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Brain activity during rest has been demonstrated to evolve

through a repertoire of functional connectivity (FC) patterns,

whose alterations may provide biomarkers of schizophrenia -

a psychotic disorder characterized by dysfunctional brain con-

nectivity. In this study, differences between the dynamic explo-

ration of resting-state networks using functional magnetic reso-

nance imaging (fMRI) data from 71 schizophrenia patients and

74 healthy controls were investigated using a method focusing

on the dominant fMRI signal phase coherence pattern at each

time point. Through the lens of dynamical systems theory, brain

activity in the form of temporal FC state trajectories was ex-

amined for intergroup differences by calculating the fractional

occupancy, dwell time, limiting probability of each state and

the transition probabilities between states. Results showed re-

duced fractional occupancy of a globally synchronized state in

schizophrenia. Conversely, FC states overlapping with canon-

ical functional subsystems exhibited increased fractional occu-

pancy and limiting probability in schizophrenia. Furthermore,

state-to-state transition probabilities were altered in schizophre-

nia. This revealed a reduced probability of remaining in a global

integrative state, increased probability of switching from this

state to functionally meaningful networks and reduced proba-

bility of remaining in a state related to the Default Mode net-

work. These results revealed medium to large effect sizes. Fi-

nally, this study showed that using K-medoids clustering did not

influence the observed intergroup differences - highlighting the

utility of dynamical systems theory to better understand brain

activity. Combined, these findings expose pronounced differ-

ences between schizophrenia patients and healthy controls - sup-

porting and extending current knowledge regarding disrupted

brain dynamics in schizophrenia.
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Introduction

Functional magnetic resonance imaging (fMRI) data can be

used to characterize brain activity at “rest” as the time-

resolved emergence and dissolution of functionally mean-

ingful networks, in other words, the constant reconfigura-

tion of resting-state functional connectivity (FC) patterns or

states over time (1). These resting-state networks (RSNs)

have been extensively analyzed across neuroimaging stud-

ies (2) and their characterization in the temporal domain has

been suggested to provide potential biomarkers of several dis-

orders (3–5). Schizophrenia (SZ) is a chronic brain disor-

der typified by disruption to thought processes, perception,

cognition and behaviours, for which there is still a lack of

biomarkers. To date, previous studies investigating dynamic

functional connectivity (dFC) have suggested that compared

to healthy controls (HCs), patients with SZ spend more time

in FC states characterized by weak connectivity (6) and less

time in FC states which represent strong, large-scale brain

connectivity (7–9). Furthermore, when SZ patients transition

into the FC state of strongest connectivity, they switch states

very rapidly (6). Overall, SZ patients have been found to ex-

hibit fewer changes between connectivity patterns compared

to HCs (10).

Most research on dFC in SZ has been carried out using

independent component analysis to extract time courses of

networks which were subsequently used to estimate dFC

through sliding-window analysis (SWA) (3, 5). However, the

choice of the window length affects the temporal resolution

of the SWA approach - raising questions over its validity (5).

In this study, to overcome this weakness, the Leading Eigen-

vector Dynamics Analysis (LEiDA) method, based on Blood

Oxygenation Level Dependent (BOLD) phase coherence, is

used to investigate dFC at an instantaneous level (11, 12).

There are three primary aims of this study: (1) assess whether

intergroup differences exist by estimating and characterizing

time courses of recurrent FC states using tools from dynami-

cal systems theory; (2) examine the validity of the partitions

resulting from the clustering procedure; (3) understand the

influence of using the K-medoids algorithm instead of the

K-means algorithm on the ability to differentiate SZ patients

from HCs. This work hypothesized to find abnormal dFC in

SZ patients characterized by: (1) reduced excursions to a FC

state possibly involved in the integration of segregated func-

tional connections; (2) increased excursions to a number of

FC states which represent functionally segregated networks.

Materials & Methods

Neuroimaging data. Neuroimaging data was obtained from

the publicly available repository COBRE preprocessed with

NIAK 0.17 - lightweight release (13, 14). The neuroimag-

ing data included preprocessed resting-state fMRI (rs-fMRI)

data from 72 SZ patients and 74 HCs. The rs-fMRI data fea-

tured 150 echo planar imaging BOLD volumes obtained in 5

minutes, with repetition time (TR) = 2 s, echo time = 29 ms,
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acquisition matrix = 64×64 mm2, flip angle = 75◦ and voxel

size = 3×3×4 mm3.

Inspection of the BOLD data for each subject resulted in the

exclusion of one subject whose data did not include all 150

BOLD volumes. Therefore, the final dataset used in this anal-

ysis included 71 SZ patients (80.28% males) and 74 HCs

(68.92% males). Both groups had an age range of 18-65 years

old. A two-sided Wilcoxon Rank-Sum test with Bonferroni

correction did not identify a significant difference between

the mean age of the groups (p = 0.4253). The framewise

displacement (FD) provided a quantitative indication of each

subject’s head motion during the scanning period (15). The

same statistical test detected a significant intergroup differ-

ence in the group mean FD (p < 0.001). Specifically, on

average, the BOLD signals of SZ patients were characterized

by larger amounts of head motion (FD).

The acquisition and preprocessing of the data are fully de-

scribed in detail in (14). Here, contrary to the typical rs-fMRI

preprocessing procedure (16), the neuroimaging data was not

subject to spatial smoothing, temporal filtering and nuisance

regression.

Parcellation. Following the methodology used by (12, 17–

19), the canonical Anatomic Automatic Labeling (AAL) tem-

plate was used to parcellate the entire brain of each partici-

pant into 90 cortical and sub-cortical non-cerebellar regions.

Accordingly, for each region in the brain, at each time point

(TR), the BOLD signals were averaged over all voxels be-

longing to that brain area to compute the regional BOLD

time courses. For each subject, this resulted in a N × T
BOLD dataset, where N = 90 is the number of brain areas

and T = 150 is the number of volumes in each scan.

Computation of dynamic functional connectivity. To

compute the phase relationship between each pair of AAL

regions, first the instantaneous phase of the BOLD sig-

nals across all brain regions n ∈ {1, . . . ,N} for each time

t ∈ {2, . . . ,T − 1}, θ(n,t), were estimated by computing

the Hilbert transform of their BOLD regional time courses

(11). Here, the first and last TR of each fMRI scan were

excluded due to possible signal distortions induced by the

Hilbert transform (19). The Hilbert transform enables the

capture of the time-varying phase of a BOLD signal at each

time, t, by converting it into its analytical representation (see

Figure 1A (top left)) (11, 12). To obtain a whole-brain pattern

of BOLD phase synchrony, the phase coherence between ar-

eas n and p at each time t, dFC(n,p, t), was estimated using

Eq. (1):

dFC(n,p, t) = cos(θ(n,t)−θ(p,t)) (1)

where phase coherence values range between -1 (areas n and

p in anti-phase at time t) and 1 (areas n and p have synchro-

nized BOLD signals at time t), as shown in Figure 1A (bot-

tom left). This computation was repeated for all pairwise

combinations of brain areas (n,p), with n,p ∈ {1, . . . ,90}, at

each time point t, with t ∈ {2, . . . ,149}, and for all subjects.

For each subject, the resulting dFC was a three-dimensional

tensor with dimension N ×N ×T ′, where T ′ = 148, i.e., 148

dFC90×90(t) matrices were estimated.

Functional connectivity leading eigenvector. To charac-

terize the evolution of the phase coherence matrix over time

with reduced dimensionality, the current study employed the

LEiDA method which considers only the leading eigenvec-

tor, V1(t), of each dFC(t) matrix (12). In detail, as observed

in Figure 1A (middle), the leading eigenvector, V1(t), is a

N × 1 vector that captures the dominant connectivity pattern

of BOLD phase coherence at time t, i.e., V1(t) represents

the main orientation of the BOLD phases over all brain ar-

eas (12). Under this framework, for each time t, the asso-

ciated leading eigenvector partitions the N brain areas into

two communities by separating the elements with different

signs in V1(t) (12, 20). When all elements of V1(t) have

the same sign, the BOLD phases between brain regions are

coherent, which is indicative of a global mode of phase co-

herence governing all BOLD signals. This implies that all

brain regions belong to the same community. Contrarily, if

the elements of V1(t) have different signs (i.e., positive and

negative), the connectivity pattern between brain regions is

not coherent. As a result, each brain area is assigned to one

of the two communities according to their BOLD phase re-

lationship. Additionally, the absolute value of each element

in the leading eigenvector weighs the contribution of each

brain area to the assigned community (12, 20). The dominant

FC pattern of the dFC matrix at time t can also be recon-

structed back into matrix format by computing the (N × N)
outer product V1(t)V ᵀ

1 (t), as shown in Figure 1A (top right).

Given that if V1(t) is a leading eigenvector, so is −V1(t), fol-

lowing the procedure of (17–19), it was ensured that most of

the elements in V1(t) had negative values. This is because

by assigning positive values to the brain areas whose BOLD

phases did not follow the global mode, functional brain net-

works were distinctly detected, as seen in Figure 1A (bottom

right). Importantly, this approach was found to explain most

of the variance of observed BOLD phase coherence data vari-

ation, while substantially reducing its dimensionality. In fact,

the leading eigenvector accounted for more than 50% of the

variance in phase coherence at all time points and for all sub-

jects.

Estimation of FC states. Upon computing the leading

eigenvector of the phase coherence matrix for each record-

ing frame, the next step in the analysis was to characterize

the evolution of the dFC over time by identifying recurrent

FC states in the data, as illustrated in Figure 1C (12).

Firstly, the conventional LEiDA clustering analysis was per-

formed by applying the K-means algorithm (21) to the

dataset of all leading eigenvectors computed at the set of vol-

umes {2, . . . ,149} across all 145 participants (see Figure 1B).

This corresponded to a combined total of 148×145 = 21460
leading eigenvectors. Lastly, the impact of using the K-

medoids algorithm (21) to conduct a LEiDA analysis was

investigated through its application to the combined total of

21460 leading eigenvectors. Here, both algorithms were run

with a value of K from 2 to 20, i.e., dividing the set of leading
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Figure 1. Graphical illustration of the estimation and characterization of the temporal trajectories of recurrent FC states obtained by using Leading Eigenvector

Dynamics Analysis (LEiDA). (A) BOLD phases of all N = 90 brain areas in the complex plane at time t (top left); BOLD phase coherence matrix at time t, dF C(t) (bottom
left); Vector representation of the leading eigenvector, V1(t), of dF C(t) (middle); Matrix representation of V1(t) (top right); Network representation of V1(t), with links
between the areas with positive elements in V1(t) plotted in red (bottom right). (B) The leading eigenvectors are computed for each time point and from all fMRI scans. (C)

The pooled leading eigenvectors are partitioned into K clusters using a clustering algorithm. The cluster centroids/medoids are assumed to represent recurrent patterns of
BOLD phase coherence (FC states). (D,E) The leading eigenvector at each TR is represented by the centroid/medoid of the cluster to which it was assigned by the clustering
procedure. This originates time courses of FC states for each fMRI session. The time courses are then characterized using tools from dynamical systems theory. (F) Each
FC state can be represented as a N × N matrix (outer product) and as a network in cortical space (elements with positive sign linked by red edges).

eigenvectors into K = {2,3, . . . ,20} clusters. Furthermore,

in both clustering analyses, the cosine distance was used as

the distance metric for minimization and the algorithms were

run 1000 times to minimize the chances of getting trapped in

a local minima (12, 17–19).

Characterization of FC state trajectories. Independently

of the algorithm, the LEiDA clustering procedure outputs

one distinct clustering solution for each value of K clus-

ters. Specifically, each clustering solution contains K clus-

ters C = {C1, . . . ,CK}, with K ∈ {2, . . . ,20} - decomposing

the N -dimensional phase space of pooled leading eigenvec-

tors into a K-dimensional state space. Let VCα be the vec-

tor of dimension N × 1 representing the centroid/medoid of

cluster Cα, where α ∈ {1, . . . ,K}. Then, for a given clus-

tering solution, each VCα represents a recurrent FC state, as

depicted in Figure 1C (12).

For each clustering solution, the set of estimated K FC states

was used to obtain, for each participant, time courses of

FC states (as represented in Figure 1D,E). This was accom-

plished by representing each V1 at time t by the FC state

(centroid/medoid) of the cluster to which it was assigned

by the clustering algorithm. Specifically, following the con-

ceptual framework proposed by (19), resting-state BOLD

time series were assumed to temporally evolve through a fi-

nite state trajectory of recurrent patterns of BOLD phase co-

herence. Following this rationale, each clustering solution

with K FC states was assumed to define a finite state space

S = {1, . . . ,K}. Furthermore, for a clustering solution with

K clusters, the cluster (FC state) to which V1(t) was as-

signed at time t, denoted by Vt, was assumed to define a

stochastic process,
{

Vt : t ∈ {2, . . . ,149}
}

, with an associ-

ated finite state space given by S. Consequently, considering

the Markov property (22) holds, each temporal trajectory of

FC states was assumed to define a time-homogeneous Dis-

crete Time Markov Chain (DTMC). Importantly, it must be

noted that, although brain activity is an uninterrupted pro-

cess, the restricted fMRI scanning windows implied the state

trajectories were temporally limited - resulting in a number

of DTMCs not spanning the entire state space.

A number of descriptive measures were considered to charac-

terize the properties of the temporal trajectories of FC states

observed in SZ patients and HCs. Notably, these measures

have been shown to provide relevant insights on aberrant dy-

namic brain activity in previous LEiDA analyses (12, 17, 18).

Fractional occupancy. The fractional occupancy (probability

of occurrence) of a FC state α represents the proportion of

times Vt is assigned to cluster Cα throughout a scan (19).

The fractional occupancy of FC state α for the fMRI scan of

subject s, P
(s)
α , is calculated (estimation) as follows:
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P
(s)
α =

1

T ′

T ′

∑

t=1

1{

V
(s)

t
∈Cα

} , α ∈ {1, . . . ,K} (2)

where T ′ = 148 is the number of time points (first and last

volume of each scan were excluded), 1 is the indicator func-

tion and V
(s)

t is the FC state to which V1(t) was assigned at

time t. For each clustering solution, this measure was esti-

mated for each of the K FC states separately for each fMRI

scan.

Dwell time. The dwell time (mean duration) of a FC state rep-

resents the mean number of consecutive epochs spent in that

state throughout the duration of a scan (19). The dwell time

of FC state α, DT
(s)
α , is defined (estimation) as:

DT
(s)
α =

1

k
(s)
α

k
(s)
α

∑

dα=1

Rdα
, α ∈ {1, . . . ,K} (3)

where k
(s)
α is the number of consecutive periods in which

V
(s)

t was assigned to cluster Cα and Rdα
is the duration of

each of the k
(s)
α periods. For each clustering solution, the

dwell time was estimated for each of the K FC states sepa-

rately for each fMRI scan.

One-step transition probability matrix. According to (19),

considering a clustering solution with state space S =
{1, . . . ,K}, the probability of being in FC state α at time t
and transition to FC state β at time t + 1 is given by the fol-

lowing expression:

P
(s)
αβ =

1

T ′ −1

T ′−1
∑

t=1

1{

V
(s)

t
∈Cα , V

(s)
t+1∈Cβ

} (4)

with α,β ∈ {1, . . . ,K}. From Eq. (4), for a clustering solu-

tion with K FC states, it follows that the Transition Proba-

bility Matrix (TPM) of the fMRI scan of subject s, P
(s), is

defined (estimation) as:

P
(s) = P

[

V
(s)

t+1 ∈ Cβ | V
(s)

t ∈ Cα

]

=
P

(s)
αβ

P
(s)
α

(5)

with α,β ∈ {1, . . . ,K}. For the tentative optimal clustering

solution, a TPM was estimated separately for the DTMC of

each fMRI scan.

Limiting probability. In this study, the limiting distribution

was only estimated for irreducible and aperiodic DTMCs

(22), with finite state space given by the tentative optimal

state trajectories. Therefore, for every subject, s, with a

DTMC satisfying the aforementioned criteria, it followed

that:

lim
t→∞

(

P
(s)
αβ

)t
= π

(s)
β > 0 , α,β ∈ {1, . . . ,K} (6)

where the estimate of the row vector denoting the stationary

distribution of the DTMC (22), π
(s) =

[

π
(s)
β

]

β∈S
, with di-

mension 1×|S|, is given by:

π
(s) = 1× (I−P

(s) +ONE)−1 (7)

where 1 is a 1 × |S| vector of ones, I is the identity matrix

with rank |S|, P
(s) is the TPM of subject s and ONE is a

|S|×|S| matrix all of whose entries are one. Due to the inclu-

sion criteria imposed on the DTMCs defined by the optimal

state trajectories, i.e., irreducibility and aperiodicity, only 37

and 46 DTMCs from the HC and SZ groups, respectively,

were analyzed. For a given FC state β, πβ (element β of

the row vector π) was the measure to be used to perform

intergroup comparisons. Importantly, since only aperiodic

DTMCs were considered, πβ can be understood as the lim-

iting probability that the DTMC is in FC state β and as the

long-run fraction of time the DTMC spends in FC state β. It

must be noted that intergroup comparisons between the es-

timated stationary distributions were not performed in this

study.

Intergroup comparisons. In this research, hypothesis tests

to compare the group mean of the properties calculated from

the temporal state trajectories observed in SZ patients and

HCs were performed using Monte Carlo permutation tests

(23) by adapting the procedure used by (12, 17, 18). To pro-

duce an accurate approximate estimation of the permutation

distribution, these tests were conducted using B = 10000 per-

mutations (24). Here, depending on the result of a Levene’s

test (used to assess the homogeneity between the group vari-

ances) the Monte Carlo permutation tests were performed

based on one of the following two statistics (under the null

hypothesis):

T ∗
0 =



























X̄1 − X̄2
√

S2
1

nHC
+

S2
2

nSZ

, pLevene’s test < 0.05

X̄1 − X̄2
√

Sp

(

1
nHC

+ 1
nSZ

)

, otherwise

(8)

where X̄1 and X̄2 are the random sample means, S1 and

S2 are the random sample standard deviations and nHC and

nSZ are the sample sizes for the HC and SZ groups, respec-

tively. The pooled random standard deviation, Sp, is given by

Sp =
(

(nHC −1)S2
1 +(nSZ −1)S2

2

)

/
(

nHC +nSZ −2
)

. Under the

null hypothesis, the statistic from Eq. (8) used to perform the

statistical test was subsequently used to obtain the value of

the statistic under each of the B permutations of the sample

data. In this study, the standard deviation of the difference of

the group means was estimated using 500 bootstrap samples

within each permutation sample. This was performed so that

the estimation of this quantity was conducted independently

of the calculated means difference.

Comparison to resting-state functional networks. The

functional relevance of the estimated FC states was inves-

tigated by assessing whether there was a significant spatial

overlap between the centroids/medoids and any of the seven

reference RSNs defined by (25). This was accomplished by

employing the procedure used by (18, 19). Specifically, the
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seven RSNs were transformed into seven non-overlapping

vectors with dimension 1 × 90, where each entry of the vec-

tors corresponded to the proportion of voxels of each AAL

brain area that were assigned to each of the seven RSNs. Fi-

nally, the Pearson correlation coefficient was used to assess

the spatial overlap between these seven RSNs and the cen-

troids/medoids VCα with α ∈ {1, . . . ,K} (all negative values

of VCα were set to zero so that only areas thought to define

relevant functional networks were considered).

Unsupervised internal cluster validation criteria. The

quality of clustering solutions outputted by the clustering al-

gorithms was evaluated using the average Silhouette coeffi-

cient and the Dunn’s index (21).

External validation clustering agreement measures.

Clustering outputs from distinct algorithms were compared

using the Adjusted Rand Index (ARI) and the Variation of

Information (VI) clustering agreement measures (21).

Clustering stability evaluated by K-fold cross-valida-

tion. The stability of clustering solutions was assessed ac-

cording to a 10-fold cross-validation procedure adapted from

(26). Firstly, the sample of the pooled leading eigenvectors

was split into two subsamples, referred to as training and

test samples. Secondly, a clustering algorithm was applied

to the training sample - yielding partition P1. Subsequently,

a Nearest Centroid classifier assigned each observation of the

test sample to the cluster of partition P1, whose centroid was

nearest - resulting in the class set P2 of the test sample. The

same clustering algorithm was then applied to the test sample

- producing the cluster set P3. Finally, partitions P2 and P3

were compared based on the ARI, VI and percent agreement

(fraction of objects correctly assigned). This procedure was

repeated for each of the 10 cross-validation folds.

Software. This analysis used MATLAB R2019b (27), the

Statistics and Machine Learning ToolboxTM and the Econo-

metrics ToolboxTM.

Results

Intergroup differences across partition models de-

tected by the K-means algorithm. The collection of clus-

tering solutions was investigated to search for FC states

whose fractional occupancy and dwell time most signifi-

cantly and consistently differed between SZ patients and

HCs. For a partition model with K clusters, K hypothesis

tests were performed. Consequently, to account for the in-

creased probability of false positives, the significance thresh-

old was adjusted to α2 = 0.05/K using a Bonferroni cor-

rection. Additionally, a conservative significance threshold

of α3 = 0.05/
∑20

K=2 K was considered to encompass both

dependent and independent null hypotheses across clustering

solutions.

Figure 2B presents, for each clustering solution, the K two-

sided p-values obtained from evaluating whether the group

mean fractional occupancy of a FC state differed between SZ

patients and HCs. From the inspection of Figure 2B, it is

apparent that, across all partition models, the clustering pro-

cedure consistently returned FC states whose mean fractional

occupancy differs significantly between groups - falling be-

low the corrected significance thresholds α2 and α3.

Closer inspection of Figure 2B shows there are significant in-

tergroup differences in the mean fractional occupancy of FC

state 1 for a range of clustering solutions (p < α3, two-tailed

tests). In fact, the mean fractional occupancy of this state was

found to be significantly decreased in SZ patients compared

to HCs (p < α3 for K ∈ {2, . . . ,18}, one-tailed tests), as sug-

gested in Figure 2A. Interestingly, for all partition models,

the centroid associated with FC state 1 revealed this recurrent

FC pattern represents a global mode of BOLD phase coher-

ence (all elements of the centroid had the same sign). Hence,

FC state 1 is referred to as the Global Mode.

As depicted in Figure 2B, across all clustering solutions, fur-

ther non-global FC states are characterized by significant in-

tergroup differences in the group mean fractional occupancy

(p < α3, two-tailed tests). Interestingly, all these states were

typified by a higher mean probability of occurrence in the SZ

group compared to the HC group (p < α3, one-tailed tests), as

presented in Figure 2A. Visual inspection of these non-global

FC states revealed they represent varying forms of the same

underlying connectivity patterns. Specifically, states detected

for lower values of K could be obtained by combining the

fine-grained FC patterns identified in partition models with

larger values of K - evidencing the dependence among the

hypothesis tests performed across clustering solutions.

The analysis of mean dwell time estimates of detected FC

states suggested that this measure did not allow as much con-

sistent and clear differentiation between groups compared to

the estimates of the fractional occupancy of FC states, as

observed in Supplementary Figure S1. In fact, the mean

dwell time of the Global Mode was reduced significantly in

SZ patients compared to HCs in only 7 clustering solutions

(p < α3, one-tailed tests). Conversely, across all partition

models, the mean dwell time was identified as significantly

increased in the SZ group compared to the HC group in only

two FC states (p < α3, one-tailed tests). Notably, these non-

global FC states were highly correlated (Pearson’s r = 0.996)

- reinforcing the fact that significant intergroup differences

were consistently detected across similar FC patterns.

Overlap with reference functional networks. Investiga-

tion of the overlap between the centroids of the detected FC

states and the seven canonical functional networks defined by

(25) confirmed that intergroup differences were consistently

detected in a number of varying forms of the same FC pat-

terns. Interestingly, FC state 1 did not significantly overlap

with any of the seven reference RSNs, as depicted in Sup-

plementary Figure S2A - indicating this global state does not

reveal the activation of any particular subset of functionally

coupled brain regions. Additionally, across partition models,

the non-global FC states with a significantly increased mean

fractional occupancy (and dwell time) in SZ were found to

repeatedly overlap with the Somatomotor, Dorsal Attention

and Limbic networks, as illustrated in Supplementary Figure
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Figure 2. Intergroup comparisons of the mean fractional occupancy of each FC state for each clustering solution. (A) Barplot of the estimated mean fractional
occupancy with associated standard error of each FC state for each group. For each FC state, the colour of the bars indicates whether the null hypothesis of no intergroup
differences in the mean fractional occupancy was rejected (two-tailed tests). The standard error of each bar was calculated as the standard deviation of the sample data
divided by the square root of the sample size. (B) Two-sided p-values obtained for the intergroup comparisons of the mean fractional occupancy of each FC state for each
partition model. FC states (clusters) are ranked according to their estimated probability of occurrence, where cluster 1 consists of the largest number of objects and cluster
K consists of the least number of objects.

S2A. Accordingly, FC states with functional activity possibly

related to that of the aforementioned canonical RSNs recur

more often (and lasted for larger consecutive periods of time)

in SZ patients.

Internal validation of K-means clustering solutions. As

shown in Figure 3, the highest average Silhouette coefficient

and Dunn’s index were obtained for clustering solutions with

a low number of FC states, which are of limited interest for

the present study. Contrarily, for clustering solutions with

more than 12 clusters, both validation measures remained rel-

atively constant at low values - indicating such partitions are

also of limited interest.

Figure 3. Internal validation of K-means clustering results. Average Silhouette
coefficient and Dunn’s index used to evaluate the quality of clustering solutions.

Notably, for clustering solutions with K between 7 and 11,

the average Silhouette coefficient decreased smoothly and the

Dunn’s index remained approximately constant, as observed

in Figure 3 - suggesting these partition models are of potential

interest for further analysis.

Selection of the optimal clustering solution. For the

subsequent analysis, the partition model with 11 FC states

was selected as the optimal K-means clustering solution.

This decision was based upon the ability to identify a col-

lection of FC states with properties that significantly differed

between groups and the quality and stability of the actual par-

tition of the data.

The collection of 11 BOLD phase coherence patterns and

their fractional occupancy values are presented in Figure 4.

The non-global FC states were found to significantly corre-

late with six of the seven RSNs estimated by (25), as shown

in Figure 4A. From Figure 4B, it is apparent that the 11 FC

states represent BOLD phase coherence between distinct sub-

sets of brain areas. Furthermore, significant intergroup dif-

ferences were identified in the mean fractional occupancy

of 4 FC states, as observed in Figure 4C. Closer inspec-

tion of Figures 4A and 4B reveals that these 4 FC states

represent distinct functionally meaningful networks. The

mean fractional occupancy of FC state 1 was significantly de-

creased in SZ patients compared to HCs (Hedge’s g = 0.694,

medium to large effect size), with estimates 29.8 ± 19.8%
and 39.8 ± 14.9% (mean ± std) for the SZ and HC groups

respectively. Furthermore, the mean fractional occupancy of

FC states 5, 9 and 10 was significantly increased in SZ pa-
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Figure 4. Repertoire of BOLD phase coherence states obtained from the optimal clustering solution with K = 11 clusters. The FC states are arranged (left-to-right)
according to decreasing estimated fractional occupancy. Each FC state is represented by a N × 1 centroid VCα

, with α ∈ {1, . . . ,11}. (A) Cortical rendering of all brain
areas with positive values in VCα

. The functional network defined by (25) with which VCα
most significantly overlapped is indicated as subtitle. (B) Vector representation

showing the N elements in VCα
, representing the contribution of each brain area to FC state α. (C) Boxplot of the fractional occupancy values for each FC state for the SZ

and HC groups. Asterisks indicate significant intergroup differences (p < α3, one-tailed tests). Green points represent outliers, according to the Tukey criterion.

tients compared to HCs (Hedge’s g = {0.611,0.630,0.629},

respectively, medium to large effect size), with estimates

7.61 ± 7.78%, 5.67 ± 6.34% and 5.14 ± 4.09% for the SZ

group and 4.02±3.15%, 2.52±3.24% and 2.94±2.81% for

the HC group, respectively (mean ± std).

Stability of the optimal clustering solution. The percent

agreement, ARI and VI obtained for each fold of the 10-

fold cross-validation procedure are provided in Supplemen-

tary Table S1. The results suggest respectively, good levels

of association and paired agreement between partitions of the

test sample and that the amount of information that was lost

in changing from the class set P2 to the cluster set P3 of

the test sample was relatively low. Consequently, the opti-

mal clustering solution is considered valid and appropriate

for further analysis.

State-to-state transitions of the optimal state trajecto-

ries. With respect to the optimal clustering solution, for all

participants, the individual DTMC defined by the temporal

trajectories through the finite state space S′ = {1, . . . ,11},

was characterized by its estimated TPM. For each probability

of transitioning from state α to state β (α → β, α,β ∈ S′), a

two-sided p-value was obtained by testing whether its group

mean differed between groups. The state-to-state transitions

probabilities that were significantly affected in SZ patients

compared to HCs are depicted in Figure 5.

As shown in Figure 5, the mean probability of remaining in

FC state 1 was significantly reduced in SZ patients compared

to HCs (Hedge’s g = 0.726, medium to large effect size). Fur-

thermore, the mean probability of remaining in FC state 7

was significantly reduced in the SZ group compared to the

HC group (Hedge’s g = 0.515, medium effect size). Lastly,

the mean probability of transitioning from FC state 1 to FC

states 5 and 10 (Hedge’s g = {0.452,0.513}, respectively,

small to medium effect size) and from FC state 9 to FC state

10 (Hedge’s g = 0.461, small to medium effect size) was sig-

nificantly increased in SZ patients compared to HCs. Over-

all, a number of mean transition probabilities were found to

be altered in SZ patients.

Limiting probabilities of the optimal FC states. For the

subgroup of 37 HCs and 46 SZ patients with irreducible and

aperiodic DTMCs, the estimated mean long-run proportion

of TRs spent in FC state 1 was, respectively, 0.309 ± 0.104
and 0.272 ± 0.111 (mean ± std). Surprisingly, no inter-

group differences were found in the mean limiting probabil-
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Figure 5. Transition diagram of the state-to-state transitions significantly altered in SZ patients compared to HCs. Arrows represent a mean transition probability that
was significantly increased (green) or decreased (red) in SZ patients compared to HCs. Single and double asterisks indicate, respectively, significant intergroup differences
with p < 0.05/11 and p < 0.05/(11 × 11) (one-tailed tests).

ity of this state (two-tailed test; Hedge’s g = 0.342, small to

medium effect size). Only the mean limiting probability of

FC states 5 and 10 was identified as significantly increased in

the SZ subgroup compared to the HC subgroup (p < 0.05,

one-tailed tests; Hedge’s g = {0.464,0.449}, respectively,

small to medium effect size).

Influence of using the K-medoids algorithm instead of

the K-means algorithm. The application of the K-medoids

algorithm was found to enable the detection of FC states with

a mean fractional occupancy and a mean dwell time that con-

sistently and significantly differ between groups. Similarly

with the findings produced by the K-means algorithm, the

K-medoids algorithm identified a FC state which represents a

globally BOLD synchronized pattern whose mean fractional

occupancy was significantly decreased in SZ patients com-

pared to HCs. Additionally, the mean fractional occupancy

of a number of non-global FC states related to the reference

Somatomotor, Dorsal Attention and Limbic RSNs was found

to be significantly increased in SZ patients compared to HCs.

The ARI and VI showed that the clustering solutions with

the same number of FC states detected by each of the clus-

tering algorithms were dissimilar. Interestingly, for each K,

with K ∈ {2, . . . ,20}, the FC states (centroids/medoids) de-

tected by each of the clustering algorithms with significant

intergroup differences in the mean fractional occupancy and

mean dwell time (p < α2, two-tailed tests) were found to be

highly correlated. Therefore, both the K-means and the K-

medoids algorithms were found to effectively identify similar

FC states whose properties provide the capacity to differenti-

ate SZ patients from HCs.

Discussion

This study investigated differences between the resting-state

dFC observed in SZ patients and HCs.

Across partition models, a globally BOLD synchronized state

recurs less in SZ patients. This finding is in line with those

of previous studies using different approaches to investigate

dFC (6, 7, 9). Conversely, a number of non-global FC states

recur more often in SZ patients, as shown in (6, 7, 10). These

non-global states, which have been previously referred to as

“ghost” attractor states (1, 19), were found to have functional

relevance related to that of the Somatomotor, Dorsal Atten-

tion and Limbic reference RSNs defined by (25). Notably,

despite the lack of a full understanding of the relationship be-

tween connectivity patterns observed in Electroencephalog-

raphy (EEG) and fMRI, these findings could be speculated

to portray a temporal dynamics related to that observed with

EEG microstates measured at a different time resolution. In

fact, in line with the aforementioned findings, EEG studies

have reported an increased occurrence of a microstate asso-

ciated with the Limbic RSN in SZ patients compared to HCs

(28). However, the same study showed that the occurrence

of a microstate associated with the Attention RSN was de-

creased in SZ patients (28). This differed from the findings

presented here.

From the analysis of the optimal clustering solution, it was

found that when in the Global Mode, SZ patients are more

likely not to remain in that state in the next time instant, in

line with findings from previous studies (6). Importantly, this

more frequently occurring pattern of global BOLD phase co-

herence has been linked to greater neural flexible switching

via integration or segregation of different functional connec-
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tions (12, 29). Therefore, the reduced ability of SZ patients

to access and remain in this state could be hypothesized to

provoke reduced brain flexibility, i.e., the dynamical state

trajectories of SZ patients will, to a greater extent, stay re-

stricted to a fixed set of “ghost” attractor states rather than

flexibly transitioning through the full collection of FC states

enabled by the recurrent transitions into the functionally in-

tegrative Global Mode. This hypothesis seems to be con-

sistent with previous research which found whole-brain in-

tegration of higher-order networks was impaired in SZ (8).

Lastly, SZ patients were found to transition more likely than

HCs from the Global Mode to FC states 5 and 10. It can

therefore be suggested that the decreased occurrence of FC

state 1 resulted from the increased propensity of SZ patients

to transition to networks related to the Somatomotor (state 5)

and Limbic (state 10) RSNs. This could have in turn led to

their increased occurrence (and limiting probability) - sup-

porting the hypothesis of reduced brain integration of segre-

gated functional connections in SZ.

One interesting finding is that, compared to HCs, SZ patients

switch more frequently from a FC state related to the Dor-

sal Attention RSN (state 9) to a FC state related to the Lim-

bic RSN (state 10). This finding is consistent with that of

EEG studies which reported unexpectedly more transitions

from a microstate associated with the Attention RSN to a mi-

crostate associated with the Limbic RSN (30). Furthermore,

SZ patients present a decreased ability to remain in a FC state

functionally related to the Default RSN. Notably, this RSN

has been linked to core processes of human cognition (2).

Therefore, this observation may support the view of SZ as a

disorder affecting cognitive function. Additional intergroup

differences were detected in a number of other state-to-state

transition probabilities. It may be the case therefore that the

observed abnormal dynamical state transitions provide poten-

tial biomarkers of this disorder.

On the question of the influence of using the K-medoids al-

gorithm to conduct a LEiDA analysis, this study found that

similar intergroup differences are captured by employing ei-

ther the K-medoids algorithm or the K-means algorithm.

This finding suggests that the choice of an optimal clustering

algorithm should rely not only on statistical and cluster vali-

dation analyses, but also on concepts and methods from dy-

namical systems theory (1, 12, 19). On the one hand, from the

definition of the K-means algorithm, the detected FC states

(centroids) are not necessarily observations from the input

dataset, but could rather be interpreted as averaged recurrent

unobserved FC patterns; hence their designation as “ghost”

attractor states (1, 19). However, the definition of the K-

medoids algorithm implied the detected FC states (medoids)

are observed recurrent FC patterns. Research questions per-

taining to the functional meaning of the detected FC patterns

underline the need to employ tools from dynamical systems

theory to provide further insights into the dynamical regime

of brain activity (1, 12, 19).

Developing on from previous LEiDA analyses, this study

proposes examining the limiting probability of FC states.

This property offers valuable insights into the long-run pro-

portion of time that a DTMC spends in each state. Specifi-

cally, this measure is computed from the TPMs which char-

acterize the state trajectories - capturing dynamic behaviour

of brain activity to a greater extent than fractional occupancy.

However, considerably more research will need to be con-

ducted to determine its utility. Furthermore, the measure-

ments of this property are derived from the estimation of the

stationary distribution of the state trajectories, defined as irre-

ducible and aperiodic DTMCs. A natural progression of this

work is to examine whether intergroup differences in the sta-

tionary distributions provide further insights into the limiting

dynamic behaviour of brain activity in diseased and healthy

populations. This could be achieved by employing the two-

sample goodness of fit χ2 test.

One shortcoming of this study which could have affected the

measurements of both the state-to-state transition and state

limiting probabilities is the low temporal resolution of the

neuroimaging data (TR = 2 s). This was most clearly ob-

served from the inconsistencies found across state trajecto-

ries obtained from the optimal clustering solution where, of-

ten times, the occurrence of all FC states was not guaranteed.

In fact, Magnetoencephalography (MEG) studies have sug-

gested that brain functional connectivity dynamics occurs at

time scales of approximately 200 ms (31, 32). Accordingly,

future work should utilize data with higher temporal resolu-

tion to enable the capture of more rapid dynamics - improving

the utility of these properties as possible biomarkers of SZ.

Another limitation of this study is that the detected FC states

were strongly constrained by the selected parcellation at-

las (AAL). Despite having shown consistent results across

studies employing LEiDA (12, 17–19), the AAL template

is based on an anatomical parcellation and, therefore, may

not provide an adequate framework to conduct an analysis of

dFC. Accordingly, future studies could extend this analysis to

other fMRI-derived anatomical or functional parcellations.

An important limitation lies in the fact that the effect of vari-

ables such as age, gender and clinical history of patients was

not taken into account while assessing intergroup differences

- hindering the identification of reliable biomarkers of SZ

(33). Specifically, intergroup differences were attributed only

to the effect of the group. Further research is required to

determine whether these variables or their interaction could

explain the variability found between groups. Another issue

that was not addressed in this work was whether not apply-

ing temporal filtering and nuisance regression strategies in-

fluenced the LEiDA method and therefore, the observed in-

tergroup differences. Further research on this question could

contribute with valuable insights into these controversial pre-

processing steps.

Finally, this study provides unbiased and statistically rigor-

ous evidence for differences between SZ patients and HCs.

Nevertheless, the potential to serve as biomarkers of SZ and

the clinical implications of the results derived herein remain

to be analyzed. Future investigations should gather a diverse

panel of experts to explore how these findings could be ap-

plied to improve our understanding of SZ.
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Conclusions

Resting-state dynamic functional connectivity comparisons

were conducted between SZ and HCs by employing and ex-

tending the LEiDA method. Through the characterization of

the temporal expression of different FC patterns, this study

found that SZ patients exhibit a reduced capacity to access

and remain in a globally BOLD synchronized state. An im-

plication of this is the possibility that, even in the absence

of any explicit task, SZ patients transition more frequently to

network patterns that are commonly activated during specific

tasks.
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Supplementary Note 1: Analysis of dwell time estimates of FC states detected by using the

K-means algorithm

Figure S1. Intergroup comparisons of the mean dwell time of each FC state for each clustering solution. Barplot of the estimated
mean dwell time with associated standard error of each FC state detected by the K-means algorithm for each group. For each FC
state, the colour of the bars indicates whether the null hypothesis of no intergroup differences in the mean dwell time was rejected
(two-tailed tests). Black bars indicate the null hypothesis was not rejected at a 5% significance level. Red, green and blue bars indicate
the null hypothesis was rejected at a 0.05, α2 and α3 significance level, respectively. The standard error of each bar was calculated as
the standard deviation of the sample data divided by the square root of the sample size.
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Supplementary Note 2: Overlap of cluster centroids with reference resting-state networks

Figure S2. Overlap between FC states and Functional Brain Networks. (A) Representation of the centroids obtained for each
clustering solution in cortical space. The rendered brain areas correspond to positive elements in the vectors of the centroids. Brain
regions are coloured according to the reference RSNs defined by (25) whose p-value obtained from computing the Pearson correlation
coefficient was lowest (with p < 0.05/K). Centroids not significantly overlapping with any of the reference RSNs are coloured in black.
For each FC state, title asterisks indicate whether significant intergroup differences in the mean fractional occupancy were detected.
Green and blue asterisks indicate p < α2 and p < α3 (two-tailed tests), respectively. (B) Reference functional brain networks estimated
by (25).

Supplementary Note 3: Stability of optimal K-means clustering solution

Table S1. Stability analysis of the optimal clustering solution. Results obtained across the 10 cross-validation folds for each
clustering agreement measure.

Cross-validation fold number

Indices 1 2 3 4 5 6 7 8 9 10

Percent
agreement 0.642 0.536 0.583 0.688 0.529 0.564 0.602 0.698 0.547 0.523

Adjusted

Rand 0.692 0.712 0.717 0.757 0.696 0.678 0.749 0.718 0.773 0.709

Variation of
information 1.379 1.504 1.349 1.237 1.396 1.402 1.291 1.229 1.181 1.388
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