

1 **Molecular chaperone ability to inhibit amyloid-derived neurotoxicity, but not**
2 **amorphous protein aggregation, depends on a conserved pH-sensitive Asp residue**

3
4 Gefei Chen^{1*}, Yuniesky Andrade-Talavera^{2#}, Xueying Zhong^{3#}, Sameer Hassan^{1#}, Henrik
5 Biverstal^{1,4}, Helen Poska^{1,5}, Axel Abelein¹, Axel Leppert¹, Nina Kronqvist¹, Anna Rising¹,
6 Hans Hebert³, Philip J.B. Koeck³, André Fisahn², Jan Johansson¹

7
8 ¹Department of Biosciences and Nutrition, Karolinska Institutet, 141 52 Huddinge, Sweden

9 ²Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research,
10 Division of Neurogeriatrics, Neuronal Oscillations Laboratory, Karolinska Institutet, 171 77
11 Stockholm, Sweden

12 ³School of Engineering Sciences in Chemistry, Biotechnology and Health, Department of
13 Biomedical Engineering and Health Systems, KTH Royal Institute of Technology, 141 52
14 Huddinge, Sweden

15 ⁴Department of Physical Organic Chemistry, Latvian Institute of Organic Synthesis, Riga
16 LV-1006, Latvia

17 ⁵School of Natural Sciences and Health, Tallinn University, Tallinn, Estonia

18 # These authors contributed equally.

19 *Corresponding author, E-mail: gefei.chen@ki.se

20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

35 **Abstract**

36 Proteins can self-assemble into amyloid fibrils or amorphous aggregates and thereby cause
37 disease. Molecular chaperones can prevent both these types of protein aggregation, but the
38 respective mechanisms are not fully understood. The BRICHOS domain constitutes a
39 disease-associated small heat shock protein-like chaperone family, with activities against
40 both amyloid toxicity and amorphous protein aggregation. Here, we show that the activity of
41 two BRICHOS domain families against Alzheimer's disease associated amyloid- β
42 neurotoxicity to mouse hippocampi *in vitro* depends on a conserved aspartate residue, while
43 the ability to suppress amorphous protein aggregation is unchanged by Asp to Asn mutations.
44 The conserved Asp in its ionized state promotes structural flexibility of the BRICHOS
45 domain and has a pKa value between pH 6.0–7.0, suggesting that chaperone effects against
46 amyloid toxicity can be affected by physiological pH variations. Finally, the Asp is
47 evolutionarily highly conserved in >3000 analysed BRICHOS domains but is replaced by
48 Asn in some BRICHOS families and animal species, indicating independent evolution of
49 molecular chaperone activities against amyloid fibril formation and non-fibrillar amorphous
50 protein aggregation.

51

52

53 **Introduction**

54 Proteins and peptides can self-assemble into highly ordered fibrillar structures as well as into
55 smaller oligomers with less well-defined structures but apparently stronger ability to cause
56 toxicity to cells. These phenomena are linked to so-called amyloid diseases, which
57 encompass about forty severe human diseases including interstitial lung disease (ILD) and
58 Alzheimer's disease (AD)(1, 2). A multitude of proteins have been shown to form amyloid
59 fibrils *in vitro* and generate cytotoxic species, yet they are not found in association with
60 disease, which suggest that efficient chaperoning and/or other defence systems are in place(3,
61 4). Molecular chaperones prevent protein aggregation and cytotoxicity(5), and
62 chaperonopathy might occur during *e.g.* ageing and by genetic mutations, leading to protein
63 misfolding disorders(6-8). However, no clear correlation between the clinical phenotype and
64 the severity of anti-aggregation defects of disease-causing molecular chaperone mutations
65 has been shown for *e.g.*, DNAJB6b and HSPB1(9, 10).

66

67 Many exceptionally amyloidogenic polypeptides are expressed as proproteins which are
68 subjected to proteolytic cleavage to release the amyloidogenic fragments(11-13). Some of
69 these proproteins contain the small heat shock protein (sHSP)-like domain BRICHOS,
70 initially found in integral membrane protein 2B (also called **Bri2**), **Chondromodulin-1** and
71 prosurfactant protein C (proSP-C)(14, 15). The BRICHOS domain is supposed to promote
72 the correct folding and prevent amyloid formation of the amyloid-prone region of its
73 proprotein during biosynthesis(16-18), and is released by proteolysis(19-21). Mutations in the
74 BRICHOS domain or in the proproteins are associated with different protein misfolding and
75 amyloid diseases(16, 22, 23), but the underlying pathogenic mechanisms are largely
76 unknown. The BRICHOS domain has been shown to have chaperone activities also in *trans*
77 against amyloid fibril formation and toxicity of several peptides associated with human
78 diseases(21, 24, 25) and has emerged as a model compound in studies of amyloid fibril
79 formation(26-29). AD relevant amyloid- β with 42 residues (A β 42) forms amyloid fibrils via
80 several microscopic nucleation steps (*i.e.*, primary nucleation, elongation, and secondary
81 nucleation), whereby A β 42 oligomers are generated, which are supposed to be the main toxic
82 species that drive AD development(27). The recombinant human (rh) BRICHOS domain
83 from proSP-C is an efficient inhibitor of amyloid toxicity of A β 42 *in vitro* in mouse
84 hippocampal slice preparations, reducing the generation of toxic A β 42 oligomers, but it is not
85 very competent to reduce the overall amyloid fibril formation rate(24, 27). *In vivo* proSP-C

86 BRICHOS has shown positive effects on locomotion and longevity when co-expressed with
87 A β 42 in a *Drosophila* fruit fly model(30, 31). The rh Bri2 BRICHOS, on the other hand, is
88 efficient in inhibiting both A β 42 amyloid fibril formation rate and toxicity by assembling into
89 differently sized species, of which monomers potently prevent neuronal network toxicity of
90 A β 42, dimers strongly suppress A β fibril formation and large oligomers inhibit non-fibrillar
91 protein aggregation(24, 30, 32, 33). Interestingly, for the BRICHOS domains studied so far,
92 the ability to suppress amorphous protein aggregation, the canonical molecular chaperone
93 function, is not coupled to the ability to prevent amyloid fibril formation or toxicity. ProSP-C
94 BRICHOS essentially lacks activity against amorphous protein aggregation, while Bri2 and
95 Bri3 BRICHOS inhibit both fibrillar and non-fibrillar aggregation(32, 34). We could recently
96 explain the basis for this discrepancy by showing that the canonical chaperone activity to
97 suppress amorphous protein aggregation is determined by specific loop segments in
98 BRICHOS, while the activity against amyloid formation is independent of these segments
99 (Chen et al, submitted for publication).

100
101 Recently, a Bri2 BRICHOS mutant (R221E), designed to stabilize the monomeric
102 conformation, showed great potential in the prevention and treatment of AD by alleviating
103 A β 42 neurotoxicity rather than its overall fibrillization rate(33). A corresponding mutation in
104 proSP-C BRICHOS (T187R) likewise generates monomers that bind to the smallest
105 emerging A β 42 oligomers(28). Surprisingly, T187N mutation of human proSP-C BRICHOS
106 leads to ILD with amyloid deposits, while the T187R mutant is more efficient *in vitro* than
107 the wildtype against amyloid fibril formation(28, 35). Thus, understanding the molecular
108 mechanisms that regulate BRICHOS chaperone activities are of interest from a basic science
109 point of view and for the development of treatments against amyloid diseases. In the
110 BRICHOS superfamily, the secondary structure elements are highly conserved but the amino
111 acid sequence conservation is low, and only one aspartic acid residue (Asp, D) and two
112 cysteine residues that form a disulphide bridge were previously found to be strictly conserved,
113 from analyses of a rather small number of sequences(14, 33). The physiological function of
114 this Asp is unknown, yet two mutations of D105 in human proSP-C BRICHOS are linked to
115 ILD(16, 20, 36). Herein, we analysed all BRICHOS proproteins deposited in sequence
116 databases and studied experimentally how BRICHOS capacities against amyloid formation
117 and toxicity, as well as non-fibrillar protein aggregation is affected by the conserved Asp. We
118 found that the evolutionarily conserved Asp is replaced by Asn in some BRICHOS families, is

119 protonated at physiological pH and is essential for preventing amyloid toxicity but not
120 amorphous aggregation.

121

122 **Results**

123 **Evolutionary analyses of BRICHOS domains**

124 As substantially more BRICHOS containing proteins have been described from genome
125 sequencing since the initial analyses were performed, we undertook detailed phylogenetic
126 and sequence analyses of all so far reported BRICHOS containing proteins. Amino acid
127 sequences of 3 355 BRICHOS precursors were extracted from the SMART database,
128 covering a broad distribution of 537 different metazoan species from worms to humans,
129 grouped into eleven phyla (**Fig. 1a and b**). After sorting out repetitive and incomplete
130 sequences, 2 019 BRICHOS sequences from 1 968 precursors were retained for further
131 analysis. These BRICHOS domains were separated into thirteen groups, which include
132 eleven previously known families (integral membrane protein 2A (ITM2A), ITM2B (also
133 called Bri2), ITM2C (also called Bri3), group I, gastrokine-1 (GKN1), GKN2, GKN3,
134 tenomodulin (TNMD), chondromodulin (CNMD, previously called LECTI), proSP-C,
135 BRICHOS containing domain 5 (BRICD5) and two novel families (group II and
136 antimicrobial peptide (AMP)) (**Fig. 1c centre and inner ring, supplementary Fig. 1**). The
137 BRICHOS domains in the AMP group were recently found in marine animals to help
138 antimicrobial peptides to fold correctly(37-39), while the BRICHOS domains in group II
139 have unknown functions.

140

141 Interestingly, analyses of the 1 968 precursors of the 2 019 BRICHOS domains showed that
142 there are a few BRICHOS containing proproteins that contain multiple BRICHOS domains
143 along with their corresponding amyloid-prone regions (**Fig. 1d and e, Supplementary Fig.**
144 **2**). Multiple BRICHOS domains were found in GKN1, proSP-C, CNMD and group II
145 families (**Fig. 1c outer ring**). In total 99% (1948 out of 1968) of BRICHOS precursors
146 contain a single BRICHOS domain, while 1% possess multiple BRICHOS domains (up to
147 nineteen BRICHOS domains were found in one precursor) (**Fig. 1f, Supplementary Fig. 2**).
148 The multiple BRICHOS domains within one precursor showed pairwise identities from 48%
149 to 97% (**Supplementary Table 1**), indicating that they arose by duplications. Alignment of
150 all compiled BRICHOS amino acid sequences showed that the Asp residue, which previously
151 was found to be strictly conserved, did not show 100% conservation in neither the single nor
152 the multiple BRICHOS domains (**Fig. 2a and b, Supplementary Fig. 3 and 4**). In the single

153 BRICHOS domains, 97% (1853 out of 1908) contain the conserved Asp, while 2.7% have
154 Asn, and the remaining 0.3% are distributed between Glu (E) and Ser (S) (**Fig. 2c**). Within
155 the multiple BRICHOS domains, the percentage having Asp was markedly decreased to 31%,
156 while instead 68% contain Asn, and one example with Glu was found (**Fig. 2d**). In the cases
157 of multiple BRICHOS containing proproteins, 85% have either Asp or Asn, and 15% utilize
158 both Asp and Asn (or Glu) (**Fig. 2e, Supplementary Fig. 2**). Among the BRICHOS domains
159 derived from single BRICHOS precursors, the ones having Asn were found in GKN1, GKN3,
160 ITM2A, and proSP-C BRICHOS families (**Fig. 2a and f**), and were mainly found in birds
161 (Aves, 81%) with only 19% from Mammalia (**Fig. 2f**). An interesting observation is that bird
162 surfactant lacks SP-C(40), so the BRICHOS containing proSP-C from birds likely have
163 evolved other functions than to generate SP-C. Surprisingly, all the non-Asp BRICHOS
164 domains from the multiple BRICHOS precursors were found in the GKN1 family and are all
165 from birds (**Fig. 2g**).

166

167 **Ionization and protonation of the Aspartate within a physiological pH range**

168 The results from the evolutionary studies prompted us to mutate the conserved Asp to Asn in
169 human BRICHOS domains from proSP-C (Asp105) and Bri2 (Asp148), which are the most
170 studied BRICHOS domains.

171

172 Size exclusion chromatography (SEC) showed that both wildtype and D105N rh proSP-C
173 BRICHOS adopt trimeric conformation, but the mutant formed more dimers and less
174 monomers than the wildtype protein (**Supplementary Fig. 5a**). Circular dichroism (CD)
175 spectroscopy showed rh proSP-C BRICHOS D105N is overall more structured than the
176 wildtype at neutral pH as judged from a shift from the minimum around 202 nm to around
177 207 nm, while at acidic pH the CD spectra are virtually identical (**Supplementary Fig. 5b**
178 and **c**). To see whether wildtype rh proSP-C BRICHOS titrates with an elevated pKa value
179 (compared to pKa of about 4.5 for free Asp in solution), we followed the CD signal at 204
180 nm of rh proSP-C BRICHOS between pH 7.0 and 5.0, which gave an apparent pKa value of
181 the transition of about 6.1 (**Fig. 2h, Supplementary Fig. 5b**). Notably, the CD spectra of rh
182 proSP-C BRICHOS D105N did not shift substantially between pH 5.5 and 8.0 (**Fig. 2h**,
183 **Supplementary Fig. 5c**), suggesting that protonation of D105 is a main determinant of the
184 observed conformational shift, and it may be the sole titrating residue in this pH range. To
185 confirm the pH-dependent conformational changes, we ran NMR spectroscopy on wildtype
186 rh proSP-C BRICHOS labelled with ¹⁵N, ¹³C and ²H at different pHs. The comparison of the

187 ^{15}N -HSQC spectra at pH 5.5 and 7.2 showed clear chemical shift changes, supporting that rh
188 proSP-C BRICHOS undergoes structural changes in this pH range (**Supplementary Fig. 5d**).
189

190 Rh wildtype NT*-Bri2 BRICHOS(33) and rh NT*-Bri2 BRICHOS D148N showed similar
191 elution profiles on SEC (**Supplementary Fig. 5e**). After removal of the NT* solubility tag, rh
192 Bri2 BRICHOS D148N formed similar disulphide-dependent assembly states as the wildtype
193 protein (**Supplementary Fig. 5f-h**). However, the rh Bri2 BRICHOS D148N dimers are
194 exclusively disulphide-linked (**Supplementary Fig. 5h, Figure 5-figure supplement 5-**
195 **source data**), while the wildtype dimers are a mixture of disulphide-linked and non-covalent
196 species(32). Moreover, rh Bri2 BRICHOS D148N generated from the rh NT*-Bri2
197 BRICHOS D148N monomer fraction did not elute on SEC as a monomer but as a dimer,
198 while both the corresponding oligomers and dimers shared similar elution profiles as the
199 corresponding wildtype states (**Supplementary Fig. 5f and g**). This indicates that the rh Bri2
200 BRICHOS D148N monomers are not stable but form non-covalent dimers. Rh Bri2
201 BRICHOS D148N oligomers and dimers shared identical CD spectra as the corresponding
202 wildtype species, whereas the initially monomeric rh Bri2 BRICHOS D148N showed a
203 somewhat different CD spectrum compared to the wildtype monomers (**Supplementary Fig.**
204 **5i-l**), but which can be superimposed on the wildtype dimer spectrum (**Supplementary Fig.**
205 **5l**). This suggests the rh Bri2 BRICHOS D148N monomer mainly assembles into a dimer at
206 the concentration used for CD spectroscopy. As analysed by SEC, at one $\mu\text{mol L}^{-1}$, rh
207 wildtype Bri2 BRICHOS monomer migrated solely as a monomer, and with increasing
208 concentration, dimers were progressively formed (**Supplementary Fig. 6a, Supplementary**
209 **Fig. 7**). However, an equilibrium between dimers and monomers were seen even at 200 μmol
210 L^{-1} (**Supplementary Fig. 6a, Supplementary Fig. 7e**). In contrast, already at low
211 concentrations (0.5 $\mu\text{mol L}^{-1}$) rh Bri2 BRICHOS D148N showed an equilibrium between
212 dimers and monomers, approximately at a ratio of 1:1 (**Supplementary Fig. 6b,**
213 **Supplementary Fig. 8a**). With progressively increased concentrations rh Bri2 BRICHOS
214 D148N monomers transformed to dimers and at 100 $\mu\text{mol L}^{-1}$ all proteins migrated as dimers
215 (**Supplementary Fig. 6b, Supplementary Fig. 8f**). To get further details on how rh Bri2
216 BRICHOS undergoes monomer-dimer transition, we analysed SEC profiles at different pHs.
217 At pH 7.0 to 8.0 both rh Bri2 BRICHOS D148N and wildtype monomers showed similar
218 elution volumes (**Supplementary Fig. 6c and d**). However, at pH 6.0 rh wildtype Bri2
219 BRICHOS elutes as a dimer, whereas the D148N mutant did not show any significant
220 difference compared to the elution volume at pH 7.0 and 8.0 (**Supplementary Fig. 6c and d**).

221 This suggests that at pH between 7.0 and 6.0 Asp148 can be protonated with subsequent shift
222 of the dimer-monomer equilibrium towards dimers. To corroborate the supposition that
223 Asp148 titrates between pH 6.0 and 7.0 we turned to a rh Bri2 BRICHOS variant with
224 Thr206 replaced by Trp (T206W) that displayed an identical oligomerization profile as the rh
225 wildtype Bri2 BRICHOS (**Supplementary Fig. 9a**), but a different Trp fluorescence profile
226 in the monomeric state compared to the dimeric state (**Supplementary Fig. 9b**). In
227 agreement with SEC data, titration of the rh Bri2 BRICHOS Trp mutant showed a
228 fluorescence evolution (monomer/dimer transition) with a pKa of 6.7 (**Fig. 2i**,
229 **Supplementary Fig. 9c**).

230

231 These observations indicate that the D148N mutation in rh Bri2 BRICHOS promotes
232 monomer to dimer conversion, and mimics pH-induced dimerization of the wildtype
233 monomers with an apparent pKa of 6.7, but it does not significantly change the assembly of
234 dimers into larger oligomers. Analogously, the mutation D105N in rh proSP-C BRICHOS
235 results in a more compact conformation and possibly more complete assembly into trimers,
236 and the wildtype rh proSP-C BRICHOS conformational shift by CD titrates with an apparent
237 pKa of 6.1.

238

239 **The conserved Asp of BRICHOS is essential for the capacity to prevent A β 42-induced 240 neurotoxicity**

241 To investigate the importance for the ability to alleviate amyloid-induced neurotoxicity, we
242 tested the efficacies of Asp to Asn mutated vs. wildtype BRICHOS in preventing A β 42-
243 induced reduction of γ oscillations in mouse hippocampal slices. γ oscillations correlate with
244 learning, memory, cognition and other higher processes in the brain(41, 42) and progressive
245 cognitive decline observed in AD goes hand-in-hand with a progressive decrease of γ
246 oscillations(43-45). The BRICHOS domains from human proSP-C and Bri2 can efficiently
247 prevent A β 42-induced decline in hippocampal γ oscillations(27, 30, 32, 33, 46). In addition,
248 rh Bri2 BRICHOS rescues γ oscillations and neuronal network dynamics from A β 42-induced
249 impairment at hippocampal CA3 area *ex vivo*(47). We recorded γ oscillations in hippocampal
250 slices from wildtype C57BL/6 mice preincubated for 15 min either with 50 nmol L⁻¹ A β 42
251 alone, or co-incubated with 100 nmol L⁻¹ rh wildtype or D105N proSP-C BRICHOS (**Fig.**
252 **3a**). γ oscillations were elicited by application of 100 nmol L⁻¹ kainic acid (KA) and allowed
253 to stabilize for 30 min prior to any recordings. As previously observed(27, 30, 46), 100 nmol

254 L^{-1} wildtype proSP-C BRICHOS prevented $\text{A}\beta 42$ -induced degradation of γ oscillations,
255 which were remained at control levels (**Fig. 3b and c**, control: $1.7 \pm 0.16 \times 10^{-8} \text{ V}^2 \text{ Hz}^{-1}$, $n=$
256 20; $\text{A}\beta 42$: $0.34 \pm 0.06 \times 10^{-8} \text{ V}^2 \text{ Hz}^{-1}$, $n= 14$, $p < 0.0001$ vs. control; + rh wildtype proSP-C
257 BRICHOS: $1.41 \pm 0.24 \times 10^{-8} \text{ V}^2 \text{ Hz}^{-1}$, $n= 9$) (**Supplementary Table 2, Figure 3-source**
258 **data**). By contrast, rh proSP-C BRICHOS D105N showed a complete loss of the preventative
259 efficacy at the same concentration (**Fig. 3b and c**, rh proSP-C BRICHOS D105N: $0.36 \pm$
260 $0.09 \times 10^{-8} \text{ V}^2 \text{ Hz}^{-1}$, $n= 9$, $p= 0.0202$ vs. rh wildtype proSP-C BRICHOS, $p= 0.0002$ vs.
261 control, $p > 0.9999$ vs. $\text{A}\beta 42$) (**Supplementary Table 2, Figure 3-source data**). We have
262 previously observed that the rh Bri2 BRICHOS monomer is most efficient at preventing
263 $\text{A}\beta 42$ induced degradation of γ oscillations(32, 33). We therefore tested whether the D148N
264 mutation could affect the efficacy of rh Bri2 BRICHOS monomers. Rh Bri2 BRICHOS
265 D148N monomers (50 nmol L^{-1}) showed reduced tendency of potency to prevent $\text{A}\beta 42$ -
266 induced neurotoxicity compared to wildtype monomers (50 nmol L^{-1}), but did not completely
267 lose preventative efficacy, as observed for rh proSP-C BRICHOS D105N (**Fig. 3d and e**, rh
268 wildtype Bri2 BRICHOS monomers: $1.35 \pm 0.29 \times 10^{-8} \text{ V}^2 \text{ Hz}^{-1}$, $n= 8$, $p > 0.9999$ vs. control;
269 rh Bri2-BRICHOS D148N monomers: $0.7 \pm 0.14 \times 10^{-8} \text{ V}^2 \text{ Hz}^{-1}$, $n= 11$, $p= 0.3494$ vs. rh
270 wildtype Bri2 BRICHOS monomers, $p= 0.003$ vs. control, $p= 0.6991$ vs. $\text{A}\beta 42$)
271 (**Supplementary Table 2, Figure 3-source data**). These results suggest that the
272 phylogenetically conserved Aspartate plays a crucial role in maintaining the anti-amyloid
273 neurotoxicity capacity of BRICHOS.

274

275 **The conserved Asp of BRICHOS is not important for canonical chaperone activity** 276 **against amorphous protein aggregation or Bri2 BRICHOS oligomer structure**

277 The rh wildtype Bri2 BRICHOS oligomers are efficient molecular chaperones against non-
278 fibrillar protein aggregation, evaluated by thermo-induced citrate synthase aggregation as a
279 model(32). This was found to be true also for the rh Bri2 BRICHOS D148N oligomers (**Fig.**
280 **5a and b**). Similarly, the D105N mutation did not show any effects on the capacity of rh
281 proSP-C BRICHOS trimer against amorphous protein aggregation, *i.e.*, both the wildtype and
282 D105N mutant are essentially inactive as regards canonical chaperone activity
283 (**Supplementary Fig. 10a**). This shows a strong difference in the importance of the
284 conserved Asp in BRICHOS for activity against amyloid toxicity compared to activity
285 against amorphous protein aggregation.

286

287 Although the D148N mutation changed the balance between monomers and dimers of rh Bri2
288 BRICHOS, the mutant still formed large oligomeric species with a similar secondary
289 structure as wildtype oligomers (**Supplementary Fig. 5e, g and i**). We isolated rh Bri2
290 BRICHOS D148N oligomers by SEC, recorded transmission electron microscopy (TEM)
291 micrographs and calculated 3D reconstructions (**Fig. 4c and d, Supplementary Fig. 10b and**
292 **c, Figure 4-source data**). The micrographs and 2D class averages revealed mostly
293 homogenous large assemblies with two-fold symmetry (**Fig. 4c**). As a result, an EM map was
294 reconstructed with D2 symmetry from 10 223 manually extracted single particles (**Fig. 4d,**
295 **Figure 4-source data**). The rh Bri2 BRICHOS D148N oligomer 3D model and the one from
296 the wildtype oligomers(32) overlap and share overall similar shape and volume (**Fig. 4e,**
297 **Figure 4-source data**), suggesting that the overall structure of the large Bri2 BRICHOS
298 oligomers is not noticeably changed when Asp148 is mutated to Asn.

299

300 **Molecular mechanisms underlying the importance of the conserved Asp of BRICHOS**
301 **for**

302 **ability to suppress A β 42 neurotoxicity**

303 To further explore whether the diminished BRICHOS capacity against amyloid neurotoxicity
304 caused by Asp to Asn mutation correlates with the activity of suppressing macroscopic
305 amyloid fibril formation, we used thioflavin T (ThT)(48) fluorescence to monitor the kinetics
306 of A β 42 fibril formation in the absence and presence of different concentrations of rh Bri2 or
307 proSP-C BRICHOS (**Fig. 5**). Both the rh wildtype proSP-C BRICHOS and the D105N
308 mutant showed dose-dependent progressive reduction of A β 42 fibril formation at
309 stoichiometric concentrations, and the aggregation kinetics follows a typical sigmoidal
310 behavior (**Fig. 5a and d-f, Supplementary Fig. 11a-c**). The A β 42 fibrillization half time,
311 $\tau_{1/2}$, increases with increasing rh proSP-C BRICHOS concentration (**Fig. 5b**), while the
312 maximum rate of A β 42 aggregation, r_{max} , shows a mono-exponential decline (**Fig. 5c**).
313 Interestingly, rh proSP-C BRICHOS D105N showed remarkably improved inhibition on
314 A β 42 fibril formation compared to the wildtype, manifested with both $\tau_{1/2}$ and r_{max} (**Fig. 5a-**
315 **c**), which is opposite compared to the effects on the capacity to prevent A β 42-induced
316 neurotoxicity (**Fig. 3**). On the other hand, similarly, the rh wildtype Bri2 BRICHOS
317 monomers showed similar effects on $\tau_{1/2}$ and r_{max} of A β 42 fibrillization as reported (**Fig. 5g-**
318 **i**)(32). The rh Bri2 BRICHOS D148N oligomers, dimers and monomers also presented dose-
319 dependent inhibition on A β 42 fibril formation with typical sigmoidal behavior (**Fig. 5g-i**,

320 **Supplementary Fig. 12).** Along the same lines, compared to wildtype monomers, the D148N
321 monomers were significantly more efficient in inhibiting A β 42 fibril formation (**Fig. 5g–i**),
322 suggesting the Asp to Asn mutation pronouncedly enhances BRICHOS activity against
323 overall fibril formation. The D148N monomers and dimers showed very similar inhibitory
324 effects on A β 42 fibrillization (**Supplementary Fig. 12a and b**), which likely can be
325 explained by that D148N monomers and dimers are in equilibrium (**Supplementary Fig. 6b**
326 **and 8**).

327

328 To find out the molecular mechanisms underlying how the Asp to Asn mutation decreases
329 BRICHOS capacity against A β 42 neurotoxicity but enhances its inhibitory activity against
330 overall A β 42 fibril formation, we investigated the effects of both rh wildtype BRICHOS and
331 the corresponding Asp to Asn mutants on A β 42 amyloid fibril formation and related
332 microscopic events. A β 42 fibrillization kinetics are described by a set of microscopic rate
333 constants, *i.e.*, primary (k_n) and surface-catalyzed secondary nucleation (k_2) as well as
334 elongation (k_+)(49), and perturbations of the individual microscopic rates are most relevant
335 since their relative contributions determine the generation of nucleation units, which might be
336 linked to the neurotoxic A β 42 oligomeric species(27, 50). To evaluate the effects on
337 individual microscopic processes, we performed global fits of the kinetics data sets at
338 constant A β 42 and different BRICHOS concentrations for both rh wildtype proSP-C and the
339 D105N mutant, where the fits were constrained such that only one single rate constant, *i.e.*, k_n ,
340 k_2 or k_+ , is the sole fitting parameter (**Fig. 5d-f, Supplementary Fig. 11a–c**). As previously
341 described(27), the rh wildtype proSP-C BRICHOS mainly interfered with the secondary
342 nucleation, indicated by the perfect fits when k_2 was the sole global fitting rate constant
343 (**Supplementary Fig. 11a–c**). Also, the secondary nucleation rate k_2 as the sole fitting
344 parameter gave the best fits for the A β 42 fibrillization kinetics with rh proSP-C BRICHOS
345 D105N (**Fig. 5d-e**), but with worse quality compared to the wildtype, especially for the start
346 of the aggregation traces. This suggests that a complex microscopic mechanism is present,
347 which might also include fibril-end elongation (k_+) and/or primary nucleation (k_n) in addition
348 to secondary nucleation (k_2). To further study whether the fibril-end elongation process or the
349 primary nucleation are affected in the presence of rh proSP-C BRICHOS D105N and
350 wildtype forms, we determined aggregation kinetics in the presence of a high initial fibril
351 seed concentration(49) and surface plasmon resonance (SPR) analysis. With seeding, the
352 fibrillization traces typically follow a concave aggregation behavior (**Supplementary Fig.**

353 **11d and e)**, where the initial slope is directly proportional to the elongation rate k_+ . These
354 seeding experiments revealed that rh proSP-C BRICHOS D105N decreases the elongation in
355 a dose-dependent manner, and already at low concentrations fibril-end elongation is
356 noticeably retarded (**Fig. 5j, Supplementary Fig. 11e**). The rh wildtype proSP-C BRICHOS,
357 in contrast, showed only slight effects on fibril-end elongation (**Fig. 5j, Supplementary Fig.**
358 **11d**), which is further supported by immuno-transmission electron microscopy (immuno-EM)
359 images where both rh proSP-C BRICHOS D105N and the wildtype attach along the A β 42
360 fibril surface, however, the fibril ends are apparently mainly blocked by the D105N mutant
361 (**Fig. 5k**). Additionally, SPR analyses of A β 42 monomers immobilized on a sensor chip
362 indicated that rh wildtype proSP-C BRICHOS showed weak binding to the immobilized
363 A β 42 monomers in line with previous reports(27, 28). The D105N mutation significantly
364 enhanced the BRICHOS-A β 42 monomer interactions (**Supplementary Fig. 11f**) with an
365 apparent affinity value K_D around 5 $\mu\text{mol L}^{-1}$ (**Fig. 5l**) from global kinetics fits, and under
366 steady-state conditions a K_D value of around 25 $\mu\text{mol L}^{-1}$ was obtained (**Supplementary Fig.**
367 **11g**). Interfering with primary nucleation (k_n) delays A β 42 fibril formation without changing
368 the total number of oligomers generated, suppressing the secondary nucleation (k_2) efficiently
369 prevents the generation of oligomers, while blocking elongation (k_+) significantly increases
370 the number of oligomers formed(27). Of relevance for the results on A β 42 neurotoxicity of
371 wildtype vs D105N proSP-C BRICHOS (**Fig. 3**), we found that in the presence of equimolar
372 ratio of rh proSP-C BRICHOS D105N, the A β 42 fibrillization reaction generated
373 approximately 5.2 times more oligomers than from A β 42 alone, by significantly suppressing
374 the fibril end elongation process, while the wildtype only showed slight effects (**Fig. 5j**
375 **insets**). These observations show that both rh proSP-C BRICHOS D105N and the wildtype
376 protein reduce A β 42 fibrillization by blocking the surface-catalyzed secondary nucleation,
377 while fibril-end elongation and possibility primary nucleation are substantially affected only
378 by the D105N mutant. These results offer a molecular explanation to the observed loss of
379 inhibitory effects of the rh proSP-C BRICHOS mutant on neurotoxic A β 42 oligomer
380 generation.

381
382 To further study the mechanism underlying the reshaped interference of BRICHOS with
383 A β 42 monomer and fibrils, we used the non-polar fluorescent dye bis-ANS to probe the
384 exposure of hydrophobic areas. Bis-ANS shows a blue shift of the emission maximum and
385 increased emission intensity upon binding to exposed hydrophobic protein surfaces, which

386 has been applied to rh wildtype Bri2 and proSP-C BRICHOS(32, 51, 52). When incubated
387 with bis-ANS, rh wildtype proSP-C BRICHOS gave an increase of emission intensity
388 compared to bis-ANS in buffer, and a blue shift of the emission maximum from about 520
389 nm to 495 nm (**Supplementary Fig. 11h**). Notably, the blue shift and the intensity increase
390 for the D105N mutant at pH 8.0 are more pronounced compared to the wildtype protein
391 (**Supplementary Fig. 11h**), showing that D105N results in more exposed hydrophobic areas,
392 which may be important for A β 42 fibril-end binding(32, 33) and monomer binding.
393 Interestingly, when incubating bisANS with rh wildtype proSP-C BRICHOS at pH 6.0 an
394 identical fluorescence spectrum as for the D105N mutant at pH 8.0 was observed
395 (**Supplementary Fig. 11h**), indicating that the D105N mutation gives similar effects as
396 protonating Asp105. For Bri2 BRICHOS, dimers were found previously to be most efficient
397 in preventing A β 42 overall fibril formation compared to the monomers and oligomers, while
398 the monomers are most potent in preventing A β 42 induced disruption of neuronal network
399 activity(32, 33). The microscopic mechanisms of rh Bri2 BRICHOS D148N species were
400 similar to the wildtype species, both the secondary nucleation and elongation of A β 42 were
401 affected (**Supplementary Fig. 12c-k**). However, the equilibrium between monomer and
402 dimer was modified by the Asp to Asn mutant towards the dimer (**Supplementary Fig. 6a**
403 and b, **Supplementary Fig. 7 and 8**), thus reducing the monomer that is predominantly
404 active against A β 42-induced neurotoxicity but increasing the dimer fraction, which is most
405 active against A β 42 fibril formation.

406

407 **Discussion**

408 In this work, we show that the capacity of sHSP-like chaperone domain BRICHOS to inhibit
409 amyloid-associated neurotoxicity is dependent on a phylogenetically conserved Asp, whereas
410 the capacity to suppress non-fibrillar, amorphous protein aggregation is not affected by
411 mutating this Asp to Asn. Moreover, conformational changes occur as a result of Asp to Asn
412 mutations in both proSP-C and Bri2 BRICHOS, those changes can partly be mimicked by
413 lowered pH and the conserved Asp titrates with an apparent pKa of about 6.5 in both
414 BRICHOS domains studied.

415

416 The Asp residue studied herein is the only conserved non-Cys residue in all known
417 BRICHOS domains and two mutations of this residue in human proSP-C BRICHOS (D105)
418 are linked to ILD(16, 20, 36). Based on molecular dynamic simulation(16), monomeric

419 wildtype proSP-C BRICHOS and the D105N mutant behaved differently: only minor
420 conformational changes were seen in the mutant, but several large-scale changes occurred in
421 the wildtype at moderately elevated temperatures, which resulted in a more loosely folded
422 structure. We can rationalize our results against this background (**Fig. 6a and b**). D105N
423 mutation in rh proSP-C BRICHOS indeed results in a more ordered conformation and
424 apparently more efficient trimer formation, while D148N mutation of rh Bri2 BRICHOS
425 results in more readily transition of monomers to more compact dimers (**Supplementary Fig.**
426 **5a and f**). Similar effects as observed in the mutants were seen for the wildtype proteins
427 when pH was lowered to 6-7 (**Fig. 2h and i**). This suggests that a negatively charged Asp
428 side-chain is necessary for maintaining a “loose” flexible state of the BRICHOS subunit and
429 that protonation, or replacement with a neutral Asn, results in a more “compact” state that is
430 prone to form oligomers. In the open conformation, BRICHOS is efficient in alleviating
431 A β 42 amyloid neurotoxicity, while the compact conformation is more potent against overall
432 amyloid fibril formation but inefficient against amyloid induced neurotoxicity (**Fig. 6b**).
433 Interestingly, in brains of AD patients the pH is lower than that in the brains of healthy
434 individuals(53), and at low pH A β can form fibrils more efficiently than at neutral pH(54).
435

436 The crystal structure of rh proSP-C BRICHOS, the only available high-resolution structure of
437 a BRICHOS domain, gives limited information about the local environment of the conserved
438 Asp since electron density is lacking for the part N-terminally of the juxtaposed helix 2(16).
439 However, an inspection of amino acid sequence alignments of BRICHOS domains from all
440 families show that there is a well conserved carboxylate residue situated just upstream of
441 helix 2 (**Supplementary Fig. 3**, positions 176-180), and its location close to the sidechain of
442 the strictly conserved Asp may contribute to the apparently elevated pKa values of D105 and
443 D148 now observed. The distant evolutionary relationship between Bri2 and proSP-C
444 BRICHOS domains, with <20% sequence identities, makes it likely that the common effects
445 now observed between them also apply to other BRICHOS domains that exhibit similar
446 evolutionary distances. Therefore, an elevated pKa value of the only strictly conserved non-
447 Cys residue, as now found for proSP-C and Bri2 BRICHOS, is probably relevant for a
448 common function of all BRICHOS domains, which thus likely requires a maintained “loose”
449 conformation. Our results indicate that such a hypothetical common function is likely to be
450 related to prevention of amyloid toxicity rather than prevention of amorphous protein
451 aggregation. So far, molecular chaperones or chaperone-like domains have not been much
452 studied extensively as regards sensitivity to pH. One exception is clusterin, whose activity is

453 enhanced at mildly acidic pH, which appears to result from an increase in regions with
454 solvent-exposed hydrophobicity, but independent of any major changes in secondary or
455 tertiary structure(55). The phylogenetic analyses showed the presence of the BRICHOS
456 domain in a broad array of proproteins and species. In some cases where multiple BRICHOS
457 domains are found, the conserved Asp is preferentially replaced with Asn (**Fig. 1 and 2**).
458 Considering the experimental results herein this may suggest that BRICHOS has adopted
459 different types of molecular chaperone activities during evolution.

460

461 Molecule chaperones are essential guards of all living cells, while the chaperoning
462 abnormality may cause disease—chaperonopathy. The chaperoning capacities of BRICHOS
463 domain against amyloid neurotoxicity and fibril formation can apparently be modulated by a
464 conserved Asp in response to pH changes. In the human brain, pH decreases with aging(56),
465 and also pH is significantly lower in patients than in healthy controls in different human brain
466 disorders(53, 57). The observed phenomenon in this study suggests the possibility that
467 microenvironmental changes may lead to human disease. The results here are based on *in*
468 *vitro* and *ex vivo* experiments, and further *in vivo* work that focuses on the activities of
469 BRICHOS and pH-mediated regulation can shed further light on this.

470

471 **Materials and Methods**

472 **Phylogenetic analysis of BRICHOS domain**

473 From the SMART database(58), 3 355 BRICHOS sequences were downloaded while the sole
474 bacterial BRICHOS precursor (*Paeniclostridium sordellii* ATCC 9714) was not included.
475 Incomplete sequences were filtered out, resulting in total of 3 190 sequences. Identical
476 sequences were filtered by means of CD-HIT(59), with a threshold of 100% of sequence
477 identity, which gave 3 093 amino acid sequences. The hidden markov model profile (HMM)
478 of BRICHOS (PF04089) was extracted from PFAM database(60). The CD-HIT filtered
479 BRICHOS protein sequences were then scanned against the HMM profile using HMMER
480 software v3.3.2(61) with an E-value cut-off less than 1.0×10^{-5} . An in-house python script was
481 written to filter out the significant BRICHOS proteins from the HMM result file and to
482 extract the BRICHOS domain sequences (each BRICHOS amino acid sequence was extended
483 six residues upstream from the BRICHOS domain starting position defined by PFAM).
484 Further, BRICHOS domain sequences less than 68 aa were removed as one rodent BRICHOS
485 domain is just 69 residues and still functional against amyloid fibril formation(62), which
486 eventually generated 2 019 BRICHOS sequences. The multiple sequence alignment of the 2

487 019 BRICHOS domain sequences were created using MAFFT alignment server with the
488 default settings(63), and the sequence logo was generated using Weblogo webserver(64).
489 RAxML HPC(v8.2.10)(65) was employed for constructing the phylogenetic tree using the
490 PROTGAMMAAUTO model with 100 times bootstrap iterations. The tree shown in this
491 study was visualized using the Interactive Tree of Life (iTOL) server(66) and Geneious
492 software. The taxonomy tree common for species that contain BRICHOS precursors were
493 generated by NCBI Taxonomy
494 (<https://www.ncbi.nlm.nih.gov/Taxonomy/CommonTree/wwwcmt.cgi>) and visualized by
495 Geneious software.

496

497 **Rh Bri2 BRICHOS and rh proSP-C BRICHOS wildtype and mutant preparation**

498 For generating rh Bri2 BRICHOS D148N, the amplification primers 5'-
499 ATAGTGATCCTGCCAACATTGATAACTTTAACAAAGAAACTTACA-3' and 5'-
500 TGTAAGTTCTTGTAAAGTTATGAACAATGTTGGCAGGATCACTAT-3' were
501 synthesized. With the wildtype NT*-Bri2 BRICHOS (corresponding to the solubility tag NT*
502 followed by Bri2 residues 113–231(32, 67)) plasmid as PCR template Bri2 BRICHOS
503 D148N was obtained with QuikChange II XL Site-Directed Mutagenesis Kit (Agilent, US),
504 and the DNA sequence was confirmed (GATC Bioteq, Germany). Similarly, the amino acid
505 Thr at position 206 was mutated to Trp using KAPA HiFi HotStart ReadyMix PCR Kit (Kapa
506 Biosystems, USA) together with the designed complementary primers (5'-
507 CCTATCTGATTGAGCACATGGTTATTGGGATCGCATTGAAAAC-3' and 5'-
508 GTTTCAATGCGATCCAAATAACCATGTGCTCATGAATCAGATAGG-3') and
509 verified by sequencing (Eurofins Genomics). As described(32, 33) , the Bri2 BRICHOS
510 variants were expressed in SHuffle T7 *E. coli* cells. Briefly, the cells were incubated at 30°C
511 in LB medium with 15 µg mL⁻¹ kanamycin until an OD_{600 nm} around 0.9. For overnight
512 expression, the temperature was lowered to 20°C, and 0.5 mmol L⁻¹ (final concentration)
513 isopropyl β-D-1-thiogalactopyranoside (IPTG) was added. The induced cells were harvested
514 by centrifugation (4°C, 7 000 ×g) and the cell pellets were resuspended in 20 mmol L⁻¹ Tris
515 pH 8.0. After 5 min sonication (2 s on, 2 s off, 65% power) on ice, the lysate was centrifuged
516 (4°C, 24 000 ×g) for 30 min and the protein of interest was isolated with a Ni-NTA column.
517 To remove the His₆-NT* part, the target proteins were cleaved with thrombin (1:1 000, w/w)
518 at 4°C overnight and loaded over a second Ni-NTA column. Different species of rh Bri2
519 BRICHOS variants were isolated and analysed by Superdex 200 PG, 200 GL or 75 PG

520 columns (GE Healthcare, UK) using an ÄKTA system (GE Healthcare, UK) with buffer of
521 20 mmol L⁻¹ NaPi (Sodium Phosphate) with 0.2 mmol L⁻¹ EDTA at different pHs. For
522 generating rh proSP-C BRICHOS D105N, the PCR primers 5'-
523 CACTGGCCTCGTGGTGTATAACTACCAGCAGCTGCTGATCGC-3' and 5'-
524 GCGATCAGCAGCTGCTGGTAGTTATACACCACGAGGCCAGTG -3' were synthesized.
525 With the wildtype proSP-C BRICHOS (corresponding to the solubility tag thioredoxin
526 followed by proSP-C residues 86–197(16)) plasmid as PCR template, proSP-C BRICHOS
527 D105N was obtained with QuikChange II XL Site-Directed Mutagenesis Kit (Agilent, US),
528 and the DNA sequence was confirmed (GATC Bioteq, Germany). The expression and
529 purification were performed as described(16, 68). Briefly, both wildtype proSP-C BRICHOS
530 and the D105N mutant were expressed in Origami 2 (DE3) pLysS *E. coli* cells. The cells
531 were grown at 37°C in LB medium containing 100 µg mL⁻¹ ampicillin until an OD_{600 nm}
532 around 0.9. The temperature was lowered to 25°C and 0.5 mmol L⁻¹ (final concentration)
533 IPTG was added for overnight expression. The cells were harvested by centrifugation at 7
534 000 × g for 20 min, and the cell pellets were resuspended in 20 mmol L⁻¹ Tris pH 8.0. The
535 protein was purified using Ni-NTA column and ion exchange chromatography (QFF, GE
536 Healthcare). Thrombin (1:1 000, w/w) was used to remove the thioredoxin tag. The purified
537 rh proSP-C BRICHOS variants were analysed by Superdex 200 GL columns (GE Healthcare,
538 UK) using an ÄKTA system (GE Healthcare, UK). The BRICHOS mutants in this study
539 were expressed and purified in parallel with their wildtype counterparts.

540

541 **NMR spectroscopy**

542 For the NMR experiments, gene fragment encoding human proSP-C BRICHOS was
543 transformed into SHuffle T7 *E. coli* cells and was grown in LB with gradually increasing
544 D₂O content (25%, 50%, 75% and 100%). At 100% D₂O, 1 mL LB was used to inoculate 100
545 mL M9 in 100% D₂O enriched with ¹⁵N H₄Cl and ¹³C glucose, and was grown over night at
546 31°C. After overnight incubation, the 100 mL was added to 900 mL M9 in D₂O enriched
547 with ¹⁵N and ¹³C and grown at 30°C until OD_{600 nm} was around 0.8. The temperature was
548 lowered to 20°C and 0.5 mmol L⁻¹ (final concentration) IPTG was added for overnight
549 expression. The purification was performed as described above.

550

551 2D ¹H-¹⁵N TROSY-HSQC experiments were obtained at 37°C on Bruker 800 MHz
552 spectrometer equipped with a TCI cryogenic probe. Spectra were processed with the software
553 NMRPipe and visualized using Sparky NMR. The concentrations of ²H, ¹⁵N, ¹³C-labeled

554 proSP-C was 288 $\mu\text{mol L}^{-1}$ in 20 mmol L^{-1} ammonium acetate pH 7.2 and 229 $\mu\text{mol L}^{-1}$ in 20
555 mmol L^{-1} ammonium acetate pH 5.5, both in 90% $\text{H}_2\text{O}/10\% \text{D}_2\text{O}$.

556

557 **Circular dichroism and fluorescence spectroscopy and aggregation analyses**

558 CD spectra were recorded in 1 mm path length quartz cuvettes at 25°C from 260 to 185 nm in
559 a J-1500 Circular Dichroism Spectrophotometer (JASCO, Japan) with a protein concentration
560 of 4.2–10 $\mu\text{mol L}^{-1}$. The bandwidth was set to 1 nm, data pitch 0.5 nm, and scanning speed
561 50 nm min^{-1} . The spectra shown are averages of five consecutive scans.

562

563 Citrate synthase from porcine heart (Sigma-Aldrich, Germany) was diluted in 40 mmol L^{-1}
564 HEPES/KOH pH 7.5 to 600 nmol L^{-1} (calculated from a molecular weight of 85 kDa
565 corresponding to a dimer(69)) and then equilibrated at 45°C with and without different
566 concentrations of rh Bri2 BRICHOS D148N oligomer or proSP-C BRICHOS variants. The
567 aggregation kinetics were measured by reading the apparent increase in absorbance at 360 nm
568 under quiescent conditions using a microplate reader (FLUOStar Galaxy from BMG Labtech,
569 Offenberg, Germany).

570

571 One $\mu\text{mol L}^{-1}$, calculated for the monomeric subunit, of different rh BRICHOS in 20 mmol L^{-1}
572 NaPi pH 8.0 or pH 6.0 were incubated at 25°C with 2 $\mu\text{mol L}^{-1}$ bis-ANS (4,4'-
573 Bis(phenylamino)-[1,1'-binaphthalene]-5,5'-disulfonic acid dipotassium salt) for 10 min, and
574 the fluorescence emission spectra were recorded from 420 to 600 nm after excitation at 395
575 nm with the Infinite M1000 plate reader (Tecan, Austria). Rh Bri2 BRICHOS T206W
576 monomers were diluted to 2 $\mu\text{mol L}^{-1}$ by using 20 mmol L^{-1} NaPi containing 0.2 mmol L^{-1}
577 EDTA with different pH in the final samples in the range of 6.3–8.0. For tryptophan
578 fluorescence measurements, samples were prepared in duplicates with a volume of 150 μL .
579 Samples were excited at 280 nm (5 μm bandwidth) and fluorescence emission from 300–400
580 nm (10 μm bandwidth, 1 nm step interval) was recorded on black polystyrene flat-bottom 96-
581 well plates (Costar) using a spectrofluorometer (Tecan Saphire 2). For the final fluorescence
582 intensities, the results were corrected by subtracting the background fluorescence of the
583 buffer.

584

585 **Transmission electron microscopy imaging of rh Bri2 BRICHOS D148N oligomers and** 586 **single particle processing**

587 Rh Bri2 BRICHOS D148N oligomers after SEC isolation were immediately stored on ice
588 followed by grid preparation. Aliquots (4 μ L) were adsorbed onto glow-discharged
589 continuous carbon-coated copper grids (400 mesh, Analytical Standards) for one min. The
590 grids were subsequently blotted with filter paper, washed with two drops of milli-Q water,
591 and negatively stained with one drop of 2% (w/v) uranyl acetate for 45 s before final blotting
592 and air-drying. The sample was imaged using a Jeol JEM2100F field emission gun
593 transmission electron microscope (Jeol, Japan) operating at 200 kV. Single micrographs for
594 evaluating the quality of the sample were recorded on a Tietz 4k \times 4k CCD camera, TVIPS
595 (Tietz Video and Image Processing Systems, GmbH, Gauting, Germany) at magnification
596 of \times 85 200 (1.76 \AA per pixel) and 1.0–2.8 μ m defocus. A total of 16 micrographs were
597 recorded for single particle analysis. All 16 micrographs were imported to EMAN2 (version
598 2.3) for further processing(70). After importing and estimating defocus with e2evalimage.py,
599 single particles in different orientations were selected from the images using e2boxer.py in
600 manual mode (11 094 particles, after one more manual selection, 10 223 particles were left).
601 For each image, the contrast transfer function (CTF) parameters were estimated on boxed out
602 regions (containing particles, 168 \times 168) using e2ctf.auto.py program. A reference-free 2D
603 classification based on the selected 10 223 phase-flipped particles (low-pass filtered to 20 \AA)
604 was performed using e2refine2d.py. The 2D classes show an approximate 2-fold symmetry,
605 which is consistent with both the results of rh wildtype Bri2 BRICHOS oligomer and the
606 biochemical data. Generated 2D classes were used as the input for building the 3D initial
607 model using e2initialmodel.py. 3D refinement was performed in several rounds using
608 e2refine_easy.py applying D2 symmetry aiming at a final resolution of 15 \AA . The first two
609 rounds of 3D refinements were performed with pixel size of 3.52 \AA after binning the data by
610 a linear factor 2. In the last round of refinement, the data was resampled to 2.464 \AA per pixel.
611 The final map from the first round of refinements was used as model in the second, and the
612 final map from the second round of refinements was used as model in the third. The
613 resolution was determined based on a Fourier shell correlation (FSC) value of 0.143(71),
614 following the gold standard FSC procedure implemented in EMAN2(72).
615

616 **BRICHOS and A β 42 monomer interaction monitored by surface plasmon resonance**

617 A β 42 monomers were immobilized by amine coupling onto flowcell 4 on a CM5 sensor chip
618 (GE Healthcare) using a BIACore 3000 instrument (BIACore AB). A reference surface was
619 prepared on flowcell 3 using the same coupling protocol but without protein injected. The

immobilization was performed at a flow rate of 20 $\mu\text{L min}^{-1}$ with 20 mmol L^{-1} sodium phosphate pH 8.0 containing 0.2 mmol L^{-1} EDTA as running buffer, and the other details were set according to the manufacturer's instructions. After immobilization with a final response level of 727 RU, the flow-cells were stabilized over night in running buffer (10 mmol L^{-1} HEPES pH 7.5 containing 150 mmol L^{-1} NaCl and 0.2 mmol L^{-1} EDTA) at a flow rate of 20 $\mu\text{L min}^{-1}$. For binding analysis, 25 $\mu\text{mol L}^{-1}$ rh wildtype proSP-C BRICHOS or the D105N mutant in 10 mmol L^{-1} HEPES pH 7.5 containing 150 mmol L^{-1} NaCl and 0.2 mmol L^{-1} EDTA were injected in over the chip surfaces at 25°C at a flow rate of 20 $\mu\text{L min}^{-1}$ for 3 min, respectively. 10 mmol L^{-1} NaOH was used for further chip surface regeneration. For kinetic analysis, different concentrations of rh proSP-C BRICHOS D105N mutant in running buffer, *i.e.* 0, 1.56, 3.13, 6.25, 12.5, 25, 50 and 100 $\mu\text{mol L}^{-1}$, were individually injected in over the chip surfaces at 25°C at a flow rate of 20 $\mu\text{L min}^{-1}$. 30 mmol L^{-1} NaOH was used for further chip surface regeneration. In all experiments, the response from the blank surface was subtracted from the immobilized surface response, the baselines of the sensorgrams were adjusted to zero and buffer spikes were excluded.

635

Steady state apparent affinities for rh proSP-C BRICHOS D105N mutant to immobilised A β 42 monomers were estimated by plotting the maximum binding response versus BRICHOS concentrations. The baseline of the sensorgrams were adjusted to zero and buffer spikes were excluded for global fits to reflect the binding affinity. Since the response signals of the two lowest protein concentrations (*i.e.*, 1.56 and 3.13 $\mu\text{mol L}^{-1}$) used in kinetic analysis were too weak, only sensorgrams obtained from rh proSP-C BRICHOS D105N mutant ranging from 6.25 $\mu\text{mol L}^{-1}$ to 100 $\mu\text{mol L}^{-1}$ were included in the global fits. The dissociation was globally fitted to a biexponential model as described by Eq. (1)(28, 73):

$$644 \quad R(t) = R_1(xe^{-k_{d1}(t-t_1)} + (1-x)e^{-k_{d2}(t-t_1)}) \quad \text{Eq. (1)}$$

where R_1 is the response signal at the starting time for the dissociation phase t_1 , and x is between 0 and 1. k_{d1} and k_{d2} are the dissociation rate constants for the fast and slow dissociation phases, respectively. The global fitted value k_{d2} was used to calculate the apparent K_D value.

The association phase was fitted to Eq. (2)(28):

$$650 \quad R(t) = R_f + (R_0 - R_f)e^{-k_{obs}t} \quad \text{Eq. (2)}$$

651 where R_0 and R_f are the initial and final response signal of the association phase, respectively.

652 k_{obs} is the observed rate constant described by Eq. (3)(28, 73):

653 $k_{obs} = ck_a + k_d$ Eq. (3)

654 where c is the protein concentration, k_a is the association rate constant, and k_d from this
655 analysis is related to secondary binding artifacts corresponding to k_{d1} . Linear regression was
656 used to determine k_a . The apparent K_D value was calculated as ratio of the dissociation rate
657 constant and association rate constant.

658

659 **A β 42 monomer preparation and ThT assay**

660 Recombinant Met-A β (1–42), here referred to as A β 42, was produced in BL21*(DE3) pLysS
661 *E. coli* (B strain) cells and purified by ion exchange(32). The purified A β 42 peptides were
662 lyophilized and re-dissolved in 20 mmol L⁻¹ Tris pH 8.0 with 7 mol L⁻¹ Gdn-HCl, and the
663 monomers were isolated in 20 mmol L⁻¹ sodium phosphate pH 8.0 with 0.2 mmol L⁻¹ EDTA
664 by a Superdex 30 column 26/600 (GE Healthcare, UK). The concentration of monomeric
665 A β 42 was calculated with using an extinction coefficient of 1 424 M⁻¹ cm⁻¹ for (A₂₈₀–A₃₀₀).
666 For A β 42 fibrillization kinetics analysis, 20 μ L solution containing 10 μ mol L⁻¹ ThT, 3 μ mol
667 L⁻¹ A β 42 monomer and different concentrations of rh BRICHOS at molar ratios 0, 10, 30, 50,
668 70 or 100 % (relative to A β 42 monomer molar concentration), were added to each well of
669 half-area 384-well microplates with clear bottom (Corning Glass 3766, USA), and incubated
670 at 37°C under quiescent conditions. The ThT fluorescence was recorded using a 440 nm
671 excitation filter and a 480 nm emission filter using a microplate reader (FLUOStar Galaxy
672 from BMG Labtech, Offenberg, Germany). For A β 42 seeds preparation, 3 μ mol L⁻¹ A β 42
673 monomers were incubated for about 20 h at 37°C, and the fibrils were then sonicated in a
674 water bath for 3 min. For seeding of A β 42 fibrillization, 20 μ L solution containing 10 μ mol
675 L⁻¹ ThT, 3 μ mol L⁻¹ A β 42, different concentrations of rh BRICHOS at 0, 10, 50, 70 and
676 100 %, and 0.6 μ mol L⁻¹ seeds (calculated from the original A β 42 monomer concentration)
677 were added at 4°C to each well in triplicate of 384-well microplates with clear bottom
678 (Corning Glass 3766, USA) and immediately incubated at 37°C under quiescent conditions.
679 The elongation rate constant k_+ in the presence of rh BRICHOS was calculated from the
680 highly seeded experiments. The initial slope of the concave aggregation traces was
681 determined by a linear fit of the first ~20 min traces. For all the experiments, aggregation
682 traces were normalized and averaged using four or three replicates, and data defining one

683 dataset was recorded from the same plate at the same time, and all the ThT data was from the
684 same batch of A β 42 peptide.

685

686 Analysis of A β 42 aggregation kinetics

687 Fibrillization traces of A β 42 with and without different concentrations of rh BRICHOS were
688 fitted to a sigmoidal equation Eq. (4)(32, 33), where the half time $\tau_{1/2}$ and the maximal
689 growth rate r_{max} were extracted:

690
$$F = F_0 + A/(1 + \exp[r_{max}(\tau_{1/2} - t)]) \quad \text{Eq. (4)}$$

691 where A the amplitude and F_0 the base value.

692

693 To dissect the molecular mechanism underlying BRICHOS counteracting A β 42 aggregation,
694 the fibrillization traces were globally fitted by Eq. (5)(27):

$$\frac{M(t)}{M(\infty)} = 1 - \left(\frac{B_+ + C_+}{B_+ + C_+ \cdot \exp(\kappa t)} \cdot \frac{B_- + C_+ \cdot \exp(\kappa t)}{B_- + C_+} \right)^{\frac{k_\infty^2}{\kappa \tilde{k}_\infty}} \cdot \exp(-\kappa t) \quad \text{Eq. (5)}$$

695 where $M(t)$ is the total fibril mass concentration, and the intermediate coefficients are
696 functions of λ and κ , and n_c and n_2 are the reaction orders for primary and secondary
697 nucleation, respectively:

$$\begin{aligned} C_\pm &= \pm \lambda^2 / 2\kappa^2 \\ k_\infty &= \sqrt{2\kappa^2/(n_2(n_2 + 1)) + 2\lambda^2/n_c} \\ \tilde{k}_\infty &= \sqrt{k_\infty^2 - 4C_+C_-\kappa^2} \\ B_\pm &= (k_\infty \pm \tilde{k}_\infty)/2\kappa \\ \lambda &= \sqrt{2 \cdot k_+ k_n \cdot m(0)^{n_c}} \\ \kappa &= \sqrt{2 \cdot k_+ k_2 \cdot m(0)^{n_2+1}} \end{aligned}$$

698 The microscopic rate constants k_n , k_+ , and k_2 are for primary nucleation, elongation, and
699 secondary nucleation, respectively. The kinetic data were globally fitted to Eq. (5), where the
700 fits were partially constrained with one fitting parameter held to a constant value, resulting in
701 that only one rate constant (k_n , k_+ or k_2) is the sole fitting parameter(32, 33). To investigate
702 the generation of nucleation units, according to the nucleation rate $r_n(t)$ (27):

703
$$r_n(t) = k_n m(t)^{n_c} + k_2 M(t) m(t)^{n_2},$$

704 the total number of nucleation units was calculated by integrating the nucleation rate $r_n(t)$
705 over the reaction.

706

707 **Immunogold staining of A β 42 fibrils and transmission electron microscopy analysis**

708 Five $\mu\text{mol L}^{-1}$ A β 42 monomer was incubated at 37°C with 100% rh wildtype proSP-C
709 BRICHOS and the D105N mutant overnight, and the fibrils were collected at 4°C by
710 centrifugation for 1 h at 22 000 $\times g$. The fibrils were gently resuspended in 20 μL 1 \times TBS, of
711 which 2 μL were applied to carbon coated copper grids, and incubated for about 5 min.
712 Excess solution was removed and the grids were blocked by incubation in 1% BSA in 1 \times TBS
713 for 30 min, followed by 3 \times 10 min washing by 1 \times TBS. The grids were then incubated with
714 polyclonal antibody against human proSP-C (SFTPC) (1:200 dilution, Atlas Antibodies)
715 overnight at 4°C, and washed 3 \times 10 min with 1 \times TBS. Finally, the grids were incubated with
716 anti-rabbit IgG-gold coupled to 20 nm gold particles (1:40 dilution, BBI Solutions) for 2 h at
717 room temperature, and washed 5 \times 10 min with 1 \times TBS. Excess solution was removed, and 2
718 μL of 2.5% uranyl acetate was added to each grid (kept about 20 s). Excess solution was
719 removed, and the grids were air-dried at room temperature, and analysed by transmission
720 electron microscopy (TEM, Jeol JEM2100F at 200 kV).

721

722 **Electrophysiological recordings**

723 All the animal experiments were carried out in accordance with the ethical permit granted by
724 Norra Stockholm's Djurförsökssetiska Nämnd (dnr N45/13). C57BL/6 mice of either sex
725 (postnatal days 14–23, supplied from Charles River, Germany) were used in the experiments.
726 Before sacrificed, all the mice were anaesthetized deeply using isoflurane.

727

728 The brain was dissected out and placed in modified ice-cold ACSF (artificial cerebrospinal
729 fluid). The ACSF contained 80 mmol L^{-1} NaCl, 24 mmol L^{-1} NaHCO₃, 25 mmol L^{-1} glucose,
730 1.25 mmol L^{-1} NaH₂PO₄, 1 mmol L^{-1} ascorbic acid, 3 mmol L^{-1} NaPyruvate, 2.5 mmol L^{-1}
731 KCl, 4 mmol L^{-1} MgCl₂, 0.5 mmol L^{-1} CaCl₂ and 75 mmol L^{-1} sucrose. Horizontal sections
732 (350 μm thick) of the ventral hippocampi from both hemispheres were sliced with a Leica
733 VT1200S vibratome (Microsystems, Sweden). The sections were immediately transferred to
734 a submerged incubation chamber containing standard ACSF: 124 mmol L^{-1} NaCl, 30 mmol L^{-1}
735 NaHCO₃, 10 mmol L^{-1} glucose, 1.25 mmol L^{-1} NaH₂PO₄, 3.5 mmol L^{-1} KCl, 1.5 mmol L^{-1}
736 MgCl₂ and 1.5 mmol L^{-1} CaCl₂. The chamber was held at 34°C for at least 20 min after

737 dissection and it was subsequently cooled to room temperature (~22°C) for a minimum of 40
738 min. Proteins (A β 42 and rh BRICHOS) were first added to the incubation solution for 15 min,
739 and then the slices were transferred to the interface-style recording chamber for extracellular
740 recordings. During the incubation, slices were supplied continuously with carbogen gas (5%
741 CO₂, 95% O₂) bubbled into the ACSF.

742

743 Recordings were performed with borosilicate glass microelectrodes in hippocampal area CA3,
744 pulled to a resistance of 3–5 M Ω , filled with ACSF and placed in stratum pyramidale. Local
745 field potentials (LFP, γ oscillations) were recorded at 32°C in an interface-type chamber
746 (perfusion rate 4.5 mL per minute) and elicited by applying kainic acid (100 nmol L⁻¹, Tocris).
747 The oscillations were stabilized for 20 min before any recordings. No A β 42, rh Bri2
748 BRICHOS R221E species or combinations thereof were present in the recording chamber
749 either during γ oscillations stabilization, or during electrophysiological recordings. The
750 interface chamber recording solution contained 124 mmol L⁻¹ NaCl, 30 mmol L⁻¹ NaHCO₃,
751 10 mmol L⁻¹ glucose, 1.25 mmol L⁻¹ NaH₂PO₄, 3.5 mmol L⁻¹ KCl, 1.5 mmol L⁻¹ MgCl₂ and
752 1.5 mmol L⁻¹ CaCl₂.

753

754 Interface chamber LFP recordings were carried out by a 4-channel amplifier/signal
755 conditioner M102 amplifier (Electronics lab, University of Cologne, Germany). The signals
756 were sampled at 10 kHz, conditioned using a Hum Bug 50 Hz noise eliminator (LFP signals
757 only; Quest Scientific, North Vancouver, BC, Canada), software low-pass filtered at 1 kHz,
758 digitized and stored using a Digidata 1322A and Clampex 9.6 software (Molecular Devices,
759 CA, USA).

760

761 Power spectral density plots (from 60 s long LFP recordings) were calculated using
762 Axograph X (Kagi, Berkeley, CA, USA) in averaged Fourier-segments of 8 192 points.
763 Oscillation power was calculated from the integration of the power spectral density from 20
764 to 80 Hz.

765

766 **Statistics and reproducibility**

767 The electrophysiological data is presented as means \pm standard errors of the means. Prior
768 statistical analysis all the data was subjected to outlier determination and removal with the
769 ROUT method (Q = 1%) followed by D'Agostino & Pearson omnibus normality test. Based

770 on the previous experience with the outliers and overall sample behaviour, sample size was
771 determined based on previous studies performed in an interface-type chamber(27, 32, 33, 47,
772 74, 75). Each experimental round was performed with parallel controls (Control KA and
773 A β 42) from the same animal and randomized preparations (slices incubated with A β 42 + rh
774 proSP-C BRICHOS D105N, + wildtype rh proSP-C BRICHOS, + rh Bri2-BRICHOS D148N
775 monomers or + wildtype rh Bri2-BRICHOS). For comparison purposes data from Control
776 KA and A β 42 was pooled from interleaved slices recorded in these conditions. The number
777 of recorded slices per condition (at least from 3–5 mice) are shown in the corresponding
778 figure legend and source data file. Kruskal-Wallis test followed by Dunn's multiple
779 comparisons were carried out due to the non-parametric nature- or relatively small size of
780 some data. Comparison of the preventative efficacies of rh Bri2-BRICHOS D148N
781 monomers and rh proSP-C BRICHOS D105N was assessed with the Mann Whitney test.
782 Significance levels are * $p<0.05$, ** $p<0.01$, and *** $p<0.001$. The ThT assay data are
783 presented as means \pm standard deviation, and the aggregation traces are averaged from four
784 or three replicates.

785 **References**

- 786 1. Sipe JD, Benson MD, Buxbaum JN, Ikeda SI, Merlini G, Saraiva MJ, et al. Amyloid fibril
787 proteins and amyloidosis: chemical identification and clinical classification International
788 Society of Amyloidosis 2016 Nomenclature Guidelines. *Amyloid*. 2016;23(4):209-13.
- 789 2. Landreh M, Sawaya MR, Hipp MS, Eisenberg DS, Wuthrich K, Hartl FU. The formation,
790 function and regulation of amyloids: insights from structural biology. *J Intern Med*.
791 2016;280(2):164-76.
- 792 3. Bucciantini M, Giannoni E, Chiti F, Baroni F, Formigli L, Zurdo J, et al. Inherent toxicity
793 of aggregates implies a common mechanism for protein misfolding diseases. *Nature*.
794 2002;416(6880):507-11.
- 795 4. Goldschmidt L, Teng PK, Riek R, Eisenberg D. Identifying the amyloome, proteins
796 capable of forming amyloid-like fibrils. *Proc Natl Acad Sci U S A*. 2010;107(8):3487-92.
- 797 5. Balchin D, Hayer-Hartl M, Hartl FU. In vivo aspects of protein folding and quality
798 control. *Science*. 2016;353(6294):aac4354.
- 799 6. Soti C, Csermely P. Aging and molecular chaperones. *Exp Gerontol*.
800 2003;38(10):1037-40.
- 801 7. Wolff S, Weissman JS, Dillin A. Differential scales of protein quality control. *Cell*.
802 2014;157(1):52-64.
- 803 8. Hipp MS, Kasturi P, Hartl FU. The proteostasis network and its decline in ageing. *Nat
804 Rev Mol Cell Biol*. 2019.
- 805 9. Sarparanta J, Jonson PH, Kawan S, Udd B. Neuromuscular Diseases Due to Chaperone
806 Mutations: A Review and Some New Results. *Int J Mol Sci*. 2020;21(4).

807 10. Almeida-Souza L, Goethals S, de Winter V, Dierick I, Gallardo R, Van Durme J, et al.
808 Increased monomerization of mutant HSPB1 leads to protein hyperactivity in Charcot-
809 Marie-Tooth neuropathy. *J Biol Chem.* 2010;285(17):12778-86.
810 11. Zhang YW, Thompson R, Zhang H, Xu H. APP processing in Alzheimer's disease. *Mol*
811 *Brain.* 2011;4:3.
812 12. Westermark P, Andersson A, Westermark GT. Islet amyloid polypeptide, islet
813 amyloid, and diabetes mellitus. *Physiol Rev.* 2011;91(3):795-826.
814 13. Häggqvist B, Näslund J, Sletten K, Westermark GT, Mucchiano G, Tjernberg LO, et al.
815 Medin: an integral fragment of aortic smooth muscle cell-produced lactadherin forms the
816 most common human amyloid. *Proc Natl Acad Sci U S A.* 1999;96(15):8669-74.
817 14. Hedlund J, Johansson J, Persson B. BRICHOS - a superfamily of multidomain proteins
818 with diverse functions. *BMC Res Notes.* 2009;2:180.
819 15. Sanchez-Pulido L, Devos D, Valencia A. BRICHOS: a conserved domain in proteins
820 associated with dementia, respiratory distress and cancer. *Trends Biochem Sci.*
821 2002;27(7):329-32.
822 16. Willander H, Askarieh G, Landreh M, Westermark P, Nordling K, Keranen H, et al.
823 High-resolution structure of a BRICHOS domain and its implications for anti-amyloid
824 chaperone activity on lung surfactant protein C. *Proc Natl Acad Sci U S A.* 2012;109(7):2325-
825 9.
826 17. Knight SD, Presto J, Linse S, Johansson J. The BRICHOS domain, amyloid fibril
827 formation, and their relationship. *Biochemistry.* 2013;52(43):7523-31.
828 18. Buxbaum JN, Johansson J. Transthyretin and BRICHOS: The Paradox of
829 Amyloidogenic Proteins with Anti-Amyloidogenic Activity for Abeta in the Central Nervous
830 System. *Front Neurosci.* 2017;11:119.
831 19. Martin L, Fluhrer R, Reiss K, Kremmer E, Saftig P, Haass C. Regulated intramembrane
832 proteolysis of Bri2 (Itm2b) by ADAM10 and SPPL2a/SPPL2b. *J Biol Chem.* 2008;283(3):1644-
833 52.
834 20. Del Campo M, Hoozemans JJ, Dekkers LL, Rozemuller AJ, Korth C, Muller-Schiffmann
835 A, et al. BRI2-BRICHOS is increased in human amyloid plaques in early stages of Alzheimer's
836 disease. *Neurobiol Aging.* 2014;35(7):1596-604.
837 21. Oskarsson ME, Hermansson E, Wang Y, Welsh N, Presto J, Johansson J, et al.
838 BRICHOS domain of Bri2 inhibits islet amyloid polypeptide (IAPP) fibril formation and toxicity
839 in human beta cells. *Proc Natl Acad Sci U S A.* 2018;115(12):E2752-E61.
840 22. Vidal R, Revesz T, Rostagno A, Kim E, Holton JL, Bek T, et al. A decamer duplication in
841 the 3' region of the BRI gene originates an amyloid peptide that is associated with dementia
842 in a Danish kindred. *Proc Natl Acad Sci U S A.* 2000;97(9):4920-5.
843 23. Vidal R, Frangione B, Rostagno A, Mead S, Revesz T, Plant G, et al. A stop-codon
844 mutation in the BRI gene associated with familial British dementia. *Nature.*
845 1999;399(6738):776-81.
846 24. Willander H, Presto J, Askarieh G, Biverstal H, Frohm B, Knight SD, et al. BRICHOS
847 domains efficiently delay fibrillation of amyloid beta-peptide. *J Biol Chem.*
848 2012;287(37):31608-17.
849 25. Nerelius C, Gustafsson M, Nordling K, Larsson A, Johansson J. Anti-amyloid activity of
850 the C-terminal domain of proSP-C against amyloid beta-peptide and medin. *Biochemistry.*
851 2009;48(17):3778-86.

897 42. Yamamoto J, Suh J, Takeuchi D, Tonegawa S. Successful execution of working
898 memory linked to synchronized high-frequency gamma oscillations. *Cell*. 2014;157(4):845-
899 57.

900 43. Ribary U, Ioannides AA, Singh KD, Hasson R, Bolton JP, Lado F, et al. Magnetic field
901 tomography of coherent thalamocortical 40-Hz oscillations in humans. *Proc Natl Acad Sci U
902 S A*. 1991;88(24):11037-41.

903 44. Iaccarino HF, Singer AC, Martorell AJ, Rudenko A, Gao F, Gillingham TZ, et al. Gamma
904 frequency entrainment attenuates amyloid load and modifies microglia. *Nature*.
905 2016;540(7632):230-5.

906 45. Martorell AJ, Paulson AL, Suk HJ, Abdurrob F, Drummond GT, Guan W, et al. Multi-
907 sensory Gamma Stimulation Ameliorates Alzheimer's-Associated Pathology and Improves
908 Cognition. *Cell*. 2019;177(2):256-71.e22.

909 46. Kurudenkandy FR, Zilberter M, Biverstal H, Presto J, Honcharenko D, Stromberg R, et
910 al. Amyloid-beta-induced action potential desynchronization and degradation of
911 hippocampal gamma oscillations is prevented by interference with peptide conformation
912 change and aggregation. *J Neurosci*. 2014;34(34):11416-25.

913 47. Andrade-Talavera Y, Chen G, Kurudenkandy FR, Johansson J, Fisahn A. Bri2 BRICHOS
914 chaperone rescues impaired fast-spiking interneuron behavior and neuronal network
915 dynamics in an AD mouse model in vitro. *Neurobiol Dis*. 2021;105514.

916 48. Khurana R, Coleman C, Ionescu-Zanetti C, Carter SA, Krishna V, Grover RK, et al.
917 Mechanism of thioflavin T binding to amyloid fibrils. *J Struct Biol*. 2005;151(3):229-38.

918 49. Cohen SI, Vendruscolo M, Dobson CM, Knowles TP. From macroscopic
919 measurements to microscopic mechanisms of protein aggregation. *J Mol Biol*. 2012;421(2-
920 3):160-71.

921 50. Arosio P, Vendruscolo M, Dobson CM, Knowles TP. Chemical kinetics for drug
922 discovery to combat protein aggregation diseases. *Trends Pharmacol Sci*. 2014;35(3):127-35.

923 51. Hawe A, Sutter M, Jiskoot W. Extrinsic fluorescent dyes as tools for protein
924 characterization. *Pharm Res*. 2008;25(7):1487-99.

925 52. Casals C, Johansson H, Saenz A, Gustafsson M, Alfonso C, Nordling K, et al. C-terminal,
926 endoplasmic reticulum-luminal domain of prosurfactant protein C - structural features and
927 membrane interactions. *FEBS J*. 2008;275(3):536-47.

928 53. Prasad H, Rao R. Amyloid clearance defect in ApoE4 astrocytes is reversed by
929 epigenetic correction of endosomal pH. *Proc Natl Acad Sci U S A*. 2018;115(28):E6640-E9.

930 54. Su Y, Chang PT. Acidic pH promotes the formation of toxic fibrils from beta-amyloid
931 peptide. *Brain Res*. 2001;893(1-2):287-91.

932 55. Poon S, Rybchyn MS, Easterbrook-Smith SB, Carver JA, Pankhurst GJ, Wilson MR.
933 Mildly acidic pH activates the extracellular molecular chaperone clusterin. *J Biol Chem*.
934 2002;277(42):39532-40.

935 56. Decker Y, Nemeth E, Schomburg R, Chemla A, Fulop L, Menger MD, et al. Decreased
936 pH in the aging brain and Alzheimer's disease. *Neurobiol Aging*. 2021;101:40-9.

937 57. Hagihara H, Catts VS, Katayama Y, Shoji H, Takagi T, Huang FL, et al. Decreased Brain
938 pH as a Shared Endophenotype of Psychiatric Disorders. *Neuropsychopharmacology*.
939 2018;43(3):459-68.

940 58. Letunic I, Khedkar S, Bork P. SMART: recent updates, new developments and status
941 in 2020. *Nucleic Acids Res*. 2021;49(D1):D458-d60.

942 59. Huang Y, Niu B, Gao Y, Fu L, Li W. CD-HIT Suite: a web server for clustering and
943 comparing biological sequences. *Bioinformatics*. 2010;26(5):680-2.

944 60. Mistry J, Chuguransky S, Williams L, Qureshi M, Salazar GA, Sonnhammer ELL, et al.
945 Pfam: The protein families database in 2021. *Nucleic Acids Res.* 2021;49(D1):D412-d9.
946 61. Eddy SR. Accelerated Profile HMM Searches. *PLoS Comput Biol.*
947 2011;7(10):e1002195.
948 62. Poska H. In vitro and in vivo studies of molecular chaperone activity against fibrillar
949 and non-fibrillar protein aggregation. Tallinn: Tallinn University; 2020.
950 63. Katoh K, Rozewicki J, Yamada KD. MAFFT online service: multiple sequence
951 alignment, interactive sequence choice and visualization. *Brief Bioinform.* 2019;20(4):1160-6.
952 64. Crooks GE, Hon G, Chandonia JM, Brenner SE. WebLogo: a sequence logo generator.
953 *Genome Res.* 2004;14(6):1188-90.
954 65. Stamatakis A. RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with
955 thousands of taxa and mixed models. *Bioinformatics.* 2006;22(21):2688-90.
956 66. Letunic I, Bork P. Interactive Tree Of Life (iTOL) v4: recent updates and new
957 developments. *Nucleic Acids Res.* 2019;47(W1):W256-w9.
958 67. Kronqvist N, Sarr M, Lindqvist A, Nordling K, Otikovs M, Venturi L, et al. Efficient
959 protein production inspired by how spiders make silk. *Nat Commun.* 2017;8:15504.
960 68. Johansson H, Eriksson M, Nordling K, Presto J, Johansson J. The Brichos domain of
961 prosurfactant protein C can hold and fold a transmembrane segment. *Protein Sci.*
962 2009;18(6):1175-82.
963 69. Srere PA. Citrate-condensing enzyme-oxalacetate binary complex. Studies on its
964 physical and chemical properties. *J Biol Chem.* 1966;241(9):2157-65.
965 70. Tang G, Peng L, Baldwin PR, Mann DS, Jiang W, Rees I, et al. EMAN2: an extensible
966 image processing suite for electron microscopy. *J Struct Biol.* 2007;157(1):38-46.
967 71. Rosenthal PB, Henderson R. Optimal determination of particle orientation, absolute
968 hand, and contrast loss in single-particle electron cryomicroscopy. *J Mol Biol.*
969 2003;333(4):721-45.
970 72. Scheres SH, Chen S. Prevention of overfitting in cryo-EM structure determination.
971 *Nat Methods.* 2012;9(9):853-4.
972 73. Rahman MM, Zetterberg H, Lendel C, Härd T. Binding of human proteins to amyloid-
973 β protofibrils. *ACS Chem Biol.* 2015;10(3):766-74.
974 74. Balleza-Tapia H, Crux S, Andrade-Talavera Y, Dolz-Gaiton P, Papadia D, Chen G, et al.
975 TrpV1 receptor activation rescues neuronal function and network gamma oscillations from
976 Abeta-induced impairment in mouse hippocampus in vitro. *Elife.* 2018;7.
977 75. Kurudenkandy FR, Zilberter M, Biverstål H, Presto J, Honcharenko D, Strömberg R, et
978 al. Amyloid-β-induced action potential desynchronization and degradation of hippocampal
979 gamma oscillations is prevented by interference with peptide conformation change and
980 aggregation. *J Neurosci.* 2014;34(34):11416-25.

981

982 **Acknowledgements**

983 **Funding:**

984 Olle Engkvists Stiftelse 192-522
985 Petrus and Augusta Hedlunds Stiftelse M-2018-0998
986 Swedish Alzheimer Foundation AF-836251

987 Åhlén-stiftelsens mC9h18
988 Karolinska Institutet Research Foundation Grant 2020-01819
989 Stiftelsen för Gamla Tjänarinnor 2019-00779
990 Loo and Hans Osterman Foundation 2019-01130
991 Geriatric Diseases Foundation at Karolinska Institutet 2020-02290
992 Magnus Bergvall Foundation 2019-03010
993 Swedish Research Council 2020-02434
994 Swedish Brain Foundation FO2018-0312
995 Center for Innovative Medicine (CIMED)
996 Swedish Society for Medical Research P17-0047
997 FORMAS 2020-01013
998 Åke Wiberg Foundation M20-0148
999 JPco-fuND/EU PETABC 2020-02905/EC 643417
1000 FLPP lzp-2018/1-0275
1001 Stiftelsen Sigurd och Elsa Goljes Minne LA2020-0031
1002
1003 **Author contributions:**
1004 G.C., Y.A.T., X.Z., H.P., H.B., A.L., and N.K. performed experiments. S.H. and G.C. carried
1005 out bioinformatic analyses and visualization. G.C., Y.A.T., X.Z., H.B., H.P., A.A., N.K.,
1006 A.R., H.H., P. K., A.F., and J.J. analysed the data. G.C. and J.J. conceived the study. G.C.
1007 and J.J. wrote the paper. All authors discussed the results and commented on the manuscript.
1008
1009 **Competing interests:**
1010 The authors declare no competing financial interests.
1011
1012 **Data and materials availability:**
1013 The density map of the Bri2 BRICHOS D148N oligomer have been deposited in the Electron
1014 Microscopy Data Bank (EMDB) under the accession code EMD-13005. All data and
1015 materials related to this paper are available from G.C. (gefei.chen@ki.se).
1016
1017
1018
1019
1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

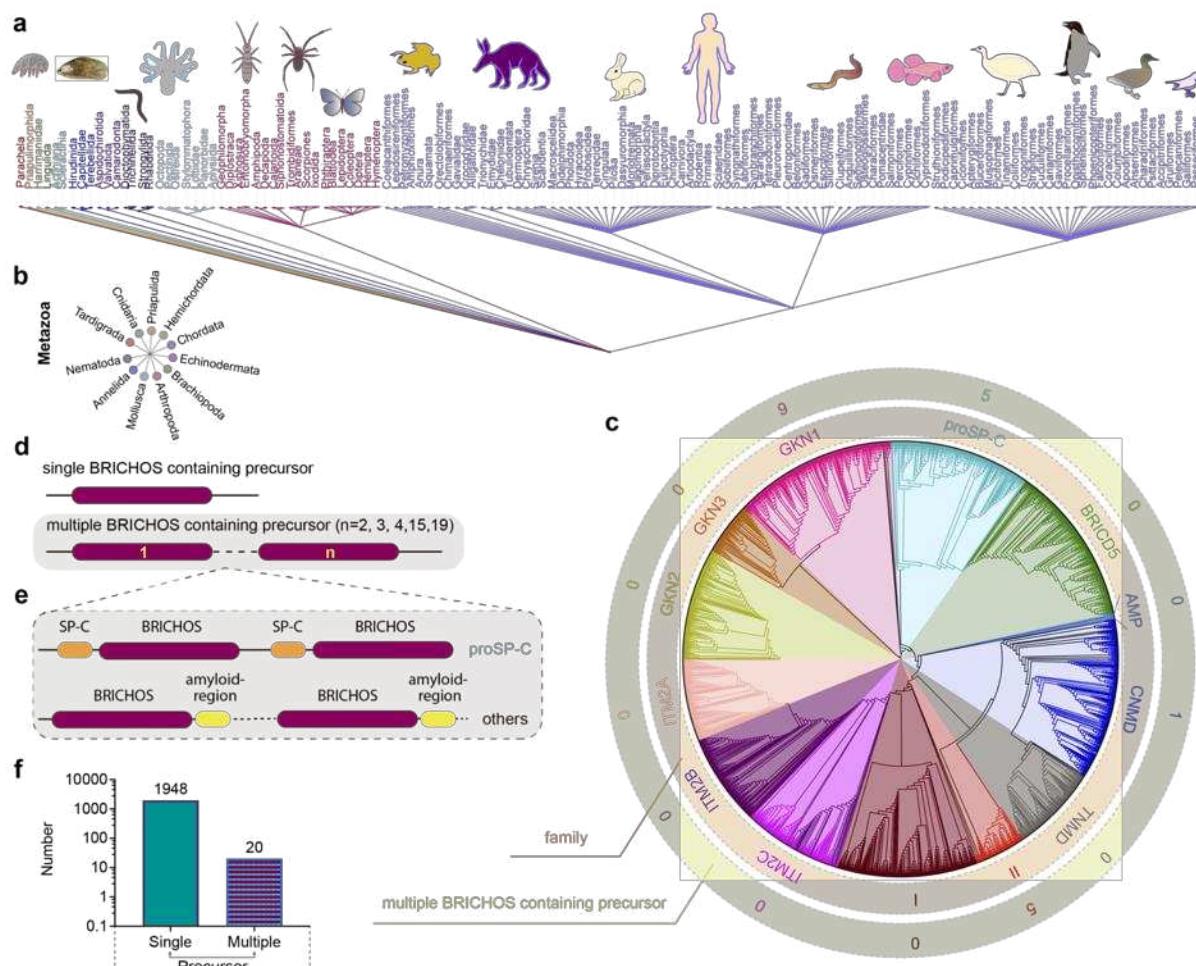
1031

1032

1033

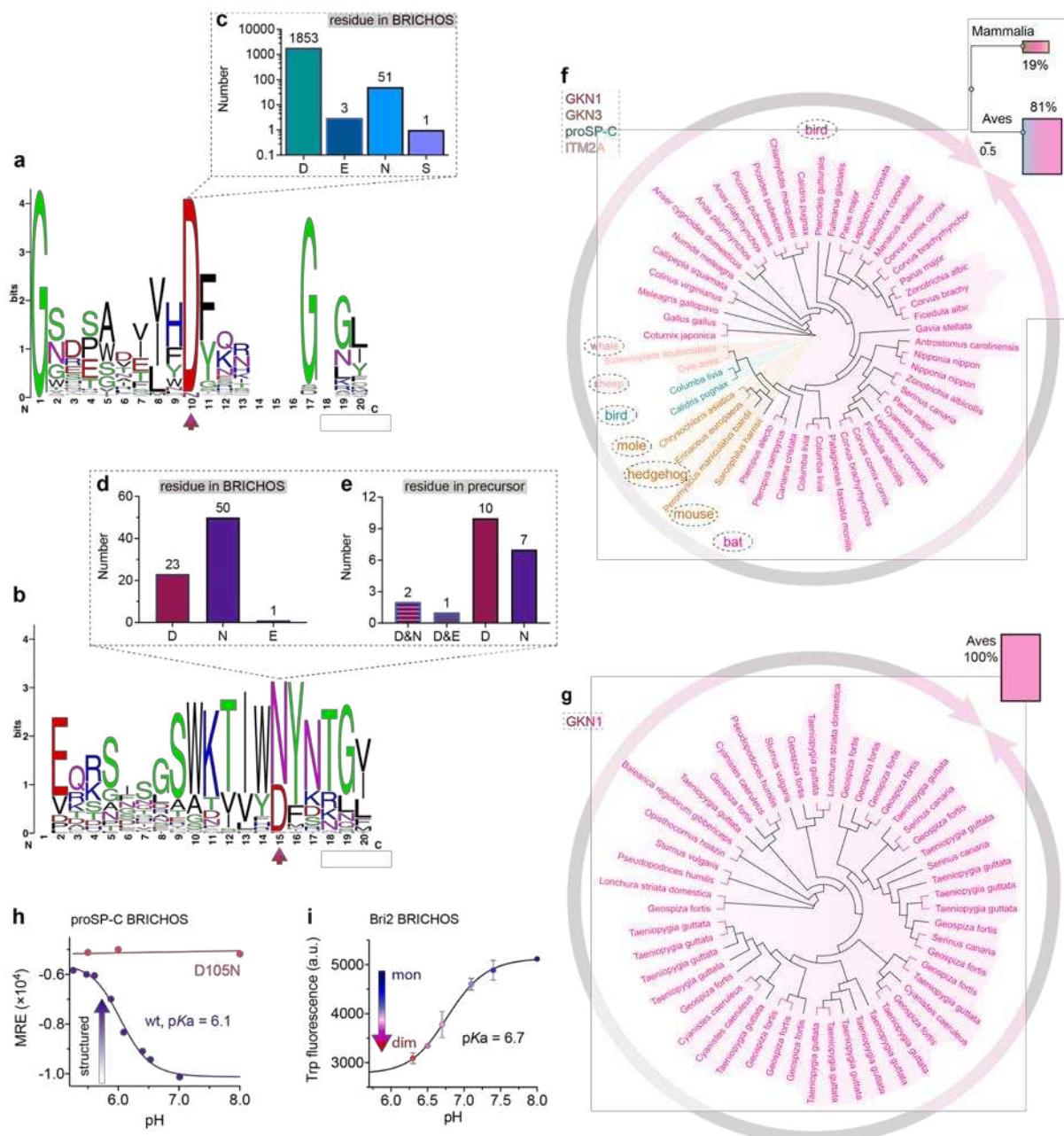
1034

1035


1036

1037

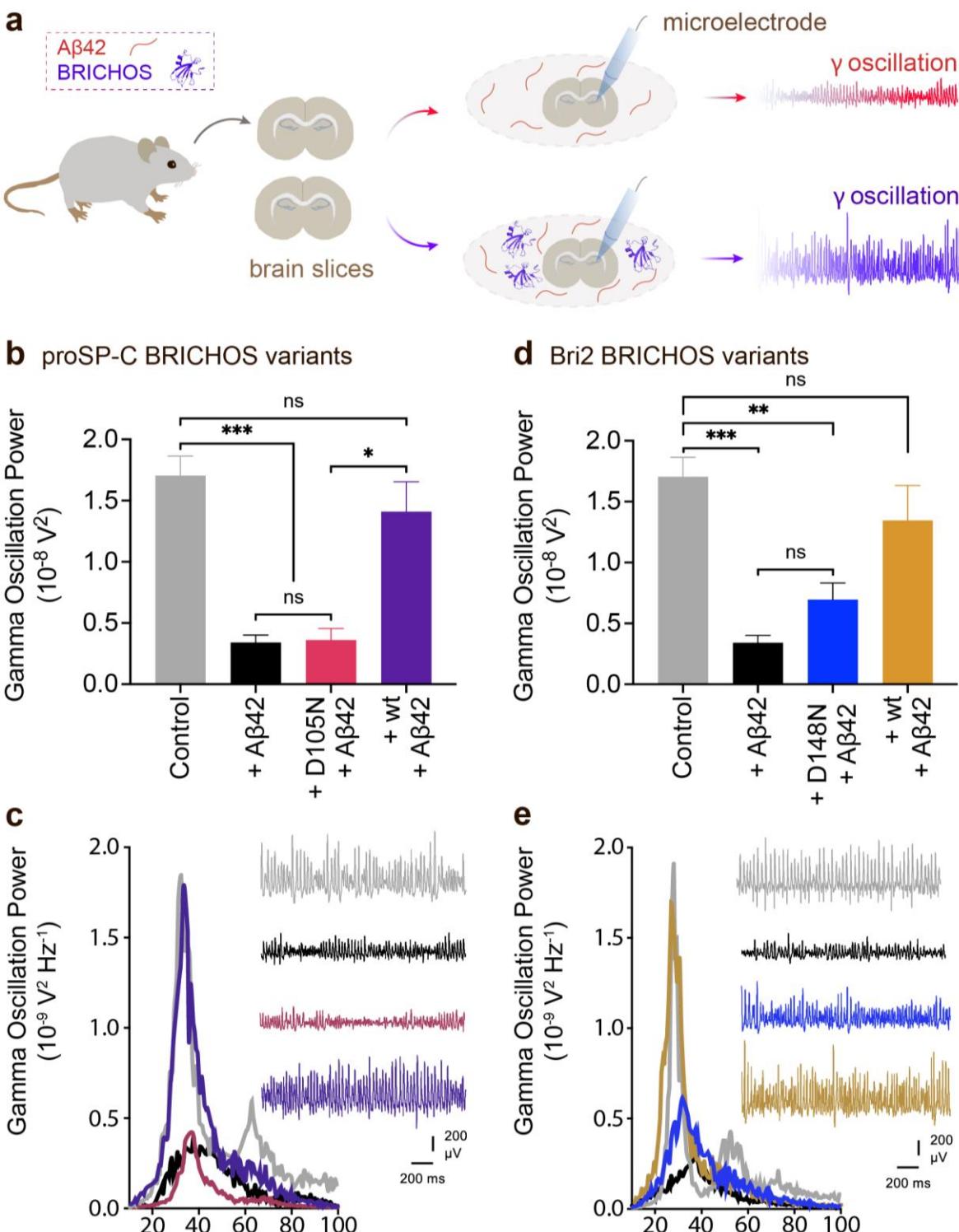
1038


1039

1040 **Figures**

1041

Fig. 1. Evolutionary analyses of the BRICHOS domain. (a) The common taxonomy tree for all species containing BRICHOS domain precursors. The 3 355 BRICHOS precursors are distributed in a broad range of species, including worms, insects to human, and which belong to eleven metazoan phyla (b). (c) The selected 2 019 BRICHOS domains are grouped into thirteen families (inner ring), with bootstraps shown in **Supplementary Figure 1**. The outer ring shows the number of cases of occurrence of multiple BRICHOS domains in the respective families. (d) Architecture of proproteins containing single and up to nineteen multiple BRICHOS domains. The detailed architectures for each case are shown in **Supplementary Figure 2**. (e) the multiple BRICHOS domains showed there are a few BRICHOS containing proproteins that contain multiple BRICHOS domains along with representatives of their corresponding amyloid-prone regions. The true domain size is not proportional to the schematic bar. (f) The number of proproteins that contain single or multiple BRICHOS domains. 1 948 out of 1 968 proproteins contain a single BRICHOS domain while the others contain multiple BRICHOS domains.

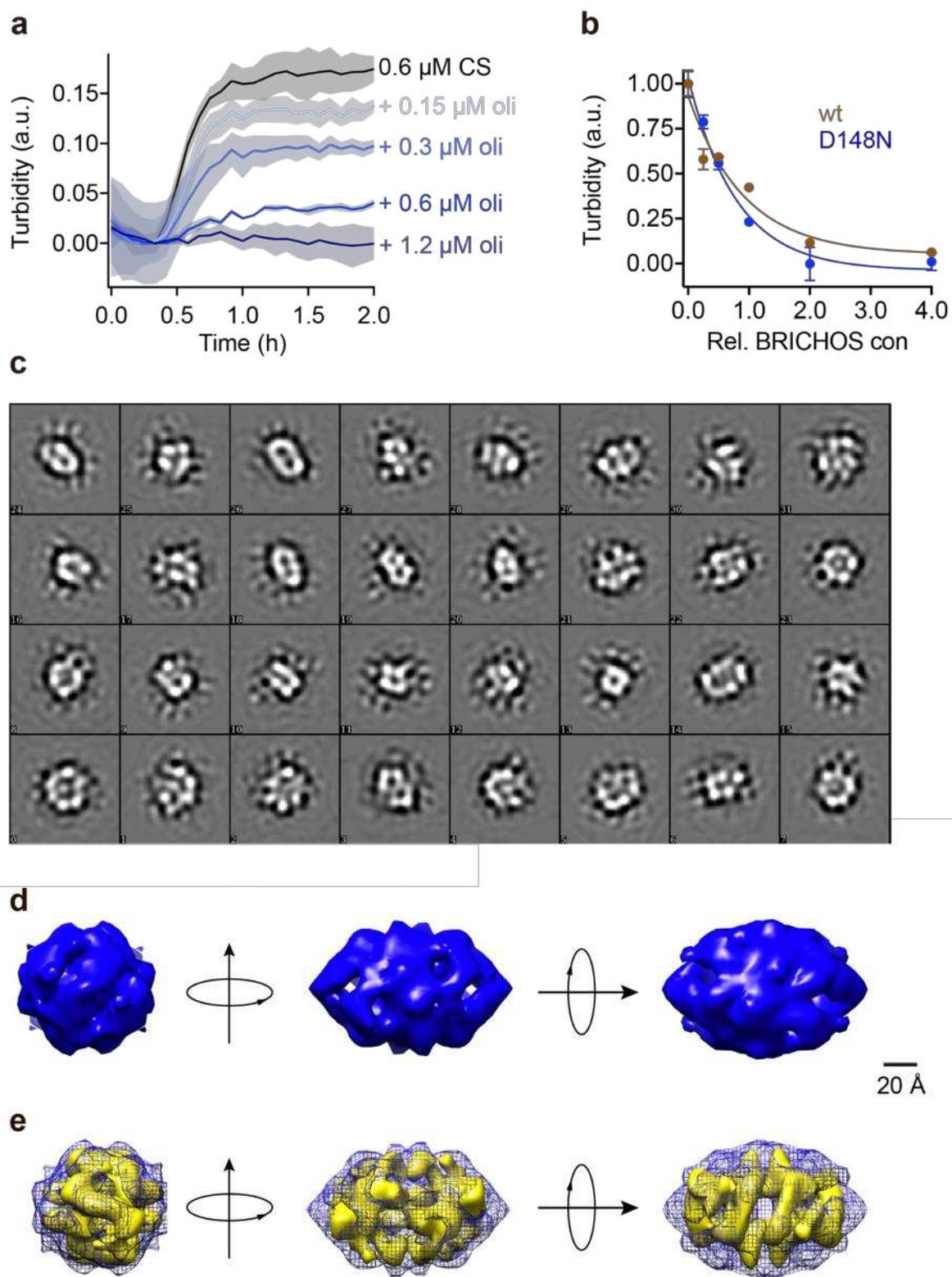

1056

1057 **Fig. 2. BRICHOS domain sequence analysis and species distribution.** (a) WebLogo
1058 representation of amino acid sequence alignments of the 1908 single BRICHOS domains,
1059 surrounding the conserved Asp (red arrow). The height of the amino acid stack represents the
1060 sequence conservation, while the height of symbols within each stack indicates the relative
1061 frequency of each residue and the total height of the letters is given in bits. (b) WebLogo
1062 representation as in panel (a) of sequence alignments of the 74 multiple BRICHOS domains.
1063 (c) The residue distribution at the position of the conserved Asp in single BRICHOS domains.
1064 (d) The residue distribution at the position of the conserved Asp in multiple BRICHOS
1065 domains. (e) The consistency of Asp or Asn, or the combination of Asp and Asn (or Glu) in
1066 individual multiple BRICHOS containing precursor. (f) Family and species distributions of

1067 cases that contain Asn in single BRICHOS domains. **(g)** Family and species distributions of
1068 cases that contain Asn in multiple BRICHOS domains. **(h)** pH-dependent structural changes
1069 of rh proSP-C BRICHOS variants monitored by CD, the details are shown in
1070 **Supplementary Figure 5b and c.** **(i)** pH-dependent transition of rh Bri2 BRICHOS
1071 monomers to dimers measured by Trp fluorescence, the details are shown in **Supplementary**
1072 **Figure 9b and c.**

1073

1074

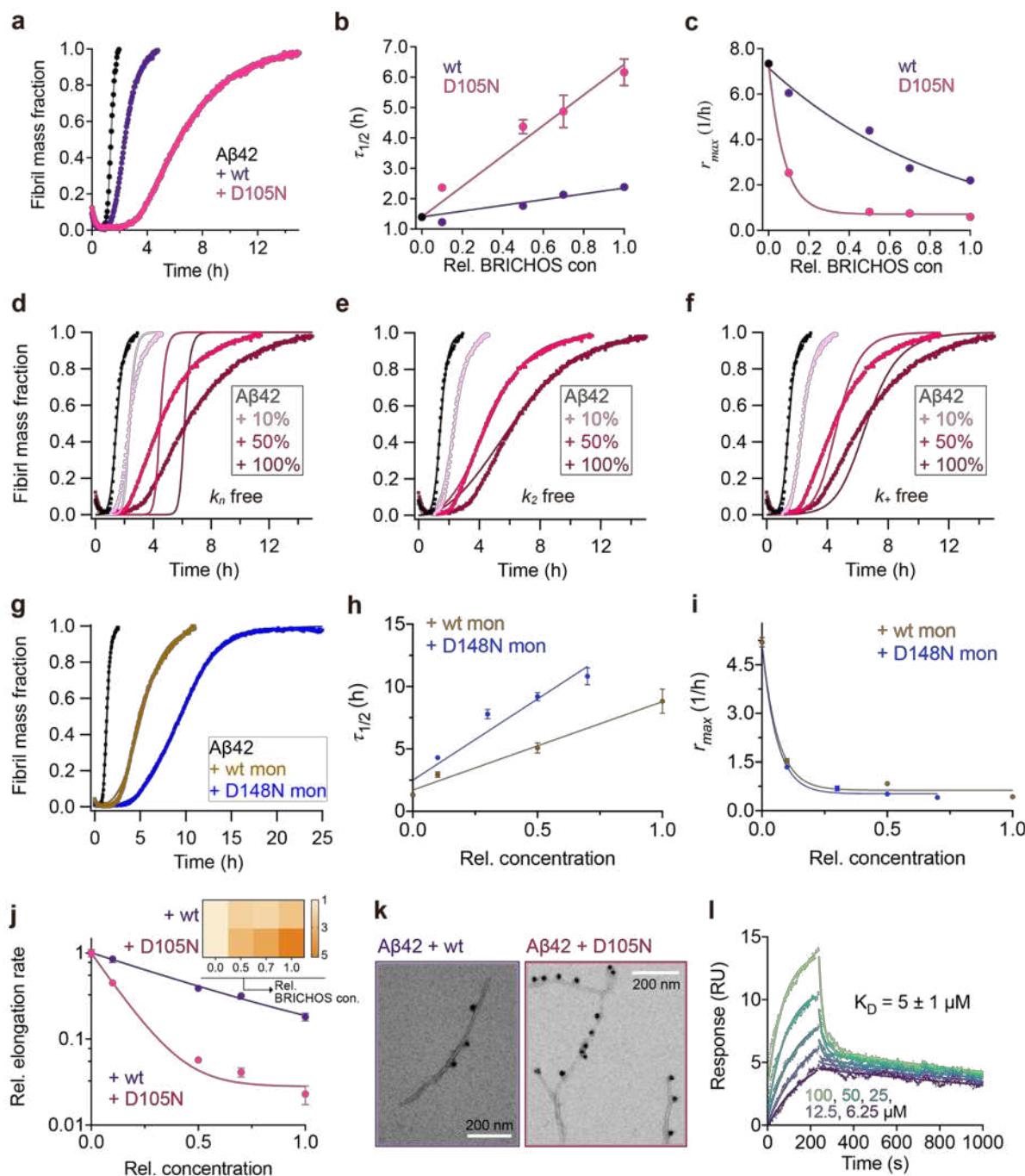

1075
1076 **Fig. 3. Asp to Asn mutation reduces rh proSP-C BRICHOS and rh Bri2 BRICHOS**
1077 **capacity against Aβ42 neurotoxicity.** (a) Schematic diagram of electrophysiological
1078 recordings. The hippocampal slices from wildtype C57BL/6 mice were preincubated either
1079 with 50 nmol L⁻¹ Aβ42 alone or co-incubated with 100 nmol L⁻¹ rh BRICHOS, and γ
1080 oscillations were then recorded in the CA3 area. (b) Summary plot of normalized γ
1081 oscillation power under control conditions (gray, n=20), after 15 min incubation with 50

1082 nmol L⁻¹ A β 42 (black, n=14), 50 nmol L⁻¹ A β 42 + 100 nmol L⁻¹ D105N (red, n=9) or
1083 wildtype (purple, n=9) rh proSP-C BRICHOS. Example traces and example power spectra
1084 are shown with the same color coding in (c). (d) Summary plot of γ oscillation power under
1085 control conditions (gray, n=20), after 15 min incubation with 50 nmol L⁻¹ A β 42 (black, n=14),
1086 50 nmol L⁻¹ A β 42 + 100 nmol L⁻¹ D148N monomeric (blue, n=11) or wildtype monomeric
1087 (yellow, n=8) rh Bri2 BRICHOS. Example traces and example power spectra are shown with
1088 the same color coding in (e). The data are reported as means \pm standard errors of the means.
1089 ns, no significant difference, *p < 0.05, **p < 0.01, ***p < 0.001.

1090

1091

1092

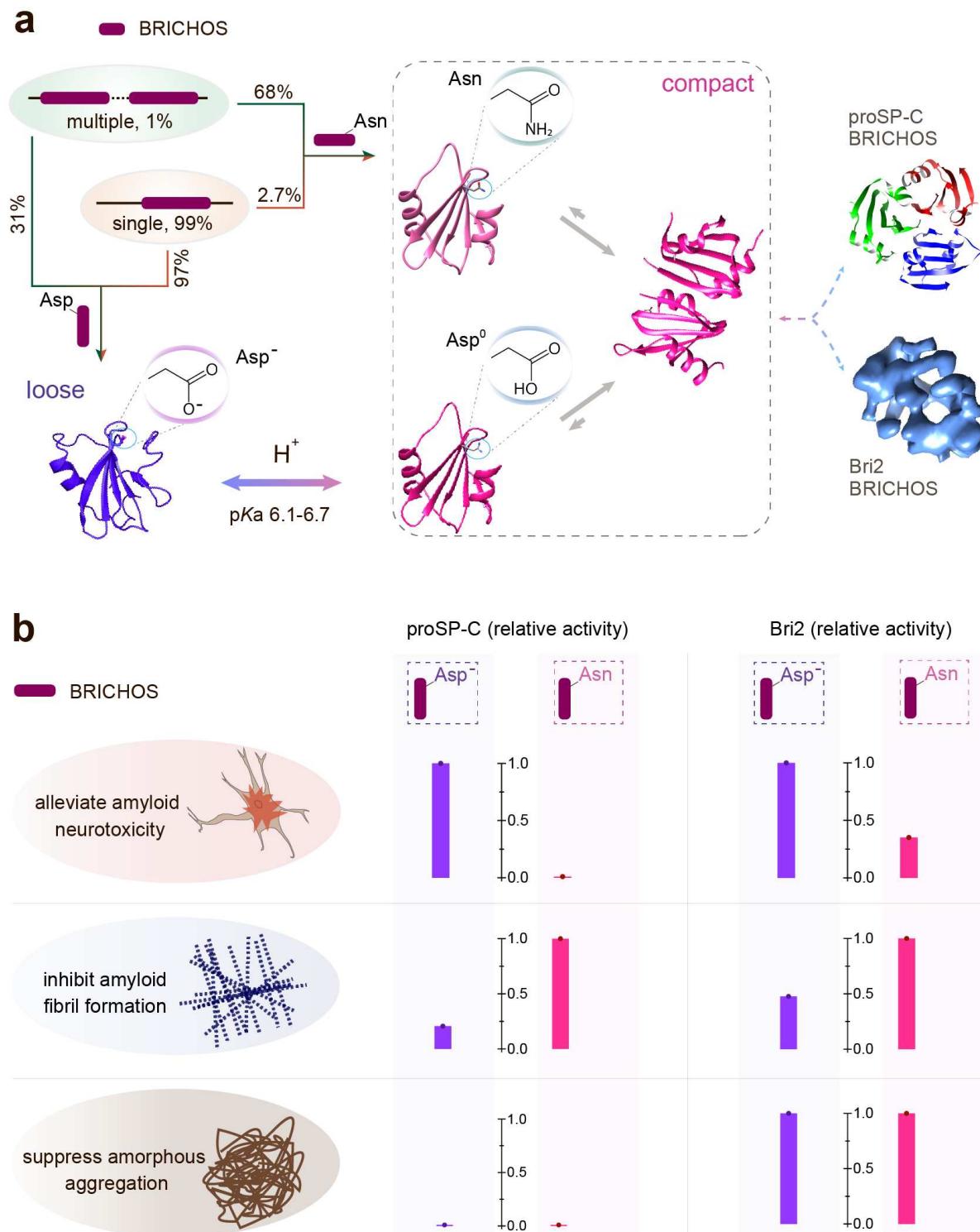


1093

1094 **Fig. 4. Rh Bri2 BRICHOS D148N oligomer EM map and comparison with the wildtype**
1095 **oligomer 3D EM density map.** (a) Kinetics of aggregation of 600 nmol L⁻¹ citrate synthase
1096 (CS) at 45 °C alone (black), in the presence of 0.15, 0.3, 0.6 and 1.2 $\mu\text{mol L}^{-1}$ rh Bri2
1097 BRICHOS D148N oligomer. The different concentrations of the oligomers are shown with a
1098 blue gradient, which are labelled on the right of the traces. (b) Effects of rh Bri2 BRICHOS

1099 D148N and wildtype oligomers (data from ref ⁽³²⁾) on CS aggregation at different molar ratios
1100 (referred to monomeric subunits) of BRICHOS:CS. The data are presented as means ±
1101 standard deviations. **(c)** 2D classes of rh Bri2 BRICHOS D148N oligomers. Most class
1102 averages show an approximate 2-fold symmetry. **(d)** The three viewing directions are along
1103 the three different 2-fold axes (upper panel). The map of rh Bri2 BRICHOS D148N oligomer
1104 was based on 10 223 particles manually extracted from images recorded on a CCD detector
1105 with ×85 200 magnification and the voxel size of the map is 2.464 Å. The lower panel shows
1106 the 3D density map of rh Bri2 BRICHOS D148N oligomer with D2 symmetry (blue) and the
1107 volume fit in rh wildtype Bri2 BRICHOS oligomer (yellow, EMDB: 3918).

1108


1109

1110 **Fig. 5. Asp to Asn mutation changes rh proSP-C BRICHOS activity against A β 42 fibril**
 1111 **formation.** (a) Activity comparison of 100% rh wildtype proSP-C BRICHOS (purple) and rh
 1112 proSP-C BRICHOS D105N (red) against 3 $\mu\text{mol L}^{-1}$ A β 42 (black). Individual fits with
 1113 combined rate constants $\sqrt{k_n k_+}$ and $\sqrt{k_+ k_2}$ as free fitting parameters of normalized and
 1114 averaged aggregation traces (dots) are shown as solid lines. Values for $\tau_{1/2}$ (b) and r_{max} (c)
 1115 extracted from sigmoidal fitting of A β 42 aggregation traces in the presence of different
 1116 concentrations of rh wildtype proSP-C BRICHOS (purple) or rh proSP-C BRICHOS D105N
 1117 (red) as shown in (d–f) and (Supplementary Figure 10a–c). (d–e) Aggregation kinetics of 3

1118 $\mu\text{mol L}^{-1}$ A β 42 in the presence of rh proSP-C BRICHOS D105N at concentrations: 0 (black),
1119 10 (light red), 50 (red), or 100% (dark red) molar percentage referred to monomeric subunits
1120 relative to A β 42 monomer. The global fits (solid lines) of the aggregation traces (crosses)
1121 were constrained such that only one single rate constant is the free fitting parameter,
1122 indicated in each panel. χ^2 values describing the quality of the fits: 18 for k_n free, 0.8 for k_2
1123 free and 3.2 for k_+ free. (g) Comparison of 50% rh wildtype Bri2 BRICHOS (yellow) and rh
1124 Bri2 BRICHOS D148N (blue) activities against 3 $\mu\text{mol L}^{-1}$ A β 42 (black). The solid lines are
1125 from individual fits with combined rate constants $\sqrt{k_n k_+}$ and $\sqrt{k_+ k_2}$ as free fitting
1126 parameters of normalized and averaged aggregation traces (dots). Values for $\tau_{1/2}$ (h) and r_{max}
1127 (i) extracted from the sigmoidal fitting of A β 42 aggregation traces in the presence of
1128 different concentrations of rh wildtype Bri2 BRICHOS and the D148N mutant as shown in
1129 (Supplementary Figure 10c–e). (j) Elongation rates (k_+) determined from highly seeded
1130 aggregation kinetics in Supplementary Figure 10d and e. The inset shows the amount of
1131 toxic A β 42 oligomers calculated with the relative elongation rates (k_+) and secondary
1132 nucleation rates (k_2) for either rh wildtype proSP-C BRICHOS or the D105N mutant. (k)
1133 Immuno-EM of BRICHOS bound to A β 42 fibrils. A β 42 was incubated with and without 100%
1134 molar ratio of rh wildtype proSP-C BRICHOS and the D105N mutant, respectively,
1135 overnight at 37°C. The samples were treated with a polyclonal antibody against human
1136 proSP-C and a gold-labelled secondary antibody, and characterized by TEM. The scale bars
1137 are 200 nm. (l) SPR sensorgrams of different concentrations (*i.e.*, 6.25, 12.5, 25, 50, and 100
1138 $\mu\text{mol L}^{-1}$) of rh proSP-C BRICHOS D105N interacting with immobilized A β 42 monomers.
1139 The data were globally fitted for the association and disassociation phases, respectively, and
1140 the apparent K_D was calculated.

1141

1142

1143

1144 **Fig. 6. Schematic summary of BRICHOS activities depending on ionization state of its**
 1145 **conserved Asp.** (a) Asp and Asn in BRICHOS domains (single and multiple BRICHOS
 1146 precursors account for 94% and 5%, and adopt “loose” and “compact” conformation,
 1147 respectively. At neutral pH, the conserved Asp is ionized (Asp⁻) and BRICHOS presents an
 1148 open structure (from ref⁽¹⁶⁾). At pH 6-7, the Asp is protonated and BRICHOS is more
 1149 compact (PDB accession number 2YAD, from crystals prepared at pH 6.5^{(ref(16))}) and prone to

1150 dimerize, which could be mimicked by Asn present in some BRICHOS families. Eventually,
1151 proSP-C BRICHOS forms trimers (2YAD), while Bri2 BRICHOS forms larger oligomeric
1152 assemblies (EMD-3918). **(b)** The activities of BRICHOS are regulated by the conserved Asp;
1153 with its ionization form BRICHOS can efficiently present anti-amyloid-induced neurotoxicity.
1154 Protonation of the Asp or replaced by Asn diminishes the activity for BRICHOS anti-
1155 amyloid-induced neurotoxicity, but oppositely, the capacity inhibiting amyloid fibril is
1156 significantly enhanced. After forming large oligomers, the general chaperone activity against
1157 amorphous aggregation is not obviously affected. The y-axis is the normalized activity with
1158 substrate alone as 0 and the higher activity from the wildtype species or the mutant as 1. For
1159 the neurotoxicity, the data used are from a ratio of 1:2 (substrate: BRICHOS) for proSP-C
1160 BRICHOS and 1:1 for Bri2 BRICHOS. For the activity against amyloid fibril formation, the
1161 data are from a ratio of 1:1 (substrate: BRICHOS) for proSP-C BRICHOS and 1:0.5 for Bri2
1162 BRICHOS. For the general chaperone activity against amorphous aggregation, the data used
1163 are from a ratio of 1:2.4 (substrate: BRICHOS), both for proSP-C BRICHOS and for Bri2
1164 BRICHOS.

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

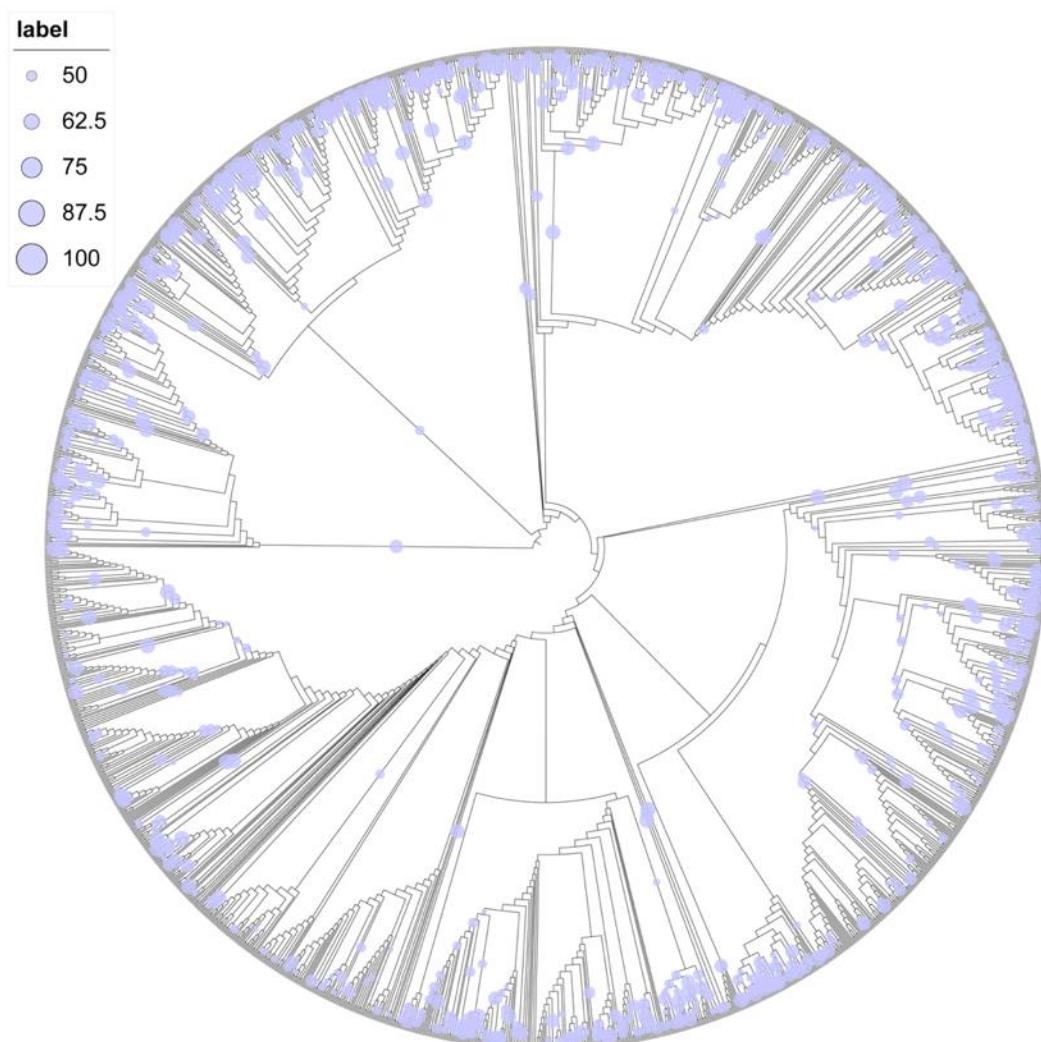
1177

1178

1179

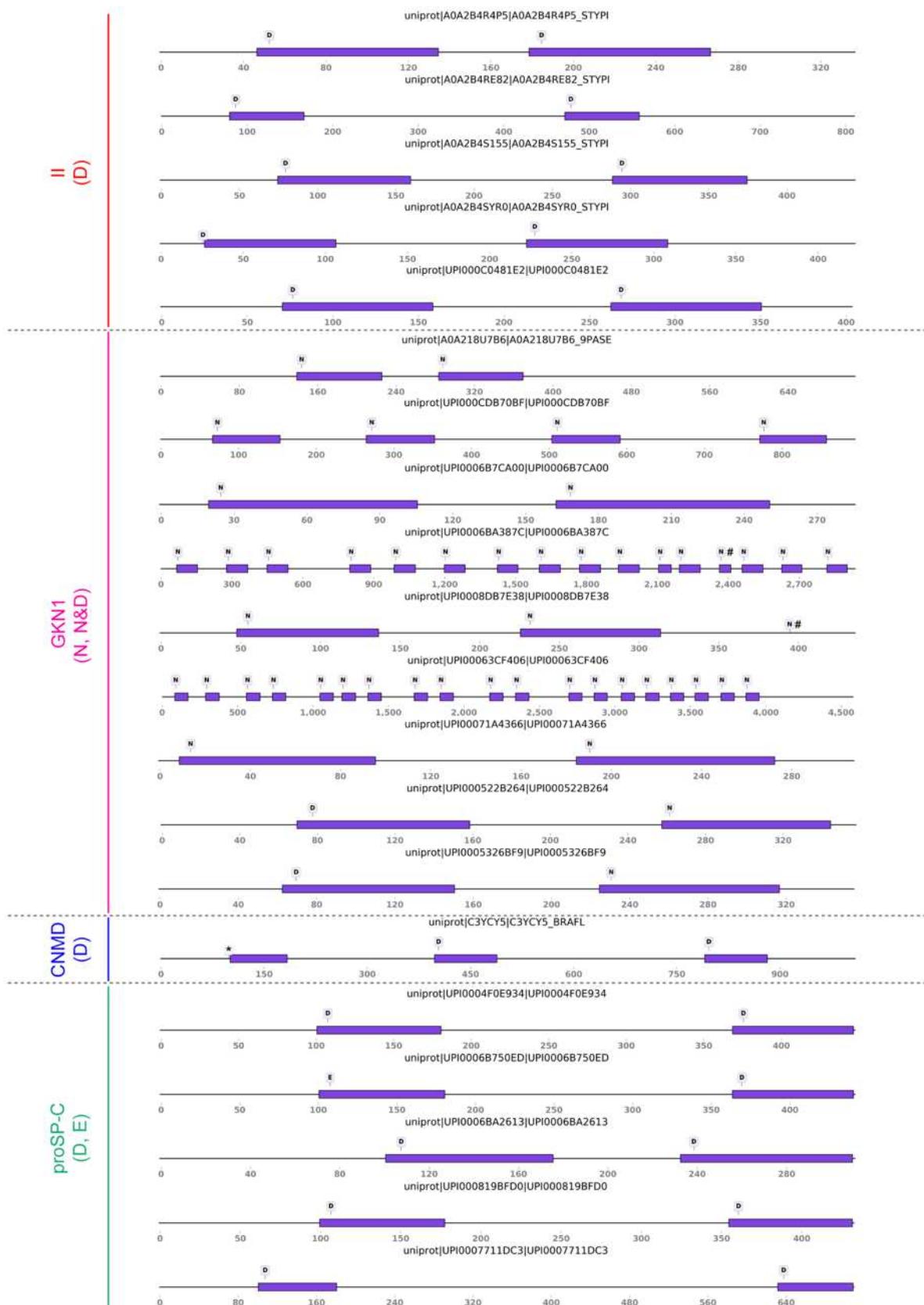
1180

1181


1182

1183

1184


1185 **Supplementary Figures**

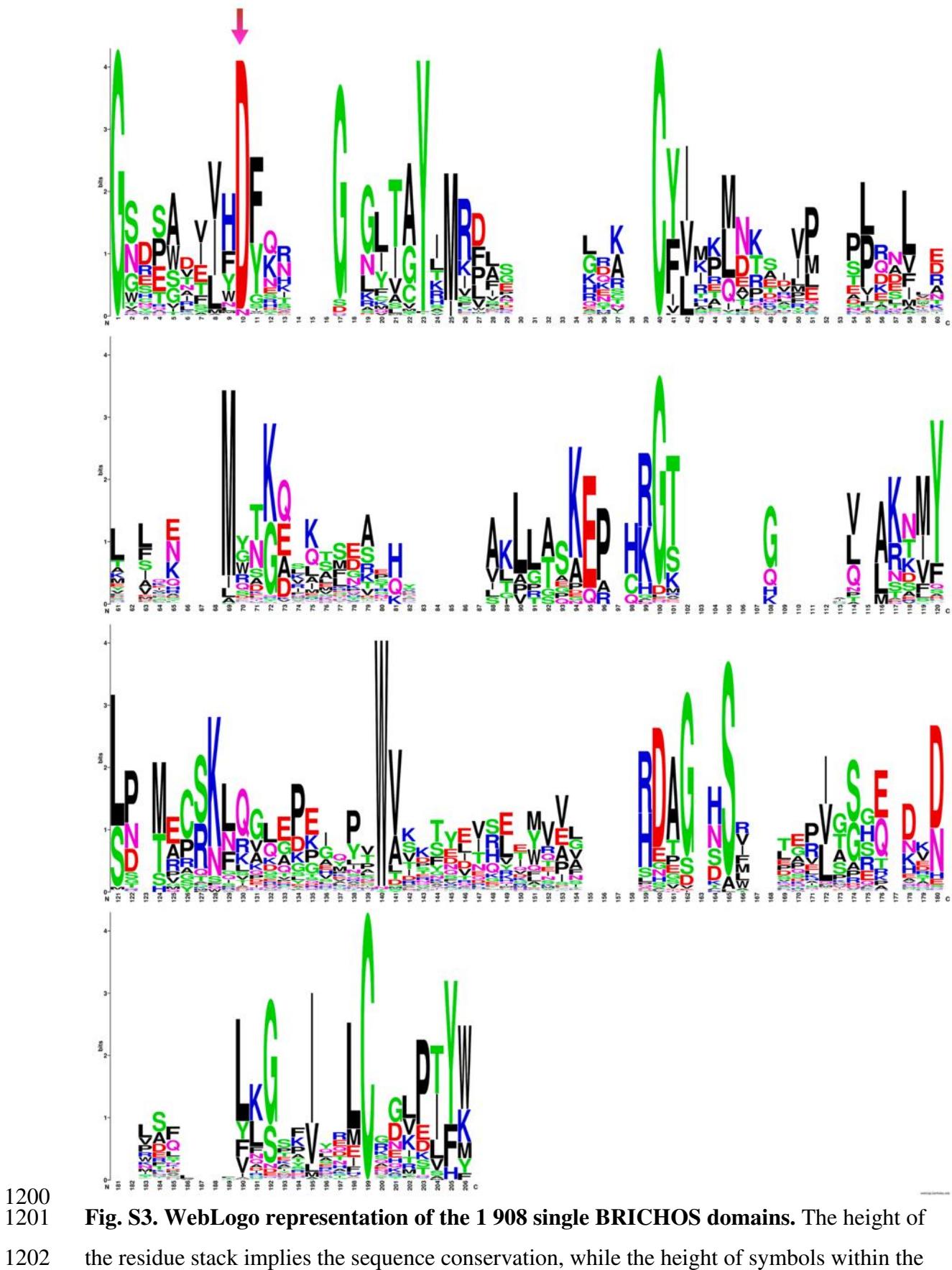
1186

1187

1188 **Fig. S1. Evolution of the molecular chaperone domain BRICHOS.** Phylogenetic tree of
1189 the 2 019 BRICHOS domains, which was grouped into thirteen families (**Fig. 1c**). The
1190 bootstrap values larger than 50% are indicated by labels, where the sizes are proportional to the
1191 bootstrap values.

1192

1193

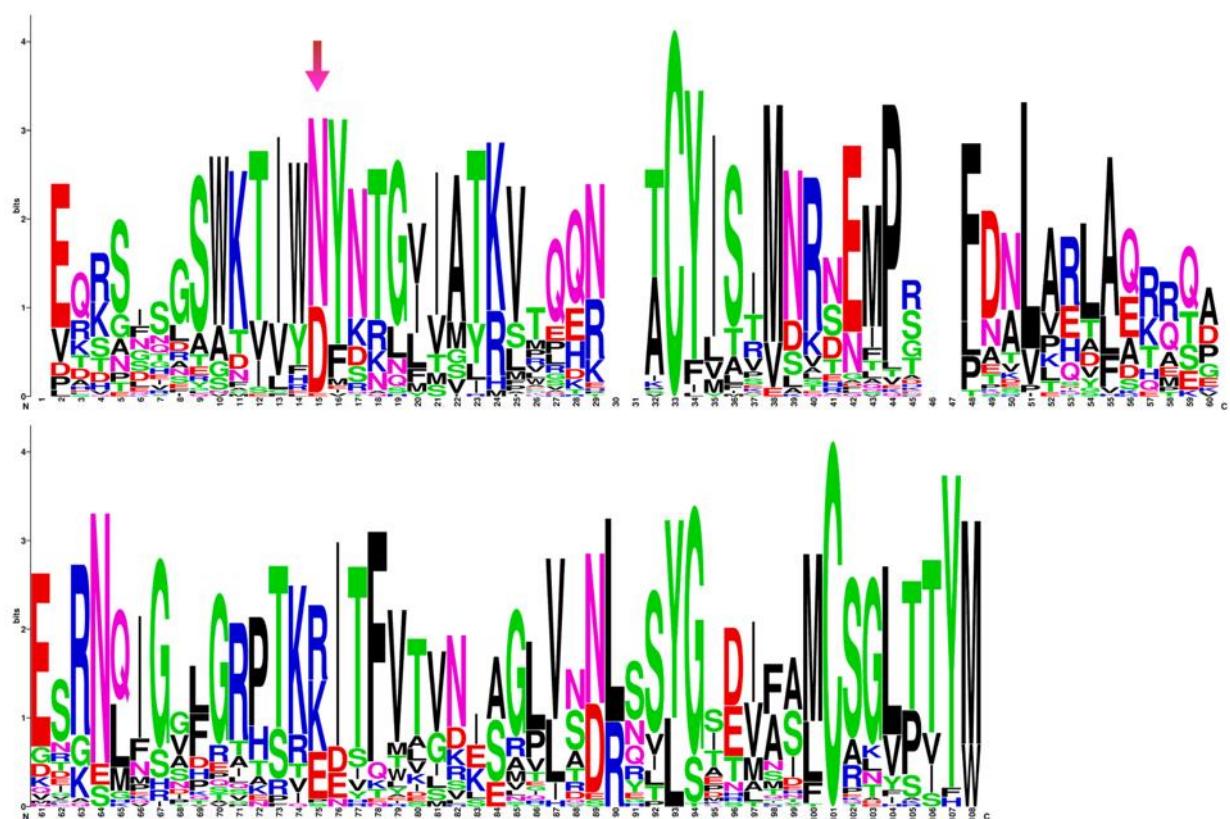

1194

1195

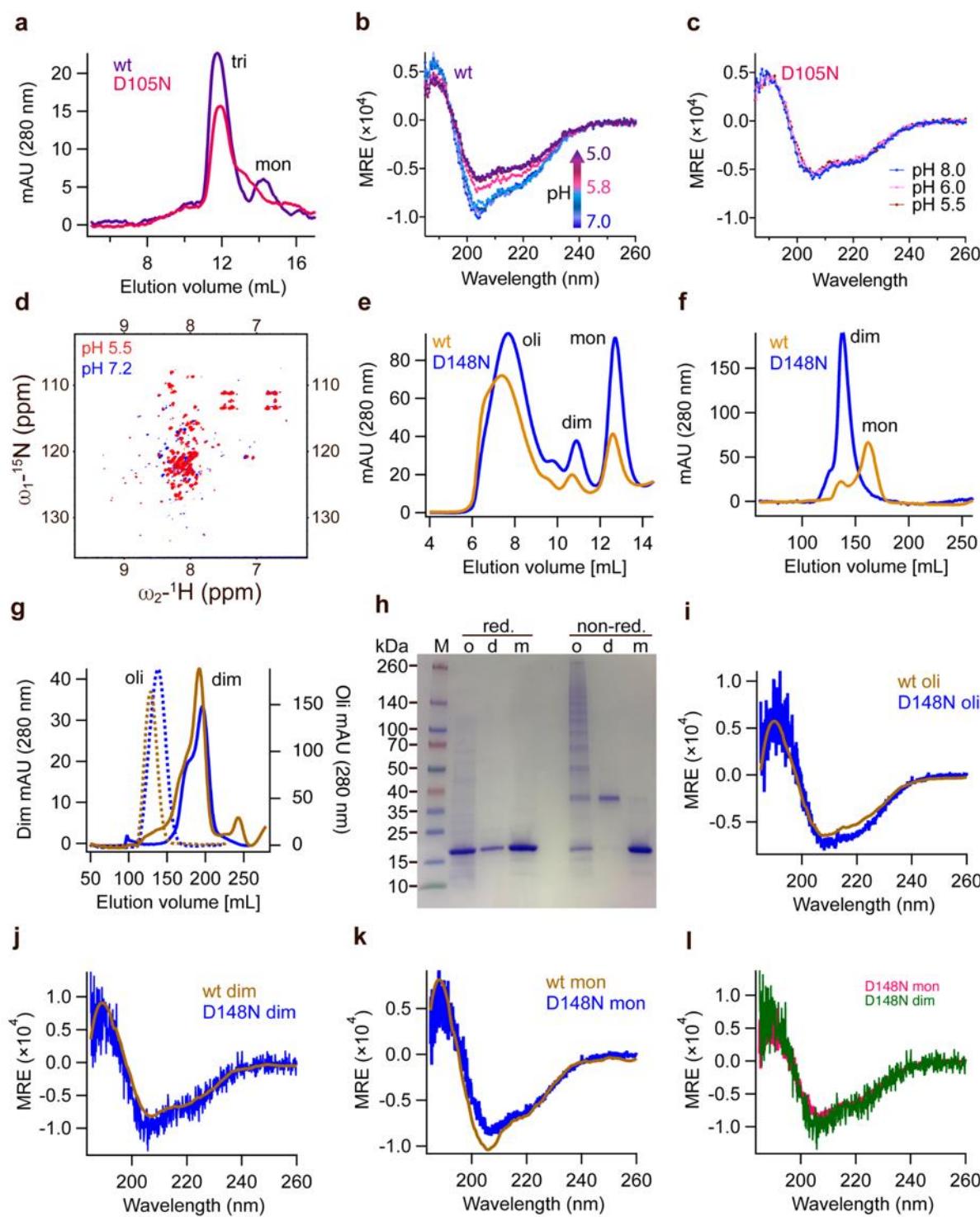
Fig. S2. The architecture of proproteins containing multiple BRICHOS domains. The proproteins contain up to nineteen multiple, tandem BRICHOS domains (multi-BRICHOS). The architecture is generally shown in **Figure 1d**. The UniProt accession number is shown

1196 over each corresponding cartoon. The length of the bar is not proportional to the size of the
1197 BRICHOS domain from different precursors. # refers to the C-terminally truncated, and *
1198 indicated the N-terminally truncated.

1199



1203 stack indicates the relative frequency of each residue. The arrow marks the conserved Asp
1204 residue.


1205

1206

1207

1208
1209 **Fig. S4. WebLogo representation of the 74 multiple BRICHOS domains.** The height of
1210 the residue stack implies the sequence conservation, while the height of symbols within the
1211 stack indicates the relative frequency of each residue. The arrow marks the conserved Asp
1212 residue.

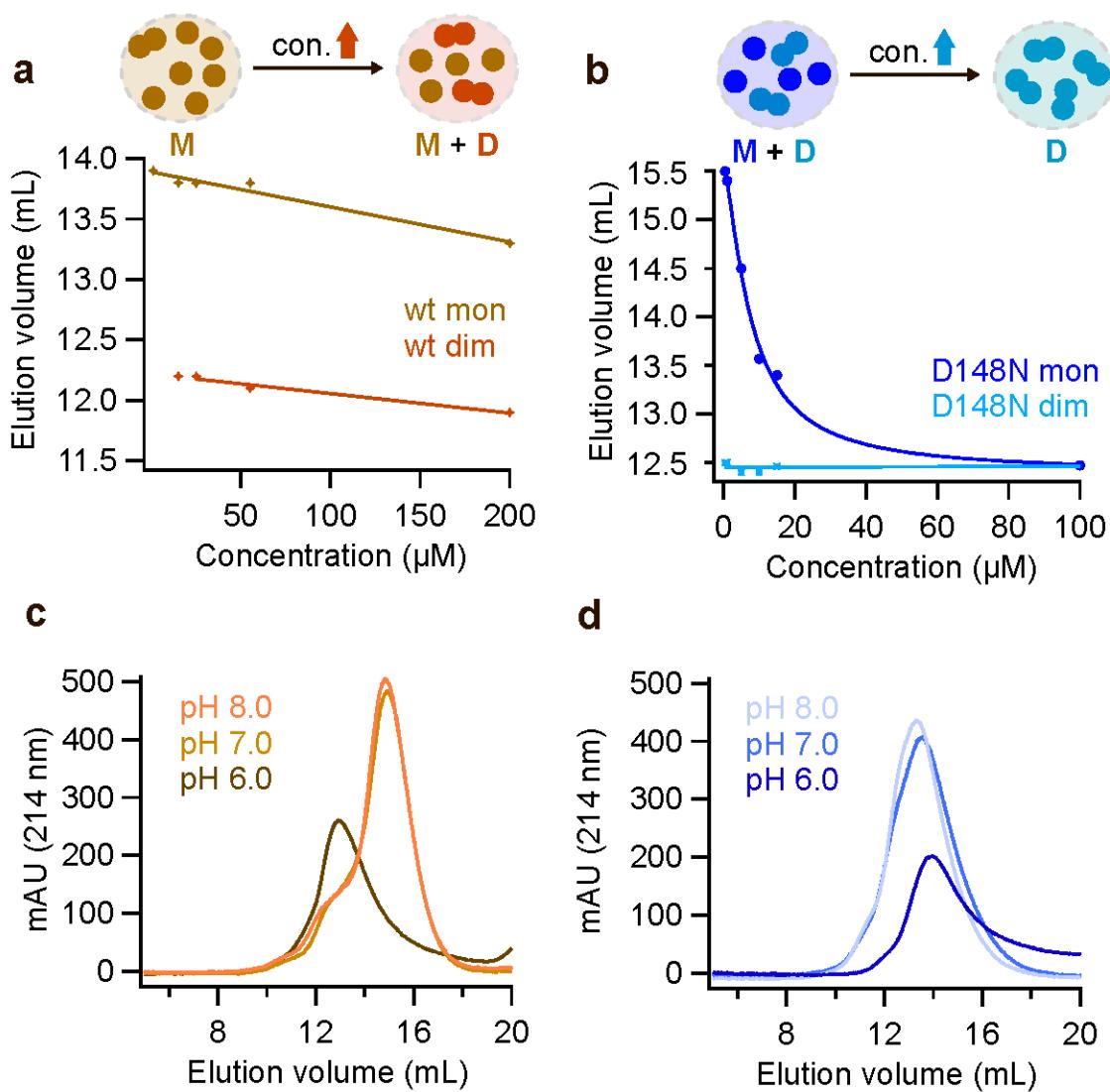
1213

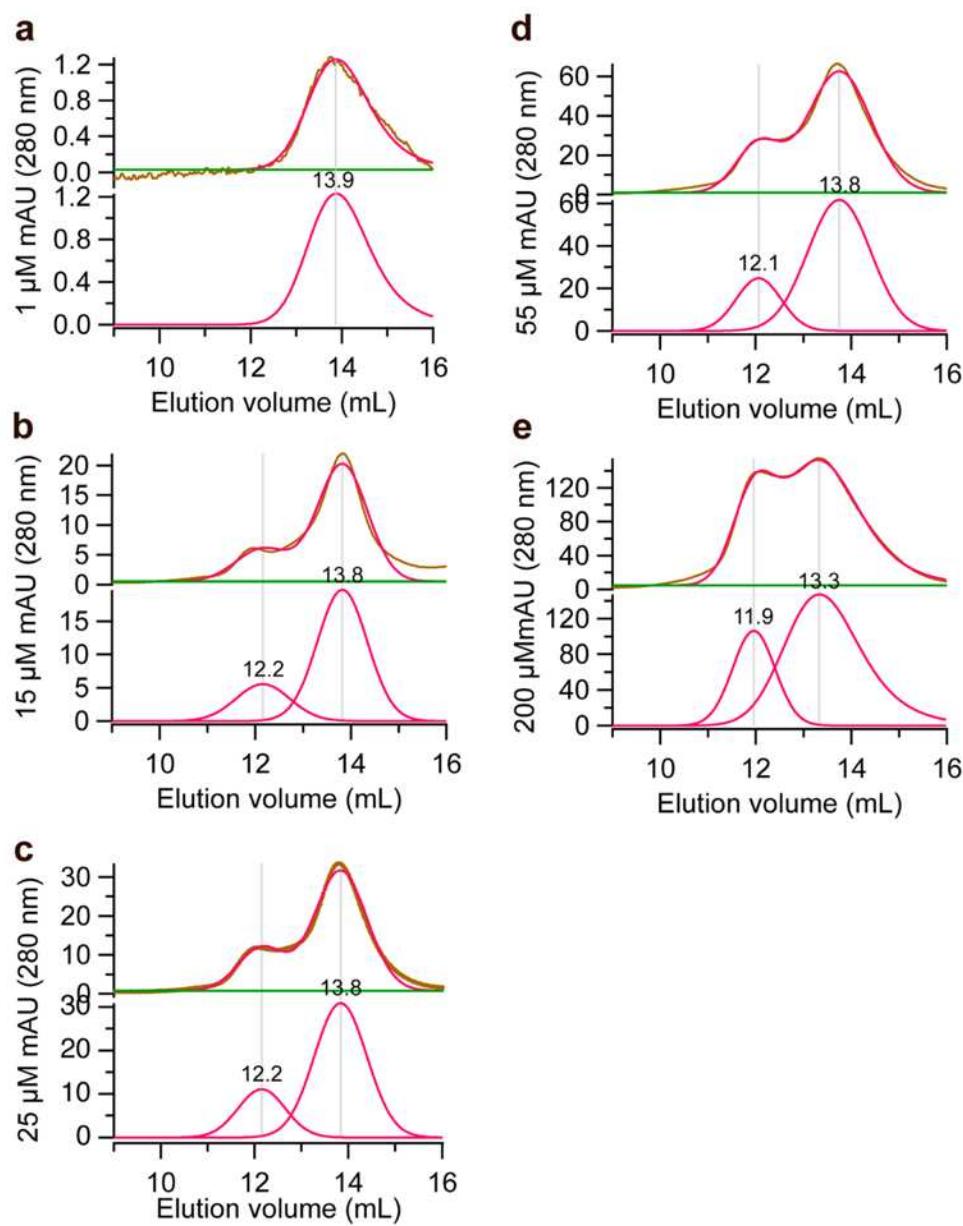
1214 **Fig. S5. Characterization of rh wildtype and Asp to Asn mutant BRICHOS.** (a) SEC
 1215 analysis of purified rh wildtype (wt) proSP-C BRICHOS (purple) and the D105N mutant
 1216 (red). (b and c) CD measurements of rh wt proSP-C BRICHOS (purple) and the D105N
 1217 mutant at different pHs. (d) NMR HSQC spectrum comparison of rh wt proSP-C BRICHOS
 1218 (purple) and the D105N mutant at pH 7.2 (blue) and 5.5 (red). (e) SEC of rh wildtype (wt,
 1219 yellow) NT*-Bri2 BRICHOS and the D148N mutant (blue) species. oli, oligomers; dim,

1220 dimers. (f) SEC of wildtype (wt) Bri2 BRICHOS (blue) and Bri2 BRICHOS D148N (yellow)
1221 monomer fraction prepared from corresponding fusion protein (NT*-Bri2 BRICHOS)
1222 monomers. dim, dimers; mon, monomers. (g) SEC of wildtype (wt) Bri2 BRICHOS (blue)
1223 and the D148N (yellow) oligomer (dash line) and dimer (solid line) fractions prepared from
1224 corresponding fusion protein (NT*-Bri2 BRICHOS) oligomer and dimer. oli, oligomers; dim,
1225 dimers. (h) SDS-PAGE analyses of SEC isolated rh Bri2 BRICHOS D148N species under
1226 reducing and non-reducing conditions. (i-l) CD spectra of rh Bri2 BRICHOS D148N
1227 monomers, dimers and oligomers and the comparison with rh wildtype (wt) Bri2 BRICHOS
1228 monomer. MRE is the mean molar residual ellipticity in deg·cm²·dmol⁻¹.

1229

1230

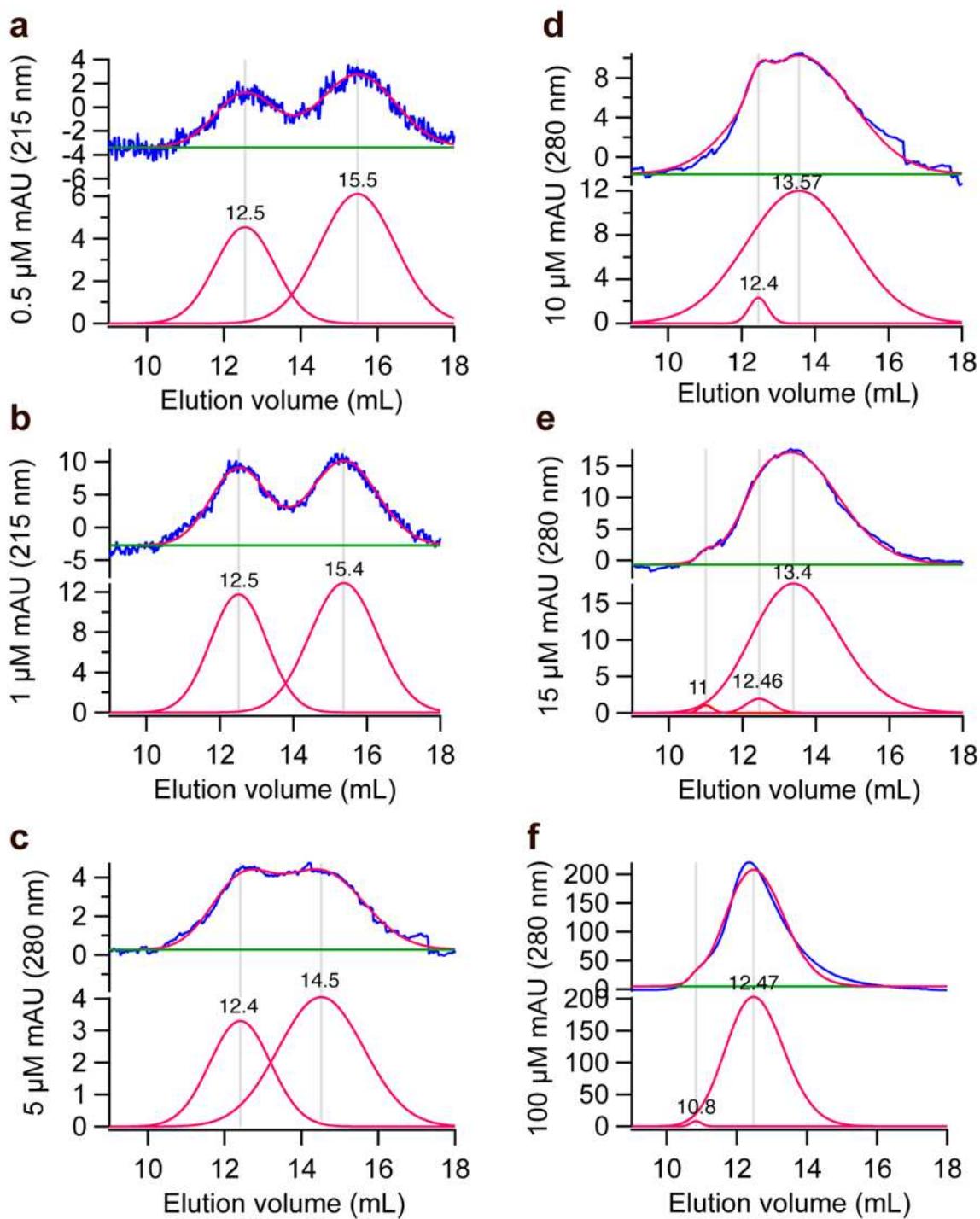

1231


1232

1233

1234

1235



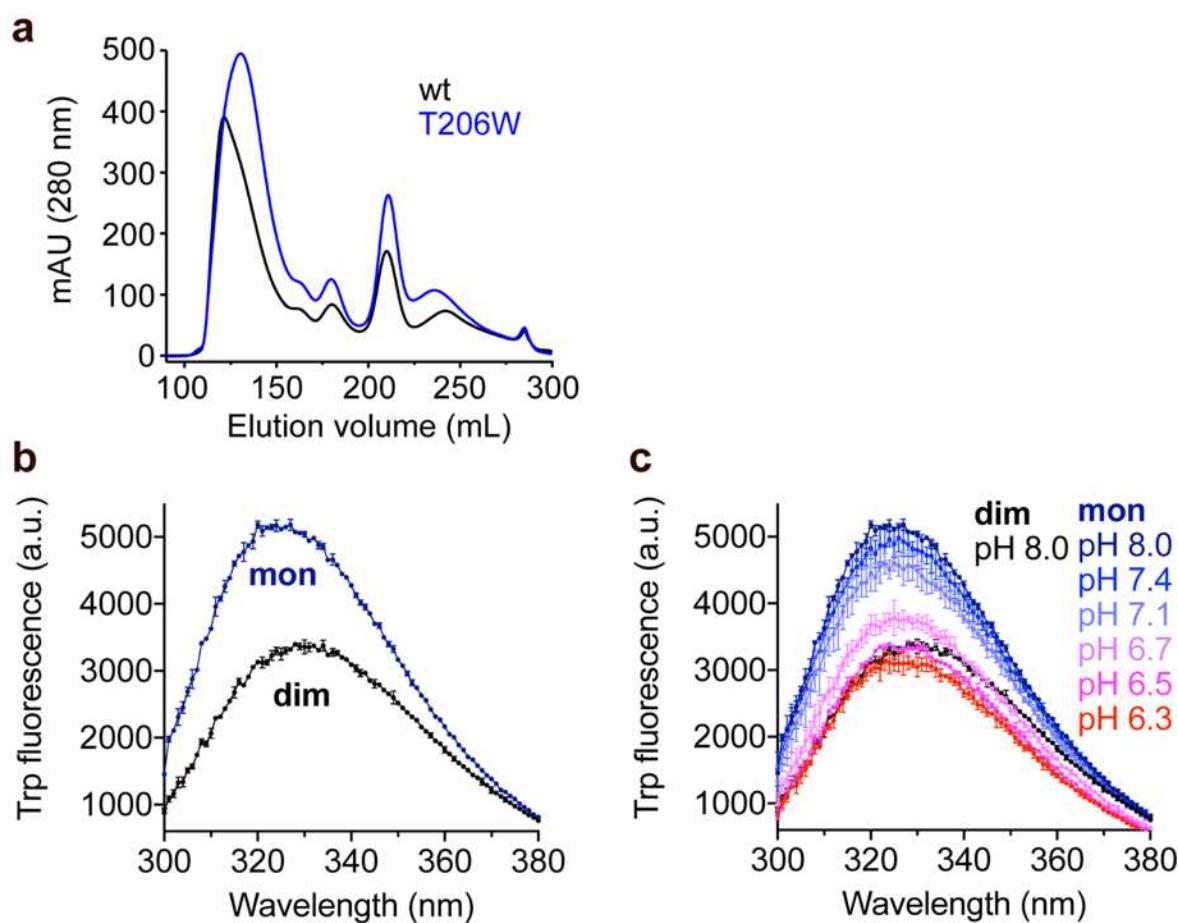
1249

1250 **Fig. S7. Rh wildtype Bri2 BRICHOS monomer concentration-dependent dimerization.**

1251 SEC analysis of rh wildtype Bri2 BRICHOS monomer at concentrations of 1 (a), 15 (b), 25
1252 (c), 55 (d) and 200 $\mu\text{mol L}^{-1}$ (e). The top panel of each sub-figure is the raw SEC data
1253 (yellow) with gaussian fitted (red). The lower panel of each sub-figure is the multiple
1254 gaussian peak fitting (red) and the number on the top of each peak represents the elution
1255 volume.

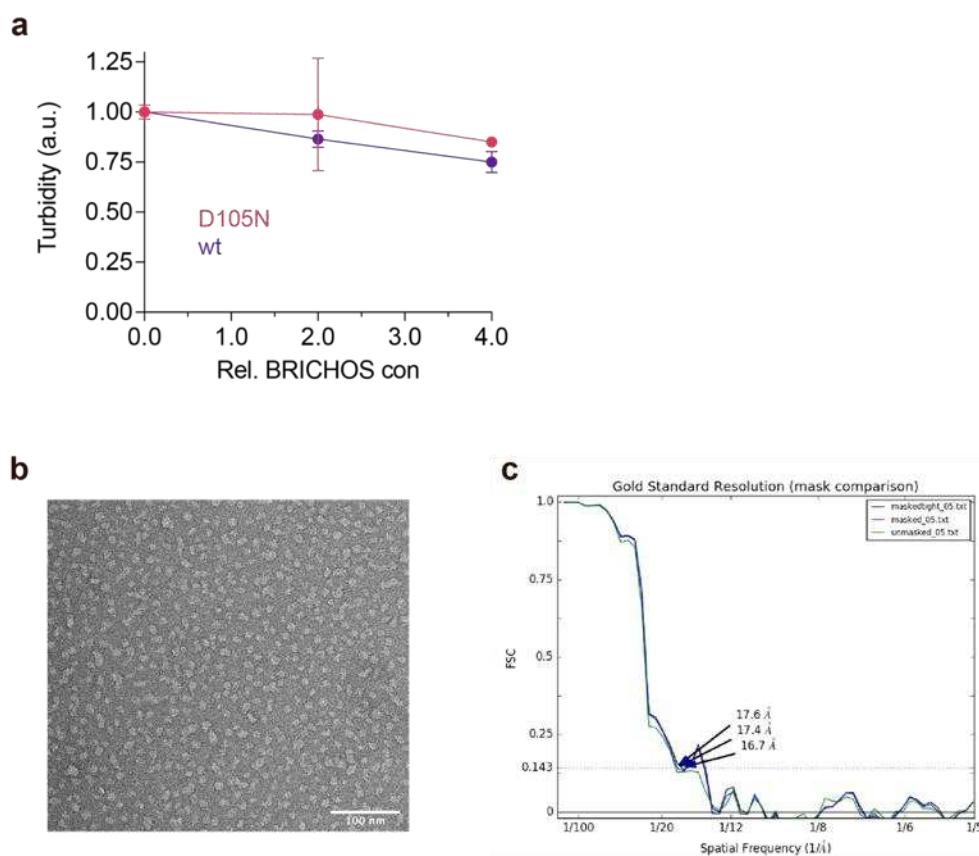
1256

1257 **Fig. S8. Rh Bri2 BRICHOS D148N monomer concentration-dependent dimerization.**


1258 SEC analysis of rh Bri2 BRICHOS D148N monomer at concentrations of 0.5 (a), 1 (b), 5 (c),
1259 10 (d), 15(e) and 100 $\mu\text{mol L}^{-1}$ (f). The top panel of each sub-figure is the unprocessed data
1260 (yellow) with gaussian fitted (red). The lower panel of each sub-figure is the gaussian peak
1261 fitting (red) and the number on the top of each is the relevant elution volume.

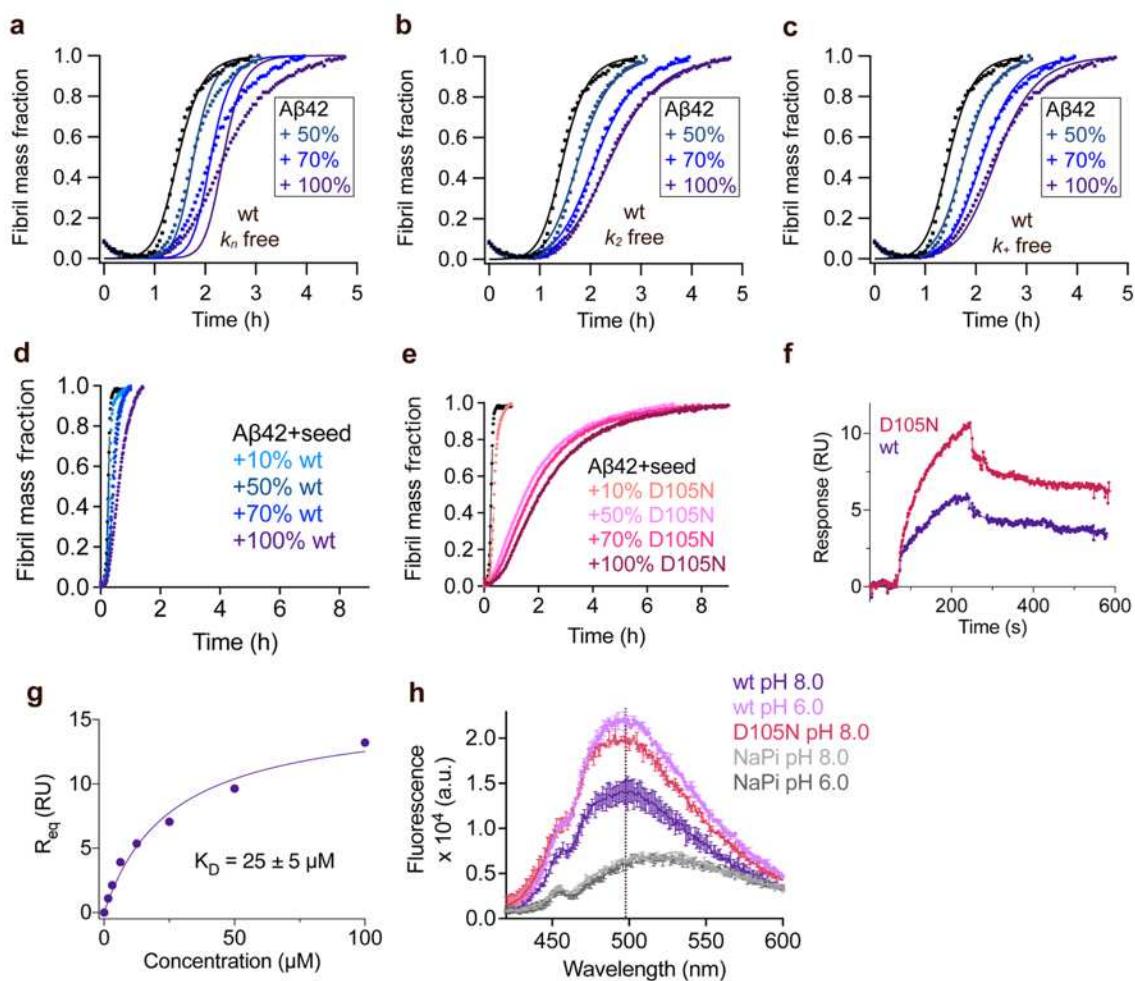
1262

1263


1264

1265

1266


1267 **Fig. S9. Trp fluorescence of rh Bri2 BRICHOS T206W mutant.** (a) SEC of rh wildtype
1268 NT*-Bri2 BRICHOS and the rh NT*-Bri2 BRICHOS T206W mutant. (b) Rh Bri2
1269 BRICHOS T206W monomers and dimers were diluted to 2 $\mu\text{mol L}^{-1}$ in 20 mmol L^{-1} NaPi,
1270 0.2 mmol L^{-1} EDTA at pH 8.0. (b) Rh Bri2 BRICHOS T206W monomers at different pHs
1271 from pH 6.3 to pH 8.0 were subjected to Trp fluorescence measurements, while the dimers
1272 were measured at pH 8.0. All the samples were prepared in duplicates, and excited at 280 nm
1273 (5 μm bandwidth) and fluorescence emission from 300–400 nm (10 μm bandwidth, 1 nm step
1274 interval) was recorded. For the final fluorescence intensities, the results were corrected by
1275 subtracting the background fluorescence. The data are presented as means \pm standard
1276 deviations.

1277

1278 **Fig. S10. Electron microscopy analyses of rh Bri2 BRICHOS D148N oligomers. (a)**
1279 Effects of rh proSP-C BRICHOS variants on CS aggregation at different molar ratios of
1280 BRICHOS:CS. The data are presented as means \pm standard deviations. **(b)** Raw TEM
1281 micrograph of negatively stained rh Bri2 BRICHOS D148N oligomers. **(c)** The Fourier shell
1282 correlation (FSC) indicates a resolution of \sim 17 Å for the reconstructed 3D density map
1283 determined at an FSC-value of 0.143 (dotted lines).

1284

1285

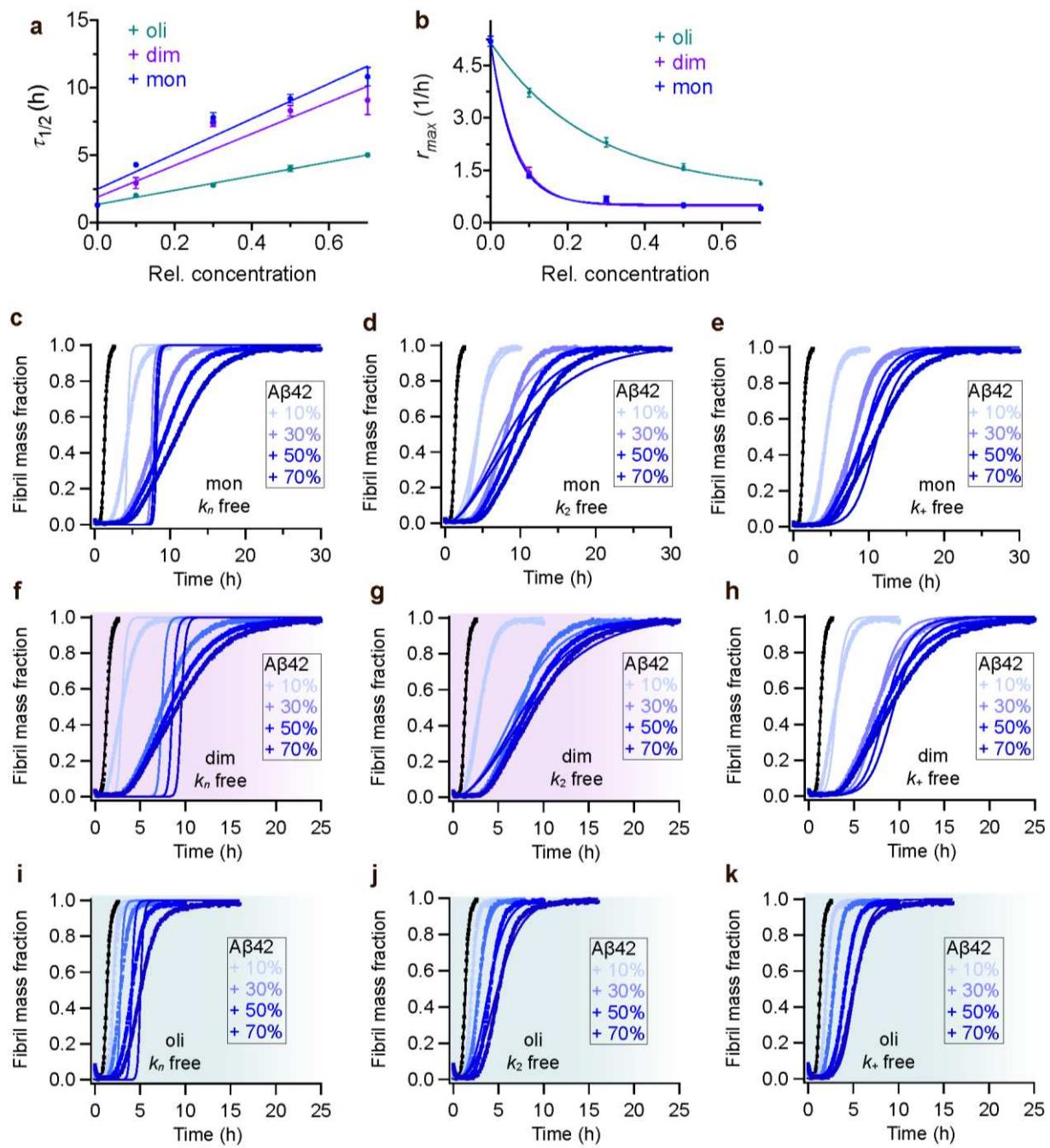
1286 **Fig. S11. Rh wildtype proSP-C BRICHOS interferes with A β 42 fibril formation. (a-c)**
1287 Aggregation kinetics of 3 μ mol L $^{-1}$ A β 42 in the presence of rh wildtype (wt) proSP-C
1288 BRICHOS at concentrations: 0 (black), 50 (cyan), 70 (blue), or 100% (purple) molar
1289 percentage referred to monomeric subunits relative to A β 42 monomer concentration. The
1290 global fits (solid lines) of the aggregation traces (cross) were constrained such that only one
1291 single rate constant is the free fitting parameter. (d and e) Seeded aggregation traces of 3
1292 μ mol L $^{-1}$ A β 42 with 0.6 μ mol L $^{-1}$ preformed A β 42 fibril seeds in the presence of different
1293 concentration of rh wildtype proSP-C BRICHOS (d) and the D105N mutant (e). (f) Analysis
1294 of rh wildtype (wt) proSP-C BRICHOS (purple) and the D105N mutant (red) binding to
1295 A β 42 monomers detected by SPR. 25 μ mol L $^{-1}$ rh wildtype proSP-C BRICHOS and the
1296 D105N mutant were injected in over the chip surfaces, respectively. The response from the
1297 blank surface was subtracted from the immobilized surface response. (g) Steady state affinity
1298 for rh proSP-C BRICHOS D105N to immobilised A β 42 monomers. Different concentrations
1299 of rh proSP-C BRICHOS D105N mutant, *i.e.* 0, 1.56, 3.13, 6.25, 12.5, 25, 50 and 100 μ mol
1300 L $^{-1}$, were individually injected over the chip surfaces. Steady state affinity was estimated by

1301 plotting the maximum binding responses versus BRICHOS concentrations. (h) Fluorescence
1302 emission of 2 $\mu\text{mol L}^{-1}$ bis-ASN in sodium phosphate buffer at pH 8.0 (gray) or 6.0 (black) or
1303 in the presence of 1 $\mu\text{mol L}^{-1}$ rh wildtype proSP-C BRICHOS at pH 8.0 or 6.0 and the
1304 D105N mutant.

1305

1306

1307


1308

1309

1310

1311

1312

1313

1314

Fig. S12. Rh Bri2 BRICHOS D148N inhibition of A β 42 fibril formation. Values for $\tau_{1/2}$

1315 (a) and r_{max} (b) extracted from the sigmoidal fitting of A β 42 aggregation traces in the

1316 presence of different concentrations of rh Bri2 BRICHOS D148N species as shown in (c–k).

1317 (c–e) Aggregation kinetics of 3 μ mol L $^{-1}$ A β 42 in the presence of rh Bri2 BRICHOS D148N

1318 monomers at different concentrations. The global fits (solid lines) of the aggregation traces

1319 (cross) were constrained such that only one single rate constant is the free fitting parameter,

1320 indicated in each panel. χ^2 values describing the quality of the fits: 62 for k_n free, 11.2 for k_2

1321 free and 3.7 for k_+ free. (f–h) Aggregation kinetics of 3 μ mol L $^{-1}$ A β 42 in the presence of rh

1322 Bri2 BRICHOS D148N dimers at different concentrations. The global fits (solid lines) of the

1323 aggregation traces (cross) were constrained such that only one single rate constant is the free
1324 fitting parameter, indicated in each panel. χ^2 values describing the quality of the fits: 43 for
1325 k_n free, 3.9 for k_2 free and 7.8 for k_+ free. (i–k) Aggregation kinetics of 3 $\mu\text{mol L}^{-1}$ A β 42 in
1326 the presence of rh Bri2 BRICHOS D148N oligomers at different concentrations. The global
1327 fits (solid lines) of the aggregation traces (cross) were constrained such that only one single
1328 rate constant is the free fitting parameter. χ^2 values describing the quality of the fits: 8.6 for
1329 k_n free, 1.4 for k_2 free and 0.4 for k_+ free. For the different D148N species, both k_2 and k_+ as
1330 sole free fitting rate, the fibrillization traces were described with similar χ^2 values,
1331 suggesting both k_2 and k_+ might be affected, like the wildtype species.

1332
1333
1334

1335 **Supplementary Table.**

1336 **Table S1. Species distribution and pairwise alignment of the multiple BRICHOS**
1337 **domains.** See separate file.

1338 **Table S2. Summary of statistics performed in Fig. 3b and d.**

1339

1340 **Source data:**

1341 **Figure 3-source data.**

1342 **Figure 4-source data.**

1343 **Figure 5-figure supplement 5-source data**

1344
1345