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Abstract 16 

Maternal hormones, such as thyroid hormones transferred to embryos and eggs, are key 17 

signalling pathways to mediate maternal effects. To be able to respond to maternal cues, 18 

embryos must express key molecular ‘machinery’ of the hormone pathways, such as 19 

enzymes and receptors. While altricial birds begin thyroid hormone (TH) production only 20 

at/after hatching, experimental evidence suggests that their phenotype can be influenced 21 

by maternal THs deposited in the egg. However, it is not understood, how and when altricial 22 

birds express genes in the TH-pathway. For the first time, we measured the expression of 23 

key TH-pathway genes in altricial embryos, using two common altricial ecological model 24 

species (pied flycatcher, Ficedula hypoleuca and blue tit Cyanistes caeruleus). Deiodinase 25 

DIO1 gene expression could not be reliably confirmed in either species, but deiodinase 26 

enzyme DIO2 and DIO3 genes were expressed in both species. Given that DIO2 coverts T4 to 27 

biologically active T3, and DIO3 mostly T3 to inactive forms of thyroid hormones, our results 28 

suggest that embryos may modulate maternal signals. Thyroid hormone receptor (THRA and 29 

THRB) and monocarboxyl membrane transporter gene (SLC15A2) were also expressed, 30 

enabling TH-responses. Our results suggest that early altricial embryos may be able to 31 

respond and potentially modulate maternal signals conveyed by thyroid hormones. 32 

Keywords: maternal hormones, prenatal programming, gene expression, DIO2, DIO3, THRA, 33 

THRB, T3, T4  34 
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Introduction 35 

Maternal effects are a powerful force shaping offspring phenotype and survival, and 36 

may adapt offspring phenotype to a predicted environment (although the adaptiveness is 37 

still under debate : Marshall and Uller 2007, Uller et al. 2013, Yin et al. 2019, Sanchez-Tojar 38 

et al. 2020, Zhang et al. 2020). Maternal effects can also take different forms, and 39 

sometimes bring benefits only to maternal fitness but not to offspring, leading to mother-40 

offspring conflict (Kuijper and Johnston 2018, Groothuis et al. 2020). It has become clear 41 

that mechanisms underlying maternal effects are diverse, consisting of nutritional, 42 

temperature-related, hormonal, epigenetic, microbe-related and even acoustic signals to 43 

the offspring (e.g. Marshall and Uller 2007, Mousseau et al. 2009, DuRant et al. 2013, 44 

Groothuis et al. 2019, Mariette et al. 2021). Yet, it is increasingly acknowledged that 45 

offspring may not just be passive recipients of the signal, but may actively modify the signal, 46 

for example metabolizing maternal hormones, such as steroids (e.g. Paitz et al. 2011, 47 

Vassallo et al. 2014, Groothuis et al. 2019, Kumar et al. 2019, Paitz et al. 2020), influencing 48 

the resolution of potential parent-offspring conflict. 49 

Thyroid hormones, thyroxine (T4) and biologically active triiodothyronine (T3), are 50 

key maternal hormones which critically influence early development in many organisms 51 

(e.g. McNabb and Darras 2015). For example, the influence of maternal thyroid hormones 52 

on amphibian development was established already in the 1910’s (Gudernatsch 1912), and 53 

their importance on human neurodevelopment has been heavily investigated (e.g. Patel et 54 

al. 2011). However, the role of maternal (prenatal) thyroid hormones in other systems, such 55 

as birds, has not been thoroughly studied until very recently (Ruuskanen and Hsu 2018, 56 

Darras 2019, Sarraude et al. 2020b, Sarraude et al. 2020c, d, Stier et al. 2020).  57 
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Thyroid hormones of maternal origin are found in eggs of both precocial birds 58 

(species with advanced embryonic development and independence after hatching) and 59 

altricial birds (species not independent after hatching, Ruuskanen and Hsu 2018). To be able 60 

to respond to maternal thyroid hormone signalling, embryos must have the molecular 61 

‘machinery ‘ of the thyroid axis (TH-axis) in place: they need to express for example 62 

transmembrane transporters (e.g. monocarboxyl membrane transporters) transporting 63 

hormones to cells, cellular deiodinases, which convert T4 to bioactive T3 and to inactive 64 

forms (rT3 and T2), and intracellular hormone receptors (THRA and THRB, Zoeller et al. 65 

2007). Embryos of precocial birds have been discovered to contain thyroid hormones and 66 

express genes in the TH-axis, such as DIO2 as early as 4 days into incubation (Van Herck et 67 

al. 2012). The expression also varied depending on maternal hormonal concentrations (Van 68 

Herck et al. 2012). Importantly, precocial birds begin embryonic thyroid production around 69 

mid-incubation while in contrast, altricial birds are only able to produce thyroid hormones 70 

at/after hatching (Darras 2019), thus being potentially dependent on maternal hormones 71 

during the entire embryonic period. Thyroid hormones (likely of maternal origin) were 72 

indeed shown to be present in embryonic plasma of altricial species such as ring dove 73 

(Streptopelia risoria) and European starling (Sturnus vulgaris) before the presumed timing of 74 

thyroid gland maturation (McNabb and Cheng 1985, Schew et al. 1996). Furthermore, it has 75 

been recently experimentally shown that egg thyroid hormones in altricial species can 76 

influence pre-and post-hatching development, such as embryo survival, growth and 77 

physiology (Ruuskanen et al. 2016, Hsu et al. 2019, 2020, Sarraude et al. 2020a, Sarraude et 78 

al. 2020b, Stier et al. 2020). It is not however understood if, how and when altricial species 79 

express genes of thyroid hormone response ‘machinery’, whereby maternal hormonal 80 

effects could take place. 81 
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The aim of the study was to characterize expression of thyroid hormone signalling-82 

related genes in early development of altricial birds. To this end, we collected early embryos 83 

of different ages from two common altricial species often used as models in ecological and 84 

evolutionary research, the pied flycatcher (Ficedula hypoleuca), and the blue tit (Cyanistes 85 

caeruleus). We measured expression of key thyroid-related genes (1) a membrane 86 

transporter (SLC15A2), (2) deiodinases (DIO1-3), and (3) thyroid hormone receptors (THRA 87 

and THRB). We characterized the expression of the selected genes across embryos of 88 

different age to reveal potential age-related changes. The characterization of the gene 89 

expression allows us to understand when and how altricial birds may respond to maternal 90 

thyroid hormone cues. Furthermore, expression of DIOs would also indicate that early 91 

embryos may be capable of metabolizing maternal hormones, potentially modulating 92 

maternal signalling.  93 

 94 

Material and methods 95 

Sample collection was in accordance with all relevant guidelines and regulations and 96 

approved by the Environmental Center of Southwestern Finland (license number 97 

VARELY924/2019). The data collection was conducted in spring-summer 2020 in nest box 98 

population of blue tits and pied flycatchers in south-western Finland (60° 25H N, 22° 10H E). 99 

We monitored the population for the initiation of egg laying, marked each egg in laying 100 

order, and visited the nest daily to record the start of incubation. We collected one egg from 101 

10 nests per species to limit consequences on their breeding success. The collected egg was 102 

positioned at middle of the laying order to avoid any laying-order associated variation as 103 

reported for egg composition, especially for first and last eggs (e.g. Hsu et al. 2019). The 104 
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collected eggs were kept warm until dissection (within 1-2h). The embryo was carefully 105 

removed from the yolk (using equipment treated with RNase decontamination solution, 106 

RNaseZap®, ThermoFischer), immediately frozen in liquid nitrogen and stored at -80ºC for 107 

ca. 5 months. The eggs varied in the duration of incubation and embryos were staged based 108 

on Murray et al. (2013) with 0.5 day accuracy. 109 

 We analysed expression levels of six genes of interest using RT-qPCR. These included 110 

a monocarboxyl membrane transporter (SLC15A2), all three deiodinases (DIO1, DIO2, DIO3) 111 

and thyroid hormone receptor genes (THRA, THRB). Reference genes were selected from 112 

prior publications in blue tits (Capilla-Lasheras et al. 2017). Primers for reference genes were 113 

designed on exon-exon junction using NCBI primer blast (Table 1). Initially four reference 114 

genes (ACTB, GADPH, SDHA and TRFC) were selected for validation.  115 

RNA was extracted from whole-embryos using Nucleospin RNA Plus extraction kit 116 

(Macherey-Nagel), following manufacturer’s instructions and stored at -80ºC for 2 months. 117 

RNA concentration and purity were quantified using optical density. Samples not meeting 118 

quality criteria ([RNA] > 30 ng/μl, 260/280 and 260/230 > 1.80) were excluded for further 119 

analysis. RNA integrity was checked using E-Gel 2% electrophoresis system (Invitrogen), and 120 

the ribosomal RNA 18S vs. 28S bands intensity, and deemed satisfactory. 500ng of RNA were 121 

used for cDNA synthesis using the SensiFAST cDNA Synthesis kit (Bioline) following 122 

manufacturer instructions. cDNA was diluted at a final concentration of 1.2 ng/μl for qPCR 123 

analysis. No-RT control samples were prepared following the same protocol, but without 124 

reverse transcriptase enzyme.  125 
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Primers for the target genes (see Table 1) were designed using NCBI primer blast, to exon-126 

exon junction whenever possible. Blue tit reference genome was assembly 127 

GCA_002901205.1. For pied flycatcher, the reference genome was not available and thus 128 

the genome of a closely related species, the collared flycatcher genome was used (assembly 129 

GCA_000247815.2). To validate the primers, initially 2-5 primers for each gene were 130 

designed and tested for specificity, efficiency and linearity. Pooled samples (pooling RNA 131 

from three individuals) from both species were used in validation. Specificity was checked 132 

using BLAST analysis and confirmed by a single narrow peak in melting curve analyses and 133 

the presence of a single PCR product of the expected size on agarose gel. Amplification of 134 

controls with no reverse transcriptase never occurred before at least 7 cycles after the 135 

lower Cq sample (except for DIO1 that was excluded from interpretation, see below), and 136 

thus contamination by genomic DNA could not interfere with our results. Based on their 137 

performance during initial validation, ACTB (actin beta, highly conserved protein involved 138 

e.g in cell motility) and GAPHD (glyceraldehyde-3-phosphate dehydrogenase, a key protein 139 

in carbo-hydrate metabolism) were used for reference genes for blue tit gene expression, 140 

and ACTB and SDHA (succinate dehydrogenase complex flavoprotein subunit A, a key 141 

mitochondrial protein) for pied flycatchers.  142 

Samples and controls (two controls per plate) were analysed in duplicates. All 143 

samples for one gene were run in one plate, and two genes were analysed per qPCR plate. 144 

qPCR was performed in a total volume of 12μl containing 5μl of each diluted cDNA sample 145 

(i.e. 1.2ng/μl) and 7μl of reaction mix containing primers (forward and reverse) at a final 146 

concentration of 300nM and Sensifast SYBR®Low-ROX Mix (Bioline). qPCR assays were 147 

performed on a Mic qPCR instrument (Bio Molecular Systems) and included a two-step 148 

cycling with the following conditions: 2 minutes at 95°C; then 40 cycles of 5s at 95°C 149 
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followed by 20s at 60°C (fluorescence reading) for all reactions. The expression of each gene 150 

was calculated as (1+EfTarget)
ΔCq(Target)

 / geometric mean [(1+EfRef_gene1)
ΔCq(Ref_gene1)

 + 151 

(1+EfRef_gene2)
ΔCq(Ref_gene2)

], Ef being the amplification’s efficiency and ΔCq being the 152 

difference between the Cq-values of the reference sample and the sample of interest. 153 

Statistical analyses were not conducted because of the limited number of replicates. 154 

Table 1. Forward and reverse primer sequences for refence and target genes for (A) blue tit 155 

and (B) pied flycatcher (from collared flycatcher genome). Cq refers to qPCR quantitation 156 

cycle (a higher value indicating a lower initial target mRNA amount), efficiency has been 157 

evaluated using LinReg method and technical precision estimated as coefficient of variation 158 

(CV in %) for final ratios at the intra-plate level (based on duplicates). All the samples for one 159 

gene per species were run on one single plate.  160 

 
Gene Forward primer Reverse primer Bp  

Cq 

±SD 

Eff 

(SD) 

CV % 

intra 

A ACTB AGAAGCTGTGCTATGTCGCC CCACAAGACTCCATACCCAGG 178 14.40±0.56 98.0±1.0 - 

 GAPDH TCAAGCTGGTTTCCTGGTACG CAGAGCTAAGCGGTGGTGAA 174 14.54±0.44 96.9±1.2 - 

 SLC15A2 TGTGACTCTCAGCACGATGG TCTCCACGTATTTGACCAGGTT 193 23.29±0.91 89.9±1.7 4.5±3.7 

 DIO1 GAGGAAGCTCATGCAGTAGATGG GTTGTGCTGCAGCTTTTCGAT 94 28.80±2.35 92.9±2.7 30.3±26 

 DIO2 GACGCCTACAAGCAGGTCA TGAGCCAAAGTTGACGACCA 180 25.13±1.30 96.1±2.7 5.7±6.1 

 DIO3 CCTCATCCTCAACTTCGGCA GAGGGGTGTGCTTCTTCGAT 132 25.55±1.14 91.9±1.5 6.8±4.8 

 THRA GAAGCGGAAATTCCTGCCTGA GGCCGGGGTGATGATTTTTG 115 24.71±0.56 93.7±2.0 9.4±5.0 

 THRB TTGCCTATGTTTTGTGAGCTGC CTCGGGGTCATAGCGAACTG 105 25.62±0.98 95.1±1.1 9.0±7.3 

B ACTB CATGGATGACGATATTGCCGC CATACCAACCATCACACCCTGA 142 17.41±0.33 91.4±2.0 - 

 SDHA  GCTTGTGCCCTGACTATTGC CATGGCTTTGCATTGCCTTCT 172 22.08±0.45 92.8±0.9 - 

 SLC15A2 TCGGCATCCACAACTCCTTC AGCCAACCCACGCTGTTTTA 105 25.40±0.48 93.3±0.9 8.0±8.1 

 
DIO1 AGGATGAAGCCTACGAGGGA 

AGGATTAAAGGTCGGTTATCTTC

CA 
109 31.04±3.10 82.0±2.8 21.2±24 

 
DIO2 CCAATGTGGCCTATGGGGTT GCTGAAGTTTCGTTCCAGCC 134 27.21±1.19 95.1±1.1 

15.7±13

.3 

 DIO3 CCGTGGACACCATGGACAAT CTCTGGAGCCGGGTTTTGTA 169 27.93±1.16 93.6±1.2 6.5±3.7 

 THRA CTGCTCATGTCCTCAGACCG CGCAGATCCGTCACCTTCAT 158 24.90±0.42 93.3±1.3 7.8±6.9 

 
THRB  AAATGGGGGTCTTGGCGTAG GCCTGGGCGATCTGATGAC 130 26.93±0.89 92.9±1.5 

11.6±10

.5 

 161 

Results 162 

In both species, pied flycatchers and blue tits, the coefficients of variation for DIO1 163 

were high (many samples with >30%) and Cq values also high (being < 5 cycles apart from 164 

no-RT controls) and therefore its expression could not be reliably measured. All other genes, 165 
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membrane transporters (SCL152A), deiodinase enzymes (DIO2, DIO3) and TH receptors 166 

(THRA and THRB subunits) were expressed in both altricial species, but at relatively low 167 

levels compared to reference genes (Cq of target genes being << reference genes; Table 1). 168 

None of the genes showed clear changes with embryonic development time (Fig 1). Yet, for 169 

DIO2 the expression levels of older (4-5-day old embryos) seemed to be higher, and there 170 

were specifically some individuals with high expression values especially the oldest (5.5 171 

days) embryos. When visually inspecting the expression patters for both species, few 172 

embryos sampled from the earliest time-points (1-day old embryos) showed somewhat high 173 

expression for part of the genes (DIO3, THRA, THRB) compared to other time-points.   174 

  175 
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 176 

Fig 1. Expression of thyroid hormone axis related genes in embryos (1-5.5 days) of the 177 

altricial pied flycatcher (blue) and blue tit (red): (A) membrane transporter (SLC15A2), (B) 178 

deiodinase 2 (DIO2) converting T4 to T3, (C) deiodinase 3 (DIO3) converting T4 and T3 to the 179 

inactive form rT3, (D) thyroid hormone receptor A (THRA) & (E) thyroid hormone receptor B 180 

(THRB). N = 10 individuals per species. Dashed lines are included for visualization, but due to 181 

low sample sizes, statistical analyses have not been performed. Species cannot be directly 182 

compared as relative gene expression was evaluated in a species-specific manner (i.e. 183 

different primers and reference genes). 184 

a) 185 

 186 

b)       c)  187 

 188 

 189 

 190 

 191 

 192 

d)       e) 193 

 194 

 195 

 196 

 197 

 198 

 199 

 200 
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Discussion 201 

We were able to detect expression of the deiodinase enzyme genes DIO2 and DIO3 in early 202 

altricial embryos of two passerine species, blue tits and pied flycatchers. DIO1 could not be 203 

reliably measured in either species. DIO1 is mostly a scavenger enzyme, converting inactive 204 

rT3 to other inactive forms (e.g. Darras et al. 2019). In previous studies in 4-day-old 205 

precocial chicken (Gallus gallus domesticus), DIO1 was expressed but did not yield a 206 

functional enzyme (Van Herck et al. 2012). DIO2, in turn, is the key enzyme converting T4 to 207 

the active form T3. Therefore, expression of this enzyme early in prenatal development, 208 

along with our findings of expression of transmembrane transporter gene (SCL152A) and 209 

thyroid hormone receptor genes (THRA and THRB) in altricial embryos would support the 210 

hypothesis that altricial embryos may respond to maternal thyroid hormones before their 211 

own thyroid hormone production. In precocial birds, DIO2 gene expression increased during 212 

embryonic development (from day 4 onwards), whereas DIO3 gene expression was more 213 

variable and cell-type dependent (Geysens et al. 2012, Van Herck et al. 2012). Interestingly, 214 

DIO3 mainly converts T3 to inactive forms, and its expression can be seen as regulating the 215 

cellular exposure to active T3. Given that mothers deposit also T3 into egg yolks, expression 216 

of DIO3 in the early embryo would open up the possibility that embryos can downregulate 217 

maternal signalling, as observed for androgen hormones (reviewed in Groothuis et al. 2019). 218 

A further validation step would include verifying the translation of these transcripts to 219 

functional proteins, e.g. using western blots or proteomic approaches.  220 

In our data, few samples from earliest time-points (ca 1-day-old embryo), seemed to 221 

show rather high expression levels for some genes. In other taxa, such as fish embryos, 222 

transcripts in very early embryos are predicted to be of maternal origin (e.g. Essner et al. 223 
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1997, Takayma et al. 2008). For example, Vergauwen et al. (2018) confirmed the presence 224 

of maternal transfer of TPO (thyroid peroxidase), DIO1-3, THRA and THRB mRNA using 225 

unfertilized eggs, yet levels quickly decreased during embryo development. Maternal mRNA 226 

transfer has rarely been explored in birds beyond studies related to fertilization (Olszanska 227 

and Stepinska 2008) and to our knowledge there is no data on maternal thyroid hormone 228 

related mRNAs in eggs. Thus, it would be important to verify if and how much of the 229 

transcripts may be of maternal origin, by sampling unincubated (and preferably unfertilized) 230 

eggs across species. Yet, there are technical challenges in working with low levels of 231 

transcripts in lipid-rich yolk tissue, especially for (wild) species with small eggs. 232 

All in all, thyroid hormone signalling and its consequences on early development in 233 

(altricial) birds is a fruitful avenue for further research. Knowledge gained from early-life 234 

thyroid-related gene expression is not only important from the perspective of fundamental 235 

developmental biology and comparative physiology, but also for (eco)toxicology: wild bird 236 

species are subject to various endocrine disrupting chemicals (EDCs) also via the egg (e.g. 237 

Ruuskanen et al. 2014). Thyroid disruption via EDCs can occur at multiple locations within 238 

the thyroid axis, acting through several molecular targets, such as inhibition of T4 239 

production, inhibition of deiodination of T4 to T3 in peripheral tissues, and impacts on TH 240 

receptors (McNabb 2007). Identifying molecular targets (when and how embryos respond to 241 

THs) could help in understand and screening for the prenatal effects of EDCs.  242 

 243 
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