

1 **Title**

2 Cathelicidin-3 associated with serum extracellular vesicles enables early diagnosis of a transmissible
3 cancer.

4 **Authors**

5 Camila Espejo ¹, Richard Wilson ², Ruth J. Pye ³, Julian C. Ratcliffe ⁴, Manuel Ruiz-Aravena ^{5,6}, Eduard
6 Willms⁷, Barrett W. Wolfe ⁸, Rodrigo Hamede ^{5,9}, Andrew F. Hill ⁷, Menna E. Jones ⁵, Gregory M. Woods ³,
7 and A. Bruce Lyons ¹.

8 **Affiliations**

9 ¹ Tasmanian School of Medicine, College of Health and Medicine, University of Tasmania, Hobart, TAS
10 7000, Australia

11 ² Central Science Laboratory, University of Tasmania, Hobart, TAS 7005, Australia.

12 ³ Menzies Institute for Medical Research, College of Health and Medicine, University of Tasmania, Hobart,
13 TAS 7000, Australia.

14 ⁴ La Trobe University Bioimaging Platform, La Trobe University, Bundoora, VIC, 3083, Australia.

15 ⁵ School of Natural Sciences, University of Tasmania, Hobart, Tasmania 7001, Australia.

16 ⁶ Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT 59715, USA.

17 ⁷ Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University,
18 Bundoora, VIC, 3083, Australia.

19 ⁸ Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania 7001, Australia.

20 ⁹ CANECEV, Centre de Recherches Ecologiques et Evolutives sur le Cancer, France.

21 **Corresponding author contact information**

22 Camila Espejo, M.V., PhD

23 School of Medicine

24 College of Health and Medicine

25 University of Tasmania

26 Email: camila.espejo@utas.edu.au

27 **Abstract**

28 The identification of practical early diagnosis biomarkers is a cornerstone of improved prevention and
29 treatment of cancers. Such a case is devil facial tumour disease (DFTD), a highly lethal transmissible
30 cancer afflicting virtually an entire species, the Tasmanian devil (*Sarcophilus harrisii*). Despite a latent
31 period that can exceed one year, to date DFTD diagnosis requires visual identification of tumour lesions.
32 To enable earlier diagnosis, which is essential for the implementation of effective conservation strategies,
33 we analysed the extracellular vesicle (EV) proteome of 87 Tasmanian devil serum samples. The
34 antimicrobial peptide cathelicidin-3 (CATH3) was enriched in serum EVs of both devils with clinical
35 DFTD (87.9% sensitivity and 94.1% specificity) and devils with latent infection (i.e., collected while
36 overtly healthy, but 3-6 months before subsequent DFTD diagnosis; 93.8% sensitivity and 94.1%
37 specificity). As antimicrobial peptides can play a variety of roles in the cancer process, our results suggest
38 that the specific elevation of serum EV-associated CATH3 may be mechanistically involved in DFTD
39 pathogenesis. This EV-based approach to biomarker discovery is directly applicable to improving
40 understanding and diagnosis of a broad range of diseases in other species, and these findings directly
41 enhance the capacity of conservation strategies to ensure the viability of the imperilled Tasmanian devil
42 population.

43 **Keywords:** exosomes; microvesicles; proteomics; early cancer detection; liquid biopsy; cathelicidin;
44 animal models.

45 **Introduction**

46 Cancer is a condition that affects all multicellular species with differing degrees of susceptibility.
47 One of the main challenges in oncology is a lack of diagnostic tools that allow for early detection of
48 cancerous processes. Commonly, cancer diagnosis relies on biomarkers that are present in identified
49 cancerous masses (solid biopsy), or present in the bodily fluids of the cancer patient (liquid biopsy).
50 During the past decade, liquid biopsies have increasingly gained attention as a source of cancer biomarkers
51 over traditional solid biopsies as they have increasing potential for early disease detection (Zhou et al.,
52 2020). One approach increasingly used in liquid biopsies is the analysis of extracellular vesicles (EVs).
53 EVs are nano-sized bilipid membrane structures that are released by all cells. EVs mediate intercellular
54 communication, including mechanisms of cancer progression (Willms et al., 2018) via their functional
55 cargo such as proteins, lipids, and nucleic acids (Maas et al., 2017).

56 EVs are a promising biomarker source as they are accessible from almost all bodily fluids (Colombo et al.,
57 2014). They exhibit high sensitivity and specificity in cancer diagnosis and prognosis (Choi et al., 2015,
58 Hoshino et al., 2020, Melo et al., 2015), and have organotrophic characteristics that may indicate organ-
59 specific metastasis in bodily fluids (Hoshino et al., 2015). Further, EVs have stable biological activities as
60 their cargo (which can mediate multiple cancer mechanisms) is protected from enzymatic degradation by a
61 bilipid membrane (Boukouris and Mathivanan, 2015). Considering these advantages, researchers have
62 expressed great enthusiasm in the molecular analysis of EVs as an approach to cancer biomarker discovery
63 in liquid biopsies. Proteins are well-studied EV cargo (Zhou et al., 2020), as isolating EVs from serum can
64 allow the enrichment and detection of a greater range of proteins that are otherwise masked by high-
65 abundance serum/plasma proteins (Takov et al., 2019). Several EV protein biomarkers enabling early
66 diagnosis of human cancer have been identified to date (Melo et al., 2015, Khan et al., 2012, Norouzi-
67 Barough et al., 2020).

68 Commonly, cancer is understood as an individual disease, as tumours usually emerge and die with their
69 hosts. However, there are several examples of transmissible cancers that have developed the capacity for
70 tumour cells to be transmitted from one individual to another one as allografts (Ostrander et al., 2016).
71 Like other infectious diseases, transmissible cancers become a health problem at the population level, even
72 to the point of threatening populations with extinction. One such case is the devil facial tumour disease
73 (DFTD) that affects the Tasmanian devil (*Sarcophilus harrisii*; herein ‘devil’). Since the first identification
74 of DFTD in 1996, the disease has spread across more than 90% of the devils’ range, leading to an 82%
75 decline in local densities and reducing the total population to as few as 16,900 individuals (Cunningham et
76 al., 2021). Due to the high mortality and epidemic nature of DFTD, the Tasmanian devil was listed as
77 endangered by the International Union for the Conservation of Nature in 2008 and is protected by both
78 Tasmanian State and Australian Federal legislation (Hawkins et al., 2008). The cause of DFTD is a clonal
79 cancer of Schwann cell origin that is transmitted as a malignant tissue transplant among devils through
80 bites (Hamede et al., 2013, Murchison et al., 2010). DFTD is a lethal cancer, almost always killing its host
81 within 6 to 12 months after clinical presentation of tumours on facial, oral and neck regions (Hamede et al.,

82 2012). A second transmissible cancer (DFT2), also of Schwann cell origin, was reported in 2016 (Pye et
83 al., 2016). In this manuscript, DFTD refers to the transmissible cancer identified in 1996.

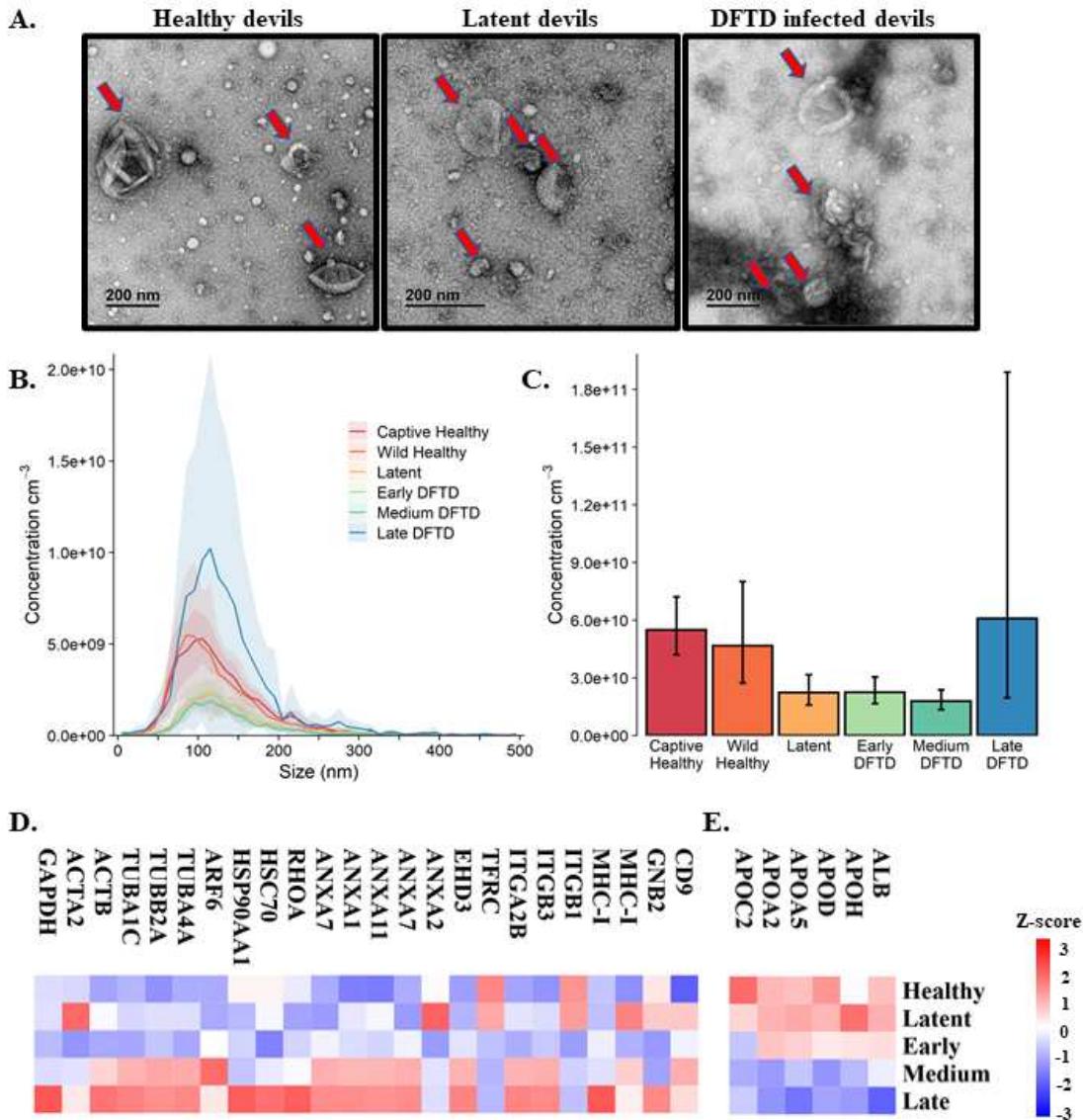
84 DFTD is currently diagnosed by the appearance of macroscopic tumours and subsequent confirmation in
85 the laboratory on the basis of positive staining for periaxin, karyotype aberrance, and PCR of tumour
86 biopsies (Tovar et al., 2011, Kwon et al., 2018). However, there is direct evidence that DFTD has a long
87 latent period as devils can develop tumours between 3 to 13 months after initial exposure to the disease
88 (Save the Tasmanian Devil Program, 2017). McCallum et al. (McCallum et al., 2009) suggested that the
89 disease is unlikely to spread between individuals prior to the development of clinical signs, however this
90 assumption has not been validated due to the lack of a preclinical test. In an effort to identify DFTD serum
91 biomarkers that could potentially serve to predict preclinical stages, Kau et al. (Karu et al., 2016)
92 demonstrated that a panel of fibrinogen peptides and seven metabolites could differentiate devils with
93 overt DFTD from healthy controls with high sensitivity and specificity. Another study found elevated
94 levels of the receptor tyrosine-protein kinase ERBB3 in the serum of devils infected with DFTD compared
95 to healthy controls (Hayes et al., 2017). Despite the potential value of serum biomarkers for DFTD
96 diagnosis, neither study confirmed their findings in samples from latent DFTD devils (3 to 13 months prior
97 to clinical manifestation of tumours). The discovery and validation of a biomarker for early DFTD
98 diagnosis would greatly improve the capacity for DFTD surveillance and population management and
99 could ultimately assist in recovering devil numbers in wild populations.

100 To enable the preclinical diagnosis of DFTD, in this study we analysed the proteome of EVs derived from
101 the serum of devils collected over five years of quarterly devil trapping expeditions at several remote field
102 sites in Tasmania. The longitudinal nature of this long-term monitoring program allowed the collection of
103 serum from devils during the presumed “latent period”, i.e., samples collected while devils were clinically
104 healthy (no palpable tumour masses), 3–6 months prior to subsequent recapture and clinical diagnosis of
105 DFTD. We included EV samples from three classes of wild devils: those with clinically diagnosed overt
106 DFTD, these devils in presumed latent stage of DFTD infection, herein: “latent”), and healthy devils from
107 an offshore island population isolated from DFTD. Captive devils never exposed to DFTD were also
108 included as healthy controls. These samples were divided into discovery and validation cohorts for the
109 identification of DFTD biomarkers that would enable early detection with serum collected during routine.

110 **Results**

111 Characterisation of EVs derived from Tasmanian devil serum

112 First, we used size exclusion chromatography columns to isolate extracellular vesicles from serum samples
113 of healthy (DFTD free controls) and DFTD infected devils in different stages of the disease (Table 1).
114 Transmission electron microscopy (TEM) and nanoparticle tracking analysis (NTA) were used to evaluate
115 the morphology and size of isolated extracellular vesicles. TEM images confirmed the presence of EV
116 structures in all disease stages and healthy controls, showing a typical EV morphology as closed vesicles
117 with a cup-shaped structure as described in other studies (Figure 1A and Supplementary figure 1; Rikkert
118 et al., 2019). NTA demonstrated the presence of a heterogeneous nanoparticle population with a small to
119 medium size distribution, which did not differ based on DFTD clinical stage (Figure 1B). The different
120 clinical stages of the disease were classified according to tumour volumes (see “methods”). Although
121 health status/DFTD stage had a significant effect on the total number of nanoparticles (one-way ANOVA p
122 = 0.02), no significant pairwise differences between groups were found (Figure 1C).

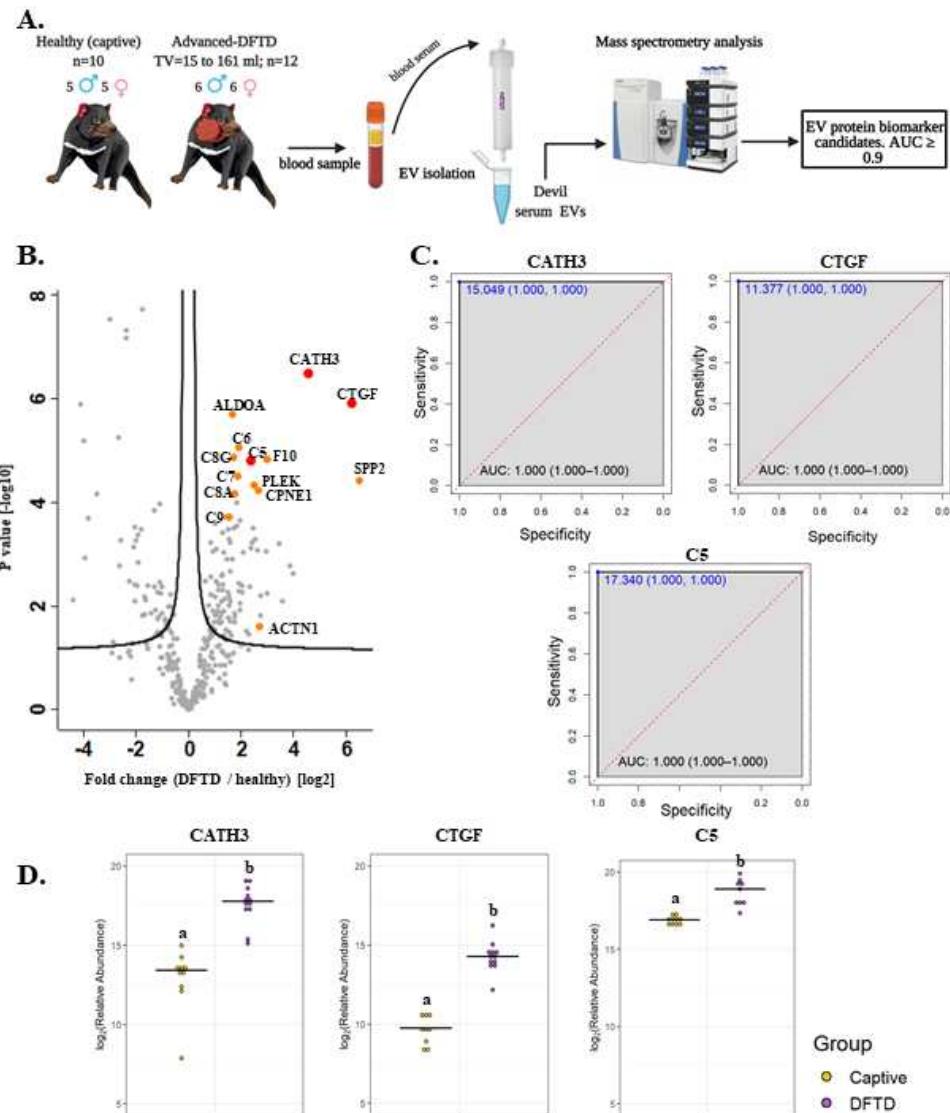

123 A proteome dataset comprising combined discovery and validation cohorts (n=87) from the biomarker
124 discovery process was generated by data independent acquisition mass spectrometry to gain an overview
125 of the serum EV proteome and evaluate the presence of commonly recovered EV protein markers and
126 serum contaminants (Thery et al., 2018). Of a total of 345 filtered proteins, 24 established EV markers
127 were identified, including CD9, annexins, heat shock and major histocompatibility complex proteins
128 (Kowal et al., 2016b) (Figure 1D). Serum-derived contaminants, which included albumin and five
129 lipoproteins, all decreased in abundance as DFTD progressed (Figure 1E).

130 **Table 1. Summary of Tasmanian devil cohorts used in this study.**

	Discovery cohort			Validation cohort						Total Devils
	All	Control	Adv. DFT1	All	Control	Latent DFT1	Early DFT1	Med. DFT1	Late DFT1	
Total Cases	22	10	12	65	17	15	17	14	2	87
Age										
Adult	22	10	12	40	8	6	12	13	1	62
Juvenile	0	0	0	25	9	9	5	1	1	25
Sex										
Male	11	5	6	34	10	8	8	8	0	45
Female	11	5	6	31	7	7	9	6	2	42
Location										
West Takhone	9	0	9	38	0	11	15	10	2	47
Wilmot	3	0	3	10	0	4	2	4	0	13
Maria Island	0	0	0	17	17	0	0	0	0	17
Richmond*	6	6	0	0	0	0	0	0	0	6
Bonorong*	4	4	0	0	0	0	0	0	0	4
Tumour volume (ml)										
Median	NA	NA	24.00	NA	NA	NA	0.76	23.30	41.15	NA
IQR	NA	NA	55.82 - 67.60	NA	NA	NA	0.58 - 1.35	14.70 - 30.29	33.60 - 48.69	NA
Corporal condition										
Emaciated	0	0	1	0	0	0	0	0	1	2
Moderately thin	0	0	6	0	0	0	0	2	0	8
Average	0	0	5	0	17	14	13	12	1	62
Good	0	10	0	0	0	1	4	0	0	15
Obese	0	0	0	0	0	0	0	0	0	0

131 **Control:** healthy devils never exposed to DFTD. **IQR:** interquartile range.

132 *Captive holding facilities.

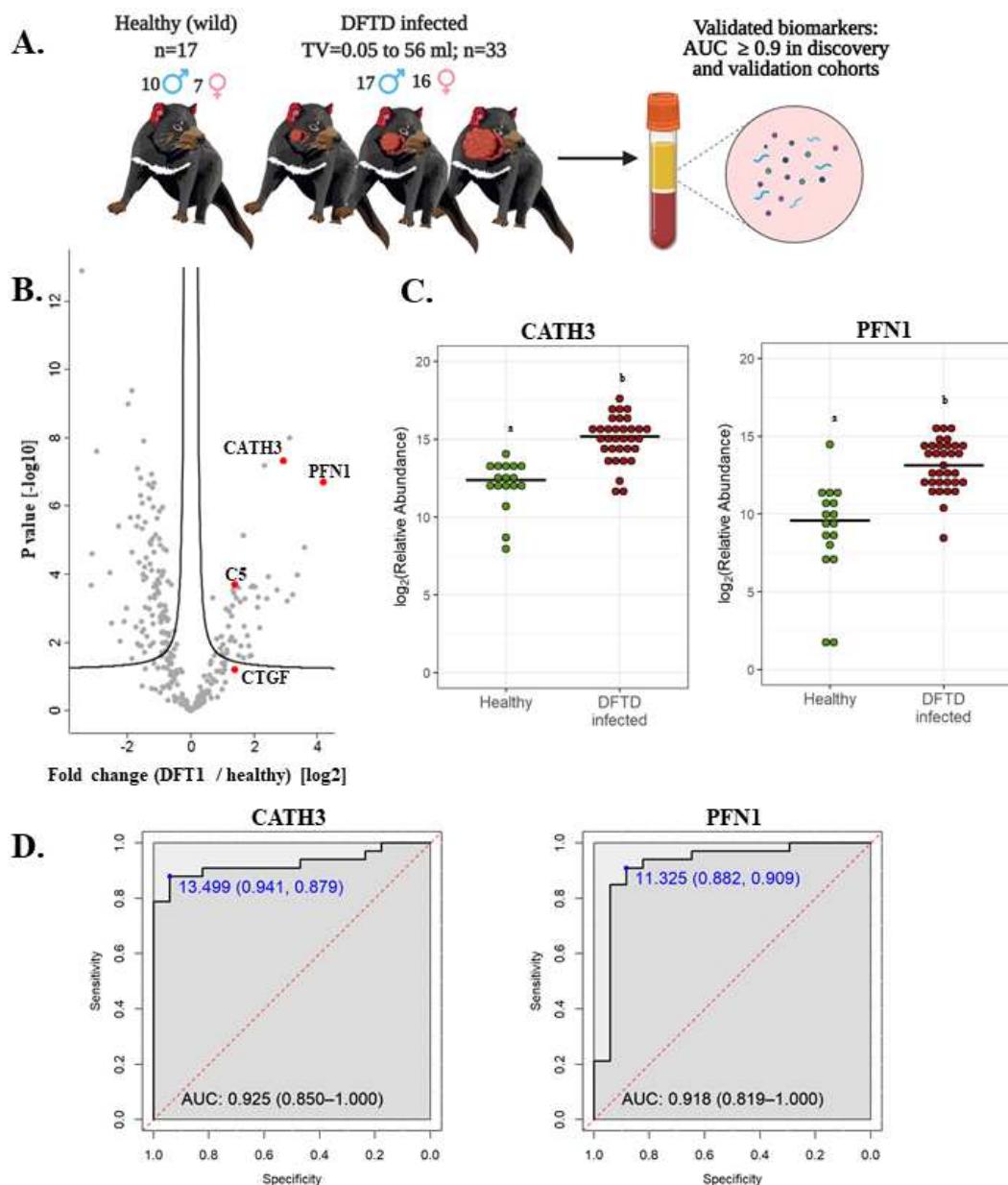

133

134 **Fig. 1. Characterisation of extracellular vesicles (EVs) derived from Tasmanian devil serum.** **A.**
135 Transmission electron microscopy images for EVs isolated from serum of healthy control wild devils from
136 an isolated disease-free population (n=4), latent DFTD devils (n=4) and DFTD infected devils (n=4). Red
137 arrows indicate EV structures. **B.** Size distribution profiles determined by nanoparticle tracking analysis
138 (NTA) of EVs isolated from serum of captive (n=4) and wild (n=4) healthy control devils, latent DFTD
139 devils (n=4), and DFTD infected devils in early (n=4), medium (n=4) and late stages (n=4). Shaded areas
140 represent 95% confidence intervals. **C.** EV concentrations of the same NTA groups. Error bars represent
141 95% confidence intervals. **D.** Heat map of intensity values of commonly recovered EV proteins, and **E.**
142 serum contaminants (albumin and five lipoproteins) found in EV samples derived from healthy controls
143 (captive and wild) devils (n=27), latent DFTD devils (n=15), and devils in early (n=17), medium (n=15),
144 and late (n=13) stages of DFTD.

145 Discovery of EV biomarkers for DFTD

146 For the biomarker discovery process, we first analysed the proteome of extracellular vesicles isolated from
147 a cohort of serum samples from 22 devils (12 devils with advanced-stage DFTD; and 10 captive healthy
148 controls) to identify EV protein DFTD biomarker candidates (Figure 2A and Table 1). Based on Student's
149 t-tests, 96 proteins (FDR corrected $p < 0.05$) were upregulated in EVs derived from DFTD infected devils
150 relative to those from healthy controls (Figure 2B and Supplementary table 1A). Of these upregulated
151 proteins, receiver operating characteristic (ROC) curve analysis identified 31 proteins with high accuracy
152 (area under the ROC curve ≥ 0.9 ; Safari et al., 2016) to distinguish diseased from healthy individuals
153 (Supplementary table 2). Proteins such as cathelicidin-3 (CATH3), connective tissue growth factor
154 (CTGF) and complement component 5 (C5) were perfect classifiers of advanced-stage DFTD infected
155 devils when compared to healthy controls (area under the ROC curve = 1, sensitivity and specificity =
156 100%; Figure 2C and Supplementary table 2). CATH3 was the most significantly upregulated protein in
157 EVs derived from DFTD infected devils relative to healthy controls ($p < 10e-6$) with a 4.7-fold increase
158 (Figures 2B and 2D). CTGF and C5 were significantly upregulated by 5.7- and 2.4-fold, respectively, in
159 the DFTD infected devils compared to healthy controls (Figures 2B and 2D).

160 To evaluate whether the upregulated proteins present in serum of advanced DFTD-infected devils relative
161 to healthy controls were potentially released by DFTD cells, we used a proteomic database of EVs derived
162 from cultured DFTD cells (Espejo et al., 2021). We found that of the 96 upregulated EV proteins derived
163 from serum of DFTD infected devils relative to healthy controls, 19 of them overlapped with the proteins
164 of EVs derived from DFTD cells that were upregulated relative to EVs derived from healthy fibroblasts
165 (Supplementary figure 2). Six of these 19 proteins found in both cell culture EVs as well as serum
166 proteomic databases yielded an area under the ROC curve greater than 0.9: F-actin-capping protein subunit
167 alpha (CAPZA) and beta (CAPZB), profilin-1 (PFN1), fructose-bisphosphate aldolase A (ALDOA),
168 tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein zeta (YWHAZ), and ARP3
169 actin related protein 3 (ACTR3) (Supplementary table 2 and Supplementary figure 2). However, none of
170 the three perfect classifiers detected in the discovery cohort (CATH3, CTGF, and C5) were present in the
171 EV cell culture database, suggesting an origin other than DFTD tumours.

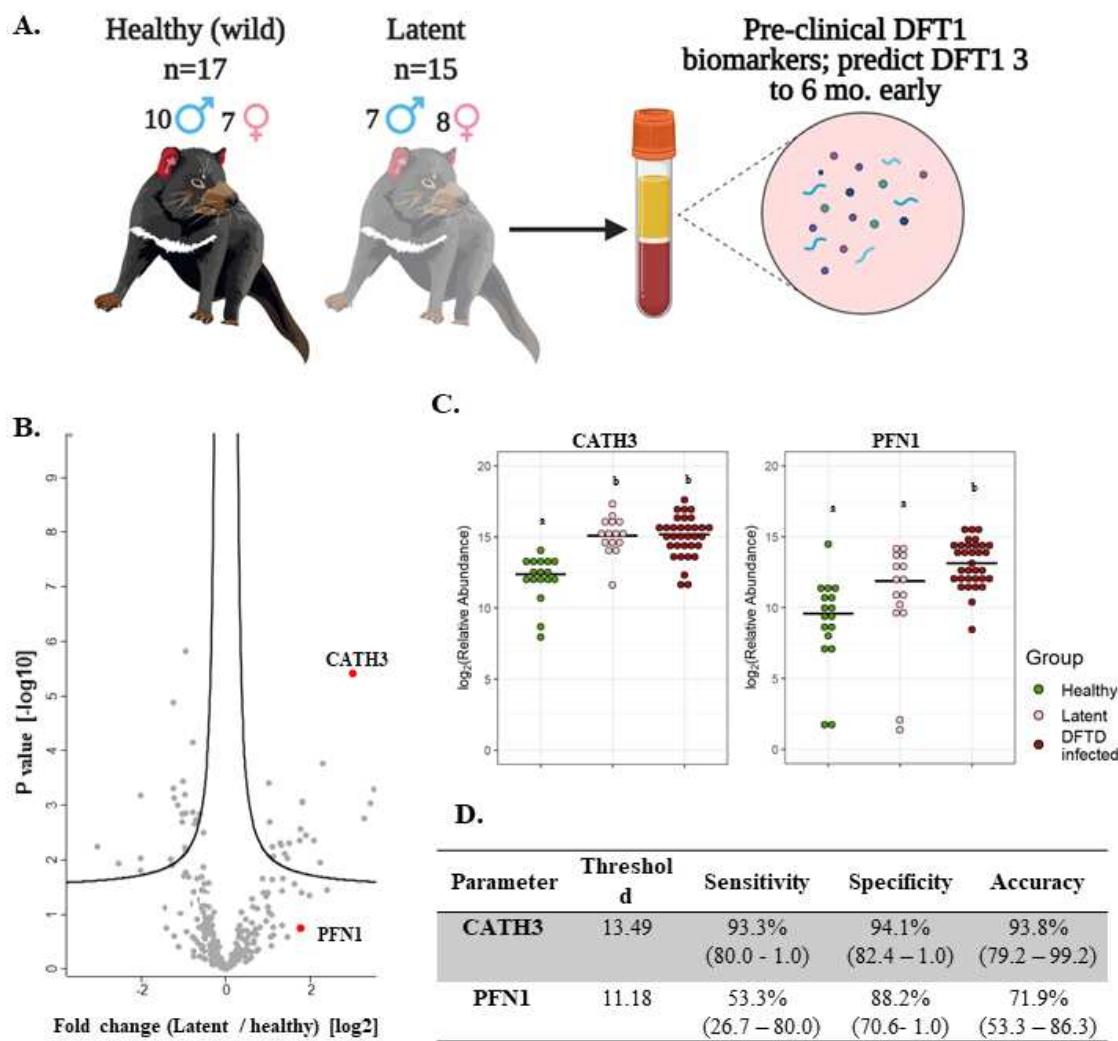

172

173 **Fig. 2. Discovery cohort. A.** Extracellular vesicles (EVs) were isolated from 22 devil serum samples (12
 174 DFTD-advanced and 10 healthy captive devils) by size exclusion chromatography columns. EVs were
 175 analysed by mass spectrometry to explore DFTD EV biomarker candidates. TV = tumour volume. **B.**
 176 Volcano plot of protein relative abundance fold changes (\log_2) between EVs derived from advanced stage
 177 DFTD and healthy devils vs fold change significance. Proteins denoted in red are perfect disease status
 178 classifiers (area under the receiver operating characteristic curve [AUC] = 1.0). Orange denotes proteins
 179 with an AUC > 0.95. **C.** Receiver operating characteristic curve analysis for the EV proteins CATH3,
 180 CTGF, and C5 (DFTD relative to healthy controls). The dashed red identity line indicates random
 181 performance. The cut-off values were determined using Youden's index and are indicated in blue at the left
 182 top corner of the ROC curve and specificity and sensitivity are indicated in brackets, respectively. **D.** Dot
 183 plots depicting the relative abundance of the proteins CATH3, CTGF and C5 obtained from healthy
 184 animals and devils with advanced stages of DFTD, different letters "a" and "b" indicate significant
 185 differences between groups (Student's t test, FDR-corrected $p < 0.05$).

186 CATH3 and PFN1 as EV protein biomarkers for DFTD

187 To validate the discovery cohort results, the analysis of the proteome of EVs was repeated with an
188 independent cohort of 33 DFTD-infected devils in different stages of the disease to test whether our
189 potential EV protein biomarkers can identify animals in a broader range of cancer progression (Figure 3A
190 and Table 1). We also included 17 healthy devils from a DFTD-free wild insurance population located on
191 Maria Island as negative controls (Figure 3A and Table 1). Based on Student's t-test analyses, 51 proteins
192 (FDR-corrected $p < 0.05$) were upregulated in EVs derived from DFTD infected devils relative to healthy
193 controls (Figure 3B and Supplementary table 1B). Of these 51 upregulated proteins, only four yielded an
194 area under the ROC curve greater than 0.9 (Supplementary table 3). In agreement with the discovery
195 cohort results, CATH3 and PFN1 were significantly upregulated in different stages of DFTD-infected
196 devils relative to the wild healthy controls by 2.9- and 4.1-fold, respectively (Figures 3B and 3C). ROC
197 curves indicated that CATH3 and PFN1 classified devils with DFTD with 87.9% and 90.9% sensitivity
198 and 94.1% and 88.2% specificity, respectively (Figure 3D and Supplementary table 3). Unlike CATH3,
199 PFN1 was detected in the cell culture DFTD EV database (Supplementary figure 2), suggesting a possible
200 tumour origin.

201 In contrast, other protein candidates identified in the discovery cohort such as CTGF and C5 showed a
202 reduced performance in distinguishing different stages of DFTD from the wild healthy controls, with a
203 sensitivity of 48.5% and specificity of 88.2% for CTGF and 84.8% sensitivity and 70.6% specificity for C5
204 (Supplementary figure 3).

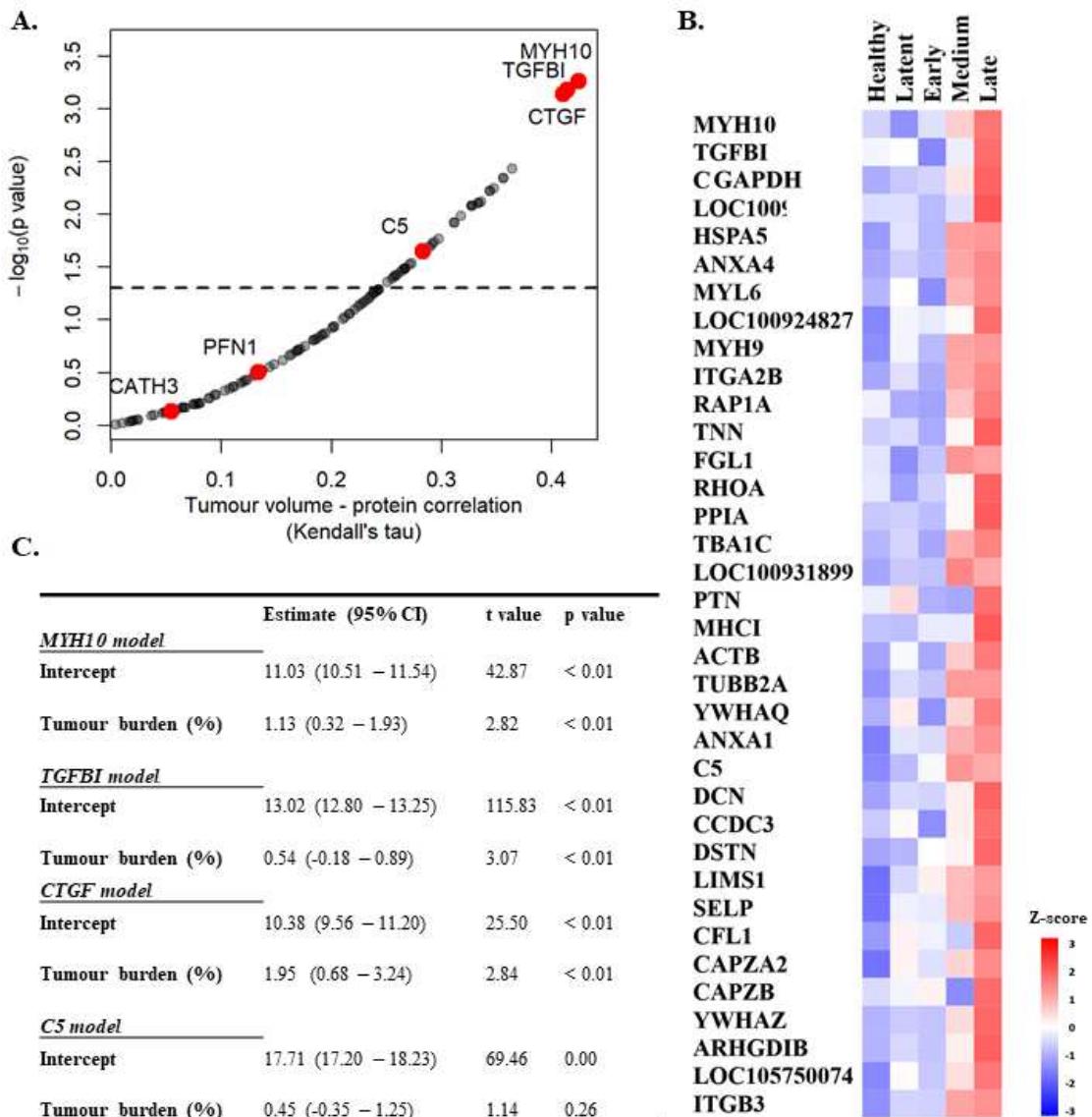


206 **Fig. 3. CATH3 and PFN1 EVs as biomarkers for DFTD.** **A.** Isolated extracellular vesicles from serum
207 samples of 50 devils (33 DFTD-infected and 17 healthy wild devils) were analysed by mass spectrometry
208 to validate potential EV protein biomarkers detected in the discovery cohort results; TV= tumour volume.
209 **B.** Volcano plot of protein relative abundance fold changes (\log_2) between EVs derived from serum of
210 devils with different stages of DFTD (n=33) and healthy wild controls (n=17) vs fold change significance.
211 **C.** Dot plot showing the relative abundance of CATH3 and PFN1 in the serum EVs of 17 wild healthy
212 devils and 33 DFTD infected devils, different letters "a" and "b" indicate significant differences between
213 groups (Student's t test, FDR-corrected $p < 0.05$). **D.** Receiver operating characteristic curve analysis for
214 CATH3 and PFN1 EVs (33 DFTD-infected animals vs 17 healthy controls). The dashed red line indicates
215 random performance. The cut-off values were determined using Youden's index and are indicated in blue
216 at the left top corner of the ROC curve, and specificity and sensitivity are indicated in brackets,
217 respectively.

218 CATH3 EVs detect latent stage DFTD 3 – 6 months before overt disease

219 Further analysis of EVs derived from serum samples of the validation cohort revealed that the levels of
220 CATH3 in EV samples could successfully distinguish devils in latent stages of DFTD (n=15) from healthy
221 wild individuals (n=17). Devils were presumed to be in the latent stage of DFTD as samples were collected
222 3 to 6 months before subsequent DFTD pathological and clinical diagnosis (Figure 4A and Table 1).
223 Specifically, the levels of CATH3 were consistently upregulated in latent DFTD samples relative to the
224 wild healthy group, following the same pattern revealed by the discovery and validation cohort results
225 (Figures 4B and 4C). In contrast, PFN1 was not significantly upregulated in latent devils relative to healthy
226 controls (Figures 4B and 4C).

227 We calculated sensitivity, specificity, and accuracy of CATH3 and PFN1 to classify latent stages from
228 healthy controls, using protein abundance cut-off values trained to distinguish DFTD infected devils from
229 healthy controls calculated in the validation cohort. CATH3 exhibited a sensitivity of 93.3% and a
230 specificity of 94.1% with an accuracy of 93.8% to differentiate latent stages from healthy controls,
231 supporting its utility as a biomarker for all stages of DFTD and its potential use for early detection of this
232 transmissible cancer (Figure 4D). In comparison with CATH3, the protein PFN1 was less effective in
233 distinguishing devils in latent stages from healthy controls (Figure 4D).


234

235 **Fig. 4. CATH3 EVs detect DFTD in latent stages** **A.** Isolated extracellular vesicles (EVs) from serum
236 samples of 32 devils (15 DFTD latent and 17 healthy wild devils) were analysed to investigate whether the
237 validated DFTD biomarkers can also serve to predict latent stage DFTD 3 to 6 months before overt DFTD.
238 **B.** Volcano plot of protein relative abundance fold changes (\log_2) between EVs derived from serum of
239 DFTD latent devils (n=15) and healthy wild controls (n=17) vs fold change significance. **C.** Dot plot
240 showing the relative abundance of EV CATH3 and PFN1 detected in 17 wilds healthy, 15 latent, and 33
241 DFTD-infected devils, different letters "a" and "b" indicate significant pairwise differences between
242 groups (i.e., groups denoted with the same letter are not significantly different; one-way ANOVA and
243 Tukey post-hoc test, $p < 0.05$). **D.** Receiver operating curve analysis performed to classify latent devils
244 (n=15) from healthy controls (n=17). Sensitivity and specificity were calculated (95% confidence
245 intervals) for latent devils based on the protein threshold trained with the full validation dataset (n=50).

246 MYH10, TGFBI, and CTGF are associated with tumour burden

247 We used the filtered proteome dataset comprising combined discovery and validation cohorts to evaluate
248 relationship between EV protein abundance and tumour volume. CTGF and C5 were significantly and
249 positively correlated with tumour volume in DFTD infected devils (Figure 5A), which is consistent with
250 their high predictive power to classify advanced-DFTD stages (large tumour volumes) from healthy
251 individuals in the discovery biomarker phase. Myosin heavy chain 10 (MYH10), transforming growth
252 factor beta induced (TGFBI) and CTGF were the proteins that correlated best with tumour volume (Figure
253 5A and Supplementary table 4), and their expression levels enhanced as tumour volume increases (Figure
254 5B). CATH3 and PFN1 did not demonstrate a significant positive correlation with tumour volume (Figure
255 5A) but showed a binary relationship with disease/healthy demonstrated in the discovery and validation
256 cohorts.

257 Linear regressions were performed to evaluate the ability of tumour burden (as % of body mass)
258 to predict MYH10, TGBI, CTGF, and C5 relative abundance values. Percent tumour burden was
259 a significant predictor of CTGF ($F (1,43) = 9.55$, $p < 0.01$), TGFBI ($F (1,43) = 9.41$, $p < 0.01$),
260 and MYH10 abundance ($F (1,43) = 7.96$, $p < 0.01$). Percent tumour burden explained a modest
261 amount of variation in abundance of both CTGF and TGFBI ($R^2 = 0.18$) and slightly less for
262 MYH10 ($R^2 = 0.16$). The models estimate CTGF, TGFBI, and MYH10 abundances enhance
263 1.95, 0.54- and 1.13-fold, respectively, for each 1% increase in tumour burden (Figure 5C).

264

265 **Fig. 5. MYH10, TGFBI, and CTGF are associated with tumor burden. A.** Kendall Correlation of
 266 proteins with tumor volumes (DFTD infected animals from the discovery and validation dataset, n=45).
 267 Proteins with a corrected p value <0.05 are plotted above the dashed and black line. **B.** Heat map
 268 representing EV proteins with significant Kendall correlations. Z-scored abundances were calculated from
 269 the mean of the relative abundance of each protein in each category (27 healthy (wild and captive), 15
 270 latent, 17 early, 15 medium, and 13 late-DFTD devils). **C.** Linear regression models of % tumor burden as
 271 a predictor of MYH10, TGFBI, CTGF and C5 relative abundances.

272 **Discussion**

273 The ongoing transmission of DFTD and the consequent decline of the Tasmanian devil population has
274 been intensively investigated for the past 25 years. However, the sole method of diagnosis of this
275 transmissible cancer still relies on the visual identification of tumours and confirmatory biopsy, despite
276 previous efforts to develop preclinical diagnostic tests. Here, with contemporary methodology for isolation
277 of extracellular vesicles and quantitative proteomics, we identified promising biomarker candidates from
278 liquid biopsies with potential to predict the presence of this transmissible cancer at a preclinical stage.
279 Specifically, the elevated expression of cathelicidin-3 (CATH3) in serum-derived EV samples of two
280 independent cohorts had a high predictive power to detect DFTD. Further, CATH3 enrichment was
281 detectable 3 to 6 months before tumours were visible or palpable, providing the first preclinical biomarker
282 for DFTD and confirmation of a consistent latent period of DFTD infection. The preclinical detection of
283 EV-associated CATH3 in routinely collected devil serum samples provides a means to improve the health
284 management of endangered devils along with insights for the future development of mammalian cancer
285 biomarkers.

286 Cathelicidins are a family of peptides with roles in antimicrobial responses (Zasloff, 2002). Relative to
287 placental mammals, devils have a notable diversity of cathelicidin peptides, several of which are widely
288 expressed in devil immune tissues, digestive, respiratory and reproductive tracts; milk and marsupium (i.e.,
289 pouch; Peel et al., 2016). Even though cathelicidins are thought to play important roles in the devil
290 immune system, they have not been explored in DFTD pathogenesis. By contrast, the peptide LL-37,
291 produced by the sole human cathelicidin gene, has been identified as a potential anti-tumour therapeutic
292 agent for oral squamous cancer due to it causing apoptotic cell death, autophagy, and cell cycle arrest
293 (Kuroda et al., 2015, Okumura et al., 2004). Conversely, other studies have suggested that LL-37 can
294 promote cancer cell proliferation, migration, and tumour progression via activation of the MAPK/ERK
295 signaling pathway (Weber et al., 2009, von Haussen et al., 2008). Interestingly, this pathway is
296 interconnected with the ERRB-STAT3 axis, thought to be a primary mechanisms of tumorigenesis in
297 DFTD (Kosack et al., 2019). These intriguing findings raise the possibility that CATH3 expression in the
298 course of DFTD infection is associated with a protective response by the host animal's innate immune
299 system, or alternatively a yet undescribed evasion mechanism induced by the transmissible tumour.

300 As CATH3 was not identified in EVs derived from cultured DFTD tumour cells (Espejo et al., 2021), we
301 propose that this early DFTD biomarker is likely associated with host cell derived EVs rather than those of
302 tumour origin. EV protein cargo found in plasma/serum of cancer patients reflects the systemic effects of
303 cancer, displaying markers not only associated with the primary tumour, but also the tumour
304 microenvironment, distant organs, and the immune system (Hoshino et al., 2020). These EV protein
305 signatures have also demonstrated diagnostic power in discriminating between healthy and cancer samples,
306 indicating that host cell derived EVs can serve as sensitive cancer biomarkers. A host cell derived EV
307 protein may have advantages for use as an early biomarker. Based on the finding that EV associated
308 CATH3 abundance was independent of tumour volume, and the consistent upregulation of CATH3 across

309 latent and overt DFTD stages relative to healthy samples, we propose that the increase in CATH3 arises
310 from a uniform host response to this clonal cancer rather than of tumour cell origin. This independence of
311 tumour volume is a desired feature for an early cancer biomarker as its sensitivity will be less dependent
312 on a minimum tumour burden.

313 In contrast with the likely host origin of CATH3, we found that profilin-1 (PFN1), the overt DFTD
314 biomarker found in this study, was highly expressed in EVs derived from DFTD cells *in vitro* (Espejo et
315 al., 2021). As DFTD cells have a Schwann cell origin (Murchison et al., 2010), the upregulation of the
316 actin-binding protein PFN1 is not surprising as it is required for Schwann cell development and migration
317 (Montani et al., 2014). Additionally, PFN1 has been observed to be overexpressed in renal cell carcinoma
318 (Minamida et al., 2011) and proposed as a urine biomarker for bladder cancer aggressiveness (Zoidakis et
319 al., 2012). Considering these lines of evidence, we suggest that the upregulation of PFN1 in serum EVs
320 isolated from overt DFTD devils likely originates from DFTD tumour cells. This is consistent with the
321 poor performance of PFN1 to classify latent DFTD, considering tumour volume is presumably at a
322 minimum at the preclinical disease stage.

323 Relative to the likely DFTD cell origin of PFN1 upregulation, a host origin of CATH3 may confer
324 enhanced performance to classify preclinical DFTD but could also raise a concern regarding clinical
325 specificity. Cathelicidins are also associated with inflammation and secondary infections (Zanetti, 2005),
326 and altered abundance of other cathelicidins has been associated with purely inflammatory diseases such as
327 bovine mastitis (Boehmer et al., 2008). However, we found no evidence for elevated levels of CATH3 in
328 16 of the 17 serum EV samples from the wild devils used for our healthy cohort despite the elevated values
329 of other common inflammatory markers such as C-reactive protein, serum amyloid P-component, and
330 several complement proteins (Eckersall and Bell, 2010, Karasu et al., 2018; see Supplementary figure 4).
331 The high expression of these inflammatory markers found in wild healthy devils relative to captive healthy
332 individuals is most likely due to the high prevalence of injuries resulting from intra-species biting, a
333 common social behaviour among devils (Hamede et al., 2013) that results in wounds susceptible to
334 microbial infections. Thus, the high specificity of CATH3, but not other cathelicidins or common
335 inflammatory markers strongly implies that CATH3 is not associated with general inflammation. We
336 suggest investigating the potential mechanism of action of CATH3 in the pathogenesis and progression of
337 DFTD to identify this marker's role.

338 Of the proteins that were found at greater abundance in devil EV samples at the advanced DFTD stages,
339 many were among the subset of well-characterized EV markers, such as heat shock proteins, annexins, and
340 integrins (Théry et al., 2018, Kowal et al., 2016a). This is consistent with previous reports that found a
341 strong correlation of general EV markers with advanced cancer stages, indicating their potential prognostic
342 value (Peinado et al., 2012, Hoshino et al., 2015). The three proteins myosin heavy chain 10 (MYH10),
343 transforming growth factor beta induced (TGFB1), and connective growth factor (CTGF) with the
344 strongest correlations with tumour volume are not generic EV markers and were not found in EVs derived
345 from DFTD cells *in vitro* (Espejo et al., 2021). However, these proteins have all been documented to be

346 associated with aggressiveness of tumour progression. For instance, MYH10 is overexpressed in glioma
347 cells and implicated in cell migration and invasion (Senol et al., 2015), and also has a pro-tumorigenic
348 effect in a murine lung cancer model (Kim et al., 2015). High expression of TGFB1 predicts poor
349 prognosis in patients with colorectal and ovarian cancer (Zhu et al., 2015, Karlan et al., 2014), while it also
350 promotes breast cancer metastasis (Fico and Santamaria Martínez, 2020). High levels of CTGF
351 expression correlate positively with glioblastoma growth (Pan et al., 2002), invasive melanoma behaviour
352 (Kubo et al., 1998), poor prognosis in oesophageal adenocarcinoma (Koliopanos et al., 2002), aggressive
353 behaviour of pancreatic cancer cells (Wenger et al., 1999), and bone metastasis in breast cancer (Kang et
354 al., 2003). Thus, the mechanisms that induce high levels of MYH10, TGFB1 and CTGF expression with
355 late stages of DFTD warrant further investigation to better understand the pathogenesis of DFTD.

356 The implementation of CATH3 as a diagnostic EV biomarker for latent DFTD will enhance the
357 capabilities for management and conservation actions, which may aid the recovery of devils in wild
358 populations, ensuring this species can fulfil its ecological niche in the future. Firstly, it will ensure that
359 only healthy wild devils will be introduced into insurance populations, which will significantly reduce the
360 cost of maintaining devils in quarantine prior to release, which is currently required for at least one year
361 (Save the Tasmanian Devil Program, 2017). Secondly, it will greatly improve the capacity of ongoing
362 monitoring programs that are critical for early warning and response and underpin research on the
363 epidemiology and evolutionary dynamics of this disease system. Finally, early detection of DFTD will
364 improve the implementation of any potential vaccination or other therapeutic intervention in the future
365 (Flies et al., 2020). Further studies are required to determine whether CATH3 is elevated in devils in
366 DFTD-latent periods longer than 3 to 6 months as the evidence suggests more than one year of latency, to
367 determine how far pre-diagnosis CATH3 expression can distinguish latent devils from healthy controls.

368 The results herein demonstrate that DFTD is a valuable cancer model for comparative oncology to explore
369 cancer biomarkers, as it represents a way to examine the effect of a single genetically identical cancer on
370 the EV profile of numerous individual animals, allowing for a level of replication not possible in other
371 systems. Identifying a devil cathelicidin as an early DFTD biomarker could provide insight into cancer
372 responses more broadly and represent a possible target for the development of anticancer drugs, given
373 human antimicrobial peptides have been proposed as novel cancer biomarkers and therapeutics agents
374 (Kuroda et al., 2015, Deslouches and Di, 2017, Jin and Weinberg, 2019, Silva et al., 2018). Characterising
375 CATH3 expression in response to a single cancer in a natural system could offer insight into host cancer
376 adaptation strategies, as antimicrobial peptides have shown rapid evolutionary diversification within
377 species with specific anti-pathogen activities (Lazzaro et al., 2020). Finally, this marker also widens the
378 scope of human and animal cancer studies to include non-tumour derived cancer markers that result from
379 altered physiology during tumour development.

380 **Material and Methods**

381 Serum samples

382 The two phases of this study comprised proteomic analysis of a discovery cohort and then a validation
383 cohort (Table 1). The discovery phase aimed to identify potential EV protein biomarkers for DFTD using a
384 cohort of 12 DFTD infected devils and 10 healthy controls. DFTD infected devils were considered in
385 advanced stages (mid-late) of the disease based on large tumour volumes (15 ml to 161 ml). Tumour
386 volumes were calculated by the ellipsoid formula described by Ruiz-Aravena et al. (Ruiz-Aravena et al.,
387 2018), utilising measures of length, width, and depth of each DFTD tumour. DFTD infected devils often
388 present more than one tumour on multiple locations of the body. Therefore, total tumour volume was
389 calculated by summing the volume of each tumour present at the time of sampling. The second phase was
390 designed to validate the first phase data in an independent cohort and further investigate the potential
391 biomarkers in preclinical, presumed DFTD latent devils. The validation cohort was composed of 17
392 healthy controls, 15 latent (preclinical) DFTD-infected devils, and 33 confirmed DFTD-infected devils at
393 different clinical stages of the disease. Of these, 17 devils were sub-classified as early stage (tumour
394 volumes from 0.05 ml to 2.63 ml), 14 as medium stage (tumour volumes from 5.0 ml to 40.73), and 2 as
395 late stage (tumour volumes from 26 ml to 56 ml). The animal with 26 ml of tumour was categorised as late
396 instead of medium DFTD-stage as it was emaciated and had to be euthanized. The samples from presumed
397 latent devils were collected 3 to 6 months prior to confirmed diagnosis of DFTD and are herein referred to
398 as “latent” (Table 1).

399 The serum samples of the DFTD-infected devils used in both phases of the study were collected from two
400 wild populations at the Northwest of Tasmania on 10-day field expeditions every 3 months between
401 February 2015 and August 2019 (Table 1). The serum samples of the healthy cohort were obtained from
402 captive devils held in Bonorong Wildlife Sanctuary and Richmond facilities (discovery cohort; samples
403 collected between 2018-2019) and from wild devils from a DFTD-free insurance population (validation
404 cohort; samples collected between 2014 and 2015) (Table 1). As DFTD-induced extinction was a genuine
405 concern predicted by mathematical and epidemiological models (McCallum et al., 2009), government
406 managers established a wild-DFTD population on an isolated island free from DFTD, located in Maria
407 Island on Tasmania’s east coast (Thalmann et al., 2016). Blood was obtained from conscious (wild devils)
408 or anesthetised devils (captive devils) by venepuncture from either jugular or marginal ear vein (between
409 0.3 – 1 mL) and transferred into empty or clot activating tubes. After a maximum of ~five hours, samples
410 were centrifuged at 1,000 g for 10 minutes and the serum was pipetted off and stored frozen at -20 C°
411 (short term storage, up to 3 months) or -80 C° (long term storage, up to 6 years) until further use. All
412 animal procedures were performed under a Standard Operating Procedure approved by the General Manager,
413 Natural and Cultural Heritage Division, Tasmanian Government Department of Primary Industries, Parks,
414 Water, and the Environment and under the auspices of the University of Tasmania Animal Ethics Committee
415 (permit numbers A0017550, A0012513, A0013326, and A0015835).

416 Extracellular vesicles purification

417 Serum samples were thawed on ice and 500 μ l and 300 μ l of serum were extracted for the discovery and
418 validation cohort, respectively. The serum samples were firstly centrifuged at 1,500 g for 10 minutes at 4
419 $^{\circ}$ C to remove cells and debris. The samples were further centrifuged at 10,000 g for 10 minutes at 4 $^{\circ}$ C to
420 pellet larger extracellular vesicles. The supernatant was taken and subjected immediately to size exclusion
421 chromatography on qEV2 / 35nm columns (IZON) following the manufacturer's instructions. Briefly, EVs
422 were eluted in phosphate buffered saline (PBS) containing 0.05% sodium azide in eight fractions of 1 ml
423 each after the collection of 14 ml of void volume and pooled. The EV samples were concentrated with
424 Amicon Ultra-15 centrifugal filters (MWCO 100 kDa) to a final volume of 1 ml and stored in aliquots of
425 500 μ l at -80 $^{\circ}$ C until future use.

426 Transmission electron microscopy (TEM)

427 Copper TEM grids with a formvar-carbon support film (GSCU300CC-50, ProSciTech, Qld, Australia)
428 were glow discharged for 60 seconds in an Emitech k950x with k350 attachment. Two 5 μ l drops of EV
429 suspension was pipetted onto each grid, allowed to adsorb for at least 30 seconds and blotted with filter
430 paper after each. Two drops of 2% uranyl acetate were used to negatively stain the particles blotting after
431 10 seconds each time. Grids were then allowed to dry before imaging. Grids were imaged using a Joel
432 JEM-2100 (JEOL (Australasia) Pty Ltd) transmission electron microscope equipped with a Gatan Orius SC
433 200 CCD camera (Scitek Australia).

434 Nano particle tracking analysis (Zetaview)

435 EV size distribution and concentration were determined using a ZetaView PMX-120 nanoparticle analyzer
436 (Particle Metrix, Inning am Ammersee, Germany) equipped with Zetaview Analyze Software version
437 8.05.12. Prior to measurement, the system was calibrated as per manufactures instruction with 100nm
438 Nanospheres 3100A (Thermo Fisher Scientific). Measurements were performed in scatter mode, and for all
439 measurements the cell temperature was maintained at 25 $^{\circ}$ C. Each sample was diluted in PBS to a final
440 volume of 1 ml. Capture settings were sensitivity 80, shutter 100, and frame rate 30. Post-acquisition
441 settings were minimum trace length 10, min brightness 30, min area 5, and max area 1000. Cell
442 temperature was maintained at 25 $^{\circ}$ C for all measurements.

443 Liquid chromatography and mass spectrometry analysis

444 Sample preparation

445 EV samples (500 μ l aliquots) were thawed on ice and mixed with acetonitrile to a final concentration of
446 50% (v/v) and evaporated by a centrifugal vacuum concentrator to obtain EV proteins for mass
447 spectrometry analysis. The EV protein samples were resuspended in 150 μ l of denaturation buffer (7 M
448 urea and 2 M thiourea in 40 mM Tris, pH 8.0).

449 Protein concentration was measured by EZQ protein quantification kit (Thermo Fisher Scientific), and 30
450 μ g of protein from each sample was reduced with 10 mM dithiothreitol overnight at 4 $^{\circ}$ C. EV protein

451 samples were alkylated the next day with 50 mM iodoacetamide for 2 hours at ambient temperature in the
452 dark and then digested into peptides with 1.2 µg proteomics-grade trypsin/LysC (Promega) according to
453 the SP3 protocol described by Hughes et al (2019). EV peptides were de-salted using ZipTips (Merck)
454 according to the manufacturer's directions.

455 **High-pH peptide fractionation**

456 A specific peptide spectral library was created for devil serum EVs using off-line high-pH fractionation. A
457 pooled peptide sample (180 µg) composed of aliquots of each EV sample from the discovery cohort (n=22
458 individuals) was desalting with Pierce desalting spin columns (Thermo Fisher Scientific) according to
459 manufacturer's guidelines. The sample was evaporated to dryness and resuspended in 25 µl in HPLC
460 loading buffer (2% acetonitrile with 0.05% TFA) and injected onto a 100 x 1 mm Hypersil GOLD (particle
461 size 1.9 mm) HPLC column. Peptides were separated on an Ultimate 3000 RSLC system with micro
462 fractionation and automated sample concatenation enabled at 30 µl/min with a 40 min linear gradient of
463 96% mobile phase A (water containing 1% triethylamine, adjusted to pH 9.6 utilizing acid acetic) to 50%
464 mobile phase B (80% acetonitrile with 1% of triethylamine). The column was then washed in 90% buffer
465 B and re-equilibrated in 96% buffer A for 8 minutes. Sixteen concatenated fractions were collected into 0.5
466 ml low-bind Eppendorf tubes, and then evaporated to dryness and reconstituted in 12 µl HPLC loading
467 buffer.

468 **Mass spectrometry – data-dependent acquisition (DDA)**

469 Peptide fractions were analysed by nanoflow HPLC-MS/MS using an Ultimate 3000 nano RSLC system
470 (Thermo Fisher Scientific) coupled with a Q-Exactive HF mass spectrometer fitted with a nano spray Flex
471 ion source (Thermo Fisher Scientific) and controlled using Xcalibur software (version 4.3). Approximately
472 1 µg of each fraction was injected and separated using a 90-minute segmented gradient by
473 preconcentration onto a 20 mm x 75 µm PepMap 100 C18 trapping column then separation on a 250 mm x
474 75 µm PepMap 100 C18 analytical column at a flow rate of 300 nL/min and held at 45°C. MS Tune
475 software (version 2.9) parameters used for data acquisition were: 2.0 kV spray voltage, S-lens RF level of
476 60 and heated capillary set to 250 °C. MS1 spectra (390 -1500 *m/z*) were acquired at a scan resolution of
477 120,000 followed by MS2 scans using a Top15 DDA method, with 30-second dynamic exclusion of
478 fragmented peptides. MS2 spectra were acquired at a resolution of 15,000 using an AGC target of 2e5,
479 maximum IT of 28ms and normalised collision energy of 30.

480 **Mass spectrometry – data-independent acquisition (DIA)**

481 Individual EV peptide samples were analysed by nanoflow HPLC-MS/MS using the instrumentation and
482 LC gradient conditions described above but using DIA mode. MS1 spectra (390 - 1240 *m/z*) were acquired
483 at 120 k resolution, followed by sequential MS2 scans across 26 DIA x 25 amu windows over the range of
484 397.5-1027.5 *m/z*, with 1 amu overlap between sequential windows. MS2 spectra were acquired at a
485 resolution of 30,000 using an AGC target of 1e6, maximum IT of 55 ms and normalised collision energy
486 of 27.

487 Proteomic database search

488 Both DDA-MS and DIA-MS raw files were processed using Spectronaut software (version 13.12,
489 Biognosys AB). The specific library was generated using the Pulsar search engine to search DDA MS2
490 spectra against the *Sarcophilus harrisii* UniProt reference proteome (comprising 22,388 entries, last
491 modified in August 2020). Spectral libraries were generated using all default software (BGS factory)
492 settings, including N-terminal acetylation and methionine oxidation as variable modifications and cysteine
493 carbamidomethylating as a fixed modification, up to two missed cleavages allowed and peptide, protein
494 and PSM thresholds set to 0.01. For protein identification and relative quantitation between samples, DIA-
495 MS data were processed according to BGS factory settings, with the exception that single-hit proteins were
496 excluded. In the case of uncharacterized proteins, protein sequences provided by UniProt were blasted
497 against the Tasmanian devil reference genome (GCA_902635505.1 mSarHar1.11) using the online NCBI
498 protein blast tool (Wheeler et al., 2007).

499 Statistical analysis

500 Spectronaut protein quantitation pivot reports, including protein description, gene names and UniProt
501 accession numbers, were created for the discovery, validation, and combined datasets. The combined
502 dataset includes the discovery and validation datasets and was used to search for EV protein markers
503 suggested by the Minimal information for studies of extracellular vesicles 2018 (Thery et al., 2018), and to
504 evaluate the relationship of EV proteins with tumour volume. The protein quantitation pivot reports were
505 uploaded into Perseus software (version 1.6.10.50) for further data processing and statistical analysis.
506 Quantitative values were \log_2 transformed and proteins filtered according to the number of valid values.
507 The data was filtered in order that a valid value for a given protein was detected in $\geq 70\%$ of samples in at
508 least one group (i.e., discovery: control/diseased; validation: control/latent/early/advanced; combined:
509 captive healthy/wild healthy/latent/early/medium/late). Remaining missing values were imputed with
510 random intensity values for low-abundance proteins based on a normal abundance distribution using
511 default Perseus settings. The filtered proteins in the discovery and validation datasets were considered for
512 differential expression analyses of biomarker candidates, which was determined using two-tailed Student's
513 *t*-test with a permutation-based false discovery rate (FDR) controlled at 5% and s0 values set to 0.1 to
514 exclude proteins with very small differences between means.

515 Significantly upregulated EV proteins from the filtered datasets were exported from Perseus and analysed
516 using R 3.6.2 (R Core Team, 2019). The utility of each discovery dataset protein as a disease status
517 classifier was investigated by subjecting healthy/disease cohort sample values of each to receiver operating
518 characteristic (ROC) curve analysis to calculate their area under the curve, sensitivity, specificity, and
519 accuracy with bootstrapped confidence intervals. The classification cut-off values were determined using
520 Youden's index. Discovery dataset proteins with a disease status classification area under the ROC curve
521 greater than 0.9 were then investigated by ROC curve analyses, if present, in the validation dataset
522 (excluding the latent samples). Proteins with ROC curves greater than 0.9 in the discovery and validation

523 dataset were investigated in the latent cohort vs healthy wild controls using protein abundance cut-off
524 values trained to distinguish DFTD infected devils from healthy controls calculated in the validation
525 cohort. Kendall rank correlation was used to reveal significant correlations between protein abundance
526 from the combined dataset and tumour volumes. Linear models were utilized to search for associations
527 between the level of EV proteins and tumour burden, which was calculated by dividing total tumour mass
528 by body weight minus total tumour mass and expressed in percentage. Tumour mass was calculated
529 assuming a tumour density of 1.1 g per ml of volume as described by Ruiz-Aravena et al. (Ruiz-Aravena et
530 al., 2018).

531 **Proteome of extracellular vesicles derived from DFTD cultured cells in vitro**

532 To identify possible signals from DFTD tumors, an EV proteome database derived from cultured DFTD
533 cells was used to identify proteins in serum EVs that may originate from DFTD cells (Espejo et al., 2021).
534 Proteins upregulated in DFTD EVs relative to healthy fibroblast EVs and in EVs derived from serum
535 samples of DFTD-infected devils relative to healthy controls obtained in the discovery cohort were
536 compared.

537 **Acknowledgments**

538 The authors would like to acknowledge all the members of the devil and wild immunology group for their
539 advice and guidance. We would like to thank Ginny Ralph for providing care of captive devils, the
540 Bonorong Wildlife Sanctuary for providing access to Tasmanian devils and Dr Alexandre Kreiss for
541 collecting the blood and to the Save the Tasmanian Devil Program for provision of samples. We are
542 grateful of Phil and Marita Crombie from Mistover Cottage in Yolla for providing accommodation and
543 logistic support during fieldwork. We thank volunteers who helped with data collection. We also thank
544 David Gell, Cherie Blenkiron and Kirsty Danielson for their comments in the manuscript.

545 **Funding**

546 This work was funded by the National Geographic explorer early career grant (to C.E and A.B.L),
547 Holsworth Wildlife Research Endowment grants (to C.E, A.B.L, and G.M.W, and to M.R.A. for field
548 sample collection), the University of Tasmania Foundation through funds raised by the Save the
549 Tasmanian Devil Appeal (to A.B.L, G.M.W, R.W, and R.H). Proteomics infrastructure was funded by
550 ARC LE180100059 (to R.W and G.M.W). Sample collection from wild devils was funded by US National
551 Institutes of Health (NIH) grant R01-GM126563-01 and US National Science Foundation (NSF) grant
552 DEB1316549 (to M.E.J.) as part of the joint NIH-NSF-USDA Ecology and Evolution of Infectious
553 Diseases program.

554 **Competing interests**

555 The authors have declared no competing interests.

556 **References**

557

558 BOEHMER, J., BANNERMAN, D., SHEFCHECK, K. & WARD, J. 2008. Proteomic analysis of
559 differentially expressed proteins in bovine milk during experimentally induced *Escherichia*
560 *coli* mastitis. *Journal of dairy science*, 91, 4206-4218.

561 BOUKOURIS, S. & MATHIVANAN, S. 2015. Exosomes in bodily fluids are a highly stable resource
562 of disease biomarkers. *PROTEOMICS–Clinical Applications*, 9, 358-367.

563 CHOI, D. S., KIM, D. K., KIM, Y. K. & GHO, Y. S. 2015. Proteomics of extracellular vesicles:
564 exosomes and ectosomes. *Mass spectrometry reviews*, 34, 474-490.

565 COLOMBO, M., RAPOSO, G. & THÉRY, C. 2014. Biogenesis, secretion, and intercellular
566 interactions of exosomes and other extracellular vesicles. *Annual review of cell and*
567 *developmental biology*, 30, 255-289.

568 CUNNINGHAM, C. X., COMTE, S., MCCALLUM, H., HAMILTON, D. G., HAMEDE, R.,
569 STORFER, A., HOLLINGS, T., RUIZ-ARAVENA, M., KERLIN, D. H., BROOK, B. W.,
570 HOCKING, G. & JONES, M. E. 2021. Quantifying 25 years of disease-caused declines in
571 Tasmanian devil populations: host density drives spatial pathogen spread. *Ecol Lett*, 24, 958-
572 969.

573 DESLOUCHES, B. & DI, Y. P. 2017. Antimicrobial peptides with selective antitumor mechanisms:
574 prospect for anticancer applications. *Oncotarget*, 8, 46635.

575 ECKERSALL, P. & BELL, R. 2010. Acute phase proteins: Biomarkers of infection and inflammation
576 in veterinary medicine. *The veterinary journal*, 185, 23-27.

577 ESPEJO, C., WILSON, R., WILLMS, E., RUIZ-ARAVENA, M., PYE, R. J., JONES, M. E., HILL,
578 A. F., WOODS, G. M. & LYONS, A. B. 2021. Extracellular vesicle proteomes of two
579 transmissible cancers of Tasmanian devils reveal tenascin-C as a serum-based differential
580 diagnostic biomarker. *Cell Mol Life Sci.*

581 FICO, F. & SANTAMARIA □MARTÍNEZ, A. 2020. TGFBI modulates tumour hypoxia and
582 promotes breast cancer metastasis. *Molecular oncology*, 14, 3198-3210.

583 FLIES, A. S., FLIES, E. J., FOX, S., GILBERT, A., JOHNSON, S. R., LIU, G.-S., LYONS, A. B.,
584 PATCHETT, A. L., PEMBERTON, D. & PYE, R. J. 2020. An oral bait vaccination approach
585 for the Tasmanian devil facial tumor diseases. *Expert review of vaccines*, 19, 1-10.

586 HAMEDE, R., LACHISH, S., BELOV, K., WOODS, G., KREISS, A., PEARSE, A. M., LAZENBY,
587 B., JONES, M. & MCCALLUM, H. 2012. Reduced Effect of Tasmanian Devil Facial Tumor
588 Disease at the Disease Front. *Conservation Biology*, 26, 124-134.

589 HAMEDE, R. K., MCCALLUM, H. & JONES, M. 2013. Biting injuries and transmission of
590 Tasmanian devil facial tumour disease. *J Anim Ecol*, 82, 182-90.

591 HAWKINS, C., MCCALLUM, H., MOONEY, N., JONES, M. & HOLDSWORTH, M. 2008.
592 *Sarcophilus harrisii*. The IUCN Red List of threatened species 2008: e. T40540A10331066.

593 HAYES, D. A., KUNDE, D. A., TAYLOR, R. L., PYECROFT, S. B., SOHAL, S. S. & SNOW, E. T.
594 2017. ERBB3: A potential serum biomarker for early detection and therapeutic target for
595 devil facial tumour 1 (DFT1). *PloS one*, 12, e0177919.

596 HOSHINO, A., COSTA-SILVA, B., SHEN, T. L., RODRIGUES, G., HASHIMOTO, A., TESIC
597 MARK, M., MOLINA, H., KOHSAKA, S., DI GIANNATALE, A., CEDER, S., SINGH, S.,
598 WILLIAMS, C., SOPLOP, N., URYU, K., PHARMER, L., KING, T., BOJMAR, L.,
599 DAVIES, A. E., ARARSO, Y., ZHANG, T., ZHANG, H., HERNANDEZ, J., WEISS, J. M.,
600 DUMONT-COLE, V. D., KRAMER, K., WEXLER, L. H., NARENDRAN, A.,
601 SCHWARTZ, G. K., HEALEY, J. H., SANDSTROM, P., LABORI, K. J., KURE, E. H.,
602 GRANDGENETT, P. M., HOLLINGSWORTH, M. A., DE SOUSA, M., KAUR, S., JAIN,
603 M., MALLYA, K., BATRA, S. K., JARNAGIN, W. R., BRADY, M. S., FODSTAD, O.,
604 MULLER, V., PANTEL, K., MINN, A. J., BISSELL, M. J., GARCIA, B. A., KANG, Y.,
605 RAJASEKHAR, V. K., GHAJAR, C. M., MATEI, I., PEINADO, H., BROMBERG, J. &
606 LYDEN, D. 2015. Tumour exosome integrins determine organotropic metastasis. *Nature*,
607 527, 329-35.

608 HOSHINO, A., KIM, H. S., BOJMAR, L., GYAN, K. E., CIOFFI, M., HERNANDEZ, J.,
609 ZAMBIRINIS, C. P., RODRIGUES, G., MOLINA, H., HEISSEL, S., MARK, M. T.,
610 STEINER, L., BENITO-MARTIN, A., LUCOTTI, S., DI GIANNATALE, A., OFFER, K.,
611 NAKAJIMA, M., WILLIAMS, C., NOGUES, L., PELLISSIER VATTER, F. A.,
612 HASHIMOTO, A., DAVIES, A. E., FREITAS, D., KENIFIC, C. M., ARARSO, Y.,
613 BUEHRING, W., LAURITZEN, P., OGITANI, Y., SUGIURA, K., TAKAHASHI, N.,
614 ALECKOVIC, M., BAILEY, K. A., JOLISSANT, J. S., WANG, H., HARRIS, A.,
615 SCHAEFFER, L. M., GARCIA-SANTOS, G., POSNER, Z., BALACHANDRAN, V. P.,
616 KHAKOO, Y., RAJU, G. P., SCHERZ, A., SAGI, I., SCHERZ-SHOUVAL, R., YARDEN,
617 Y., OREN, M., MALLADI, M., PETRICCIONE, M., DE BRAGANCA, K. C., DONZELLI,
618 M., FISCHER, C., VITOLANO, S., WRIGHT, G. P., GANSHAW, L., MARRANO, M.,
619 AHMED, A., DESTEFANO, J., DANZER, E., ROEHL, M. H. A., LACAYO, N. J.,
620 VINCENT, T. C., WEISER, M. R., BRADY, M. S., MEYERS, P. A., WEXLER, L. H.,
621 AMBATI, S. R., CHOU, A. J., SLOTKIN, E. K., MODAK, S., ROBERTS, S. S., BASU, E.,
622 M., DIOLAITI, D., KRANTZ, B. A., CARDOSO, F., SIMPSON, A. L., BERGER, M.,
623 RUDIN, C. M., SIMEONE, D. M., JAIN, M., GHAJAR, C. M., BATRA, S. K., STANGER,
624 B. Z., BUI, J., BROWN, K. A., RAJASEKHAR, V. K., HEALEY, J. H., DE SOUSA, M.,
625 KRAMER, K., SHETH, S., BAISCH, J., PASCUAL, V., HEATON, T. E., LA QUAGLIA,
626 M. P., PISAPIA, D. J., SCHWARTZ, R., ZHANG, H., LIU, Y., SHUKLA, A., BLAVIER,
627 L., DECLERCK, Y. A., et al. 2020. Extracellular Vesicle and Particle Biomarkers Define
628 Multiple Human Cancers. *Cell*, 182, 1044-1061 e18.

629 HUGHES, C. S., MOGGRIDGE, S., MULLER, T., SORENSEN, P. H., MORIN, G. B. &
630 KRIJGSVELD, J. 2019. Single-pot, solid-phase-enhanced sample preparation for proteomics
631 experiments. *Nat Protoc*, 14, 68-85.

632 JIN, G. & WEINBERG, A. Human antimicrobial peptides and cancer. *Seminars in cell &*
633 *developmental biology*, 2019. Elsevier, 156-162.

634 KANG, Y., SIEGEL, P. M., SHU, W., DROBNJAK, M., KAKONEN, S. M., CORDÓN-CARDO,
635 C., GUISE, T. A. & MASSAGUÉ, J. 2003. A multigenic program mediating breast cancer
636 metastasis to bone. *Cancer cell*, 3, 537-549.

637 KARASU, E., EISENHARDT, S. U., HARANT, J. & HUBER-LANG, M. 2018. Extracellular
638 vesicles: packages sent with complement. *Frontiers in immunology*, 9, 721.

639 KARLAN, B. Y., DERING, J., WALSH, C., ORSULIC, S., LESTER, J., ANDERSON, L. A.,
640 GINTHER, C. L., FEJZO, M. & SLAMON, D. 2014. POSTN/TGFBI-associated stromal
641 signature predicts poor prognosis in serous epithelial ovarian cancer. *Gynecologic oncology*,
642 132, 334-342.

643 KARU, N., WILSON, R., HAMEDE, R., JONES, M., WOODS, G. M., HILDER, E. F. & SHELLIE,
644 R. A. 2016. Discovery of biomarkers for Tasmanian Devil Cancer (DFTD) by metabolic
645 profiling of serum. *Journal of proteome research*, 15, 3827-3840.

646 KHAN, S., JUTZY, J. M., VALENZUELA, M. M. A., TURAY, D., ASPE, J. R., ASHOK, A.,
647 MIRSHAHIDI, S., MERCOLA, D., LILLY, M. B. & WALL, N. R. 2012. Plasma-derived
648 exosomal survivin, a plausible biomarker for early detection of prostate cancer. *PloS one*, 7,
649 e46737.

650 KIM, J. S., KURIE, J. M. & AHN, Y.-H. 2015. BMP4 depletion by miR-200 inhibits tumorigenesis
651 and metastasis of lung adenocarcinoma cells. *Molecular cancer*, 14, 1-11.

652 KOLIOPANOS, A., FRIESS, H., DI MOLA, F. F., TANG, W.-H., KUBULUS, D., BRIGSTOCK,
653 D., ZIMMERMANN, A. & BÜCHLER, M. W. 2002. Connective tissue growth factor gene
654 expression alters tumor progression in esophageal cancer. *World journal of surgery*, 26, 420-
655 427.

656 KOSACK, L., WINGELHOFER, B., POPA, A., ORLOVA, A., AGERER, B., VILAGOS, B.,
657 MAJEK, P., PARAPATICS, K., LERCHER, A. & RINGLER, A. 2019. The ERBB-STAT3
658 axis drives Tasmanian devil facial tumor disease. *Cancer Cell*, 35, 125-139. e9.

659 KOWAL, J., ARRAS, G., COLOMBO, M., JOUVE, M., MORATH, J. P., PRIMDAL-BENGTSON,
660 B., DINGLI, F., LOEW, D., TKACH, M. & THERY, C. 2016a. Proteomic comparison
661 defines novel markers to characterize heterogeneous populations of extracellular vesicle
662 subtypes. *Proc Natl Acad Sci U S A*, 113, E968-77.

663 KOWAL, J., ARRAS, G., COLOMBO, M., JOUVE, M., MORATH, J. P., PRIMDAL-BENGTON, 664 B., DINGLI, F., LOEW, D., TKACH, M. & THÉRY, C. 2016b. Proteomic comparison 665 defines novel markers to characterize heterogeneous populations of extracellular vesicle 666 subtypes. *Proceedings of the National Academy of Sciences*, 113, E968-E977.

667 KUBO, M., KIKUCHI, K., NASHIRO, K., KAKINUMA, T., HAYASHI, N., NANKO, H. & 668 TAMAKI, K. 1998. Expression of fibrogenic cytokines in desmoplastic malignant melanoma. 669 *The British journal of dermatology*, 139, 192-197.

670 KURODA, K., OKUMURA, K., ISOGAI, H. & ISOGAI, E. 2015. The human cathelicidin 671 antimicrobial peptide LL-37 and mimics are potential anticancer drugs. *Frontiers in oncology*, 672 5, 144.

673 KWON, Y. M., STAMMNITZ, M. R., WANG, J., SWIFT, K., KNOWLES, G. W., PYE, R. J., 674 KREISS, A., PECK, S., FOX, S., PEMBERTON, D., JONES, M. E., HAMEDE, R. & 675 MURCHISON, E. P. 2018. Tasman-PCR: a genetic diagnostic assay for Tasmanian devil 676 facial tumour diseases. *R Soc Open Sci*, 5, 180870.

677 LAZZARO, B. P., ZASLOFF, M. & ROLFF, J. 2020. Antimicrobial peptides: Application informed 678 by evolution. *Science*, 368.

679 MAAS, S. L., BREAKFIELD, X. O. & WEAVER, A. M. 2017. Extracellular vesicles: unique 680 intercellular delivery vehicles. *Trends in cell biology*, 27, 172-188.

681 MCCALLUM, H., JONES, M., HAWKINS, C., HAMEDE, R., LACHISH, S., SINN, D. L., 682 BEETON, N. & LAZENBY, B. 2009. Transmission dynamics of Tasmanian devil facial 683 tumor disease may lead to disease-induced extinction. *Ecology*, 90, 3379-3392.

684 MELO, S. A., LUECKE, L. B., KAHLERT, C., FERNANDEZ, A. F., GAMMON, S. T., KAYE, J., 685 LEBLEU, V. S., MITTENDORF, E. A., WEITZ, J. & RAHBARI, N. 2015. Glypican-1 686 identifies cancer exosomes and detects early pancreatic cancer. *Nature*, 523, 177-182.

687 MINAMIDA, S., IWAMURA, M., KODERA, Y., KAWASHIMA, Y., IKEDA, M., OKUSA, H., 688 FUJITA, T., MAEDA, T. & BABA, S. 2011. Profilin 1 overexpression in renal cell 689 carcinoma. *International Journal of Urology*, 18, 63-71.

690 MONTANI, L., BUERKI-THURNHERR, T., DE FARIA, J. P., PEREIRA, J. A., DIAS, N. G., 691 FERNANDES, R., GONÇALVES, A. F., BRAUN, A., BENNINGER, Y. & BÖTTCHER, R. 692 T. 2014. Profilin 1 is required for peripheral nervous system myelination. *Development*, 141, 693 1553-1561.

694 MURCHISON, E. P., TOVAR, C., HSU, A., BENDER, H. S., KHERADPOUR, P., REBBECK, C. 695 A., OBENDORF, D., CONLAN, C., BAHLO, M., BLIZZARD, C. A., PYECROFT, S., 696 KREISS, A., KELLIS, M., STARK, A., HARKINS, T. T., MARSHALL GRAVES, J. A., 697 WOODS, G. M., HANNON, G. J. & PAPENFUSS, A. T. 2010. The Tasmanian devil 698 transcriptome reveals Schwann cell origins of a clonally transmissible cancer. *Science*, 327, 699 84-7.

700 NOROUZI-BAROUGH, L., ASGARI KHOSRO SHAHI, A., MOHEBZADEH, F., MASOUMI, L., 701 HADDADI, M. R. & SHIRIAN, S. 2020. Early diagnosis of breast and ovarian cancers by 702 body fluids circulating tumor-derived exosomes. *Cancer Cell International*, 20, 1-10.

703 OKUMURA, K., ITOH, A., ISOGAI, E., HIROSE, K., HOSOKAWA, Y., ABIKO, Y., SHIBATA, 704 T., HIRATA, M. & ISOGAI, H. 2004. C-terminal domain of human CAP18 antimicrobial 705 peptide induces apoptosis in oral squamous cell carcinoma SAS-H1 cells. *Cancer letters*, 212, 706 185-194.

707 OSTRANDER, E. A., DAVIS, B. W. & OSTRANDER, G. K. 2016. Transmissible Tumors: Breaking 708 the Cancer Paradigm. *Trends in Genetics*, 32, 1-15.

709 PAN, L.-H., BEPPU, T., KUROSE, A., YAMAUCHI, K., SUGAWARA, A., SUZUKI, M., 710 OGAWA, A. & SAWAI, T. 2002. Neoplastic cells and proliferating endothelial cells express 711 connective tissue growth factor (CTGF) in glioblastoma. *Neurological research*, 24, 677-683.

712 PEEL, E., CHENG, Y., DJORDJEVIC, J., FOX, S., SORRELL, T. & BELOV, K. 2016. Cathelicidins 713 in the Tasmanian devil (*Sarcophilus harrisii*). *Scientific reports*, 6, 35019.

714 PEINADO, H., ALECKOVIC, M., LAVOTSHKIN, S., MATEI, I., COSTA-SILVA, B., MORENO- 715 BUENO, G., HERGUETA-REDONDO, M., WILLIAMS, C., GARCIA-SANTOS, G., 716 GHAJAR, C. M., NITADORI-HOSHINO, A., HOFFMAN, C., BADAL, K., GARCIA, B. 717 A., CALLAHAN, M. K., YUAN, J. D., MARTINS, V. R., SKOG, J., KAPLAN, R. N.,

718 BRADY, M. S., WOLCHOK, J. D., CHAPMAN, P. B., KANG, Y. B., BROMBERG, J. &
 719 LYDEN, D. 2012. Melanoma exosomes educate bone marrow progenitor cells toward a pro-
 720 metastatic phenotype through MET. *Nature Medicine*, 18, 883-+.

721 PYE, R. J., PEMBERTON, D., TOVAR, C., TUBIO, J. M., DUN, K. A., FOX, S., DARBY, J.,
 722 HAYES, D., KNOWLES, G. W., KREISS, A., SIDDLE, H. V., SWIFT, K., LYONS, A. B.,
 723 MURCHISON, E. P. & WOODS, G. M. 2016. A second transmissible cancer in Tasmanian
 724 devils. *Proc Natl Acad Sci U S A*, 113, 374-9.

725 R CORE TEAM 2019. R: A language and environment for statistical computing. Vienna, Austria: R
 726 Foundation for Statistical Computing.

727 RIKKERT, L. G., NIEUWLAND, R., TERSTAPPEN, L. & COUMANS, F. 2019. Quality of
 728 extracellular vesicle images by transmission electron microscopy is operator and protocol
 729 dependent. *Journal of extracellular vesicles*, 8, 1555419.

730 RUIZ-ARAVENA, M., JONES, M. E., CARVER, S., ESTAY, S., ESPEJO, C., STORFER, A. &
 731 HAMEDE, R. K. 2018. Sex bias in ability to cope with cancer: Tasmanian devils and facial
 732 tumour disease. *Proceedings of the Royal Society B*, 285, 20182239.

733 SAFARI, S., BARATLOO, A., ELFIL, M. & NEGIDA, A. 2016. Evidence based emergency
 734 medicine; part 5 receiver operating curve and area under the curve. *Emergency*, 4, 111.

735 SAVE THE TASMANIAN DEVIL PROGRAM 2017. Risk Categorisation Guidelines for the
 736 keeping and movement of captive Tasmanian devils. 5.1 ed.: Department of Primary
 737 Industries, Park , Water & Environment.

738 SENOL, O., SCHAAIJ-VISSE, T., ERKAN, E., DORFER, C., LEWANDROWSKI, G., PHAM, T.,
 739 PIERSMA, S., PEERDEMAN, S., STRÖBEL, T. & TANNOUS, B. 2015. miR-200a-
 740 mediated suppression of non-muscle heavy chain IIb inhibits meningioma cell migration and
 741 tumor growth in vivo. *Oncogene*, 34, 1790-1798.

742 SILVA, O. N., PORTO, W. F., RIBEIRO, S. M., BATISTA, I. & FRANCO, O. L. 2018. Host-
 743 defense peptides and their potential use as biomarkers in human diseases. *Drug discovery
 744 today*, 23, 1666-1671.

745 TAKOV, K., YELLON, D. M. & DAVIDSON, S. M. 2019. Comparison of small extracellular
 746 vesicles isolated from plasma by ultracentrifugation or size-exclusion chromatography: yield,
 747 purity and functional potential. *Journal of extracellular vesicles*, 8, 1560809.

748 THALMANN, S., PECK, S., WISE, P., POTTS, J. M., CLARKE, J. & RICHLEY, J. 2016.
 749 Translocation of a top-order carnivore: tracking the initial survival, spatial movement, home-
 750 range establishment and habitat use of Tasmanian devils on Maria Island. *Australian
 751 Mammalogy*, 38, 68-79.

752 THÉRY, C., WITWER, K. W., AIKAWA, E., ALCARAZ, M. J., ANDERSON, J. D.,
 753 ANDRIANTSITOHAINA, R., ANTONIOU, A., ARAB, T., ARCHER, F. & ATKIN-
 754 SMITH, G. K. 2018. Minimal information for studies of extracellular vesicles 2018
 755 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and
 756 update of the MISEV2014 guidelines. *Journal of extracellular vesicles*, 7, 1535750.

757 THERY, C., WITWER, K. W., AIKAWA, E., ALCARAZ, M. J., ANDERSON, J. D.,
 758 ANDRIANTSITOHAINA, R., ANTONIOU, A., ARAB, T., ARCHER, F., ATKIN-SMITH,
 759 G. K., AYRE, D. C., BACH, J. M., BACHURSKI, D., BAHARVAND, H., BALAJ, L.,
 760 BALDACCHINO, S., BAUER, N. N., BAXTER, A. A., BEBAWY, M., BECKHAM, C.,
 761 ZAVEC, A. B., BENMOUSSA, A., BERARDI, A. C., BERGESE, P., BIELSKA, E.,
 762 BLENKIRON, C., BOBIS-WOZOWICZ, S., BOILARD, E., BOIREAU, W.,
 763 BONGIOVANNI, A., BORRAS, F. E., BOSCH, S., BOULANGER, C. M., BREAKEFIELD,
 764 X., BREGGIO, A. M., BRENNAN, M. A., BRIGSTOCK, D. R., BRISSON, A.,
 765 BROEKMAN, M. L. D., BROMBERG, J. F., BRYL-GORECKA, P., BUCH, S., BUCK, A.
 766 H., BURGER, D., BUSATTO, S., BUSCHMANN, D., BUSSOLATI, B., BUZAS, E. I.,
 767 BYRD, J. B., CAMUSSI, G., CARTER, D. R. F., CARUSO, S., CHAMLEY, L. W.,
 768 CHANG, Y. T., CHEN, C. C., CHEN, S., CHENG, L., CHIN, A. R., CLAYTON, A.,
 769 CLERICI, S. P., COCKS, A., COCUCCI, E., COFFEY, R. J., CORDEIRO-DA-SILVA, A.,
 770 COUCH, Y., COUMANS, F. A. W., COYLE, B., CRESCITELLI, R., CRIADO, M. F.,
 771 D'SOUZA-SCHOREY, C., DAS, S., CHAUDHURI, A. D., DE CANDIA, P., DE
 772 SANTANA, E. F., DE WEVER, O., DEL PORTILLO, H. A., DEMARET, T., DEVILLE, S.,

773 DEVITT, A., DHONDT, B., DI VIZIO, D., DIETERICH, L. C., DOLO, V., RUBIO, A. P.
774 D., DOMINICI, M., DOURADO, M. R., DRIEDONKS, T. A. P., DUARTE, F. V.,
775 DUNCAN, H. M., EICHENBERGER, R. M., EKSTROM, K., ANDALOUSSI, S. E. L.,
776 ELIE-CAILLE, C., ERDBRUGGER, U., FALCON-PEREZ, J. M., FATIMA, F., FISH, J. E.,
777 FLORES-BELLVER, M., FORSONITS, A., FRELET-BARRAND, A., et al. 2018. Minimal
778 information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of
779 the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines.
780 *Journal of Extracellular Vesicles*, 7, 1535750.

781 TOVAR, C., OBENDORF, D., MURCHISON, E. P., PAPENFUSS, A. T., KREISS, A. & WOODS,
782 G. M. 2011. Tumor-specific diagnostic marker for transmissible facial tumors of Tasmanian
783 devils: immunohistochemistry studies. *Vet Pathol*, 48, 1195-203.

784 VON HAUSSEN, J., KOCZULLA, R., SHAYKHIEV, R., HERR, C., PINKENBURG, O., REIMER,
785 D., WIEWRODT, R., BIESTERFELD, S., AIGNER, A. & CZUBAYKO, F. 2008. The host
786 defence peptide LL-37/hCAP-18 is a growth factor for lung cancer cells. *Lung cancer*, 59, 12-
787 23.

788 WEBER, G., CHAMORRO, C. I., GRANATH, F., LILJEGREN, A., ZREIKA, S., SAIDAK, Z.,
789 SANDSTEDT, B., ROTSTEIN, S., MENTAVERRI, R. & SÁNCHEZ, F. 2009. Human
790 antimicrobial protein hCAP18/LL-37 promotes a metastatic phenotype in breast cancer.
791 *Breast cancer research*, 11, 1-13.

792 WENGER, C., ELLENRIEDER, V., ALBER, B., LACHER, U., MENKE, A., HAMEISTER, H.,
793 WILDA, M., IWAMURA, T., BEGER, H. G. & ADLER, G. 1999. Expression and
794 differential regulation of connective tissue growth factor in pancreatic cancer cells. *Oncogene*,
795 18, 1073-1080.

796 WHEELER, D. L., BARRETT, T., BENSON, D. A., BRYANT, S. H., CANESE, K.,
797 CHETVERNIN, V., CHURCH, D. M., DICUCCIO, M., EDGAR, R. & FEDERHEN, S.
798 2007. Database resources of the national center for biotechnology information. *Nucleic acids
799 research*, 36, D13-D21.

800 WILLMS, E., CABANAS, C., MAGER, I., WOOD, M. J. A. & VADER, P. 2018. Extracellular
801 Vesicle Heterogeneity: Subpopulations, Isolation Techniques, and Diverse Functions in
802 Cancer Progression. *Front Immunol*, 9, 738.

803 ZANETTI, M. 2005. The role of cathelicidins in the innate host defenses of mammals. *Current issues
804 in molecular biology*, 7, 179-196.

805 ZASLOFF, M. 2002. Antimicrobial peptides of multicellular organisms. *nature*, 415, 389-395.

806 ZHOU, B., XU, K., ZHENG, X., CHEN, T., WANG, J., SONG, Y., SHAO, Y. & ZHENG, S. 2020.
807 Application of exosomes as liquid biopsy in clinical diagnosis. *Signal transduction and
808 targeted therapy*, 5, 1-14.

809 ZHU, J., CHEN, X., LIAO, Z., HE, C. & HU, X. 2015. TGFBI protein high expression predicts poor
810 prognosis in colorectal cancer patients. *International Journal of Clinical and Experimental
811 Pathology*, 8, 702.

812 ZOIDAKIS, J., MAKRIDAKIS, M., ZEREFOS, P. G., BITSIKA, V., ESTEBAN, S., FRANTZI, M.,
813 STRAVODIMOS, K., ANAGNOU, N. P., ROUBELAKIS, M. G. & SANCHEZ-
814 CARBAYO, M. 2012. Profilin 1 is a potential biomarker for bladder cancer aggressiveness.
815 *Molecular & cellular proteomics*, 11, M111. 009449.

816