQTL was estimated as 2 ∗ 𝛽 

* MAF(1-MAF), where 𝛽 is the effect size and MAF is the minor allele frequency44. 

 

Monozygotic twin discordance  

We analysed CpGs identified as being ‘equivalently variable’ between MZ co-twins and between unrelated 

individuals (‘evCpGs (blood)’) by Planterose Jiménez et al.45 using Illumina450K data in whole blood. 154 of 

these evCpGs replicated in adipose tissue from 97 MZ twin pairs (‘evCpGs (blood & adipose)’). evCpGs are 

candidates for methylation states that are established stochastically after MZ twin splitting.  

 

Control CpG sets  

Distribution-matched controls  

hvCpGs are enriched for intermediate methylation states (Supplementary Fig. 2). This property of 

hvCpGs has the potential to bias several downstream analyses, for example because this can affect 

power to find association with phenotypes in EWAS. We therefore constructed a set of CpGs with 

similar distribution of methylation Beta values to hvCpGs in the Caucasian blood dataset 
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(‘Blood_Cauc’, Supplementary Table 1). This dataset was chosen as it has the highest number of post-

natal samples and because several downstream analyses leverage published studies that used blood 

methylation data. For each of the 4,108 hvCpGs covered in the ‘Blood_Cauc’ dataset, a two-sided 

Kolmogorov-Smirnov (KS) test (ks.test() in R) was used to test for the divergence in methylation Beta 

distributions between the hvCpG and technically reliable (see ‘Probe reliability’, Methods) 

background probes, selecting the CpG with the greatest p-value  (requiring a p-value > 0.1). In total, 

3,566 hvCpGs were each matched to a control CpG (‘distribution-matched controls’, Table 1, 

Supplementary Fig. 3).    

 

mQTL-matched controls  

To determine the degree to which hypervariability at hvCpGs is explained by mQTL effects, each 

hvCpG was matched to a CpG amongst those reported in the GoDMC meta-analysis43. Controls were 

selected to have i) the same number of mQTL associations, ii) a similar mean % variance explained 

by mQTL (across all significant mQTL) and iii) presence in at least as many datasets as the hvCpG 

(Table 1, Supplementary Fig. 4). 

Identification of hvCpG clusters  

 
hvCpG clusters were identified by considering the decay of methylation correlation with distance at hvCpGs. 

To do this, we calculated the average pairwise Spearman correlation (𝜌) across hvCpG pairs with inter-CpG 

distance falling within 100 bp bins, for datasets with at least 100 samples (Supplementary Fig. 5B).  The 

distance threshold for defining hvCpG clusters was chosen to be 4,000 bp as this is approximately the point 

at which pairwise correlations levelled out (Supplementary Fig. 5B). In total, 2,219 (54%) hvCpGs fell into 716 

clusters comprising at least 2 CpGs, with the remaining 1,924 (46%) hvCpGs falling outside of these clusters 

(Supplementary Fig. 5C). In 563 (79%) of these clusters, the average Spearman correlation (𝜌) across hvCpG 

pairs was > 0.5 (Supplementary Fig. 5D). 

‘De-clustering’ of hvCpGs  

To account for the possibility that our analyses may be biased by the non-random distribution and inter-

dependence of hvCpGs in CpG clusters, we generated a de-clustered set of hvCpGs in which no CpG was 

within 4 kb of another CpG. 2,640 de-clustered hvCpGs were generated by randomly selecting one CpG from 

each of the clusters and then including all ‘singleton’ CpGs falling outside of clusters.  

Age stability  

To examine temporal stability of hvCpGs we used published intra-class correlation coefficients (ICCs) for 

probes on the Illumina450K array determined using white blood cell samples taken ~6 years apart46. The ICC 

scores compare within-sample variability (across the two time-points) to between-sample variability, with 
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ICC ≥ 0.5 defined as temporally stable by Flanagan et al.46
.  Because methylation data from the Flanagan et 

al.  dataset were publicly available (GSE61151), we compared ICC scores at hvCpGs to those at CpGs with 

similar methylation Beta distributions to hvCpGs at the first time point (Supplementary Fig. 6A) to ensure 

that high hvCpG ICC scores were not biased by the high variability of hvCpGs. These CpGs were matched to 

each hvCpG using the same Kolmogorov-Smirnov method detailed in ‘Distribution-matched controls’ but 

using the Flanagan et al. methylation data instead the ‘Blood_Cauc’ dataset44.  Longer-term susceptibility to 

epigenetic drift was examined by determining the proportion of hvCpGs that overlap a published set of 6,108 

CpGs identified using whole blood Illumina450K data from 3,295 individuals aged 18 to 88 years that show 

an increased methylation variability with age of more than 5% every 10 years11 (Supplementary Fig. 6B).  

 

Published CpG sets used to investigate early embryo establishment 

We used the following publicly available data to examine evidence that methylation states at hvCpGs are 

established in the early embryo. See Table 2 for a summary of these datasets.  

Systemic Interindividual Variation (‘SIV’) CpGs 

SIV-CpGs were collated from four published datasets that used either whole genome bisulfite 

sequencing (WGBS) or Illumina450K data from multiple tissues derived from different germ layers to 

identify CpGs displaying high interindividual variation and low intra-individual (cross-tissue) variation. 

These properties are suggestive of variable methylation establishment before germ layer 

differentiation24–27. Further details on the four SIV screens used in this study are given in Supplementary 

Table 6. 

Epigenetic Supersimilarity (‘ESS’) CpGs 

Epigenetic supersimilarity (ESS) loci were identified by van Baak et al.25 using Illumina450K data from 

adipose tissue from 97 MZ and 162 dizygotic (DZ) twin pairs47. In that study, 1,580 ESS sites were 

identified within the top decile of methylation variance, with an interindividual methylation range > 0.4 

and greater-than-expected concordance in MZ twins vs DZ twins. This supersimilarity is attributed to 

methylation establishment before MZ twin splitting.  

MZ twinning CpGs 

Van Dongen et al.48 performed an epigenome-wide association analysis on each of 6 cohorts with 

methylation data from both MZ and DZ twins (5 blood and 1 buccal) to identify probes differentially 

methylated between MZ twins and DZ (dizygotic) twins. A meta-analysis was then performed using the 

blood datasets to identify 834 Bonferroni-significant differentially methylated CpGs, which we refer to 

as ‘MZ twinning CpGs’.  
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Season of conception (‘SoC’) CpGs  

Silver et al.29 used Illumina450K data to identify 259 CpGs associated with season-of-conception (‘SoC’) 

in Gambian 2-year olds with a minimum methylation difference of 4% between the peaks of the 

Gambian rainy and seasons.   

Transposable elements and telomeres 

Locations of ERV1 and ERVK transposable elements determined by RepeatMasker were downloaded 

from the UCSC annotations repository as previously described26. Telomere coordinates were 

downloaded from the UCSC hg19 annotations repository. (http://genome.ucsc.edu).  

Imprinted genes, parent-of-origin-specific methylation (PofOm) 

Imprinted genes classified as ‘predicted’ or ‘known’ were downloaded from 

https://www.geneimprint.com.  Parent-of-origin-specific CpGs were identified by Zink et al.49 using 

WGBS data from peripheral blood from Icelandic individuals.   

 

SIV power calculation 

To assess power to detect SIV in previous screens with small numbers of samples, we analysed the 4-

individual multi-tissue dataset used by van Baak et al.25,50. We downloaded this dataset from GEO 

(GSE50192), selecting the same tissues (gall bladder, abdominal aorta sciatic nerve) used by van Baak et al.25.  

For each of the 1,042 SIV-CpGs reported by van Baak et al.25, we generated methylation values for three 

tissues for each simulated individual by randomly sampling from a 3-dimensional multivariate normal 

distribution, with mean equal to the mean of each tissue’s sampled methylation values at the CpG, and 

standard deviation specified by a 3x3 cross-tissue co-variance matrix of the sampled methylation values at 

the CpG. For each SIV-CpG, we sampled four simulated individuals and determined if this random sample 

met the SIV definition specified by van Baak et al.25, repeating this process 1000 times to give a power 

estimate (Supplementary Fig. 7). 

 

Processing and analysis of fetal multi-tissue dataset  

The fetal multi-tissue dataset comprised 60 samples, corresponding to 30 individuals each with methylation 

data from two tissues derived from different germ layers (ectoderm: brain, spinal cord, skin; mesoderm: 

kidney, rib, heart, tongue; endoderm: intestine, gut, lung, liver). These fetal tissues were obtained from the 

‘Moore Fetal Cohort’ from the termination of pregnancies at Queen Charlotte’s and Chelsea Hospital 

(London, UK). Ethical approval for obtaining fetal tissues was granted by the Research Ethics Committee of 

the Hammersmith, Queen Charlotte’s and Chelsea and Acton Hospitals (2001/6028). DNA was extracted from 

fetal tissues using the AllPrep DNA/RNA/Protein Mini Kit (Qiagen) and bisulfite conversion was carried out 

using EZ DNA Methylation Kits (Zymo Research). Samples were then processed using the Illumina 
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InfiniumEPIC array. Derived methylation data were imported as .idat files into R and analysed using the meffil 

R package (v 1.1.2)51 with default parameters. Briefly, methylation predicted sex was used to remove 2 sex 

outliers (samples with methylation > 5 SDs from mean). Next, 1 sample was removed for which the predicted 

median methylation signal was more than 3 SDs from the expected signal, leaving 57 samples.  515 probes 

with detection-p-value value > 0.1 and 307 probes with bead number < 3 in more than 20% of samples 

respectively were removed. Array data were then corrected for dye-bias and background effects and 

functional normalisation was applied, specifying the number of PCs to be 7 (the PC at which the variance 

explained at control probes levelled out).  Next, the ChAMP (v2.20.1) R package38 was used to remove cross-

hybridising and multi-mapping probes, probes on XY chromosomes, and SNP-related probes, leaving 746,492 

CpGs. We selected the 452,016 probes that overlapped the Illumina450K array and the 27 individuals for 

which both tissue samples passed quality control: 9 individuals with methylation data from endoderm and 

mesoderm, 10 individuals with methylation data from endoderm and ectoderm and 8 individuals with 

methylation data from mesoderm and ectoderm (see Supplementary Table 7). Methylation was then 

adjusted for predicted sex and batch using a linear model. For the 9 individuals with available endoderm-

mesoderm samples we calculated the Pearson r between germ layer methylation values for each hvCpG, and 

repeated this for individuals with endoderm-ectoderm and mesoderm-ectoderm samples. The inter-germ 

layer correlation was then defined as the average Pearson r across these three comparisons. Following van 

Baak et al.25 , interindividual variation was determined by calculating the mean methylation value across both 

tissues within each of the 27 individuals, before taking the range of these means for every CpG. 

Chromatin states at hvCpGs  

Chromatin states were predicted by a ChromHMM 15-state model52 using Chromatin Immunoprecipitation 

Sequencing (ChIP-Seq) data generated by the Roadmap Epigenomics Consortium53. These data were 

downloaded for H1 ESCs (E003), fetal brain (E071), fetal muscle (E090), fetal small intestine (E085), foreskin 

fibroblasts (E055), adipose (E063) and primary mononuclear cells (E062) from the Washington University 

Roadmap repository. Chromatin states were collapsed into 8 states for clarity (Supplementary Table 8).  

 

EWAS trait associations at hvCpGs  

hvCpG trait associations were determined using the EWAS catalogue (http://ewascatalog.org/), which details 

significant results (p-value < 1 x 10-4) from published EWAS studies.  Considering only those traits for which 

at least 1% of hvCpGs overlapped associated CpGs (highlighted in green in Supplementary Table 9), we first 

extracted the array background CpGs overlapping the ‘Blood_Cauc’ dataset that were associated with each 

trait. We then calculated the proportion of these CpGs that comprised hvCpGs and blood distribution-

matched controls (Table 1). Traits that were significantly enriched or depleted for hvCpGs relative to controls 

were those for which bootstrapped 95% confidence intervals did not overlap.  
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Gene ontology term enrichment analysis  

Gene Ontology (GO) term enrichment analysis was performed using the missMethyl R package (v1.24.0)54 

using the gometh() function, setting arguments sig.cpg = hvCpGs, all.cpg = array.background, sig.genes = T, 

collection = “GO”, array.type = “450K” and prior.prob = T to adjust for variation in the number of 450K probes 

mapping to each gene.   

Bootstrapped confidence intervals  

All bootstrapped 95% confidence intervals were calculated over 1,000 bootstrap samples.  
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Results 

Identification of hypervariable CpGs  

We analysed methylation data from 3,474 individuals across 30 datasets (28 Illumina450K and 2 EPIC array) 

comprising 19 unique tissue/cell types and 8 ethnicities covering a range of ages (Supplementary Tables 1-

4). We focussed on CpGs covered by the Illumina450K array and began by excluding probes with poor 

detection p-values, cross-hybridising probes, probes on the X and Y chromosomes and probes associated 

with known SNPs (see Methods for details).  

We aimed to identify CpGs with consistently high interindividual variation in methylation across diverse 

datasets, so minimising the effects of dataset-specific drivers of variability. We reasoned that removal of 

unmeasured technical, batch and cell heterogeneity effects within each dataset would maximise power to 

detect true biological variation across datasets and therefore adjusted all methylation values for the first ten 

principal components (PCs) of methylation variation, as well as sex (in datasets with both sexes) and age 

(where available). 

Our strategy for identifying tissue- and ethnicity- independent hypervariable CpGs (‘hvCpGs’) is summarised 

in Fig. 1 and detailed in ‘Methods’. We first selected CpGs within the top x% of each dataset by methylation 

Beta variance, and then took the intersection of these CpGs across an increasing proportion of covered 

datasets, ensuring that each CpG was present in at least 15 datasets (Supplementary Fig. 1A). Using this 

approach, we identified 4,330 hvCpGs, defined as CpGs with methylation Beta variance in the top 5% of all 

CpGs in at least 65% of datasets for which that CpG passed QC criteria (Table 1). This definition met our 

required criteria of selecting CpGs that are highly variable in a large number of tissues and ethnicities (median 

[IQR] for each hvCpG = 13[10,15] and 7[6,7] respectively; Supplementary Fig. 1B). Note that no CpGs are 

expected to meet these criteria if the top 5% most variable CpGs in each dataset are entirely independent of 

those in the others. While re-defining these thresholds will change the set of hvCpGs, we noted that ~80% of 

identified hvCpGs overlapped with an alternative set obtained when selecting CpGs with methylation Beta 

variance in the top 20% in at least 90% of datasets (Supplementary Fig. 1C), meaning that the majority of 

hvCpGs are within the top 20% of variable loci in almost all covered datasets.  

We next compared the 4,330 hvCpGs with an alternative set obtained using the same method but without 

prior adjustment of each dataset for the first ten PCs. This alternative set contained only 1,302 CpGs, which 

confirmed our intuition that PC adjustment maximises power to identify true dataset-independent 

hypervariability by removing unwanted technical variation (Supplementary Fig. 8). Finally, we used reported 

measures of methylation variability among technical replicates22,42 to remove 187 technically unreliable 

probes (see Methods), leaving a final set of 4,143 hvCpGs (Table 1; Supplementary Table 5).  
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hvCpGs are enriched for intermediate methylation values in all datasets compared to the array background 

(Supplementary Fig. 2; see Table 1 for definition of array background) and are distributed throughout the 

genome (Supplementary Fig. 5A), with 2,219 (54%) falling within 716 ‘clusters’ containing two or more 

hvCpGs separated by < 4 kb (Supplementary Fig. 5C). To account for the possibility that our downstream 

analyses may be biased by these distributional properties, we generated a set of controls that were 

distribution-matched in a whole blood dataset (Supplementary Fig. 3) and a set of ‘de-clustered hvCpGs’ 

(Table 1, ‘Methods’).   

 

hvCpG variability is not driven by age, sex, or cell heterogeneity 

Evidence from multiple studies suggests that methylation variability can increase with age (termed epigenetic 

drift)11,55, raising the possibility that cross-dataset hypervariability of hvCpGs is driven in part by a large 

proportion of adult/elderly samples. However, 3,815 (92%) out of 4,122 hvCpGs with methylation measured 

in cord blood and/or buccal samples from infants showed methylation variance within the top 5% of CpGs in 

those datasets (Supplementary Table 10), suggesting that high variability at hvCpGs arises in early life.  We 

further probed age stability of hvCpGs by leveraging two studies of age effects in blood. The first study 

reported methylation consistency in individuals sampled at two time points six years apart46. The temporal 

stability of hvCpGs was significantly greater than that of controls with similar methylation Beta distributions 

to hvCpGs at the first time point (Wilcox paired signed-rank test p-value < 5.7 x10-81), with 95% of hvCpGs 

considered temporally stable versus 89% of controls (Supplementary Fig. 6A). The second measured 

epigenetic drift in a cross-sectional study of 3,295 whole blood samples from individuals aged 18 to 8811. Only 

7% of hvCpGs overlapped CpGs that show increased methylation variability with age, compared to 16.5% of 

blood distribution-matched controls (Supplementary Fig. 6B). This suggests that that the majority of hvCpGs 

are stable over a broad time period in whole blood and further supports the notion that hypervariability of 

hvCpGs in multiple datasets is not an artefact of epigenetic drift effects. 

While methylation values were pre-adjusted for sex in all datasets where sex was available as a covariate (24 

out of 30 datasets), we further investigated the potential for sex effects to drive methylation variance by 

considering the four female-only datasets. 4,102 (99%) of the 4,136 hvCpGs covered in any of these datasets 

had methylation variance among the highest 5% in at least one (Supplementary Table 10). Furthermore, we 

found no significant difference in mean methylation at hvCpGs between male and females in a diverse set of 

tissues (Supplementary Fig. 6C).  Finally, 3,548 (96%) of the 3,678 hvCpGs covered in purified CD4+ and CD8+ 

datasets had methylation variance among the top 5% in at least one dataset (Supplementary Table 10).  

Together, these data strongly suggest that variability at hvCpGs is not driven by sex, age, or cell heterogeneity 

effects.   

 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 18, 2021. ; https://doi.org/10.1101/2021.12.17.473110doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.17.473110
http://creativecommons.org/licenses/by/4.0/


12 
 

Hypervariability is not driven by genetic variants 

Genetic variation is an important driver of interindividual methylation differences4,5. There is evidence that 

mQTLs can be shared across different tissues15,16,56,57 and ethnic groups5, raising the possibility that ‘universal’ 

(multi-tissue and multi-ethnic) mQTLs might drive cross-dataset variability at hvCpGs. We therefore 

investigated the potential influence of methylation quantitative trait loci (mQTL) on methylation variability 

at hvCpGs by leveraging a recent large meta-GWAS (36 cohorts, n = 27,750 individuals) that identified 

common genetic variants associated with methylation in blood from Europeans43, reasoning that by 

definition ‘universal’ mQTLs would be included in this meta-analysis.  

We considered multiple methylation variance thresholds (5%, 10% and 20%) and observed a positive 

relationship between hypervariability and both the probability of a significant mQTL association and the 

mean mQTL effect size (Fig. 2A).  Amongst hvCpGs, there were 6,985 cis mQTL (covering 3,635 hvCpGs and 

6,417 SNPs) and 971 trans mQTL (covering 713 hvCpGs and 753 SNPs). Overall, 3,722 (90%) of hvCpGs were 

reported to have at least one (cis or trans) mQTL association that were estimated to explain, on average, 4% 

of methylation variance (Fig. 2B). This suggests that additive genetic effects explain a small to moderate 

proportion of methylation variability at these hypervariable loci in blood. Noting that the statistical power to 

detect mQTL associations will be greater at loci that are inherently variable, we matched hvCpGs to CpGs 

with the same number of mQTL associations and similar average % variance explained by mQTL (‘mQTL-

matched controls’, Table 1, Supplementary Fig. 4). hvCpGs showed an average 5-fold increase in methylation 

variance compared to mQTL-matched controls across datasets (Fig. 2C), further supporting the notion that 

methylation variation at hvCpGs is not principally driven by universal genetic effects.  

To further probe the influence of genetic effects on hvCpG methylation we examined the overlap between 

hvCpGs and CpGs that show DNAm variation between monozygotic (MZ) co-twins that is equivalently variable 

(ev) to that between unrelated individuals, suggestive of genetically independent variable methylation 

establishment after MZ  twin splitting45. In total, hvCpGs comprise 122 (42%) of the 317 evCpGs identified in 

blood (1.9-fold enrichment relative to distribution-matched controls) and 62% of those that were replicated 

as evCpGs in adipose tissue (2.8-fold enrichment relative to controls) (Supplementary Table 11), supporting 

the notion that hvCpGs are likely influenced but not determined by genetic variation in multiple tissues.  

 

hvCpGs show covariation across tissues derived from different germ layers  

Variable DNAm states that covary across tissues derived from different germ layers and that are influenced 

but not determined by genotype may have been established before germ layer separation in early embryonic 

development26. None of the datasets considered here had multi-tissue data from the same individuals. We 
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therefore examined the overlap between hvCpGs and 3,089 CpGs that show systemic (cross-tissue) 

interindividual variation (SIV), collated from four published sources24–27 (Supplementary Table 6). 24% of 

hvCpGs overlap a known SIV-CpG as do 21% of hvCpGs with a blood distribution-matched control, the latter 

representing a ~5-fold enrichment (Fig. 3A, Supplementary Table 12, Supplementary Fig. 10A). We note that 

a further 540 (13%) hvCpGs are within 1 kb of a SIV-CpG, ~5-fold greater than array background CpGs. This 

suggests that many hvCpGs directly overlap or co-localise with a known SIV-CpG. 

The set of all hvCpGs comprises 32.1% of the 3,089 CpGs reported as SIV in any of the four independent 

studies analysed despite comprising <1% of the 450K array. When considering ‘high-confidence’ SIV-CpGs 

reported in at least two or three of the four screens, the proportion identified rises to 76.5% and 95.1% 

respectively (Fig.3B). This suggests that our approach of identifying hypervariable loci across multiple 

datasets may be a more powerful method for identifying putative SIV loci, compared to existing SIV screens 

that necessarily rely on rare datasets with multi-tissue, multi-germ layer methylation data from small 

numbers of individuals. To confirm this, we estimated the power to detect SIV using the multi-tissue data 

from four individuals analysed by van Baak et al.25. Using a permutation framework (‘Methods’), we 

estimated the mean power to detect SIV as 56% (median [IQR] = 0.58 [0.44, 0.72]; Supplementary Fig. 7). As 

expected, given the small sample size of this multi-tissue dataset, a large proportion of hvCpGs (75%) did not 

meet the minimum interindividual variation threshold of 0.2 used by van Baak et al. to define SIV. On the 

assumption that hvCpGs are highly enriched for true SIV, this could explain why hvCpGs constitute 61.7% of 

the van Baak et al.  SIV-CpGs, while just 13.5% of hvCpGs are identified as SIV-CpGs in the van Baak et al. 

analysis.   

To directly test our hypothesis that hvCpGs comprise previously unidentified SIV loci, we analysed a dataset 

of fetal tissues from 27 individuals, each with methylation data from two tissues derived from different germ 

layers (see Supplementary Table 7). Inter-germ layer correlations at hvCpGs had a median average Pearson r 

of 0.42, compared to array background CpGs which had a median average Pearson r of 0.05 (Fig. 3C left). Of 

the 3,878 hvCpGs covered in this fetal multi-tissue dataset, 1,653 (42%) had an average inter-germ layer 

Pearson r ≥0.5. Of these, 58% did not overlap previously identified SIV loci, suggesting that hvCpGs comprise 

novel SIV loci.  A comparison of the average inter-germ layer correlation at hvCpGs and at previously 

identified SIV-CpGs showed that hvCpGs and SIV-CpGs had similar inter-germ layer correlations (Fig. 3C right). 

 

hvCpGs are enriched for loci with distinctive methylation patterns in MZ twins  

We further investigated evidence for establishment of hvCpG methylation states in the early embryo by 

testing the overlap between hvCpGs and 1,217 “epigenetic supersimilarity” (ESS) CpGs overlapping array 

background. ESS CpGs show high interindividual variation with greater-than-expected methylation 
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concordance between monozygotic co-twins in adipose tissue, suggestive of methylation establishment in 

the early zygote before MZ cleavage25. 13% of hvCpGs overlap an ESS CpG, showing a ~9.5-fold enrichment 

for ESS CpGs relative to distribution-matched controls (Fig. 3A, Supplementary Table 12, Supplementary Fig. 

10B).   

We next examined the overlap between hvCpGs and a set of CpGs showing a unique methylation signature 

in adult tissues from MZ vs DZ twins (‘MZ twinning CpGs’, Table 2), implicating these CpGs in MZ twin splitting 

events in early development28. 7% of hvCpGs overlap an MZ twinning CpG, showing a 3.7-fold enrichment for 

MZ twinning CpGs compared to distribution-matched controls (Fig. 3A, Supplementary Table 12).   

Notably, 54% of ESS and 37% of MZ twinning CpGs overlapping array background are hvCpGs (Fig. 3B). 

 

Reconciling the timing of variable methylation establishment at hvCpGs  

The enrichments that we observe for SIV, ESS, evCpGs and MZ twinning CpGs offer a potential insight into 

the timing of methylation establishment at hvCpGs. 38% of hvCpGs overlap at least one of these CpG sets 

and enrichment is stronger amongst CpGs that show at least two of these properties (Supplementary Fig. 

11). In particular, hvCpGs comprise 78% of SIV-ESS loci and 65% of SIV-MZ twinning loci, suggesting that SIV 

loci with evidence of establishment in the pre-gastrulation embryo are enriched for hvCpGs26. 

Variable methylation states identified at evCpGs are thought to originate in embryonic development and/or 

early post-natal life43. We note that 41 out of 317 evCpGs overlap SIV and/or MZ twinning CpGs, suggesting 

that at least a subset may be established in the pre-gastrulation embryo.  hvCpGs comprise 67% of evCpGs 

that overlap SIV-CpGs, and 76% of that overlap MZ twinning CpGs (Supplementary Fig. 11). 

 

hvCpGs are enriched for parent-of-origin methylation and proximal TEs  

In mice, variable methylation states have been associated with the Intracisternal A Particle (IAP) class of 

endogenous retrovirus58,59, with growing evidence that methylation variability may in part be driven by 

incomplete silencing of IAPs in early development60–62. In humans, SIV-CpGs are enriched for proximal 

endogenous retrovirus elements (ERVs)63, including the subclasses ERV1 and ERVK26. This is also the case with 

hvCpGs, which show a ~1.3-fold and ~1.7-fold enrichment for proximal (within 10 kb) ERV1 and ERVK 

elements respectively, relative to both array background and blood distribution-matched controls (Fig. 3D, 

Supplementary Fig. 10C, Supplementary Table 12). Approximately 4.7% of hvCpGs are also located within 
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1Mb of telomeric regions, showing a 1.8-fold enrichment relative to distribution-matched controls and array 

background CpGs (Supplementary Table 12).  

Maintenance of parent of origin-specific methylation (PofOm) in the pre-implantation embryo is critical for 

genomic imprinting64, and several previously identified SIV loci have been found to be associated with 

imprinted genes and/or PofOm25,63. 58 hvCpGs (1.4%) were annotated to 32 imprinted genes (Supplementary 

Table 13), no more than expected by chance since 1.9% of array background CpGs are annotated to imprinted 

genes. 10 hvCpGs were annotated to the polymorphically imprinted non-coding RNA VTRNA2-1, a well-

established SIV locus that is associated with periconceptional environmental exposures25,63,65–67.  Although 

only a small proportion (2.2%) of hvCpGs overlap regions of PofOm identified in peripheral blood68, this 

overlap represents a 3.5-fold and 11-fold enrichment relative to distribution-matched controls and array 

background respectively that is maintained after de-clustering (Fig. 3A, Supplementary Fig. 10D, 

Supplementary Table 12). This overlap constitutes 13% of all PofOm CpGs overlapping array background (Fig 

3B).   

hvCpGs show sensitivity to pre-natal environment  

Variable methylation states established in early development that are sensitive to environmental 

perturbation are promising candidates for exploring the developmental origins of health and disease69–71. We 

explored whether hvCpGs show sensitivity to pre-natal environment by examining their overlap with loci 

associated with season of conception (‘SoC’) in a rural Gambian population exposed to seasonal fluctuations 

in diet and other factors72–74. hvCpGs comprise 70 (29%) out of 242 previously identified SoC-CpGs29 

overlapping array background, an approximately 3-fold enrichment relative to distribution-matched controls 

(Supplementary Table 11). 

 We next leveraged a recent meta-analysis of 2,365 cord blood samples that modelled genetic (G), genetic by 

environment (GxE) and additive genetic and environment (G+E) effects at variably methylated probes, where 

E represents a range of prenatal exposures including pre-pregnancy BMI, maternal smoking, gestational age, 

hypertension, anxiety and depression14. Of the 703 hvCpGs overlapping the neonatal blood variably 

methylated regions explored in that study, G, GxE, and G+E effects were the ‘winning’ models for 30%, 30% 

and 40% of probes respectively, representing an increase in G+E effects compared to array background 

(Supplementary Fig. 12). This analysis supports our intuition that hvCpGs are influenced but not determined 

by genetic variation, with pre-natal environment as an additional influencing factor. 

 
 
Chromatin states at hvCpGs  

Compared to array background, hvCpGs are enriched within intergenic regions and CpG island ‘shores’ but 

are depleted within gene bodies and regions directly upstream of transcription start sties (Supplementary 
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Fig. 9). We predicted chromatin states at hvCpGs by examining the overlaps of hvCpGs with histone 

modifications using the chromHMM 15-state model52 for seven tissues including embryonic stem cells (H1 

ESCs), and fetal and adult tissues53. Although many hvCpGs were associated with regulatory elements in all 

tissues, hvCpGs were generally depleted in these regions compared to array background, except within 

predicted enhancers in H1 ESCs (Supplementary Fig. 13). 

 

Association with the clustered protocadherin gene locus on chromosome 5  

Gene ontology enrichment analysis revealed that hvCpGs were significantly enriched for terms associated 

with cell-cell adhesion (Fig. 4A), which is largely driven by the colocalization of 3.3% of hvCpGs to clustered 

protocadherin (cPCDH) genes on chromosome 5. This region comprises three clusters of protocadherin genes 

(cPCDH𝛼, cPCDH𝛽, cPCDH𝛾), each containing many variable exons whose promoter choice is determined 

stochastically via differential methylation by DNA-methyltransferase 3 beta (DNMT3B) in early embryonic 

development75,76, resulting in the expression of distinct cPCDH isoforms of cell-surface proteins that are 

critical for establishing neuronal circuits77. The cPCDH gene locus has also been found to be influenced by 

age11,78–80. Accordingly, although a minority (5%) of hvCpGs showed evidence of epigenetic drift in blood11, 

these are enriched within the cPCDH locus relative to those that did not show evidence of epigenetic drift 

(Fisher’s Exact Test (FET) p-value = 9.4 x 10-9, OR = 4.02). Hypervariable methylation states at the cPCDH gene 

locus may therefore be driven by early developmental and/or aging effects. Noting that evCpGs and MZ 

twinning CpGs (Table 2) have also been reported to colocalise with this locus45,81, hvCpGs annotated to cPCDH 

genes were ~8.5-fold enriched for MZ twinning CpGs (FET p-value = 1.04 x 10-22) and ~3-fold enriched for 

evCpGs (FET p-value = 1.6 x 10-3) relative to hvCpGs that were not.  

 

Association of hvCpGs with reported EWAS trait associations  

To probe the potential functional role of hvCpGs, we analysed their overlap with traits reported in the 

epigenome-wide association studies (EWAS) catalogue (http://ewascatalog.org/). 86% of hvCpGs show 

significant associations (reported p-value < 1 x 10-4) with one or more of 231 unique traits covered in the 

catalogue (Supplementary Table 9). However, compared to blood distribution-matched controls, a suitable 

comparator given that the majority of EWAS have been carried out in blood, we found that hvCpGs were 

enriched amongst CpGs associated with sex and Alzheimer’s disease only (Fig. 4B, left panel).  

Noting that sex-associated hvCpGs are not influenced by sex differences in the datasets that we analysed 

(Supplementary Fig. 6C, bottom) and that a similar proportion of SIV-CpGs are also associated with sex (23% 

of hvCpGs and 20% of the 3,089 SIV-CpGs considered in our study), we speculate that the association with 

sex may be a feature of variable methylation states established in early development. Amongst the 64 hvCpGs 
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associated with Alzheimer’s disease, 23 overlap previously identified SIV and/or ESS loci, 9 of which 

annotated to CYP2E1, a gene that has also been associated with Parkinson’s disease and rheumatoid 

arthritis82,83.     

hvCpGs were notably depleted amongst age-related traits relative to distribution-matched controls (Fig. 4B, 

right panel), in agreement with our earlier findings that hvCpGs are largely stable with age (Supplementary 

Fig. 6). hvCpGs are also depleted amongst CpGs that are differentially methylated between buccal cells and 

peripheral blood mononucleocytes (‘Tissue’ in Fig. 4B), supporting the notion that hvCpGs may be established 

before cell differentiation and that the method used to identify the hvCpGs is robust to tissue-specific 

methylation variation.  
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Discussion 
We have identified and characterised tissue- and ethnicity- independent hypervariable methylation states at 

CpGs covered by the 450k array.  Our methodological approach was designed to be robust to dataset-specific 

drivers of methylation variability, including sex, age, cell type heterogeneity and technical artefacts. We 

identified 4,143 hvCpGs and found strong evidence that methylation states at many hvCpGs are likely to be 

established in the early embryo and are stable postnatally. Our analysis positions hvCpGs as tissue- and 

ethnicity- independent age-stable biomarkers of early stochastic and/or environmental effects on DNA 

methylation.  

 

hvCpGs cover ~1% of the 450K array and were in the top 5% variable methylation states in an average of 13 

distinct tissues and 7 ethnicities. Our study is not the first to investigate DNAm patterns in multiple tissues.  

Previous studies have identified CpGs that are differentially methylated between tissues85–87; determined the 

extent to which variable methylation states in accessible tissues (such as blood) reflect those in inaccessible 

tissues such as brain56,86–90; compared methylation patterns between peripheral tissues57,91,92; directly 

identified SIV loci using tissues derived from different germ layers24–27,63,93; functionally characterised tissue-

specific variably methylated regions94; and examined the extent to which common drivers of methylation 

variation, such as genetics, age, sex and environment, are tissue-specific8,12,15–18,95,96.  The majority of these 

studies used a comparatively small number of tissues or cell-types, and few have used multi-tissue datasets 

from different ethnicities15.To our knowledge, ours is the first study to explore the extent to which variably 

methylated CpGs are shared across diverse tissues and ethnicities in the human genome.   

 

The majority of hvCpGs were associated with at least one mQTL suggesting that additive genetic effects 

influence methylation variation at these loci. However, a comparison with mQTL-matched controls, together 

with evidence of enrichment for sensitivity to periconceptional environment and methylation discordance 

between MZ twins, suggests that stochastic and/or environmental effects have a relatively large influence 

on methylation variability at hvCpGs.  In line with this, a large proportion of hvCpGs show evidence of 

systemic interindividual variation (SIV), that is, intra-individual correlation in methylation across tissues 

derived from different germ layers. Whilst loci that covary across different tissue types are enriched for mQTL 

effects16,56,57,91, it has been suggested that SIV loci are putative human metastable epialleles with variable 

methylation states established before gastrulation that are influenced but not determined by genetic 

variation26.  

 

Our fetal multi-tissue analysis supports the notion that SIV at hvCpGs arises during development and is not, 

for example, driven by post-natal environmental influences that act across many tissues. hvCpGs were also 

highly enriched for epigenetic supersimilarity loci and MZ twinning-associated CpGs, both of which have been 
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linked to establishment of methylation in the cleavage stage pre-implantation embryo25,28. The degree of 

overlap between variably methylated regions in different cell types has also been linked to their common 

developmental origin94. If this pattern holds true, it follows that stochastic and/or environmentally influenced 

variably methylated loci that are shared across a large number of diverse tissues are likely to have originated 

before germ-layer differentiation. We note that it is possible that variable methylation variation at some 

hvCpGs is influenced by later gestational or post-natal environmental effects, acting in addition to or 

independently of early environmental effects across multiple tissues, as has been suggested at the VTRNA2-

1 locus in the context of folate supplementation in pregnancy97, maternal age at delivery67, and smoking98.   

 

The association of hvCpGs with parent-of-origin-specific methylation and proximal ERV1 and ERVK elements 

is notable because these features have been linked to SIV-CpGs26. This suggests that genomic regions 

targeted by epigenetic silencing or maintenance mechanisms during early embryonic reprogramming may 

be enriched for stochastic and/or environmentally influenced methylation variation. For example, it has been 

suggested that regions of PofOm may be vulnerable to stochastic or environmentally-sensitive loss of 

methylation on the usually-methylated allele or gain of methylation on the usually-unmethylated allele at a 

later time-point, leading to interindividual methylation variation29,64,99.  Similarly, certain IAP elements (a class 

of ERVK LTR retrotransposon) show methylation variation between isogenic mice58,59 that in several cases 

can be influenced by pre-natal environment100–103. Whilst transposable elements are usually silenced to 

prevent insertion events from damaging the genome, recent evidence suggests that methylation variability 

at IAP elements is partly driven by low-affinity binding of trans-acting Krüppel-associated box (KRAB)-

containing zinc finger proteins (KZFPs)60 and by sequence variation in KZFP-binding sites60,104. Whilst KZFPs 

are known to target TEs in humans105,106, the extent of their role in driving methylation variation is an ongoing 

area of research.  

The large overlap between hvCpGs and ‘high confidence’ SIV-CpGs identified in at least two independent 

screens suggests that the identification of hvCpGs might constitute a high-powered method for detecting 

novel SIV loci. Supporting this, the largest SIV screen to date with 10 individuals was reported to be 

underpowered to detect the well-established SIV locus at the non-coding RNA gene VTRNA2-127 (represented 

by 10 hvCpGs), and we found that a 4-individual multi-tissue dataset analysed by van Baak et al.25 had limited 

power to detect SIV loci. Another consideration is that SIV screens to date have used different sets of tissues. 

Since loci that covary between one pair of tissues do not necessarily covary between another pair56, the 

enrichment for high confidence SIV loci might reflect the fact that methylation states at hvCpGs covary across 

a large number of tissues. Importantly, our analysis of a fetal multi-tissue dataset offers a strong validation 

of previously unreported SIV at hvCpGs.   

Our analysis of EWAS trait associations revealed a moderate enrichment for hvCpGs amongst CpGs 

associated with Alzheimer’s disease and SIV loci have been linked to this and other disease outcomes 
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including autism, cancer and obesity 26,63,93.  For example, 10 hvCpGs overlap the PAX8 gene which is a known 

SIV locus. PAX8 methylation measured in peripheral blood of Gambian 2-year olds was recently shown to be 

correlated with thyroid volume and hormone levels in the same children in mid-childhood, and the latter was 

associated with changes in body fat and bone mineral density107. This suggests that hvCpGs are interesting 

candidates for exploring how stochastic and/or environmentally influenced DNAm states established in early 

development might influence life-long health.  

hvCpGs are variable in diverse ethnicities, raising the possibility that regions of hypervariable methylation 

may be a conserved feature in the human genome. Stochastic methylation patterns established in the early 

embryo that are sensitive to early environment and that are able to influence gene expression might mediate 

a predictive-adaptive-response mechanism that senses the pre-natal environment in order to prime the 

developing embryo to its post-natal environment70,71. This would require environmentally responsive 

variable methylation states to be genetically hardwired into the human genome, providing a means of rapid 

adaptation to changing local environments on a scale much faster than is attainable through Darwinian 

evolution108.  Associations between genotype and methylation variance have been previously reported, for 

example at the putative metastable epiallele PAX8107 , at the master regulator of genomic imprinting ZFP5725 

and at several probes in the major histocompatibility complex (MHC) region associated with rheumatoid 

arthritis109.  Interestingly, 4% of hvCpGs are located within the MHC, representing an enrichment relative to 

the array background (FET p-value = 2.7 x 10-10, OR = 1.7). Further analysis of genotype-methylation variance 

effects is required to determine if this region, which contains a large amount of sequence variation and is 

implicated in many immune-mediated diseases110, might contain other examples of genetically-driven 

phenotypic plasticity that is mediated by DNA methylation.  

 

Whilst our method of adjusting for the first 10 PCs of variation may not have controlled for all technical 

artifacts within each dataset, if technical issues were to cause a random CpG to be in the top 5% of variance 

in one dataset, this CpG would be unlikely to be in the top 5% of variance across a majority of datasets. The 

consequence would therefore be a loss of power to identify hvCpGs rather than the identification of spurious 

hypervariability. This is supported by our sensitivity analysis with unadjusted methylation data 

(Supplementary Fig. 8). An exception would be if the probe were consistently unreliable. We tested this using 

reliability metrics derived from analysis of technical replicates and found no evidence that hvCpGs are driven 

by technically unreliable probes. However, we note that better adjustment for technical artifacts within 

datasets111 and the addition of further datasets would likely lead to the identification of more hvCpGs.  

 

The vast majority of publicly available methylation datasets use the Illumina 450k array. Therefore, a major 

limitation of this study is that we were only able to analyse the small proportion of the methylome covered 

by this array, which has been found to miss a disproportionate amount of variable CpGs27. However, we note 
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that our method for identifying hypervariable CpGs can easily be applied to whole methylome sequencing 

data which is becoming increasingly available.  

 

Through the joint analysis of methylation data from multiple tissues, we have identified a large set of 

hypervariable loci on the 450K array that are present across multiple tissues and ethnicities. Comparisons 

with a diverse range of data sources reveal that stochastic and/or environmentally-responsive methylation 

states at these loci are likely to have been established in the early embryo and appear to be stable with age, 

making them interesting candidates for studying the developmental origins of life-long health and disease. 
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FIGURE 1

Figure 1. Schematic of the method for identifying tissue- and ethnicity- independent
hypervariable CpGs (hvCpGs). The top 20%, 19%, 18% ... 1% of variable CpGs by
methylation Beta variance were first extracted from each of the 30 methylation datasets
used in this study. The intersection of these CpGs was then taken over an increasing
number of datasets (n), requiring each CpG to be present in a minimum of 15 out of the
30 datasets analysed (Supplementary Fig. 1).
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Figure 2. Genetic effects at hvCpGs using mQTL data from a large meta GWAS in blood (Min et al.
2021). A) The relationship between hypervariability and the proportion of CpGs with at least one
mQTL association (top) and the mean mQTL effect size (bottom). Coloured curves represent CpGs
with top 5% (orange), 10% (red) and 20% (blue) methylation Beta variance in at least x% of
datasets. B) The distributions of the number of mQTL associations (left) and mean % variance
explained by mQTL (right) at hvCpGs. C) Median methylation Beta variance at 3,722 hvCpGs
overlapping the ‘Blood_Cauc’ dataset (orange) and corresponding controls matched on number of
mQTL associations and mean % explained by mQTL (‘mQTL-matched controls’, Table1;
Supplementary Fig. 4), in each dataset. Error bars in A and C are bootstrapped 95% confidence
intervals. Note, error bars in C are very small.
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Figure 3. hvCpGs are enriched for loci and genomic features linked to variable methylation
establishment in early development. A) The proportion of 3,566 hvCpGs (y-axis) vs
corresponding distribution-matched controls (x-axis) covered in the ‘Blood_Cauc’ dataset that
overlap 3,089 SIV-CpGs, 1,217 ESS CpGs identified by van Baak et al. (2018), 728 ‘MZ
twinning’ CpGs identified by van Dongen et al. (2021) and 732 PofOm CpGs identified by Zink
et al. (2018). B) The proportion of SIV-CpGs, ESS CpGs, MZ twinning CpGs and PofOm CpGs
that are hvCpGs. SIV-CpGs identified in at least two or three independent screens were also
included in this plot. C) Inter-germ layer correlations at hvCpGs using a fetal multi-tissue
dataset that comprises methylation data from 10 individuals with endoderm- and ectoderm-
derived tissues, 9 individuals with endoderm- and mesoderm- derived tissues and 8
individuals with mesoderm- and ectoderm- derived tissues (see Supplementary Table 7). Left:
The distribution of average inter-germ layer correlations at 3,878 hvCpGs (orange) and
372,571 array background CpGs (excluding previously identified SIV CpGs and hvCpGs) (dark
grey) covered in the fetal multi-tissue dataset. Top Right: Interindividual variation at 3,878
hvCpGs (orange), 4,076 previously identified SIV loci (blue) covered in the fetal multi-tissue
dataset, and 372,571 array background CpGs (see ‘Methods’ for definition of interindividual
variation). Bottom Right: Comparison of average inter-germ layer correlations at hvCpGs, SIV-
CpGs and array background CpGs, stratified by interindividual variation. Each point indicates
the median average inter-germ layer correlation for those CpGs with interindividual variation
falling within each bound specified on the x-axis. C) The proportion of 3,566 hvCpGs,
distribution-matched controls and array background CpGs that are ≤ x bp from the nearest
ERV1 and ERVK transposable elements determined by RepeatMasker. Error bars in all panels
are bootstrapped 95% confidence intervals. SIV = systemic interindividual variation, ESS =
epigenetic supersimilarity, PofOm = parent-of-origin-specific methylation.
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FIGURE 4
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Figure 4. Functional annotation of hvCpGs. A) Gene ontology term enrichment analysis at
hvCpGs. Vertical line indicates a significance threshold of FDR < 0.05. B) Enrichment (left) and
depletion (right) of hvCpGs amongst EWAS trait associations relative to blood distribution-
matched controls. Y-axis gives the proportion of EWAS trait associations that comprise hvCpGs
and controls. Only traits overlapping at least 1% of hvCpGs were considered (see ‘Methods’ and
Supplementary Table 9 for further details). Error bars are bootstrapped 95% confidence intervals.
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Tables  
 

Table 1. Main CpG sets used in this study.  

 

Table 2. Published CpG sets used in this study 

SIV = systemic interindividual variation, ESS = epigenetic supersimilarity, evCpGs = equivalently variable CpGs, SoC = 
season-of-conception, PofOm = parent-of-origin-specific methylation. 

 
 
 

CpG set  Description  n. CpGs 
overlapping 
array 
background  

Reference 

SIV Interindividual methylation variation with concordant 
methylation across tissues derived from different germ 
layers within a given individual. See Supplementary Table 
8.  

3089 Harris et al., van 
Baak et al., Kessler 
et al., Gunasekara 
et al. 24-27 

 

ESS Greater-than-expected methylation similarity between 
MZ co-twins 

1217 van Baak et al.25 

MZ twinning 
CpGs 

Probes differentially methylated between MZ and DZ 
twins.  

728 van Dongen et al. 
28 

evCpGs MZ co-twin methylation discordance that is equivalent to 
methylation discordance between unrelated individuals 
in whole blood. A subset of these replicated in adipose 
tissue. 

317 (blood) 
 
145 (blood & 
adipose) 

Planterose 
Jiménez et al.45 

SoC CpGs at which methylation is associated with season of 
conception in Gambian children. 

242 Silver et al.29 

PofOm   Regions of parent-of-origin-specific methylation 
identified in peripheral blood from Icelandic individuals.  

732 CpGs in 116 
PofOm regions 

Zink et al.68 

CpG set n  Notes 

hvCpGs 4143 CpGs within top 5% methylation Beta variance in at least 65% datasets in 
which the CpG is covered, requiring the hvCpG to be covered in at least 
15 datasets and to be reported as technically reliable.   

array background 406306 CpGs covered in at least 15 of the 30 datasets used in this study.  

distribution-matched 
controls  

3566 Array background CpGs with similar methylation Beta distributions to 
hvCpGs in the ‘Blood_Cauc’ dataset, requiring each control CpG to be 
technically reliable.  

de-clustered hvCpGs  2640 A set of hvCpGs in which no CpGs is within 4kb of another CpG. 

mQTL-matched controls 3722 CpGs reported by the GoDMC meta-GWAS41 with the same number of 
mQTL associations and similar mean % variance explained by an mQTL, 
requiring each control CpG to be present in at least as many datasets as 
the hvCpG.  
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