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Summary

Biological heterogeneity is a primary contributor to the variation observed in experiments

that probe dynamical processes, such as internalisation. Given that internalisation is a

critical process by which many therapeutics and viruses reach their intracellular site of

action, quantifying cell-to-cell variability in internalisation is of high biological interest.

Yet, it is common for studies of internalisation to neglect cell-to-cell variability. We develop

a simple mathematical model of internalisation that captures the dynamical behaviour,

cell-to-cell variation, and extrinsic noise introduced by flow cytometry. We calibrate our

model through a novel distribution-matching approximate Bayesian computation algorithm

to flow cytometry data of internalisation of anti-transferrin receptor antibody in a human

B-cell lymphoblastoid cell line. Our model reproduces experimental observations, identifies

cell-to-cell variability in the internalisation and recycling rates, and, importantly, provides

information relating to inferential uncertainty. Given that our approach is agnostic to sample

size and signal-to-noise ratio, our modelling framework is broadly applicable to identify

biological variability in single-cell data from internalisation assays and similar experiments

that probe cellular dynamical processes.
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1 Introduction

Endocytosis is the primary means by which cells uptake, or internalise, drugs, viruses, and

nanoparticles [1–5]. Single-cell in vitro analysis of internalisation and similar dynamical pro-

cesses reveals significant cell-to-cell variability in otherwise isogenic cell populations [6–12]. Such

heterogeneity is ubiquitous to biology and essential to life, allowing for robust decision making,

development, and adaptation of cell populations to environmental uncertainty [13–17]. From a

clinical perspective, heterogeneity in drug uptake and response is considered a leading contrib-

utor to treatment variability and resistance [18, 19]. The challenges of working with data that

comprises instrument noise and background fluorescence that often obfuscate biological vari-

ability means that it is relatively common for quantitative analysis of internalisation to neglect

heterogeneity [20, 21]. Exacerbating these issues is a corresponding lack of mathematical tools

that account for cell-to-cell variability and measurement noise while also providing information

about the uncertainty in inferences and predictions drawn from noisy data.

Modern analysis technologies, including flow cytometry, allow the high-throughput collec-

tion of data from experiments that probe internalisation at rates exceeding a thousand cells

per second (fig. 1) [22]. In an internalisation assay, material labelled with fluorescent probes

are incubated with cells and internalised through the usual pathways (fig. 1a–b) [23, 24]. The

fluorescence of surface-bound probes can be switched oû by introducing a quencher dye, or that

of internalised probes altered due to the lower pH in early endosomes [20, 23], providing quan-

titative information relating to the amount of material internalised. Flow cytometry provides

measurements related to the total and internalised amount of material at various time points

(fig. 1c–d). Since cells cannot otherwise be tracked between observation times, data comprise

single-cell snapshots and individual trajectories are not available. While previous studies have

shown that measurement noise introduced by the flow cytometry electronics and background

autofluorescence are not insignificant; variability in the data is primarily biological [11, 25–29].

We confirm this by performing an internalisation assay with a dual-labelled fluorescent probe,

finding that measurements are highly correlated, indicating a shared source of variability.

Mathematical and statistical techniques allow quantitative analysis of transient dynamics,

heterogeneity, and measurement noise. As the number of molecules internalised by each cell is

relatively large, single-cell trajectories describing the relative amount of material internalised

can be accurately described by homogeneous models derived through kinetic rate equations.

Ordinary diûerential equation (ODE) constrained Bayesian hierarchical and random eûects

models incorporate cell-to-cell variability through a parameter hierarchy where distributions

parameterised by hyperparameters describe cell-level properties [30–32]. Both individual cell

properties and hyperparameters are estimated during calibration of hierarchical models to data,

presenting a significant computational challenge for the large sample sizes provided by flow

cytometry data. In the mathematical literature, so-called heterogeneous [33] or random [34]

ODEs and populations of models [35] make similar assumptions, often without assuming a

parametric distribution of cell properties [9, 36, 37]. Issues presented by large sample sizes can

be avoided by calibrating models using the empirical distribution of the data (through, for

example, kernel density estimates) [33], an approach that provides point estimates but neglects

inferential uncertainty and poses a challenge when the signal-to-noise ratio in the data is not
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Figure 1. Internalisation dynamics and corresponding experimental assay. (a) Internalisation
of transferrin, a protein responsible for the uptake of iron by cells. Iron-saturated transferrin (holoTF)
binds to receptors on the cell surface and is internalised through endocytosis. In the low pH of endosomes,
iron disassociates before the transferrin-receptor complex recycles to the cell surface. (b) A corresponding
internalisation assay. Anti-transferrin receptor antibody (anti-TFR) dual-labelled with BODIPY FL and
fluorescent internalisation probe (FIP)-Cy5 replaces iron-loaded transferrin and is internalised through
the usual pathway. Experimental observations suggest that a small proportion of labelled antibody
disassociates inside the cell, allowing receptor recycling and the accumulation of antibody inside the cell.
(c) A quencher dye switches oû fluorescence of surface-bound FIP-Cy5, providing information relating
to the proportion of antibody that has internalised. Single-cell measurements of fluorescence from both
probes is measured using flow cytometry. (d) Flow cytometry data obtained t = 10min after antibody
are introduced. Since variability in the data is predominantly biological, data from each fluorescent label
are highly correlated.
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suûciently high.

In this study, we develop a mathematical model of internalisation that captures cell-to-cell

variability by describing cell properties—specifically, the number of receptors, the internalisation

rate, and the recycling rate of each cell—as jointly distributed random variables. To describe

non-biological sources of variability from flow cytometry measurements of an internalisation

assay, we couple the dynamical model to a probabilistic observation process that captures

autofluorescence and measurement noise. We take a Bayesian approach to parameter estimation

and develop a novel approximate Bayesian computation (ABC) [38–40] algorithm that matches

distributional information from flow cytometry measurements. This approach is agnostic to

sample size and the signal-to-noise ratio and provides point parameter estimates and information

relating to inferential uncertainty.

We demonstrate our approach by studying heterogeneity in the internalisation of anti-

transferrin receptor (anti-TFR) antibody in C1R cells, a human B lymphoblastoid line. Data

comprise potentially noisy flow cytometry measurements from an internalisation assay devel-

oped in our previous work, specific hybridisation internalisation probe (SHIP) (fig. 1b–c) [20,41].

Measurements are collected from anti-TFR antibody dual labelled with BODIPY FL and flu-

orescent internalisation probe (FIP)-Cy5. We take measurements both with and without a

quencher dye, which only switches oû the fluorescence of surface-bound FIP-Cy5 without af-

fecting the BODIPY FL signal or internalised FIP-Cy5. Therefore, we obtain jointly distributed

data that comprises noisy measurements of the total and internalised amount of antibody in

each cell (fig. 1c–d). Snapshots are collected from samples that are incubated with antibody

saturated medium for various periods of time to provide measurements relating to both the total

and internalised amounts of antibody present on each cell. Using our mathematical model, we

are able to identify key sources of biological variability and provide predictions that give insight

into how the uptake of material varies between cells. Importantly, our approach to parame-

ter inference enables us to quantify the uncertainty in inferences made, allowing us to provide

experimental design guidance.

2 Results

Dynamical model of internalisation

We describe the internalisation of antibody and the recycling of receptors using a compartment

model. Given the concentration of antibody in the surrounding medium is suûciently high, we

assume that the association rate of antibody to free receptors on the cell surface is much higher

than the kinetic rates of internalisation and recycling (supplementary material, S1). Therefore,

we describe the number of antibody-receptor complexes on the cell surface, S, and that endocy-

tosed, E. Before incubation in antibody-saturated medium, T endocytosed receptors are bound

to transferrin. In the experiments, we observe that the total association of antibody with cells

continues to increase, consistent with receptor recycling and accumulation of fluorescent mate-

rial inside the cell, which we capture by describing the number of free endocytosed antibody,
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Figure 2. Dynamical model of internalisation and recycling matches experimental data.

(a) The dynamical model describes the relative concentration of internal, transferrin bound receptors,
T (grey); surface antibody-bound receptors, S (blue); internal antibody bound receptors, E (red); and
internal free antibody, F (orange). (b) MFI of FIP-Cy5 fluorescence measurements for samples that
are not quenched (red) and those that are (orange) at various time points. The dynamical model is
calibrated using maximum likelihood estimation, with the solution shown (solid curve). (c) Solution to
the mathematical model (Methods, eq. (M16)) at the maximum likelihood estimate (table 1).

F . These assumptions give rise to the dynamical model (fig. 2a)

T
³
³ S,

S
»
³ E

p³
³ S + F,

(1)

where ³ [min21] is the recycling rate, » [min21] is the internalisation rate, and p is the probability

that an endocytosed antibody disassociates allowing receptor recycling. It is also possible that

endocytosed antibody, E, can return to the cell surface without disassociation from the receptor.

However, we have not included this in our model as a recycled antibody-receptor complex is

indistinguishable from that bound on the cell surface, S.

Given that the number of receptors in each cell is relatively large, eq. (1) can be formulated

as a linear ordinary diûerential equation with exact solution x(t) = x0 exp(Mt), where M is a

matrix of coeûcients and x(t) denotes the number of molecules in each compartment (Methods

M.2.2). Initially the system is in equilibrium, so

S(0) =
³

»+ ³
, (2)

where molecule counts are taken with respect to the total number of receptors on the cell,

denoted R, so S(0) + T (0) = 1.

Inference using mean fluorescence intensity measurements

Flow cytometry measurements are typically summarised using mean fluorescent intensity (MFI);

point statistics equivalent to the geometric mean of the fluorescence distribution (fig. 2b). Cy5

MFI measurements from samples that are not quenched are related to the total amount of

antibody in the sample, A(t) = S(t) + E(t) + F (t), and measurements from quenched samples

are related to the amount of internal antibody in the sample, I(t) = E(t) + F (t). Assuming

incomplete quenching so the probability that a Cy5-labelled probe is quenched is · j 0.94
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(supplementary material, S2) and average autofluorescence EQ, MFI measurements can be

modelled by

QMFI(t) = ³1A(t) + EQ + »1,

QMFI(t) = ³1

[

I(t) + ·S(t)
]

+ EQ + »2.
(3)

Here, we denote by QMFI(t) MFI measurements from the FIP-Cy5 (i.e., quenchable) probe in

the samples that are not quenched, and by QMFI(t) that of quenched samples. We capture

variability in MFI measurements between experiments by assuming measurement error »1,»2 >

Normal(0,Ã2). We refer to eq. (3) as the homogeneous model since the dynamical parameters »

and ³, and the number of receptors, R, does not vary cell-to-cell and are fixed for the population.

To assess the suitability of the dynamical model and provide a baseline to assess our model

that captures biological heterogeneity, we calibrate eq. (3) to experimental data using maximum

likelihood estimation. We tabulate estimates and confidence intervals approximated using the

observed Fisher information in table 1, and show the model best-fit in fig. 2b.

The homogeneous model provides a fit that qualitatively matches MFI measurements from

the experimental data (fig. 2b), and all parameters are identifiable within relatively precise in-

tervals (table 1). Estimates for the internalisation and recycling rates suggest that a proportion

of approximately

S(0) =
³

»+ ³
j 0.31 (4)

of transferrin receptors lie on the surface at equilibrium. Estimates for p suggest that 6.8%

(95% CI (6.3%,7.2%)) of internalised antibody disassociates, allowing receptor recycling. This

is also evident from simple observations of the experimental data, since the fluorescent intensity

increases throughout the experiment, suggesting that a small proportion of receptors remain on

the surface while antibody accumulates inside the cell (fig. 2c).

Incorporating biological variability into dynamical model of internalisation

We assume biological variability arises through both physical and physiological diûerences be-

tween cells in the population. Specifically, we allow number of receptors, R, and dynamical

parameters » and · to vary cell-to-cell. Without loss of generality, we set E(R) = 1 so receptor

and antibody counts are taken with respect to the average receptor count in the population.

The properties of the ith cell are given by the random variable ¿i = (Ri,»i,³i). We assume

unimodality and a parametric description of ¿i that allows us to estimate the first three moments

Table 1. Parameter estimates and approximate confidence intervals for the homogeneous

model. Approximate confidence intervals are calculated using the observed Fisher information matrix,
calculated from the Hessian of the log-likelihood function [42].

Parameter Estimate 95% CI Units

» 0.106 (0.097,0.116) min21

³ 0.047 (0.043,0.051) min21

p 0.068 (0.063,0.072) –
³1 7840 (7540,8140) Fluorescence units
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and dependence structure. Marginals are given by

Ri > ShiftedLogNormal(µR,ÃR),

»i > ShiftedGamma(µ»,Ã»,Ë»),

³i > ShiftedGamma(µ³ ,Ã³ ,Ë³).

(5)

where »i and ³i are shifted Gamma variables parameterised in terms of their respective means,

standard deviations and skewnesses (supplementary material, S4). The number of receptors is

assumed to be shifted log-normally distributed [43]. To ensure positivity, we truncate ¿i so that

³i,»i,³i g 0. We model the dependence structure of ¿i with a Gaussian copula parameterised

by the correlation matrix

P =






1 ÃR» ÃR³

ÃR» 1 Ã»³

ÃR³ Ã»³ 1




 . (6)

To ensure P remain positive definite, we infer ÃR», Ã»³ and Ã̃R³ (all constrained to the interval

(21, 1)) where

ÃR³ = ÃR»Ã»³ + Ã̃R³

√

(12 Ã2R»)(12 Ã2»³). (7)

Therefore, ÃR» (and similarly for ÃR³ and Ã³») describes the strength of the correlation between

the number of receptors, R, and internalisation rate, ».

The heterogeneous model is a random ODEmodel where x(t) and its constituents are random

variables [34]. For example, A(t) is a random variable describing the distribution of bound-

antibody a cell at time t.

Statistical model for flow cytometry data

Measurement noise in flow cytometry is primarily attributable to shot noise introduced from

the photomultiplier tubes (PMT noise) that convert the photon signal to an amplified, ana-

logue electrical signal. Recent studies suggest that the square coeûcient of variation of such

noise is approximately constant [28], so we model shot noise with uncorrelated white noise (i.e.

Gaussian), with variance proportional to the true signal. The second source of noise is cellular

autofluorescence, where the laser used to excite the labelled antibody can excite other molecules

in the cell, leading to a background autofluorescence where signal is present in the absence of

antibody. We build an empirical distribution of autofluorescence (EQ, EU ) using a sample where

cells have not been introduced to labelled antibody (supplementary material, S3).

We interpret measurements from the FIP-Cy5 probe, which is quenchable and denoted by

Q(t), and the BODIPY FL fluorescent dye, which is not quenchable and is denoted by U(t).

Therefore,

Q(t) =

︷ ︸︸ ︷

³1A(t)R +

︷ ︸︸ ︷

·1
√

³1A(t)R +

︷︸︸︷

EQ, (8)

U(t) = ³2A(t)R
︸ ︷︷ ︸

Antibody

+ ·2
√

³2A(t)R
︸ ︷︷ ︸

PMT noise

+ EU ,
︸︷︷︸

Autofluorescence

(9)
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where ·1, ·2 > Normal(0,Ã2
k). Similarly, the measurements from quenched samples are given by

Q(t) = ³1

[

I(t) + (12 ·)S(t)
]

R + (10)

·1

√

³1

[
I(t) + (12 ·)S(t)

]
R+ EQ,

U(t) = ³2A(t)R+ ·2
√

³2A(t)R+ EU . (11)

Calibration and uncertainty quantification

We take a Bayesian approach to parameter estimation, calibrating the noisy heterogeneous

model to SHIP assay data using a novel approximate Bayesian computation (ABC) algorithm
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Figure 3. Model calibration and uncertainty quantification using ABC MCMC. (a–b) In
ABC, data are compared to model simulations using a weighted sum of Anderson Darling distances and
discrepancy in the correlations. (a) Parameter combinations that produce model realisations suûciently
similar to the experimental data, i.e. »1, are accepted as posterior samples. (b) Parameter combinations
that do not, i.e. »2 are rejected. (c–s) Posterior samples obtained using ABCMCMC represent parameter
combinations that produce realisations of the model that are similar to experimental observations. Chains
are initiated at the global minimum identified using ABC SMC, and every 100th sample is retained.
All axis limits for univariate distributions correspond to the prior support (uniform priors are used).
Parameter descriptions and MCMC diagnostics are given as supplementary material (S5).
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that matches the empirical distribution of flow cytometry measurements, under the assumption

that measurements from each probe are linearly correlated (fig. 3a–b). Model simulations based

on n = 1000 cells per observation time, per condition (quenched or not quenched) are compared

to experimental data using the Anderson-Darling distance [44] and Pearson correlation. Before

observation of data, knowledge about the parameters are encoded in prior distributions, chosen

to be independent and uniform with bounds given as axis limits in fig. 3. Full details are given

in Methods M.2.3.

First, we employ a particle filter based on sequential Monte Carlo (SMC) [45] to identify

the region of the 16-dimensional parameter space that produces model realisations that lie close

to the data and to establish a threshold below which model simulations are deemed suûciently

close to the experimental data. We then apply a Markov chain Monte Carlo (MCMC) algorithm

to explore the support of the posterior distribution, interpreted as the region of the parameter

space that produces model simulations that match experimental data, quantifying uncertainty

in parameter estimates. In fig. 3 we plot posterior samples from four independent tuned MCMC

chains thinned to a total of 400,000 samples, providing an eûective sample size of at least 1,000

per parameter. To visualise model predictions, we compute a point estimate by further thinning

the chains to a total of 400 samples, and identifying the parameter set that produces the lowest

average discrepancy from 100 model realisations. Model predictions at the point estimate are

shown alongside experimental data in fig. 4. MCMC diagnostics, parameter descriptions and

best-fit estimates are given in supplementary material (S5).

Heterogenous model captures biological variability

The heterogeneous model produces realisations with excellent agreement to flow cytometry

measurements, matching both marginal and jointly distributed data from both probes (fig. 4).

Minor discrepancies in univariate distributions highlight the main sources of unaccounted error;

for example, error relating to the precise time at which internalisation is ceased and error

relating to flow cytometry gating.

Samples relating to the skewness of the internalisation and recycling rate distributions, Ë»

and Ë³ , respectively, (fig. 3c,f) show that information in the experimental data is insuûcient to

identify the shape of the internalisation and recycling rate distributions. While the precision

to which we can identify the variance of each rate, Ã» and Ã³ , (fig. 3b,e) is limited, it is clear

that Ã» > 0.057 (lower bound on a 95% CrI), providing evidence to suggest heterogeneity

in the internalisation rate. While p has the same interpretation between the heterogeneous

and homogeneous models, the estimates from the heterogeneous model, p = 4.7% (95% CrI

(3.0%,6.5%)), are lower with a greater amount of uncertainty than in the homogeneous model.

In fig. 5 we plot the inferred distributions of R, » and ³. To visualise uncertainty in estimates

of these distributions, we show a 95% credible internal (CrI) for the univariate probability

density functions by resampling from the posterior distribution. Compared to distributions

of the dynamical parameters » and ³, the distribution of the relative receptor count, R, is

identified with much greater precision (fig. 5a). R does not feature in the dynamical model and

is, therefore, less sensitive to issues relating to model misspecification. While results in fig. 3j–l

show relatively large uncertainty in the correlations between parameters, it appears likely that
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Figure 4. Mathematical model captures variability in experimental data. (a–b) Univariate
kernel density estimate of the fluorescent intensity distribution from (a) the Cy5 probe, which is suscep-
tible to the quencher dye, and (b) BODIPY FL, which is not. In each case, the distribution from the
quenched experiment is shown to the left in the lighter colour. (c–d) Bivariate kernel density estimates
of the joint fluorescent intensity distributions for FIP-Cy5 and BODIPY FL measurements. The model
prediction from a synthetic data set of 100, 000 cells per observation time, per condition, is overlaid in
black.

the receptor count and recycling rate are negatively correlated (83% of posterior samples have

ÃR³ < 0). Parameters identified in the homogeneous model based on MFI measurements are

contained within high density regions of the inferred distributions in the heterogeneous model.

This is also the case when estimates are compared to bivariate distributions in fig. 5d–f; however,

the interpretation of the homogeneous model parameters in the context of data with significant

heterogeneity is unclear, highlighting the importance of modelling biological variability when

interpreting flow cytometry data of dynamical processes like internalisation.

The data appears insuûcient to distinguish between PMT noise from each fluorescent chan-

nel. Initial examination of estimates for the relative magnitude of the noise from the quenchable

(FIP-Cy5) and unquenchable (BODIPY FL) probe signals in fig. 3o–p suggests that the no-

noise model may be appropriate, lending the study to analysis of models that assume negligible

noise [33]. However, the joint distribution of Ã1 and Ã2 (fig. 3s) reveals an elliptical region,

suggesting that the model requires PMT noise in the signal from at least one probe. Simi-
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Figure 5. Inferred parameter distributions and associated uncertainty. Inferred distribution
of (a) the relative number of receptors, R; (c) the internalisation rate, »; and, (f) the recycling rate, ³.
Shown are the distributions at the best-fit (black), a 95% credible interval of the respective probability
density functions constructed from re-sampled MCMC samples (grey), and estimates from the homo-
geneous model (red). (b,d,e) Bivariate distributions at the best-fit. Estimates from the homogeneous
model are shown in white.

lar phenomena are observed in error-in-variables or total-least-squares problems, where errors

are introduced in both independent and dependent variables, and only the ratio of the error

variances is identifiable [46].

Model predicts unobservable measurements

A primary goal of flow cytometry analysis is to quantify the amount of fluorescent material

present in a sample. In the context of an internalisation assay, we are interested in the proportion

of material internalised through time. By accounting for variability introduced through receptor

count, PMT noise and autofluorescence, we are able to better quantify the amount, or proportion

internalised, of antibody compared with standard approaches.

Since it is not possible to collect noise-free data relating to the joint distribution of I(t),

provided from quenched samples, and A(t), provided from sampled that are not quenched, statis-

tics such as the proportion of antibody internalised by each cell cannot be directly measured.
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Figure 6. Model predicts unobservable measurements. Using the calibrated mathematical model,
we can predict the time-evolution of the distribution of (a,c) fraction antibody inside the cell; (b) amount
of antibody internalised relative to the average number of receptors on a cell, I(t); and (d–e) proportion
of receptors on the cell surface at equilibrium. (a,b,e) Show the distribution at the model best-fit, which is
shown in black in all other plots; (c,d) additionally show 95% credible intervals constructed from MCMC
samples. (c) To compare predictions with the homogeneous model, we show A(t)/I(t) predicted by the
homogeneous model (red-dashed) using only MFI measurements. In (a,b) distributions are normalised
to the mode.

Rather, such statistics are typically estimated as

Ifrac(t) =
IMFI(t)

AMFI(t)
, (12)

where IMFI(t) and AMFI(t) are scalar estimates of the average proportion of internal and total

antibody estimated using MFI [7]. Using our calibrated heterogeneous model, we can predict

the distribution of material internalised through time by simulating the model with sources of

noise removed. In fig. 6a, we show the time-evolution of the distribution of I(t)/A(t) at the

model-best-fit, along with the equivalent prediction from the homogeneous model. In fig. 6b, we

repeat this exercise for the total relative amount of antibody internalised, I(t). To understand

uncertainty in these distributions, in fig. 6c we show the time evolution of the distribution

of I(t)/A(t) alongside credible intervals formed by resampling parameters from the posterior

distribution.

While our analysis revealed that several parameters are non-identifiable, or cannot be con-

strained to a relative precise interval, we are still able to produce relatively precise predictions

of statistics such as the proportion of material internalised. Results in fig. 6c show a discrep-
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ancy between predictions from the homogeneous and heterogeneous models. Aside from very

early time, when the distribution of material internalised is relatively wide, the homogeneous

model predictions lie within the lower tail of the predicted distribution. This is consistent with

the discrepancy we observe in estimates of p between models: the heterogeneous model pre-

dicts that antibody disassociation and receptor recycling is rarer that what is predicted by the

homogeneous model. This results in a smaller proportion of surface-bound antibody at late

time.

Using the inferred joint distribution of » and ³ we can build a picture of the proportion of

receptors present on the cell surface at equilibrium (i.e., at the start of the experiment), S(0)

(eq. (4)). In fig. 6d, we show the inferred distribution of S(0) at the model-best-fit, along with

the uncertainty associated with the estimate and that predicted by the homogeneous model.

While we have not precisely estimated this distribution, it is clear that, on average, a smaller

number of receptors are present on the cell surface than not, in agreement with the prediction

of the homogeneous model of 31%. We also see that the inferred distribution is highly variable;

at the best-fit, for example, non-zero density at zero suggests that some cells have a very small

proportion of receptors on the surface, perhaps due to inhibition of recycling. In fig. 6e, we

show the inferred relationship between S(0) and R at the best-fit. This result suggests that

cells with a larger number of receptors—which may correlate to cells in latter stages of the cell

cycle—have fewer surface-bound receptors.

3 Discussion

Heterogeneity is ubiquitous in cell processes such as the internalisation of material, yet the

phenomenon is poorly understood and often ignored. Paired with experimental protocols that

probe these processes, flow cytometry is capable of generating vast quantities of single-cell-

snapshot data that captures cell-to-cell variability. Often, such data are summarised with point

statistics that provide information about the transient behaviour to the detriment of acknowl-

edging variability between otherwise isogenic cells. In this study, we develop a mathematical

model of internalisation that captures dynamical behaviour, biological variability, and measure-

ment noise of arbitrary magnitude. We apply our model to identify key sources of biological

variability in the internalisation of anti-TFR antibody by C1R B-cell lymphoblastoid cells.

While computationally costly, our distribution-matching ABC approach to inference carries

several advantages over likelihood-based approaches; for example, those based on Bayesian

hierarchical models or those that model cell properties as a finite mixture [37]. First, ABC is

robust to model error, incorporating uncertainty due to factors that are not explicitly modelled

[47]. This might include the relatively small discrepancies we observe in fig. 4 that highlight

potential model-misspecification as well as error introduced experimentally, such as the precise

measurement time and the time at which internalisation is ceased.

Secondly, the distribution-matching approach allows the interpretation of pre-processed or

summarised data. Automatic clustering algorithms [48–50] are fast replacing manual gating,

providing an opportunity to analyse the parametric mixture distributions identified algorithmi-

cally, rather than relying on accurate classification of individual data points to perform analysis
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Figure 7. Dependence between the amount of material internalised at successive observa-

tion times remains uncertain. We demonstrate model predictions and uncertainty in the dependence
between the noise-free quenched signal at time t = 10 and t = 120 min. (a) Quantile-quantile plot for
a simulation with 1000 cells at the best-fit. Correlation of Ã = 0.765 is calculated based on a fitted
Gaussian copula. (b) Uncertainty in the inferred correlation based on resampled posterior samples. (c,d)
Assuming strong dependence between observation times aûects inferences. We show the posterior dis-
tribution for the recycling rate mean and standard deviation parameters, µ³ and Ã³ , respectively, if we
assume a correlation of at least 0.9.

on the underlying data. Lastly, our approach is agnostic to both the size of the dataset and

the complexity of the underlying measurement model. While the signal-to-noise ratio in our

data is high (demonstrated by the amount of variability we identify as biological in origin),

this is not always the case. In particular, flow cytometry measurements are often corrupted

by autofluorescence and bleed-through from overlapping emission spectra. In our framework,

both sources of extrinsic variability can be built into the probabilistic observation process or

accounted for using pre-processing software where the compensated distributions are analysed

rather than the underlying data.

Working with single-cell snapshot data provides limited information compared to single-cell

trajectory data, potentially explaining why inferences relating to heterogeneity in dynamical

parameters are relatively imprecise (fig. 5). In particular, the data provides no information about

the joint distribution of antibody concentration between observation times. Additional results

in fig. 7 illustrate the predicted dependence in internalised antibody concentration between early

(10min) and late (120min) observation times, denoted by Q(10) and Q(120), respectively. An

interpretation of model predictions with higher fitted correlations between Q(10) and Q(120) is

that single-cell trajectories remain ordered: cells with a relatively lower proportion of antibody

internalised at t = 10min retain a relatively lower proportion at t = 120min. Therefore, it is

unclear from the available data (fig. 7b) whether cell trajectories remain ordered or whether

cells can “catch up”; that is, whether cells that are initially slow to internalise material end

up with a large amount internalised at later time points. Intuitively, assuming that such a

correlation is strong (i.e., trajectories remain ordered) strongly impacts inferences. Our results

in fig. 7c–d show that making such an assumption narrows uncertainty in the distribution of

recycling rates to distributions where cells that do not recycle (i.e., ³i = 0) are rare.

Aside from stochastic variations between isogenic cells—due to gene expression [51], for

example—variability in internalisation is at least partially driven by the cell cycle [52, 53].
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Therefore, we might expect lower internalisation and recycling rates in cells preparing to un-

dergo mitosis which, therefore, have a larger number of receptors. This is also suggested by

results relating to the best-fit in fig. 5, which show that the internalisation and recycling rates

decrease with the number of receptors. These results raise the possibility of a non-Gaussian

dependence between dynamical rates that our model cannot capture. For example, the de-

pendence between R and » may not be monotonic: internalisation by cells in very late stages

of the cell cycle might be inhibited, whereas in general, larger cells may internalise material

more quickly [54]. Distribution-free approaches [37] might better capture the dependence struc-

tures in these cases. However, given that our model is already able to match the experimental

data, adding complexity will exacerbate parameter non-identifiability. Therefore, further work

should focus on experimental design [55]; by inhibiting recycling, or pre-sorting cells to remove

variability in R, for example.

Our analysis demonstrates that inferences drawn using approaches that neglect heterogene-

ity can be misleading. In particular, the interpretation of predictions and parameter estimates

from the homogeneous model is mathematical unclear. Generally, realisations of the homo-

geneous model do not represent the mean of realisations of the heterogeneous model, nor do

they represent realisations where parameters in the heterogeneous model are first averaged [34].

While, in our case, parameters identified by the homogeneous model are contained within the

distribution identified by the heterogeneous model, the homogeneous model produces biased

predictions that are not representative of the entire population (fig. 6). These findings highlight

a need to co-develop mathematical tools that account for biological variability in analysis of

single-cell data.

A better understanding of heterogeneity in internalisation has important implications for

drug delivery [5,19], in addition to our understanding of pathological processes, such as the inter-

nalisation of viruses [56,57]. In this study, we develop a novel quantitative model that captures

biological variability in internalisation using arbitrarily noisy flow cytometry data. In contrast

to conventional approaches, we can produce predictions that give insight into the variability

in material internalised while accounting for inferential uncertainty. Applying mathematical

models that capture biological variability allows practitioners to get the most out of the vast

amounts of single-cell data generated by flow cytometry and other modern experimental tools.
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M Methods

M.1 Experimental methods

M.1.1 Cell culture

C1R cells, a human B cell lymphoblast cell line, were cultured in Dulbeccos Modified Eagle

Medium (DMEM) supplemented with 10% FBS and 1% Penicillin Streptomycin, at 37 çC in a

humidified 5% CO2 atmosphere.

M.1.2 Dual-labelled fluorescent internalisation probe

Purified monoclonal IgG1 anti-human transferrin receptor antibody (OKT9) [58] was purchased

from WEHI Antibody Facility.

The antibody was labelled with two fluorescent dyes; BODIPY FL and FIP-Cy5. For this,

anti-TFR antibody was incubated with BODIPY FL-NHS ester and incubated at 4 çC overnight.

BDP FL- labelled antibody was purified using a 7KMWCO Zeba spin desalting column (Thermo

Scientific). The antibody was then functionalised with dibenzylcyclooctyne (DBCO)-NHS ester.

Functionalised antibody was purified using a 7K MWCO Zeba spin desalting column (Thermo

Scientific), and incubated with azide-FIP-Cy5 at 4 çC overnight [59]. The dual-labelled antibody

was purified using a 50K MWCO Amicon filter (Merck, Millipore), and the degree of labelling

was measured by NanoDrop UV-vis spectrophotometer.

M.1.3 Internalisation assay

SHIP internalisation assays were performed by incubating the cells with dual-labelled anti-TFR

antibody in DMEM containing 0.1% FBS at 37 çC for diûerent time points. After incubation,

cells were washed thrice with cold PBS and resuspended in propidium iodide with or with-

out quencher (1 µM), as described previously [59]. Cells were analysed using a Stratedigm

S1000EON flow cytometer and FlowJo 10.8.0.

M.2 Mathematical methods

M.2.1 Code availability

Codes are available on Github at https://github.com/ap-browning/internalisation.

M.2.2 Solution to dynamical model

The dynamical model is given by

T
³
³ S,

S
»
³ E

p³
³ S + F,

(M13)
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which we express as the system of ordinary diûerential equations

dT (t)

dt
= 2³T (t),

dS(t)

dt
= ³T (t)2 »S(t) + p³E(t),

dE(t)

dt
= »S(t)2 p³E(t),

dF (t)

dt
= p³E(t),

(M14)

subject to the initial condition

x(0) =

(
»

»+ ³
,

³

»+ ³
, 0, 0

)

, (M15)

where x(t) = (T (t), S(t), E(t), F (t)). The solution to eq. (M14) is given by

x(t) = x(0)exp(Mt), (M16)

where

M =









2³ 0 0 0

³ 2» p³ 0

0 » 2p³ 0

0 0 p³ 0









. (M17)

Equation (M16) is solved for A(t) = S(t)+E(t)+F (t) and I(t) = E(t)+F (t) exactly using

Mathematica. Our implementation is given in Module/Model/deterministic.jl.

M.2.3 Inference using approximate Bayesian computation

We perform inference using approximate Bayesian computation (ABC) [38, 40]. Given a set

of experimental observations X , we encode knowledge about the model parameters » in the

posterior distribution, given by

p(»|X )
︸ ︷︷ ︸

Posterior

? p(X|»)
︸ ︷︷ ︸

Likelihood

p(»)
︸︷︷︸

Prior

. (M18)

Here, p(») denotes the prior distribution, which encodes prior parameter knowledge. In our

work, we take a standard approach and set the prior to be uniform with independent components

[60]. We choose parameter bounds to reflect either physical constraints on parameters (i.e., all

correlations are bounded and rates, standard deviations, proportionality constants are positive)

or realistic bounds (for example, we expect the distributions of » and ³ to be negatively skewed

so that support is low, but non-zero, at zero if internalisation or recycling is inhibited in a small

proportion of cells).

In ABC, we approximate the posterior distribution using the ABC posterior

p(»|X ) j p(»|d(X ,Y(»)) < ·). (M19)
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Here, Y(») denotes synthetically generated observations of the model using parameters » and

d(·, ·) is a discrepancy measure that measures how close synthetically generated observations lie

to the experimental data. In ABC, · is a parameter that describes the maximum discrepancy

at which synthetic observations are judged to be close. In the following subsections, we outline

our choice of discrepancy measure followed by our algorithm to sample from eq. (M19).

Discrepancy measure

We denote by {XQ
t , XU

t }t experimental observations from samples that are not quenched at

time t, where Q and U denote measurements from the quenchable and unquenchable probes,

{X̄Q
t , X̄U

t }t those of the quenched experiments, and {Y Q
t , Y U

t }t and {Ȳ Q
t , Ȳ U

t }t as m synthet-

ically generate observations from the mathematical model. We denote the complete set of

experimental observations X = {{XQ
t , XU

t }t, {X̄
Q
t , X̄U

t }t and similar for Y.

Noting that the relationship between signals from the quenchable and unquenchable probes

are generally linear, we develop a discrepancy metric, d(X ,Y) that matches univariate marginal

distributions using a modified Anderson-Darling statistic A(X,Y ), and matches the correlations

between quenchable and unquenchable probes in the experimental and synthetic data. As we

expect XU
t and X̄U

t to be similar (since U(t) = Ū(t)), we apply a relative weighting of 1/2 to

Anderson-Darling statistics involving the unquenchable probe.

Therefore,

d(X ,Y) =
∑

t

[

2w1

(

A
(

XQ
t , Y Q

t

)

+A
(

X̄Q
t , Ȳ Q

t

))

+

w1

(

A
(

XU
t , Y U

t

)

+A
(

X̄U
t , Ȳ U

t

))

+

w2

∥
∥
∥Cor(X

Q
t , XU

t )2 Cor(Y Q
t , Y U

t )
∥
∥
∥
2

+

w2

∥
∥
∥Cor(X̄

Q
t , X̄U

t )2 Cor(Ȳ Q
t , Ȳ U

t )
∥
∥
∥
2

]

.

(M20)

We set m = 1000, w1 = 1 and w2 = 80.

To compare experimental observations from a marginal distribution, X = {xi}
n
i=1, to a

synthetically generated set of observations, Y = {yi}
m
i=1, we employ a modified Anderson-

Darling statistic. As the number of experimental observations, n, is large, we first compute an

empirical distribution function Fobs(x) using linear interpolation and k = 1000 equally spaced

points from mini(xi) to maxi(xi). The Anderson-Darling statistic is given by [44]

A2(X,Y ) = m

∫
>

2>

(
Fsim(x)2 Fobs(x)

)2

Fobs(x)(12 Fobs(x))
fobs(x) dx, (M21)

where Fsim(x) is the empirical distribution function of the simulated data {yi}
m
i=1.

Equation (M21) may be calculated by

A2(X,Y ) = 2m2

n∑

i=1

2i2 1

m

(
log(Fobs(yi)) + log(12 Fobs(ym+12i))

)
, (M22)

where {yi}
m
i=1 are sorted such that yi f yi+1. To avoid blow up in cases where yi fall outside
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the range of the observed data {xi}
n
i=1 (where Fobs(x) = 0 or 1) we set

Fobs(yi)³ min

(

12 1029,max

(

1029, Fobs(yi)

))

(M23)

in eq. (M22). Our implementation is given in Module/Inference/discrepancies.jl.

Sampling algorithm

To identify regions of the parameter space with non-neglible posterior density, we employ the

sequential Monte Carlo (SMC) algorithm described in [45]. In summary, we consider an ini-

tial sample of 1000 particles, which comprise parameter combinations sampled from the prior

distribution with equal weight. Initially, a model realisation is produced for each particle and

compared to the experimental data using eq. (M20). Particles are then sorted by the discrep-

ancy metric and 750 particles with the lowest discrepancy are discarded. The ABC acceptance

tolerance, ·, is set to be the largest discrepancy from the remaining particles. At each suc-

cessive iteration, 750 replacement particles are resampled from the 250 weighted particles that

remain and perturbed using a multivariate Gaussian perturbation kernel with covariance equal

to twice the empirical covariance of the remaining 250 particles. This process is repeated until

750 replacement particles are found with a discrepancy lower than ·. Particles are reweighed

according to the formula given in [45]. We iterate the algorithm until the acceptance rate at

the resampling step is lower than the target 0.1%.

We treat the ABC SMC algorithm as a particle-based global optimisation algorithm, the

result of which is the particle, »̂, with the lowest discrepancy that is used to initiate and tune

an ABC MCMC algorithm based on the Metropolis-Hastings algorithm [61] to explore the

posterior. The ABC acceptance tolerance, ·, for the MCMC algorithm is chosen by taking the

median discrepancy from 100 realisations of the model at »̂. All ABC MCMC chains are then

initiated at »̂.

We implement ABC MCMC using MCMCChains.jl [62]. First, we produce four pilot chains

of length 106 using a multivariate normal proposal with covariance equal to [63]

£ =
2.382

dim(»)
£̂SMC, (M24)

where £̂SMC is the empirical covariance of the 1000 SMC particles. Every 100th sample is

retained, and the covariance tuned using eq. (M24) where £̂SMC is replaced by the empirical

covariance of the 40,000 samples identified using the pilot MCMC chains. Four tuned chains of

length 107 are produced and every 100th sample retained.

Our implementation of the SMC and MCMC algorithms are given in Module/Inference/

abc.jl. Our implementation of the ABC-SMC-MCMC sampling algorithm is given in Results/

MainResult Inference.jl.

M.2.4 Dependence modelling with Gaussian copula

To produce realisations of the model we require independent samples of ¿, a random variable

described by marginal distributions where the dependence structure is described by a Gaussian

copula. In this section, we outline a computationally eûciency algorithm to sample from the
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marginal distributions of ¿. Additionally, we outline how we form an analytical expression for

the bivariate marginal distributions used to produce visualisations in fig. 5.

Inverse transformation sampling

Sampling from the joint distribution f(x, y, z) with the dependence structure described by

a Gaussian copula relies on the probability inverse transformation and, therefore, becomes

prohibitively expensive if the quantile function of a marginal is expensive. Therefore, we employ

an approximate sampling algorithm (algorithm 1) in cases where the quantile function of the

marginal is expensive (i.e., when x, y or z are Gamma-distributed) and a large number of

samples is required.

Algorithm 1 Probability inverse transformation sampling of n > 100 samples where quantile
function F21(u) is prohibitively expensive.

1: Given a vector of uniformly sampled probabilities u * R
n, cumulative distribution func-

tion F (x) and (relatively expensive) quantile function F21(u). Choose interpolation grid
resolution m = 100.

2: Generate evenly spaced grid x = (x1, x2, ..., xm) where x1 = F21(min(u)) and xm =
F21(max(u)).

3: Calculate associated probabilities y = F (x).
4: Create linear interpolation x = G(y) where xi = G(yi), such that G(u) is an approximation

of the quantile function F21(u).
5: Calculate and return samples z = G(u).

Bivariate marginal distributions

Consider the joint distribution of the random variables X, Y , and Z, with respective marginal

density functions f(x), f(y) and f(z), distribution functions u = F (x), v = F (y) and w = F (z),

connected through the Gaussian copula C(u, v, w). Then the marginal f(x, y) is given by

∫

z

f(x, y, z) dz =

∫

z

c(u, v, w)f(x)f(y)f(z) dz,

= f(x)f(y)

∫ 1

0
c(u, v, w) dw since

dw

dz
= f(z),

= f(x)f(y)

∫ 1

0

"3

"u"v"w
C(u, v, w) dw,

= f(x)f(y)
"2

"u"v
C(u, v, 1),

= f(x)f(y) c̄(u, v).

Here c̄(u, v) = "2

"u"v
C̄(u, v), where C̄(u, v) = C(u, v, 1) is the bivariate copula describing the

marginalised dependence between x and y. Since C(u, v, w) is a Gaussian copula, we have that

C̄(u, v) = C(u, v, 1),

= §R(§
21(u),§21(v),§21(1)),

where §£ is the distribution function of the multivariate Gaussian distribution with covariance

matrix £, and §(x) is the distribution function of the standard univariate Gaussian distribution.
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We also note that lima³>§(a) = 1. Denoting ×£ the probability density function of the

multivariate Gaussian distribution with covariance matrix £, we have that

C̄(u, v) =

∫
§
21(u)

2>

∫
§
21(v)

2>

∫
>

2>

×£(a, b, c) dc da db,

=

∫
§
21(u)

2>

∫
§
21(v)

2>

×£1:2,1:2
(a, b) da db,

= §£1:2,1:2

(
§
21(u),§21(v)

)
.

Therefore, C̄(u, v) is a Gaussian copula with covariance matrix £1:2,1:2.
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[32] Loos C, Moeller K, Fröhlich F, Hucho T, Hasenauer J. 2018. A hierarchical, data-driven approach to

modeling single-cell populations predicts latent causes of cell-to-cell variability. Cell Systems 6:593–603.e13.

doi:10.1016/j.cels.2018.04.008.

[33] Lambert B, Gavaghan DJ, Tavener SJ. 2021. A Monte Carlo method to estimate cell population hetero-

geneity from cell snapshot data. Journal of Theoretical Biology 511:110541. doi:10.1016/j.jtbi.2020.110541.

[34] Soong T. 1973. Random Diûerential Equations in Science and Engineering. volume 103 of Mathematics in

Science and Engineering. ISBN 9780126548501. doi:10.1016/s0076-5392(08)60159-9.

[35] Lawson BAJ, Drovandi CC, Cusimano N, Burrage P, Rodriguez B, Burrage K. 2018. Unlocking data sets

by calibrating populations of models to data density: A study in atrial electrophysiology. Science Advances

4:e1701676. doi:10.1126/sciadv.1701676.

[36] Waldherr S, Hasenauer J, Allgwer F. 2009. Estimation of biochemical network parameter distributions in

cell populations. IFAC Proceedings Volumes 42:1265–1270. doi:10.3182/20090706-3-fr-2004.00210.

[37] Hasenauer J, Waldherr S, Doszczak M, Radde N, Scheurich P, Allgwer F. 2011. Identification of models of het-

erogeneous cell populations from population snapshot data. BMC Bioinformatics 12:125. doi:10.1186/1471-

2105-12-125.

24

.CC-BY-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 7, 2021. ; https://doi.org/10.1101/2021.11.24.469957doi: bioRxiv preprint 

http://dx.doi.org/10.1080/10409238.2017.1412395
http://dx.doi.org/10.1111/tra.12466
http://dx.doi.org/10.3390/pr6030021
http://dx.doi.org/10.1371/journal.pcbi.1003365
http://dx.doi.org/10.1158/1535-7163.mct-17-0672
http://dx.doi.org/10.1016/j.jcis.2020.11.076
http://dx.doi.org/10.1109/tns.1967.4324498
http://dx.doi.org/10.1007/bf00430362
http://dx.doi.org/10.1080/17513758.2013.812753
http://dx.doi.org/10.1371/journal.pone.0240233
http://dx.doi.org/10.1098/rsif.2020.0221
http://dx.doi.org/10.1111/j.1541-0420.2005.00447.x
http://dx.doi.org/10.1371/journal.pcbi.1003686
http://dx.doi.org/10.1016/j.cels.2018.04.008
http://dx.doi.org/10.1016/j.jtbi.2020.110541
http://dx.doi.org/10.1016/s0076-5392(08)60159-9
http://dx.doi.org/10.1126/sciadv.1701676
http://dx.doi.org/10.3182/20090706-3-fr-2004.00210
http://dx.doi.org/10.1186/1471-2105-12-125
https://doi.org/10.1101/2021.11.24.469957
http://creativecommons.org/licenses/by-nd/4.0/


[38] Beaumont MA, Zhang W, Balding DJ. 2002. Approximate Bayesian computation in population genetics.

Genetics 162:2025.

[39] Sisson SA, Fan Y, Tanaka MM. 2007. Sequential Monte Carlo without likelihoods. Proceedings of the

National Academy of Sciences 104:1760–1765. doi:10.1073/pnas.0607208104.

[40] Toni T, Welch D, Strelkowa N, Ipsen A, Stumpf MPH. 2009. Approximate Bayesian computation scheme

for parameter inference and model selection in dynamical systems. Journal of The Royal Society Interface

6:187–202. doi:10.1098/rsif.2008.0172.

[41] Strand J. 1970. Random ordinary diûerential equations. Journal of Diûerential Equations 7:538–553.

doi:10.1016/0022-0396(70)90100-2.

[42] Pawitan Y. 2013. In all likelihood: statistical modelling and inference using likelihood. Oxford University

Press, Oxford.

[43] Furusawa C, Suzuki T, Kashiwagi A, Yomo T, Kaneko K. 2005. Ubiquity of log-normal distributions in

intra-cellular reaction dynamics. Biophysics 1:25–31. doi:10.2142/biophysics.1.25.

[44] Anderson TW, Darling DA. 1954. A test of goodness of fit. Journal of the American Statistical Association

49:765–769. doi:10.1080/01621459.1954.10501232.

[45] Vo BN, Drovandi CC, Pettitt AN, Pettet GJ. 2015. Melanoma cell colony expansion parame-

ters revealed by approximate Bayesian computation. PLOS Computational Biology 11:e1004635 22.

doi:10.1371/journal.pcbi.1004635.

[46] Linnet K. 1993. Evaluation of regression procedures for methods comparison studies. Clinical Chemistry

39:424–32.

[47] Wilkinson RD. 2013. Approximate Bayesian computation (ABC) gives exact results under the assumption

of model error. Statistical applications in genetics and molecular biology 12:129 141. doi:10.1515/sagmb-

2013-0010.

[48] Pyne S, Hu X, Wang K, Rossin E, Lin TI, Maier LM, Baecher-Allan C, McLachlan GJ, Tamayo P, Hafler

DA, De Jager PL, Mesirov JP. 2009. Automated high-dimensional flow cytometric data analysis. Proceedings

of the National Academy of Sciences 106:8519–8524. doi:10.1073/pnas.0903028106.

[49] Johnsson K, Wallin J, Fontes M. 2016. BayesFlow: latent modeling of flow cytometry cell populations. BMC

Bioinformatics 17:25. doi:10.1186/s12859-015-0862-z.

[50] Minoura K, Abe K, Maeda Y, Nishikawa H, Shimamura T. 2019. Model-based cell clustering and population

tracking for time-series flow cytometry data. BMC Bioinformatics 20:633. doi:10.1186/s12859-019-3294-3.

[51] Elowitz MB, Levine AJ, Siggia ED, Swain PS. 2002. Stochastic gene expression in a single cell. Science

297:1183–1186. doi:10.1126/science.1070919.

[52] Fielding AB, Willox AK, Okeke E, Royle SJ. 2012. Clathrin-mediated endocytosis is inhibited during mitosis.

Proceedings of the National Academy of Sciences 109:6572–6577. doi:10.1073/pnas.1117401109.

[53] Buettner F, Natarajan KN, Casale FP, Proserpio V, Scialdone A, Theis FJ, Teichmann SA, Marioni JC,

Stegle O. 2015. Computational analysis of cell-to-cell heterogeneity in single-cell RNA-sequencing data

reveals hidden subpopulations of cells. Nature Biotechnology 33:155–160. doi:10.1038/nbt.3102.

[54] Khetan J, Shahinuzzaman M, Barua S, Barua D. 2019. Quantitative analysis of the correlation between cell

size and cellular uptake of particles. Biophysical Journal 116:347–359. doi:10.1016/j.bpj.2018.11.3134.

[55] Kreutz C, Timmer J. 2009. Systems biology: experimental design. FEBS Journal 276:923–942.

doi:10.1111/j.1742-4658.2008.06843.x.

[56] Snijder B, Sacher R, Rm P, Damm EM, Liberali P, Pelkmans L. 2009. Population context determines

cell-to-cell variability in endocytosis and virus infection. Nature 461:520–523. doi:10.1038/nature08282.

[57] Kalemera M, Mincheva D, Grove J, Illingworth CJR. 2019. Building a mechanistic mathematical model of

hepatitis C virus entry. PLOS Computational Biology 15:e1006905. doi:10.1371/journal.pcbi.1006905.

[58] Sutherland R, Delia D, Schneider C, Newman R, Kemshead J, Greaves M. 1981. Ubiquitous cell-surface

glycoprotein on tumor cells is proliferation-associated receptor for transferrin. Proceedings of the National

Academy of Sciences 78:4515–4519. doi:10.1073/pnas.78.7.4515.

25

.CC-BY-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 7, 2021. ; https://doi.org/10.1101/2021.11.24.469957doi: bioRxiv preprint 

http://dx.doi.org/10.1073/pnas.0607208104
http://dx.doi.org/10.1098/rsif.2008.0172
http://dx.doi.org/10.1016/0022-0396(70)90100-2
http://dx.doi.org/10.2142/biophysics.1.25
http://dx.doi.org/10.1080/01621459.1954.10501232
http://dx.doi.org/10.1371/journal.pcbi.1004635
http://dx.doi.org/10.1515/sagmb-2013-0010
http://dx.doi.org/10.1073/pnas.0903028106
http://dx.doi.org/10.1186/s12859-015-0862-z
http://dx.doi.org/10.1186/s12859-019-3294-3
http://dx.doi.org/10.1126/science.1070919
http://dx.doi.org/10.1073/pnas.1117401109
http://dx.doi.org/10.1038/nbt.3102
http://dx.doi.org/10.1016/j.bpj.2018.11.3134
http://dx.doi.org/10.1111/j.1742-4658.2008.06843.x
http://dx.doi.org/10.1038/nature08282
http://dx.doi.org/10.1371/journal.pcbi.1006905
http://dx.doi.org/10.1073/pnas.78.7.4515
https://doi.org/10.1101/2021.11.24.469957
http://creativecommons.org/licenses/by-nd/4.0/


[59] Liu H, Johnston APR. 2013. A programmable sensor to probe the internalization of proteins and nanopar-

ticles in live cells. Angewandte Chemie International Edition 52:5744–5748. doi:10.1002/anie.201301243.

[60] Hines KE, Middendorf TR, Aldrich RW. 2014. Determination of parameter identifiability in non-

linear biophysical models: A Bayesian approach. The Journal of General Physiology 143:401–16.

doi:10.1085/jgp.201311116.

[61] Metropolis N, Rosenbluth AW, Rosenbluth MN, Teller AH, Teller E. 1953. Equation of state calculations

by fast computing machines. The Journal of Chemical Physics 21:1087–1092. doi:10.1063/1.1699114.

[62] MCMCChains.jl. https://github.com/TuringLang/MCMCChains.jl. Version 5.0.1.

[63] Roberts GO, Rosenthal JS. 2001. Optimal scaling for various Metropolis-Hastings algorithms. Statistical

Science 16:351–367. doi:10.1214/ss/1015346320.

26

.CC-BY-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 7, 2021. ; https://doi.org/10.1101/2021.11.24.469957doi: bioRxiv preprint 

http://dx.doi.org/10.1002/anie.201301243
http://dx.doi.org/10.1085/jgp.201311116
http://dx.doi.org/10.1063/1.1699114
http://dx.doi.org/10.1214/ss/1015346320
https://doi.org/10.1101/2021.11.24.469957
http://creativecommons.org/licenses/by-nd/4.0/

