

AP2/ERF transcription factor NbERF-IX-33 is involved in the regulation of phytoalexin production for the resistance of *Nicotiana benthamiana* to *Phytophthora infestans*

1 Sayaka Imano¹, Mayuka Fushimi¹, Maurizio Camagna¹, Akiko Tsuyama-Koike¹, Hitoshi
2 Mori¹, Akira Ashida¹, Aiko Tanaka¹, Ikuo Sato¹, Sotaro Chiba¹, Kazuhito Kawakita¹, Makoto
3 Ojika¹, Daigo Takemoto^{1*}

4 ¹Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya, 464-8601,
5 Japan

6

7 *** Correspondence:**

8 Daigo Takemoto
9 dtakemo@agr.nagoya-u.ac.jp

10

11 **Keywords:** Capsidiol, ERF, Ethylene, *Nicotiana benthamiana*, Phytoalexin, *Phytophthora*
12 *infestans*.

13

14 ABSTRACT

15 Plants recognize molecular patterns unique to a certain group of microbes to induce effective
16 resistance mechanisms. Elicitins are secretory proteins produced by plant pathogenic oomycete
17 genera including *Phytophthora* and *Pythium*. Treatment of INF1 (an elicitin produced by *P.*
18 *infestans*) induces a series of defense responses in *Nicotiana* species, including reactive oxygen
19 species (ROS) production, transient induction of ethylene production, hypersensitive cell death and
20 accumulation of the sesquiterpenoid phytoalexin capsidiol. In this study, we analyzed the expression
21 profiles of *N. benthamiana* genes after INF1 treatment by RNAseq analysis. Based on their
22 expression patterns, *N. benthamiana* genes were categorized into 20 clusters and 4,761 (8.3%) out of
23 57,140 genes were assigned to the clusters for INF1-induced genes. All genes encoding enzymes
24 dedicated to capsidiol production, 5-*epi*-aristolochene (EA) synthase (*NbEAS*, 10 copies) and EA
25 dehydrogenase (*NbEAH*, 6 copies), and some genes for ethylene production, such as 1-
26 aminocyclopropane 1-carboxylate (ACC) synthase (*NbACS*) and ACC oxidase (*NbACO*), were
27 significantly upregulated by INF1 treatment. Analysis of *NbEAS1* and *NbEAS4* promoters revealed
28 that AGACGCC (GCC box-like motif) is the essential cis-element required for INF1-induced
29 expression of *NbEAS* genes. Given that the GCC box is known to be targeted by ERF (ethylene-
30 responsive factor) transcription factors, we created a complete list of *N. benthamiana* genes encoding
31 AP2/ERF family transcription factors, and identified 45 out of 337 AP2/ERF genes in the clusters for
32 INF1-induced genes. Among INF1-induced *NbERF* genes, silencing of *NbERF-IX-33* compromised
33 resistance against *P. infestans* and INF1-induced production of capsidiol. Recombinant NbERF-IX-
34 33 protein can bind to the promoter sequence of *NbEAS4*, suggesting that NbERF-IX-33 is a
35 transcription factor directly regulating the expression of genes for phytoalexin production.

36
37
38
39
40
41
42

43 INTRODUCTION

44

45 Plants recognize a variety of molecules derived from pathogens, including components of
46 microbial cell walls, membranes and secreted proteins (Ranf, 2017; Monjil et al., 2021). Elicitins are
47 small secretory proteins produced by plant pathogenic oomycete genera such as *Phytophthora*,
48 *Pythium* and *Hyaloperonospora* (Tyler, 2002; Takemoto et al., 2005; Cabral et al., 2011). Treatment
49 with elicitors induces typical defense responses such as hypersensitive cell death, expression of *PR*
50 genes and production of phytoalexins (Milat et al., 1991; Bonnet et al., 1996; Matsukawa et al., 2013).
51 Reports of plant species and cultivars distinctly responsive to elicitors include *Nicotiana* spp., some
52 cultivars of *Brassica rapa* and *Raphanus sativus*, and *Solanum microdontum* (Bonnet et al., 1996;
53 Takemoto et al., 2005; Du et al., 2015). Elicitins from different *Phytophthora* species elicit defense
54 responses in these plants responsive to elicitor, indicating that responsive plants recognize elicitors as
55 a molecular pattern of oomycete pathogens. The most virulent isolates of *Phytophthora parasitica*
56 (syn. *P. nicotianae*) have lost the production of canonical elicitors, or downregulate the expression of
57 the elicitor gene during infection (Ricci et al., 1992; Colas et al., 2001), indicating that the
58 downregulation of elicitor represents a strategy for the pathogen to avoid recognition by the host
59 plant. Elicitins are considered as an essential factor for the reproduction of *Phytophthora* and
60 *Pythium* species (Blein et al., 2002). Elicitins contain a hydrophobic pocket similar to a lipid transfer
61 protein and can bind to phytosterols to take up sterols from plant plasma membranes (Boissy et al.,
62 1996; Mikes et al., 1998). Procuring sterols from the plant plasma membrane may be the primary
63 function of elicitors, which could explain why elicitors are essential for reproduction, as
64 *Phytophthora* and *Pythium* species are unable to produce sterols themselves (Hendrix, 1970).

65 Potato late blight caused by *Phytophthora infestans* is one of the most devastating and
66 economically important plant diseases. *P. infestans* was the causal agent of the Irish potato famine in
67 the 1840s, and even in present times, worldwide yield losses caused by this pathogen exceed \$6
68 billion per year (Haverkort et al., 2008). *P. infestans* has at least six genes for elicitors (Jiang et al.,
69 2006), and INF1 is the most abundantly produced elicitor. Although INF1 treatment does not elicit a
70 noticeable defense response in most *Solanum* species, including potato (*S. tuberosum*), a receptor-
71 like protein ELR was isolated from the wild potato *S. microdontum*, which is able to recognize INF1
72 and induce a defense response (Du et al., 2015). Recognition of INF1 is important for the non-host
73 resistance of *Nicotiana benthamiana* to *P. infestans*. Gene silencing of *inf1* in *P. infestans* enhanced
74 the virulence of the pathogen on *N. benthamiana* (Kamoun et al., 1998), suggesting that recognition
75 of INF1 is essential for the defense induction in *N. benthamiana* against *P. infestans*. However, in
76 contrast to *S. microdontum*, the gene for the recognition of INF1 has not yet been identified in *N.*
77 *benthamiana*.

78 *N. benthamiana* is an ideal model host plant to study the molecular mechanisms underlying non-
79 host resistance of Solanaceae plants against *P. infestans*. Previously, we performed virus-induced
80 gene silencing (VIGS)-based screenings to isolate genes essential for the resistance of *N.*
81 *benthamiana* against *P. infestans* (Matsukawa et al., 2013; Ohtsu et al., 2014; Shibata et al., 2016;
82 Takemoto et al., 2018; Mizuno et al., 2019a). So far, thirty-three genes have been identified from
83 approx. 3,000 randomly gene-silenced plants as the essential genes for full resistance of *N.*
84 *benthamiana* against *P. infestans*. Besides random gene silencing, *N. benthamiana* can also readily
85 be used for targeted gene-silencing to further examine the involvement of homologs of known
86 defense-related genes in the resistance to *P. infestans* (Shibata et al., 2010, 2011, 2016).

87 A major group of genes isolated from the VIGS screening are genes coding for enzymes in the
88 mevalonate (MVA) pathway, for the production of sterols and a wide variety of isoprenoid-derived
89 secondary metabolites (Shibata et al., 2016). In addition, silencing of genes for *NbEAS* (5-*epi-*
90 *aristolochene synthase*) and *NbEAH* (5-*epi-aristolochene dihydroxylase*), encoding the enzymes
91 dedicated to the production of the sesquiterpenoid phytoalexin capsidiol, compromised resistance of

92 *N. benthamiana* to *P. infestans*. Six genes related to ethylene biosynthesis were also isolated as
93 essential genes for the resistance of *N. benthamiana* against *P. infestans*. Expression of *NbEAS* and
94 *NbEAH* genes was induced by the treatment with ethylene, and suppressed by gene silencing of
95 *NbEIN2*, a central regulator of ethylene signaling, indicating that phytoalexin production is regulated
96 by ethylene in *N. benthamiana* (Shibata et al., 2010, 2016; Ohtsu et al., 2014). However, the detailed
97 mechanism of how ethylene signaling regulates the genes for phytoalexin production in *N.*
98 *benthamiana* has not been fully elucidated.

99 In a previous study, we performed RNAseq analysis of *N. benthamiana* treated with INF1 at a
100 single time point (24 h after treatment, Rin et al., 2020). While these findings were insightful, they
101 merely represent a single snapshot and are therefore insufficient to capture the dynamic expression
102 processes during pathogen defense. In the present study, we performed RNAseq analysis of INF1
103 elicited *N. benthamiana* for various time points to obtain more detailed expression profiles of the
104 genes involved in defense response. The activity of *NbEAS* gene promoters was analyzed to identify
105 the cis-acting element essential for the INF1-induced expression of *NbEAS* genes. Moreover, we
106 created a complete catalog of the AP2/ERF (APETALA 2/ethylene-responsive element binding
107 factor) transcription factor genes for *N. benthamiana* and analyzed their expression profiles to
108 identify the transcription factor directly regulating the expression of *NbEAS* genes.
109
110

111 MATERIALS AND METHODS

113 Biological Materials, Growth Conditions, Inoculation and Treatment

114 *N. benthamiana* line SNPB-A5 (Shibata et al., 2016) was grown in a growth room at 23°C with 16
115 h of light per day. *P. infestans* isolate 08YD1 (Shibata et al., 2010) was maintained on rye-media at
116 20°C in the dark. Preparation of zoospore suspension of *P. infestans* and inoculation of *N.*
117 *benthamiana* leaves (approx. 45 days old) with a zoospore suspension of *P. infestans* was performed
118 as described previously (Shibata et al., 2010). INF1 elicitor was prepared from *Escherichia coli*
119 (strain DH5 α) carrying an expression vector for INF1, pFB53, as previously reported (Kamoun et al.,
120 1997; Shibata et al., 2010). *N. benthamiana* leaves were treated with 150 nM INF1 solution as
121 previously described (Shibata et al., 2010).
122

123 Measurement of Reactive Oxygen Species (ROS) Production.

124 The relative intensity of ROS generation was determined by counting photons from L-012-
125 mediated chemiluminescence. For the detection of ROS production at early time points (for Figure
126 1A), *N. benthamiana* leaf discs (4 mm in diameter) were excised with a cork borer and floated on 100
127 μ l distilled water in a 96-well microplate (Nunc 96F microwell white polystyrene plate, Thermo
128 Fisher Scientific, Waltham, MA, USA) overnight in a growth chamber (23°C). Just before the
129 measurement, water in each well was replaced with 50 μ l of water or 150 nM INF1 containing 1 mM
130 L-012 (Wako Pure Chemical, Osaka, Japan). Chemiluminescence was measured by a multiplate
131 reader (TriStar LB941; Berthold Technologies, Bad Wildbad, Germany). For the detection of ROS
132 production at relatively later time points (for Figure 1B), *N. benthamiana* leaves were infiltrated with
133 water or 150 nM INF1 and incubated in a growth room at 23°C, and 0.5 mM L-012 was allowed to
134 infiltrate to the intercellular space of leaves before the measurement. ROS production was measured
135 as chemiluminescence using Lumino Graph II EM (ATTO, Tokyo, Japan).
136

137 Ion Leakage Assay

138 The severity of cell death induced by INF1 treatment was quantified by Ion leakage assay as
139 previously described (Mizuno et al., 2019b). Four leaf disks (5 mm diameter) of *N. benthamiana*

140 treated with water or 150 nM INF1 were floated on 1 ml water under light condition for 6 h. Ion
141 conductivity was measured by LAQUAtwin compact conductivity meter (Horiba, Kyoto, Japan).
142

143 **Quantitative Analysis of Phytoalexin Production by Liquid Chromatography (LC)**

144 For the quantification of phytoalexins shown in Figure 1C, leaves of *N. benthamiana* (50 mg, fresh
145 weight) treated with elicitor were soaked in 1.5 ml ethyl acetate with gentle shaking for an hour.
146 After the evaporation of ethyl acetate, the dried substances were redissolved in 100 μ l of 1:1
147 acetonitrile: water (v/v) and produced phytoalexins were measured by LC/MS (Accurate-Mass Q-
148 TOF LC/MS 6520, Agilent Technologies, Santa Clara, CA, USA) with ODS column Cadenza CD-
149 C18, 75 x 2 mm (Imtakt, Kyoto, Japan). For the quantification of phytoalexins shown in Figure 8C,
150 extraction and quantification of capsidiol were performed as previously described (Matsukawa et al.,
151 2013).
152

153 **RNA-seq Analysis and Clustering of *N. benthamiana* Genes**

154 Total RNA was extracted from *N. benthamiana* leaves using the RNeasy Plant Mini Kit
155 (QIAGEN, Hilden, Germany). Libraries were constructed using KAPA mRNA Capture Kit (Roche
156 Diagnostics, Tokyo, Japan) and MGIeasy RNA Directional Library Prep Set (MGI, Shenzhen,
157 China), and sequenced on DNBSEQ-G400RS (MGI) with 150 bp paired-end protocol. The RNA-seq
158 reads were filtered using trim-galore v.0.6.6 (Martin, 2011, bioinformatics.babraham.ac.uk) and
159 mapped to the *N. benthamiana* genome (ver. 1.0.1, <https://solgenomics.net>, Bombarely et al., 2012)
160 using HISAT2 v.2.2.1 (Kim et al., 2019) and assembled via StringTie v.2.1.7 (Kovaka et al., 2019).
161 Significant differential expression was determined using DESeq2 v.1.32.0 (Love et al., 2014). All
162 software used during RNA-seq analysis was run with default settings. For the clustering of *N.*
163 *benthamiana* genes, K-means clustering was performed using TimeSeriesKMeans from the tslearn
164 (v.0.5.2) Python package (k=20). Before clustering, the log2-fold expressions for each gene were pre-
165 processed, so that the mean expression of each time series equaled 0. RNA-seq data reported in this
166 work are available in GenBank under the accession number DRA013037.
167

168 **Quantitative Analysis of Ethylene Production by Gas Chromatography (GC)**

169 Ethylene production was quantified as previously described (Matsukawa et al., 2013). Leaf disks
170 (10 mm in diameter) of *N. benthamiana* were excised with a cork borer and placed in a 5-ml GC vial
171 sealed with a rubber plunger. After 3 h of incubation, a 1-ml air sample in the vial was collected
172 using a glass syringe. The quantity of ethylene in the collected air was measured using a gas
173 chromatograph equipped with a flame thermionic detector (GC-353, GL Sciences, Tokyo, Japan) and
174 CP-Permabond Q column (Varian Inc., Middelburg, Netherlands). GC was performed with column
175 temperature at 50°C, injection temperature at 120°C, and detector temperature at 150°C using N₂ as
176 the carrier gas.
177

178 **Construction of Vectors and Transformation of *Agrobacterium tumefaciens***

179 Base vectors, primer sets and templates for the PCR amplification of DNA fragments for vector
180 construction are listed in Supplementary Table 1. Sequences of primers used for the construction of
181 vectors are listed in Supplementary Table 2. Gene fragments were amplified using PrimeStar HS
182 DNA polymerase (Takara Bio, Kusatsu, Japan) and cloned into the vector using In-Fusion HD
183 Cloning Kit (Takara Bio). Gene fragments in pTV00 vectors for VIGS induction were assessed using
184 the SGN VIGS tool (Fernandez-Pozo et al., 2015) to exclude unexpected off-target effects. Vectors
185 for transient expression or VIGS were transformed into *A. tumefaciens* (strain C58C1) by
186 electroporation with a MicroPulser electroporator (Bio-Rad, Hercules, CA, USA). *A. tumefaciens*
187 transformants were selected on LB media containing 50 μ g/ml rifampicin, 50 μ g/ml kanamycin, and
188 50 μ g/ml ampicillin at 28°C.

189

190 **Transient Gene Expression by Agroinfiltration**

191 *A. tumefaciens* carrying expression vectors (pNPP40 and pNPP243 derivatives, Supplementary
192 Table S1) were cultured to saturation in LB medium at 28°C and bacterial cells were collected by
193 centrifugation at 16,000 x g for 1 min. The bacterial cells were then resuspended in MMA infiltration
194 solution to a final OD₆₀₀ of 0.5 (MMA: 5 mg/ml MS salts, 1.95 mg/ml MES, 20 mg/ml sucrose, 200
195 µM acetosyringone, pH = 5.6) and incubated at 28°C for 2 h. The suspensions were allowed to
196 infiltrate the intercellular space of *N. benthamiana* leaves using a syringe without a needle.

197

198 **Quantitative RT-PCR**

199 Total RNAs were isolated from *N. benthamiana* leaves using TRIzol Reagent (Thermo Fisher
200 Scientific) and cDNA synthesis was conducted using ReverTra Ace-α- (Toyobo, Osaka, Japan).
201 Quantitative RT-PCR (qRT-PCR) analysis was performed using LightCycler Quick System 350S
202 (Roche Applied Science, Penzberg, Germany) with Thunderbird SYBR qPCR Mix (Toyobo). The
203 expression of *N. benthamiana* *EF-1α* gene was used as an internal standard. Gene-specific primers
204 used for expression analysis were listed in Supplementary Table S2.

205

206 **Fluorescence Microscopy**

207 To visualize the activation of *NbEAS4* promoter by GFP marker, fluorescence images were
208 recorded using BX51 fluorescence microscope (Olympus, Tokyo, Japan) equipped with color CMOS
209 camera Wraycam-NF500 (Wraymer, Osaka, Japan).

210

211 **Virus-induced Gene Silencing (VIGS)**

212 The induction of VIGS was carried out as previously reported (Ratcliff et al., 2001; Shibata et al.,
213 2010). *A. tumefaciens* strain GV3101 delivering the binary TRV RNA1 construct pBINTRA6, and
214 the TRV RNA2 vector pTV00 or its derivatives (Supplementary Table 1), were cultured to saturation
215 in LB media. Bacterial cells were collected by centrifugation at 16,000 x g for 1 min. The bacterial
216 cells were then resuspended in 10 mM MES-NaOH (pH 5.6), 10 mM MgCl₂ and 150 µm
217 acetosyringone (final OD₆₀₀ = 0.5) and incubated at room temperature for 2 h. The cultures were
218 mixed in a 1:1 ratio (RNA1/RNA2), to infiltrate leaves of *N. benthamiana* using a syringe without a
219 needle. After 3-4 weeks of infiltration, the upper leaves of the inoculated plants were used for
220 experiments.

221

222 **Expression of Recombinant Proteins in *E. coli***

223 The MBP-NbERF-IX-33a fusion protein was prepared using the pMAL Protein Fusion and
224 Purification System (New England Biolabs). *E. coli* cells (DH5) carrying pMAL-c5x (New England
225 Biolabs) or pMAL-NbERF-IX-33a were cultured overnight at 37°C in rich medium (1% tryptone,
226 0.5% yeast extract, 0.5% NaCl, 0.2% glucose) containing 100 µg/ml ampicillin and grown until the
227 optical density (OD₆₀₀=0.6). Production of the protein was induced by adding 0.3 mM IPTG for 5 h.
228 The culture (20 ml) was centrifuged to collect *E. coli* cells. The cells were then resuspended in 6 ml
229 of column buffer [20 mM Tris-HCl (pH 7.5), 200 mM NaCl, 1 mM EDTA] and frozen at -20°C.
230 Frozen cells were thawed on ice and then homogenized using a sonicator (Sonicator cell disruptor
231 Model W-225R, Heat Systems-Ultrasonics Inc., Plainview, NY, USA). The crude cell extracts were
232 centrifuged at 10,000 x g, 4°C for 5 min, and the supernatant was adsorbed to a 0.4 ml amylose resin
233 (New England Biolabs) at 4°C. The column was washed with 4 ml of column buffer, followed by
234 elution of the fusion protein with 1 ml of column buffer containing 10 mM maltose. The fractions of
235 purified proteins were assessed by SDS-PAGE and eluted fractions were dialyzed against water with
236 the dialysis tubing (SnakeSkin dialysis tubing, 3.5 kD molecular mass cutoff, Thermo Fisher
237 Scientific) overnight at 4°C.

238

239 Electrophoresis Mobility Shift Assay (EMSA)

240 Electrophoresis mobility shift assay Kit (Thermo Fisher Scientific) was used to detect binding of
241 NbERF-IX-33a to the *NbEAS4* promoter. The DNA fragment of *NbEAS4* promoter (30 ng) and MBP
242 or MBP- NbERF-IX-33a proteins (1 μ g) were mixed and incubated in 10 μ l binding buffer [125 mM
243 HEPES-KOH, 20 mM KCl, 0.5 mM EDTA, 50% (v/v) glycerol, 5 mM DTT, pH7.5] for 20 min at
244 4°C. 2 μ l of 6 x loading buffer was added to stop the reaction. The complexes were resolved on 6%
245 non-denaturing polyacrylamide gels (Thermo Fisher Scientific) and stained with SYBR green dye.

246

247

248 RESULTS

249

250 Induction of ROS Production, Phytoalexin Accumulation and Cell Death in *N. benthamiana* 251 treated with INF1

252 Prior to the RNAseq analysis of *N. benthamiana* genes induced by INF1 treatment, typical defense
253 responses induced by INF1 treatment were observed under our experimental conditions. Induction of
254 reactive oxygen species (ROS) production is one of the common phenomena observed during the
255 induction of plant disease resistance. Using small leaf disks of *N. benthamiana*, transient ROS
256 production was detected within 60 min after INF1 treatment (Figure 1A). Significant increase in ROS
257 production was also observed at 12 h and 24 h after treatment (Figure 1B). These results are
258 consistent with previous studies that reported biphasic ROS production in plants during the plant
259 defense (Chai and Doke, 1987; Levine et al., 1994; Yuan et al., 2021). The production of
260 sesquiterpenoid phytoalexins, capsidiol, debneyol and capsidiol 3-acetate were significantly
261 increased at 24 h and 48 h after treatment with 150 nM INF1, while the production of phytoalexins
262 was below the detection limit at earlier times (Figure 1C). Induction of visible cell death became
263 obvious at around 48 h after INF1 treatment, while the increase of ion leakage from the INF1-treated
264 plant tissue (indicating the initiation of cell death) was already detectable at 24 h (Figure 1D).

265

266 Clustering of *N. benthamiana* Genes Based on Their Expression Patterns after INF1 Treatment

267 To investigate the expression profile of all *N. benthamiana* genes during the induction of defense
268 responses by INF1 treatment, RNA-seq analysis was performed for *N. benthamiana* leaves treated
269 with water or INF1 at 0, 3, 6, 12 and 24 h after the treatment. Based on their time dependent
270 expression patterns, all genes were categorized into 20 groups using K-means clustering. Among the
271 57,140 *N. benthamiana* annotated genes, 14,390 genes (25.2%) were not assigned to any cluster
272 because no expression could be determined at any point in time. Among the 20 clusters, clusters 2, 4,
273 10, 14 and 16 were the clusters that contained significantly more INF1-inducible genes, and these
274 include 4,761 (8.3%) out of 57,140 genes (Figure 2). Especially, the genes in cluster 14 (contains 336
275 genes) were significantly up-regulated after INF1 treatment, with more than 300-fold induction at 24
276 h (average in cluster 14) compared to control (Figure 2). The lists of genes in clusters for INF1-
277 induced *N. benthamiana* genes are shown in Supplementary Tables 3-7.

278 Cluster 14 includes all 10 copies of *NbEAS* and 5 out of 6 *NbEAH* genes which are genes specific
279 for the capsidiol production (Figure 3, Supplementary Table 8). Only negligible expression of genes
280 in cluster 14 was observed in control and water-treated leaves, indicating that genes specifically
281 involved in the production of phytoalexin are under strict regulation.

282 In contrast, most genes for the enzymes in the MVA pathway (required for the production of
283 capsidiol precursor, farnesylpyrophosphate, FPP) were categorized into other clusters as most of
284 them have a basal constitutive expression in control and water treated leaves, probably reflecting that
285 FPP is a common precursor of isoprenoids and phytosterol (Supplementary Table 9, Figure 4).
286 Among five *acetyl-CoA thiolase* (ACAT) genes, only the expression of *NbACAT1b* was highly

upregulated from an early time point. Out of five *3-hydroxy-3-methylglutaryl-CoA* (HMG-CoA) synthase genes, *NbHMGS1a* and *1b* were found to be induced by INF1 treatment. Similarly, among five *HMG-CoA reductase* (*NbHMGR*) genes, *NbHMGR2* and *1a* were significantly upregulated by INF1 treatment. In the case of genes for mevalonate-5-kinase (*NbMVK*, 2 copies), phosphomevalonate kinase (*NbPMVK*, 2 copies), and mevalonate-5-pyrophosphate decarboxylase (*NbMVD*, 2 copies), they were all upregulated by INF1 treatment. Likewise, two out of four genes encoding isopentenyl pyrophosphate (IPP) isomerase, *NbIPPI1b* and *2a*, were appeared to mainly contribute to the activation of the conversion of IPP to dimethylallyl pyrophosphate (DMAPP) during the induction of capsidiol production, while stable and constant expression was observed for *NbIPPI2b*. Finally, among 4 genes for FPP synthase (*NbFPPS*), *NbFPPS1a*, *NbFPPS1b*, *NbFPPS2b* were significantly upregulated (Figure 4).

Identification of Cis-element for INF1-induced Expression of *NbEAS* Genes

To further investigate the strict regulation of *NbEAS* genes, we analyzed promoters of *NbEAS1* and *NbEAS4* in this study. To evaluate the promoter activity of these genes, plasmid vectors containing the *GFP* gene under the control of *NbEAS1* or *NbEAS4* promoter (*P_NbEAS1:GFP* and *P_NbEAS4:GFP*) were transiently transformed into *N. benthamiana* leaves by Agroinfiltration. Basal expression of *GFP* was detected after agroinfiltration using *A. tumefaciens* containing these promoter:*GFP* vectors under fluorescence microscopy, presumably because plant defense was weakly induced by the infection with *A. tumefaciens*. Nonetheless, the relative expression levels of *GFP* were significantly enhanced by treatment with INF1. When the promoter length exceeded 260 bp upstream from the start codon (-260) was used, *GFP* expression was induced by INF1 treatment for both *NbEAS1* and *NbEAS4* promoters. When the *NbEAS1* promoter was shortened to a length of 230 bp, INF1-induced *GFP* expression was no longer observed, whereas the *NbEAS4* promoter remained functional. INF1-induced *GFP* expression ceased however when the *NbEAS4* promoter was further trimmed to a length of 200 bp (Figure 5A). From these findings it follows that the regions essential for the induction of *NbEAS1* and *NbEAS4* expression by INF1 are located between -260 and -230 of the *NbEAS1* promoter, and between -230 and -200 of the *NbEAS4* promoter. In the corresponding region of *NbEAS1* and *NbEAS4* promoter, a sequence similar to the ethylene-responsive element GCC box (AGCCGCC), AGACGCC, was identified (Figure 5B). To confirm the importance of the GCC box-like motif on the promoter activity, we introduced mutations to the motif in the *P_NbEAS4:GFP* vector, which led to substitutions of G to T (ATACTCC). We designated the vector carrying the mutated GCC box-like motif as *P_NbEAS4* (TT). G to T mutations in the GCC box-like motif significantly reduced both the fluorescence of *GFP* in *N. benthamiana* leaves 48 h after Agroinfiltration, as well as the relative expression level of *GFP* (Figure 5C), indicating that the GCC-box like motif is the cis-acting element essential for the INF1-induced expression of *EAS4*. GCC-box like motifs can be found in most of *NbEAS* and *NbEAH* genes (Supplementary Figure 1), while the GCC-box was not found in the promoter regions of genes in the MVA pathway, indicating that production of the capsidiol precursor FPP and capsidiol production are probably controlled via distinctive regulatory mechanisms.

Expression Profile of *N. benthamiana* Genes for Enzymes Involved in the Ethylene Production

Previously, we have isolated three genes essential for resistance of *N. benthamiana* to *P. infestans* belonging to the methionine cycle, which is related to the production of the ethylene precursor SAM (S-adenosyl-L-methionine) (Shibata et al., 2016, Figure 6). In this study, we created a list of genes for putative enzymes in the methionine cycle and for ethylene biosynthesis (Supplementary Table 10) to investigate their expression profiles after INF1 treatment. Given that *N. benthamiana* has an allopolyploid genome (Goodin et al., 2008), two highly homologous genes were frequently found, and which were predicted to be derived from the two ancestral *Nicotiana* species of *N. benthamiana*.

336 Such highly homologous pairs of genes were named by appending either a or b to the gene name
337 (Matsukawa et al., 2013; Shibata et al., 2016; Rin et al., 2020). For example, the highly homologous
338 genes for cystathionine γ -synthase (CGS) were designated as *NbCGS1a* and *NbCGS1b*.

339 Among the 32 putative methionine cycle genes (Supplementary Table 10), only two genes
340 (*NbCGS1a* and *NbSAM4a*) were moderately upregulated by INF1 treatment (Figure 6). For genes
341 encoding enzymes specific for ethylene production, 24 1-aminocyclopropane-1-carboxylate (ACC)
342 synthase (*NbACS*) and 16 ACC oxidase (*NbACO*) genes were identified in the genome of *N.*
343 *benthamiana* (Supplementary Table 10). Among the 24 *NbACS* genes, three genes, *NbACS1*, 2a and
344 4 were upregulated by INF1 treatment. Four out of the 16 *NbACO* genes were categorized as INF1
345 inducible genes, of which *NbACO1a*, 1b and 4 were highly upregulated (Figure 6). Ethylene
346 production was induced within 3 h after treatment of INF1, and gene silencing of *NbACO* genes
347 (using a conserved region of *NbACO* genes) compromised INF1 induced production of ethylene
348 (Supplementary Figure 2A). *NbACO*-silenced *N. benthamiana*, as well as *NbEIN2*-silenced plants,
349 showed enhanced disease symptoms by *P. infestans* compared with the control plants
350 (Supplementary Figure 2B), confirming the importance of ethylene production in disease resistance
351 of *N. benthamiana*.

352

353 *N. benthamiana* NbERF-IX-33 is Involved in the Production of Capsidiol and Resistance to *P.* 354 *infestans*

355 The ERF (ethylene response factor) family transcription factors are known to be involved in the
356 responses of plants to a number of environmental stresses (Müller and Munné-Bosch, 2015).
357 Previous studies indicated that some ERF transcription factors can directly bind to a cis-acting
358 element, typically the GCC box (AGCCGCC), to respond to pathogen attack (Ohme-Tagaki and
359 Shinshi, 1995), while some studies also indicated that another member of the ERF transcription
360 factors can bind to the dehydration responsive element (DRE, typically TACCGAC) to respond to
361 drought stress (Yamaguchi-Shinozaki and Shinozaki, 1994). To investigate the activation of ethylene
362 signaling during the defense induction in *N. benthamiana*, we created a complete list of predicted
363 genes for AP2/ERF transcription factors found in the genome of *N. benthamiana*, using 147 *A.*
364 *thaliana* AP2/ERF (Nakano et al., 2006) as queries for Blastp search against *N. benthamiana*
365 predicted proteins (Sol genomics, Fernandez-Pozo et al., 2015). In the genome of *N. benthamiana*,
366 we found 337 genes predicted to encode AP2/ERF transcription factors (Supplementary Tables 11
367 and 12). Based on the phylogenetic analysis of *A. thaliana* and *N. benthamiana* AP2/ERF genes, 47
368 genes were assigned to the AP2 family (including Soloist I) and 7 genes were classified in the RAV
369 family (Figure 7 and Supplementary Table 11). The 283 *N. benthamiana* ERF genes were classified
370 into 10 major groups (ERF-I to -X as in the case of *A. thaliana*, Nakano et al., 2006) and two small
371 subgroups (Soloist II and III). Almost all groups of AP2/ERF transcription factors have
372 corresponding members in *Arabidopsis* and *N. benthamiana*, suggesting that their functions are
373 conserved in these two dicotyledonous plants. Among these, group ERF-IX contained the highest
374 number of elicitor-responsive genes, and 22 out of the 34 genes (assigned to a cluster) were classified
375 into INF1-induced clusters (Figure 7 and Supplementary Table 12). Because a substantial number of
376 genes for NbERF were elicitor-inducible, it was expected that these NbERFs may have redundant
377 functions in the induction of disease resistance.

378 To investigate the role of ERF-type transcription factors in the production of capsidiol during the
379 induction of disease resistance, two *NbERF* were selected for further analysis in this study. *NbERF-*
380 *IX-33a* (Niben101Scf00454g04003, cluster 4) whose expression level (FPKM value) was the highest
381 among all AP2/ERF genes at 12 h after INF1 treatment, and *NbERF-IX-16a*
382 (Niben101Scf01212g03005, cluster 14) whose expression level was the highest at 24 h after INF1
383 treatment (Figure 8A). For the specific silencing of these target genes, silencing vectors based on
384 unique sequences of *NbERF-IX-33* and *NbERF-IX-16* were constructed. Both *NbERF-IX-33* and

385 *NbERF-IX-16* occur in the form of highly similar *a* and *b* homologs, as described above. Due to the
386 high sequence similarity of *a* and *b* homologs, a functional redundancy is to be expected and we
387 therefore designed the silencing vectors to target the *a* and *b* homologs of both genes. Analysis using
388 the SGN VIGS tool (Fernandez-Pozo et al., 2015) confirmed that the constructed vectors are
389 specifically targeting *NbERF-IX-33* and *NbERF-IX-16* genes, and no potential off-target effect was
390 detected.

391 *NbERF-IX-33* and *NbERF-IX-16*-silenced *N. benthamiana* plants were inoculated with *P. infestans*
392 and disease symptoms on control and gene-silenced plants were scored as visible development of
393 disease symptoms. Within the first 5 days after the inoculation of *P. infestans*, there was no obvious
394 development of disease symptoms for control and *NbERF-IX-16*-silenced plants was detected,
395 whereas *NbEIN2*- and *NbERF-IX-33*-silenced plants showed severe disease symptoms on the
396 inoculated leaves (Figure 8B). To investigate the effect of the *NbERF* gene silencing of these *NbERF*
397 on phytoalexin production, capsidiol was quantified in gene-silenced *N. benthamiana*. At 24 h after
398 treatment with 150 nM INF1, capsidiol was extracted from control and gene-silenced *N.*
399 *benthamiana* leaves, and the amount of capsidiol produced was quantified using HPLC. While
400 capsidiol production in *NbERF-IX-16*-silenced *N. benthamiana* was not significantly different from
401 that of the control (TRV) plant, capsidiol amounts in *NbERF-IX-33*- and *NbEIN2*-silenced plants
402 were reduced (Figure 8C). These results indicated that *NbERF-IX-33* is a transcription factor
403 essential for disease resistance through the production of capsidiol. The function of *NbERF-IX-33*
404 appears to be partially compensated by other *NbERF* transcription factors in *NbERF-IX-33* silenced
405 plants, given that both disease resistance and capsidiol production were more pronounced in *NbEIN2*-
406 silenced plants.

407 To investigate whether *NbERF-IX-33* acts directly on the *NbEAS* promoter, an electrophoresis
408 mobility shift assay (EMSA) was conducted. To this end, we expressed and purified a recombinant
409 fusion protein of maltose-binding protein (MBP) and *NbERF-IX33* (MBP-*NbERF-IX-33a*) from *E.*
410 *coli* (Supplementary Figure 3). The mobility shift assay was performed using the purified MBP-
411 *NbERF-IX-33a* protein with *NbEAS4* promoter fragments. Mobility shift was observed for the 230 bp
412 *NbEAS4* promoter fragment incubated with the *NbERF-IX-33a* protein, in contrast to the control
413 experiment using MBP (Figure 8D). These results suggested that *NbERF-IX-33* directly binds to the
414 promoter region of *NbEAS4* to increase the production of phytoalexin production.

416 **DISCUSSIONS**

417 Salicylic acid, jasmonic acid, and ethylene are commonly known as second messengers that play
418 important roles in plant disease responses, but which plant hormones are essential for effective
419 resistance induction varies among plant-pathogen combinations (Glazebrook, 2005). In general,
420 salicylic acid plays an important role in the activation of defense against biotrophic and
421 hemibiotrophic pathogens, while jasmonic acid and ethylene are usually implicated in the defense
422 against necrotrophic pathogens. Since similarities in gene expression patterns have been noted
423 between jasmonic acid and ethylene treatments in *Arabidopsis* (Schenk et al., 2000), both plant
424 hormones are often regarded as having similar functions in disease resistance.

425 In the case of the interaction between *N. benthamiana* and hemibiotrophic *P. infestans*, it is
426 presumed that ethylene, but not jasmonic acid, is the crucial plant hormone essential for the
427 resistance against the pathogen. Although RNAseq analysis in this study detected the INF1-induced
428 expression of some genes related to jasmonic acid production (data not shown), silencing of *NbCOII*,
429 a component of the jasmonic acid receptor, had no effect on the resistance of *N. benthamiana* to *P.*
430 *infestans* (Shibata et al., 2010). The VIGS-based screening for defense-related genes identified six
431 ethylene-related genes, but no gene involved in the production of jasmonic acid was isolated (Shibata
432 et al., 2016). Thus, the importance of ethylene in *P. infestans* resistance of *N. benthamiana* is evident,
433 but it has not been clarified how ethylene is involved in the induction of resistance.

434 In this study, we investigated the expression profiles of all *N. benthamiana* genes in leaves after
435 treatment with INF1, a PAMP of oomycete pathogens. Among the genes induced by INF1, those in
436 cluster 14 showed a particularly clear upregulation by INF1 treatment (Figure 2). The main gene
437 group included in cluster 14 was PR (pathogenesis-related) protein genes, such as *PR-1*, *PR-2* (β -1,3-
438 *glucanase*), *PR-3* (*chitinase*), *PR-4* and *PR-5* (*Osmotin*) (Supplementary Table 6). In the previous
439 VIGS screening for *N. benthamiana* genes required for the resistance against *P. infestans*, however,
440 none of the genes for PR proteins were isolated from 3,000 randomly gene-silenced plants, in
441 contrast, several genes involved in the capsidiol synthase had been identified (Shibata et al., 2016).
442 Targeted gene silencing of *PR1* did not show any detectable effect on the resistance of *N.
443 benthamiana* against *P. infestans* (Shibata et al., 2010). These results indicate that not all genes
444 whose expression is induced by INF1 elicitor treatment necessarily function in *P. infestans* resistance.
445 Nevertheless, cluster 14 contains genes for *NbEAS* and *NbEAH*, which are required for the resistance
446 of *N. benthamiana* to *P. infestans*. The expression of *NbEAS* and *NbEAH* was markedly induced by
447 INF1 treatment, however, the expression of these genes was not stimulated at all by water treatment.
448 (Figure 3). Since there is a trade-off between the expression of genes for disease resistance and plant
449 growth (Denancé et al., 2013), it is important to strictly control the expression of genes involved in
450 plant defense. In fact, many genes for photosynthesis (such as *rbcS* and *Lhcb* genes) showed a
451 tendency to be down-regulated in INF1-treated leaves (data not shown).

452 Promoter analysis of *NbEAS1* and *NbEAS4* revealed that the deletion of the GCC box-like
453 sequence compromises the INF-induced expression of *NbEAS* genes (Figure 5), indicating the direct
454 regulation of phytoalexin production by ERF. Previous reports described the presence of a GCC box
455 in the promoter region of the pepper and tobacco *EAS* genes (Maldonado-Bonilla et al., 2008), but its
456 role in regulating *EAS* expression had not been analyzed. This study proves that the GCC box-like
457 motif is indispensable for the induction of the *NbEAS* gene, but does not rule out the possibility that
458 other cis sequences are included in the promoter region. W-box (C/T)TGCA(C/T) motifs, previously
459 shown to correlate with the defense induction in *N. benthamiana* (Ishihama et al., 2011), are found in
460 the promoter region of some *NbEAS* and *NbEAH* genes (Supplementary Figure 1). We also noticed
461 that when we shortened the length of the *NbEAS1* promoter from 400 to 300 (300 to 260 in *NbEAS4*)
462 for the analysis of promoter activities, the basal expression level decreased. This region may
463 therefore contain sequences with which auxiliary transcriptional regulators interact to increase the
464 overall amount of expression. The promoter regions of *NbEAS3* and *NbEAS4* have two GCC-box like
465 motifs (Supplementary Figure 1). *NbEAS3* and *NbEAS4* are the most highly expressed homologs of
466 *NbEAS* (Figure 3), thus this second GCC-box-like sequence might be responsible for the stronger
467 INF1-induced gene expression.

468 In control samples we observed a constant expression of MVA pathway genes, which was to be
469 expected, since besides producing the capsidiol precursor FPP, the pathway is of central importance
470 for a large variety of isoprenoid compounds. A quick and ample production of capsidiol would
471 require the MVA pathway to step up production, which appears to be the case, as INF1 elicitation
472 could be shown to up-regulate several MVA genes (Figure 4). Despite this, the GCC-box-like motif
473 was not found in the promoters of MVA genes, not even *NbHMGR2*, which was contained in cluster
474 14 with several *NbEAS* genes. This is somewhat surprising, since the upregulation of the MVA
475 pathway during pathogenesis is typically not observed in plants that do not produce terpenoid defense
476 compounds, and we would therefore assume that this regulatory mechanism had co-evolved with
477 terpenoid phytoalexin synthesis. An explanation of why the GCC-box motif is absent in MVA
478 promoters is purely speculative at this point, but one reason could be that terpenoid phytoalexins are
479 preferentially produced against necro- and hemibiotrophic pathogens, and the MVA pathway may
480 need to be tightly regulated during defense against biotic pathogens as well. Ishihama et al. (2011)
481 has reported that *NbHMGR2* is under the control of a defense-related transcription factor,

482 NbWRKY8, which targets W-boxes, but further investigation of the activation mechanism of genes
483 in the MVA pathway would be an interesting subject of future research.

484 AP2/ERF family is a conserved group of plant transcription factors, being defined by a central
485 AP2/ERF domain consisting of approx. 60 amino acid residues, which bind to cis-element targets
486 (Licausi et al., 2013). Although they are called “ethylene-responsive factors” due to how they were
487 first discovered (Ohme-Tagaki and Shinshi, 1995), ERFs are involved in the regulation of diverse
488 phenomena, including development, morphogenesis, and biotic/abiotic stress responses mediated via
489 different plant hormones. For instance, *Arabidopsis* PUCHI (belonging to subfamily ERF-VIII) is
490 involved in lateral root initiation and development via auxin-mediated signaling (Hirota et al., 2007),
491 while CRFs (cytokinin response factors, belonging to ERF-VI) are induced by cytokinin, which
492 functions in the regulation of root growth, embryo development, leaf senescence, and hypocotyl
493 elongation (Kim, 2016). In this study, we listed all genes predicted to encode AP2/ERF transcription
494 factors in the *N. benthamiana* genome to identify the transcription factors that directly control
495 phytoalexin production via GCC-box-like sequences in *NbEAS1* and *NbEAS4* promoters. A total of
496 283 *ERF* genes were found, of which 43 (15.2 %) were assigned to the cluster for INF1-inducible
497 genes (Supplementary Table 12). Given that INF1 treatment enhanced the production of ethylene
498 within 9 h (Supplementary Figure 2), a substantial number of ERF gene groups were shown not to be
499 induced by ethylene.

500 The functional analysis of two NbERFs (both belonging to ERF-IX), whose expression was
501 significantly increased by INF1 treatment, indicated that NbERF-IX-33 is an essential transcription
502 factor for the INF1-induced production of capsidiol and the resistance to *P. infestans* (Figure 8).
503 Gene silencing of *NbERF-IX-16* may reduce the capsidiol production (this could not be shown to be
504 statistically significant), and the *NbERF-IX-16*-silenced plant were slightly more susceptible to *P.*
505 *infestans* (Figure 8). The reduction in disease resistance and capsidiol production in *NbEIN2*-silenced
506 plants was more pronounced than in *NbERF-IX-33*-silenced plants, suggesting that EIN2 may act
507 upstream of NbERF regulation, affecting multiple NbERFs involved in the induction of phytoalexin
508 production.

509 In this study, we reported that NbERF-IX-33a binds to the GCC-box like motif in the promoter
510 region of *NbEAS4*, which is supported by many studies that have shown ERFs that bind to the GCC
511 box. Four ERFs were originally isolated from tobacco as transcription factors that directly bind to the
512 GCC box, the conserved motif found in the promoter region of ethylene-inducible *PR* genes (Ohme-
513 Takagi and Shinshi, 1995). In *Arabidopsis*, ORA59 and ERF1/ERF92 (subfamily IX) have been
514 shown to activate jasmonic acid- and ethylene- mediated expression of the defensin gene *AtPDF1.2*
515 by directly binding to two GCC boxes in its promoter region (Zarei et al., 2011), while AtERF3 and
516 AtERF4 can downregulate their target gene via a GCC box (Fujimoto et al., 2000). In rice, OsERF83
517 positively regulates the disease resistance against rice blast pathogen by upregulating *PR* genes,
518 whereas OsERF922 activates abscisic acid biosynthesis-related genes which has a negative effect on
519 the disease resistance (Liu et al., 2012; Tezuka et al. 2019). Tobacco ERF189 and four related ERFs
520 (subfamily IX) can bind to a GCC-box in the promoter region of *PMT* (putrescine N-
521 methyltransferase) for jasmonate-inducible nicotine synthesis, and all enzyme genes for nicotine
522 production are under the control of ERF189 (Shoji et al., 2010). Wheat ERF transcription factor
523 TaERF3 is involved in salt and drought tolerance via the GCC boxes in stress-related genes (Rong et
524 al., 2014). Expression of genes for the production of anti-insect steroidal glycoalkaloids (SGA) in
525 tomato is under the control of jasmonate-responsive ERF, JRE4, which bind to GCC box-like
526 elements in the promoter of SGA biosynthetic genes (Thagun et al., 2016). These reports indicate that
527 GCC-box and ERF combinations are involved in the regulation of diverse phenomena in different
528 plant species.

529 The synthesis of bioactive compounds requires a high degree of coordination, especially in cases
530 where other pathways rely on the same substrate (such as FPP), and where its depletion can therefore

531 have widespread negative effects. This poses a problem during the evolution of a novel pathway,
532 since it must assure that other pathways are not disrupted. Shoji and Yuan (2021) suggest that the
533 diversified combinations of a collection of enzyme genes under the control of the same
534 transcriptional factors can lead to the invention of a new metabolic pathway in different plant species.
535 In addition to the promoters of genes for NbEAS and NbEAH, which consist of a short metabolic
536 pathway for capsidiol production, the GCC-box like motifs are also conserved in the promoter region
537 of *NbABCG1* and 2 genes, which is involved in the secretion of capsidiol at the sites of pathogens
538 attack (Shibata et al., 2016; Rin et al., 2017). Thus, this theory may be valid beyond the enzyme
539 genes of the metabolic pathways. Rishitin, a sesquiterpenoid phytoalexin produced by potato and
540 tomato, is expected to be produced by a more complex metabolic pathway compared with capsidiol,
541 but the pathway for rishitin production is still largely unknown. Since the two primary rishitin-
542 producing enzymes also share a GCC box-like promoter sequence (Takemoto et al., 2018), the
543 similarity of expression patterns and the commonality of the regulating transcription factors may
544 provide a clue to the elucidation of this yet unknown biosynthetic pathway.
545

546 **Author contributions**

547 DT designed the research. SI, MF, AT-K, HM, AA, AT and DT conducted the experiments. SI, MF,
548 MC, AA and DT analyzed data, A Tanaka, IS, SC, KK, MO and DT supervised the experiments. SI
549 and DT wrote the manuscript. MC and DT edited the manuscript. SI, MC and DT contributed to the
550 discussion and interpretation of the results.
551

552 **Funding**

553 This work was supported by a Grant-in-Aid for Scientific Research (B) (17H03771 and 20H02985)
554 to DT and a Grant-in-Aid for JSPS Fellows (21J14198) to SI from the Japan Society for the
555 Promotion of Science.
556

557 **Acknowledgments**

558 We thank Prof. David C. Baulcombe (University of Cambridge, USA) for providing pTV00 and
559 pBINTRA6 vectors, Prof. Sophien Kamoun (The Sainsbury Laboratory, UK) for the pFB53 vector,
560 and Prof. Gregory B. Martin (Cornell University, USA) for the access to the *N. benthamiana* genome
561 database. We also thank Dr. David Jones (The Australian National University, Australia) for *N.*
562 *benthamiana* seeds, Ms. Kayo Shirai (Hokkaido Central Agricultural Experiment Station, Japan), and
563 Dr. Seishi Akino (Hokkaido University, Japan) for providing *P. infestans* isolate 08YD1. We also
564 thank Dr. Kenji Asano and Mr. Seiji Tamiya (National Agricultural Research Center for Hokkaido
565 Region, Japan) and Mr. Yasuki Tahara (Nagoya University, Japan) for providing tubers of potato
566 cultivars.
567

568 **REFERENCES**

571 Blein, J.-P., Coutos-Thevenot, P., Marion, D., and Ponchet, M. (2002). From elicitors to lipid-transfer
572 proteins: a new insight in cell signalling involved in plant defence mechanisms. *Trends Plant Sci.*
573 7, 293-296.
574

575 Boissy, G., de La Fortelle, E., Kahn, R., Huet, J.-C., Bricogne, G., Pernollet, J.-C., and Brunie, S.
576 (1996). Crystal structure of a fungal elicitor secreted by *Phytophthora cryptogea*, a member of a
577 novel class of plant necrotic proteins. *Structure* 4, 1429-1439.
578

579 Bombarely, A., Rosli, H.G., Vrebalov, J., Moffett, P., Mueller, L.A., and Martin, G.B. (2012). A
580 draft genome sequence of *Nicotiana benthamiana* to enhance molecular plant-microbe biology
581 research. *Mol. Plant-Microbe Interact.* 25, 1523-1530.

582

583 Bonnet, P., Bourdon, E., Ponchet, M., Blein, J.P., and Ricci, P. (1996). Acquired resistance triggered
584 by elicitors in tobacco and other plants. *Eur. J. Plant Pathol.* 102, 181-192.

585

586 Cabral, A., Stassen, J.H., Seidl, M.F., Bautor, J., Parker, J.E., and van den Ackerveken, G. (2011).
587 Identification of *Hyaloperonospora arabidopsis* transcript sequences expressed during infection
588 reveals isolate-specific effectors. *PLoS One* 6, e19328.

589

590 Cañizares, M.C., Lozano-Durán, R., Canto, T., Bejarano, E.R., Bisaro, D.M., Navas-Castillo, J., and
591 Moriones, E. (2013). Effects of the crinivirus coat protein-interacting plant protein SAHH on post-
592 transcriptional RNA silencing and its suppression. *Mol. Plant-Microbe Interact.* 26, 1004-1015.

593

594 Chai, H.B., and Doke, N. (1987). Activation of the potential of potato leaf tissue to react
595 hypersensitively to *Phytophthora infestans* by cystospore germination fluid and the enhancement
596 of the potential by calcium ion. *Physiol. Mol. Plant Pathol.* 30, 27-37.

597

598 Colas, V., Conrod, S., Venard, P., Keller, H., Ricci, P., and Panabières, F. (2001). Elicitin genes
599 expressed *in vitro* by certain tobacco isolates of *Phytophthora parasitica* are down regulated
600 during compatible interactions. *Mol. Plant-Microbe Interact.* 14, 326-335.

601

602 Denancé, N., Sánchez-Vallet, A., Goffner, D., and Molina, A. (2013). Disease resistance or growth:
603 the role of plant hormones in balancing immune responses and fitness costs. *Front. Plant Sci.* 4,
604 155.

605

606 Du, J., Verzaux, E., Chaparro-Garcia, A., Bijsterbosch, G., Keizer, L.C., Zhou, J., Liebrand, T.W.,
607 Xie, C., Govers, F., Robatzek, S., van der Vossen, E.A., Jacobsen, E., Visser, R.G., Kamoun, S.,
608 and Vleeshouwers, V.G. (2015). Elicitin recognition confers enhanced resistance to *Phytophthora*
609 *infestans* in potato. *Nat. Plants* 1, 15034.

610

611 Fernandez-Pozo, N., Rosli, H.G., Martin, G.B., and Mueller, L.A. (2015). The SGN VIGS tool: user-
612 friendly software to design virus- induced gene silencing (VIGS) constructs for functional
613 genomics. *Mol. Plant* 8, 486-488.

614

615 Fujimoto, S.Y., Ohta, M., Usui, A., Shinshi, H., and Ohme-Takagi, M. (2000). Arabidopsis ethylene-
616 responsive element binding factors act as transcriptional activators or repressors of GCC box-
617 mediated gene expression. *Plant Cell* 12, 393-404.

618

619 Glazebrook, J. (2005). Contrasting mechanisms of defense against biotrophic and necrotrophic
620 pathogens. *Annu. Rev. Phytopathol.* 43, 205-227.

621

622 Goodin, M.M., Zaitlin, D., Naidu, R.A., and Lommel, S.A. (2008). *Nicotiana benthamiana*: its
623 history and future as a model for plant-pathogen interactions. *Mol. Plant-Microbe Interact.* 21,
624 1015-1026.

625

626 Haverkort, A.J., Boonekamp, P.M., Hutten, R., Jacobsen, E., Lotz, L.A.P., Kessel, G.J.T., Visser,
627 R.G.F., and van der Vossen, E.A.G. (2008). Societal costs of late blight in potato and prospects of
628 durable resistance through cisgenic modification. *Potato Res.* 51, 47-57.

629

630 Hendrix, J.W. (1970). Sterols in growth and reproduction of fungi. *Annu. Rev. Phytopathol.* 8, 111-
631 130.

632

633 Hirota, A., Kato, T., Fukaki, H., Aida, M., and Tasaka, M. (2007). The auxin-regulated AP2/EREBP
634 gene PUCHI is required for morphogenesis in the early lateral root primordium of *Arabidopsis*.
635 *Plant Cell* 19, 2156-2168.

636

637 Ishihama, N., Yamada, R., Yoshioka, M., Katou, S., and Yoshioka, H. (2011). Phosphorylation of the
638 *Nicotiana benthamiana* WRKY8 transcription factor by MAPK functions in the defense response.
639 *Plant Cell* 23, 1153-1170.

640

641 Ismayil, A., Haxim, Y., Wang, Y., Li, H., Qian, L., Han, T., Chen, T., Jia, Q., Yihao Liu, A., Zhu, S.,
642 Deng, H., Gorovits, R., Hong, Y., Hanley-Bowdoin, L., and Liu, Y. (2018). Cotton Leaf Curl
643 Multan virus C4 protein suppresses both transcriptional and post-transcriptional gene silencing by
644 interacting with SAM synthetase. *PLoS Pathog.* 14, e1007282.

645

646 Jiang, R.H.Y., Tyler, B.M., Whisson, S.C., Hardham, A.R. and Govers, F. (2006). Ancient origin of
647 elicitin gene clusters in *Phytophthora* genomes. *Mol. Biol. Evol.* 23, 338-351.

648

649 Kamoun, S., van West, P., deJong, A.J., deGroot, K.E., Vleeshouwers, V.G., and Govers, F. (1997).
650 A gene encoding a protein elicitor of *Phytophthora infestans* is down-regulated during infection of
651 potato. *Mol. Plant-Microbe Interact.* 10, 13-20.

652

653 Kamoun, S., van West, P., Vleeshouwers, V.G., de Groot, K.E., and Govers, F. (1998). Resistance of
654 *Nicotiana benthamiana* to *Phytophthora infestans* is mediated by the recognition of the elicitor
655 protein INF1. *Plant Cell* 10, 1413-1426.

656

657 Kim, J. (2016). Cytokinin response factors gating environmental signals and hormones. *Trends Plant
658 Sci.* 21, 993-996.

659

660 Kim, D., Paggi, J.M., Park, C., Bennett, C., and Salzberg, S.L. (2019). Graph-based genome
661 alignment and genotyping with HISAT2 and HISAT-genotype. *Nat. Biotechnol.* 37, 907-915.

662

663 Kovaka, S., Zimin, A.V., Pertea, G.M., Razaghi, R., Salzberg, S.L., Pertea, M. (2019). Transcriptome
664 assembly from long-read RNA-seq alignments with StringTie2. *Genome Biol.* 20, 278.

665

666 Levine, A., Tenhaken, R., Dixon, R., and Lamb, C. (1994). H₂O₂ from the oxidative burst
667 orchestrates the plant hypersensitive disease resistance response. *Cell* 79, 583-593.

668

669 Licausi, F., Ohme-Takagi, M., and Perata, P. (2013). APETALA2/Ethylene Responsive Factor
670 (AP2/ERF) transcription factors: mediators of stress responses and developmental programs. *New
671 Phytol.* 199, 639-649.

672

673 Liu, D., Chen, X., Liu, J., Ye, J., and Guo, Z. (2012). The rice ERF transcription factor OsERF922
674 negatively regulates resistance to *Magnaporthe oryzae* and salt tolerance. *J. Exp Bot.* 63, 3899-
675 3911.

676

677 Love, M.I., Huber, W., and Anders, S. (2014). Moderated estimation of fold change and dispersion
678 for RNA-seq data with DESeq2. *Genome Biol.* 15, 550

679

680 Maldonado-Bonilla, L.D., Betancourt-Jiménez, M., and Lozoya-Gloria, E. (2008). Local and
681 systemic gene expression of sesquiterpene phytoalexin biosynthetic enzymes in plant leaves. *Eur.*
682 *J. Plant Pathol.* 121, 439-449.

683

684 Martin, M. (2011). Cutadapt removes adapter sequences from high-throughput sequencing reads.
685 *EMBnet J.* 17, 10-12.

686

687 Matsukawa, M., Shibata, Y., Ohtsu, M., Mizutani, A., Mori, H., Wang, P., Ojika, M., Kawakita, K.,
688 and Takemoto, D. (2013). *Nicotiana benthamiana* calreticulin 3a is required for the ethylene-
689 mediated production of phytoalexins and disease resistance against oomycete pathogen
690 *Phytophthora infestans*. *Mol. Plant-Microbe Interact.* 26, 880-892.

691

692 Mikes, V., Milat, M.-L., Ponchet, M., Panabières, F., Ricci, P., and Blein, J.-P. (1998). Elicitins,
693 proteinaceous elicitors of plant defense, are a new class of sterol carrier proteins. *Biochem.*
694 *Biophys. Res. Commun.* 245, 133-139.

695

696 Milat, M.-L., Ricci, P., Bonnet, P., and Blein, J.-P. (1991). Capsidiol and ethylene production by
697 tobacco cells in response to cryptogein, an elicitor from *Phytophthora cryptogea*. *Phytochemistry*
698 30, 2171-2173.

699

700 Mizuno, Y., Ohtsu, M., Shibata, Y., Tanaka, A., Camagna, M., Ojika, M., Mori, H., Sato, I., Chiba,
701 S., Kawakita, K., and Takemoto, D. (2019a). *Nicotiana benthamiana* RanBP1-1 is involved in the
702 induction of disease resistance via regulation of nuclear-cytoplasmic transport of small GTPase
703 Ran. *Front Plant Sci.* 10, 222.

704

705 Mizuno, Y., Imano, S., Camagna, M., Suzuki, T., Tanaka, A., Sato, I., Chiba, S., Kawakita, K., and
706 Takemoto D. (2019b). *Nicotiana benthamiana* exportin 1 is required for elicitor-induced
707 phytoalexin production, cell death induction, and resistance against potato late blight pathogen
708 *Phytophthora infestans*. *J. Gen. Plant Pathol.* 85, 347-355.

709

710 Monjil, M.S., Kato, H., Matsuda, K., Suzuki, N., Tenhiro, S., Camagna, M., Suzuki, T., Tanaka, A.,
711 Terauchi, R., Sato, I., Chiba, S., Kawakita, K., Ojika, M., and Takemoto D. (2021). Two
712 structurally different oomycete MAMPs induce distinctive plant immune responses. *bioRxiv* DOI:
713 10.1101/2021.10.22.465218

714

715 Müller, M., and Munné-Bosch, S. (2015). Ethylene Response Factors: A key regulatory hub in
716 hormone and stress signaling. *Plant Physiol.* 169, 32-41.

717

718 Nakano, T., Suzuki, K., Fujimura, T., and Shinshi, H. (2006). Genome-wide analysis of the ERF
719 gene family in Arabidopsis and rice. *Plant Physiol.* 140, 411-432.

720

721 Ohme-Takagi, M., and Shinshi, H. (1995). Ethylene-inducible DNA binding proteins that interact
722 with an ethylene-responsive element. *Plant Cell* 7, 173-182.

723

724 Ohtsu, M., Shibata, Y., Ojika, M., Tamura, K., Hara-Nishimura, I., Mori, H., Kawakita, K., and
725 Takemoto, D. (2014). Nucleoporin 75 is involved in the ethylene-mediated production of
726 phytoalexin for the resistance of *Nicotiana benthamiana* to *Phytophthora infestans*. *Mol. Plant-*
727 *Microbe Interact.* 27, 1318-1330.

728

729 Ranf, S. (2017). Sensing of molecular patterns through cell surface immune receptors. *Curr. Opin.*
730 *Plant Biol.* 38, 68-77.

731

732 Ratcliff, F., Martin-Hernandez, A.M., and Baulcombe, D.C. (2001). Tobacco rattle virus as a vector
733 for analysis of gene function by silencing. *Plant J.* 25, 237-245.

734

735 Ricci, P., Trentin, F., Bonnet, P., Venard, P., Mouton-Perronnet, F., and Bruneteau, M. (1992).
736 Differential production of parasiticein, an elicitor of necrosis and resistance in tobacco, by isolates
737 of *Phytophthora parasitica*. *Plant Pathol.* 41, 298-307.

738

739 Rin, S., Mizuno, Y., Shibata, Y., Fushimi, M., Katou, S., Sato, I., Chiba, S., Kawakita, K., and
740 Takemoto, D. (2017). EIN2-mediated signaling is involved in pre-invasion defense in *Nicotiana*
741 *benthamiana* against potato late blight pathogen, *Phytophthora infestans*. *Plant Signal. Behav.* 12,
742 e1300733.

743

744 Rin, S., Imano, S., Camagna, M., Suzuki, T., Tanaka, A., Sato, I., Chiba, S., Kawakita, K., and
745 Takemoto, D. (2020). Expression profiles of genes for enzymes involved in capsidiol production
746 in *Nicotiana benthamiana*. *J. Gen. Plant Pathol.* 86, 340-349.

747

748 Rong, W., Qi, L., Wang, A., Ye, X., Du, L., Liang, H., Xin, Z., and Zhang, Z. (2014). The ERF
749 transcription factor TaERF3 promotes tolerance to salt and drought stresses in wheat. *Plant*
750 *Biotechnol J.* 12:468-479.

751

752 Saitou, N., and Nei, M. (1987). The neighbor-joining method: a new method for reconstructing
753 phylogenetic trees. *Mol. Biol. Evol.* 4, 406-425.

754

755 Schenk, P.M., Kazan, K., Wilson, I., Anderson, J.P., Richmond, T., Somerville, S.C., and Manners,
756 J.M. (2000). Coordinated plant defense responses in *Arabidopsis* revealed by microarray analysis.
757 *Proc. Natl. Acad. Sci. USA* 97, 11655-11660.

758

759 Shibata, Y., Kawakita, K., and Takemoto, D. (2010). Age-related resistance of *Nicotiana*
760 *benthamiana* against hemibiotrophic pathogen *Phytophthora infestans* requires both ethylene- and
761 salicylic acid-mediated signaling pathways. *Mol. Plant-Microbe Interact.* 23, 1130-1142.

762

763 Shibata, Y., Kawakita, K., and Takemoto, D. (2011). SGT1 and HSP90 are essential for age-related
764 non-host resistance of *Nicotiana benthamiana* against the oomycete pathogen *Phytophthora*
765 *infestans*. *Physiol. Mol. Plant Pathol.* 75, 120-128.

766

767 Shibata, Y., Ojika, M., Sugiyama, A., Yazaki, K., Jones, D.A., Kawakita, K., and Takemoto, D.
768 (2016). The full-size ABCG transporters Nb-ABCG1 and Nb-ABCG2 function in pre- and

769 postinvasion defense against *Phytophthora infestans* in *Nicotiana benthamiana*. *Plant Cell* 28,
770 1163-1181.

771

772 Shoji, T., Kajikawa, M., and Hashimoto, T. (2010). Clustered transcription factor genes regulate
773 nicotine biosynthesis in tobacco. *Plant Cell* 22, 3390-3409.

774

775 Shoji, T., and Yuan, L. (2021). ERF gene clusters: working together to regulate metabolism. *Trends
776 Plant Sci.* 26, 23-32.

777

778 Takemoto, D., Hardham, A.R., and Jones, D.A. (2005). Differences in cell death induction by
779 *Phytophthora* elicitors are determined by signal components downstream of MAP kinase kinase in
780 different species of *Nicotiana* and cultivars of *Brassica rapa* and *Raphanus sativus*. *Plant Physiol.*
781 138, 1491-504.

782

783 Takemoto, D., Shibata, Y., Ojika, M., Mizuno, Y., Imano, S., Ohtsu, M., Sato, I., Chiba, S., Kawakita,
784 K., Rin, S., and Camagna, M. (2018). Resistance to *Phytophthora infestans*: exploring genes
785 required for disease resistance in Solanaceae plants. *J. Gen. Plant Pathol.* 84, 312-320.

786

787 Tezuka, D., Kawamata, A., Kato, H., Saburi, W., Mori, H., and Imai, R. (2019). The rice ethylene
788 response factor OsERF83 positively regulates disease resistance to *Magnaporthe oryzae*. *Plant
789 Physiol Biochem.* 2019 Feb;135:263-271.

790

791 Thagun, C., Imanishi, S., Kudo, T., Nakabayashi, R., Ohyama, K., Mori, T., Kawamoto, K.,
792 Nakamura, Y., Katayama, M., Nonaka, S., Matsukura, C., Yano, K., Ezura, H., Saito, K.,
793 Hashimoto, T., Shoji, T. (2016). Jasmonate-responsive ERF transcription factors regulate steroidal
794 glycoalkaloid biosynthesis in tomato. *Plant Cell Physiol.* 57, 961-975.

795

796 Thompson, J.D., Higgins, D.G., and Gibson, T.J. (1994). CLUSTAL W: improving the sensitivity of
797 progressive multiple sequence alignment through sequence weighting, position-specific gap
798 penalties and weight matrix choice. *Nucleic Acids Res.* 22, 4673-4680.

799

800 Todd, A.T., Liu, E., Polvi, S.L., Pammett, R.T., and Page, J.E. (2010). A functional genomics screen
801 identifies diverse transcription factors that regulate alkaloid biosynthesis in *Nicotiana
802 benthamiana*. *Plant J.* 62, 589-600.

803

804 Tyler, B.M. (2002). Molecular basis of recognition between *Phytophthora* pathogens and their hosts.
805 *Annu. Rev. Phytopathol.* 40, 137-167.

806

807 Winter, D., Vinegar, B., Nahal, H., Ammar, R., Wilson, G.V., and Provart, N.J. (2007). An
808 "Electronic Fluorescent Pictograph" browser for exploring and analyzing large-scale biological
809 data sets. *PLoS One* 2, e718.

810

811 Yamaguchi-Shinozaki K, and Shinozaki K. (1994). A novel cis-acting element in an Arabidopsis
812 gene is involved in responsiveness to drought, low-temperature, or high-salt stress. *Plant Cell* 6,
813 251-64.

814

815 Yu, J., Chai, C., Ai, G., Jia, Y., Liu, W., Zhang, X., Bai, T., and Dou, D. (2020). A *Nicotiana
816 benthamiana* AP2/ERF transcription factor confers resistance to *Phytophthora parasitica*.
817 *Phytopathol Res.* 2, 4.

818
819
820
821

Yuan, M., Jiang, Z., Bi, G., Nomura, K., Liu, M., Wang, Y., Cai, B., Zhou, J.M., He, S.Y., and Xin, X.F. (2021). Pattern-recognition receptors are required for NLR-mediated plant immunity. *Nature* 592, 105-109.

822

Zarei, A., Körbes, A.P., Younassi, P., Montiel, G., Champion, A., and Memelink, J. (2011). Two GCC boxes and AP2/ERF-domain transcription factor ORA59 in jasmonate/ethylene-mediated activation of the *PDF1.2* promoter in *Arabidopsis*. *Plant Mol. Biol.* 75, 321-331.

823
824
825

826 FIGURE LEGENDS

827

828
829

FIGURE 1 | Induction of defense responses of *Nicotiana benthamiana* leaves treated with INF1, a secretory protein derived from *Phytophthora infestans*. **(A)** INF1-induced reactive oxygen species (ROS) production in *N. benthamiana*. Leaf discs were placed in water (H_2O) or 150 nM INF1 solution containing L-012, and L-012 mediated chemiluminescence was measured. Data are means \pm standard error (SE) (n = 8). **(B)** Leaves of *N. benthamiana* were treated with water, or 150 nM INF1 by infiltration and ROS production was detected at indicated time after the treatment. Data are means \pm standard error (SE) (n = 6). **(C)** Phytoalexins were extracted at the indicated time after water (H) or 150 nM INF1 (I) treatment and quantified by LC/MS. Data are means \pm SE (n = 3). **(D)** Leaves of *N. benthamiana* were treated with water or 150 nM INF1, and electrolyte leakage was quantified at 24 h after INF1 treatment. Data are means \pm SE (n = 6). Photographs were taken 72 h after the treatment. Data marked with asterisks are significantly different from control as assessed by the two-tailed Student's *t*-test: ***P* < 0.01.

830
831
832
833
834
835
836
837
838
839
840
841
842

FIGURE 2 | Clustering of 57,140 *Nicotiana benthamiana* genes based on their expression profiles in leaves treated with water or 150 nM INF1. 14,390 (25.2%) of genes were not assigned to any cluster because no or significantly lower expression was detected. See method for detailed procedure of the gene clustering. Graphs shown are average expression profiles of 100 genes (selected based on their high average FPKM value) from each cluster. Data are means \pm SE (n = 100). Clusters for INF1 induced genes are shown in red letters.

843
844
845
846
847
848
849

FIGURE 3 | The time course of expression of *Nicotiana benthamiana* genes encoding dedicated enzymes for phytoalexin production. The gene expression (FPKM value) was determined by RNA-seq analysis of *N. benthamiana* leaves treated with water or 150 nM INF1 for 0 h, 3 h, 6 h, 12 h and 24 h. Data are mean \pm SE (n = 3). Asterisks indicate a significant difference from the control (water-treated) as assessed by two-tailed Student's *t*-test, ***P* < 0.01. *EAS* 5-*epi*-aristolochene synthase, *EAH* 5-*epi*-aristolochene-1,3-dihydroxylase

850
851
852
853
854
855
856

FIGURE 4 | The time course of expression of *Nicotiana benthamiana* genes encoding enzymes in the mevalonate pathway. Gene expression (FPKM value) was determined by RNA-seq analysis of *N. benthamiana* leaves treated with water (H_2O) or 150 nM INF1 for 3 h, 6 h, 12 h and 24 h. Data are means \pm SE (n = 3). Data marked with asterisks are significantly different from control as assessed by the two-tailed Student's *t*-test: ***P* < 0.01 **P* < 0.05. *ACAT*, Acetoacetyl-CoA thiolase; *HMGS*, Hydroxymethylglutaryl-CoA synthase; *HMGR*, Hydroxymethylglutaryl-CoA-reductase; *MVK*, Mevalonate-5-kinase; *PMVK*, Phosphomevalonate kinase; *MVD*, Mevalonate-5-pyrophosphate decarboxylase; *IPPI*, Isopentenyl pyrophosphate isomerase; *FPPS*, Farnesyl pyrophosphate synthase.

865

FIGURE 5 | Identification of cis-element for INF1-induced expression of *NbEAS* genes. **(A)** Expression of *GFP* gene under the control of the indicated length of *NbEAS1* and *NbEAS4* promoter (P_EAS). Total RNA was isolated from *N. benthamiana* leaves 48 h after co-inoculation with *A. tumefaciens* strains containing expression vectors for P_EAS:GFP, INF1 or control (C) vector, and truncated *GUS* (*tGUS*) gene under the control of 35S promoter as internal standard. Expression of the *GFP* gene was assessed by qRT-PCR with *GFP* primers and values were normalized to the expression of *tGUS*. Means \pm SE (n = 3). Data marked with asterisks are significantly different as assessed by the two-tailed Student's *t*-test: *P < 0.05. **(B)** Alignment of -260 to -230 of *NbEAS1* promoter and -230 to -200 of *NbEAS4* promoter. GCC box-like motifs were shown in red letters. Mutations introduced in *NbEAS4* (TT) were shown below the alignment by boxes. **(C)** Expression of *GFP* gene under the control of 230 bp of wild type or mutated (TT) *NbEAS4* promoter. (Left) Fluorescence micrographs of *N. benthamiana* leave 48 h after *A. tumefaciens* inoculation containing indicated expression vectors. Bars = 500 μ m. (Right) Total RNA was isolated from *N. benthamiana* leaves 48 h after co-inoculation with *A. tumefaciens* strains containing expression vectors. Expression of the *GFP* gene was assessed by qRT-PCR with *GFP* primers and values were normalized to the expression of *tGUS*. Means \pm SE (n = 3). Data marked with asterisks are significantly different as assessed by the two-tailed Student's *t*-test: *P < 0.05.

883

FIGURE 6 | Expression profiles of *Nicotiana benthamiana* genes encoding enzymes for ethylene production. The gene expression (FPKM value) was determined by RNA-seq analysis of *N. benthamiana* leaves treated with water and 150 nM INF1 for 0 h, 3 h, 6 h, 12 h, 24 h. Data are means \pm SE (n = 3). Data marked with asterisks are significantly different from control as assessed by the two-tailed Student's *t*-test: **P < 0.01, *P < 0.05.

889

CGS, Cystathionine gamma-synthase; SAMS, S-adenosylmethionine synthetase; SAHH, S-adenosyl homocysteine hydrolase; ACS, Aminocyclopropane carboxylate synthase; ACO, Aminocyclopropane carboxylate oxidase.

891

FIGURE 7 | An unrooted phylogenetic tree of AP2/ERF transcription factors from *Nicotiana benthamiana* and *Arabidopsis thaliana*. The deduced amino acid sequences of AP2/ERF transcription factors were aligned by ClustalW (Thompson et al., 1994), and the phylogenetic tree was constructed using the neighbor-joining (NJ) method (Saitou and Nei, 1987). Classification of AP2/ERF transcription factors by Nakano et al. (2006) are indicated. The cluster numbers of INF1-inducible genes are shown in red letters.

892

FIGURE 8 | **(A)** Expression profiles of *Nicotiana benthamiana* genes encoding two selected ERF transcription factors. Gene expression (FPKM value) was determined by RNA-seq analysis of *N. benthamiana* leaves treated with water (H₂O) or 150 nM INF1. Data are means \pm SE (n = 3). Data marked with asterisks are significantly different from control (water-treated). **P < 0.01. **(B)** *N. benthamiana* were inoculated with TRV, TRV:ERF-IX-33 or TRV:ERF-IX-16 and the right side of leaves of control or gene-silenced plants were inoculated with *P. infestans*. The appearance of disease symptoms was categorized into 5 classes according to the severity of disease symptoms. 0, no visible symptom; 1, small wilted spots in inoculated area; 2, browning <50% of the inoculated side of leaf; 3, browning >50% of the inoculated side of leaf; 4, development of disease symptoms over central leaf vein. Plot showing percentage of *N. benthamiana* leaves with disease symptom severities represented in the five classes as shown in the upper panels, for leaves of control and gene-silenced plants inoculated with *P. infestans* from 3 to 5 days post-inoculation (dpi). At least 50 leaves from each control and gene-silenced plant were scored. Data marked with asterisks are significantly different from control as assessed by one-tailed Mann-Whitney U tests: *P < 0.05. **(C)** Production of

914 phytoalexin in TRV-inoculated or gene-silenced *N. benthamiana*. Leaves were harvested 24 hours
915 after 150 nM INF1 treatment and extracted phytoalexins were detected by HPLC. Data are means
916 \pm SE (n = 4). Data marked with asterisks are significantly different from control. **P < 0.01. (D)
917 Binding of NbERF-IX33 to the *NbEAS4* promoter. MBP (maltose-binding protein) or MBP-ERF-IX-
918 33a was incubated with *NbEAS4* promoter fragments. Samples were separated in a non-denaturing
919 polyacrylamide gel. The gel was stained with SYBR Green EMSA stain.

920
921

922 SUPPLEMENTAL DATA

923

924 **SUPPLEMENTARY FIGURE 1** | Nucleotide sequence of the promoter region of *NbEAS* and
925 *NbEAH* genes. The 7-bp sequences for the GCC box-like motifs are shown in red letters, the 6-bp
926 sequences for the W-box motifs are shown in blue letters, and the start codon of *NbEAS* and *NbEAH*
927 are shown in orange letters. Note that the promoter sequence for *NbEAS10* (-350 to -237) is not
928 available.

929

930 **SUPPLEMENTARY FIGURE 2** | (A) Accumulation of ethylene in *N. benthamiana* leaves treated
931 with INF1. Leaves of control (TRV) or *NbACO*-silenced (TRV:ACO) were treated with water (H₂O),
932 or 150 nM INF1 and the amount of ethylene produced was measured by gas chromatography. Data
933 are means \pm SE (n = 4). (B) *N. benthamiana* were inoculated with TRV, TRV:EIN2 or TRV:ACO
934 and leaves of control or *NbACO*-silenced plants were inoculated with *P. infestans*. The appearance of
935 disease symptoms was categorized into 3 classes according to the severity of disease symptoms. 0, no
936 visible symptom; 1, small wilted spots in inoculated area; 2, browning >50% of the inoculated side of
937 the leaf. Plot showing percentage of *N. benthamiana* leaves with disease symptom severities
938 represented in the three classes as shown in the upper panels, for leaves of control and gene-silenced
939 plants inoculated with *P. infestans* at 7days post-inoculation (dpi). At least 12 leaves from each
940 control and gene-silenced plant were scored. Data marked with asterisks are significantly different
941 from control as assessed by one-tailed Mann-Whitney U tests: *P < 0.05.

942

943 **SUPPLEMENTARY FIGURE 3** | Expression and purification of NbERF-IX-33a proteins in
944 *Escherichia coli*. *E. coli* with pMAL-c5x or pMAL-c5x containing *NbERF-IX-33* gene were cultured
945 in LB medium with IPTG for the induction of protein expression. Cultured *E. coli* cells were
946 harvested 5 hours after IPTG treatment and MBP (maltose-binding protein) or MBP- NbERF-IX-33a
947 were purified using amylose resin. Eluted fractions were separated by SDS-PAGE and stained with
948 CBB. Protein size markers are shown in kDa. The concentrations of the purified proteins were
949 adjusted and used for the experiments in Figure 8D.

950

951 **Supplementary Table 1** Plasmids used in this study.

952

953 **Supplementary Table 2** Primers used in this study.

954

955 **Supplementary Table 3** *Nicotiana benthamiana* genes categorized in cluster 2.

956

957 **Supplementary Table 4** *Nicotiana benthamiana* genes categorized in cluster 4.

958

959 **Supplementary Table 5** *Nicotiana benthamiana* genes categorized in cluster 10.

960

961 **Supplementary Table 6** *Nicotiana benthamiana* genes categorized in cluster 14.

962

963 **Supplementary Table 7** *Nicotiana benthamiana* genes categorized in cluster 16.

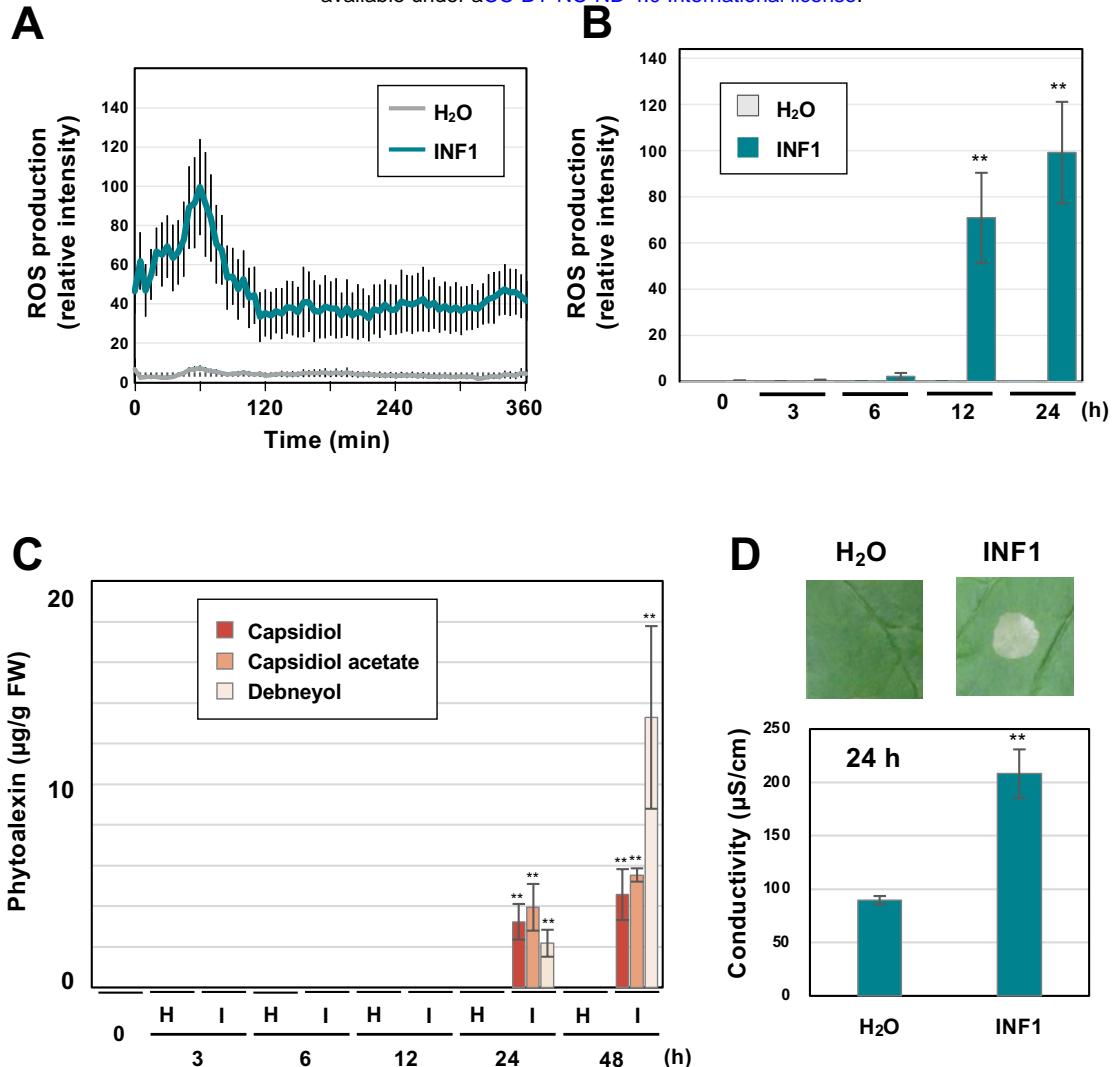
964

965 **Supplementary Table 8** Predicted *Nicotiana benthamiana* genes for enzymes specifically involved
966 in the production of capsidiol.

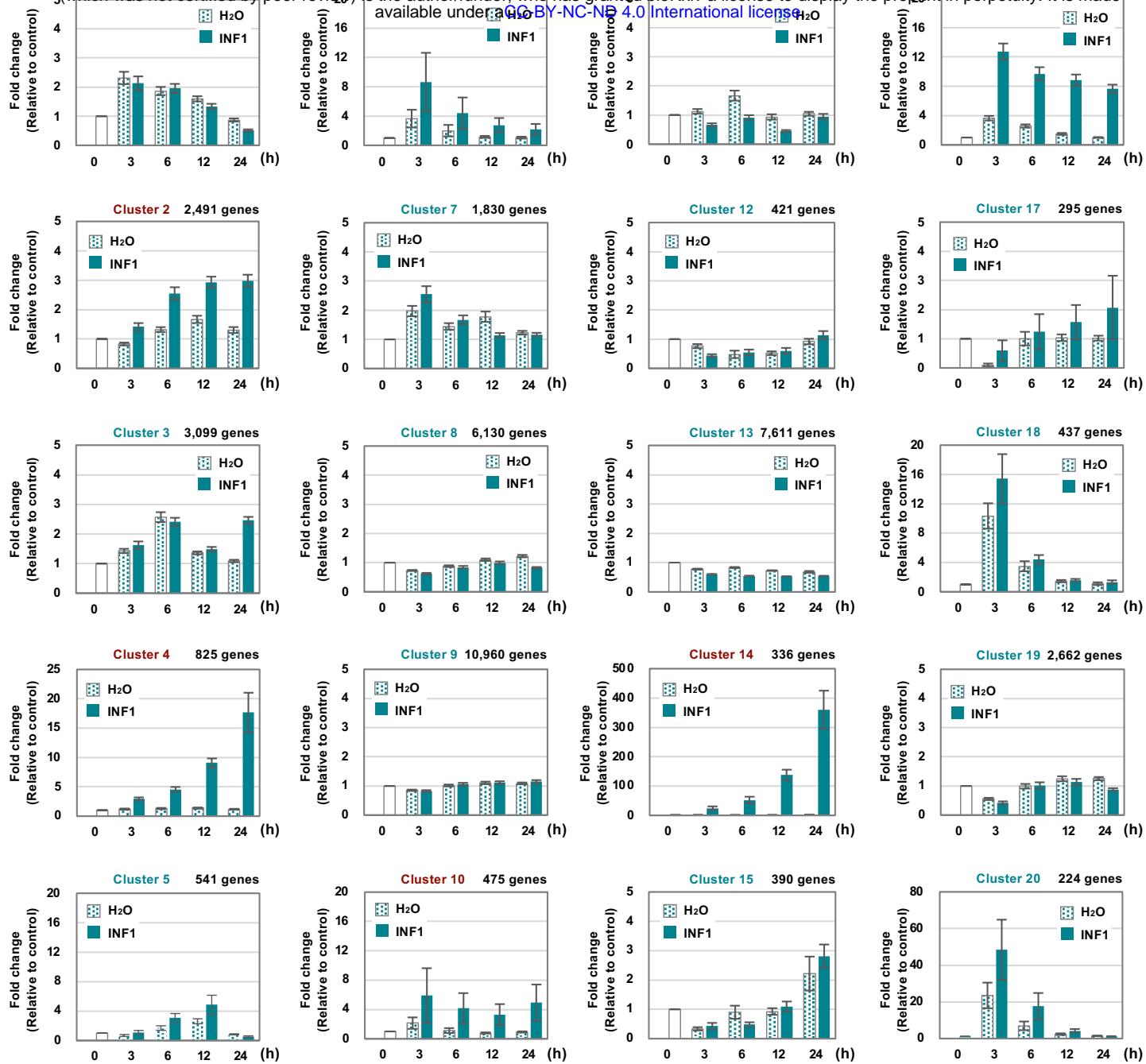
967

968 **Supplementary Table 9** Predicted genes for enzymes in the mevalonate pathway and farnesyl-
969 pyrophosphate synthase in *Nicotiana benthamiana*.

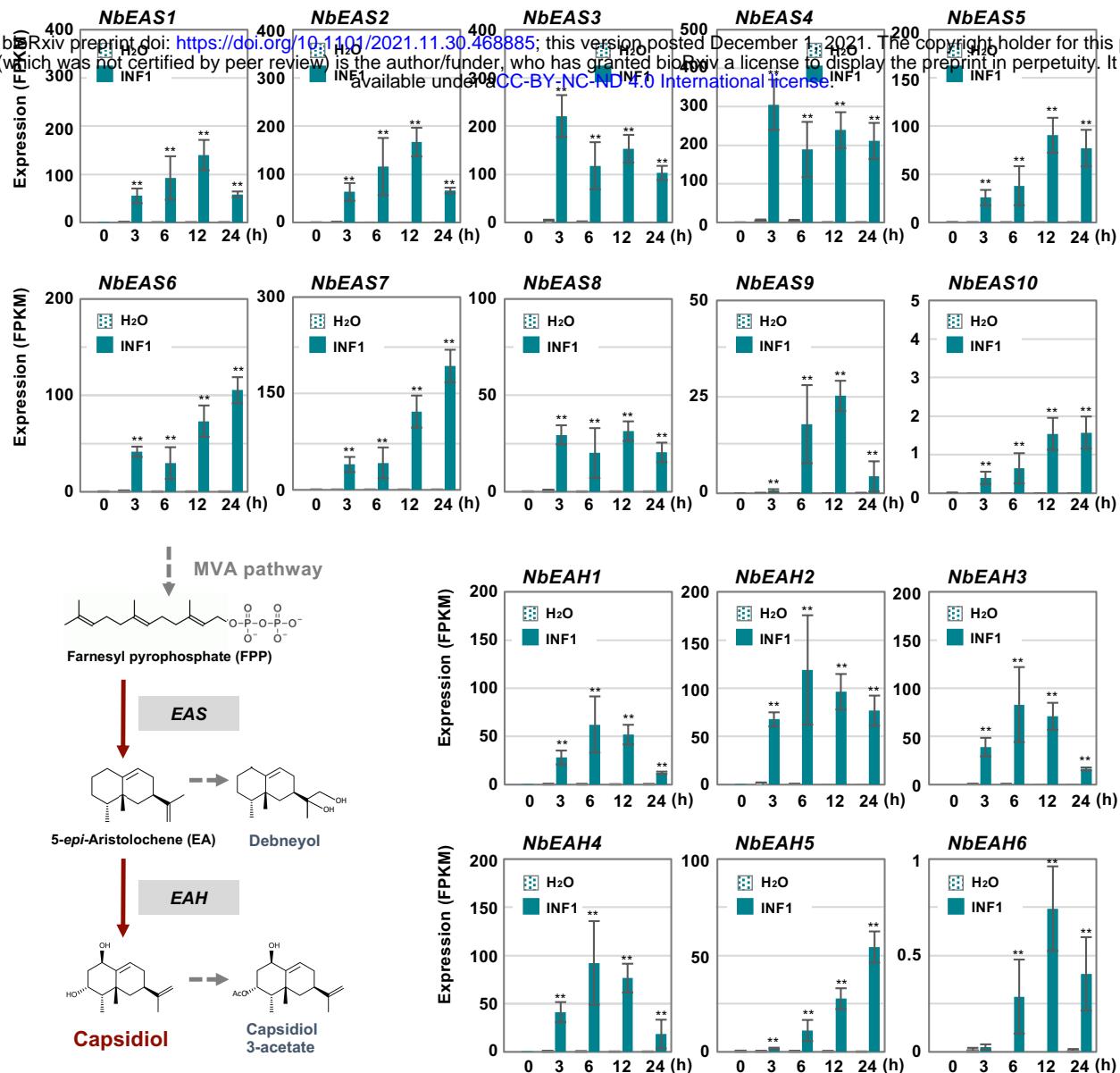
970


971 **Supplementary Table 10** Predicted genes for enzymes involved in the methionine cycle and
972 ethylene production in *Nicotiana benthamiana*.

973


974 **Supplementary Table 11** Gene list for predicted AP2 (RAV) family transcription factors in
975 *Nicotiana benthamiana*.

976


977 **Supplementary Table 12** Gene list for predicted AP2 (RAV) family transcription factors in
978 *Nicotiana benthamiana*.

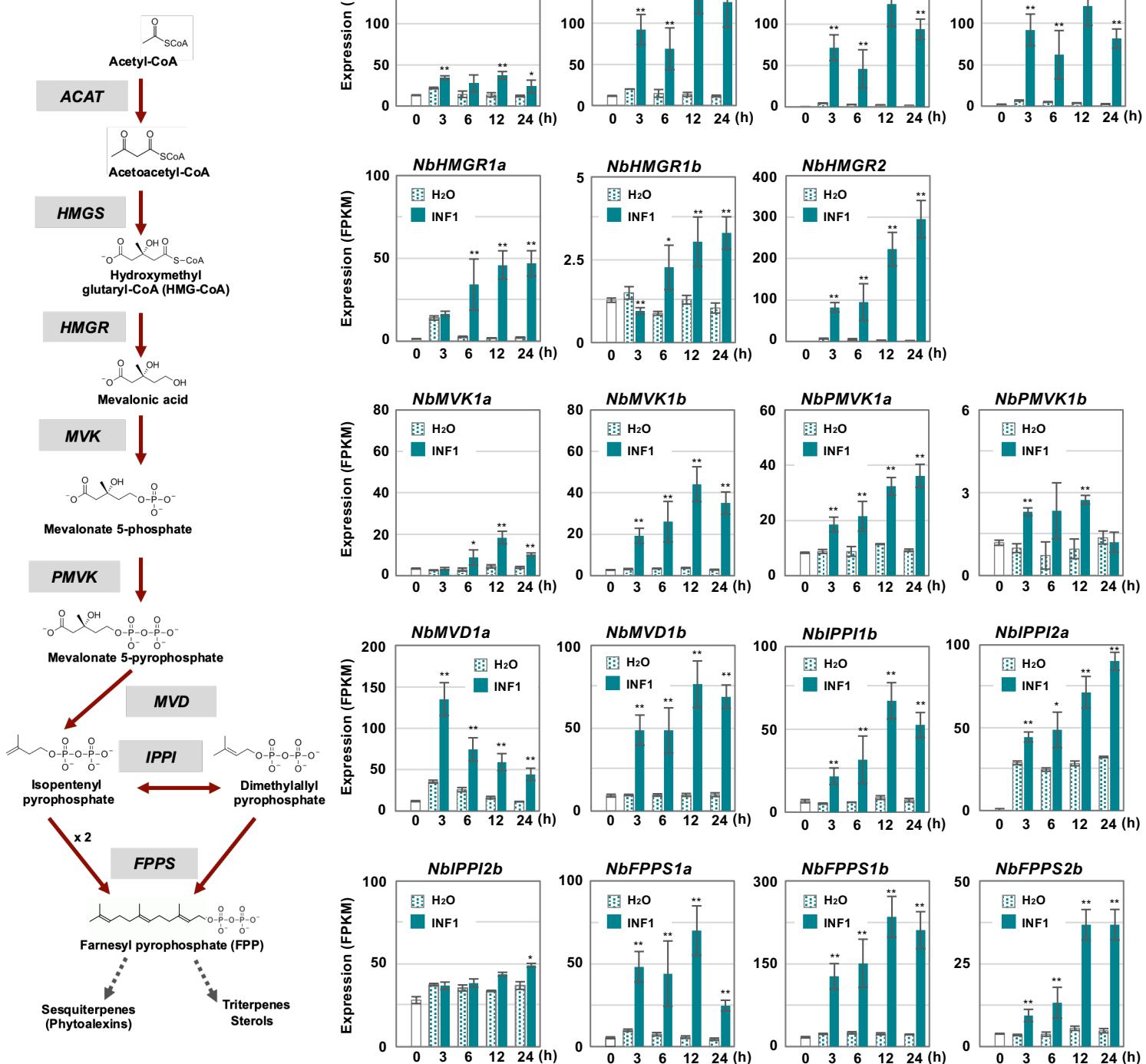

FIGURE 1 | Induction of defense responses of *Nicotiana benthamiana* leaves treated with INF1, a secretory protein derived from *Phytophthora infestans*. **(A)** INF1-induced reactive oxygen species (ROS) production in *N. benthamiana*. Leaf discs were placed in water (H₂O) or 150 nM INF1 solution containing L-012, and L-012 mediated chemiluminescence was measured. Data are means \pm standard error (SE) (n = 8). **(B)** Leaves of *N. benthamiana* were treated with water, or 150 nM INF1 by infiltration and ROS production was detected at indicated time after the treatment. Data are means \pm standard error (SE) (n = 6). **(C)** Phytoalexins were extracted at the indicated time after water (H) or 150 nM INF1 (I) treatment and quantified by LC/MS. Data are means \pm SE (n = 3). **(D)** Leaves of *N. benthamiana* were treated with water, or 150 nM INF1, and electrolyte leakage was quantified at 24 h after INF1 treatment. Data are means \pm SE (n = 6). Photographs were taken 72 h after the treatment. Data marked with asterisks are significantly different from control as assessed by the two-tailed Student's t-test: **P < 0.01.

FIGURE 2 | Clustering of 57,140 *Nicotiana benthamiana* genes based on their expression profiles in leaves treated with water or 150 nM INF1. 14,390 (25.2%) of genes were not assigned to any cluster because no expression could be determined at any point in time. See methods for detailed procedure of the gene clustering. Graphs shown are average expression profiles of 100 genes from each cluster (the most highly expressed genes of each cluster for all treatments and timepoints). Data are means \pm SE (n = 100). Clusters for INF1 induced genes are shown in red letters.

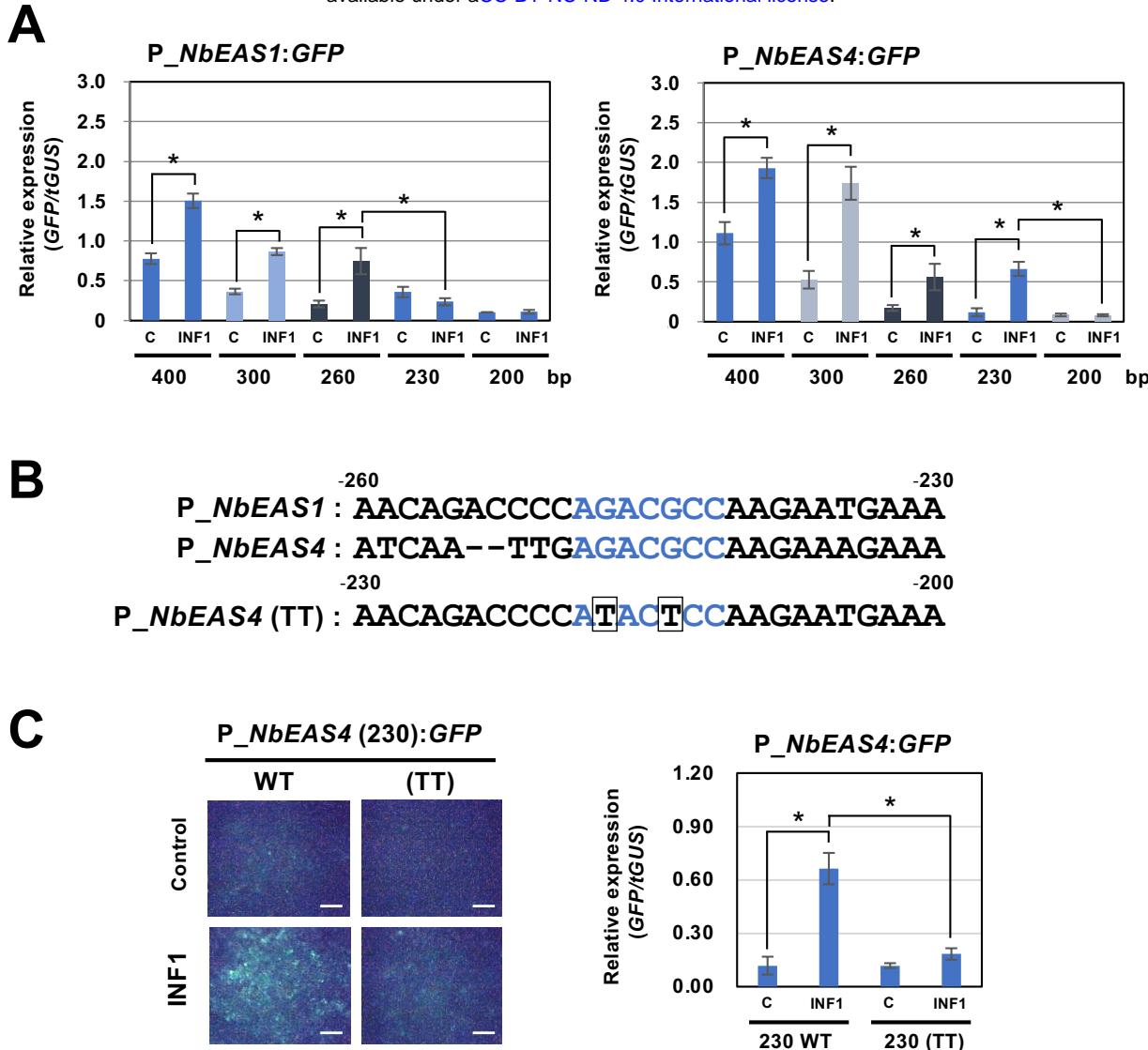


FIGURE 3 | The time course of expression of *Nicotiana benthamiana* genes encoding dedicated enzymes for phytoalexin production. The gene expression (FPKM value) was determined by RNA-seq analysis of *N. benthamiana* leaves treated with water or 150 nM INF1 for 0 h, 3 h, 6 h, 12 h and 24 h. Data are mean \pm SE ($n = 3$). Asterisks indicate a significant difference from the control (water-treated) as assessed by two-tailed Student's *t*-test, ** $P < 0.01$. *EAS* 5-*epi*-aristolochene synthase, *EAH* 5-*epi*-aristolochene-1,3-dihydroxylase.

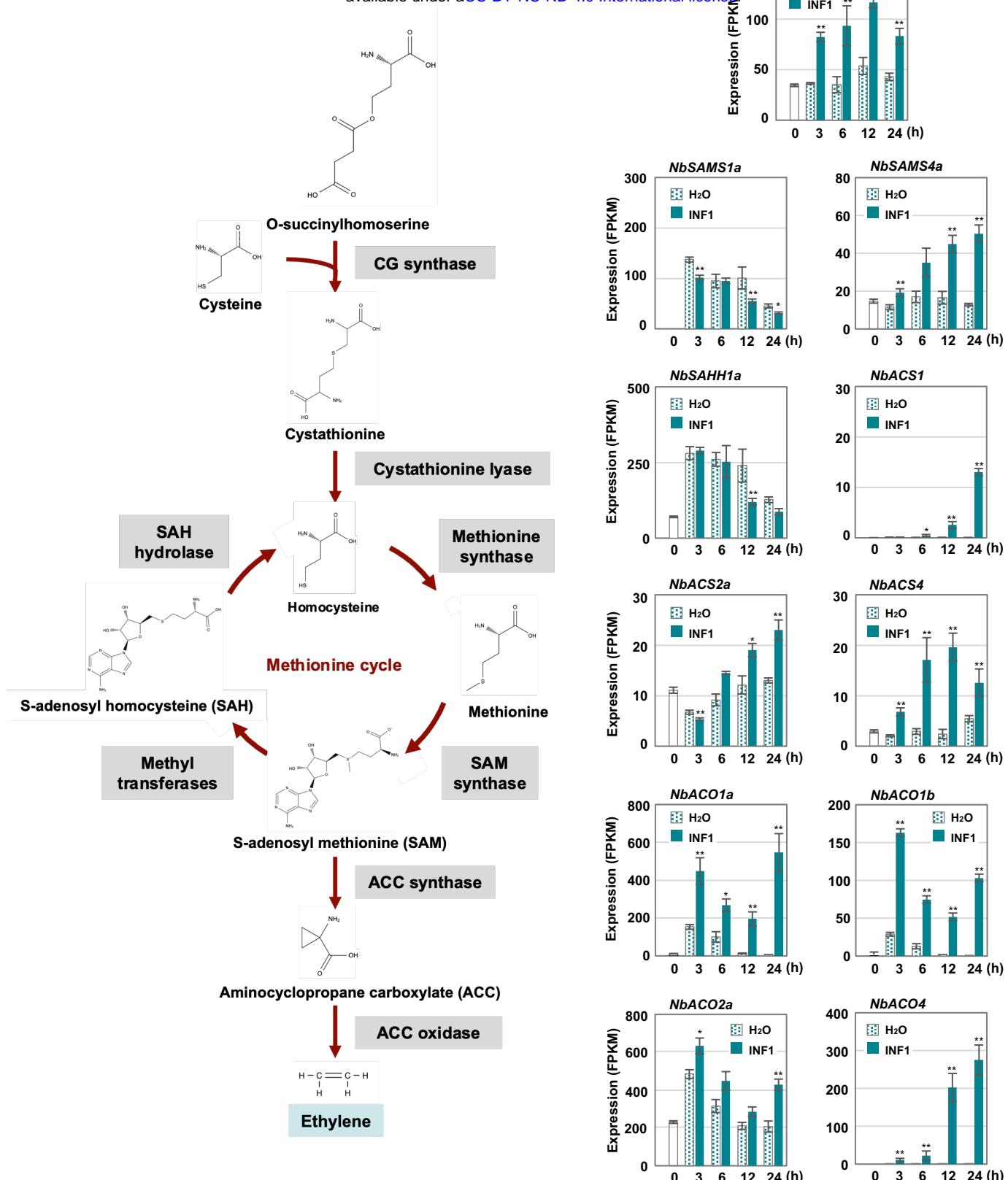
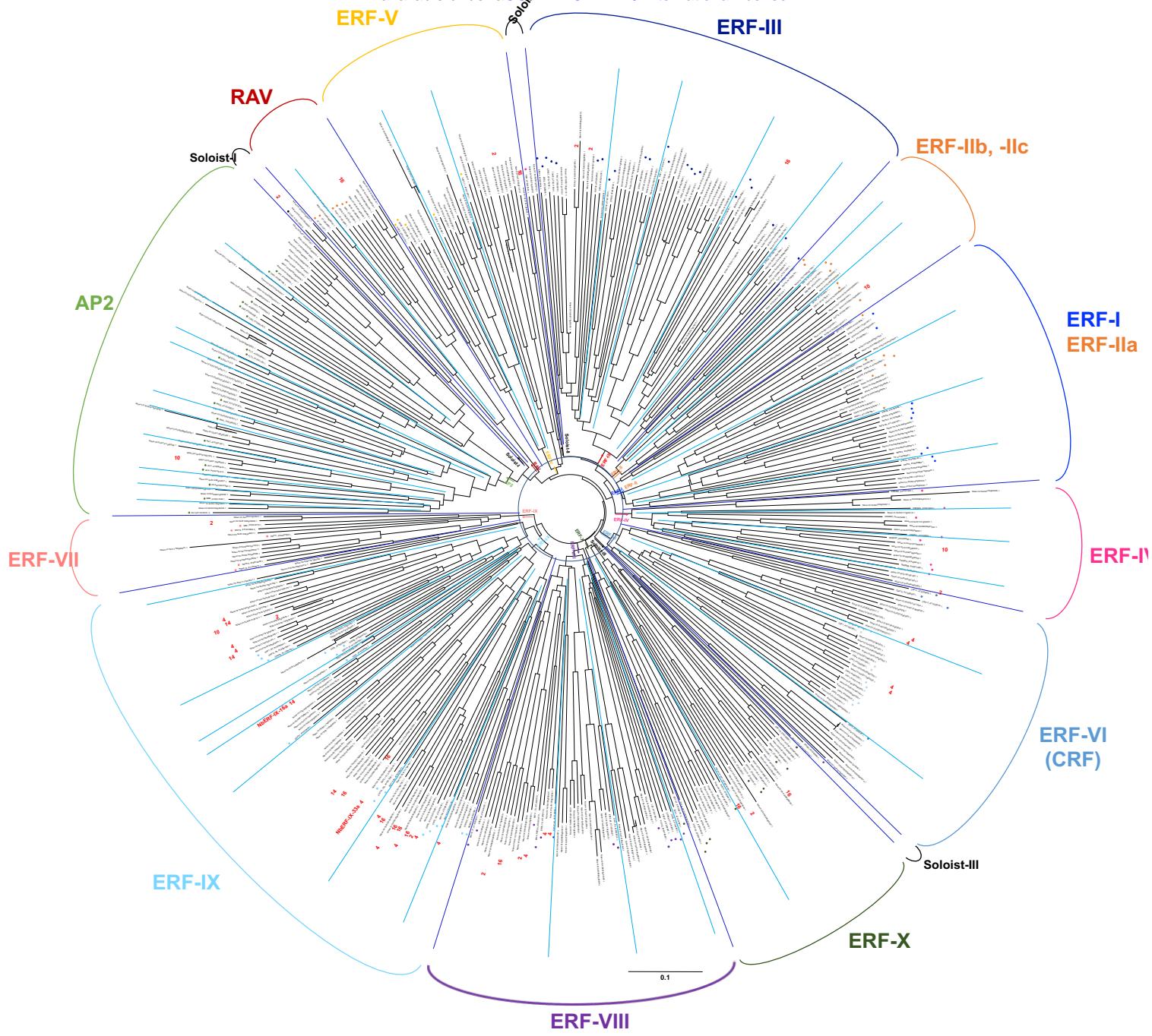


FIGURE 4 | The time course of expression of *Nicotiana benthamiana* genes encoding enzymes in the mevalonate pathway. Gene expression (FPKM value) was determined by RNA-seq analysis of *N. benthamiana* leaves treated with water (H_2O) or 150 nM INF1 for 3 h, 6 h, 12 h and 24 h. Data are means \pm SE ($n = 3$). Data marked with asterisks are significantly different from control as assessed by the two-tailed Student's *t*-test: ** $P < 0.01$ * $P < 0.05$.


ACAT, Acetoacetyl-CoA thiolase; **HMGS**, Hydroxymethylglutaryl-CoA synthase; **HMGR**, Hydroxymethylglutaryl-CoA-reductase; **MVK**, Mevalonate-5-kinase; **PMVK**, Phosphomevalonate kinase; **MVD**, Mevalonate-5-pyrophosphate decarboxylase; **IPPI**, Isopentenyl pyrophosphate isomerase; **FPPS**, Farnesyl pyrophosphate synthase.

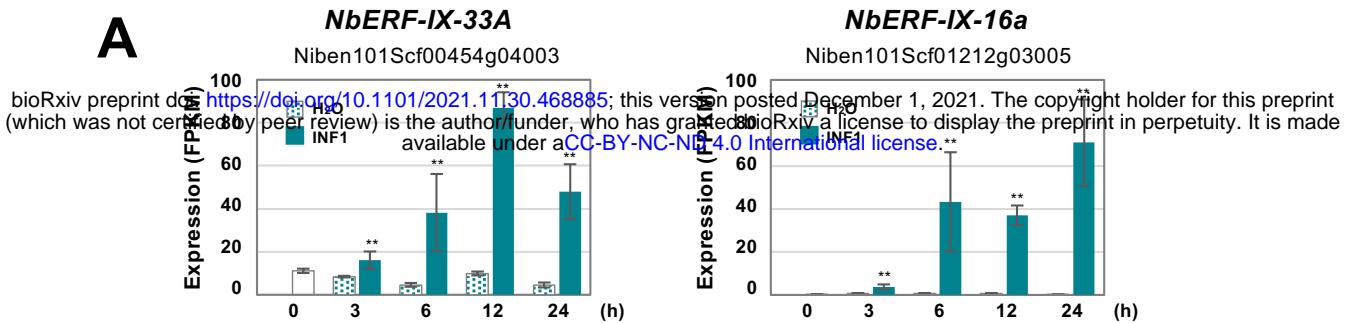
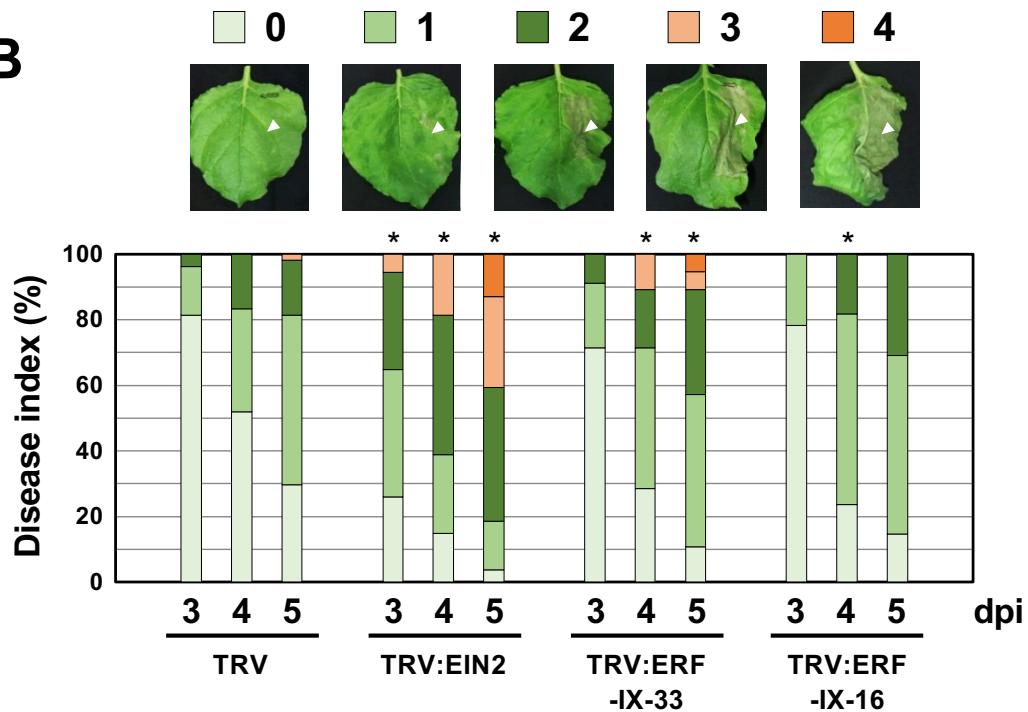
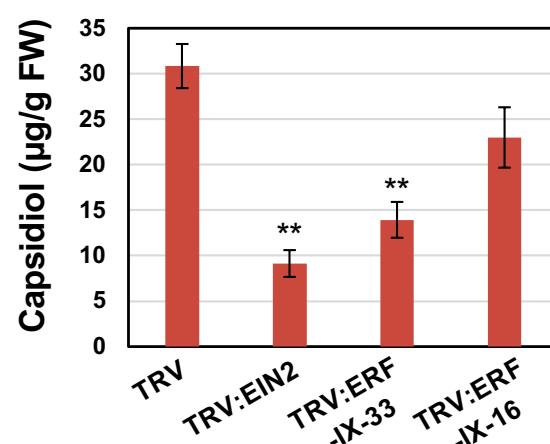
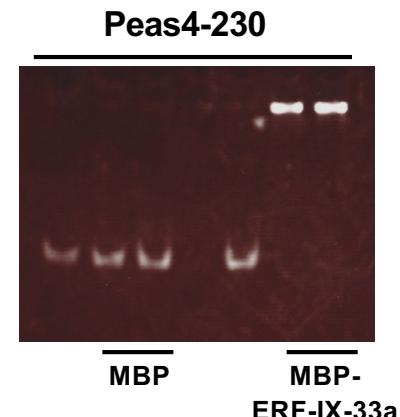




FIGURE 5 | Identification of cis-element for INF1-induced expression of *NbEAS* genes. **(A)** Expression of *GFP* gene under the control of indicated length of *NbEAS1* and *NbEAS4* promoter (P_EAS). Total RNA was isolated from *N. benthamiana* leaves 48 h after co-inoculation with *A. tumefaciens* strains containing expression vectors for P_EAS:GFP, INF1 or control (C) vector, and truncated *GUS* (*tGUS*) gene under the control of 35S promoter as internal standard. Expression of *GFP* gene was assessed by qRT-PCR with *GFP* primers and values were normalized to the expression of *tGUS*. Means \pm SE (n = 3). Data marked with asterisks are significantly different as assessed by the two-tailed Student's *t*-test: *P < 0.05. **(B)** Alignment of -260 to -230 of *NbEAS1* promoter and -230 to -200 of *NbEAS4* promoter. GCC box-like motifs were shown in blue letters. Mutations introduced in *NbEAS4* (TT) were shown below the alignment by boxes. **(C)** Expression of *GFP* gene under the control of 230 bp of wild type or mutated (TT) *NbEAS4* promoter. (Left) Fluorescence images of *N. benthamiana* leaves 48 h after *A. tumefaciens* inoculation containing indicated expression vectors. Bars = 500 μ m. (Right) Total RNA was isolated from *N. benthamiana* leaves 48 h after co-inoculation with *A. tumefaciens* strains containing expression vectors. Expression of *GFP* gene was assessed by qRT-PCR with *GFP* primers and values were normalized to the expression of *tGUS*. Means \pm SE (n = 3). Data marked with asterisks are significantly different as assessed by the two-tailed Student's *t*-test: *P < 0.05.

FIGURE 6 | Expression profiles of *Nicotiana benthamiana* genes encoding enzymes for ethylene production. The gene expression (FPKM value) was determined by RNA-seq analysis of *N. benthamiana* leaves treated with water and 150 nM INF1 for 0 h, 3 h, 6 h, 12 h, 24 h. Data are means \pm SE (n = 3). Data marked with asterisks are significantly different from control as assessed by the two-tailed Student's *t*-test: **P < 0.01, *P < 0.05. CGS, Cystathionine gamma-synthase; SAMS, S-adenosylmethionine synthetase; SAHH, S-adenosylhomocysteine hydrolase; ACS, Aminocyclopropane carboxylate synthase; ACO, Aminocyclopropane carboxylate oxidase.

FIGURE 7 | An unrooted phylogenetic tree of AP2/ERF transcription factors from *Nicotiana benthamiana* and *Arabidopsis thaliana*. The deduced amino acid sequences of AP2/ERF transcription factors were aligned by ClustalW (Thompson et al., 1994), and the phylogenetic tree was constructed using the neighbor-joining (NJ) method (Saitou and Nei, 1987). Classification of AP2/ERF transcription factors by Nakano et al. (2006) are indicated. The cluster numbers of INF1-inducible genes are shown in red letters. The scale bar corresponds to 0.1 estimated amino acid substitutions per site.

A**B****C****D**

FIGURE 8 | (A) Expression profiles of *Nicotiana benthamiana* genes encoding two selected ERF transcription factors. Gene expression (FPKM value) was determined by RNA-seq analysis of *N. benthamiana* leaves treated with water (H_2O) or 150 nM INF1. Data are means \pm SE ($n = 3$). Data marked with asterisks are significantly different from control (water-treated). $^{**}P < 0.01$. **(B)** *N. benthamiana* were inoculated with TRV, TRV:ERF-IX-33 or TRV:ERF-IX-16 and the right side of leaves of control or gene-silenced plants were inoculated with *P. infestans*. The appearance of disease symptoms was categorized into 5 classes according to the severity of disease symptoms. 0, no visible symptom; 1, small wilted spots in inoculated area; 2, browning <50% of the inoculated side of the leaf; 3, browning >50% of inoculated side of leaf; 4, development of disease symptoms over central leaf vein. Plot showing percentage of *N. benthamiana* leaves with disease symptom severities represented in the five classes as shown in the upper panels, for leaves of control and gene-silenced plants inoculated with *P. infestans* from 3 to 5 days post inoculation (dpi). At least 50 leaves from each control and gene-silenced plants were scored. Data marked with asterisks are significantly different from control as assessed by one-tailed Mann-Whitney U tests: $^{*}P < 0.05$. **(C)** Production of capsidiol in TRV-inoculated or gene-silenced *N. benthamiana*. Leaves were harvested 24 hours after 150 nM INF1 treatment and extracted phytoalexins were detected by HPLC. Data are means \pm SE ($n = 4$). Data marked with asterisks are significantly different from control. $^{**}P < 0.01$. **(D)** Binding of NbERF-IX33a to the NbEAS4 promoter. MBP (maltose binding protein) or MBP-ERF-IX-33a was incubated with NbEAS4 promoter fragments. Samples were separated in a non-denaturing polyacrylamide gel. The gel was stained with SYBR Green EMSA stain.