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Abstract

Problem-solving often requires creativity and is critical in everyday life. However, the
neurocognitive mechanisms underlying creative problem-solving remain poorly understood.
Two mechanisms have been highlighted: forming new connections from and between the
problem elements and insight solving (with a sudden realization of a solution). We examined
EEG activity during an adapted version of a classical insight problem task, the Remote
Associates Test, that requires finding a word connecting three words. It allowed us to explore
remoteness in semantic connections (by varying the remoteness of the solution word across
trials) and insight solving (identified as a "Euréka" moment reported by the participants).
Semantic remoteness was associated with a power increase in alpha band (8-12Hz) in a left
parieto-temporal cluster, beta band (13-30Hz) in a right fronto-temporal cluster in the early
phase of the task, and theta band (3-7Hz) in frontal cluster before the participants responded.
Insight solving was associated with power increase preceding the response in alpha and
gamma band (31-60Hz) in left temporal clusters and theta band in a frontal cluster. Source
reconstructions show the brain regions associated with these clusters. Overall, our findings
shed new light on the dynamic of some of the mechanisms involved in creative problem-
solving.
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Introduction

Solving problems can be a societal challenge, an opportunity for progress, or a personal
concern. We constantly have to find solutions to new problems and adapt ourselves to new
situations, from the everyday life (e.g., how to reorganize my workspace at home), to
worldwide concerns (e.g., how to avoid global warming). Problem-solving requires creativity
(called here creative problem-solving) when there is no obvious or previously established rule
to solve a newly encountered problem or when the heuristics or rules that we spontaneously
use are inefficient or lead to an impasse. In creative problem-solving, we need to change our
mental representation of the problem by recombining the elements of the problem in new
ways or finding new connections between seemingly unrelated elements. In some cases, the
solution comes to mind suddenly and spontaneously, with a "Euréka" phenomenon
(Topolinski & Reber, 2010). This problem-solving type is usually considered insight solving
(Weisberg, 2013; Kounios & Beeman, 2014). It relates to the illumination phase of the creative
process model developed from the reports of eminent scientific discoveries or artistic
creations (Wallas, 1926). Combining remote elements and insight solving are considered as
central aspects of creative thinking but the underlying neurocognitive mechanisms are still
poorly understood. Are these two aspects related? What happens in the brain when solving a
problem requires combining remote concepts or elicits a "Euréka" experience? Here, we
explore these questions using EEG during a problem-solving task assessing creative abilities.

Combining remote elements is a core component of the associative theory of creativity
proposed by Mednick (Mednick, 1962). According to his approach, creativity relies on the
ability to form new combinations from unusual associations. Mednick's theory was
operationalized in the Remote Associates Test (RAT) that consists in finding a word connecting
three given unrelated cue words (Mednick, 1962). The RAT is a creative problem-solving task:
it requires forming a new combination of distant elements of knowledge, and it often elicits
an experience of insight or "Euréka" in participants (Bowden et al., 2005; Topolinski & Reber,
2010; Kounios & Beeman, 2014). Several versions of the RAT have been developed using
lexical (compound words) (Bowden & Jung-Beeman, 2003) or semantic associations between
the cue words and the solution (Olteteanu et al., 2019), or using pictures instead of words
(Olteteanu & Zunjani, 2020; Becker & Cabeza, 2021). Our lab developed a semantic associative
version of the task (the Combined Associates Task, CAT) (Bendetowicz et al., 2017, 2018) in
which we controlled the semantic association strength (SAS) between the expected solution
and the three cue words. The CAT allows us to test Mednick's hypothesis, according to which
the more remote the elements to be combined, the more creative the process (Mednick,
1962).

A previous lesion study identified two distinct brain regions and networks as critical to
CAT-solving when remoteness increases (Bendetowicz et al., 2018). First, the medial
prefrontal cortex (PFC) as part of the default mode network, a network related to spontaneous
cognition and associative thinking (Andrews-Hanna et al., 2010, 2014), was critical for the
spontaneous generation of remote associates. Second, the rostro-lateral part of the PFC
involved in the executive control network (Yeo et al.,, 2011; Power & Petersen, 2013) was
critical for combining remote associates. These results are consistent with the associative
theory of creativity but also emphasizes the importance of controlled processes during CAT-
solving (Jones & Estes, 2015). They converge with findings from functional connectivity on
divergent thinking in healthy subjects (Beaty et al., 2016), extend them to convergent thinking
tasks (CAT), and demonstrate the necessity of both networks. Hence, their findings offer new
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94  light on the neural correlates of combining remote associates, while most previous

95 neurocognitive studies that used RAT-like tasks focused on the insight phenomenon (Wu et

96 al., 2020).

97 RAT-like tasks are helpful to explore insight solving because they provide multiple short

98 trials, allowing to compare trials with and without insight, and better fit the constraints of

99 neuroimaging studies than other insight problem-solving tasks (e.g., riddles). Currently, the
100  subjective report of Eureka experience during problem-solving, on a trial-by-trial basis, is the
101 most common measure used to study insight (Laukkonen & Tangen, 2018). The Euréka
102  corresponds to the subjective experience that arises when the solution comes to mind
103  suddenly and effortlessly, without being able to report the mental steps leading to it.
104  According to some insight theories (Sprugnoli et al., 2017), the Euréka moment may follow an
105 initial failure to solve the problem due to reaching a mental impasse and overcoming it with a
106  reorganization of the problem representation (Ohlsson, 1992).
107 The critical question of the neural underpinnings of insight problem-solving remains
108 unanswered. A few studies explored the brain correlates of insight problem-solving using
109 functional MRI and reported the involvement of frontal regions (anterior and posterior
110 cingulate cortex, inferior frontal gyrus), temporal regions (temporo-polar region, superior and
111  middle temporal gyri, hippocampus) and the insula, during RAT-like tasks (Luo & Niki, 2003;
112  Jung-Beeman et al., 2004; Anderson et al., 2009; Subramaniam et al., 2009; Aberg et al., 2016;
113  Tik et al., 2018; Becker et al., 2020) or other insight tasks (Aziz-Zadeh et al., 2009; Dietrich &
114  Kanso, 2010; Qiu et al., 2010; Shen et al., 2016; Lin et al., 2018). Electrophysiological methods
115  such as EEG provide invaluable information on the time course of information processing and
116  brain dynamics associated with cognitive processes. They thus have the potential to capture
117  the suddenness of Euréka experience (Jung-Beeman et al., 2004; Sandkihler & Bhattacharya,
118  2008). A pioneering study reported that RAT trials solved with Euréka (compared to trials
119  without Euréka) were associated with a power increase in the alpha band in the right parieto-
120  occipital areas around 1.5s before the subject's response, followed by a gamma burst in the
121  right antero-superior temporal lobe 0.3s before the subject's response (Jung-Beeman et al.,
122 2004). Alpha and gamma oscillations have been associated with insight solving in other studies
123 that used the RAT (Sandkiihler & Bhattacharya, 2008; Luft et al., 2018) and other paradigms
124  (Sheth et al., 2009; Rosen & Reiner, 2016; Oh et al., 2020). Independently of insight solving,
125  two studies reported a power increase in theta band in prefrontal electrodes and beta band
126  in fronto-temporal electrodes when contrasting RAT-solving with a simple word generation
127  task (Razumnikova, 2007) or a category fluency task (Danko et al., 2009).
128 Overall, the few existing neuroimaging studies of creative problem-solving focused
129  mainly on insight, and none of them explored the effect of the remoteness of the elements to
130 be combined. In addition, most EEG studies restricted their analyses to specific frequency
131  bandsor groups of electrodes. Hence, previous studies do not draw homogeneous conclusions
132 on the brain mechanisms involved in creative problem-solving, including in RAT-like tasks.
133  Here, we aim to better understand the neurocognitive mechanisms of creative problem-
134  solving by jointly exploring the EEG correlates of the effects of associative remoteness and
135  insight solving. For this purpose, we used the CAT (Bendetowicz et al., 2017, 2018), where the
136  remoteness of the solution word varies across trials, and insight was explored by collecting
137  subjective reports of Euréka on a trial-by-trial basis. Since EEG data using the RAT are
138 heterogeneous in the literature (Dietrich & Kanso, 2010) and the effect of semantic
139  remoteness has not been investigated, we used an exploratory approach with no spatial,
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temporal, or frequency a priori. We hypothesized that the effects of remoteness and insight
solving are associated with distinct brain EEG activities in space and time.

Results

Behavioral data

We recorded the EEG activity of 23 participants performing the CAT (100 trials). On each trial,
participants had up to 30s to find a word that connects three unrelated words. Then they
reported if they solved the trial with a Euréka (Figure 1; see method). Each trial was
characterized by a semantic association strength (SAS) value (a continuous variable
determined by the material and fixed between subjects) and categorized according to how
the subject solved it (with or without Euréka; binary variable that depends on each subject).

Word 1
Word 2
Word 3

Euréka ?

e e e e

I
I
I
1
1
I
|
I
I
I
1
I
|
|
I
I
I
J

30s 2.5s 5s [1.2-1.8s]
\ \
Y Y Time
ion? | |
Found the solution? V = YES
- SPACE BAR N = NO

Figure 1. Summary of the CAT procedure. Experimental design of the CAT. Each trial starts
with the presentation of three unrelated words, vertically displayed on a grey screen for up to
30s. The participants press the space bar as soon as they think they have the solution,
triggering the display of a blank screen during 2.5s. They verbalize their response during this
period. Then, the question "Euréka?" is displayed on the screen, and the participants indicate
whether the solution that they just gave came to their mind with a Euréka, using the keyboard
letters "V" (yes) and "N" (no), within a time limit of 5s. Finally, a fixation cross is displayed on
the screen for a random time before beginning a new trial (intertrial interval ranges between
1.2 and 1.8s).

Overall, mean accuracy across individuals was 57.4% (SD=12.0), and mean RT was 8.4s
(SD=1.0).

Across trials, the percentage of participants who gave a correct response correlated
significantly positively with SAS (Figure 2A, rho=0.48, p=3.85 107), indicating that the closer
the solution was, the more individuals found it. The correlation between the mean RT for
correct responses across trial and SAS was negative and marginally significant (Figure 2B, rho=-
0.20, p=0.051).
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On average, the participants reported a Euréka in 55.6% (SD=20) of correct trials (and
in 22.7% (SD=16.4) of incorrect trials), whereas they declared no Euréka in 44.1% (SD=21.1) of
correct trials (and in 49.1% (SD=20.5) of incorrect trials). Within correct trials, the percentages
of Euréka and no Euréka did not statistically differ (W=149, p=0.26; Figure 2C). However, mean
RT in trials correctly solved with Euréka were significantly shorter than mean RT in trials solved
without Euréka (respectively, 6.8s (SD=2.1) and 11.4s (SD=3.8), W=15, p=1.30 1073, Figure 2D).
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Correct response
Response time
(only correct trials)

i i Close
D|s.tant SAS CIF)se Dls.tant SAS .
trials trials trials trials

ns r 1
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@
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(within correct trials)
Response time
(only correct trials)
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Euréka no Euréka Euréka no Euréka

Figure 2. Behavioral results. A. Percentage of participants with correct responses per trial as
a function of SAS. Each dot represents a trial, and the blue line represents the regression line
between the two variables (rho=0.48, p=3.85 107). B. Averaged RT per trial as a function of
SAS. Each dot represents a trial, and the blue line represents the regression line between the
two variables (rho=-0.20, p=0.051). C. Percentage of Euréka (in red) and no Euréka (in blue)
within the correct trials. Each dot represents a subject, color boxes represent the upper and
lower quartiles, the black horizontal line within the boxes symbolizes the median, and the
filled square is the mean value across subjects. D. Averaged RT of correct trials with Euréka (in
red) and without Euréka (in blue). Same legend as in C. ns: non-significant, *: p<0.05.

We examined how semantic remoteness related to Euréka reports by computing
logistic regressions at the individual level (see method). The results show no significant effect
of SAS (orthogonalized from RT) on Euréka reports in any individual (Figure S1A). At the group
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level, the one-sample t-test of the individual regression coefficients was not significant
(mean=0.004, SD=0.01, t(20)<1, p=0.70; Figure S1B).

EEG

Time-frequency analyses were computed between 3 and 60Hz during the 2s period following
the onset of the word triplet (initial time window) and the 2s period preceding the
participant's response (response time window; see method). Time-frequency maps were
averaged along the frequency dimension according to four frequency bands (i.e., theta 3-7 Hz,
alpha 8-12 Hz, beta 13-30 Hz, and gamma 31-60 Hz).

The average number of trials included in the EEG analyses (non-artifacted correct trials
with RT>4s) for the initial and response time windows was, respectively, 32.1 (SD=11.5) and
32 trials (SD=11.7) for semantic remoteness condition, and 30.3 (SD=12) and 29.4 trials
(SD=11) for the in insight solving condition. The time-frequency maps of EEG power across all
trials are shown in Figure S2 for each time window of interest, including topographical maps
for each frequency band.

To explore the neurophysiological correlate of semantic remoteness and insight
solving, we used a two-level statistical analysis approach. First, individual linear regressions
assessed the relation between EEG power in each frequency band and behavior with EEG
power as the dependent variable and i) semantic distance as the independent variable to
explore the effect of semantic remoteness, ii) Euréka self-report as the independent variable
to explore insight solving. Then the resulting individual regression coefficients were tested at
the group level (one-sample t-tests) with cluster-based corrections for multiple comparisons
in spatial (65 electrodes) and time dimensions. These analyses were performed for each time
window (see method).

Finally, we used source localization to explore the brain regions associated with the
significant clusters observed at the sensor level. For this, we analyzed the cortical sources in
the time windows and the frequency bands in which significant clusters were found.

Semantic remoteness in associative combination

We found three significant negative clusters (i.e., the lower the SAS, i.e., the more remote the
solution, the higher the power in the considered frequency band) (Figure 3). No positive
clusters were found.

Two significant clusters were observed during the initial time period. A first negative
cluster was observed in the alpha band on left temporal and parietal electrodes, from 1.29 to
1.99s after the onset of the cue words (11 electrodes, sum(t)=-1523, pcorr=5.99 10-3) (Figure 3,
"alpha" in orange). We performed a source reconstruction of alpha band activity during the
cluster time window and contrasted the cortical source maps between distant and close trials.
The largest source differences in alpha band between 1.29 and 1.99s were located in the left
inferior temporal gyrus and the left anterior part of the middle temporal gyrus. We also
observed source differences in alpha band activity in the right hemisphere in the anterior part
of the inferior and middle temporal gyrus and the right pre- and post-central gyrus (Figure
S3A).
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A second negative cluster was observed in the beta band during the initial time
window. It was formed from two subsets of electrodes over time. Beta activity increased with
remoteness first on central electrodes from 1.47 to 1.70s after the cue words onset (6
electrodes, sum(t)=-421, pcorr=0.03) (Figure 3, "beta" in light green) and second on temporo-
frontal electrodes from 1.78 to 1.99s (7 electrodes, sum(t)=-554, pcorr=0.02) (Figure 3, "beta"
in dark green). We performed source reconstruction in the beta band during these two time
periods separately. Between 1.47 and 1.70 s, the distant versus close contrast revealed
sources located in bilateral posterior middle temporal gyrus. In addition, there was reduced
beta activity for distant than close trials in the left anterior part of the middle frontal gyrus
(Figure S3B). Between 1.78 and 1.99s, the sources showing differentiated beta band activity
for remote versus close trials were located in similar regions (Figure S3C): beta power was
higher in distant than close trials in a potential source located in the left posterior inferior
temporal gyrus and was lower in the left posterior and inferior gyrus encompassing the left
inferior frontal sulcus.

The third negative cluster was observed in the theta band during the response time
window (-1.80 to -1.06s before the response) on prefrontal electrodes (15 electrodes,
sum(t)=-2574, pcorr=2.00 1073) (Figure 3, "theta" in yellow). As for the previous clusters, we
reconstructed the sources of theta band activity in the cluster time period. Contrasting distant
versus close trials revealed sources located in the right inferior part of pre- and post-central
gyrus and in several regions in the left hemisphere, including the lateral part of the orbital
gyrus and the anterior part of the inferior frontal gyrus, the inferior pre- and post-central
gyrus, the posterior part of the superior temporal gyrus and posterior and anterior temporal
areas (Figure S3D).
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Regression EEG power Source reconstruction
coefficient (Distant - Close) (Distant - Close)

Figure 3. EEG effects related to the remoteness of semantic associations. Top: Time course
(in second) of the task with the two time windows of interest (initial time window between 0
and 2s after the onset of the cue words, and response time window between -2 and 0 s before
the response). Colored rectangles symbolize the time period where clusters significantly
associated with the remoteness of semantic associations were observed in the alpha band (in
orange), beta band (in light and dark green), and theta band (in yellow). For each cluster, the
results are further detailed as follows. First column: Topographical maps of the clusters. The
significant clusters (p.rr<0.05) are represented for each frequency band. The color codes the
regression coefficient values in the significant clusters (color bar from negative values in light
blue to positive values in purple). Second column: Topographical maps of the EEG power in
each band contrasted between distant (with low SAS values) minus close (with high SAS) trials,
averaged across subjects and in the time-windows of the clusters (as indicated in the colored
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rectangles on the left). Color bars indicate EEG power (z-score of dB) from negative (in blue,
distant<close) to positive (in yellow, distant>close) values. Third column: Source
reconstruction of EEG activity in each frequency band during the significant cluster time
periods. The cortical source maps were contrasted between conditions (distant - close), and
we represent the difference in source activity, for each frequency, averaged in the time
window of the cluster. The color bar indicates the power (in pA.m) from negative (in blue) to
positive (in purple) values. The white lines in the color bars indicate the threshold used to
visualize the source on the normalized cortical surface rendering.

Insight problem-solving

We found three significant positive clusters, where trials solved with a Euréka were associated
with significantly higher activity amplitudes than those solved without a Euréka. All clusters
were observed in the response time window (Figure 4). No negative clusters were found.

The first positive cluster was observed in the alpha band frequency in left central and
temporal electrodes, between -1.96 and -1.55s before the response button press (13
electrodes, sum(t)=1174, p.r=0.01) (Figure 4, "alpha" in orange). The source reconstruction
of EEG activity in the alpha band during the time window of this cluster showed increased
alpha activity of sources mainly located in the left superior parietal lobule and posterior part
of the inferior and middle temporal gyrus. Additionally, sources' alpha activity was reduced in
the right occipital polar cortex when participants reported a Euréka (Figure S4A).

The second positive cluster overlapped temporally with the end of the first cluster
during the response window (-1.74 to -1.55s before the response) and was found in the
gamma band in left parieto-temporal electrodes (9 electrodes, sum(t)=372, pcorr=7.99 1073)
(Figure 4, "gamma" in green). The source reconstruction of EEG activity in the gamma band
during the time period of this cluster showed increased gamma activity for Euréka relative to
no Euréka trials in the left anterior superior frontal gyrus, around the inferior frontal sulcus
(encompassing posterior part of inferior and middle frontal gyrus) and left middle temporal
gyrus (Figure S4B).

The last positive cluster was observed in the theta band on centro-frontal electrodes
from -1.62 to -1.06s before the response (14 electrodes, sum(t)=1377, pcorr=7.99 1073) (Figure
4, "theta" in yellow). During the cluster time window, the source reconstruction of EEG activity
in the theta band showed greater theta activity in the inferior part of the right pre- and post-
central gyrus (Figure S4C).

10
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Figure 4. EEG effects related to insight solving. Top: Time course of EEG activity during the
two time windows of interest (initial time window between 0 and 2s after the onset of the cue
words, and response time window between -2 and Os before the response). Colored
rectangles symbolize the time period where clusters are significantly associated with Euréka
reports in the alpha band (in orange), the gamma band (in green), and the theta band (in
yellow). For each cluster, the results are further detailed as follows. First column:
Topographical maps of the cluster. The significant clusters (pcorr<0.05) are represented for
each frequency band. The color codes the regression coefficient values in the significant
clusters (color bar from negative values in light blue to positive values in purple). Second
column: Topographical maps of EEG power in each band contrasted between trials with
Euréka minus those without Euréka, averaged across subjects and in the time windows of the
clusters (as indicated in the colored rectangles on the left). Color bars indicate EEG power (z-
score of dB) from negative (in blue, Euréka<no Euréka) to positive (in yellow, Euréka>no
Euréka) values. Third column: Source reconstruction of EEG activity in each frequency band
during the time periods of the significant cluster. The cortical source maps were contrasted
between conditions (Euréka — no Euréka), and we represent the difference in source activity,
for each frequency, averaged across the time window of the cluster. The color bar indicates
the power (in pA.m) from negative (in blue) to positive (in purple) values. The white lines in
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the color bars indicate the threshold used to visualize the source on the normalized cortical
surface rendering.

Discussion

We explored the neurophysiological correlates of two cognitive components of creative
problem-solving. We used an adapted version of Mednick's task (Mednick, 1962; Bendetowicz
etal., 2017, 2018) to examine the time course of EEG power related to the insight solving and,
for the first time, the effect of the remoteness of the solution to be found in the context of a
semantic associative combination. In contrast with most of the previous EEG studies using a
similar task that averaged signal across long time-windows or large set of electrodes, or were
restricted to specific electrodes or frequency bands (Jung-Beeman et al., 2004; Razumnikova,
2007; Danko et al., 2009; Luft et al., 2018), we employed a data-driven time-frequency
approach. We found distinct patterns of activity in several frequency bands associated with
remoteness and insight solving. Remoteness was associated with a significant increase in alpha
activity in a left temporo-central cluster and beta activity in a right fronto-temporal cluster
during the initial phase of the task and a later increase in theta activity in a frontal cluster just
before the response. EEG activity changes related to insight were observed uniquely in the
period just preceding the response. They included an increase in alpha activity in a left
temporo-central cluster, followed by a gamma activity increase in a left parietal cluster, and
finally an increase in theta band activity in a fronto-central cluster. Overall, these EEG findings
provide new insights into the dynamic mechanisms involved in creative problem-solving.

In the following sections, we discuss each result, first, at the sensor level (where robust
two-level statistical analyses corrected for multiple comparisons allowed us to identify
clusters with specific differences in several frequency bands of EEG activities), then at the
source level (the brain areas that showed differences in activity in the frequency bands and
time windows of sensor level clusters).

Remoteness in associative combination

The remoteness of semantic associations was associated with an increase in activity in the
alpha band, about 1.5 seconds after displaying the cue words. Alpha is the most reported EEG
correlate in creativity studies using various tasks (Fink et al., 2009; Fink & Benedek, 2014; Fink
& Neubauer, 2006; Jauk et al., 2012; Mdlle et al., 1996; Shemyakina et al., 2007; Zhou et al.,
2018; Mastria et al., 2021), including the RAT (Jung-Beeman et al., 2004; Sandkihler &
Bhattacharya, 2008; Luft et al., 2018). Alpha activity increases with the creative requirements
of the task (Fink & Benedek, 2014). It has been interpreted as an active inhibition (Klimesch et
al., 2007; Klimesch, 2012) of external, non-relevant stimuli, allowing the increase of internal
processing (Cooper et al., 2006; Cona et al., 2020) and internally-oriented attention (Fink &
Benedek, 2014; Lustenberger et al., 2015). Klimesh (Klimesch, 2012) postulated that alpha-
related inhibition is needed to explore and navigate in semantic memory, which is organized
as a network. More precisely, access to remote knowledge may require that closely related,
but not relevant memory information, is inhibited. Distant CAT trials likely required extended
access to the knowledge stored in semantic memory as participants had to find a remote
solution and inhibit close but irrelevant associations. The increase in alpha band activity during
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the initial time may reflect this process. The source reconstruction suggested that the effect
of remoteness in the alpha band involved the left (and to a lesser extent to the right) inferior
and middle temporal gyrus. Previous studies have identified different temporal regions as key
brain areas for semantic processing (Hickok & Poeppel, 2004; Binder et al., 2009; Visser et al.,
2012; Ralph et al., 2017) with distinct roles for regions along the rostro-caudal and supero-
inferior axes (Ralph et al., 2017). The anterior temporal lobe appears as a transmodal hub in
semantic processing in interaction with more posterior temporal areas. The left inferior
temporal gyrus plays a role in semantic representation and word meaning (Whitney et al.,
2011). The left posterior middle temporal gyrus is involved in a semantic control network
(Noonan et al., 2013; Teige et al., 2019; Evans et al., 2020; Vatansever et al., 2021). Semantic
control is likely involved in CAT, especially in the distant trials where participants had to
retrieve remote associations and combine them. Neuroimaging studies using RAT-like tasks
have reported the involvement regions of the semantic control network (Anderson et al.,
2009; Gonen-Yaacovi et al., 2013; Jefferies & Wang, 2021). The involvement of semantic
control in CAT is also consistent with previous research linking alpha activity with cognitive
control (Sadaghiani & Kleinschmidt, 2016). Overall, the initial alpha activity that we found may
reflect enhanced controlled access to the knowledge required by distant trials.

The remoteness of the associative combination was also associated with an early
increase in beta power in the right centro-temporal and temporo-frontal electrodes. This beta
activity temporally overlapped with the alpha cluster described above. Variation of beta
activity during creative thinking or problem-solving is not classically reported. A few studies
reported an increase in beta activity in frontal and temporal electrodes associated with the
RAT (Razumnikova, 2007) or during other creativity tasks (Rosen & Reiner, 2016; Zioga et al.,
2020), but its functional role in the context of creativity is not understood. Beta activity is
usually associated with motor preparation, but in different regions and time windows than in
our study (da Silva, 2009; Weiss & Mueller, 2012). Hence, the observed higher beta activity
for more remote combinations may reflect non-motor cognitive processes. Enhancement of
beta-band activity has been related to various aspects of language processing (Weiss &
Mueller, 2012), such as the maintenance of a mental state during a cognitive task requiring
language (Engel & Fries, 2010) or of visual object representation in short-term memory
(Tallon-Baudry et al., 1999). The role of beta activity increase in distant CAT-solving is not
obvious. One can speculate that when the cue words to be combined are not quickly
converging to a solution, the current mental activity (i.e., active exploration of semantic
memory related to the alpha activity) should be maintained, increasing beta activity in the
distant condition.

Finally, remoteness was associated with higher theta activity one second before the
subject's response, involving fronto-temporal regions. Theta activity in creative problem-
solving has been scarcely reported (Razumnikova, 2007; Sandklhler & Bhattacharya, 2008).
The role of theta activity in cognition is debated. Prefrontal theta activity has been associated
with several aspects of executive control functions. Cavanagh and colleagues (Cavanagh et al.,
2012; Cavanagh & Frank, 2014) proposed that theta rhythm generated by the median PFC
region is involved in monitoring novelty, conflict, and surprise. Theta activity increases when
information is accumulated (Cavanagh et al., 2012; Cavanagh & Frank, 2014). When controlled
processes are engaged during goal-directed behavior, theta band coherence between frontal
and other relevant brain regions increases (Zavala et al., 2018). Several studies have also
associated theta activity with other controlled processes and functions such as inhibition
(Adelhofer & Beste, 2020), planning (Domic-Siede et al.,, 2020), prioritizing relevant
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information in working memory (Riddle et al., 2020), or analytical reasoning (Williams et al.,
2019). Importantly, theta activity has been related to memory retrieval and encoding (Dlzel
et al., 2010) and may reflect integration processes that allow us to build new connections
between elements of knowledge in semantic memory (Backus et al., 2016; Nicolds et al.,
2021). Hence, theta band activity associated with distant CAT may reflect controlled retrieval
and integration in semantic memory. Consistent with this interpretation, the central
contribution of executive and memory processes in creativity is now well established (Cassotti
et al., 2016; Beaty et al., 2016; Volle, 2017; Benedek & Jauk, 2018; Benedek & Fink, 2019).
Recent studies have demonstrated the important role of the executive control network for
creative thinking (Beaty et al., 2016, 2017; Bendetowicz et al., 2018). The executive control
network supports several control processes involved in creative thinking such as working
memory, inhibition, attentional control, planning, flexibility, and control and selection in
memory retrieval. The source reconstruction of our theta-related cluster revealed a set of left
regions largely coherent with the executive control network, such as the rostro-lateral PFC,
parieto-temporal junction, and temporal regions. The rostro-lateral part of the PFC is a node
of the executive control network that has been shown critical for solving CAT in frontal
patients, especially in distant trials (Bendetowicz et al., 2018). Additionally, the grey matter
volume in this region was also correlated with performance at this task (Bendetowicz et al.,
2017). The particular role of the left rostro-lateral PFC in the CAT may be to combine the
retrieved associates or integrate the result of the search from each cue word, i.e., in the
relational integration of distant items (Aichelburg et al., 2016; Green et al., 2016; Urbanski et
al., 2016). Thus, observing theta power increase during the response time window is
consistent with previous studies using different methods showing the involvement of the left
rostro-lateral PFC and executive control network in creativity. The source reconstruction also
located theta activity in the right inferior pre- and post-central gyrus, a result that was shared
between remoteness and insight analyses and is discussed below.

Overall, our results combined with the existing literature suggest that remote
associative semantic combination relied on several controlled processes in distinct periods of
CAT-solving (Figure 5). Hypothetically, in the initial phase of the task, semantic control
(supported by alpha activity in the posterior middle temporal gyrus) may enable the
exploration of semantic memory in search of remote associates (in relation to alpha activity
in infero-temporal regions, including the temporal pole). The semantic search or search space
might be reflected in the overlapping beta activity, that is associated with the maintenance of
a current mental state or representation. Finally, just before the response, the increased
prefrontal theta activity may reflect the involvement of other executive controlled processes,
allowing to integrate and combine the search results from each cue word, evaluate the
generated candidate solution, and finally select the most appropriate response.
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Figure 5. Hypothetical model of remote associative combination. Combined with the existing
literature, our results suggest that solving a distant CAT (relative to a close one) requires
generating remote semantic associates to each of the three cue words. This is supported by
alpha activity in temporal areas (in orange). Overlapping beta activity might facilitate this
process by maintaining related cognitive activity (in green). Then, executive controlled
processing is needed to integrate, combine, evaluate and select the appropriate response.
This final step is supported by theta activity found in brain regions involved in the executive
control network.

Insight solving
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The second aspect of the CAT that we analyzed, the effect of insight solving, was associated
with distinct EEG correlates than remote associative combinations. Euréka-related EEG
differences were observed only during the response time window, suggesting that the early
stages of problem-solving were similar for trials with or without Euréka. It might be explained
by the fact that the two solving modes (with and without Euréka) are not exclusive and may
co-occur within a trial. It is possible that people initially used analytical thinking until they
reach an impasse and finally solved the problem with insight. Cognitive theories link insight
with the need to experience a mental impasse and to restructure the problem representation
before solving it with insight (Ohlsson, 1992; Sandkihler & Bhattacharya, 2008). It may thus
be not surprising that insight and non-insight trials only differ in the period just preceding the
response. Nevertheless, we examined only the first and last two seconds of problem-solving.
We cannot exclude that differences between trials with Euréka and without Euréka occurred
in between these time windows.

Just before the response, we observed successive modulation of alpha- and gamma-
band activities for trials with Euréka (compared to those without Euréka), which is consistent
with previous EEG studies (Jung-Beeman et al., 2004; Sandkihler & Bhattacharya, 2008; Sheth
et al., 2009; Oh et al., 2020). The source reconstruction suggested that alpha activity related
to Euréka involved the left posterior inferior and middle temporal gyrus and the parietal
region. Although the alpha activity associated with the remoteness and insight solving effects
showed some similarities, they occurred at different time periods (initial vs. response time
windows), suggesting that they reflected distinct mechanisms. Given the role of alpha in
inhibition processes and the involvement of the left inferior and middle temporal gyrus in
semantic processing discussed above, the Euréka-related alpha increase may reflect the
inhibition of non-relevant information to overcome the mental impasse and restructure the
problem (Sandkiihler & Bhattacharya, 2008). The source reconstruction also suggested that
the superior parietal lobule, a region often showing alpha activity in relation to creativity (Fink
& Benedek, 2014), played a role in insight solving. Given the classical role attributed to alpha
activity in parietal areas in creativity research, this cluster might alternatively or additionally
reflect in increased state of internally oriented attention during trials with insight solving (Fink
& Benedek, 2014).

Succeeding to alpha, we observed a gamma activity increase in left parietal electrodes,
which involved the left anterior superior frontal gyrus, left posterior inferior, and middle
frontal gyrus and left middle temporal gyrus. An increase in gamma activity is often reported
by studies exploring insight problem-solving (Jung-Beeman et al., 2004; Sandkihler &
Bhattacharya, 2008; Sheth et al., 2009; Rosen & Reiner, 2016; Oh et al., 2020) and was related
to the suddenness of the solution (Sandkihler & Bhattacharya, 2008). Gamma burst has been
associated with the sudden awareness of a mental representation from memory (Tallon-
Baudry et al., 1999; Engel et al., 2001; Engel & Singer, 2001). Hence, the gamma activity
observed during the CAT-solving with insight may reflect the awareness of a solution that
popped up suddenly in mind, yielding the subjective Euréka experience.

The similar alpha followed by gamma synchronization associated with insight reported
by previous studies involved distinct electrodes that we observed, especially in the right
hemisphere (Jung-Beeman et al., 2004; Sandkiihler & Bhattacharya, 2008; Sheth et al., 2009).
The reasons for this left-right difference with our results are unclear. They might relate to the
use of different paradigms. Previous studies mostly used the compound remote associate
task, requiring finding a word that forms a compound word with each cue. Instead, we use a
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version where the solution is associatively related to the cue words. Thus, our task may rely
more on semantic processing than the compound remote associate task, thus recruiting more
left-brain areas (Hickok & Poeppel, 2004; Gonzalez Alam et al., 2019). Another methodological
difference is that previous EEG studies on insight focused on specific scalp regions or
frequency bands based on a priori hypotheses. In contrast, we used a data-driven approach
considering all the electrodes and frequencies in our analyses while controlling for multiple
comparisons. It potentially revealed new brain correlates of insight problem-solving. In
addition, as in other EEG studies based on the RAT (Sandkihler & Bhattacharya, 2008; Oh et
al., 2020), we observed alpha and gamma effects earlier than in Jung Beeman and al study
(Jung-Beeman et al.,, 2004). This difference may relate to the instructions given to our
participants of pressing the space bar when they thought the solution they had in mind was
correct. It may have encouraged the participants to evaluate their solution more carefully and
added a delay between the insight moment and button press.

Finally, as for remote trials, insight trials were associated with higher theta activity in
frontal electrodes. This theta activity may reflect conflict monitoring because when the
solution arises suddenly in consciousness, a conflict (or surprise) with the ongoing mental
representations or ideas can arise, signaling a need for monitoring and selection. The source
reconstruction located a potential source in the right inferior part of the pre- and post-central
gyri. Although sensorimotor regions in creativity has already been described (Matheson &
Kenett, 2020), its role remains challenging to interpret. Interestingly, this region was also a
candidate source for the theta activity associated with remoteness during the same time
window. Remoteness in associative combination and insight solving are often confused in
previous studies (Dietrich & Kanso, 2010), leading to an unclear link between them. According
to some theory, they are both resulting in overcoming a mental impasse suggesting that they
might share similar thread in the time course of EEG power. In our study, we explored both
components with the same task. Overall, our results did not suggest a link between insight
solving and remoteness (no significant interaction at the behavioral level, distinct brain cluster
at the sensor level). The shared sources in the theta band frequency cannot be explained by
an imbalance in the distribution of trials between the two conditions (for instance, more
Euréka reports in distant trials) as the average number of trials included in the EEG analyses
did not significantly differ between conditions (see Supplementary Data). Even if our source
reconstruction is not specific to the cluster found at the sensor level (but rather to a frequency
band during a specific time window), we cannot exclude that remoteness and insight effects
shared some similar brain event occurring just before the response. Further study will be
needed to clarify this question.

To summarize (Figure 6), we show that insight solving is associated with successively
increased alpha, gamma, and theta power during the last seconds of a CAT-solving. Alpha
activity could help to overcome strong but obvious associations of ideas. The solution could
hence suddenly emerge in the individual's mental representation, and lead to a gamma
activity. Then, a conflict might occur between the Eureka-mediated solution and the
previously ongoing mental thinking. This conflict needs to be monitored and controlled, which
may be reflected by the increase in theta activity.
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Figure 6. Hypothetical model of insight solving related results. After reaching a mental
impasse (in blue), restructuration is needed to break out it. Inhibition of stong associations
can be supported by alpha activity in temporal areas (in orange). When a new association
suddenly arises in consciousness, a realization of the solution occurs (supported by gamma
activity, in green). It ensures a conflict or surprise that needs to be monitored to select the
appropriate association (supported by theta activity, in yellow), verified before answering (in
blue).

Limitations
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This study is not without limitations. First, the CAT is a difficult task with a low correct response
rate, often around 60%. Added to the constraints related to EEG artefact cleaning, we included
in our analyses much fewer trials than expected. We chose not to analyze incorrect trials since
the cognitive involvement of the participants in incorrect trials is uncontrolled. Second, the
usually long response time in such a task led us to analyze fixed time windows at the beginning
and end of each trial without considering the time in between. We thus do not provide the
whole picture of the processes happening during our task. Finally, it may be noted that the
individual MRIs of the participants were not available. Thus, source reconstruction results
must be interpreted cautiously and entail more uncertainty than the effects we characterized
at the sensor level. However, the involved regions are broadly consistent with the
neuroimaging literature, and our results offer new perspectives on potential networks
involved in creative problem-solving. Finally, we used the most used and validated approach
with self-reports of Eureka experience to define insight solving (Laukkonen & Tangen, 2018).
However, the best method to capture the insight phenomenon that would best reflect specific
solving mechanisms is an open question.

Conclusion

This study explored the EEG correlates of two aspects of RAT problem-solving, remoteness in
associative combination and insight solving. We showed distinct patterns of brain activity in
the time-frequency domain for these two aspects. First, semantic remoteness was associated
with an early alpha and beta activity in latero-temporal regions and a theta activity in frontal
areas just before the response. These results suggest that early controlled processes may
guide and constrain the search of remote associates, whereas later controlled processes may
integrate or combine the retrieved information. Second, insight solving was associated with
alpha then gamma activity in infero-temporal regions and theta activity in frontal areas, which
occurred just before the response. These findings indicate that insight is supported by specific
brain dynamics distributed in space and time that may relate to a sudden restructuration of
the problem or its solution. Furthermore, late theta activity might also suggest that solving a
problem with insight also includes the involvement of control processes, possibly in the
facilitation or monitoring of the Euréka-mediated solution. Further work is needed to
overcome approximates of source reconstructions. Combining neuroimaging approaches or
recording intracranial EEG signal can be promising methods for future research to better
understand brain correlates of creative problem-solving.

Method

Participants

Twenty-three right-handed native French speakers aged from 21 to 25 years old (mean
age=23.04; standard deviation, SD=1.15; 13 women) were included in the study. All
participants were healthy adults with MMSE > 28 (Folstein et al., 1975), no history of
neurological and/or psychiatric illness, no psychoactive substance abuse, nor consumption
less than 24 hours before the experiment. Two participants were excluded because of
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technical problems during the experiment. The analyzed sample thus consisted of 21 healthy
adults (mean age=22.95, SD=1.15 years old, 12 women). A national ethical committee
approved the study. All the participants gave their written informed consent and received
financial compensation.

Experimental task

EEG was recorded during the performance of the CAT (Bendetowicz et al., 2017, 2018), which
is an adapted version of the RAT (Mednick, 1962). In such a task, subjects are asked to provide
a word that connects three unrelated cue words. Our adapted version varied the semantic
strength association (SAS) between the cue words and the expected solution, based on French
associative norms (Debrenne, 2011; Bendetowicz et al., 2017, 2018). We considered the
average SAS between the expected solution and each of the three cue words within each trial.
Hence, every trial was characterized by a SAS value: the lower the SAS value, the more remote
the solution was from the cue words (an example trial with a low SAS value - hence distant
solution - is Bridge-Social-To tie, where the solution is Link; an example trial with a high SAS
value — hence close solution — is Street-Countryside-Centre, where the solution is Town).
Previous studies using the CAT (Bendetowicz et al., 2017, 2018) have shown that the
performance in this task, especially for distant trials, correlated with other creative
assessments suggesting its external validity. Following the same principles as in the original
CAT, we built 28 additional trials for the current study in order to anticipate the loss of
analyzable trials due to EEG experimental constraints and artifacts. In total, each participant
performed 100 trials (median SAS value 6.5, range from 0.3 to 38.8).

During the experiment, the participants were seated comfortably in front of a
computer screen. Before starting the task, the examiner explained the general design and
instructions with written support. Explanations on Euréka were particularly detailed. It was
described as "the subjective experience you can have when you solve a problem, and the
solution comes to mind suddenly, it is not the result of cognitive efforts, and you are not able
to report the mental steps leading to this solution". It was opposed to analytic solving in which
"you have a strategy and the feeling of gradually getting closer to the solution". We clarified
that these two solving methods were not incompatible or exclusive and instructed the
participants to consider only a few seconds before their response. To ensure the participants
understood the instructions correctly, they completed ten practice trials, and the instructions
were repeated when needed. After instructions and training, the participants performed 100
trials in random order while EEG was recorded. Breaks were proposed to the participants
every 25 trials to limit fatigue.

The CAT was computerized and programmed using the Psychtoolbox (version 3.0.11)
running in MATLAB (MATLAB version 9.0 (R2016a), Natick, Massachusetts: The MathWorks
Inc.)) (Figure 1). For each trial, the three cue words were displayed on the center of the screen,
one above the other to limit eye movements as much as possible. The participants were asked
to give a unique word related to all three cue words and had up to 30s to respond. They were
aware that the response could be a noun, a verb, or an adjective but not a proper noun or a
compound word. As soon as they thought they had found the correct answer, they pressed
the space button of the keyboard. This made the three words disappear, and the participants
had then a fixed time of 2.5s to tell their response verbally. The screen remained blank during
this period. The examiner wrote down the participant's response. In addition, as classically
performed in previous studies using similar tasks, we collected the self-report "Euréka"
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experience on a trial-by-trial basis (Kounios & Beeman, 2014). Thus, after the 2.5s response
period, the question "Euréka?" was displayed on the screen. The participants had to indicate
whether the solution they gave came to their mind with a Euréka by pressing the keyboard
letters "V" (Euréka) or "N" (no Euréka) within a time limit of 5s. A central fixation cross was
displayed during the intertrial interval followed by a jittered duration (mean=1.5s, range
between 1.2s and 1.8s).

Behavioral measures and analyses

Accuracy (correct or incorrect) was determined based on the French associative norm
(Debrenne, 2011; Bendetowicz et al., 2017). Responses were also considered valid if they were
lexically similar or synonyms to the one defined by the French associative norm. Finally, few
additional answers were accepted if they provided semantic similarities with the cue words
but were not in the French associative norm. In this case, only responses selected by a panel
of five external judges were considered correct. We defined response time (RT) as the time
between the onset of the display of the cue words and the space bar press.

Each trial is characterized by a SAS value (a continuous variable determined by the
material and fixed between subjects) and can be categorized according to how the subject
solved it (with or without Euréka; binary variable that depends on each subject). To estimate
the effect of remoteness (SAS) on performance, we computed the percentage of individuals
with correct responses (i.e., number of individuals who gave a correct response divided by the
total number of participants) and the mean RT for correct responses on a trial-by-trial basis.
We explored the relation of accuracy and RT with the corresponding SAS value using Spearman
correlations.

We also explored how many trials were solved (or not) with a Euréka and without a
Euréka. To examine whether trials solved with a Euréka differed from those without a Euréka,
we compared the averaged percentage of Euréka and no Euréka, and the averaged RT of trials
with and without Euréka across individuals. We focused on correct trials as incorrect ones
were excluded from the EEG analysis. Statistical comparisons were performed using non-
parametric paired Wilcoxon tests.

Finally, we explored the link between the effect of SAS and Euréka using a two-level
modeling approach. First, we ran a Global Linear Model (GLM; using the glmfit function in
MATLAB) at the individual level using only correct trials. Taking advantage of the SAS value of
each trial, we used logistic regression to explore whether the SAS predicted a Euréka. As we
expected the SAS to be correlated with RT, we removed the variance explained by RT from the
SAS variable. We then computed a logistic regression exploring the relationship between the
corrected SAS and Euréka. Then, for the second-level analysis, we computed a one-sample
two-tailed t-test (against zero) on the subject's regression coefficients resulting from the GLM.
This allowed us to analyze the relation between Euréka reports and SAS at the group level.

EEG
EEG recording: EEG data were recorded using BRAINAMP DC system (Brain Products GmbH,

Miunich, Germany) with 64-active electrodes mounted in an elastic cap (actiCAP) according to
the extended International 10-20 system and including a row of low fronto-temporo-occipital
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electrodes (PO9/10, TP9/10, FP9/10). Two additional electrodes were used as reference (FCz
electrode) and ground (AFz electrode). Disposable electrodes placed above and below the
right or left eye and lateral to the outer canthus of both eyes recorded vertical and horizontal
EOG, respectively. Electrode impedances were at or below ten kOhm. The EEG data were
recorded at 1 kHz with an online 0.016-250 Hz bandpass filter.

EEG preprocessing: All EEG preprocessing and analyses were performed using the FieldTrip
toolbox (Oostenveld et al., 2011), completed by homemade scripts, and brainstorm (version
09-Sep-2020) (Tadel et al., 2011) running under MATLAB (MATLAB version 9.0 (R2016a),
Natick, Massachusetts: The MathWorks Inc.).

EEG signal was downsampled offline to 128 Hz, and filtered with zero phase, third
order high pass, and low pass Butterworth filters (set at 0.5 and 63 Hz, respectively).
Independent component analysis (ICA) was used to detect and remove artefacts caused by
eye blinks. On average, two independent components (IC) were removed after the visual
inspection of the time series and topographies of the IC. Then, the EEG signal was visually
inspected to exclude artifacts related to muscles or movements. Next, noisy channels were
interpolated using the averaged signal of adjacent channels. A mean of 7 electrodes (SD=2.1)
was interpolated across participants. Trials containing more than 10% of bad channels were
removed (11 trials per individual on average, SD=6.5). Finally, the signal was re-referenced to
the average of all electrodes (recovering the FCz channel).

We segmented the EEG signal for each trial in two time windows of interest. First, the
"initial time window" corresponded to the 2s period following the onset of the cue word
display on the screen. Second, the "response time window" corresponded to the 2s period
preceding the space bar press (i.e., the subject's response). We considered only correct trials
for EEG data analysis. We excluded the trials with an RT shorter than 4s to avoid overlapping
our two time windows (14 trials excluded on average per individual, SD=9.5).

Averaged numbers of analyzed trials across individuals are presented in Table S1. In
addition, supplementary analyses are provided to ensure there was no unbalance between
the number of trials analyzed across conditions (i.e., semantic remoteness and insight solving;
see supplementary material).

Time-frequency computation: Time-frequency maps were computed for each electrode, trial,
and time window (initial and response) in a frequency range between 3 and 60 Hz. We used a
multitaper time-frequency transform (Slepian tapers, lower frequency range: 3-32 Hz, six
cycles, and three tapers per window; higher frequency range: 32-60 Hz, fixed time-windows
of 240ms, 4-31 tapers per window). This approach allows better control of time and frequency
smoothing. It uses a constant number of cycles across frequencies up to 32 Hz (hence a time
window with a duration that decreases when frequency increases) and a fixed time window
with an increasing number of tapers above 32 Hz in order to obtain more precise power
estimates by adaptively increasing smoothing at high frequencies. Hence, the resulting EEG
power represents the signal amplitude in a given frequency after its spectral decomposition.
Time courses were aligned to the onset of the cue word display for the initial time window
(corresponding to time 0 for the initial time window epochs) and the space bar press for the
response time window (corresponding to time O for these latter epochs). We performed a z-
score baseline correction of time-frequency maps using the time-frequency maps computed
from the EEG signal recorded -1.2 s to -0.1 before the onset of the display of the cue words on
each trial. Finally, time-frequency maps were averaged along the frequency dimension
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according to the four frequency bands: theta 3-7 Hz, alpha 8-12 Hz, beta 13-30 Hz, and gamma
31-60 Hz.

Task-based analysis: As for the behavioral analysis, we used a two-level statistical analysis
approach at the sensor level. First, we used individual linear regressions to explore the relation
between EEG power and behavior. To explore EEG correlates of semantic remoteness, we used
EEG power as the dependent variable and SAS as the independent variable. To explore insight
solving, EEG power was the dependent variable, and the Euréka report was the independent
variable. These two analyses were performed independently at the individual level for each
point in time, in each frequency band (theta, alpha, beta, gamma), and for each time window
(initial and response time window). This first level of analysis allowed us to obtain regression
coefficients at the individual level. Then, at the second (group) level, the resulting individual
regression coefficients were analyzed at the between-subject level with a one-sample two-
tailed t-test against zero. According to the following procedure, we corrected our results for
multiple comparisons using a cluster-based correction for the time and space (electrode)
dimensions. For each frequency band and time window of interest, the results from the one-
sample t-tests performed at each time point and on each electrode were clustered based on
spatio-temporal and statistical criteria. The cluster spatial extent was defined as at least one
neighboring electrode in either time or space based on the template "easycapM1" provided
by the Fieldtrip toolbox and matched our electrode cap. The clusters formation considered
only the (time, electrode) points where the one-sample t-tests were significant with a p-value
lower than 0.0125. We selected this statistical threshold because we computed a cluster-
based analysis for each of the four frequency bands of interest (0.05/4=0.0125). Then, we
computed the sum of the t-test statistics within each obtained cluster (sum(t)). In order to
obtain the distribution of this cluster statistics under the null hypothesis while correcting for
multiple comparisons, we repeated this analysis on 1000 Monte Carlo randomizations,
retaining only the maximum value of the sum of t-test across clusters on each randomization.
The clusters obtained from the original data were finally considered significant if their p-value
(pcorr) was lower than 0.05 across the 1000 randomizations.

Source reconstruction: We explored the brain regions related to the significant clusters
observed at the sensor level using source localization. For this, we analyzed the cortical
sources in the time windows and the frequency bands in which significant clusters were found.
We used the Brainstorm software that is freely available for download online under the
General Public License (http://neuroimage.usc.edu; (Tadel et al., 2011)).

For each individual, first, a head model was computed using the symmetric boundary
element method (BEM) method from OpenMEEG open-source software (Gramfort et al.,
2010), based on the template MRI normalized in the Montreal Neurological Institute (MNI)
system, available in Brainstorm software (MNI/Colin27), and coregistered with the 65
electrodes considering standard 10-10 electrode coordinates. Next, the noise covariance
matrix was computed on the time window of interest of all trials with a baseline corresponding
to the time period preceding the onset of the word triplet (-1.2s to -0.1s). Sources were then
computed at the trial level using preprocessed EEG signal (that is, 128-Hz, ICA-corrected,
average-referenced EEG signal). Next, we applied a weighted minimum norm imaging (WMNE)
method with current density map measures computed for 15000 trihedral dipoles — total of
45000 elementary dipoles, equivalent to sources unconstrained in their orientation —
distributed over the cortical mantle of the brain model obtained from the standard MNI/Colin
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27 brain template. Then, we computed the power within the considered frequency band using
a Hilbert transformation at the source level for each cluster identified at the sensor level (i.e.,
in each time window and frequency band of interest). Since we used unconstrained
orientations for the sources, we computed the time-frequency decompositions for all 45000
elementary dipoles and summed the power for the three orientations at each source location
(or vertex) as recommended. Finally, power was averaged within the time window of the
cluster and then averaged across trials separately for each studied experimental condition.
This procedure was repeated for each participant, and the obtained cortical current power
maps were averaged across participants in each condition. Then, we contrasted the maps
between conditions (Distant minus Close conditions or Euréka minus no Euréka conditions)
according to the considered cluster. We did not run further statistical analysis at the source
level to avoid double-dipping. The cortical current power maps were thresholded to visualize
only sources with activity higher and lower than 10% of the absolute maximal source.
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