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1 Abstract13

With detailed data on gene expression accessible from an increasingly broad array of species, we can test the14

extent to which our developmental genetic knowledge from model organisms predicts expression patterns and15

variation across species. But to know when differences in gene expression across species are significant, we16

first need to know how much evolutionary variation in gene expression we expect to observe. Here we provide17

an answer by analyzing RNAseq data across twelve species of Hawaiian Drosophilidae flies, focusing on gene18

expression differences between the ovary and other tissues. We show that over evolutionary time, there exists19

a cohort of ovary specific genes that is stable and that largely corresponds to described expression patterns20

from laboratory model Drosophila species. Our results also provide a demonstration of the prediction that,21

as phylogenetic distance increases, variation between species overwhelms variation between tissue types.22

Using ancestral state reconstruction of expression, we describe the distribution of evolutionary changes in23

tissue-biased expression, and use this to identify gains and losses of ovary-biased expression across these24

twelve species. We then use this distribution to calculate the evolutionary correlation in expression changes25

between genes, and demonstrate that genes with known interactions in D. melanogaster are significantly more26

correlated in their evolution than genes with no or unknown interactions. Finally, we use this correlation27

matrix to infer new networks of genes that share evolutionary trajectories, and we present these results as a28

dataset of new testable hypotheses about genetic roles and interactions in the function and evolution of the29

Drosophila ovary.30
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2 Introduction31

Data on when and where genes are expressed are now fundamental to the study of development and disease1.32

With continually advancing RNA sequencing technologies, these data have been collected using RNA sequenc-33

ing from a wide variety of cells, treatments and species2,3. Statistical analysis of gene expression across these34

differentials generates insights into how gene expression is connected to phenotypic differences in morphology35

and behavior4. However, when comparing gene expression across species, most studies have been restricted36

to pairwise comparisons, often between one model laboratory species and one other species of interest5. One37

challenge with such pairwise comparisons is that they lack robust information about how much evolutionary38

variation in expression we expect to observe, making it difficult to evaluate the significance of any inter-39

specific difference in variation5,6. Instead, we need phylogenetic comparisons of expression that take into40

account the shared history between species7,8, and that describe significant changes in expression in relation41

to other phenotypic traits of interest.9 In this study we perform a phylogenetic comparison of gene expres-42

sion across the organs of twelve species of Hawaiian Drosophilidae flies with highly divergent ovary and egg43

morphologies. From our results we identify individual genes that have undergone significant evolutionary44

shifts in organ-specific expression, and describe global patterns in transcriptome variation across species that45

can serve as a benchmark for future interspecific comparisons of gene expression.46

Phylogenetic comparisons of developmental traits are particularly valuable for building context around com-47

parisons between well-studied model organisms and their non-model relatives10. Much more has been learned48

about the genetics and development of laboratory model species like D. melanogaster than may ever be pos-49

sible for the vast majority of life11. But the usefulness of model species to understand general principles50

depends in part on the extent to which biology in these species reflects the biology of other taxa, rather51

than species-specific phenomena12. In the case of gene expression, there has been substantial debate about52

the degree to which patterns observed in model organisms may be representative across species13–16. Where53

several studies showed that the expression profiles of organs within a species are more different the pro-54

files of homologous organs across species17–20, other work has questioned this finding13,14. More recently,55

Breschi and colleagues (2016)21 demonstrated that, consistent with an evolutionary model of trait evolu-56

tion, species-level variation in gene expression increases with the time since divergence from the most recent57

common ancestor. In addition, previous work by authors on this manuscript8 showed that, while expression58

patterns across tissues tend to be consistent between species, lineage-specific shifts in expression enrichment59

can be identified by applying phylogenetic comparative methods. With the exception of the work by Munro60

and colleagues (2021)8, these studies have been, to our knowledge, performed almost exclusively in vertebrate61

species17,18,20, and for the most part placental mammals13,14,16, meaning that far less is known about organ62

and species-level expression differences when comparing across the tree of life.63

The detailed atlases of expression data across organs22 and developmental timepoints23 is one of the strengths64

of model systems like D. melanogaster. These public resources make it possible to explore global patterns of65

expression to gain insight into potential gene regulation, interaction, and function23–25. As atlases such as66

these have become increasingly detailed and available from more taxa, a new goal has been to compare these67

expression profiles across species7,26,27. One objective of these cross-species comparisons is to shed light on68

potential regulatory associations between genes7,9. This is especially advantageous for complex processes69

such as ovarian function for which we have a fragmented understanding of gene regulation despite genetic70

and transcriptome studies within single model organisms. Another objective of phylogenetic comparisons71

of expression atlases is to estimate the evolutionary distance between species at which we might expect a72

given gene to demonstrate a divergent pattern of expression6. If this distance is relatively small, then we73

predict atlases to contain large amounts of species-specific patterns. Alternatively, if as described above,74

variation across tissues outweighs variation across the species being compared, we predict atlases to contain75

large cohorts of tissue-specific genes that have been evolutionarily conserved. In this study we test for the76

existence of a core suite of ovary-specific genes across species of Hawaiian Drosophilidae and describe its size77

and composition in relation to the described atlas of expression in D. melanogaster.78

The Drosophila ovary has several features28 that make it a compelling organ in which to test hypotheses79

about expression evolution. Analyses of the FlyAtlas2 dataset29 show that in D. melanogaster, more genes80

demonstrate highest expression enrichment in the ovary than any other adult female organ (Fig. S1). Ad-81

2

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 2, 2022. ; https://doi.org/10.1101/2021.11.30.470652doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.30.470652
http://creativecommons.org/licenses/by-nc-nd/4.0/


ditionally, all described signaling pathways are known to have a role in regulating ovarian development30.82

The ovary performs several critical functions, including maintaining the germ line and manufacturing spe-83

cialized egg cells, yolk, and egg-shell materials31. Genetic screens30,32 and experimental manipulation in D.84

melanogaster have revealed functions of many genes involved in these processes, including yolk-protein genes85

required for oogenesis33 and embryonic patterning genes with localized mRNA like nanos34 and swallow35.86

Here we compare whole-ovary RNA profiles to assess the extent to which these genes and others demonstrate87

consistent patterns of ovary-enrichment over evolutionary timescales in a clade with highly divergent ovary88

and egg morphologies.89

The Hawaiian Drosophilidae clade contains an estimated 1,000 extant species36 that diverged from a common90

ancestor with D. melanogaster between 25 and 40 million years ago37. Extant species have been studied91

in particular for the variation in ovary and egg morphology38,39. Species of Hawaiian Drosophilidae show92

the largest range within the family of egg size, shape, and the number of egg-producing units in the ovary,93

known as ovarioles40–42. Previous studies by our research group and others have shown that these traits are94

likely associated with evolutionary changes in the egg-laying substrate (e.g. rotting bark, flowers, leaves)38,40.95

Furthermore, our previous work demonstrated that at least one developmental process, governing how the96

number of ovarioles is specified in the adult D. melanogaster ovary, is conserved in Hawaiian Drosophila40.97

The diversity of Hawaiian species and their relationship to model species make them a strong candidate98

model clade for evo-devo research36,43. However, their relatively long generation times and species-specific99

breeding requirements make laboratory culture more challenging than classic Drosophila models36. In this100

study we leverage technologies that can be deployed on wild-caught individuals to gather rich developmental101

data to compare across species.102

We compared the expression profiles of twelve species of wild-caught Hawaiian Drosophilidae species across103

three body parts: the adult ovary, head, and the remaining carcass (Fig. 1). We use these tissues to make104

two comparisons for calculating differential expression: one between the ovary and the carcass, and the105

other between the head and the carcass. These comparisons allow us to assess ovary-specific and head-106

specific gene expression over evolutionary time, both of which are relevant to fundamental questions in107

Hawaiian Drosophilidae biology. Given that the ovary and head are not equivalent body parts in terms of108

functional complexity (the ovary is primarily dedicated to producing oocytes, while the head contains the109

eyes, brain, and mouthparts, all dedicated to different tasks), we present these analyses in parallel, and do110

not draw conclusions based on direct comparisons between the head and ovary. In our description of results111

we prioritize the ovary-carcass comparison.112

For each analyses, we first characterized the differentially expressed genes in the ovary of each species113

individually. By comparing these to each other, and to records of ovary-enriched and head-enriched genes114

from D. melanogaster, we identified a core suite of tissue-specific genes shared across species. We applied115

linear modeling to this dataset to test the overall contribution of species- and tissue-level differences to116

expression variation across genes, and describe the circumstances under which one is likely to dominate over117

the other. Finally, we used a phylogenetic analysis of expression changes over evolutionary time to identify118

genes likely to have gained and lost tissue-enriched expression. This evolutionary screen of expression changes119

allowed us to identify networks of genes that demonstrate correlated changes in expression evolution. We120

provide these networks as a searchable dataset of novel, testable hypotheses for gene regulation with respect121

to ovarian function. The results of this study demonstrate both the power of Hawaiian Drosophila as a122

model clade for evo-devo, and the potential of using phylogenetic methods to identify evolutionary variation123

in gene expression underlying phenotypic differences.124
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Figure 1: Phylogeny of species and RNA sampling strategy. A, Twelve species of Hawaiian Drosophil-
idae flies were collected in the wild and processed for RNA sequencing. The twelve reference transcriptomes
assembled from these species were combined with twelve published genomes to generate the phylogeny shown
here (originally published in Church and Extavour, 202144). Three clades within the group are highlighted:
the genus Scaptomyza, nested within the paraphyletic genus Drosophila; the Hawaiian Drosophila, which,
along with Scaptomyza, make up the Hawaiian Drosophilidae; and the well-known picture-wing clade. Ad-
jacent to tip labels are four letter species codes used throughout the manuscript. B, The experimental
design used to generate the data in this manuscript. When sufficient specimens were available per species,
one whole individual was used as a reference and three whole individuals were dissected into three separate
tissues: the head, ovaries, and all remaining material (carcass). Reference individuals were sequenced to
generate paired-end RNA reads and dissected tissues were sequenced to generate single-end RNA reads.
Tissue libraries were then mapped to the assembled reference to quantify transcript expression. Teal boxes
indicate data files. Dashed-line boxes indicate a repeated step.

3 Results125

3.1 Differential gene expression reveals a cohort of consistently ovary-specific126

genes127

We observed several patterns in tissue-specific gene expression that are consistent across all twelve species.128

First, in all species the main axis of variation separated ovary RNA libraries from head and carcass (Fig.129

S4). In all species this axis accounted for at least 50% of variation, and in several species greater than 70%130

of variation. To test for possible variation due to different runs on the sequencer, we resequenced several131

libraries and compared them using principle component analysis. We found variation between sequencing132

runs to be negligible compared to variation across tissues and individuals (Fig. S7). Second, in all species133

we observed that there was a larger amount of significantly downregulated transcripts than upregulated in134

the ovary relative to the carcass (Fig. 2A-B, S5). Across species, we observed an average of 27.7% to be135

significantly downregulated and 15.5% of transcripts to be significantly upregulated. When comparing the136

head to the carcass, we observed an average of 10% of transcripts to be significantly upregulated and 10.5%137

to be significantly downregulated (Fig. S6). These differences may reflect variation in the complexity and138

diversity of functions of the tissues being compared.139
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We used the results of our differential gene expression analysis within species to test for the existence of a140

suite of genes that show consistent ovary-specific expression across species. We found a cohort of 131 genes,141

grouped according to BLAST sequence similarity to D. melanogaster, for which at least one transcript was142

significantly upregulated in the ovaries of more than ten species (Fig. 2C). Transcripts matching these143

genes made up on average 24.6% of the significantly ovary-upregulated transcripts across species, meaning144

roughly one quarter of ovary-specific genes have conserved expression patterns over evolutionary time. When145

excluding the species S. varia, this average decreased to 17.7%, as this species has the smallest set of ovary-146

upregulated transcripts, 100% of which match core ovary genes.147

We then tested the extent to which these core ovary genes correspond to observations in well-studied labo-148

ratory Drosophila models. To accomplish this, we compared expression across Hawaiian species to reported149

tissue-specific expression levels from D. melanogaster29. We found that Hawaiian core ovary-specific genes150

show nearly universal enrichment in the ovary of D. melanogaster as well, as reported in the FlyAtlas2151

dataset29 (Fig. 2D). We likewise observed that genes reported in D. melanogaster to have highest enrich-152

ment in the ovary largely correspond to genes that are significantly upregulated in the ovaries of Hawaiian153

species (Fig. S8).154

The 131 core ovary genes include several well-known members involved in oogenesis and germline stem cell155

renewal such as nanos34, swallow35, and oskar45(Fig. 2E). We found only two genes that were identified as156

Hawaiian core ovary genes that are not reported in the FlyAtlas2 dataset29 to be enriched in the ovary of D.157

melanogaster : the SET domain binding factor sbf, and Rfx, which are reported to be enriched in the heart,158

brain, and other non-reproductive tissues29.159

We used the same approach to identify a core suite of 52 head-specific genes (Fig. S9). There was no160

overlap between the sets of core head genes and core ovary genes. To test whether the correspondence161

between expression observations in Hawaiian flies and D. melanogaster might be due to factors beyond162

tissue identity, we compared head expression values to ovary enrichment data from D. melanogaster, as we163

had done for ovary expression values above. We did not observe a correspondence in either direction between164

expression in the head of Hawaiian species and enrichment in the ovary of D. melanogaster (Fig. S10A).165

In contrast, we did find a correspondence between head-specific expression and genes enriched in the D.166

melanogaster brain, eye, and head (Fig. S10B). Core head genes include Rhodopsin photoreceptor genes and167

genes such as hikaru genki with involvement in synaptic centers46.168
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Figure 2: Identifying a cohort of ovary-specific genes across drosophilid species. A, Volcano plot
for one example species, D. primaeva (Dpri), showing the results of a differential gene expression analysis
comparing the ovary to the carcass. The x-axis shows the log2 fold change of expression across transcripts,
and the y-axis shows the adjusted p-value, log10 transformed. Points that are significantly differentially
expressed are shown in black. B, Jitter plots showing the results of the same analysis across the twelve
species studied here. The x-axis shows the log2 fold change of expression across transcripts, and points are
arranged with random jitter within species on the y-axis. C, The same jitter plots as in B, now colored
according to whether or not transcripts belong to a cohort of core ovary genes. These are defined as genes,
grouped by BLAST similarity to D. melanogaster transcripts, for which at least one transcript is upregulated
in the ovary of ten or more of the twelve species. D, A comparison of mean expression change across Hawaiian
species to reported ovary-enrichment values from D. melanogaster, as reported in FlyAtlas229. Core ovary
genes are marked in magenta. E, The boxed region shown in D, magnified and now showing only core ovary
genes, annotated with the gene symbol from D. melanogaster.

3.2 Modeling reveals the phylogenetic decay of expression similarity between169

tissues170

Many studies have investigated the question of whether we expect expression to be more similar across the171

same organ in different species, or across different organs within the same species13–20. Recent studies have172

suggested that the answer to this question will depend on the phylogenetic distance separating the species173

being compared21. Here we used a modeling approach to investigate this question with respect to the ovaries174

of Hawaiian drosophilids.175

First, we determined an appropriate unit of comparison across species, based on an assessment of homol-176

ogous features between reference transcriptomes. The agalma pipeline provides a method for determining177
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homologous and orthologous sequences using an all-by-all BLAST approach to determine clusters of recipro-178

cally similar sequences (homology groups). These can then be divided into orthology groups by estimating179

gene trees and identifying maximally inclusive subtrees with no more than one sequence per taxon47. We180

compared the representation of species across homology and orthology groups, and observed that while the181

representation of homology groups increases with the number of species compared, representation of orthol-182

ogy groups decreases (Fig. S11). This is a known obstacle in comparative transcriptomics, attributed to183

many transcripts being artifactually fragmented during reference transcriptome assembly48. To reduce the184

impact of this on our downstream analyses, we averaged TPM values across all transcripts within a homol-185

ogy group for each sequenced RNA library. Principle component analysis of this average expression dataset186

showed that the first principle component divides ovary libraries from the rest, while the second compo-187

nent separates samples along an axis that largely corresponds to phylogenetic distance between species (Fig.188

S12). While this averaging approach reduces noise due to variable mapping affinities of fragments of the189

same transcript, it comes at the cost of averaging over potential variation between genuine transcripts that190

fall into the same homology group. Future analyses using improved assemblies for transcriptomes or genomes191

will likely be able to avoid this trade off and compare transcript counts directly. To test the robustness of192

results to this averaging, we also performed key analyses over a dataset of the identifiable strict orthologs.193

With average expression counts for homologous transcripts across species, we tested the degree to which194

variation across this dataset could be attributed to tissue-specific variation (here, ovary vs. carcass), species-195

specific variation, or neither (residual variation). Using the linear modeling approach adapted from Breschi196

and colleagues (2016)21, we found the proportion of variance across the dataset attributed to tissue differences197

decreased with phylogenetic distance, while the proportion attributed to species difference increased (Fig.198

3A-C). In addition, we found that, when comparing ovary and carcass tissues, the Hawaiian drosophilid clade199

encompasses the crossover point where variation across species swamps variation across tissues (crossed lines,200

Fig. 3A). When comparing across the two species from the picture-wing group included in this study, an201

average of 45.6% of the variation can be attributed to tissue differences. For the same comparison, 960 genes202

were identified as tissue-variable genes (TVGs), defined as residual variation accounting for <25% and a two-203

fold increase in variation attributed to tissues than to species (Fig. 3B, S13). In contrast, when comparing204

across all twelve Hawaiian drosophilid species studied here, 34.7% of the variation can be attributed to tissue,205

with 240 TVGs (Fig. 3B, S13). Across different clades of comparisons, the number of species-variable genes206

(SVGs) remains relatively stable (from 304 to 260, Fig. 3B).207

We then leveraged the results of this linear modeling approach across all twelve species to perform an208

additional screen for genes that are consistently upregulated in ovaries across species. We compared the209

proportion of variation explained by tissue for each homology group to the average log2 fold change from the210

results of our differential gene expression analysis (Fig 3D). This comparison allowed us to identify genes211

that fall above our threshold for TVGs that are also upregulated in the ovary (Fig 3E). This group of genes212

includes many of the same members as the core ovary genes (e.g. nanos and swallow), as well as several new213

candidates (e.g. singed).214

To test the importance of tissue identity, we repeated the same analysis comparing variation across species215

and tissues using the head in place of the ovary. Consistent with what we describe for the ovary and carcass,216

as phylogenetic distance increases the proportion of variation across tissues decreases while variation across217

species increases. In contrast to the above findings, however, for the head and carcass far less of the variation218

in gene expression can be attributed to tissue differences (Fig. S14). For these tissues, the crossover point219

between total proportion of variation occurs roughly at the distance separating the two picture-wing species.220

To verify these results were not driven by the species S. varia, which had the most distinct expression221

patterns of all species, we repeated these analyses excluding this species and recovered largely equivalent222

results (Fig. S15). To test robustness to homology group averaging, we repeated this analysis over strict223

orthologs, again recovering the same results (S16). Finally, we also compared our findings to those that224

would be recovered using a more typical pairwise approach, by repeating the linear modeling analysis on225

ovary and carcass data using every pairwise combination of the twelve species. We recovered the same trend226

of decreasing contribution of tissue-level variation with increasing phylogenetic distance. While several pairs227

of species show more variation between species than tissues, we note that not every pair, nor the average228

across pairs, captures the crossover point where variation across species overwhelms variation across tissues229
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(Fig. S17). This reflects the inherent variability between individual pairwise comparisons of species, and230

highlights the importance of phylogenetic analytical approaches on entire clades.231
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Figure 3: Linear modeling shows the proportion of variance explained by differences across
tissues and species. A, The results of a linear modeling approach to calculate expression variation for
each gene, attributed to variation across organs, species, or residual variation, as described in Breschi and
colleagues (2016)21. The average proportion of variation attributed to tissues is higher than that attributed
to species for the two picture-wing species in clade A, while the opposite is true for all twelve species in clade
D. Sample sizes are for clade A: 2,918 homology groups, clade B: 2,044, clade C: 1,239, and clade D: 1,143. B,
The number of genes, defined by homology group, classified as tissue variable genes (TVGs), species variable
genes (SVGs), or neither in each clade comparison. C, The phylogeny of the twelve species studied here,
showing the four clades compared in A-B. Scaled evolutionary distance is calculated as the relative distance
from the most recent common ancestor of Hawaiian drosophilids to extant species. D, Comparing results of
the differential gene expression approach (log2 fold change) on the x-axis to results of the modeling approach
on the y-axis (variation across tissues). Genes are colored according to TVGs and SVGs. The inset box
highlights TVGs that are upregulated in the ovary relative to the carcass. E, The same plot, now showing
only upregulated TVGs, annotated with the gene symbol from the D. melanogaster sequences in the same
homology group.
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3.3 Identifying gains and losses of ovary bias across genes and the phylogeny232

While many ovary-specific transcripts belong to the cohort of core ovary genes, on average 75.4% of transcripts233

are upregulated in the ovaries of one or several species, but not consistently across ten or more of the species234

studied here (Fig 2B-C). This is suggestive of many evolutionary gains and losses of ovary-specific expression235

of genes. We characterized the evolution of these gains and losses using an ancestral state reconstruction236

approach. First we quantified expression bias between tissues as the ratio of read counts7, then reconstructed237

the value of this continuous trait for each gene (defined using homology groups) at each node of the estimated238

species tree (Fig. S3). We then calculated the scaled change of expression bias along each branch, which239

allowed us to describe how relative expression values between tissues had changed the course of evolutionary240

time (Fig 4A). Visualizing the distribution of scaled changes by genes shows that most scaled changes are241

small and centered around zero, representing little change in gene expression bias between tissues (Fig.242

4B-C).243

Using this dataset of scaled changes across genes and branches, we identified branches for which the direction244

of tissue bias had changed (e.g. from higher expression in the ovary than in the carcass to lower, or vice245

versa). Visualizing this dataset according to branches reveals that the majority of these changes in bias are246

located on the root and terminal branches, rather than internal branches (Fig 4D-E). This is likely because247

internal branches for this rapid radiation tend to be very short; even when scaling evolutionary changes to248

branch length, it is less probable for our analysis to identify a shift to and from ovary-biased expression on249

a short branch than a long branch. Repeating the same analysis on a dataset of strict orthologs reflects the250

same pattern, indicating that this result is not an artefact of expression averaging across homology groups251

(Fig. S18).252

Visualizing the distribution of genes by ancestral and descendant values allows us to identify shifts in bias253

which represent the largest swings in expression values (Fig. 4F, points a-d). Highlighting the top two such254

shifts in both directions, we identify four example genes which acquired or lost ovary-specific expression in255

the phylogeny of Hawaiian Drosophilidae. In the case of FMRFaR and GABA, a few Hawaiian species have256

gained ovary-biased expression of these genes, while most species and the ancestral state indicate non-ovary257

bias (Fig. 4Fa-b). In the case of vilya and the unnamed gene CG9109, each shows a pattern where one258

species has lost ovary bias from a biased ancestral state (Fig. 4Fc-d).259

Repeating the same analysis using the head in place of the ovary revealed a set of evolutionary gains and260

losses in head-specific expression (Fig. S19). Identifying the top four changes in head expression shows gains261

and losses of head expression in the genes hiro, stil, Jhe, and, consistent with the ovary, vilya. In the case of262

the latter, these results may be driven by substantial changes in expression of vilya in carcass tissues across263

species, resulting in major differences in both ovary and head-biased expression.264
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Figure 4: Identifying genes that have gained and lost ovary-biased expression across the phy-
logeny. A, The phylogeny of the twelve species studied here, highlighting one example branch of the 22
for which we inferred the scaled evolutionary change in expression bias. B, The distribution of changes,
grouped by gene, for 100 randomly selected genes, defined by homology group. Each point represents one
of the 22 branches from A, with the red point corresponding to the highlighted branch from that panel.
C, The distribution, log10 transformed, of scaled genes across all branches and all genes. Changes on the
highlighted branch in red. D, The phylogeny with all 22 branches numbered. E, The distribution of changes,
grouped by branch, with random jitter on the x-axis within each group. Points colored according to the
qualitative change in bias, either from more expression in ovary than carcass to less (blue), the reverse (red),
or no change in overall bias (gray). F, The distribution of ancestral and descendant values, showing the two
quadrants that represent qualitative changes in bias. Points that represent large swings in expression within
those quadrants are labeled a-d. G, The four genes with large swings from F, showing the expression bias for
each transcript colored according to more expression in the ovary (red) or carcass (blue). Panels annotated
with the gene symbol from the D. melanogaster sequences in the same homology group, with the exception
of vilya*, which was annotated using a direct BLAST search since no D. melanogaster sequence was present
in that group.
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3.4 Genes with a strong correlation of expression evolution265

We tested the estimated evolutionary changes in expression bias for evidence of correlated expression evo-266

lution between genes. For every gene represented across all species, we performed a pairwise comparison of267

changes in expression bias, using as data points the scaled change in ovary bias on the 22 branches in the268

phylogenetic tree. This resulted in 1,306,449 pairwise measures of evolutionary correlation between genes.269

Because the number of gene pairs being compared is much larger than the number of values used to esti-270

mate correlation, this method has the potential to produce many spurious correlations7. To test the degree271

to which the correlations observed here reflect known biological interactions between genes, we compared272

these measures to reported protein and genetic interactions between genes, using the database of published273

genetic experiments in D. melanogaster, available at http://flybase.org. We found that the mean correla-274

tion coefficient for genes that are known to physically interact as proteins was higher than for genes with275

no or unknown interaction (maximum p-value=<0.001 over 100 replicates, Fig. 5A). This indicates that276

even with a relatively small number of observations, there is sufficient information in the matrix to detect277

biological signal between gene pairs. These results were calculated based on the correlation in expression278

bias between the ovary and carcass. However, following the same procedure using correlations in changes in279

head-biased expression showed no significant difference between the two groups (max. p-value=0.256, Fig.280

S20), suggesting the strength of this signal may be dependent on the tissues being compared.281

We also found that genes known to interact genetically have a significantly higher mean correlation than282

genes with no or unknown genetic interactions (unknown vs. enhancement max. p-value <0.001, unknown283

vs. suppression max. p-value=<0.001, Fig. 5B). Comparing genes with known genetic enhancement and284

suppression interactions to each other showed no significant difference (p-value=0.497). However, for genetic285

interactions, the range of correlation coefficients was higher in the group of no or unknown interactions (Fig.286

5B). This indicates that, while the average correlation of expression evolution might be higher for interaction287

partners, stronger positive and negative correlations exist between pairs of genes which do not interact, or288

for which interactions have not yet been tested.289

As evidence of this, we tested whether the network inferred based on strong correlation of expression evolution290

was consistent with known interaction partners from D. melanogaster. We selected as an example the gene291

yolk-protein gene family, which are known to be expressed in the reproductive system, among other tissues49
292

(Fig. 5C). We found eight distinct homologous gene groups, comprising 14 unique D. melanogaster parent293

genes, that had a strong evolutionary correlation with yolk-protein genes (absolute coefficient greater than294

0.825, Fig. 5D). None of these correlated genes correspond to those listed on FlyBase50 as having known295

interactions with yolk-protein genes in D. melanogaster (Fig. 5E). We consider these strong evolutionary296

correlations to be a set of new predictions about evolutionary and genetic relationships between genes which297

can be tested in wild and laboratory model species of Drosophila. The dataset of pairwise correlation298

coefficients can be visualized and interrogated at the accompanying data visualization for this manuscript299

(https://github.com/shchurch/hawaiian_fly_dataviz_2021).300
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Figure 5: Estimating pairwise correlation coefficients across genes reveals new networks of cor-
related expression evolution. A-B Comparison of the distribution of Pearson’s correlation coefficients
based on ovary-biased expression evolution between genes. Box plots indicate mean, upper and lower quar-
tiles, and 1.5x interquartile ranges. Asterisks indicate a significant t-test comparison. A, Genes with no or
unknown protein-protein interactions compared to those with reported interactions in FlyBase50 (maximum
p-value=<0.001 over 100 replicates). B, Correlation comparison between genes with no or unknown genetic
interactions and those reported to have enhancement or suppression interactions in FlyBase (unknown vs. en-
hancement max. p-value=<0.001; unknown vs. suppression max. p-value =<0.001; enhancement vs. sup-
pression p-value=0.497). C, Each point represents a scaled change in expression bias, colored by Pearson’s
correlation coefficients relative to one example gene-family, the yolk-protein genes (black points), arranged
by phylogenetic branch (numbers shown in Fig. 4D). Yellow=strong positive correlation, purple=strong
negative correlation. D, The network of strong correlation partners (absolute correlation > 0.825) with the
yolk-protein genes, colored by the direction of correlation. Stronger correlations are shown by brighter colors,
and thicker, shorter lines. Nodes are annotated with the gene symbols from the D. melanogaster sequences
from that homology group. E, The correlation between known protein-protein interaction partners50 with
the yolk-protein genes.

4 Discussion301

The results of this study show the importance of placing any comparison of gene expression across species302

in an evolutionary context. When making comparisons that involve model organsims for the study of303

development and disease, this means identifying the crossover point at which variation between species304

begins to swamp variation across the tissues or treatments in question. In such comparisons, the possibility305

that any individual gene may show a divergent pattern of expression from the model organism increases306

substantially. This study provides evidence that confirms we should expect variation in gene expression to307
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increase with the phylogenetic distance separating the species being compared. In addition, our results using308

ovary and head expression data show that our expectation should also depend on the identity of the tissues309

being compared. Our dataset demonstrates that for some tissues, like the fly head, this crossover point may310

be met even when comparing between two relatively closely related species.311

Despite substantial variation across species, we identified core suites of ovary- and head-expressed genes312

that have maintained conservation of expression patterns over millions of years of evolution. The core313

ovary genes include some of the most well-studied genes in relation to D. melanogaster oogenesis, such as314

nanos and oskar, as well as many genes that have yet to be studied in depth (e.g. unnamed genes such315

as CG3430 ). We provide the full list of core ovary and head genes as a reference against which future316

genetic studies may be informed and compared (Tables S6-S7). Furthermore, the existence of these suites of317

genes suggests that equivalent groups are likely to exist within the many gene expression atlases currently318

being published51,52. New technologies such as single-cell RNA sequencing that use global signatures of gene319

expression to identify cells are ripe for interspecific comparisons that may reveal evolutionarily conserved320

gene modules53. Developing robust comparative methods for comparing these atlases across species has321

the potential to reveal ancestral expression patterns in cells and organs, as well as pinpoint important322

evolutionary shifts in expression regulation.323

Our results indicate that genes known to interact, both physically as the proteins they encode and through324

genetic enhancement and suppression, likely experience more correlated changes in expression than would325

be expected for genes chosen at random. However, we also find the difference in mean correlation between326

these groups to be relatively small, and dependent on the context of the tissue in question. One possible327

explanation for this finding is that interactions between genes with strong correlations of expression evolution328

have yet to be described. We provide an interactive tool to explore highly correlated genes that can inform329

future genetic studies in D. melanogaster and other related species (https://github.com/shchurch/hawaiian_330

fly_dataviz_2021). Another possibility we consider likely is that interactions between genes represent only331

one factor among many that dictate the probability of correlated changes in expression. We hypothesize332

that other features, such as shared regulatory or chromatin architecture, will also influence evolutionary333

correlation of expression.334

As more studies undertake phylogenetic comparisons of functional genomic data, new factors that influence335

the evolutionary associations between genes are likely to be revealed7. The strength of these phylogenetic336

comparisons will depend in part on comparing across a sufficient number of taxa such that there are multiple337

branches on which to calculate and compare evolutionary changes. However, even as functional genomic data338

become more accessible for more species, the number of features being compared (e.g. thousands of genes) will339

likely continue to outnumber the number of evolutionary observations (e.g. changes along branches)7. One340

encouraging result from this study is that, using our matrix of gene expression changes along 22 branches, we341

find sufficient information to detect the biological signal associated with physical and genetic interactions.342

While this is true, we assume that some fraction of the correlations that we report here represent false343

positives, and that the strength of correlation of these genes would decrease with the addition of more taxa344

to the comparison. For this reason we present the correlation matrix as a set of hypotheses to be tested in345

future studies using additional lines of evidence.346

One outstanding challenge in expression evolution is the quality of the references available against which347

RNA reads can be mapped48. In this study we account for the statistical noise in our data by averaging348

expression values over groups of homologous genes, as identified by sequence similarity to high quality refer-349

ence genomes. This approach has the advantage of accounting for problems associated with fragmentation of350

genes in transcriptome assembly. However, it comes at the cost of averaging over possible biological variation351

in expression between genes from the same gene family. The strong concordance of our results with published352

records from D. melanogaster suggests that the approach we have used here is robust for our dataset. How-353

ever, as the quality and accessibility of genomes from diverse species continue to increase, future studies will354

likely be able to compare directly between orthologous genes without needing to account for fragmentation.355

For those future studies, a phylogenetic comparative approach like the one used here and elsewhere8 can356

serve as an analytical framework to move expression comparisons beyond pairwise comparisons.357

One goal of evolutionary developmental biology is to identify changes in developmental mechanisms that358

underlie phenotypic differences12. Many studies approach this by identifying phenotypic variation between359
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species and then searching for differences in gene content or expression using one or several emerging model360

organisms in the lab12. To narrow down the field of search, this approach often requires _a priori__361

knowledge of candidate genes, gained from developmental research in related models or other methods of362

filtering the genome. Furthermore, because these approaches usually lack global measurements of gene363

expression variation across species, identifying an expression difference does not always constitute a smoking364

gun6. For example, observing a difference in candidate gene expression between taxa would not be unexpected365

if we frequently observe differences of that magnitude between genes chosen at random. An alternative366

approach, as demonstrated here, is to characterize all the evolutionary changes in expression across the367

transcriptome, and then identify the changes that are significantly associated with traits of interest9. As368

expression data become available from an ever wider array of species, this “evolutionary screen” approach369

becomes increasingly possible. One advantage of this approach is that it may reveal associations that would370

otherwise escape detection when comparisons are centered on model organisms; for example, when genes,371

traits, or processes happen to not be present in our laboratory model species10. By leveraging phylogenetic372

comparative methods on high-dimensional functional genomic data, the objective of connecting genomic373

variation to developmental mechanisms and phenotypic differences will be accelerated.374

5 Methods375

5.1 Field collection376

Specimens used for transcriptome sampling were caught on the Hawaiian islands between May of 2016 and377

May of 2017. Specimens were caught using a combination of net sweeping and fermented banana-mushroom378

baits in various field sites on the Hawaiian islands of Kaua’i and Hawai’i (see Table S1 for locality data).379

Field collections were performed under permits issued by the following: Hawai’i Department of Land and380

Natural Resources, Hawai’i Island Forest Reserves, Kaua’i Island Forest Reserves, Koke’e State Park, and381

Hawai’i Volcanoes National Park. Adult flies were maintained in the field on vials with sugar media and kept382

at cool temperatures. They were transported alive back to Cambridge, MA where they were maintained on383

standard Drosophila media at 18°C. Samples were processed for RNA extraction between 5 and 31 days after384

collecting them live in the field (average 10.8 days, see Table S1). One species, Scaptomyza varia, was caught385

in the field before the adult stage by sampling rotting Clermontia sp. flowers (the oviposition substrate).386

For this species, male and female adult flies emerged in the lab, and were kept together until sampled for387

RNA extraction.388

5.2 Species identification389

Species were identified using dichotomous keys54–58, when possible. Many keys for Hawaiian Drosophili-390

dae are written focusing on male specific characters (e.g. sexually dimorphic features or male genitalia)56.391

Therefore, for species where females could not be unambiguously identified by morphology, we verified their392

identity using DNA barcoding. When males were caught from the same location, we identified males to393

species using dichotomous keys and matched their barcode sequences to females included in our study. We394

also matched barcodes from collected females to sequences previously uploaded to NCBI59–61.395

The following dichotomous keys were used to identify species: for picture-wing males and females, Magnacca396

and Price (2012)54; for antopocerus males, Hardy (1977)55; for Scaptomyza, Hackman (1959)56; for species397

in the mimica subgroup of MM, O’Grady and colleagues (2003)57; for other miscellaneous species, Hardy398

(1965)58.399

For DNA barcoding, DNA was extracted from one or two legs from male specimens using the Qiagen DNeasy400

blood and tissue extraction kit, or from the DNA of females isolated during RNA extraction (see below). We401

amplified and sequenced the cytochrome oxidase I (COI), II (COII) and 16S rRNA genes using the primers402

and protocols described in Sarikaya and colleagues (2019)40.403
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For barcode matching, we aligned sequences using MAFFT, version v7.47562, and assembled gene trees404

using RAxML, version 8.2.963. Definitive matches were considered when sequences for females formed a405

monophyletic clade with reference males or reference sequences from NCBI; see Table S2.406

Female D. primaeva, D. macrothrix, D. sproati, and D. picticornis could be identified unambiguously using407

dichotomous keys. Female D. atroscutellata, D. nanella, D. mimica, D. tanythrix, S. cyrtandrae, S. varipicta,408

and S. varia were identified by matching barcodes to reference sequences from NCBI, reference males, or409

both. For the female haleakalae fly used in this study, no male flies were caught in the same location as these410

individuals, and no other sequences for haleakalae males on NCBI were an exact match with this species.411

Given its similar appearance to Drosophila dives, we are referring to it here as Drosophila cf dives, and we412

await further molecular and taxonomic studies of this group that will resolve its identity.413

5.3 Sampling strategy414

The target number of mature, healthy female flies per species was four, with three intended for dissection415

and species-specific expression libraries and one intended as a whole-body reference library (Fig. 1). When416

four such individuals were not available, a reference library was assembled by combining the tissue-specific417

libraries from one of the other individuals. This was the case for the following species: D. sproati, which418

was dissected and had RNA extracted separately from the head, ovaries, and carcass, with RNA combined419

prior to library preparation; and S. varia, S. cyrtandrae and D. cf dives, for which RNA was extracted and420

libraries prepared for separate tissues, and raw reads were combined after sequencing.421

For the other eight species, sufficient individual females were available such that reads for transcriptome422

assembly were sequenced from a separate individual. In these cases one entire female fly was dissected and423

photographed to assess whether vitellogenic eggs were present in the ovary, and all tissues were combined in424

the same tube and used for RNA extraction. Library preparation failed for one individual D. atroscutellata425

fly, as well as two tissue-specific libraries: one head sample from D. mimica, and one head sample from D.426

sproati.427

5.4 Dissection and RNA sequencing428

Female flies were anesthetized in 100% ethanol and were dissected in a 1x phosphate-buffered saline solution.429

The ovary was separated from the abdomen, and the head was separated from the carcass. Photographs430

of each tissue were taken, and tissues were moved to pre-frozen eppendorf tubes, kept in dry ice, and431

immediately transported to a -80°C freezer. Dissections were performed as quickly as possible to prevent432

RNA degradation. Samples were stored at -80°C for between 90 and 336 days before RNA extraction (average433

281.9 days, see Table S1).434

RNA was extracted from frozen samples using the standard TRIzol protocol (http://tools.thermofisher.435

com/content/sfs/manuals/trizol_reagent.pdf). One mL of TRIzol was added to each frozen sample, which436

were then homogenized using a sterile motorized mortar. The recommended protocol was followed without437

modifications, using 10 µg of glycogen, and resuspending in 20µL RNAse-free water-EDTA-SDS solution.438

DNA for subsequent barcoding was also extracted using the phenol-chloroform phase saved from the RNA439

extraction.440

RNA concentration was checked using a Qubit fluorometer, and integrity was assessed with a Agilent TapeS-441

tation 4200. RNA libraries were prepared following the PrepX polyA mRNA Isolation kit and the PrepX442

RNA-Seq for Illumina Library kit, using the 48 sample protocol on an Apollo 324 liquid handling robot in443

the Harvard University Bauer Core Facilities. Final library concentration and integrity were again assessed444

using the QUbit and TapeStation protocols.445

Samples intended for transcriptome assembly were sequenced on an Illumina HiSeq 2500, using the standard446

version 4 protocol, at 125 base pairs of paired-end reads. Samples intended for tissue-specific expression447

analyses were sequenced on an Illumina NextSeq 500, using a high output flow cell, at 75 base pairs of448

single-end reads. A table of total read counts for each library can be found in Tables S3-S4. To account449
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for any possible batch effects across separate rounds of sequencing, each sequencing run was performed with450

one or several overlapping samples. Principle component analysis of these libraries showed variation between451

sequencing runs to be negligible relative to variation between tissue and individual (see Results and Fig.452

S7).453

5.5 Transcriptome assembling and expression mapping454

Transcriptome assembly and expression mapping was performed using the agalma pipeline, version 2.0.047.455

For the twelve reference transcriptomes, reads from separate rounds of sequencing were concatenated and456

inserted into the agalma catalog. Further details of transcriptome assembly and homology assessment are457

included in our previous manuscript44.458

Each tissue-specific expression library was mapped to the corresponding reference transcriptome using the459

‘expression’ pipeline in agalma, which uses the software RSEM to estimate gene and isoform count levels460

from RNAseq data64. The agalma pipeline also includes steps to catalog the species, tissue type, and run461

information, which were exported as a single JavaScript object notation (JSON) file. This file is available in462

the GitHub repository in the directory analysis/data.463

5.6 Phylogenetic analysis464

The phylogenetic methods for inferring homology, orthology, and estimating gene and species trees are the465

same as those described in our previous manuscript44. Genetrees were additionally annotated with the466

software Phyldog65.467

5.7 Annotating transcripts by sequence similarity468

We leveraged the close relationship of these species to species of Drosophila with well-annotated genomes to469

annotate the transcripts considered here. For each transcript in the reference transcriptome, we performed470

four comparisons of sequence similarity using local BLAST: [1] comparing nucleotide transcript sequences to471

nucleotide sequences from D. melanogaster (blastn), [2] comparing translated nucleotide sequences to protein472

sequences of D. melanoagster (blastx), [3] comparing nucleotide sequences to a database of nucleotide se-473

quences from D. melanogaster, D. virilis, and D. grimshawi (blastx), and [4] comparing translated nucleotide474

sequences to a database of protein sequences from the same three species (blastn). For downstream analyses,475

we prioritized annotations from the second comparison, but we provide all sequence similarity reports in the476

GitHub repository under the directory analysis/BLAST.477

To annotate homology groups as defined by the homology inference step of agalma, we extracted the name478

and sequence ID from all D. melanogaster sequences in the group.479

5.8 Normalization and differential gene expression480

Transcript count tables were imported into R using the agalmar package, version 0.0.0.9000. Differential gene481

expression analysis was performed using the package DESeq2, version 1.34.0. For these analyses we used only482

one sequencing run per library, thereby excluding duplicate sequencing runs. Analyses of differential gene483

expression were calculated using the default approaches in DESeq2 for estimating size factors, dispersions,484

and calculating log2 fold-change and p-values (Fig. S2A). Both individual and tissue were considered in the485

design formula. Transcripts were considered differentially expressed at a significance threshold of 0.01.486

We identified a cohort of core ovary-specific genes by first identifying a parent gene for each transcript using487

a sequence similarity search against D. melanogaster (Fig. S2A). We then identified parent genes that had488

at least one transcript significantly differentially upregulated in the ovary of more than ten of the twelve489

species. Because multiple transcripts may match to a single parent-gene, core ovary-specific parent genes490
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may include transcripts that are also not differentially upregulated in the ovary, as long as at least one491

transcript is for more than ten out of twelve species. This may be the case when transcripts are artificially492

fragmented during reference transcriptome assembly, or when sequence-similar transcripts have biologically493

distinct expression levels.494

5.9 Comparison of expression to D. melanogaster495

We compared our differential gene expression results to a reference database of tissue expression from D.496

melanogaster, known as the FlyAtlas229. We downloaded this reference in July of 2021, from http://motif.497

gla.ac.uk/downloads/FlyAtlas2_21.04.18.sql. This dataset provides data on transcript abundance and tissue498

enrichment, including for female ovaries. Tissue enrichment is calculated using the same methods as in the499

FlyAtlas2 web browser, defined as the fragments per kilobase of transcript per million mapped reads (FPKM)500

for a given tissue divided by that value for the reference tissue (here, female whole body), with a pseudocount501

of two counts added to empty values to avoid division by zero. We considered a FlyAtlas gene to be enriched502

in the ovary, comparable to our data, if the ovary was the maximum enrichment value across all tissues503

excluding the head, brain, and eye tissues, as these were separated in our RNASeq procedure (Fig. S2A).504

We considered a FlyAtlas gene to be head enriched if either the head, brain, or eye were the maximum505

enrichment value, excluding the ovary.506

5.10 Transforming data into comparable measurements of expression across507

species508

Transcript counts are reported in transcripts per million (TPM), but this measurement is known to not509

be directly comparable across species due to differences in reference transcriptome size7,8. Therefore, we510

normalized TPM by species using the procedure described by Munro and colleagues (2021)8, where TPM511

values are multiplied by the number of genes in the reference, and this value is divided by 104 (Fig. S2B).512

TPM10k values were natural-log transformed.513

An additional challenge when working with reference transcriptomes is the presence of fragmented transcripts514

created during the assembly process48. This fragmentation can result in noise in estimating the amount of515

transcript as reads are differentially mapped to these fragments. To reduce the impact of this noise on our516

analysis, we undertook a novel approach where transcripts were grouped according to inferred homology517

as estimated by the agalma pipeline using an all-by-all BLAST approach (Fig. S2B). For each sequenced518

library, we then found the average count value across all transcripts from the same homology group (see519

Table S5 for statistics on homology group composition). For each species-tissue pair, we then averaged this520

value across all biological replicates, here replicate individuals.521

5.11 Linear modeling522

We performed linear modeling to calculate the relative contribution of tissue- and species-level differences523

to variation in gene expression (Fig. S2B), following the approach of Breschi and colleagues (2016)21. These524

analyses were performed separately on datasets of ovary vs. carcass and head vs. carcass expression. Using525

the ANOVA script provided at https://github.com/abreschi/Rscripts/blob/master/anova.R, we built526

a linear model for each gene that accounts for the contribution of the organ, species, and any residual error.527

We then calculated the relative proportion of each factor divided by the total sum of squares for all factors.528

We identified groups of highly variable genes, using the same metrics defined by Breschi and colleagues529

(2016)21, as any gene for which either tissues or species explains at least 75% of the variance. Species530

variable genes (SVGs) were defined as highly variable genes whose relative variation was two-fold greater531

across species than tissues (vice-versa for tissue variable genes, TVGs).532

We performed these linear model analyses over four nested clades: a clade containing two picture-wing species533

(D. sproati and D. macrothrix); a clade containing the four picture-wing-Nudidrosophila-Ateledrosophila534
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species in this study; a clade containing the nine Hawaiian Drosophila species in this study; and a clade of535

all 12 Hawaiian Drosophila and Scaptomyza species in this study. We repeated these analyses excluding the536

species S. varia, which showed the lowest similarity in expression to the other eleven species. To compare537

our analysis to the more typical approach undertaken, we also performed these analyses on all pairwise538

combinations of these twelve species.539

5.12 Reconstructing evolutionary history of differential expression540

We calculated tissue bias as the ratio of counts in TPM10k for each tissue (ovary and head) to the reference541

tissue7, here the carcass (Fig. S3A). We subsequently performed the same transformation steps described542

above, averaging over ratios from the same homology group and across biological replicates, to calculate543

average expression bias per homology group per library. To avoid division by zero, we added a pseudocount544

of 0.01 to each TPM10k value. Ratio values were natural-log transformed so that positive values indicate545

enrichment in the tissue of interest relative to the reference tissue, negative values indicate the opposite, and546

values of zero indicate equivalent expression.547

We reconstructed the evolutionary history of tissue bias for each homology group using the species tree548

published in Church and Extavour, 202144, based on the same reference transcriptome data (Fig. S2C).549

First, we calibrated the tree estimated using IQtree (Fig 1A of that publication) to be ultrametric using the550

R function chronos in the package ape, version 5.6.2 (using a correlated model and a lambda value of 1).551

We then subset this tree to only include tips for which expression data was available, and annotated this552

tree to be able to identify specific branches and nodes in ancestral state reconstruction analyses.553

Ancestral expression bias values were estimated with the R package Rphylopars, version 0.3.8, using the fast554

ancestral state reconstruction algorithm based on Ho and Ané, 201466 (Fig. S3A). Tips for which expression555

data were not available were dropped from each reconstruction, and ancestral state reconstruction was only556

performed when more than three tips had data. Following ancestral state reconstruction, we calculated the557

scaled change as the difference between the value at the ancestral and descendant nodes, divided by the558

length of the branch. Scaled changes were compared between homology groups by identifying equivalent559

branches as those that share the same parent and child node, following the procedure described in Munro560

and colleagues (2021)8. We identified qualitative changes in expression bias as changes that resulted in a561

ratio changing from negative to positive values or vice versa.562

5.13 Estimating correlated evolution of expression across genes563

For each homology group that had representation across all twelve species, we calculated pairwise Pear-564

son’s correlation coefficients by comparing scaled changes in expression bias across equivalent branches (Fig.565

S3B). For the twelve-species phylogeny, this meant each correlation coefficient was calculated using 22 in-566

dividual data points (branches). This resulted in a correlation matrix of 1,306,449 pairwise comparisons of567

evolutionary correlation.568

We compared this correlation network to data on protein interactions and genetic interactions downloaded569

from http://flybase.org in July, 2021. These data include pairwise observations of genetic enhancement570

and suppression interactions between parent genes in D. melanogaster. These interactions were matched to571

pairwise correlation coefficients by identifying the corresponding homology group for each D. melanogaster572

parent gene ID (more than one parent gene may fall into the same homology group).573

We tested whether correlation coefficients for known physical and genetic interaction partners were higher574

than in genes with unknown interactions using two-sample t-tests. The sample size for physical interaction575

partners was 1,953, for genetic enhancement was 280, and for genetic supression was 497. In each test we576

compared the coefficients for either enhancement or suppression interactions to a random sample of 5000577

coefficients for which interactions are unknown. We repeated these t-tests 100 times using different random578

samples, and report the maximum p-value observed. We also compared the distribution of enhancement and579

suppression interaction coefficients to each other using a single t-test.580
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Strong correlations for the visualization of co-evolutionary networks were selected using a threshold correla-581

tion coefficient of 0.825.582

6 Data Availability583

All data are available at GitHub, under the repository shchurch/hawaiian_drosophilidae_expression_2021,584

commit 67d8e6f. The correlation matrix can be interactively visualized and queried at the accompanying585

data visualization for this paper (https://github.com/shchurch/hawaiian_fly_dataviz_2021). Raw RNA586

sequencing data are available at the Sequence Read Archive of the National Center for Biotechnology Informa-587

tion (NCBI), under BioProject PRJNA731506. Assembled transcriptomes and DNA barcode sequences are588

available at GitHub, under the repository http://github.com/shchurch/hawaiian_drosophilidae_phylogeny_2021,589

commit b12cbb10.590

7 Code Availability591

All code and results for this manuscript are available at GitHub, under the repository shchurch/hawaiian_drosophilidae_expression_2021,592

commit 67d8e6f. The code to perform all agalma commands was performed in clean anaconda environment,593

installed following the instructions at https://bitbucket.org/caseywdunn/agalma. All R commands were594

performed with a fresh install of R, and the session information including all package versions is available595

in the GitHub repository under the file r_session_info.txt. The code to generate all plots as well as the596

text of this manuscript is available in several R scripts and Rmarkdown files at the same location.597
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