

1 **Reconstructing mitochondrial genomes from ancient DNA through iterative mapping:**
2 **an evaluation of software, parameters, and bait reference**

3

4 Michael V. Westbury¹, Eline D. Lorenzen¹

5 (1) GLOBE Institute, University of Copenhagen, Øster Voldgade 5-7, Copenhagen,
6 Denmark

7

8 **Correspondence:** m.westbury@sund.ku.dk

9

10 **Running title:** Iterative mapping of ancient mitochondrial genomes

11

12 **Abstract**

13

14 (1) Within evolutionary biology, mitochondrial genomes (mitogenomes) provide useful
15 insights at both population and species level. Several approaches are available to assemble
16 mitogenomes. However, most are not suitable for divergent, extinct species, due to the
17 requirement of a reference mitogenome from a conspecific or close relative, and relatively
18 high-quality DNA.

19 (2) Iterative mapping can overcome the lack of a close reference sequence, and has been
20 applied to an array of extinct species. Despite its widespread use, the accuracy of the
21 reconstructed assemblies are yet to be comprehensively assessed. Here, we investigated the
22 influence of mapping software (BWA or MITObim), parameters, and bait reference
23 phylogenetic distance on the accuracy of the reconstructed assembly using two simulated
24 datasets: (i) spotted hyena and various mammalian bait references, and (ii) southern
25 cassowary and various avian bait references. Specifically, we assessed the accuracy of results

26 through pairwise distance (PWD) to the reference conspecific mitogenome, number of
27 incorrectly inserted base pairs (bp), and total length of the reconstructed assembly.

28 (3) We found large discrepancies in the accuracy of reconstructed assemblies using different
29 mapping software, parameters, and bait references. PWD to the reference conspecific
30 mitogenome, which reflected the level of incorrect base calls, was consistently higher with
31 BWA than MITObim. The same was observed for the number of incorrectly inserted bp. In
32 contrast, the total sequence length was lower. Overall, the most accurate results were
33 obtained with MITObim using mismatch values of 3 or 5, and the phylogenetically closest
34 bait reference sequence. Accuracy could be further improved by combining results from
35 multiple bait references.

36 (4) We present the first comprehensive investigation of how mapping software, parameters,
37 and bait reference influence mitogenome reconstruction from ancient DNA through iterative
38 mapping. Our study provides information on how mitogenomes are best reconstructed from
39 divergent, short-read data. By obtaining the most accurate reconstruction possible, one can be
40 more confident as to the reliability of downstream analyses, and the evolutionary inferences
41 made from them.

42 **Keywords:** ancient DNA, divergence, evolution, extinct, iterative mapping, mitochondrial
43 genome

44

45

46

47

48

49

50 **Introduction**

51

52 Mitochondrial genomes (mitogenomes) have many uses within evolutionary biology,
53 and are routinely utilised at both population and species level to provide insights into
54 phylogeography (Skovrind et al., 2021) and/or phylogenetic relationships (Paijmans et al.,
55 2017; Westbury et al., 2017). Moreover, due to the unique maternal mode of mitogenome
56 inheritance in vertebrates, it is possible to make specific inferences about maternal lineages,
57 without the confounding effects of recombination (Fortes et al., 2016).

58

59 Several approaches can be used to assemble mitogenomes in the absence of a
60 conspecific mapping reference. Long-range PCR and subsequent primer walking (Hu et al.,
61 2007) is a common method for generating complete mitogenomes. However, optimising
62 long-range PCR is difficult when information for primer design is scarce. With the advent of
63 third-generation sequencing technologies, long-read sequencing and *de novo* assembly
64 (Formenti et al., 2021) is currently the best method for high-quality mitogenome
65 reconstruction; full-length mitogenomes can theoretically be obtained in a single read, and
66 this approach does not require any *a priori* knowledge for primer design. However, both
67 long-range PCR and long-read sequencing require high-quality DNA, which is not always
68 available. This is especially true for extinct species known only from museum specimens
69 which are commonly characterised by degraded and highly fragmented DNA (ancient DNA,
70 aDNA), and an often large proportion of contaminant DNA (Ho & Gilbert, 2010).

71

72 Despite the relatively poor quality of aDNA, complete mitogenomes were first
73 successfully reconstructed for extinct species in the early 2000s (Haddrath & Baker, 2001;
74 Krause et al., 2005). However, technological limitations meant data generation required

75 PCRs and the independent sequencing of many short regions across the mitogenome, which
76 is a highly laborious process. High-throughput sequencing now allows the simultaneous
77 sequencing of millions of DNA fragments, making it easier to generate data from across the
78 mitogenome. Even with ample data, mitogenome assembly can be challenging in the absence
79 of a close relative with which to align. Iterative mapping has become a popular approach to
80 overcome the lack of a close reference sequence (Hahn et al., 2013), and has been used to
81 generate mitogenomes from an array of extinct vertebrate species (Mitchell et al., 2014;
82 Pajmans et al., 2017; Westbury et al., 2017; Xenikoudakis et al., 2020). In short, iterative
83 mapping works by (i) mapping short-read data to a bait reference genome, (ii) generating a
84 new consensus sequence from the mapped reads, and (iii) using the latter as a new mapping
85 reference. This process is repeated iteratively until either no new reads map, or the
86 mitogenome is complete.

87

88 Although iterative mapping has been used to assemble mitogenomes from aDNA of
89 divergent extinct species, the accuracy of the reconstructed assemblies has yet to be
90 comprehensively assessed. Here, we investigated the influence of mapping software,
91 parameters, and bait reference phylogenetic distance on the accuracy of the reconstructed
92 assembly. We used two independent datasets, one based on mammals (spotted hyena *Crocuta*
93 *crocuta*, and various carnivore bait references) and one based on birds (southern cassowary
94 *Casuarius casuarius*, and various palaeognath bait references).

95

96 **Materials and Methods**

97

98 A schematic overview of the methodology is presented in figure 1.

99

100 **Data simulation**

101 To reliably evaluate the accuracy of iteratively reconstructed assemblies while
102 controlling for patterns of aDNA damage and contamination, we generated two simulated
103 mitochondrial datasets, one based on spotted hyena (Genbank accession: MN320452.1) and
104 the other based on southern cassowary (Genbank accession: NC_002778.2) using gargammel
105 (Renaud et al., 2017). In gargammel, we simulated paired-end reads with read lengths of 150
106 base pairs (bp); 40x coverage of the target mitogenome; 98% of the data to consist of
107 microbial contamination from the database available with gargammel; 1.9% of the data to be
108 made up of a mixture of human chromosome 1 (Genbank accession: NC_000001.11), human
109 mitogenome (Genbank accession: NC_012920.1), and species specific nuclear genome
110 (spotted hyena - Genbank accession: GCA_008692635.1, and southern cassowary - Genbank
111 accession: PTFA00000000.1); and fragment lengths typical of ancient DNA (Supplementary
112 Fig. 1). We repeated the simulations twice per species, with damage patterns based on either
113 double-stranded (DS) or single-stranded (SS) aDNA sequencing libraries. We trimmed
114 Illumina adapter sequences and merged overlapping read pairs using Fastp v0.20.1 (Chen et
115 al., 2018). Only trimmed and merged reads were considered for downstream analyses.

116

117 **Iterative mapping**

118 We selected five bait references of varying phylogenetic distance to each target
119 species (Table 1). We calculated pairwise distance (PWD) between each target species and
120 the corresponding bait references by aligning all relevant genomes from each taxonomic
121 group (carnivore or palaeognath). For this, we used Mafft v7.392 (Katoh & Standley, 2013)
122 specifying --globalpair and --maxiterate 16, and the maximum composite likelihood method
123 in MEGA X (Kumar et al., 2018) specifying missing data as a pairwise deletion in the

124 calculation. Due to difficulties aligning the control region among species, we removed this
125 region from the calculation of PWD.

126

127 We performed iterative mapping with two different mapping software, Burrows-
128 Wheeler Alignment tool (BWA) v0.7.15 (Li & Durbin, 2009) and MITObim v1.8 (Hahn et
129 al., 2013), a wrapper script for the MIRA v4.0.2 alignment tool (Chevreux et al., 1999). As
130 BWA is not specifically designed for iterative mapping, we created a pipeline using bash
131 tools for this study, which we called ‘ancient ITErative mapper’ (aITE mapper). In short, this
132 method aligns reads to a bait reference using BWA aln, filters the output, and removes
133 duplicates using SAMtools v1.9 (Li et al., 2009), creates a consensus fasta sequence using
134 ANGSD v0.921 (Korneliussen et al., 2014), and uses the output consensus fasta sequence as
135 a new reference sequence in subsequent mappings. This process is repeated until either no
136 new reads map, or for a maximum of 100 iterations.

137

138 When running aITE mapper, we tested various filtering and mapping options. These
139 included: different minimum mapping quality score filtering options (10 / 20 / 30), different
140 mismatch values (-n 0.04 / -n 0.01 / -n 0.001 -o 2), and recalibrating quality scores around the
141 ends of reads that showed signs of aDNA damage (--recal mapDamage v2 (Jónsson et al.,
142 2013)). For MITObim, we implemented default parameters, but with several different
143 mismatch values (0 / 1 / 3 / 5 / 10 / 15). After iterative mapping, we built consensus fasta
144 sequences from the MITObim mapped files using ANGSD and the following parameters: -
145 dofasta 3 -minq 30 -minmapq 30 -setMinDepth 3.

146

147 We evaluated whether accuracy of the iteratively reconstructed assembly was
148 improved by combining results from different bait references, but using the same

149 mapper/parameters. We aligned each reconstructed assembly generated using the various bait
150 references for each target species with Mafft, and created a majority rules consensus
151 sequence for each target species, while taking gaps into account in Geneious prime v2021.0.3
152 (Kearse et al., 2012); we subsequently refer to this as the multispecies consensus sequence.

153

154 **Evaluation**

155 To benchmark our results, we mapped our simulated reads back to the reference
156 conspecific mitogenome of each target species using BWA aln, with default parameters.

157

158 We determined the accuracy of the iteratively reconstructed assemblies of each target
159 species using three proxies: (i) PWD to the reference conspecific mitogenome; (ii) number of
160 inserted bp relative to said reference; (iii) total sequence length. We aligned each
161 reconstructed assembly and reference conspecific mitogenome using Mafft. We estimated
162 PWD using a maximum composite likelihood method in MEGA. We calculated number of
163 inserted bp by counting the number of sites where the iteratively mapped sequence had a
164 nucleotide (even if specified as missing data - N), and the reference conspecific mitogenome
165 was given a gap during alignment; we excluded insertions exceeding the start or end positions
166 of the reference conspecific mitogenome from this calculation, due to the circular nature of
167 the mitogenome. We assessed total sequence length directly from the reconstructed assembly,
168 removing sites with missing data.

169

170 **Results**

171

172 When mapping our simulated reads of spotted hyena and southern cassowary back to
173 the reference conspecific mitogenome using BWA, we found no errors (PWD = 0) in the

174 mapped assembly, regardless of whether the sequencing reads contained DS or SS aDNA
175 damage patterns. However, a small number of sites had missing data: spotted hyena DS=2,
176 SS=2; southern cassowary DS=8, SS=4. A detailed summary of all iterative mapping results
177 are presented in supplementary tables S1-S4.

178

179 **aITE mapper**

180 All aITE mapper runs converged prior to 100 iterations, with the exclusion of the
181 palaeognath SS dataset when using *Nothoprocta* as the bait reference.

182

183 For both carnivore and palaeognath datasets, PWD and number of inserted bp in
184 general increased with phylogenetic distance to the bait reference, and total sequence length
185 declined (Figs 2 and 3, Supplementary tables S1-S4). A manual inspection of the number of
186 inserted bp revealed these were mostly single insertions spread across the mitogenome.
187 However, there were outliers: *Parahyaena* in the carnivore dataset (Fig 2), and *Apteryx* in the
188 palaeognath dataset (Fig 3), which displayed higher PWD and more inserted bp than the next
189 closest bait reference.

190

191 In contrast to phylogenetic distance, the relationship between PWD and minimum
192 mapping quality was not as clear. Either we saw little difference, or lower PWD with
193 increasing minimum mapping quality (Figs 2 and 3). In the carnivore dataset, *Parahyaena*
194 was again an outlier, and showed increased PWD with increasing minimum mapping quality
195 (Fig 2). Changing minimum mapping quality had little influence on the number of inserted
196 bp. However, increased minimum mapping quality led to shorter total sequence length
197 (Supplementary tables S1-S4).

198

199 Mismatch parameters more noticeably influenced the reliability of the reconstructed
200 assembly. Relaxing the mismatch parameters from -n 0.04 to -n 0.01 led to decreased PWD
201 in most cases (Figs 2 and 3). When we relaxed from -n 0.01 to -n 0.001 -o 2, PWD decreased
202 when considering phylogenetically closer bait references (*Parahyaena/Hyaena/Proteles* for
203 in carnivores; *Dromaius/Apteryx* for palaeognaths), but increased for the remaining bait
204 references. In the carnivore dataset, we saw little-to-no impact of mismatch parameters on the
205 number of inserted bp (Fig 2). However, in the palaeognath dataset, a relaxing of mismatch
206 parameters generally led to an increase in the number of inserted bp (Fig 3). Relaxing the
207 mismatch parameter led to longer total sequence length (Supplementary tables S1-S4).

208

209 Recalibrating quality scores for sites that showed signs of aDNA damage (elevated
210 levels of C > T and A > G transitions) towards the ends of reads provided mixed results (Figs
211 2 and 3). In some cases, PWD increased, in other cases, PWD decreased relative to omitting
212 the recalibration step. We observed similar and slightly higher rates of inserted bp (Figs 2 and
213 3), and retrieved similar but slightly longer total sequence lengths, when using the
214 recalibration (Supplementary tables S1-S4).

215

216 Overall, the multispecies consensus sequence from multiple bait references was more
217 accurate than a single bait reference, and in general resulted in a decrease in PWD (Figs 2 and
218 3). However, we retrieved more inserted bp when using the default mismatch parameter (-n
219 0.04), but less inserted bp when using more relaxed mismatch values. In every comparison,
220 we recovered longer total sequence lengths than when using only a single bait reference
221 (Supplementary tables S1-S4).

222

223 **MITObim**

224 Overall, there was no obvious relationship between PWD and phylogenetic distance
225 of the bait reference when using MITObim, regardless of mismatch parameter (Figs 2 and 3).
226 This was also mostly true for the number of inserted bp. In the carnivore dataset, when using
227 *Parahyaena* as bait reference, we observed ~100 inserted bp for both the DS and SS datasets,
228 and ~700 (DS) and ~350 (SS) inserted bp when using *Ursus* as bait reference (Fig 2).
229 However, all other bait references resulted in <50 inserted bp, with many having 0 inserted
230 bp. We saw much lower levels of inserted bp in the palaeognath dataset, with most tests
231 resulting in 0 inserted bp. However, *Dromaius* resulted in ~15 inserted bp (Fig 3), which was
232 the case regardless of mismatch parameter. Manual inspection of the inserted bp in the
233 MITObim results revealed that most insertions occurred in long stretches of multiple bp.

234

235 For the carnivore dataset, most tests recovered near-complete mitogenomes, and in
236 some cases the total sequence length exceeded the total linear length of the mitogenome
237 (Supplementary tables S1 and S2). With the palaeognath dataset, all bait references excluding
238 *Dromaius* resulted in a total sequence length of ~14,886 bp, as opposed to the expected linear
239 length of 16,740 bp, regardless of mismatch value or damage patterns (DS or SS)
240 (Supplementary tables S3 and S4).

241

242 With the carnivore dataset, PWD increased with increasing mismatch value, with the
243 exception of mismatches 10 and 15 (Fig 2). Similar trends were also seen with number of
244 inserted bp and sequence length, which both increased with mismatch value. In the
245 palaeognath dataset, the largest PWD arose with a mismatch of 0 (Fig 3). However, we did
246 not see any obvious relationship between mismatch value and assembly accuracy; most PWD
247 and inserted bp for the remaining mismatch values (1 - 15) were 0, and the recovered
248 sequence lengths were all near-identical.

249

250 In the DS carnivore dataset, the multispecies consensus sequences were more accurate
251 than when using a single bait reference; PWD and inserted bp were 0 for all mismatch values
252 >0 (Fig 2). However, the pattern was not as clear with the other datasets. With the SS
253 carnivore dataset, mismatch values 0 – 5 gave more accurate results, with lower PWD and
254 fewer inserted bp than most single bait reference runs, but not with higher mismatch values
255 (Fig 2). Both DS and SS carnivore datasets recovered sequence lengths greater than the linear
256 length of the mitogenome (Supplementary tables S1 and S2). Using the SS palaeognath
257 dataset, the multispecies consensus sequences were also more accurate than when using a
258 single bait reference; PWD and inserted bp were 0 for all mismatch values >0 (Fig 3). The
259 DS palaeognath dataset was also highly accurate, but incorporated more inserted bp than any
260 single bait reference, to the exclusion of *Dromaius* (Fig 3). Both the DS and SS palaeognath
261 datasets recovered sequence lengths of \sim 14,887 bp, shorter than the expected linear length of
262 16,740 bp (Supplementary tables S3 and S4).

263

264 **Discussion**

265

266 We investigated the influence of mapping software, parameters, and bait reference
267 sequence on reconstructing mitogenomes from ancient DNA through iterative mapping,
268 providing a reference for informed decision making on how to best reconstruct mitogenomes
269 with aDNA data. Overall, our results suggest MITObim with a mismatch value of 3 or 5 and
270 the closest available bait reference sequence together provide the most accurate results.
271 However, caution should be applied when only considering a single bait reference, as
272 reference-specific biases can occur. Therefore, multiple bait references may be necessary to
273 ensure the highest accuracy possible.

274

275 An accurate reconstructed assembly is crucial for the reliability of downstream
276 analyses; the incorrect incorporation of nucleotides may bias evolutionary inferences. A
277 single mitogenome from an extinct species is commonly used to estimate when the species
278 diverged from its closest living relative (Mitchell et al., 2014; Westbury et al., 2017;
279 Xenikoudakis et al., 2020). However, the inclusion of errors would artificially inflate (in the
280 case of random insertions/substitutions) or deflate (in the case of mapping biases towards the
281 bait reference allele) divergence estimates, leading to erroneous inferences of the driving
282 forces of divergence events, e.g. climatic shifts, natural disasters, continental drift.
283 Furthermore, as the mitogenome includes protein coding genes, which undergo selective
284 processes (Atlas & Fu, 2021; Pavlova et al., 2017), incorrect reconstruction may also
285 influence selection analyses. Population-level analyses may also be impacted, if sequencing
286 errors and damage patterns are incorporated when using an incorrectly assembled
287 mitogenome as mapping reference for DNA read data from conspecific specimens.

288

289 The circular nature of the mitogenome is both a pro and a con in mitogenome
290 reconstruction. While the presence of circularity in the final consensus sequence can be used
291 to evaluate the completeness of the reconstruction (Hahn et al., 2013), we observed both sides
292 of the linear sequence are extended in MITObim, and reads no longer uniquely map to a
293 single location, decreasing the accuracy at the terminal ends of the sequence. This problem
294 was apparent when using MITObim on the carnivore DS dataset with *Parahyaena* as
295 reference bait, and the SS dataset with *Proteles* as reference bait. However, it may be possible
296 to circumvent this problem by linearising the mitogenome from a different starting point, and
297 repeating the mapping process.

298

299 Linearising the mitogenome from a different starting point may also offer a means to
300 overcome repetitive elements. In the southern cassowary mitogenome, there is a repetitive
301 element of a single A followed by many G at ~14,800 bp. Due to the short read lengths of our
302 simulated aDNA data (Supplementary Fig. 1), MITObim was unable to reconstruct any
303 sequences after this repeat from any bait reference with a PWD >0.19. This was likely due to
304 the high divergence, as much of this post-repeat region comprised the highly divergent
305 control region. However, as suggested above, this limitation may be overcome by taking
306 advantage of the circular nature of the mitogenome, but further investigations are required to
307 confirm this.

308

309 Although both BWA and MITObim resulted in incorrectly inserted bp, manual
310 inspection revealed these insertions were not equal; BWA resulted in many single bp
311 insertions, while MITObim resulted in few insertions but with long stretches of bp. Many
312 single insertions are difficult to explain biologically, but long stretches of inserted bp could
313 be caused by insertions-deletions (indels) between the bait reference and the target species.
314 The bait reference may have had an insertion not found in the target species' reference
315 mitogenome, leading to the false mapping of reads to said region. A single insertion could
316 explain why we consistently observed a ~15 bp insertion when using *Dromaius* as bait
317 reference in the palaeognath dataset, but none using any other bait reference. This
318 exemplifies the importance of comparing results from multiple bait references to avoid
319 species specific insertions.

320

321 We investigated BWA and MITObim, as they are most commonly used to generate
322 mitogenomes from extinct species (Anmarkrud & Lifjeld, 2017; Delsuc et al., 2016;
323 Kehlmaier et al., 2017; Westbury et al., 2017; Xenikoudakis et al., 2020). However, other

324 iterative mapping tools are available; mapping interactive assembler (MIA) was originally
325 designed to assemble a number of Neandertal and early modern human mitochondria (Green
326 et al., 2008), but has been used for non-human species (Vershinina et al., 2020). Despite its
327 utility, when using a more distant bait reference, MIA requires much more memory and CPU
328 time than MITObim (Hahn et al., 2013), and is therefore not as suitable for species when only
329 relatively divergent bait references are available, such as the datasets tested here.

330

331 **Acknowledgements**

332 The work was supported by the Villum Fonden Young Investigator Programme, grant no.
333 13151 to EDL.

334

335 **Data availability**

336 Scripts for aITE mapper, MITObim, and consensus sequence building used can be found on
337 github.com/Mvwestbury/Iterative_mapping

338

339 **Author contributions**

340 Conceptualization, MVW; Formal analysis, MVW; Writing – Original Draft, MVW; Writing
341 – Review & Editing, MVW, EDL; Funding Acquisition, EDL; Supervision, EDL.

342

343 **References**

344 Anmarkrud, J. A., & Lifjeld, J. T. (2017). Complete mitochondrial genomes of eleven extinct
345 or possibly extinct bird species. *Molecular Ecology Resources*, 17(2), 334–341.

346 Atlas, J. E., & Fu, J. (2021). A Re-Assessment of Positive Selection on Mitochondrial
347 Genomes of High-Elevation *Phrynocephalus* Lizards. *Journal of Molecular Evolution*,
348 89(1-2), 95–102.

349 Chen, S., Zhou, Y., Chen, Y., & Gu, J. (2018). fastp: an ultra-fast all-in-one FASTQ
350 preprocessor. *Bioinformatics*, 34(17), i884–i890.

351 Chevreux, B., Wetter, T., Suhai, S., & Others. (1999). Genome sequence assembly using
352 trace signals and additional sequence information. *German Conference on
353 Bioinformatics*, 99, 45–56.

354 Delsuc, F., Gibb, G. C., Kuch, M., Billet, G., Hautier, L., Sounthor, J., Rouillard, J.-M.,
355 Fernicola, J. C., Vizcaíno, S. F., MacPhee, R. D. E., & Poinar, H. N. (2016). The
356 phylogenetic affinities of the extinct glyptodonts. *Current Biology: CB*, 26(4), R155–
357 R156.

358 Formenti, G., Rhie, A., Balacco, J., Haase, B., Mountcastle, J., Fedrigo, O., Brown, S.,
359 Capodiferro, M. R., Al-Ajli, F. O., Ambrosini, R., Houde, P., Koren, S., Oliver, K.,
360 Smith, M., Skelton, J., Betteridge, E., Dolucan, J., Corton, C., Bista, I., ... Vertebrate
361 Genomes Project Consortium. (2021). Complete vertebrate mitogenomes reveal
362 widespread repeats and gene duplications. *Genome Biology*, 22(1), 120.

363 Fortes, G. G., Grandal-d'Anglade, A., Kolbe, B., Fernandes, D., Meleg, I. N., García-
364 Vázquez, A., Pinto-Llona, A. C., Constantin, S., de Torres, T. J., Ortiz, J. E., Frischauf,
365 Rabeder, G., Hofreiter, M., & Barlow, A. (2016). Ancient DNA reveals differences
366 in behaviour and sociality between brown bears and extinct cave bears. *Molecular
367 Ecology*, 25(19), 4907–4918.

368 Green, R. E., Malaspinas, A.-S., Krause, J., Briggs, A. W., Johnson, P. L. F., Uhler, C.,
369 Meyer, M., Good, J. M., Maricic, T., Stenzel, U., Prüfer, K., Siebauer, M., Burbano, H.
370 A., Ronan, M., Rothberg, J. M., Egholm, M., Rudan, P., Brajković, D., Kućan, Z., ...
371 Pääbo, S. (2008). A complete Neandertal mitochondrial genome sequence determined
372 by high-throughput sequencing. *Cell*, 134(3), 416–426.

373 Haddrath, O., & Baker, A. J. (2001). Complete mitochondrial DNA genome sequences of

374 extinct birds: ratite phylogenetics and the vicariance biogeography hypothesis.

375 *Proceedings. Biological Sciences / The Royal Society*, 268(1470), 939–945.

376 Hahn, C., Bachmann, L., & Chevreux, B. (2013). Reconstructing mitochondrial genomes

377 directly from genomic next-generation sequencing reads—a baiting and iterative

378 mapping approach. *Nucleic Acids Research*, 41(13), e129–e129.

379 Ho, S. Y. W., & Gilbert, M. T. P. (2010). Ancient mitogenomics. *Mitochondrion*, 10(1), 1–

380 11.

381 Hu, M., Jex, A. R., Campbell, B. E., & Gasser, R. B. (2007). Long PCR amplification of the

382 entire mitochondrial genome from individual helminths for direct sequencing. *Nature*

383 *Protocols*, 2(10), 2339–2344.

384 Jónsson, H., Ginolhac, A., Schubert, M., Johnson, P. L. F., & Orlando, L. (2013).

385 mapDamage2.0: fast approximate Bayesian estimates of ancient DNA damage

386 parameters. *Bioinformatics*, 29(13), 1682–1684.

387 Katoh, K., & Standley, D. M. (2013). MAFFT multiple sequence alignment software version

388 7: improvements in performance and usability. *Molecular Biology and Evolution*, 30(4),

389 772–780.

390 Kearse, M., Moir, R., Wilson, A., Stones-Havas, S., Cheung, M., Sturrock, S., Buxton, S.,

391 Cooper, A., Markowitz, S., Duran, C., Thierer, T., Ashton, B., Meintjes, P., &

392 Drummond, A. (2012). Geneious Basic: an integrated and extendable desktop software

393 platform for the organization and analysis of sequence data. *Bioinformatics*, 28(12),

394 1647–1649.

395 Kehlmaier, C., Barlow, A., Hastings, A. K., Vamberger, M., Paijmans, J. L. A., Steadman, D.

396 W., Albury, N. A., Franz, R., Hofreiter, M., & Fritz, U. (2017). Tropical ancient DNA

397 reveals relationships of the extinct Bahamian giant tortoise *Chelonoidis alburyorum*.

398 *Proceedings. Biological Sciences / The Royal Society*, 284(1846).

399 https://doi.org/10.1098/rspb.2016.2235

400 Korneliussen, T. S., Albrechtsen, A., & Nielsen, R. (2014). ANGSD: Analysis of Next

401 Generation Sequencing Data. *BMC Bioinformatics*, 15, 356.

402 Krause, J., Dear, P. H., Pollack, J. L., Slatkin, M., Spriggs, H., Barnes, I., Lister, A. M.,

403 Ebersberger, I., Pääbo, S., & Hofreiter, M. (2005). Multiplex amplification of the

404 mammoth mitochondrial genome and the evolution of Elephantidae. *Nature*, 439(7077),

405 724–727.

406 Kumar, S., Stecher, G., Li, M., Knyaz, C., & Tamura, K. (2018). MEGA X: Molecular

407 evolutionary genetics analysis across computing platforms. *Molecular Biology and*

408 *Evolution*, 35(6), 1547–1549.

409 Li, H., & Durbin, R. (2009). Fast and accurate short read alignment with Burrows–Wheeler

410 transform. *Bioinformatics*, 25(14), 1754–1760.

411 Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., Marth, G., Abecasis,

412 G., Durbin, R., & 1000 Genome Project Data Processing Subgroup. (2009). The

413 Sequence Alignment/Map format and SAMtools. *Bioinformatics*, 25(16), 2078–2079.

414 Mitchell, K. J., Llamas, B., Soubrier, J., Rawlence, N. J., Worthy, T. H., Wood, J., Lee, M. S.

415 Y., & Cooper, A. (2014). Ancient DNA reveals elephant birds and kiwi are sister taxa

416 and clarifies ratite bird evolution. *Science*, 344(6186), 898–900.

417 Pajmans, J. L. A., Barnett, R., Gilbert, M. T. P., Zepeda-Mendoza, M. L., Reumer, J. W. F.,

418 de Vos, J., Zazula, G., Nagel, D., Baryshnikov, G. F., Leonard, J. A., Rohland, N.,

419 Westbury, M. V., Barlow, A., & Hofreiter, M. (2017). Evolutionary History of Saber-

420 Toothed Cats Based on Ancient Mitogenomics. *Current Biology: CB*, 27(21), 3330–

421 3336.e5.

422 Pavlova, A., Gan, H. M., Lee, Y. P., Austin, C. M., Gilligan, D. M., Lintermans, M., &

423 Sunnucks, P. (2017). Purifying selection and genetic drift shaped Pleistocene evolution

424 of the mitochondrial genome in an endangered Australian freshwater fish. *Heredity*,
425 118(5), 466–476.

426 Renaud, G., Hanghøj, K., Willerslev, E., & Orlando, L. (2017). gargammel: a sequence
427 simulator for ancient DNA. *Bioinformatics*, 33(4), 577–579.

428 Skovrind, M., Louis, M., Westbury, M. V., Garilao, C., Kaschner, K., Castruita, J. A. S.,
429 Gopalakrishnan, S., Knudsen, S. W., Haile, J. S., Dalén, L., Meshchersky, I. G., Shpak,
430 O. V., Glazov, D. M., Rozhnov, V. V., Litovka, D. I., Krasnova, V. V., Chernetsky, A.
431 D., Bel'kovich, V. M., Lydersen, C., ... Lorenzen, E. D. (2021). Circumpolar
432 phylogeography and demographic history of beluga whales reflect past climatic
433 fluctuations. *Molecular Ecology*, 30(11), 2543–2559.

434 Vershinina, A. O., Kapp, J. D., Baryshnikov, G. F., & Shapiro, B. (2020). The case of an
435 arctic wild ass highlights the utility of ancient DNA for validating problematic
436 identifications in museum collections. *Molecular Ecology Resources*, 20(5), 1182–1190.

437 Westbury, M., Baleka, S., Barlow, A., Hartmann, S., Paijmans, J. L., Kramarz, A., Forasiepi,
438 A. M., Bond, M., Gelfo, J. N., Reguero, M. A., López-Mendoza, P., Taglioretti, M.,
439 Scaglia, F., Rinderknecht, A., Jones, W., Mena, F., Billet, G., de Muizon, C., Aguilar,
440 J.L, MacPhee, R.D.E, & Hofreiter, M. (2017). A mitogenomic timetree for Darwin's
441 enigmatic South American mammal *Macrauchenia patachonica*. *Nature
442 Communications*, 8(1), 1–8.

443 Xenikoudakis, G., Ahmed, M., Harris, J. C., Wadleigh, R., Paijmans, J. L. A., Hartmann, S.,
444 Barlow, A., Lerner, H., & Hofreiter, M. (2020). Ancient DNA reveals twenty million
445 years of aquatic life in beavers. *Current Biology: CB*, 30(3), R110–R111.

446

447

448

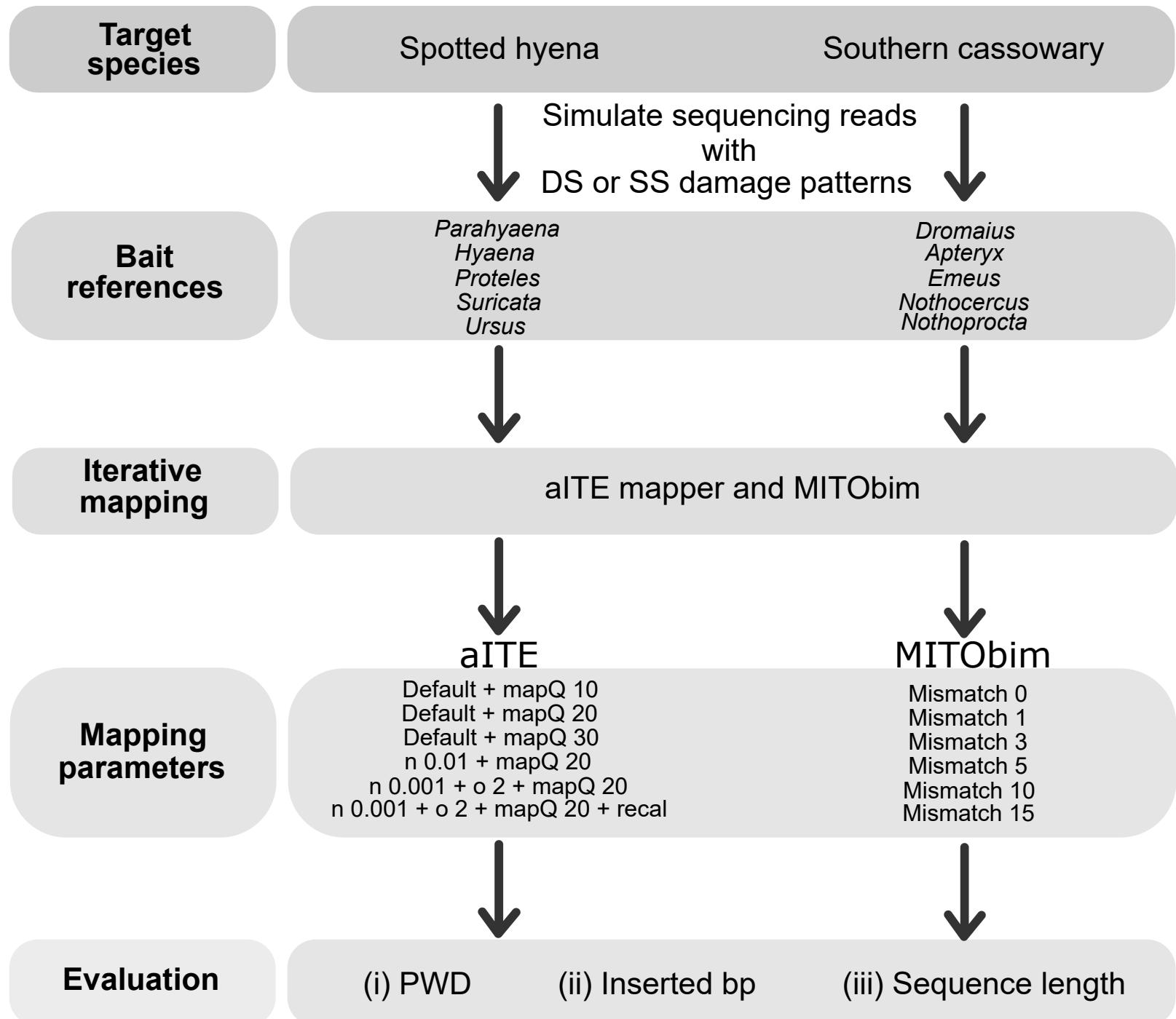
449 **Table 1:** List of bait reference sequences used in this study and their phylogenetic distance
450 (pairwise distance PWD) to the target species.

Target species	Bait reference	PWD	Genbank accession
Spotted hyena (<i>Crocuta crocuta</i>)	<i>Parahyaena brunnea</i>	0.11	NC_038159.1
	<i>Hyaena hyaena</i>	0.11	NC_020669.1
	<i>Proteles cristata</i>	0.13	MH662445.1
	<i>Suricata suricatta</i>	0.22	MN854374.1
	<i>Ursus maritimus</i>	0.27	AF303111.1
Southern cassowary (<i>Casuarius casuarius</i>)	<i>Dromaius novaehollandiae</i>	0.12	NC_002784.1
	<i>Apteryx rowi</i>	0.19	NC_052824.1
	<i>Emeus crassus</i>	0.19	AF338712.1
	<i>Nothocercus nigrocapillus</i>	0.25	MN356380.1
	<i>Nothoprocta perdicaria</i>	0.28	NC_052826.1

451

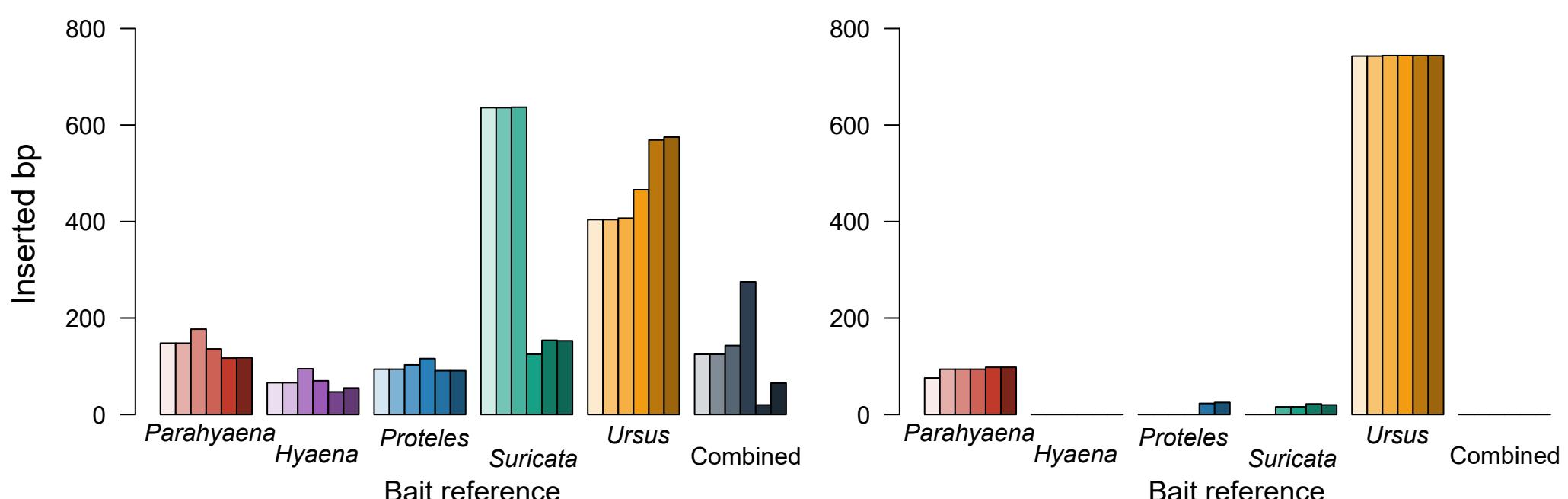
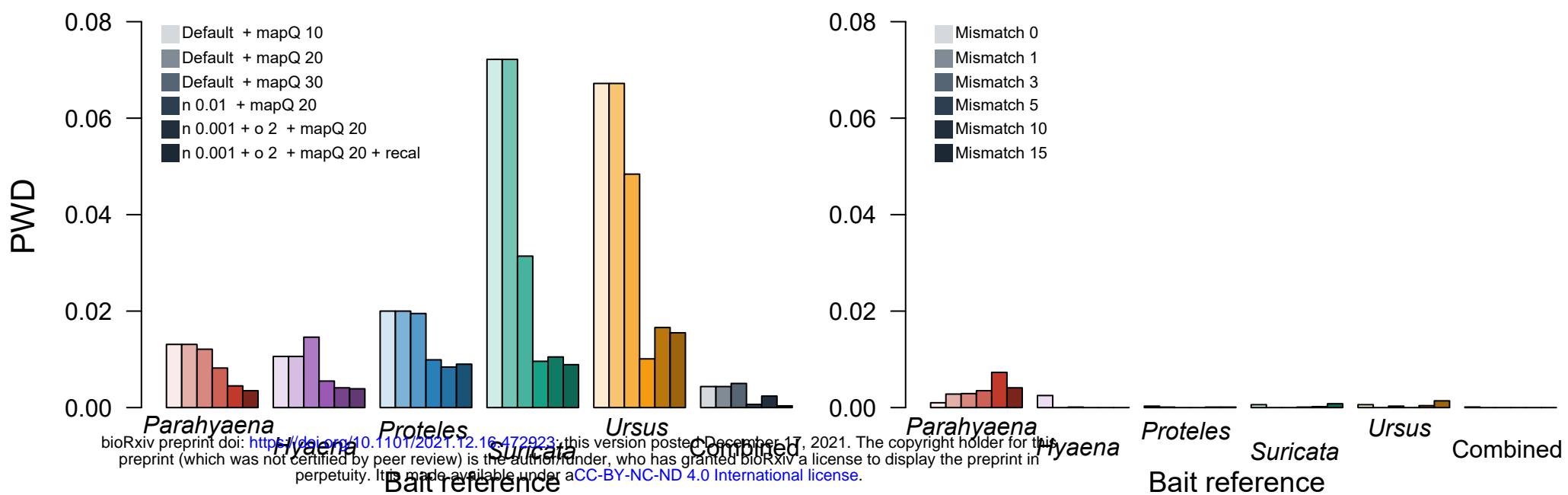
452 **Figure legends:**

453

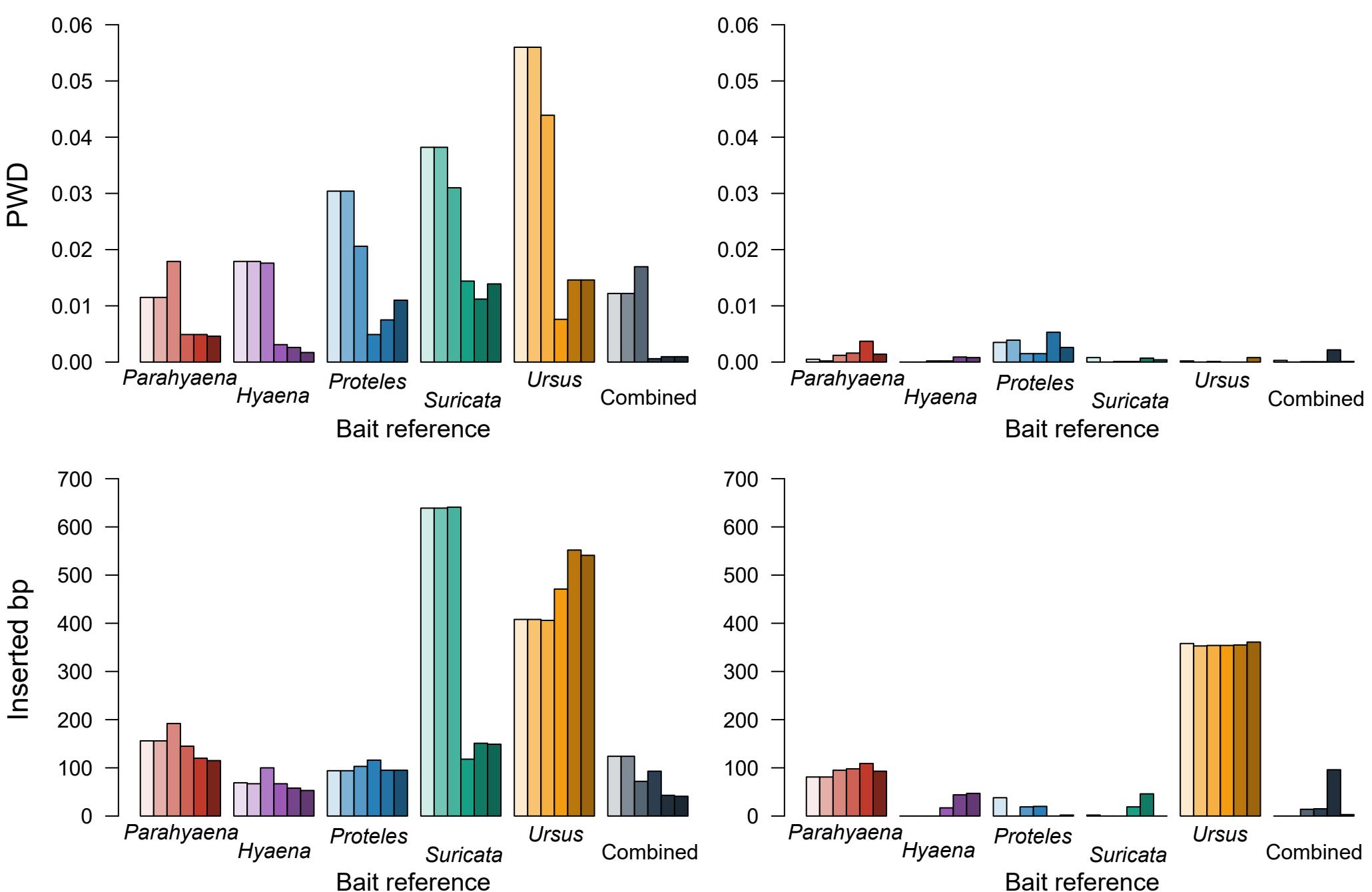

454 **Figure 1:** Schematic overview of the methodology

455

456 **Figure 2:** Pairwise distance (PWD) between the reconstructed assembly and the reference
457 conspecific mitogenome (spotted hyena), and number of inserted base pairs (bp) estimated
458 for the carnivore dataset. The ‘combined’ bait reference refers to the multispecies consensus
459 sequence.

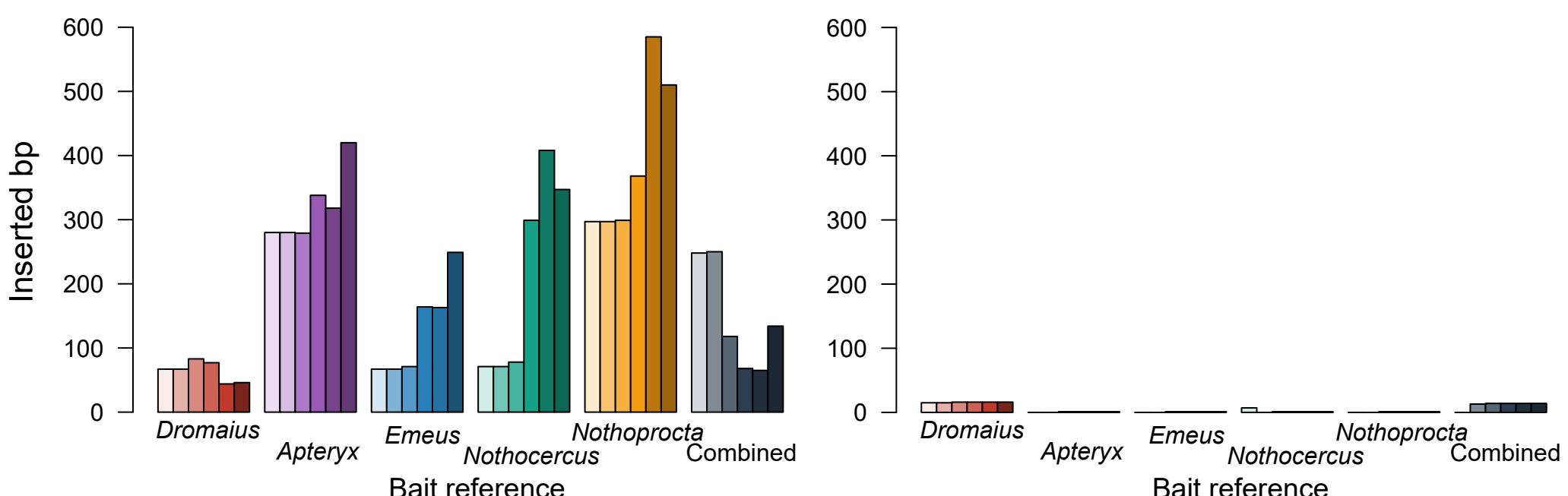
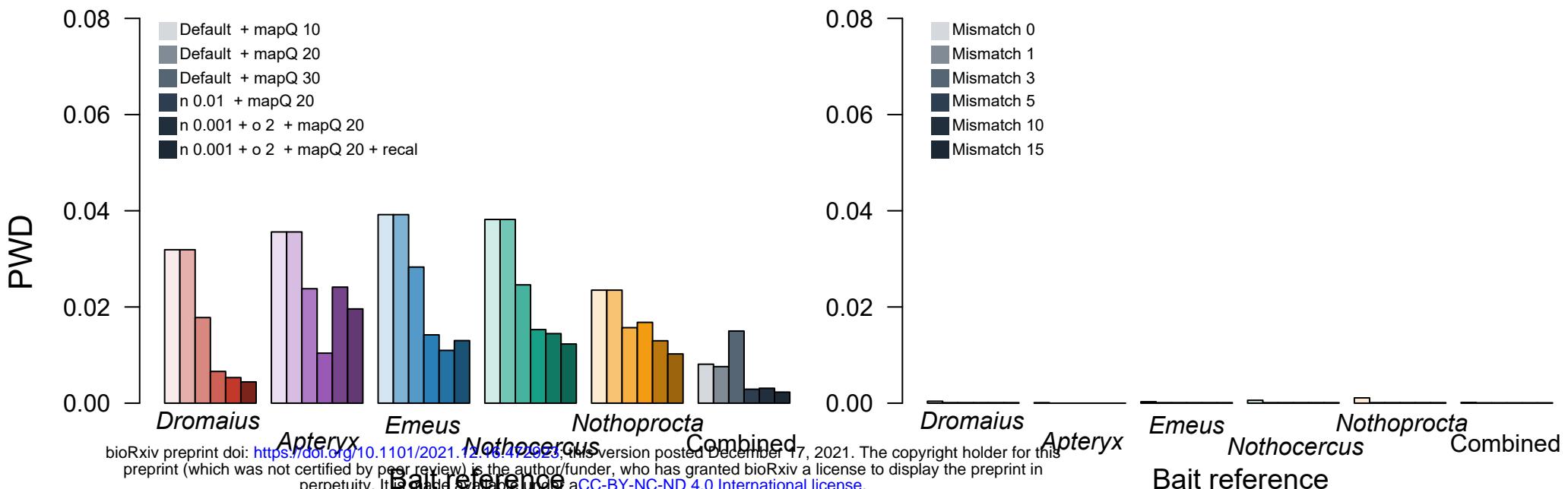


460

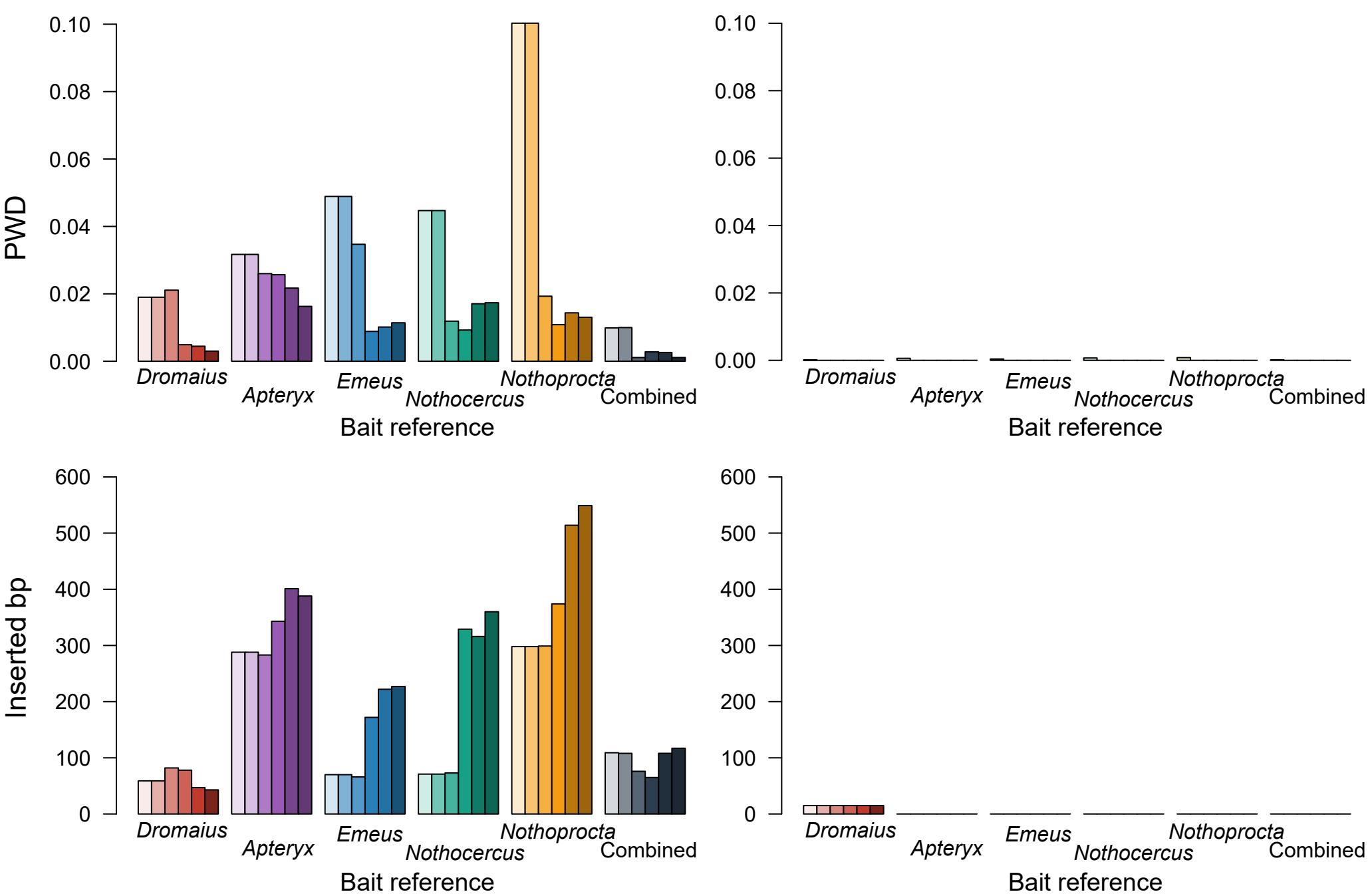
461 **Figure 3:** Pairwise distance (PWD) between the reconstructed assembly and the reference
462 conspecific mitogenome (southern cassowary) and number of inserted base pairs (bp)
463 estimated for the palaeognath dataset. The ‘combined’ bait reference refers to the
464 multispecies consensus sequence.



aITE mapper

Double stranded (DS) aDNA damage patterns



Single stranded (SS) aDNA damage patterns


aITE mapper

Double stranded (DS) aDNA damage patterns

MITObim

Single stranded (SS) aDNA damage patterns

