

1 **Altricial bird early-stage embryos express the molecular 'machinery' to respond to**
2 **maternal thyroid hormone cues**

3

4 Suvi Ruuskanen^{1,2*}, Mikaela Hukkanen^{1,3}, Natacha Garcin^{1,4}, Nina Cossin-Sevrin^{1,5}, Bin-Yan
5 Hsu¹, Antoine Stier^{1,4}

6

7 ¹Department of Biology, University of Turku, Finland

8 ²Department of Biological and Environmental Science, University of Jyväskylä, Finland

9 ³Institute for Molecular Medicine Finland, HiLIFE, University of Helsinki, Helsinki, Finland

10 ⁴Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR 5023 LEHNA, F-69622,
11 Villeurbanne, France

12 ⁵Université de Strasbourg, Centre National de la Recherche Scientifique, Institut
13 Pluridisciplinaire Hubert Curien, UMR 7178, 67087 Strasbourg, France

14

15 ^{*}*Corresponding author:* suvi.k.ruuskanen@jyu.fi

16 Abstract

17 Maternal hormones, such as thyroid hormones transferred to embryos and eggs, are key
18 signalling pathways to mediate maternal effects. To be able to respond to maternal cues,
19 embryos must express key molecular 'machinery' of the hormone pathways, such as
20 enzymes and receptors. While altricial birds begin thyroid hormone (TH) production only
21 at/after hatching, experimental evidence suggests that their phenotype can be influenced
22 by maternal THs deposited in the egg. However, it is not understood, how and when altricial
23 birds express genes in the TH-pathway. For the first time, we measured the expression of
24 key TH-pathway genes in altricial embryos, using two common altricial ecological model
25 species (pied flycatcher, *Ficedula hypoleuca* and blue tit *Cyanistes caeruleus*). Deiodinase
26 *DIO1* gene expression could not be reliably confirmed in either species, but deiodinase
27 enzyme *DIO2* and *DIO3* genes were expressed in both species. Given that *DIO2* converts T4 to
28 biologically active T3, and *DIO3* mostly T3 to inactive forms of thyroid hormones, our results
29 suggest that embryos may modulate maternal signals. Thyroid hormone receptor (*THRA* and
30 *THRΒ*) and monocarboxyl membrane transporter gene (*SLC15A2*) were also expressed,
31 enabling TH-responses. Our results suggest that early altricial embryos may be able to
32 respond and potentially modulate maternal signals conveyed by thyroid hormones.

33 Keywords: maternal hormones, prenatal programming, gene expression, *DIO2*, *DIO3*, *THRA*,
34 *THRΒ*, T3, T4

35 **Introduction**

36 Maternal effects are a powerful force shaping offspring phenotype and survival, and
37 may adapt offspring phenotype to a predicted environment (although the adaptiveness is
38 still under debate : Marshall and Uller 2007, Uller et al. 2013, Yin et al. 2019, Sanchez-Tojar
39 et al. 2020, Zhang et al. 2020). Maternal effects can also take different forms, and
40 sometimes bring benefits only to maternal fitness but not to offspring, leading to mother-
41 offspring conflict (Kuijper and Johnston 2018, Groothuis et al. 2020). It has become clear
42 that mechanisms underlying maternal effects are diverse, consisting of nutritional,
43 temperature-related, hormonal, epigenetic, microbe-related and even acoustic signals to
44 the offspring (e.g. Marshall and Uller 2007, Mousseau et al. 2009, DuRant et al. 2013,
45 Groothuis et al. 2019, Mariette et al. 2021). Yet, it is increasingly acknowledged that
46 offspring may not just be passive recipients of the signal, but may actively modify the signal,
47 for example metabolizing maternal hormones, such as steroids (e.g. Paitz et al. 2011,
48 Vassallo et al. 2014, Groothuis et al. 2019, Kumar et al. 2019, Paitz et al. 2020), influencing
49 the resolution of potential parent-offspring conflict.

50 Thyroid hormones, thyroxine (T4) and biologically active triiodothyronine (T3), are
51 key maternal hormones which critically influence early development in many organisms
52 (e.g. McNabb and Darras 2015). For example, the influence of maternal thyroid hormones
53 on amphibian development was established already in the 1910's (Gudernatsch 1912), and
54 their importance on human neurodevelopment has been heavily investigated (e.g. Patel et
55 al. 2011). However, the role of maternal (prenatal) thyroid hormones in other systems, such
56 as birds, has not been thoroughly studied until very recently (Ruuskanen and Hsu 2018,
57 Darras 2019, Sarraude et al. 2020b, Sarraude et al. 2020c, d, Stier et al. 2020).

58 Thyroid hormones of maternal origin are found in eggs of both precocial birds
59 (species with advanced embryonic development and independence after hatching) and
60 altricial birds (species not independent after hatching, Ruuskanen and Hsu 2018). To be able
61 to respond to maternal thyroid hormone signalling, embryos must have the molecular
62 ‘machinery’ of the thyroid axis (TH-axis) in place: they need to express for example
63 transmembrane transporters (e.g. monocarboxyl membrane transporters) transporting
64 hormones to cells, cellular deiodinases, which convert T4 to bioactive T3 and to inactive
65 forms (rT3 and T2), and intracellular hormone receptors (THRA and THRΒ, Zoeller et al.
66 2007). Embryos of precocial birds have been discovered to contain thyroid hormones and
67 express genes in the TH-axis, such as *DIO2* as early as 4 days into incubation (Van Herck et
68 al. 2012). The expression also varied depending on maternal hormonal concentrations (Van
69 Herck et al. 2012). Importantly, precocial birds begin embryonic thyroid production around
70 mid-incubation while in contrast, altricial birds are only able to produce thyroid hormones
71 at/after hatching (Darras 2019), thus being potentially dependent on maternal hormones
72 during the entire embryonic period. Thyroid hormones (likely of maternal origin) were
73 indeed shown to be present in embryonic plasma of altricial species such as ring dove
74 (*Streptopelia risoria*) and European starling (*Sturnus vulgaris*) before the presumed timing of
75 thyroid gland maturation (McNabb and Cheng 1985, Schew et al. 1996). Furthermore, it has
76 been recently experimentally shown that egg thyroid hormones in altricial species can
77 influence pre-and post-hatching development, such as embryo survival, growth and
78 physiology (Ruuskanen et al. 2016, Hsu et al. 2019, 2020, Sarraude et al. 2020a, Sarraude et
79 al. 2020b, Stier et al. 2020). It is not however understood if, how and when altricial species
80 express genes of thyroid hormone response ‘machinery’, whereby maternal hormonal
81 effects could take place.

82 The aim of the study was to characterize expression of thyroid hormone signalling-
83 related genes in early development of altricial birds. To this end, we collected early embryos
84 of different ages from two common altricial species often used as models in ecological and
85 evolutionary research, the pied flycatcher (*Ficedula hypoleuca*), and the blue tit (*Cyanistes*
86 *caeruleus*). We measured expression of key thyroid-related genes (1) a membrane
87 transporter (*SLC15A2*), (2) deiodinases (*DIO1-3*), and (3) thyroid hormone receptors (*THRA*
88 and *THRΒ*). We characterized the expression of the selected genes across embryos of
89 different age to reveal potential age-related changes. The characterization of the gene
90 expression allows us to understand when and how altricial birds may respond to maternal
91 thyroid hormone cues. Furthermore, expression of DIOs would also indicate that early
92 embryos may be capable of metabolizing maternal hormones, potentially modulating
93 maternal signalling.

94

95 **Material and methods**

96 Sample collection was in accordance with all relevant guidelines and regulations and
97 approved by the Environmental Center of Southwestern Finland (license number
98 VARELY924/2019). The data collection was conducted in spring-summer 2020 in nest box
99 population of blue tits and pied flycatchers in south-western Finland ($60^{\circ} 25' N$, $22^{\circ} 10' E$).
100 We monitored the population for the initiation of egg laying, marked each egg in laying
101 order, and visited the nest daily to record the start of incubation. We collected one egg from
102 10 nests per species to limit consequences on their breeding success. The collected egg was
103 positioned at middle of the laying order to avoid any laying-order associated variation as
104 reported for egg composition, especially for first and last eggs (e.g. Hsu et al. 2019). The

105 collected eggs were kept warm until dissection (within 1-2h). The embryo was carefully
106 removed from the yolk (using equipment treated with RNase decontamination solution,
107 RNaseZap®, ThermoFischer), immediately frozen in liquid nitrogen and stored at -80°C for
108 ca. 5 months. The eggs varied in the duration of incubation and embryos were staged based
109 on Murray et al. (2013) with 0.5 day accuracy.

110 We analysed expression levels of six genes of interest using RT-qPCR. These included
111 a monocarboxyl membrane transporter (*SLC15A2*), all three deiodinases (*DIO1*, *DIO2*, *DIO3*)
112 and thyroid hormone receptor genes (*THRA*, *THRB*). Reference genes were selected from
113 prior publications in blue tits (Capilla-Lasheras et al. 2017). Primers for reference genes were
114 designed on exon-exon junction using NCBI primer blast (Table 1). Initially four reference
115 genes (*ACTB*, *GADPH*, *SDHA* and *TRFC*) were selected for validation.

116 RNA was extracted from whole-embryos using Nucleospin RNA Plus extraction kit
117 (Macherey-Nagel), following manufacturer's instructions and stored at -80°C for 2 months.
118 RNA concentration and purity were quantified using optical density. Samples not meeting
119 quality criteria ($[\text{RNA}] > 30 \text{ ng}/\mu\text{l}$, $260/280$ and $260/230 > 1.80$) were excluded for further
120 analysis. RNA integrity was checked using E-Gel 2% electrophoresis system (Invitrogen), and
121 the ribosomal RNA 18S vs. 28S bands intensity, and deemed satisfactory. 500ng of RNA were
122 used for cDNA synthesis using the SensiFAST cDNA Synthesis kit (Bioline) following
123 manufacturer instructions. cDNA was diluted at a final concentration of $1.2 \text{ ng}/\mu\text{l}$ for qPCR
124 analysis. No-RT control samples were prepared following the same protocol, but without
125 reverse transcriptase enzyme.

126 Primers for the target genes (see Table 1) were designed using NCBI primer blast, to exon-
127 exon junction whenever possible. Blue tit reference genome was assembly
128 GCA_002901205.1. For pied flycatcher, the reference genome was not available and thus
129 the genome of a closely related species, the collared flycatcher genome was used (assembly
130 GCA_000247815.2). To validate the primers, initially 2-5 primers for each gene were
131 designed and tested for specificity, efficiency and linearity. Pooled samples (pooling RNA
132 from three individuals) from both species were used in validation. Specificity was checked
133 using BLAST analysis and confirmed by a single narrow peak in melting curve analyses and
134 the presence of a single PCR product of the expected size on agarose gel. Amplification of
135 controls with no reverse transcriptase never occurred before at least 7 cycles after the
136 lower Cq sample (except for *DIO1* that was excluded from interpretation, see below), and
137 thus contamination by genomic DNA could not interfere with our results. Based on their
138 performance during initial validation, *ACTB* (actin beta, highly conserved protein involved
139 e.g in cell motility) and *GAPHD* (glyceraldehyde-3-phosphate dehydrogenase, a key protein
140 in carbo-hydrate metabolism) were used for reference genes for blue tit gene expression,
141 and *ACTB* and *SDHA* (succinate dehydrogenase complex flavoprotein subunit A, a key
142 mitochondrial protein) for pied flycatchers.

143 Samples and controls (two controls per plate) were analysed in duplicates. All
144 samples for one gene were run in one plate, and two genes were analysed per qPCR plate.
145 qPCR was performed in a total volume of 12 μ l containing 5 μ l of each diluted cDNA sample
146 (i.e. 1.2ng/ μ l) and 7 μ l of reaction mix containing primers (forward and reverse) at a final
147 concentration of 300nM and Sensifast SYBR®Low-ROX Mix (Bioline). qPCR assays were
148 performed on a Mic qPCR instrument (Bio Molecular Systems) and included a two-step
149 cycling with the following conditions: 2 minutes at 95°C; then 40 cycles of 5s at 95°C

150 followed by 20s at 60°C (fluorescence reading) for all reactions. The expression of each gene
151 was calculated as $(1+Ef_{Target})^{\Delta Cq(Target)} / \text{geometric mean } [(1+Ef_{Ref_gene1})^{\Delta Cq(Ref_gene1)} +$
152 $(1+Ef_{Ref_gene2})^{\Delta Cq(Ref_gene2)}]$, Ef being the amplification's efficiency and ΔCq being the
153 difference between the Cq-values of the reference sample and the sample of interest.
154 Statistical analyses were not conducted because of the limited number of replicates.

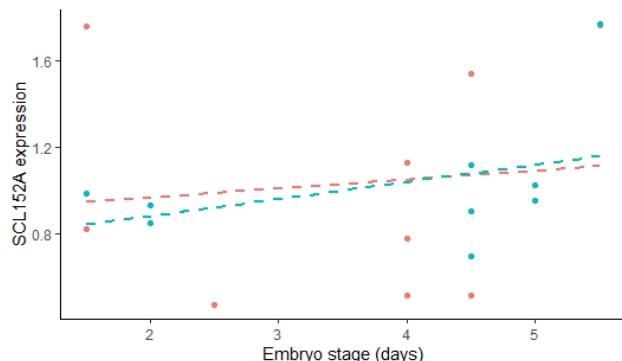
155 Table 1. Forward and reverse primer sequences for reference and target genes for (A) blue tit
156 and (B) pied flycatcher (from collared flycatcher genome). Cq refers to qPCR quantitation
157 cycle (a higher value indicating a lower initial target mRNA amount), efficiency has been
158 evaluated using LinReg method and technical precision estimated as coefficient of variation
159 (CV in %) for final ratios at the intra-plate level (based on duplicates). All the samples for one
160 gene per species were run on one single plate.

Gene	Forward primer	Reverse primer	Bp	Cq ±SD	Eff (SD)	CV % intra
A	ACTB	AGAACGCTGTCTATGTCGCC	CCACAAGACTCCATACCCAGG	178	14.40±0.56	98.0±1.0
	GAPDH	TCAAGCTGGTTCTGGTACG	CAGAGCTAACGGTGGTGA	174	14.54±0.44	96.9±1.2
	SLC15A2	TGTGACTCTCAGCACGATGG	TCTCCACGTATTGACCAGGTT	193	23.29±0.91	89.9±1.7
	DIO1	GAGGAAGCTCATGCAGTAGATGG	GTTGTGCTGCAGCTTTCGAT	94	28.80±2.35	92.9±2.7
	DIO2	GACGCCCTACAAGCAGGTCA	TGAGCCAAAGTTGACGACCA	180	25.13±1.30	96.1±2.7
	DIO3	CCTCATCCTCAACTCGGCA	GAGGGGTGTGCTTCTCGAT	132	25.55±1.14	91.9±1.5
	THRA	GAAGCGGAAATTCTGCCGTGA	GGCCGGGGTGTGATGATTTTG	115	24.71±0.56	93.7±2.0
	THRΒ	TTGCCTATGTTTGTGAGCTGC	CTCGGGGTCAAGCGAACTG	105	25.62±0.98	95.1±1.1
B	ACTB	CATGGATGACGATATTGCCGC	CATACCAACCACATCACACCCCTGA	142	17.41±0.33	91.4±2.0
	SDHA	GCTTGTGCCCTGACTATTGC	CATGGCTTGATTGCCCTCT	172	22.08±0.45	92.8±0.9
	SLC15A2	TCGGCATCCACAACCTCTTC	AGCCAACCCACGCTTTTA	105	25.40±0.48	93.3±0.9
	DIO1	AGGATGAAGCCTACGAGGGAA	AGGATTAAAGGTCGGTTATCTTC	109	31.04±3.10	82.0±2.8
	DIO2	CCAATGTGGCCTATGGGTT	GCTGAAGTTCGTCCAGCC	134	27.21±1.19	95.1±1.1
	DIO3	CCGTGGACACCATGGACAAT	CTCTGGAGCCGGGTTTGTA	169	27.93±1.16	93.6±1.2
	THRA	CTGCTCATGTCCTCAGACCG	CGCAGATCCGTACCTTCAT	158	24.90±0.42	93.3±1.3
	THRΒ	AAATGGGGTCTGGCGTAG	GCCTGGCGATCTGATGAC	130	26.93±0.89	92.9±1.5

161

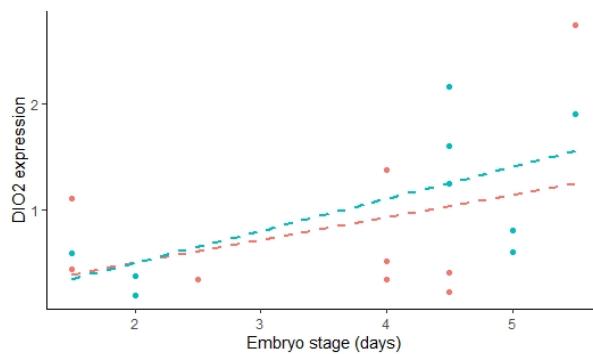
162 Results

163 In both species, pied flycatchers and blue tits, the coefficients of variation for *DIO1*
164 were high (many samples with >30%) and Cq values also high (being < 5 cycles apart from
165 no-RT controls) and therefore its expression could not be reliably measured. All other genes,


166 membrane transporters (*SCL152A*), deiodinase enzymes (*DIO2*, *DIO3*) and TH receptors
167 (*THRA* and *THRΒ* subunits) were expressed in both altricial species, but at relatively low
168 levels compared to reference genes (Cq of target genes being << reference genes; Table 1).
169 None of the genes showed clear changes with embryonic development time (Fig 1). Yet, for
170 *DIO2* the expression levels of older (4-5-day old embryos) seemed to be higher, and there
171 were specifically some individuals with high expression values especially the oldest (5.5
172 days) embryos. When visually inspecting the expression patters for both species, few
173 embryos sampled from the earliest time-points (1-day old embryos) showed somewhat high
174 expression for part of the genes (*DIO3*, *THRA*, *THRΒ*) compared to other time-points.

175

176

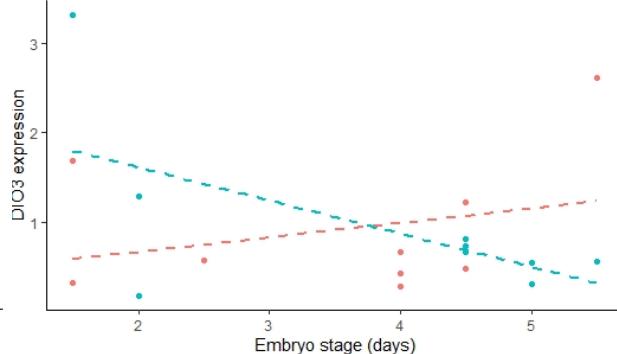

177 Fig 1. Expression of thyroid hormone axis related genes in embryos (1-5.5 days) of the
178 altricial pied flycatcher (blue) and blue tit (red): (A) membrane transporter (*SLC15A2*), (B)
179 deiodinase 2 (*DIO2*) converting T4 to T3, (C) deiodinase 3 (*DIO3*) converting T4 and T3 to the
180 inactive form rT3, (D) thyroid hormone receptor A (*THRA*) & (E) thyroid hormone receptor B
181 (*THRΒ*). N = 10 individuals per species. Dashed lines are included for visualization, but due to
182 low sample sizes, statistical analyses have not been performed. Species cannot be directly
183 compared as relative gene expression was evaluated in a species-specific manner (i.e.
184 different primers and reference genes).

185 a)

186

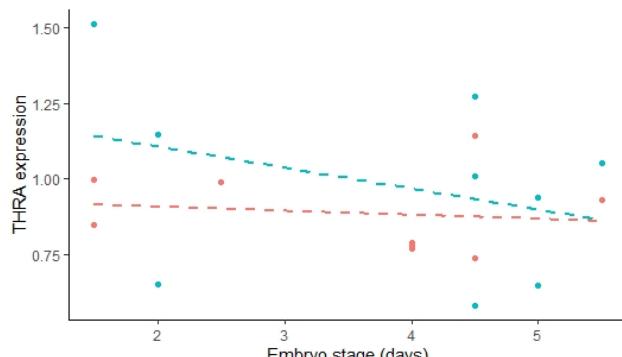
187 b)

188

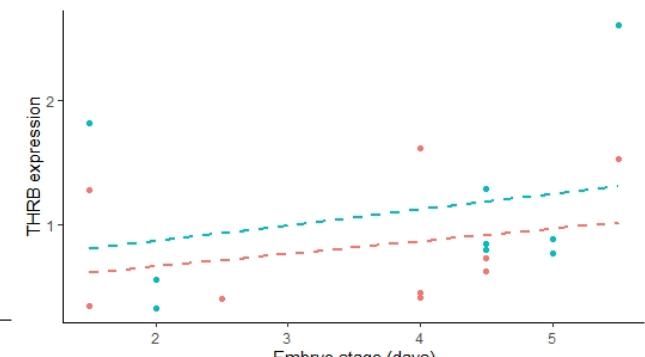

189

190

191


192

c)


193

d)

200

e)

201 **Discussion**

202 We were able to detect expression of the deiodinase enzyme genes *DIO2* and *DIO3* in early
203 altricial embryos of two passerine species, blue tits and pied flycatchers. *DIO1* could not be
204 reliably measured in either species. *DIO1* is mostly a scavenger enzyme, converting inactive
205 rT3 to other inactive forms (e.g. Darras et al. 2019). In previous studies in 4-day-old
206 precocial chicken (*Gallus gallus domesticus*), *DIO1* was expressed but did not yield a
207 functional enzyme (Van Herck et al. 2012). *DIO2*, in turn, is the key enzyme converting T4 to
208 the active form T3. Therefore, expression of this enzyme early in prenatal development,
209 along with our findings of expression of transmembrane transporter gene (*SCL152A*) and
210 thyroid hormone receptor genes (*THRA* and *THRΒ*) in altricial embryos would support the
211 hypothesis that altricial embryos may respond to maternal thyroid hormones before their
212 own thyroid hormone production. In precocial birds, *DIO2* gene expression increased during
213 embryonic development (from day 4 onwards), whereas *DIO3* gene expression was more
214 variable and cell-type dependent (Geysens et al. 2012, Van Herck et al. 2012). Interestingly,
215 *DIO3* mainly converts T3 to inactive forms, and its expression can be seen as regulating the
216 cellular exposure to active T3. Given that mothers deposit also T3 into egg yolks, expression
217 of *DIO3* in the early embryo would open up the possibility that embryos can downregulate
218 maternal signalling, as observed for androgen hormones (reviewed in Groothuis et al. 2019).
219 A further validation step would include verifying the translation of these transcripts to
220 functional proteins, e.g. using western blots or proteomic approaches.

221 In our data, few samples from earliest time-points (ca 1-day-old embryo), seemed to
222 show rather high expression levels for some genes. In other taxa, such as fish embryos,
223 transcripts in very early embryos are predicted to be of maternal origin (e.g. Essner et al.

224 1997, Takayama et al. 2008). For example, Vergauwen et al. (2018) confirmed the presence
225 of maternal transfer of TPO (thyroid peroxidase), DIO1-3, THRA and THRB mRNA using
226 unfertilized eggs, yet levels quickly decreased during embryo development. Maternal mRNA
227 transfer has rarely been explored in birds beyond studies related to fertilization (Olszanska
228 and Stepinska 2008) and to our knowledge there is no data on maternal thyroid hormone
229 related mRNAs in eggs. Thus, it would be important to verify if and how much of the
230 transcripts may be of maternal origin, by sampling unincubated (and preferably unfertilized)
231 eggs across species. Yet, there are technical challenges in working with low levels of
232 transcripts in lipid-rich yolk tissue, especially for (wild) species with small eggs.

233 All in all, thyroid hormone signalling and its consequences on early development in
234 (altricial) birds is a fruitful avenue for further research. Knowledge gained from early-life
235 thyroid-related gene expression is not only important from the perspective of fundamental
236 developmental biology and comparative physiology, but also for (eco)toxicology: wild bird
237 species are subject to various endocrine disrupting chemicals (EDCs) also via the egg (e.g.
238 Ruuskanen et al. 2014). Thyroid disruption via EDCs can occur at multiple locations within
239 the thyroid axis, acting through several molecular targets, such as inhibition of T4
240 production, inhibition of deiodination of T4 to T3 in peripheral tissues, and impacts on TH
241 receptors (McNabb 2007). Identifying molecular targets (when and how embryos respond to
242 THs) could help in understand and screening for the prenatal effects of EDCs.

243

244 **Acknowledgements**

245 We thank volunteer helpers for monitoring the population. This study was financially
246 supported by the Academy of Finland (#286278 to SR) and the Turku Collegium for Science

247 and Medicine (grants to SR and AS). NCS acknowledges support from the EDUFI Fellowship
248 and Maupertuis Grant. B-Y.H work was supported by a grant from the Ella and Georg
249 Ehrnrooth Foundation. AS was supported by a Marie Skłodowska-Curie Postdoctoral
250 Fellowship (#894963) at the time of writing.

251

252 **Author contributions**

253 SR, AS and BYH conceived the study. SR, MH, AS and NC contributed to data collection. SR,
254 AS and NG conducted the laboratory analyses. SR prepared the first draft and all authors
255 commented on the draft.

256

257 **References**

- 258 Capilla-Lasheras, P., D. M. Dominoni, S. A. Babayan, P. J. O'Shaughnessy, M.
259 Mladenova, L. Woodford, C. J. Pollock, T. Barr, F. Baldini, and B. Helm. 2017.
260 Elevated Immune Gene Expression Is Associated with Poor Reproductive
261 Success of Urban Blue Tits. *Frontiers in Ecology and Evolution* **5**:13.
262 Darras, V. M. 2019. The Role of Maternal Thyroid Hormones in Avian Embryonic
263 Development. *Frontiers in Endocrinology* **10**:10.
264 DuRant, S. E., Hopkins, W. A., Hepp, G. R., & Walters, J. R. 2013. Ecological,
265 evolutionary, and conservation implications of incubation
266 temperature-dependent phenotypes in birds. *Biological Reviews*, **88**(2), 499-
267 509.
268 Essner J.J., et al., 1997 The zebrafish thyroid hormone receptor α 1 is expressed
269 during early embryogenesis and can function in transcriptional repression.
270 *Differentiation* **62**, 107–117.
271 Geysens, S., J. L. Ferran, S. L. J. Van Herck, P. Tylzanowski, L. Puelles, and V. M.
272 Darras. 2012. DYNAMIC mRNA DISTRIBUTION PATTERN OF THYROID
273 HORMONE TRANSPORTERS AND DEIODINASES DURING EARLY
274 EMBRYONIC CHICKEN BRAIN DEVELOPMENT. *Neuroscience* **221**:69-85.
275 Groothuis, T. G. G., B. Y. Hsu, N. Kumar, and B. Tscherren. 2019. Revisiting
276 mechanisms and functions of prenatal hormone-mediated maternal effects
277 using avian species as a model. *Philosophical Transactions of the Royal
278 Society B-Biological Sciences* **374**:9.

- 279 Groothuis, T.G.G., Kumar, N., Hsu, B-Y. 2020. Explaining discrepancies in the study
280 of maternal effects: the role of context and embryo. *Current Opinion*
281 *Behavioral Science* 36: 185-192.
- 282 Gudernatsch, J.F. 2012. Feeding Experiments on tadpoles. I. The influence of
283 specific organs given as food on growth and differentiation. A contribution to
284 the knowledge of organs with internal secretion. *ARCHIV FÜR*
285 *ENTWICKLUNGSMECHANIK DER ORGANISMEN*. 35, 457-483.
- 286 Hsu, B-Y., Verhagen, I., Gienapp, P., Darras, V., Visser, M. 2019.
287 Between- and Within-Individual Variation of Maternal Thyroid Hormone
288 Deposition in Wild Great Tits (*Parus major*). *American Naturalist* 194, E96-
289 108.
- 290 Hsu, B. Y., T. Sarraude, N. Cossin-Sevrin, M. Crombecque, A. Stier, and S.
291 Ruuskanen. 2020. Testing for context-dependent effects of prenatal thyroid
292 hormones on offspring survival and physiology: an experimental temperature
293 manipulation. *Scientific Reports* 10.
- 294 Hsu, B.-Y., Doligez, B., Gustafsson, L. & Ruuskanen, S. 2019 Transient growth-
295 enhancing effects of elevated maternal thyroid hormones at no apparent
296 oxidative cost during early postnatal period. *J. Avian Biol.* 50, jav-01919.
- 297 Kuijper, B., Johnston, R. 2018. Maternal effects and parent–offspring conflict.
298 *Evolution* 72: 220-233.
- 299 Kumar, N., A. van Dam, H. Permentier, M. van Faassen, I. Kema, M. Gahr, and T. G.
300 G. Groothuis. 2019. Avian yolk androgens are metabolized rather than taken
301 up by the embryo during the first days of incubation. *Journal of Experimental*
302 *Biology* 222:6.
- 303 Mariette, M. M., Clayton, D. F., & Buchanan, K. L. 2021. Acoustic developmental
304 programming: a mechanistic and evolutionary framework. *Trends in Ecology*
305 & *Evolution*.
- 306 Marshall, D. J., and T. Uller. 2007. When is a maternal effect adaptive? *Oikos*
307 116:1957-1963.
- 308 McNabb, F. M. A. 2007. The hypothalamic-pituitary-thyroid (HPT) axis in birds and
309 its role in bird development and reproduction. *Critical Reviews in Toxicology*
310 37:163-193.
- 311 McNabb, F. M. A., and M. F. Cheng. 1985. THYROID DEVELOPMENT IN
312 ALTRICIAL RING DOVES, *STREPTOPELIA-RISORIA*. *General and*
313 *Comparative Endocrinology* 58:243-251.
- 314 Mousseau, T., Uller, T., Wapstra, E., Badyaev, A.V. 2009. Evolution of maternal
315 effects: past and present. *Phil. Trans. R. Soc. B* 2009 364, 1035-1038.
- 316 Murray, J. R., C. W. Varian-Ramos, Z. S. Welch, and M. S. Saha. 2013.
317 Embryological staging of the Zebra Finch, *Taeniopygia guttata*. *Journal of*
318 *Morphology* 274:1090-1110.
- 319 Olszanska, B., and U. Stepinska. 2008. Molecular aspects of avian oogenesis and
320 fertilisation. *International Journal of Developmental Biology* 52:187-194.
- 321 Paitz, R.T., Bowden, R.M., Castro, J.M., 2011. Embryonic modulation of maternal
322 steroids in European starlings (*Sturnus vulgaris*). *Proceedings of the Royal*
323 *Society B: Biological Sciences* 278 (1702), 99-106
- 324 Paitz, R.T., Angles, R., Cagney, E., 2020. In ovo metabolism of estradiol to estrone
325 sulfate in chicken eggs: implications for how yolk estradiol influences
326 embryonic development. *General and Comparative Endocrinology* 287,
327 113320.

- 328 Patel J., K. Landers, H. Li, R.H. Mortimer, and K. Richard. 2011. Thyroid hormones
329 and fetal neurological development. *J Endocrinol* 209:1–8.
- 330 Ruuskanen, S., V. M. Darras, M. E. Visser, and T. G. G. Groothuis. 2016. Effects of
331 experimentally manipulated yolk thyroid hormone levels on offspring
332 development in a wild bird species. *Hormones and Behavior* 81:38-44.
- 333 Ruuskanen, S., and B. Y. Hsu. 2018. Maternal Thyroid Hormones: An Unexplored
334 Mechanism Underlying Maternal Effects in an Ecological Framework.
335 *Physiological and Biochemical Zoology* 91:904-916.
- 336 Ruuskanen, S., T. Laaksonen, J. Morales, J. Moreno, R. Mateo, E. Belskii, A.
337 Bushuev, A. Jarvinen, A. Kerimov, I. Krams, C. Morosinotto, R. Maend, M.
338 Orell, A. Qvarnstrom, F. Slater, V. Tilgar, M. E. Visser, W. Winkel, H. Zang,
339 and T. Eeva. 2014. Large-scale geographical variation in eggshell metal and
340 calcium content in a passerine bird (*Ficedula hypoleuca*). *Environmental
341 Science and Pollution Research* 21:3304-3317.
- 342 Sanchez-Tojar, A., M. Lagisz, N. P. Moran, S. Nakagawa, D. W. A. Noble, and K.
343 Reinhold. 2020. The jury is still out regarding the generality of adaptive
344 'transgenerational' effects. *Ecology Letters* 23:1715-1718.
- 345 Sarraude, T., B.-Y. Hsu, T. Groothuis, and S. Ruuskanen. 2020a. Manipulation of
346 prenatal thyroid hormones does not influence growth or physiology in nestling
347 pied flycatchers. *Physiological and Biochemical Zoology*.
- 348 Sarraude, T., B. Y. Hsu, T. G. G. Groothuis, and S. Ruuskanen. 2020b. Manipulation
349 of Prenatal Thyroid Hormones Does Not Affect Growth or Physiology in
350 Nestling Pied Flycatchers. *Physiological and Biochemical Zoology* 93:255-
351 266.
- 352 Sarraude, T., B. Y. Hsu, T. G. G. Groothuis, and S. Ruuskanen. 2020c. Testing
353 different forms of regulation of yolk thyroid hormone transfer in pied
354 flycatchers. *Journal of Experimental Biology* 223.
- 355 Schew, W. A., F. M. A. McNabb, and C. G. Scanes. 1996. Comparison of the
356 ontogenesis of thyroid hormones, growth hormone, and insulin-like growth
357 factor-I in ad Libitum and food-restricted (altricial) European starlings and
358 (precocial) Japanese quail. *General and Comparative Endocrinology* 101:304-
359 316.
- 360 Stier, A., Bize, P., Hsu, B.-Y. & Ruuskanen, S. 2019 Plastic but repeatable: rapid
361 adjustments of
362 239 mitochondrial function and density during reproduction in a wild bird species.
363 *Biol Letters* 15, 20190536.
- 364 Stier, A., B. Y. Hsu, C. Marciau, B. Doligez, L. Gustafsson, P. Bize, and S.
365 Ruuskanen. 2020. Born to be young? Prenatal thyroid hormones increase
366 early-life telomere length in wild collared flycatchers. *Biology Letters* 16:4.
- 367 Takayama S, et al., 2008. An F-domain introduced by alternative splicing regulates
368 activity of the zebrafish thyroid hormone receptor α : role of zebrafish TR α F-
369 domain. *General and Comparative Endocrinology* 155, 176–189.
- 370 Uller, T., Nakagawa, S., English, S. 2013. Weak evidence for anticipatory parental
371 effects in plants and animals. *Journal of Evolutionary Biology* 26: 2161-2170
- 372 Van Herck, S. L. J., S. Geysens, J. Delbaere, P. Tylzanowski, and V. M. Darras.
373 2012. Expression profile and thyroid hormone responsiveness of transporters
374 and deiodinases in early embryonic chicken brain development. *Molecular
375 and Cellular Endocrinology* 349:289-297.
- 376 Vassallo, B.G., Paitz, R.T., Fasanella, V.J., Haussmann, M.F., 2014. Glucocorticoid
377 metabolism in the *in ovo* environment modulates exposure to maternal

- 378 corticosterone in Japanese quail embryos (*Coturnix japonica*). *Biology letters*
379 10 (11), 20140502
- 380 Vergauwen, L., J. E. Cavallin, G. T. Ankley, C. Bars, I. J. Gabriels, E. D. G. Michiels,
381 K. R. Fitzpatrick, J. Periz-Stanacev, E. C. Randolph, S. L. Robinson, T. W.
382 Saari, A. L. Schroeder, E. Stinckens, J. Swintek, S. J. Van Cruchten, E.
383 Verbueken, D. L. Villeneuve, and D. Knapen. 2018. Gene transcription
384 ontogeny of hypothalamic-pituitary-thyroid axis development in early-life stage
385 fathead minnow and zebrafish. *General and Comparative Endocrinology*
386 **266**:87-100.
- 387 Yin, J. J., M. Zhou, Z. R. Lin, Q. S. Q. Li, and Y. Y. Zhang. 2019. Transgenerational
388 effects benefit offspring across diverse environments: a meta-analysis in
389 plants and animals. *Ecology Letters* **22**:1976-1986.
- 390 Zhang, Y. Y., J. J. Yin, M. Zhou, Z. R. Lin, and Q. S. Q. Li. 2020. Adaptive
391 transgenerational effects remain significant. *Ecology Letters* **23**:1719-1720.
- 392 Zoeller, R. T., S. W. Tan, and R. W. Tyl. 2007. General background on the
393 hypothalamic-pituitary-thyroid (HPT) axis. *Critical Reviews in Toxicology*
394 **37**:11-53.

395